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Abstract. Let M ∈ Z
s×s be a dilation matrix and let D ⊂ Z

s be a complete set of represen-
tatives of distinct cosets of Z

s/MZ
s. The self-similar tiling associated with M and D is the subset

of R
s given by T (M,D) = {

∑∞
j=1

M−jαj : αj ∈ D}. The purpose of this paper is to characterize

self-similar lattice tilings, i.e., tilings T (M,D) which have Lebesgue measure one. In particular, it is
shown that T (M,D) is a lattice tiling if and only if there is no nonempty finite set Λ ⊂ Z

s \ (D−D)
such that M−1((D−D)+Λ)∩Z

s ⊂ Λ. This set Λ can be restricted to be contained in a finite set K
depending only on M and D. We also give a new proof for the fact that T (M,D) is a lattice tiling if
and only if ∪∞

n=1(
∑n−1

j=0
Mj(D−D)) = Z

s. Two approaches are provided, one based on scrambling

matrices and the other based on primitive matrices. These will follow from the characterization of
subdivision schemes associated with nonnegative masks in terms of finite powers of finite matrices,
without computing eigenvalues or spectral radii. Our characterization shows that the convergence
of the subdivision scheme with a nonnegative mask depends only on the location of its positive
coefficients.
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1. Introduction. Self-similar tilings are defined in terms of dilation matrices
and digit sets. A dilation matrix M in R

s(s ∈ N) is an s × s integer matrix with
all the eigenvalues greater than 1 in modulus, i.e., limn→∞M−n = 0. A digit set D
associated with the dilation matrix M is a complete set of representatives of distinct
cosets of the quotient group Z

s/MZ
s. If m = |detM |, then D consists of m elements

{ε0, ε1, . . . , εm−1} and εi − εj �∈MZ
s for i �= j.

The self-similar tiling associated with a dilation matrix M and a digit set D is
defined to be the subset T (M,D) of R

s as

T (M,D) :=



∞∑
j=1

M−jαj : αj ∈ D

 .(1.1)

Self-similar tilings have been studied in a variety of contexts in the literature; see,
e.g., [6, 5, 10, 11, 20] and the references therein.

The measure of a self-similar tiling is always a positive integer. Here we are inter-
ested in the case when this measure meas(T (M,D)) is exactly one. If this happens, we
call T (M,D) a self-similar lattice tiling because the integer translates of T (M,D) tile
the space R

s without overlapping. These lattice tilings provide useful examples not
only for fractal geometry but also for wavelet analysis. How to characterize self-similar
lattice tilings in terms of the digit sets is our main concern here.
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In the univariate case, M = m > 1 is a positive integer and D consists of m
integers {ε0, ε1, . . . , εm−1} satisfying εj ≡ j(modm) for j = 0, 1, . . . ,m − 1. Then
T (M,D) has measure one if and only if the numbers ε1−ε0, . . . , εm−1−ε0 are relatively
prime, i.e., gcd(ε1 − ε0, . . . , εm−1 − ε0) = 1. This result was proved independently by
Gröchenig and Haas [5] and by Zhou [21].

In the multivariate case, things are more difficult. Gröchenig and Madych [6]
used the Cohen condition for orthogonality of refinable functions and obtained many
interesting examples of self-similar lattice tilings. A useful necessary condition for
self-similar lattice tilings was provided by Lagarias and Wang [10]: if T (M,D) has
measure one, then the smallest M -invariant sublattice Z[M,D] of Z

s containing the
difference set D−D := {α− β : α, β ∈ D} is Z

s. A necessary and sufficient condition
was given by Gröchenig and Haas [5] in terms of the spectrum of a finite matrix. To
apply this condition, one needs to check whether some eigenvalues of the matrix have
modulus 1 exactly, which is somehow numerically instable. By the tiling theorem in
[11], T (M,D) is a self-similar lattice tiling if and only if ∪∞n=1

∑n−1
j=0 M

j(D−D) = Z
s.

A new proof for this fact will be given in this paper by means of subdivision schemes.
In this paper we show that T (M,D) is a lattice tiling if and only if there is no

nonempty finite set Λ ⊂ Z
s \ (D − D) such that M−1

(
(D − D) + Λ

) ∩ Z
s ⊂ Λ. This

set Λ can be restricted to be contained in a finite set K depending only on M and
D. The lattice tiling property is also equivalent to K ⊂ ∑n−1

j=0 M
j(D − D) for some

1 ≤ n ≤ 1 + #
(
K \ (D − D)); see Theorem 5. We also provide some criteria for

checking self-similar lattice tilings in terms of finite powers of finite matrices. Two
approaches will be presented, one based on scrambling matrices (section 3) and the
other based on primitive matrices (section 4). Our criteria will be consequences of
general characterizations of L2-convergence of subdivision schemes associated with
nonnegative masks. Observe that the characteristic function of the self-similar tiling
(1.1) satisfies the refinement equation

φ(x) =
∑
α∈D

φ(Mx− α), x ∈ R
s.

The symbol of the corresponding mask is a conjugate quadrature filter. Hence the
self-similar lattice tiling can be studied by the convergence of subdivision scheme
associated with this equation.

2. Subdivision schemes and transfer operators. Subdivision schemes are
often used to solve refinement equations of the form

φ(x) =
∑
α∈Zs

a(α)φ(Mx− α), x ∈ R
s,(2.1)

where a := {a(α)}α∈Zs is a finitely supported sequence called the refinement mask.
We restrict a to be real-valued in this paper. When

∑
a(α) = m, the refinement

equation (2.1) has a unique compactly supported distributional solution under the

normalized condition φ̂(0) = 1 (e.g., [1, 2]). Here φ̂ denotes the Fourier transform of
φ and φ is called the normalized solution of (2.1).

In order to find a solution in Lp, we start with the initial function φ0(x) =
Πsj=1ϕ(xj), where x = (x1, . . . , xs) and ϕ is the univariate hat function supported
and given on [0, 2] by ϕ(t) = min{t, 2 − t}. Then the subdivision scheme associated
with (2.1) is defined to be a sequence of functions {φn} as

φn(x) =
∑
α∈Zs

a(α)φn−1(Mx− α), x ∈ R
s, n ∈ N.
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We say that the subdivision scheme associated with (2.1) converges in Lp(1 ≤ p ≤ ∞)
if and only if {φn} converges in Lp:

lim
n→∞ ‖φn − φ‖p = lim

n→∞

{∫
Rs

|φn(x)− φ(x)|pdx
}1/p

= 0.

To characterize the Lp-convergence of the subdivision scheme in terms of the
mask, one needs the concept of the p-norm joint spectral radius; see, e.g., [8, 2]. It
is hard to compute the p-norm joint spectral radius. However, when p is an even
integer, Zhou showed in [22] (see also [19]) that the p-norm joint spectral radius of a
finite set of matrices can be computed exactly and explicitly by the spectral radius of
a single finite matrix.

It is well known (see, e.g., [4, 8]) that the L2-convergence of subdivision schemes
can be characterized in terms of the spectral radius of a finite matrix derived from
the transfer operator which was introduced to wavelet analysis by Lawton [12]. In
the multivariate case, such a characterization was given independently by Han and
Jia [7], Lawton, Lee, and Shen [13], and Strang [18]. To state this fact, let b be the
sequence defined by

b(α) =
1

m

∑
β∈Zs

a(β)a(α+ β), α ∈ Z
s.

Obviously, the sequence b is finitely supported on suppa − suppa. The transfer op-
erator is associated with the bi-infinite matrix (b(Mα − β))α,β∈Zs . To get the finite
matrix, we restrict both α, β to be in a finite index set K ⊂ Z

s such that the space
of all sequences supported in K, �(K) is invariant under the operator (b(Mα − β)).
Also, we require that K contains Ω, the support of the sequence b. Such a set K exists.
For example, by [7] we may take

K = Z
s ∩

( ∞∑
n=1

M−n(Ω ∪MΩ)

)
.

Now we have a finite set K, and the sequence b satisfies

b(Mα− β) �= 0, β ∈ K =⇒ α ∈ K.
The finite matrix we need for the L2-convergence is

F :=
(
b(Mα− β))

α,β∈K .(2.2)

A necessary condition for the convergence of the subdivision scheme is the sum
rule of order one:

∑
α∈Zs a(Mα+ β) = 1 for every β ∈ Z

s. Under this condition,

∑
α∈Zs

b(Mα+ β) =
1

m

∑
γ∈Zs

a(γ)
∑
α∈Zs

a(Mα+ β + γ) = 1 ∀β ∈ Z
s.

If a sequence v supported on K (v ∈ �(K)) satisfies
∑
v(α) = 0, then the vanishing

of b(Mα− β) for β ∈ K,α �∈ K yields

∑
α∈K

(Fv)α =
∑
α∈K

∑
β∈K

b(Mα− β)v(β) =
∑
β∈K

{∑
α∈Zs

b(Mα− β)
}
v(β) = 0.
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That means the space

V :=

{
v ∈ �(K) :

∑
α∈K

v(α) = 0

}
(2.3)

is invariant under the action of F .
With the above notation, we can now state the following known result [7, 13, 18]

on the L2-convergence of subdivision schemes.
THEOREM A. Let M be a dilation matrix and let a := {a(α)}α∈Zs be a finitely

supported sequence with
∑
a(α) = m. Then the subdivision scheme associated with

(2.1) converges in L2 if and only if
(a)

∑
α∈Zs a(Mα+ β) = 1 ∀β ∈ Z

s;
(b) ρ(F |V ) < 1, i.e., the spectral radius of the finite matrix F restricted to the

invariant subspace V is less than 1.
This is a very nice characterization. However, one still has to compute the eigen-

values of the matrix, which is not so stable numerically. In particular, for our purpose
of self-similar tilings, the mask will be nonnegative. In this case, F is a column-
stochastic matrix, i.e., F is nonnegative and for every β ∈ K∑

α∈K
Fα,β =

∑
α∈Zs

b(Mα− β) = 1.

Thus, F would have eigenvalues other than 1 on the unit circle, if condition (b) of
Theorem A is not true. This difficulty can be overcome by using the special property
caused by the nonnegative mask.

3. The L2-convergence of subdivision schemes with nonnegative masks.
In this section we characterize the L2-convergence of the subdivision scheme associated
with a nonnegative mask in terms of finite powers of the column-stochastic matrix F .
This approach depends mainly on a result of scrambling column-stochastic matrices
used by Jia and Zhou in [9].

A matrix A = (Aα,β)α,β∈K is called column-stochastic if all its entries are non-
negative and ∑

α∈K
Aα,β = 1 ∀β ∈ K.

We say that the column-stochastic matrix A is scrambling if each pair of columns has
positive entries in some common row. It is well known that AB is column-stochastic
if both A and B are, and AB is scrambling if B is scrambling and A is column-
stochastic. Denote ‖v‖1 as the �1-norm of sequences. The result from [9] that we
need here is the following.

LEMMA. Let A = (Aα,β)α,β∈K be column-stochastic and let V be defined by (2.3).
Then

‖A|V ‖1 := sup
0 �=v∈V

‖Av‖1
‖v‖1 < 1

if and only if A is scrambling.
We are now in a position to state the main result of this section.
Theorem 1. Let M be a dilation matrix and let a := {a(α)}α∈Zs be a finitely

supported nonnegative sequence with
∑
a(α) = m. Set K and F as in Theorem A.
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Let N := #K. Then the subdivision scheme associated with (2.1) converges in L2 if
and only if

(i)
∑
α∈Zs a(Mα+ β) = 1 ∀β ∈ Z

s;
(ii) there exists some integer n with 1 ≤ n ≤ (3N − 2N+1 + 1)/2 such that the

matrix Fn is scrambling.
Proof. The sufficiency follows from Theorem A, our lemma, and the well-known

fact that

ρ(F |V ) = lim
k→∞

‖F k|V ‖1/k1 = inf
k∈N

‖F k|V ‖1/k1 .

To see the necessity, we suppose that the subdivision scheme converges in L2.
Then condition (i) holds by Theorem A. Theorem A also tells us that

ρ(F |V ) = inf
k∈N

‖F k|V ‖1/k1 < 1.

Hence, ‖F k|V ‖1 < 1 for some k ∈ N. Since F k is column-stochastic, by our lemma, F k

is scrambling. Observe that condition (ii) is equivalent to the fact that F (3N−2N+1+1)/2

is scrambling. It is sufficient for us to show that F (3N−2N+1+1)/2 is scrambling.

Suppose to the contrary that the column-stochastic matrix F (3N−2N+1+1)/2 is
not scrambling. Then there are two distinct elements γ1 and γ2 in K such that

for every α ∈ K either (F (3N−2N+1+1)/2)α,γ1 or (F (3N−2N+1+1)/2)α,γ2 is zero. Let
0 ≤ j ≤ (3N − 2N+1 + 1)/2, γ ∈ {γ1, γ2}. We have

(F (3N−2N+1+1)/2)α,γ =
∑
β∈K

(F (3N−2N+1+1)/2−j)α,β(F j)β,γ .

Therefore, for every β ∈ K, either (F j)β,γ1 or (F j)β,γ2 is zero, since for some α ∈ K
depending on β, (F (3N−2N+1+1)/2−j)α,β �= 0. Here F 0 = I. Define

Ij,γ := {β ∈ K : (F j)β,γ > 0}.

Then we know that Ij,γ �= ∅ and for 0 ≤ j ≤ (3N − 2N+1 +1)/2, Ij,γ1 ∩ Ij,γ2 = ∅. The
number of different unordered pairs of disjoint nonempty subsets of K is (3N−2N+1+
1)/2 (see [16]). Hence, there must exist some 1 ≤ p < l ≤ (3N − 2N+1 + 1)/2 such
that Ip,γ1 = Il,γ1 and Ip,γ2 = Il,γ2 . That means, for every β ∈ K, γ ∈ {γ1, γ2}, (F p)β,γ
and (F l)β,γ are either both positive or both zero.

Let q ∈ N, α ∈ K, γ ∈ {γ1, γ2}. Then

(F p+q(l−p))α,γ =
∑
β∈K

(F (q−1)(l−p))α,β(F l)β,γ

vanishes if and only if

(F p+(q−1)(l−p))α,γ =
∑
β∈K

(F (q−1)(l−p))α,β(F p)β,γ

equals zero. Hence, for γ ∈ {γ1, γ2}, q ∈ N, Ip+q(l−p),γ = Ip,γ . It follows that for any
q ∈ N,

Ip+q(l−p),γ1 ∩ Ip+q(l−p),γ2 = Ip,γ1 ∩ Ip,γ2 = ∅.
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Thus the column-stochastic matrix F p+q(l−p) is not scrambling. Choose q such that
p+q(l−p) > k. Then we conclude that F k is not scrambling, which is a contradiction.
This tells us that condition (ii) holds.

In [15, 3, 9] the uniform convergence of subdivision schemes associated with non-
negative masks was characterized in terms of finite products of m matrices. This in
connection with the autocorrelation of the mask yields another way to characterize
the L2-convergence. However, we need a set of m matrices and many more matrix
products need to be checked.

The argument for the bound (3N − 2N+1 + 1)/2 was provided by Paz [16], who
proved that (3N − 2N+1 +1)/2 is a sharp bound for the power in checking scrambling
products of several matrices. Here we give a complete proof for the reader’s conve-
nience. For a single matrix, this bound can most likely be largely reduced. With
the approach given in the next section (Theorem 2) we will need to check only the
powers up to (N − 1)2 + 1 for our purpose of checking the L2-convergence. However,
Theorem 1 plays an important role in deriving a nice characterization of self-similar
lattice tilings (Theorem 5) which is hard to see from Theorem 2.

As a consequence of Theorem 1, we show that the convergence of the subdivi-
sion scheme with a nonnegative mask depends only on the location of its positive
coefficients.

Corollary 1. Let a and c be two nonnegative masks satisfying the sum rule of
order one: ∑

α∈Zs

a(Mα+ β) =
∑
α∈Zs

c(Mα+ β) = 1 ∀β ∈ Z
s.

Suppose c(α) > 0 whenever a(α) > 0. If the subdivision scheme associated with mask
a converges, then the subdivision scheme associated with mask c also converges.

Proof. Let K be given for the mask c as in Theorem A. Denote Fa and Fc as
the transfer matrices defined by (2.2) associated with the masks a and c, respectively.
Then for α, β ∈ K, (Fa)α,β > 0 implies that (Fc)α,β > 0.

Since the subdivision scheme associated with mask a converges, by Theorem 1,
for some 1 ≤ n ≤ (3#K−2#K+1+1)/2, the matrix Fna is scrambling. Then the matrix
Fnc is also scrambling. By using Theorem 1 again, we conclude that the subdivision
scheme associated with mask c also converges.

4. Primitive matrices and condition E. In this section we present another
approach to the L2-convergence of subdivision schemes associated with nonnegative
masks. This approach is based on primitive matrices and the power involved is at
most (N − 1)2 + 1, much less than (3N − 2N+1 + 1)/2 when N is large.

To state the main result here, we need the Frobenius normal form of the column-
stochastic matrix F :

F =




F1 0 · · · 0 F1,k+1 · · · F1,d

0 F2 0 · · · 0 F2,k+1 · · · F2,d

... 0
. . . 0

...
...

0 · · · 0 Fk Fk,k+1 Fk,d

0 · · · 0 0 Fk+1

...

0 · · · 0 0 0
. . .

0 · · · 0 0 0 0 Fd



.(4.1)
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Here k ≥ 1 and each Fj is either a 1 × 1 zero matrix or is irreducible. The blocks
F1, . . . , Fk are called isolated. For each l with k+1 ≤ l ≤ d (nonisolated block), there
exists some i such that Fi,l �= 0. The Frobenius normal form for the matrix F can be
realized by choosing a suitable order for the set K.

Condition (b) of Theorem A for F is equivalent to condition E. A square matrix
A is said to satisfy condition E if 1 is a simple eigenvalue of A and all the other
eigenvalues are less than 1 in modulus. An irreducible nonnegative matrix A is called
primitive if A satisfies condition E. Recall that for an irreducible column-stochastic
matrix, the primitivity is equivalent to that for some n ∈ N, An is positive (all the
entries are positive). The smallest n with this property is called the index of A and
can be bounded sharply by (N − 1)2 + 1. For these facts on nonnegative matrices,
see, e.g., [17].

Using the Frobenius normal form (4.1) we can characterize the L2-convergence of
subdivision schemes with nonnegative masks in terms of primitive matrices.

Theorem 2. Let M be a dilation matrix and let a := {a(α)}α∈Zs be a finitely
supported nonnegative sequence with

∑
a(α) = m. Set K and F as in Theorem A.

Let N := #K. Assume that the matrix F takes the form (4.1). Then the subdivision
scheme associated with (2.1) converges in L2 if and only if

(i)
∑
α∈Zs a(Mα+ β) = 1 ∀β ∈ Z

s;
(ii) in the form (4.1), k = 1, and F1 is primitive.
Proof. Let us prove the equivalence between condition (b) of Theorem A and

condition (ii) of Theorem 2.
Suppose ρ(F |V ) < 1. Since F is column-stochastic, it has an eigenvalue 1 with a

left eigenvector [1, . . . , 1]. Then F satisfies condition E. Since F is column-stochastic,
each of the isolated blocks F1, . . . , Fk is also column-stochastic and provides one mul-
tiplicity of the eigenvalue 1. Hence, k = 1. All the eigenvalues of F1, including 1,
are eigenvalues of F , but F satisfies condition E. Therefore, F1 satisfies condition E.
This in connection with the irreducibility of F1 implies that F1 is primitive. Thus
condition (ii) of Theorem 2 holds.

Conversely, assume that k = 1 and F1 is primitive. We need to show that ρ(Fj) <
1 for 2 ≤ j ≤ d.

Suppose to the contrary that for some j with 2 ≤ j ≤ d, ρ(Fj) ≥ 1. Then Fj is
not the zero matrix and is irreducible. Since all the eigenvalues of Fj are eigenvalues
of F , ρ(Fj) = 1. However, Fj is nonnegative. The Perron–Frobenius theorem tells us
that Fj has a left positive eigenvector v with eigenvalue 1: vFj = v and v = [v1, . . . , vl]
with v1, . . . , vl > 0.

Let vmax := max{vi : 1 ≤ i ≤ l} > 0 and let I := {i : vi = vmax} �= ∅. Then for
i ∈ I,

vi = vmax =

l∑
p=1

vp(Fj)p,i = vmax

∑
p∈I

(Fj)p,i +
∑
p�∈I

vp(Fj)p,i ≤ vmax.

Since the equality holds, we know that for i ∈ I, p �∈ I, (Fj)p,i = 0. However, Fj is
irreducible. Therefore, Ic = ∅, i.e., v1 = v2 = · · · = vl = vmax. It follows that Fj is
column-stochastic. Hence, Fi,j = 0 for i �= j and Fj is an isolated block, which is a
contradiction.

Thus, we have shown that ρ(Fj) < 1 for 2 ≤ j ≤ d. But F1 satisfies condition
E. Hence F satisfies condition E, i.e., ρ(F |V ) < 1. The proof of Theorem 2 is
complete.
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The proof of Theorem 2 yields the following result on general column-stochastic
matrices, which is of independent interest.

Theorem 3. Let F be column-stochastic and take the Frobenius normal form
(4.1). Then the following statements are equivalent:

(i) F satisfies condition E;

(ii) k = 1 and F1 is primitive;

(iii) Fn is scrambling for some n ∈ N;

(iv) ρ(F |V ) < 1.

To apply Theorems 2 and 3, we have to check whether F1 is primitive. Since F1

is irreducible, this is equivalent to the fact that Fn1 is scrambling for some n ∈ N.
From the sharp bound (N − 1)2 +1 for the index of primitive matrices, we know that
n can be bounded by (N − 1)2 + 1. The following example shows that, in general, n
should be at least [(N − 1)2/2] + 1.

Example 1. Let A be the following N ×N irreducible column-stochastic matrix:

A =




0 · · · 0 1/2
1/2

IN−1

0
...
0


 .

Then by computation we see that A[(N−1)2/2] is not scrambling, while A[(N−1)2/2]+1

is scrambling.

5. Characterizations for self-similar lattice tilings. In this section we char-
acterize self-similar lattice tilings in terms of finite powers of finite matrices and digit
sets.

Observe that the characteristic function χT (M,D) of the self-similar tiling (1.1)
satisfies the refinement equation

φ(x) =
∑
α∈D

φ(Mx− α)(5.1)

with the mask being a 0−1 sequence (hence, nonnegative). The normalized solution is
φ = 1

meas(T (M,D))χT (M,D). The mask satisfies condition (i) of Theorem 1. Recall from

[6] that the symbol of this mask is a conjugate quadrature filter (CQF). Therefore,
a well-known fact on CQFs tells us that the integer translates of φ are orthonormal
(i.e., T (M,D) has measure one) if and only if the subdivision scheme associated with
(5.1) converges in L2. Recall from [7] that for any finitely supported sequence b on
Z
s and any finite set H ⊂ Z

s, there exists a finite set K ⊂ Z
s such that H ⊂ K and

�(K) is invariant under (b(Mα − β)). Also, �(K) is invariant under (b(Mα − β)) if
and only if M−1(suppb+K) ∩ Z

s ⊂ K. Then we have the following characterization
for self-similar lattice tilings.

Theorem 4. Let M be a dilation matrix and let D be a complete set of repre-
sentatives of distinct cosets of Z

s/MZ
s. Let a := {a(α)}α∈Zs be supported on D and

a(α) = 1 for α ∈ D. Let b be the sequence given by

b(α) =
1

m

∑
β∈Zs

a(β)a(α+ β), α ∈ Z
s.
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Choose a finite set K such that K contains Ω := D −D and �(K) is invariant under
the bi-infinite matrix (b(Mα− β)). Let

F :=
(
b(Mα− β))

α,β∈K .

Set N := #K. Then the following statements are equivalent:
(1) T (M,D) is a lattice tiling;
(2) there exists some integer n with 1 ≤ n ≤ (3N − 2N+1 + 1)/2 such that the

matrix Fn is scrambling;
(3) there is no nonempty set Λ ⊂ K \ Ω such that M−1(Ω + Λ) ∩ Z

s ⊂ Λ;
(4) there is no nonempty finite set Λ ⊂ Z

s \Ω such that M−1(Ω + Λ) ∩ Z
s ⊂ Λ.

Proof. The equivalence between statements (1) and (2) follows from Theorem 1.
To see the equivalence between statements (1) and (3), we observe that

b(0) = 1.

Since F is column-stochastic, it follows that F0,β = 0 for β ∈ K \ {0}. Then F1 = [1]
is an isolated block in the Frobenius normal form (4.1). By Theorem 2, T (M,D) is
a lattice tiling if and only if [1] is the only isolated block in (4.1); that is, there is no
nonempty set Λ ⊂ K \ {0} such that �(Λ) is invariant under F :

Fα,β > 0, β ∈ Λ =⇒ α ∈ Λ.

Notice that F0,β = b(−β) > 0 for any β ∈ Ω. Therefore, the above statement is
equivalent to the fact that there is no nonempty set Λ ⊂ K \ Ω such that

Fα,β = b(Mα− β) > 0, β ∈ Λ =⇒ α ∈ Λ,

i.e.,

Mα− β ∈ Ω, β ∈ Λ =⇒ α ∈ Λ.

This tells us the equivalence between statements (1) and (3). By choosing K to be
large enough (Λ ⊂ K), we see easily the equivalence between statements (3) and
(4).

Theorem 4 yields a new proof for the first part of the following nice characteriza-
tion of self-similar tilings. (The second part is new.)

Theorem 5. Let M be a dilation matrix and let D be a complete set of repre-
sentatives of distinct cosets of Z

s/MZ
s. Define T (M,D) by (1.1). Then T (M,D) is

a lattice tiling if and only if

∪∞n=1

(n−1∑
j=0

M j
(D −D)) = Z

s.(5.2)

Moreover, choose K as in Theorem 4 and let N = #K; then T (M,D) is a lattice

tiling if and only if K ⊂ ∑n−1
j=0 M

j(D − D) for some n with 1 ≤ n ≤ N −m + 1 if

and only if K ⊂∑n−1
j=0 M

j(D −D) for some n ∈ N.
Proof. By a translation, we may assume that 0 ∈ D. Let a and b be as in Theorem

4. Then the support of b is exactly Ω := D −D. Let us prove the first equivalence.
Necessity. Suppose that T (M,D) is a lattice tiling. If (5.2) does not hold, we

choose a finite set K such that K contains Ω, K ∩ [Zs \ ∪∞n=1(
∑n−1
j=0 M

jΩ)
] �= ∅, and

�(K) is invariant under (b(Mα− γ)).
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Set

Λ := K ∩

Z

s \ ∪∞n=1


n−1∑
j=0

M jΩ




 .

Obviously, Λ ⊂ K \ Ω. We state that

M−1(Ω + Λ) ∩ Z
s ⊂ Λ.

Since �(K) is invariant under (b(Mα− γ)), we know that

M−1(Ω + Λ) ∩ Z
s ⊂M−1(Ω +K) ∩ Z

s ⊂ K.
Let α = M−1(ω + λ) ∈ M−1(Ω + Λ) ∩ Z

s with ω ∈ Ω and λ ∈ Λ. Then
α ∈ ∪n−1

j=0M
jΩ would imply λ = −ω +Mα ∈ ∪nj=0M

jΩ, a contradiction. Therefore,

α �∈ ∪n−1
j=0M

jΩ for any n ∈ N. Hence,
(
M−1(Ω+Λ)∩Z

s
)∩ [∪∞n=1(

∑n−1
j=0 M

jΩ)
]
= ∅.

Thus, M−1(Ω + Λ) ∩ Z
s ⊂ Λ, and our statement has been proved. This contradicts

the condition (4) of Theorem 4. Therefore, (5.2) must be true.
Sufficiency. Suppose (5.2) holds. Choose K as in Theorem 4. Then there exists

some n ∈ N such that

K ⊂
n−1∑
j=0

M jΩ.(5.3)

Let

F :=
(
b(Mα− γ))

α,γ∈K .

We state that (
Fn

)
0,α
> 0 ∀α ∈ K.

To see this, let α ∈ K. Then (5.3) tells us that there exist β0, β1, . . . , βn−1 ∈ Ω
such that

α =

n−1∑
j=0

M jβj = β0 +Mβ1 + · · ·+Mn−1βn−1.

Define

αj :=

n−1∑
i=n−j

M i+j−nβi = βn−j +Mβn−j+1 + · · ·+M j−1βn−1, 1 ≤ j ≤ n− 1.

Then

Mαn−1 − α = −β0 ∈ Ω and α1 = βn−1 ∈ Ω.

Moreover, for 2 ≤ j ≤ n− 1,

Mαj−1 − αj =
n−1∑

i=n−j+1

M i+j−nβi −
n−1∑
i=n−j

M i+j−nβi = −βn−j ∈ Ω.
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It follows that Fαj−1,αj
= b(Mαj−1 − αj) > 0. Hence,(

Fn
)
0,α
≥ F0,α1

(
Πn−1
j=2Fαj−1,αj

)
Fαn−1,α > 0.

Thus our statement holds. Hence, Fn is scrambling. By Theorem 4, T (M,D) is
a lattice tiling. This proves the sufficiency.

Using the above proof, we can see that T (M,D) is a lattice tiling ifK ⊂∑n−1
j=0 M

jΩ
for some n ∈ N.

To see the necessity of the second equivalence, choose 1 ≤ n ≤ 1+#(K \Ω) such
that

K \
n−1∑
j=0

M jΩ = K \
n∑
j=0

M jΩ.

Set Λ := K \∑n−1
j=0 M

jΩ ⊂ K \ Ω ⊂ K. Then

M−1(Ω + Λ) ∩ Z
s ⊂M−1(Ω +K) ∩ Z

s ⊂ K.

If α =M−1(ω+λ) ∈M−1(Ω+Λ)∩Z
s with ω ∈ Ω and λ ∈ Λ, then α ∈∑n−1

j=0 M
jΩ

would imply λ = −ω +Mα ∈ ∪nj=0M
jΩ, a contradiction. Therefore,

(
M−1(Ω + Λ) ∩ Z

s
) ∩


n−1∑
j=0

M jΩ


 = ∅.

Hence, M−1(Ω+Λ)∩Z
s ⊂ Λ. Since T (M,D) is a lattice tiling, by Theorem 4, Λ = ∅,

i.e., K ⊂∑n−1
j=0 M

jΩ. Since #(K \Ω) ≤ N−m, the necessity of the second statement
is proved.

As a corollary we obtain another proof of the necessary condition due to Lagarias
and Wang [10].

Corollary 2. Let M be a dilation matrix and let D be a complete set of rep-
resentatives of distinct cosets of Z

s/MZ
s. Define T (M,D) by (1.1). If T (M,D) is a

lattice tiling, then the smallest M -invariant sublattice Z[M,D] of Z
s containing the

difference set D −D is Z
s.

Let us give an example to show the difference between the necessary condition in
[10] and the necessary and sufficient conditions in Theorem 5.

Example 2. Let M and D be given as

M :=

[
2 1
0 2

]
, D :=

{[
0
0

]
,

[
3
0

]
,

[
0
1

]
,

[
3
1

]}
.

Then Z[M,D] = Z
s by [10]. However,

[
1
0

]
�∈ ∪∞n=1


n−1∑
j=0

M jΩ


 .

Hence, T (M,D) is not a lattice tiling.
Proof. Notice that

Ω =

{[
0
0

]
,

[
3
0

]
,

[
0
1

]
,

[
3
1

]
,

[−3
1

]
,

[−3
0

]
,

[
0
−1

]
,

[−3
−1

]
,

[
3
−1

]}
.
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Then the second component of each vector in M jΩ is in the set {0, 2j ,−2j}.
Suppose that for some n ∈ N and α0, . . . , αn−1 ∈ Ω,

[
1
0

]
=
n−1∑
j=0

M jαj .

Comparing the second components, we see that the second components of α0, . . . , αn−1

are all zero. But the only vectors with this property in M jΩ are in 2jΩ0, where

Ω0 =

{[
0
0

]
,

[
3
0

]
,

[−3
0

]}
.

Therefore, the first component of
∑n−1
j=0 M

jαj lies in 3Z, which is a contradiction.
Thus, the condition of Theorem 5 does not hold, and T (M,D) is not a lattice
tiling.

The condition K ⊂∑n−1
j=0 M

j(D−D) can be reduced into the knapsack problem,
which can be solved by a polynomial-time algorithm for the fixed n (see, e.g., [14]).
The necessity condition Z[M,D] = Z

s can be easily checked by the solvability of linear
diophantine equations.

6. Examples. In this section we provide some examples to show the applicability
of the characterizations stated in Theorems 4 and 5.

Example 3. Let M be the dilation matrix

M =

[
a b
0 c

]

with a > 1, c > 1. Choose {k0 = 0, k1, . . . , ka−1} ⊂ Z and {p0 = 0, p1, . . . , pc−1} ⊂ Z

such that kj ≡ j(moda) and pi ≡ i(modc). Let l0, l1, . . . , lc−1 be arbitrary integers
and set

D =

{[
li + kj
pi

]
: i = 0, 1, . . . , c− 1; j = 0, 1, . . . , a− 1

}
.

Then D is a complete set of representatives of distinct cosets of Z
2/MZ

2. The self-
similar tiling T (M,D) is a lattice tiling if and only if gcd(k1, . . . , ka−1) = 1 and
gcd(p1, . . . , pc−1) = 1.

Proof. Let ε1 = (li1+kj1 , pi1)
T , ε2 = (li2+kj2 , pi2)

T ∈ D. Suppose ε1−ε2 ∈MZ
2.

Then for some β = (β1, β2)
T ∈ Z

2,

ε1 − ε2 =
[
li1 + kj1 − li2 − kj2

pi1 − pi2

]
=Mβ =

[
aβ1 + bβ2

cβ2

]
.

Both i1 and i2 are in {0, 1, . . . , c− 1} and pi ≡ i(modc). Hence, β2 = 0 and i1 = i2.
It follows that kj1 − kj2 = aβ1 ∈ aZ. But kj ≡ j(moda). We know that j1 = j2, i.e.,
ε1 = ε2. This proves that D is a complete set of representatives of distinct cosets of
Z

2/MZ
2.

To see the second statement, first prove the sufficiency. Suppose gcd(k1, . . . , ka−1)

= 1 and gcd(p1, . . . , pc−1) = 1. We show that Z
2 ⊂ ∪∞n=1

∑n−1
j=0 M

j(D−D). Then by
Theorem 5, T (M,D) is a lattice tiling.
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Let α = (α1, α2)
T ∈ Z

2. Theorem 5 in connection with the characterization of
univariate self-similar lattice tilings in [5, 21] (see also the introduction) tells us that
there are n ∈ N and i0, i1, . . . , in−1, ĩ0, ĩ1, . . . , ĩn−1 ∈ {0, 1, . . . , c− 1} such that

α2 =

n−1∑
j=0

cj(pij − pĩj ).

Then in the same way, there are N ∈ N and {nj , ñj}N−1
j=0 ⊂ {0, 1, . . . , a− 1} such that

N−1∑
j=0

aj(knj
− kñj

) = α1 −
n−1∑
j=0

aj(lij − l̃ij )−
n−1∑
j=0

b(pij − pĩj )
j−1∑
q=0

aqcj−1−q.

We may assume that N ≥ n, since otherwise we need only to choose nj = ñj for
j = N, . . . , n− 1.

Observe that

M j =

[
aj b

∑j−1
q=0 a

qcj−1−q

0 cj

]
.

Take ij = ĩj for j = n, . . . , N − 1. Then

N−1∑
j=0

M j

([
lij + knj

pij

]
−
[
l̃ij + kñj

pĩj

])

=

[∑N−1
j=0 a

j(knj − kñj ) +
∑n−1
j=0 a

j(lij − l̃ij ) +
∑n−1
j=0 b(pij − pĩj )

∑j−1
q=0 a

qcj−1−q∑n−1
j=0 c

j(pij − pĩj )

]
.

The first component of this vector is exactly α1, while the second is α2. Therefore,
α ∈∑N−1

j=0 M
j(D −D). Hence, Z

2 ⊂ ∪∞n=1

∑n−1
j=0 M

j(D −D).
To see the necessity, suppose T (M,D) is a lattice tiling. Then by Theorem 5,

Z
2 ⊂ ∪∞n=1

∑n−1
j=0 M

j(D −D).
Let N ∈ N and {ij , ĩj}N−1

j=0 ⊂ {0, 1, . . . , c − 1}, {nj , ñj}N−1
j=0 ⊂ {0, 1, . . . , a − 1}.

Then

N−1∑
j=0

M j

([
lij + knj

pij

]
−
[
l̃ij + kñj

pĩj

])

=

[∑N−1
j=0 a

j(lij − l̃ij + knj
− kñj

) +
∑N−1
j=0 b(pij − pĩj )

∑j−1
q=0 a

qcj−1−q∑n−1
j=0 c

j(pij − pĩj )

]
.

(6.1)

The second component of (6.1) is divisible by gcd(p1, . . . , pc−1). Therefore, there
must hold gcd(p1, . . . , pc−1) = 1.

We also know that (1, 0)T ∈∑N−1
j=0 M

j(D −D) for some N . Suppose the vector

(6.1) equals (1, 0)T . Then

N−1∑
j=0

cj(pij − pĩj ) = 0.

Hence, pi0 − pĩ0 ∈ cZ. But pi ≡ i(modc). Therefore, i0 = ĩ0. In the same way,

i1 = ĩ1, . . . , iN−1 = ĩN−1.
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Consider the first component of (6.1). It states that

1 =
N−1∑
j=0

aj(knj − kñj ).

This is divisible by gcd(k1, . . . , ka−1). Hence, gcd(k1, . . . , ka−1) = 1.
If we take a = c = 2, b = 0, p1 = 1, k1 = 3, and l0 = l1 = 0, we obtain Example 2.

The case pi = i, kj = j was proved in [5].
Let us turn to the necessary condition Z[M,D] = Z

s in our special example.
Assume l0,= l1 = · · · = lc−1 = 0.

Example 4. Let M,D as in Example 3 and l0 = l1 = · · · = lc−1 = 0. Then
Z[M,D] = Z

2 if and only if gcd(p1, . . . , pc−1) = 1 and gcd(b, k1, . . . , ka−1) = 1.
Proof. Since 0 ∈ D,Z[M,D] = Z[D,MD] as shown in [10]. Let ∆ be a 2 × (ac)

matrix whose columns are vectors in D. Then the solvability of linear diophantine
equations tells us that Z[D,MD] = Z

2 if and only if the greatest common divisor of
2 × 2 minors of the matrix [∆,M∆] is one. Note that the columns of M∆ have the
form

M

[
kj
pi

]
=

[
akj + bpi
cpi

]
.

Each entry of the first row of the matrix [∆,M∆] is divisible by gcd(b, k1, . . . , ka−1)
= 1, while each entry of the second row is divisible by gcd(p1, . . . , pc−1) = 1. The
necessity follows easily.

Conversely, if gcd(p1, . . . , pc−1) = gcd(b, k1, . . . , ka−1) = 1, we choose the follow-
ing 2× 2 minors of the matrix [∆,M∆]:∣∣∣∣ kj 0

0 pi

∣∣∣∣ = kjpi,
∣∣∣∣ bpi 0
cpi pĩ

∣∣∣∣ = bpipĩ.
The greatest common divisor of these minors is

gcd
(
gcd(k1, . . . , ka−1) · gcd(p1, . . . , pc−1), b · [gcd(p1, . . . , pc−1)]

2
)
,

which equals one. Therefore, the greatest common divisor of 2 × 2 minors of the
matrix [∆,M∆] is one, and Z[M,D] = Z

2.
Example 5. Let 2 ≤ m ∈ N and let M = mIs. If D is a complete set of

representatives of distinct cosets of Z
s/MZ

s and{
0, 1, . . . ,

[m
2

]}s
⊂ D,

then T (M,D) is a lattice tiling.
Proof. By our assumption,{

−
[m
2

]
, . . . ,−1, 0, 1, . . . ,

[m
2

]}s
⊂ D −D.

Then for n ∈ N,

[
−
[m
2

] mn − 1

m− 1
,

[m
2

] mn − 1

m− 1

]s
∩ Z

s ⊂
n−1∑
j=0

M j(D −D).
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Therefore, for sufficiently large n,

K ⊂
n−1∑
j=0

M j(D −D).

By Theorem 5, T (M,D) is a lattice tiling.
In particular, for M = [ 3 0

0 3 ], if D contains (0, 0)T , (1, 0)T , (0, 1)T , (1, 1)T , then
T (M,D) is a lattice tiling.
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Abstract. Consider a linear autonomous Hamiltonian system with a time-periodic bound state
solution. In this paper we study the structural instability of this bound state relative to time almost
periodic perturbations which are small, localized, and Hamiltonian. This class of perturbations
includes those whose time dependence is periodic but encompasses a large class of those with finite
(quasi-periodic) or infinitely many noncommensurate frequencies. Problems of the type considered
arise in many areas of applications including ionization physics and the propagation of light in optical
fibers in the presence of defects. The mechanism of instability is radiation damping due to resonant
coupling of the bound state to the continuum modes by the time-dependent perturbation. This
results in a transfer of energy from the discrete modes to the continuum. The rate of decay of
solutions is slow and hence the decaying bound states can be viewed as metastable. These results
generalize those of A. Soffer and M. I. Weinstein, who treated localized time-periodic perturbations
of a particular form. In the present work, new analytical issues need to be addressed in view of (i)
the presence of infinitely many frequencies which may resonate with the continuum as well as (ii)
the possible accumulation of such resonances in the continuous spectrum. The theory is applied to
a general class of Schrödinger operators.

Key words. Hamiltonian partial differential equations, parametric resonance, time-dependent
perturbation theory, Fermi golden rule, energy transfer, metastable states
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1. Introduction.

1.1. Overview. Consider a dynamical system of the form

i∂tφ = H0 φ,(1.1)

where H0 denotes a self-adjoint operator on a Hilbert space H. We further assume
that H0 has only one eigenstate ψ0 ∈ H with corresponding simple eigenvalue λ0.
Thus,

b∗(t) = e−iλ0tψ0(1.2)

is a time-periodic bound state solution of the dynamical system (1.1). We next intro-
duce the perturbed dynamical system

i∂tφ = (H0 + εW (t))φ.(1.3)

In this paper we prove that if the perturbation, εW (t), is small, “generic,” and almost
periodic in time,1 then solutions of the perturbed dynamical system (1.3) tend to zero

∗Received by the editors October 26, 1999; accepted for publication (in revised form) October
26, 2000; published electronically April 12, 2001. This research was supported in part by National
Science Foundation grant DMS-950097.
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1See the appendix in section 9 as well as [2, 9] for definitions and results on almost periodic
functions.
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as t → ±∞. It follows that the state, b∗(t), does not continue or deform to a time-
periodic or even time-almost-periodic state. Thus, b∗(t) is structurally unstable with
respect to this class of perturbations. Our methods yield a detailed description of the
transient (t large but finite) and long time (t→ ±∞) behavior solutions to the initial
value problem. Theorems 2.1–2.3 contain precise statements of our main results. The
following picture emerges concerning time evolution (1.3) for initial data given by the
bound state, ψ0, of the unperturbed problem. Let

P (t) = |( ψ0, φ(t) )|2(1.4)

be the modulus square of the projection of the solution at time t onto the state ψ0.
2

Then,
(i) P (t) ∼ 1− CW |t|2 for |t| small,3
(ii) P (t) ∼ exp(−2ε2Γt) for t ≤ O((ε2Γ)−1), Γ = O(W 2), and
(iii) P (t) ∼ 〈t〉−α for |t| >> (ε2Γ)−1 for some α > 0.
The time τ = (ε2Γ)−1 is called the lifetime of the state b∗(t), which can be

thought of as being metastable due to its slow decay. The mechanism for large time
decay is resonant coupling of the bound state with continuous spectrum due to the
time-dependent perturbation. Our analysis makes explicit the slow transfer of energy
from the discrete to continuum modes and the accompanying radiation of energy out
of any compact set.

Phenomena of the type considered here are of importance in many areas of theo-
retical physics and applications. Examples include ionization physics [3, 4, 10] and the
propagation of light in optical fibers in the presence of defects [13]; see the discussion
below.

The results of this article generalize those of Soffer and Weinstein [22], where the
case

W (t) = cos(µt) β, β = β∗(1.5)

was considered. The method used is a time-dependent/dynamical systems approach
introduced in [21], [23] in a perturbation theory of operators with embedded eigenval-
ues in their continuous spectrum. These ideas were also used in a study of resonant
radiation damping of nonlinear systems [24], as well as in a class of parametric res-
onance problems [22]; see also [12]. New analytical questions must be addressed in
view of (i) the presence of infinitely many frequencies which may resonate with the
continuum as well as (ii) the possible accumulation of such resonances in the con-
tinuous spectrum. This leads to a careful use of almost periodic properties of the
perturbation (Theorems 2.1 and 2.2) and hypothesis (H6) (Theorem 2.3), which is
easily seen to hold when the perturbation,W (t), consists of a sum over a finite number
of frequencies, µj .

A special case for which the hypotheses of our theorems are verified is the case of
the Schrödinger operator H0 = −∆ + V (x). Here, V (x) is a real-valued function
of x ∈ R

3 which decays sufficiently rapidly as |x| → ∞. In this setting Soffer and
Weinstein [22] studied in detail the structural instability of b∗(t) by considering the
perturbed dynamical system (1.3) with W (x, t) = β(x) cos(µt). Here, we consider

2(f, g) denotes the inner product of f and g. If ψ0 is normalized, then P (t) has the quantum
mechanical interpretation of the probability that the system at time t is in the state ψ0.

3We do not discuss the short time behavior in this article; see [12]. This small time behavior is
related to the “watched pot” effect in quantum measurement theory [15].
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a class of perturbations of the form W (x, t) =
∑

j βj(x) cosµjt, where the sum
may be finite or infinite and where the frequencies µj need not be commensurate, e.g.,
W (x, t) = β1(x) cos t + β2(x) cos

√
2t, where βi(x), i = 1, 2, is rapidly decaying

as x→∞.
In addition to the problem of ionization by general time-varying fields, we mention

other motivations for considering the class of time-dependent perturbations sketched
above and defined in detail in section 2.

(a) An area of application to which our analysis applies is the propagation of light
through an optical fiber [13]. In the regime where backscattering can be neglected,
the propagation of waves down the length of the fiber is governed by a Schrödinger
equation:

i∂zφ = ( −∆⊥ + V (x⊥))φ + W (x⊥, z)φ.(1.6)

Here, φ denotes the slowly varying envelope of the highly oscillatory electric field, a
function of z, the direction of propagation along the fiber, and x⊥ ∈ R

2, the transverse
variables. V (x⊥) denotes an unperturbed index of refraction profile and W (x⊥, z)
the small fluctuations in refractive index along the fiber. These can arise due to
defects introduced either accidentally or by design. The models considered allow
for distributions of defects which are far more general than periodic. Our analysis
addresses the simple situation of energy in a single transverse mode propagating and
being radiated away due to coupling by defects to continuum modes. The bound
state channel sees an effective damping. In particular the results of this paper have
been applied to a study of structural instability of so-called breather modes of planar
“soliton wave guides” [12]. The case of multiple transverse modes is of great interest
[13]. Here, one has the phenomena of coupling among discrete modes as well as the
coupling of discrete to continuum/radiation modes [7]. There is extensive interesting
work on this problem in the case where W (x⊥, z) is a stochastic process in z and
radiation is neglected [8].

(b) Nonlinear problems can be viewed as linear time-dependent potential problems
where the time-dependent potential is given by the solution. A priori one knows little
about the time dependence of the solution of a nonlinear problem. Nonlinearity
is expected, in general, to excite infinitely many frequencies. Therefore results of
a general nature for potentials with very general time dependence are of interest.
This point of view is adopted by Sigal [19, 20], who considers the case where the
nonlinear term defines a time-periodic perturbation and then proceeds to study the
resonance problem via time-independent Floquet analysis applied to the so-called
Floquet Hamiltonian. The dilation analytic techniques used were first applied in the
context of time-periodic Hamiltonians by Yajima [26, 27, 28]. Floquet-type methods
were also used in the time-periodic context by Vainberg [25]. The general class of
perturbations we consider are not treatable by Floquet analysis and time-dependent
analysis appears necessary.

1.2. Outline of the method. We now give a brief outline of our approach. For
simplicity consider the initial value problem

i∂tφ(t, x) = H0 φ(t, x) + εW (t, x) φ(t, x),(1.7)

φ|t=0 = φ(0),(1.8)

where

H0 = −∆ + V (x), W (t, x) = g(t) β(x), g(t) =
∑
j

gj e
−iµjt(1.9)
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is a real-valued almost periodic function of t, and β(x) is a real-valued and rapidly
decaying function of x as |x| → ∞. The unperturbed problem (ε = 0) can be trivally
written as two decoupled equations governing the bound state amplitude, a(t), and
dispersive components, φd(t), of the solution. Specifically, let

φ(t) = a(t) ψ0(x) + φd(t, x), (ψ0, φd(t)) = 0.(1.10)

Then,

i∂ta(t) = λ0a(t),

i∂t φd(t, x) = H0 φd(t, x)(1.11)

with initial conditions

a(0) = (ψ0, φ(0)) ,

φd(0) = Pcφ(0),(1.12)

where

Pcf ≡ f − (ψ0, f)ψ0

defines the projection onto the continuous spectral part of H0.
For initial data a(0) = 1, φd(0) = 0, we have a(t) = e−iλ0t, φd(t) ≡ 0, correspond-

ing to the bound state, b∗(t).
We now ask the following:
(a) Under the small perturbation εW (t, x), does the bound state deform or con-

tinue to a nearby periodic or even almost periodic solution?
(b) How do solutions to the perturbed initial value problem behave as |t| → ∞?
For small perturbations εW (t, x) it is natural to use the decomposition (1.10).

Substitution of (1.10) into (1.3) yields a weakly coupled system for a(t) and φd(t).
This system is derived and analyzed in detail in sections 4–6.

In order to illustrate the main idea, we introduce a simplified system having the
same general character:

i∂ta(t) = λ0 a(t) + εg(t) (βψ0, φd(t))

i∂tφd(t, x) = −∆φd(t, x) + εa(t)g(t)β(x)ψ0(x).(1.13)

Here, we have replaced H0 on its continuous spectral part by −∆.
If εβ is small, then A(t) ≡ eiλ0ta(t) is slowly varying (∂tA(t) = O(εβ)). In

particular, we have

i∂tA(t) = εeiλ0t g(t) (βψ0, φd(t))

i∂tφd(t, x) = −∆φd(t, x) +A(t)e−iλ0t εg(t)β(x)ψ0(x).(1.14)

Viewing A(t) as nearly constant, we see that the inhomogeneous source term in (1.14)
has frequencies λ0+µj ; see (1.9). Therefore, if λ0+µj > 0 for some j, then λ0+µj lies
in the continuous spectrum of −∆ (H0) and therefore φd satisfies a resonantly forced
wave equation. A careful expansion and analysis to second order in the perturbation
εW (t) (see the proof of Proposition 4.1) reveals the system for A(t) and φd(t) can be
rewritten in the following form, in which the effect of this resonance is made explicit:

∂tA(t) = (−ε2Γ + ρ(t)) A(t) + E(t;A(t), φd(t)),(1.15)

i∂tφd(t, x) = H0 φd(t, x) + Pc F (t, x;A(t), φd(t)).(1.16)
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The terms E(t) and F (t, x) formally tend to zero if A(t) tends to zero and if the “local
energy” of φd(t) tends to zero as t→∞. The strategy of sections 5 and 6 is to derive
coupled estimates for A(t) and a measure of the local energy of φd from which one
can conclude, for εW (t) small, that solutions to (1.15)–(1.16) decay in an appropriate
sense. The key to the decay of solutions is the constant Γ, given by

Γ ≡ π

4

∑
{j : λ0+µj>0}

|gj |2 (Pcβψ0, δ(H0 − λ0 − µj)Pcβψ0) ;(1.17)

see also hypothesis (H5) of section 2. The quantity Γ is a generalization of the well-
known Fermi golden rule arising in the theory of radiative transitions in quantum
mechanics [3, 4, 10]. For the example at hand, (1.9), the sum in (1.17) is over all j for
which µj+λ0 is strictly positive, i.e., lies in the continuous spectrum of H0. Thinking
of H0 as having a spectral decomposition in terms of eigenfunctions and generalized
eigenfunctions, let e(λ) denote a generalized eigenfunction associated with the energy
λ. Then each term in the sum (1.17) is of the form

|( e(λ0 + µj), βψ0 )|2 .(1.18)

Thus, clearly Γ > 0, generically.
Neglecting for the moment the oscillatory function ρ(t) in (1.15), we see that

coupling of the bound state by the time dependent perturbation to the continuum-
radiation modes, at the frequencies µj+λ0 > 0, leads to decay of the bound state. The
leading order of (1.15)–(1.16) is a normal form in which this internal damping effect
is made explicit; energy is transferred from the discrete to the continuous spectral
components of the solution while the total energy remains independent of time:

‖ φ(t) ‖22 = |a(t)|2 + ‖ φd(t) ‖22
= |a(0)|2 + ‖ φd(0) ‖22.(1.19)

1.3. Energy flow; contrast with the analysis of [22]. The goal is to show
that energy flows out of the bound state channel into dispersive spectral components.
The normal form above is the system in which this energy flow is made explicit. Once
the normal form (1.15)–(1.16) has been derived, it is natural to seek coupled estimates
for A(t) and φd(t) from which their decay can be deduced. This is implemented in
section 6. A natural first step is to introduce the auxiliary function

Ã(t) ≡ e

∫ t

0
ρ(s) ds

A(t)(1.20)

for then Ã(t) satisfies simplified equation of the form

∂tÃ(t) = −ε2Γ Ã(t) + Ẽ(t; Ã(t), φd(t)).(1.21)

If � ∫ t
0
ρ(s) ds is uniformly bounded, then modulo time-decay estimates on Ẽ(t; Ã, φd)

and F (t; Ã, φd), the decay of Ã(t) and therefore of A(t) follows. For the class of per-
turbations considered in [22], ρ(t) is a periodic function, having only a finite number

of commensurate frequencies, none of them zero. Therefore, in this case � ∫ t
0
ρ(s) ds

is uniformly bounded. However, in the present case ρ(t) is almost periodic with mean
M(�ρ) = 0 (see section 9); ρ(t) is displayed in (4.12). �ρ(t) has, in general, infinitely
many frequencies, µk−µj , k �= j which may accumulate at zero. Most delicate is the
case where, along some subsequence, µk − µj → 0. It is well known that the integral
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of an almost periodic function of mean zero is not necessarily bounded [2], so we are

in need of a strategy for estimating the effects of � ∫ t
0
ρ(s) ds. We address the esti-

mation of � ∫ t
0
ρ(s) ds in two different ways corresponding to Theorem 2.3 (see also

section 5.1) and Theorems 2.1–2.2 (see also section 5.2). In section 5.1 � ∫ t
0
ρ(s) ds is

estimated under the hypothesis (H6) which requires that the rate of accumulation of
a subset of frequencies {µj}j∈I is balanced by the decay of the Fourier coefficients gj
as j →∞, j ∈ I. This leads to a bound on � ∫ t

0
ρ(s) ds (Proposition 5.2). In section

5.2 the estimates are based on a more refined analysis; the almost periodic function
ρ(t) is decomposed into a part with bounded integral and a part which has mean zero.
The latter is controlled using results on the rate at which an almost periodic function
approaches its mean.

1.4. Fermi golden rule and obstructions to Poincaré continuation. In
the theory of ordinary differential equations it is a standard procedure, given a periodic
solution of an unperturbed problem, to seek a periodic or almost periodic solution
of a slightly perturbed dynamical system. We now investigate this procedure in the
context of (1.7) and its solution b∗(t) for ε = 0. Seek a solution of the form

φ(t) = b∗(t) + φ1(t) + O(ε2β2).(1.22)

Here, φ1 = O(εβ).4 Substitution of (1.22) into (1.7) yields the equation
i∂tφ1 = H0φ1 + εβ g(t) b∗(t).(1.23)

This equation has a solution in the class of almost periodic solutions of t with values
in the Hilbert space H only if β g(t) b∗(t) is “orthogonal” to the null space of i∂t−H0.

We now derive this condition. Let e(ζ) be a solution of H0e(ζ) = ζe(ζ). Then,
taking the scalar product of (1.23) with e−iζt e(ζ) and applying the operator limT↑∞
T−1

∫ T
0
· dt to the resulting equation gives

0 = lim
T↑∞

T−1

∫ T

0

eiζt e−iλ0t g(t) dt (e(ζ), βψ0) .(1.24)

Substitution of the expansion for g(t) yields∑
j∈Z

gj δ(ζ, λ0 + µj) (e(ζ), βψ0) = 0,(1.25)

where δ(a, b) = 0 if a �= b and δ(a, a) = 1. If ζ, which lies in the spectrum of
H0, satisfies ζ = λ0 + µk for some k ∈ Z (which will be the case in our example if
λ0 + µk > 0), then we have that

(e(λ0 + µk), βψ0) = 0(1.26)

is a necessary condition for the existence of a family of solutions of (1.7) which con-
verges to b∗(t) as the perturbation W (t) tends to zero. We immediately recognize the
inner product in (1.26) as the projection of βψ0 onto the generalized eigenmode at
the resonant frequency λ0 + µk which arises in (1.17); see also (1.18). Therefore the
obstruction to continuation of b∗(t) to a nearby almost periodic state of the system
can be identified with the damping mechanism.

4This argument is heuristic so we do not specify the norm with which the size of β is measured.
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1.5. Outline. The paper is structured as follows. In section 2 we give a general
formulation of the problem. The hypotheses on H0, the unperturbed Hamiltonian,
and W (t), the perturbation, are introduced and discussed. There are two types of
theorems: Theorems 2.1 and 2.2 and Theorem 2.3. Although the conclusions of
these are quite similar, as discussed above, they differ in a key hypothesis on the
perturbation W (t), which is relevant in the case where W (t) has infinitely many
frequencies which may resonate with the continuous spectrum. In section 3 we apply
the results of section 2 to the case of Schrödinger operators H0 = −∆ + V (x)
defined on L2(R3). To check the key local energy decay hypotheses we use results of
Jensen and Kato [5] on expansions of the resolvent of H0 near zero energy, the edge
of the continuous spectrum. In section 4 the dynamical system (1.3) is reformulated
as a system governing the interaction of the bound state and dispersive part of the
solution. This section contains an important computation in which the key resonance
is made explicit and a perturbed “normal form” for the bound state evolution is
derived (Proposition 4.1). Sections 5 and 6 contain estimates for the bound state and
dispersive parts of the solution for intermediate and large time scales. In section 7 we
discuss extensions of our Theorems 2.1–2.3 to a more general class of perturbations.
We shall frequently make use of some singular operators which are rigorously defined
in section 8, an appendix, and of elements of the theory of almost periodic functions
[2, 9], which are assembled in section 9, the second appendix.

Notations and terminology. Throughout this paper we will use the following
notations:

N = {1, 2, 3, . . .};
N0 = {0, 1, 2, 3, . . .};
Z = {. . . ,−3, −2, −1, 0, 1, 2, 3, . . .};

for z a complex number, �z and �z denote, respectively, its real and imaginary parts;
a generic constant will be denoted by C, D, etc;

〈x〉 = (
1 + |x|2) 1

2 ;
L(A,B) = the space of bounded linear operators from A to B; L(A,A) ≡ L(A).

Functions of self-adjoint operators are defined via the spectral theorem; see, for
example, [17]. The operators containing boundary value of resolvents or singular
distributions applied to self-adjoint operators are defined in section 8.

2. General formulation and main results. Consider the general system

i∂tφ(t) = (H0 +W (t))φ(t),

φ|t=0 = φ(0).(2.1)

Here, φ(t) denotes a function of time, t, with values in a complex Hilbert space H.
Hypotheses on H0.
(H1) H0 is self-adjoint on H and both H0 and W (t), t ∈ R

1, are densely defined
on a subspace D of H.

The norm on H is denoted by ‖ · ‖ and the inner product of f, g ∈ H, by (f, g).
(H2) The spectrum of H0 is assumed to consist of an absolutely continuous part,

σcont(H0), with associated spectral projection Pc and a single isolated eigenvalue λ0

with corresponding normalized eigenstate, ψ0, i.e.,

H0ψ0 = λ0ψ0, ‖ψ0‖ = 1.(2.2)

The manner in which we shall measure the decay of solutions is typically in a local
decay sense, e.g., for the scalar Schrödinger equation governing a function defined on
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R
n we measure local decay using the norms f �→ ‖〈x〉−sf‖L2 , where s > 0. So that our

theory applies to a class of general systems (involving, for example, vector equations
with matrix operators), we assume the existence of self-adjoint “weights” w− and w+

such that
(i) w+ is defined on a dense subspace of H and on which w+ ≥ cI, c > 0.
(ii) w− ∈ L(H) such that Range(w−) ⊆ Domain(w+).
(iii) w+ w− Pc = Pc on H and Pc = Pc w− w+ on the domain of w+.
In the scalar case, w+ and w− correspond to multiplication by 〈x〉s and 〈x〉−s,

respectively; see section 3.
The following hypothesis ensures that the unperturbed dynamics satisfies suffi-

ciently strong dispersive time-decay estimates. Let {µj}j∈Z
denote the set of Fourier

exponents associated with the perturbation W (see hypothesis (H4) below).
(H3) Local decay estimates on e−iH0t.
Let r1 > 1. There exist w+ and w−, as above, and a constant C such that for all

f ∈ H satisfying w+f ∈ H we have

(a) ‖w−e−iH0tPcf‖ ≤ C 〈t〉−r1‖w+f‖ for t ∈ R;(2.3)

(b) ‖w−e−iH0t(H0 − λ0 − µj − i0)−1 Pcf‖ ≤ C 〈t〉−r1 ‖w+f‖ for t ≥ 0(2.4)

and for all j ∈ Z. For t < 0 estimate (2.4) is assumed to hold with −i0 replaced by
+i0. See section 8 for the definition of the singular operator in (2.4).

Remark 2.1. There is a good deal of literature on local energy decay estimates of
the form (2.3) for e−iH0tPc in the case H0 = −∆+ V (x) on L2(Rn). These results
require sufficient regularity and decay of the potential V (x). We refer the reader to
[5, 6] and [14]; see also [16, 18].

Remark 2.2. Estimates of the type (H3b) are obtained in [22], [23, Appendix
A]. A key point here is that we require that one can choose the constant, C, in (2.4)
to hold for all µj . It appears difficult to deduce this uniformity of the constant by the
general arguments used in [22] and [23]. However, in section 3, where we apply our
results to a class of Schrödinger operators, we can verify (H3b) using known results
on the spectral measure.

(H4) Hypotheses on the perturbation W (t).
We consider time-dependent symmetric perturbations of the form

W (t) =
1

2
β0 +

∑
j∈N

cos(µjt) βj with β
∗
j = βj and

∑
j∈N0

‖βj‖L(H) <∞.(2.5)

In many applications, βj are spatially localized scalar or matrix functions. Note
that formula (2.5) can be rewritten in the form

W (t) =
1

2

∑
j∈Z

exp(−iµjt)βj ,(2.6)

where µ0 = 0 and for j < 0, µj = −µ−j , βj = β−j . Thus, W (t) is an almost periodic
function with values in the Banach space L(H) with the Fourier exponents {µj}j∈Z

and corresponding Fourier coefficients {βj}j∈Z
; see, for example, [9].

To measure the size of the perturbation W , we introduce the norm

|||W ||| ≡ 1

2

∑
j∈Z

‖w+ βj‖L(H) +
1

2

∑
j∈Z

‖ βj ‖L(H−,H+),(2.7)
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which is assumed to be finite. Here H+, respectively, H−, denote the closure of the
domain of w+, respectively, the range of Pc, with norm f → ‖w+f‖, respectively,
f → ‖w−f‖.

Remark 2.3. A special case which arises in various models is

W (t) = g(t)β,(2.8)

where

g(t) =
∑
j

gj cosµjt,(2.9)

‖w+β‖L(H) + ‖β‖L(H−,H+) < ∞ and the sequence {gj} is absolutely summable.
Remark 2.4. Our results are valid in the more general case

W (t) =
1

2
β0 +

∑
j∈N

cos(µjt+ δj) βj ,

where βj are self-adjoint such that expression (2.7) is finite. This follows because the
proofs use only the self-adjointness of W and the expansion

W (t) =
1

2

∑
j∈Z

exp(−iµjt)β̃j ,

where β̃j = e−isgn(j)δjβj and µ−j = −µj , µ0 = 0.
We will impose a resonance condition which says that {λ0 + µj}j∈Z

∩ σcont(H0)
is nonempty and that there is nontrivial coupling; see section 1.4. Let us first denote
by Ires the following set:

Ires = {j ∈ Z : λ0 + µj ∈ σcont(H0)}.(2.10)

(H5) Resonance condition. Fermi golden rule.
Ires is nonempty and furthermore, there exists θ0 > 0, independent of W , such

that

Γ ≡ π

4

∑
j∈Ires

(Pcβjψ0, δ(H0 − λ0 − µj)Pcβjψ0.) ≥ θ0|||W |||2 > 0.(2.11)

Remark 2.5. For the exact definition of the Dirac-type operator in (2.11), see
section 8. That Γ is finite is a consequence of the estimate (8.8) and

Γ ≤ C0

π

∑
j

‖w+βj‖2 ≤ C0

π
|||W |||2;(2.12)

see also [1].
We now state our main results.
Theorem 2.1. Let us fix H0 and W (t) satisfying hypotheses (H1)–(H5). Con-

sider the initial value problem

i∂tφ(t) = (H0 + εW (t))φ(t),

φ|t=0 = φ(0)(2.13)



PARAMETRICALLY EXCITED HAMILTONIANS 25

with w+φ(0) ∈ H. Then, there exists an ε0 > 0 (depending on C, r1, and θ0) such
that whenever |ε| < ε0, the solution, φ(t), of (2.13) satisfies the local decay estimate

‖w− φ(t)‖ ≤ C〈t〉−r1‖w+ φ(0)‖, t ∈ R.(2.14)

Under the same hypotheses as Theorem 2.1, we obtain more detailed information
on the behavior of φ(t).

Theorem 2.2. Assume the hypotheses of Theorem 2.1. For any 0 < γ < Γ there
exist the constants C and D (depending on C, r1, θ0, and γ) such that any solution
of (2.13), for |ε| < ε0 and w+φ(0) ∈ H, satisfies

φ(x, t) = a(t)ψ0 + φd(t), (ψ0 , φd(t), ) = 0,

a(t) = a(0) e−ε2(Γ−γ)|t|eiω(t) + Ra(t),

P (t) = P (0) e−2ε2(Γ−γ)|t| + R′
a(t),

φd(t) = e−iH0t Pcφ(0) + φ̃(t),(2.15)

where Γ is given by (2.11) and ω(t) is a real-valued phase given by

ω(t) = −λ0t− ε

(
ψ0,

∫ t

0

W (s)ds ψ0

)

+
1

4
ε2t
∑
j∈Z

(
βjψ0,P.V.(H0 − λ0 − µj)

−1Pcβjψ0

)

+
1

4
ε2 �

∫ t

0

∑
j,k∈Z,j �=k

ei(µk−µj)t
(
βkψ0, (H0 − λ0 − µj − i0)−1Pcβjψ0

)
.(2.16)

P (t) is defined in (1.4) and for any fixed T0 > 0 we have

|Ra(t)| ≤ C |ε| |||W |||, |t| ≤ T0

ε2Γ
,(2.17)

|R′
a(t)| ≤ D |ε| |||W |||, |t| ≤ T0

ε2Γ
.(2.18)

Moreover,

|Ra(t)| = O(〈t〉−r1), |R′
a(t)| = O(〈t〉−r1), |t| → ∞.

Finally, φ̃ = φ1 + φ2 is given in (4.9) with ‖w−φ̃(t)‖ = O(〈t〉−r1) as |t| → ∞.
Therefore, by (H3) ‖w−φd(t)‖ = O(〈t〉−r1) as |t| → ∞.

Remark 2.6. Suppose the initial data is given by the bound state of the unper-
turbed problem, i.e., φ(x, 0) = ψ0(x), a(0) = 1, φd(0) = 0. Then, from the expansion
of the solution we have that for 0 ≤ t ≤ ε−2Γ−1 that P (t) (see (1.4)) is of order

e−2ε2(Γ−γ)t with an error of order ε. Hence it is natural to view the state ψ0e
−iλ0t as

a metastable state with lifetime τ = ε−2(Γ− γ)−1 ∼ ε−2|||W |||−2. Although γ > 0 is
arbitrary we have not inferred that the actual lifetime is τ = ε−2Γ−1 under hypotheses
(H1)–(H5). The reason is that the constants C and D in the estimates (2.17) and
(2.18) blow up as γ ↘ 0. In order to remedy this we need an additional hypothesis.

(H6) Control of small denominators.
There exists ξ > 0, independent of W , such that

∑
j∈Ires, k∈Z, j �=k

∣∣∣∣ 1

µj − µk
(Pcβkψ0, δ(H0 − λ0 − µj)Pcβjψ0)

∣∣∣∣ ≤ ξ |||W |||2.(2.19)
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Remark 2.7. By (8.8) we have that∑
j∈Ires, k∈Z, j �=k

|(βkψ0, δ(H0 − λ0 − µj)βjψ0)| ≤ C π−1 |||W |||2(2.20)

is finite (see also Remark 2.5). Thus, (H6) is important only if

inf{|µj − µk| : j, k ∈ Z, j �= k and λ0 + µj ∈ σcont(H0)} = 0,(2.21)

i.e., the Fourier exponents {µj} are such that λ0+µj accumulate in σc. In particular,
if the perturbation W (t) consists of a trigonometric polynomial

W (t) =

N∑
j=1

cosµjt βj ,(2.22)

then (H6) is trivially satisfied.
Remark 2.8. Hypothesis (H6) can be imposed by balancing the clustering

of the frequencies λ0 + µj in the continuous spectrum of H0 with rapid decay of
(βkψ0 , δ(H0 − λ0 − µj) βjψ0) as j, k → ∞. Let βj(x) = gj β(x). Then, W (t, x) =∑

j gj cos(µjt) β(x). Using Remark 2.5 we find that the left-hand side of (2.19) is

bounded by
∑

j,k∈Z;j �=k |gjgk| |µj − µk|−1 |||W |||2. The constant ξ in (2.19) is finite
if, for example, µj = 2|λ0|+ |j|−1, gj = |j|−2−τ , τ > 0.

In case (H6) is satisfied we have the following improvement of Theorem 2.2.
Theorem 2.3. Assume the hypotheses (H1)–(H6) hold. Then there exist ε0

and the constants C, D (depending on C, r1, θ0 and ξ) such that any solution of
(2.13), for |ε| < ε0 and w+φ(0) ∈ H, satisfies

φ(x, t) = a(t)ψ0 + φd(t), (ψ0 , φd(t)) = 0,

a(t) = a(0) e−ε2Γ|t| eiω(t) + Ra(t),

P (t) = P (0) e−2ε2Γ|t| + R′
a(t),

φd(t) = e−iH0t Pcφ(0) + φ̃(t).(2.23)

Here, ω(t) is given by (2.16) and Ra(t), R′
a(t), w−φd(t) satisfy the estimates of

Theorem 2.2.

3. An application: The Schrödinger equation. In this section we verify
hypotheses (H1)–(H4) in the particular case of the Schrödinger equation on the
three-dimensional space with a time almost periodic and spatially localized perturbing
potential:

i∂tφ = (−∆+ V (x))φ + εW (x, t)φ(3.1)

with φ : R
3 × R → C, (x, t)→ φ(x, t), and

W (x, t) =
1

2
β0(x) +

∑
j∈N

cos(µjt)βj(x),

where µj ∈ R, j ∈ N0, and βj : R
3 → R, j ∈ N, are localized functions. Models of

the sort considered in this example occur in the study of ionization of an atom by a
time-varying electric field; see [10, 4].
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We take H = L2(R3) and H0 ≡ −∆ + V (x), where V (x) is real-valued with
moderately short range. More precisely, we suppose that there exists σ > 4 and a
constant D such that

|V (x)| ≤ D(1 + |x|)−σ.(3.2)

Thus, H0 is self-adjoint and densely defined in L2. In what follows we assume that
H0 has exactly one eigenvalue which is strictly negative and that the remainder of
the spectrum is absolutely continuous and equal to the positive half-line. Our results
can be extended to operators with strictly negative, multiple eigenvalues [7].

We first discuss the local decay hypothesis (H3). As weights used to measure
local energy decay we take w± ≡ 〈x〉±s, where s > 7/2 and fix r1 = 3/2. Our aim is
to obtain the estimates

(H3a) ‖w−e−iH0tPcf‖ ≤ C 〈t〉−3/2‖w+f‖,(3.3)

(H3b) ‖w−e−iH0t(H0 − λ0 − µj − i0)−1 Pcf‖ ≤ C 〈t〉−3/2 ‖w+f‖(3.4)

for all µj ∈ Z with C independent of j.
We shall assume that the frequencies {λ0 + µj} do not accumulate at zero, the

edge of the continuous spectrum of H0:

m∗ ≡ min{ |λ0 + µj | : j ∈ Z } > 0.(3.5)

To prove (3.3) and (3.4) we use the spectral representation for the operators
e−iH0t Pc and e

−iH0t (H0 − λ0 − µj − i0)−1Pc, namely,

e−iH0tPc =

∫ ∞

0

e−iλtE′(λ)dλ,(3.6)

e−iH0t(H0 − λ0 − µj − i0)−1Pc =

∫ ∞

0

e−iλt(λ− λ0 − µj − i0)−1E′(λ)dλ,(3.7)

where E′(λ) = π−1 �(H0 − λ− i0)−1 is the spectral density induced by H0, [5].
The technique of getting (H3a) from (3.6) is presented in [5, section 10] and it

can be summarized in the following way. We decompose the integral in (3.6) in two
parts, corresponding to low energies (λ near zero) and high energies (λ away from
zero) by writing

E′ = χE′ + (1− χ)E′,

w−e−iH0tPcw− =
∫ ∞

0

e−iλtχ(λ)w−E′(λ)w−dλ+
∫ ∞

0

e−iλt(1− χ(λ))w−E′(λ)w−dλ

= S1 + S2.(3.8)

Here, χ(λ) is a smoothed characteristic function of a neighborhood of origin, chosen
so that

χ(λ) ≡ 1, |λ| ≤ 1

2
m∗,

χ(λ) ≡ 0, |λ| ≥ 3

4
m∗.

To estimate the two integrals in (3.8) we make use of the detailed results of [5]
on the family of operators {E′(λ)}. First, by Theorem 8.1 and Corollary 8.2 of [5],
w−∂kλE

′(λ)w− is bounded on L2 and satisfies

‖ w−∂kλE
′(λ)w− ‖B(L2) = O(λ−(k+1)/2) as λ→∞(3.9)
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for k ∈ {0, 1, 2, 3}. Integration by parts twice in the second integral in (3.8) and use
of the estimate (3.9) with k = 2 yields the estimate

‖ S2 ‖B(L2) = o(t−2) as t→∞.(3.10)

Next, by Theorem 6.3 of [5] we have the low energy asymptotic expansion

w−E′(λ)w− = −λ−1/2B−1 + λ1/2B1 + o(λ1/2) as λ→ 0,(3.11)

where B−1, B1 are bounded linear operators on L
2. Use of this expansion in the first

integral of (3.8) yields the expansion in B(L2):

S1 = (πi)−1/2t−1/2B−1 − (4πi)−1/2t−3/2B1 + o(t−3/2) as t→∞.(3.12)

Thus, (H3a) is satisfied provided that B−1 is the null operator or equivalently
H0ψ = 0 has no solution with the property w−ψ ∈ L2(R3). The last condition holds
for generic potentials V (x) and when it is violated one says that H0 has zero energy
resonance; see [5] for details.

In the same way one can prove (H3b) from the spectral representation (3.7)
provided that the integral is nonsingular, i.e., λ0+µj < 0. In the case λ0+µj ≥ m∗ > 0
we first decompose the singular integral in two parts, one away from singularity point,
λ0 + µj , and the other in a neighborhood of it by using the smoothed characteristic
function

χj(λ) = χ(λ− λ0 − µj),(3.13)

which is supported in a neighborhood of λ0 + µj , which does not include λ = 0:

e−iH0t(H0 − λ0 − µj − i0)−1Pc =

∫ ∞

0

e−iλt(λ− λ0 − µj)
−1(1− χj(λ))E

′(λ)dλ

+

∫ ∞

0

e−iλt(λ− λ0 − µj − i0)−1χj(λ)E
′(λ)dλ.(3.14)

The nonsingular integral may be treated as above while the singular one defines the
singular operator

Tj = e−iH0t(H0 − λ0 − µj − i0)−1χj(H0)Pc

via the spectral theorem. Here, Tj = limη↘0 T
η
j , where

T η
j ≡ e−iH0t(H0 − λ0 − µj − iη)−1χj(H0)Pc.

To estimate its L2 operator norm we use the integral representation

w−T
η
j w− =

1

i

∫ ∞

t

ei(λ0+µj+iη)(s−t)w−e−iH0sχj(H0)Pcw−ds.(3.15)

But this reduces to the evaluation of

w−e−iH0sχj(H0)Pcw− =
∫ ∞

0

e−iλsχj(λ)w−E′(λ)w−dλ, s ≥ t,(3.16)

where we used again the spectral representation theorem. Integration by parts three
times in (3.16) and use of the estimate (3.9) with k = 3 implies

‖w−e−iH0sχj(H0)Pcw−‖B(L2) = o(s−3) as t→∞.
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Replacing this in (3.15), integrating and passing to the limit as η ↘ 0 we obtain an
o(t−2) estimate for Tj which is even better than we need to satisfy (H3b).

Moving now towards hypothesis (H4), we may choose the time-dependent per-
turbation to be of the form

W (x, t) =
1

2
β0 +

∑
j∈N

cosµjt βj(x)(3.17)

with βj rapidly decaying in x, e.g., 〈x〉2s‖βj(x)‖ ≤ Cj for all x ∈ R
3, j ∈ N0, where∑

j∈N0
Cj <∞. Thus, (H4) is satisfied as well.

Therefore, our main results Theorems 2.1–2.2 on the structural instability of
the unperturbed bound state and large time behavior for systems of the form (3.1)
apply provided (H5), the Fermi golden rule resonance condition, holds. For results
concerning more general perturbations than the ones in (3.1) see section 7.

4. Decomposition and derivation of the dispersive normal form. The
results of this section rely on hypothesis (H1) through (H4) only, so they may and
will be used in proving Theorems 2.1–2.3.

As in [21, 22] and [23], we begin by deriving a decomposition of the solution, φ(t),
which will facilitate the study of its large time behavior. Let

φ(t) = a(t)ψ0 + φd(t)(4.1)

with the orthogonality condition

(ψ0, φd(t)) = 0 for all t.(4.2)

Note therefore that φd = Pcφd.
We proceed by first inserting (4.1) into (2.13), which yields the equation

i∂ta(t)ψ0 + i∂tφd(t) = λ0a(t)ψ0 +H0φd(t)

+ εa(t)W (t)ψ0 + εW (t)φd(t).(4.3)

Taking the inner product of (4.3) with ψ0 we get the following equation for a(t):

i∂ta = λ0a(t) + ε (ψ0,W (t)ψ0) a(t) + ε (ψ0,W (t)φd) ,(4.4)

a(0) = (ψ0, φ(0)) .

In deriving (4.4) we have used that ψ0 is normalized and the relation

(ψ0, ∂tφd) = 0,(4.5)

a consequence of (4.2).
Applying Pc to (4.3), we obtain an equation for φd:

i∂tφd(t) = H0φd(t) + εPcW (t)φd(t) + εa(t)PcW (t)ψ0,(4.6)

φd(0) = Pcφ(0).

Since we are after a slow resonant decay phenomenon, it will prove advantageous to
extract the fast oscillatory behavior of a(t). We therefore define

A(t) ≡ eiλ0ta(t).(4.7)
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Then, (4.4) reads

∂tA = −iεA (ψ0,W (t)ψ0) − iεeiλ0t (ψ0,W (t)φd(t)) .(4.8)

Solving (4.6) by Duhamel’s formula we have

φd(t) = e−iH0tφd(0) − iε

∫ t

0

e−iH0(t−s)PcW (s)a(s)ψ0ds

−iε
∫ t

0

e−iH0(t−s)PcW (s)φd(s) ds

≡ φ0(t) + φ1(t) + φ2(t).(4.9)

By standard methods, the system (4.8)–(4.9) for A(t) and φd(t) = φ(t)−e−iλ0t A(t) ψ0

has a global solution in t with

A ∈ C1(R), ‖φd(t)‖ ∈ C0(R), ‖w−φd(t)‖ ∈ C0(R).

Our analysis of the |t| → ∞ behavior is based on a study of this system.
By inserting (4.9) into (4.8) we get

∂tA(t) = −iεA(t) (ψ0,W (t)ψ0) − iεeiλ0t
2∑

j=0

(ψ0,W (t)φj) .(4.10)

We next give a detailed expansion of the sum in (4.10). It is in the j = 1 term that
the key resonance is found. This makes it possible to find a normal form for (4.10)
in which internal damping in the system is made explicit. This damping reflects
the transfer of energy from the discrete to continuum modes of the system and the
associated radiative decay of solutions.

Proposition 4.1. For t > 0,

∂tA(t) =
(−ε2Γ + ρ(t)

)
A(t) + E(t),(4.11)

where Γ is defined in (2.11),

ρ(t) = −iε (ψ0, W (t)ψ0)

+
i

4
ε2
∑
j∈Z

(
βjψ0,P.V.(H0 − λ0 − µj)

−1Pcβjψ0

)

+
i

4
ε2

∑
j,k∈Z,j �=k

ei(µk−µj)t
(
βkψ0, (H0 − λ0 − µj − i0)−1Pcβjψ0

)
(4.12)

and

E(t) = − i

4
ε2A(0)eiλ0t

∑
j,k∈Z

eiµkt
(
βkψ0, e

−iH0t (H0 − λ0 − µj − i0)−1Pcβjψ0

)
− i

4
ε2eiλ0t

∑
j,k∈Z

eiµkt

(
βkψ0,

∫ t

0

e−iH0(t−s)(H0 − λ0 − µj − i0)−1Pce
−i(λ0+µj)s∂sA(s)βjψ0

)
ds

−iεeiλ0t (ψ0, W (t)φ0(t))

−iεeiλ0t (ψ0, W (t)φ2(t)) .
(4.13)
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Here, φ0 and φ2 are given in (4.9).

Although the proposition is stated for t > 0, an analogous proposition with −ε2Γ
replaced by ε2Γ holds for t < 0. The modification required to treat t < 0 is indicated
in the proof.

Remark 4.1. (1) The point of (4.11) is that the source of damping, Γ > 0, which
arises due to the coupling of the discrete bound state to the continuum modes by the
almost periodic perturbation is made explicit. Note that �ρ(t) is of order ε2|||W |||2
as the first two terms of ρ(t) are purely imaginary inducing only a phase shift in the
solution, A(t). The last term is of the same order as the damping and may compete
with it. A key point of our analysis is to assess the contribution of this last term in
(4.12).

(2) The leading order part of (4.11) is the analogue of the dispersive normal form
derived in [24] for a class of nonlinear dispersive wave equations.

Proof of Proposition 4.1. Using the expression forW (t) in (2.6), which is a uniform
convergent series with respect to t ∈ R, and the definition A(t) = eiλ0ta(t), we get
from (4.9)

φ1(t) = − iε
2

∫ t

0

e−iH0(t−s)e−iλ0sA(s)Pc

∑
j∈Z

e−iµjs βjψ0 ds

= − iε
2

∑
j∈Z

∫ t

0

e−iH0(t−s)e−i(λ0+µj)sA(s)Pcβjψ0 ds.(4.14)

We would like to integrate by parts each of the integrals in the above sum. We cannot
proceed directly since the resolvents of H0 in λ0 + µj , j ∈ Z, would appear and
hypothesis (H5) implies that some of the λ0 + µj , j ∈ Z, are in the spectrum of H0.
Instead we regularize φ1 by defining

φη1(t) = − i

2
ε
∑
j∈Z

∫ t

0

e−iH0(t−s)e−i(λ0+µj+iη)sA(s)Pcβjψ0 ds(4.15)

for η positive and arbitrary and t > 0. Note that φ1(t) = limη↘0 φ
η
1(t) uniformly with

respect to t on compact intervals.

Now, integration by parts for each integral in expression (4.15) and letting η tend
to zero from above gives the following expansion of (ψ0,W (t)φ1(t)):

(ψ0,W (t)φ1(t)) =

(
W (t)ψ0, −ε

2
e−iλ0t

∑
j∈Z

e−iµjtA(t)(H0 − λ0 − µj − i0)−1Pcβjψ0

)

+

(
W (t)ψ0,

ε

2
A(0)

∑
j∈Z

e−iH0t(H0 − λ0 − µj − i0)−1Pcβjψ0

)

+

(
W (t)ψ0,

ε

2

∑
j∈Z

∫ t

0

e−iH0(t−s)(H0 − λ0 − µj − i0)−1Pce
−i(λ0+µj)s∂sA(s)βjψ0ds

)
.

(4.16)
The definition of the singular operators in the above computation is given in section
8. The choice of regularization, +iη, in (4.15) ensures that the latter two terms in
the expansion of φ1, (4.16), decay dispersively as t→ +∞; see hypothesis (H3) and
section 6. For t < 0, we replace +iη with −iη in (4.15).
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To further expand the first series in (4.16) we use the identities (8.5). The proof
of Proposition 4.1 is now completed by substitution of (8.5) in the expansion (4.16)
for φ1 and of the result into the second term of the sum in (4.10).

In the next sections we estimate the remainder terms in (4.9) and (4.11).

5. Estimates on the bound state amplitude. Our strategy is as follows.
Equations (4.9) and (4.11) comprise a dynamical system governing φd(t) and a(t) =
A(t)e−iλ0t, the solution of which is equivalent to the original equation (1.1). In this
and in the following section we derive a coupled system of estimates for A(t) and φd(t).
This section is focused on obtaining estimates for the bound state amplitude A(t) in
terms of φd(t), while the following section is focused on obtaining dispersive estimates
for φd(t) in terms of A(t). We treat only the case t > 0 since the modifications for the
case t < 0 are obvious. The coupled system of estimates shows that A(t) decays in
time, provided φd(t) is dispersively decaying and vice-versa. We exploit the assumed
smallness of the perturbation εW to “close” the resulting inequalities and prove the
decay of both A(t) and φd(t).

The main difference from the strategy employed in [22] for the estimation of the
bound state amplitude is related to the presence of infinitely many frequencies in the
perturbation W (t). In particular, one can have an accumulation of resonances in the
continuous spectrum of H0. We have two strategies for obtaining estimates for A(t)
which correspond to the use of hypotheses (H1)–(H5) (Theorems 2.1 and 2.2) or
hypotheses (H1)–(H6) (Theorem 2.3). These strategies revolve around estimation

of � ∫ t
0
ρ(s) ds, where ρ is given by (4.12). Hypothesis (H6), which controls certain

“small divisors” which arise from the clustering of frequencies, ensures that

�
∫ t

0

ρ(s) ds ≤ C ε2|||W |||2.(5.1)

This, in turn, implies that the contribution of ρ(t) in the size of A(t) is of order
ε2|||W |||2. Without hypothesis (H6) we carefully decompose ρ(t) as

ρ(t) = ε2σ(t) + η(t),

where σ(t) is a real almost periodic function with mean,M(σ), zero and � ∫ t
0
η(s) ds

≤ Cε2||W |||2. As in the previous case, the contribution of the η(t) in the size of A(t)
is of order ε2|||W |||2. On the other hand, σ(t) competes with the damping term ε2Γ in
(4.11), but being oscillatory (i.e., of mean zero) and of the same size as the damping
it allows the latter to eventually dominate.

As the above discussion suggests it is simplest to start by assuming (H6) to get
sharper estimates on A(t) (Theorem 2.3) and then to relax this assumption (Theorem
2.2). We begin with a simple lemma which we shall use in a number of places in this
and in the next section.

Lemma 5.1. Let α > 1.∫ t

0

〈t− s〉−α 〈s〉−β ds ≤ Cα,β 〈t〉−min (α,β).(5.2)

Proof. The bound is obtained by viewing the integral as decomposed into a
part over [0, t/2] and the part over [t/2, t]. We estimate the integral over [0, t/2] by
bounding 〈t−s〉−α by its value at t/2 and explicitly computing the remaining integral.
The integral over [t/2, t] is computed by bounding 〈s〉−β by its value at t/2 and again
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computing explicitly the remaining integral. Putting the two estimates together yields
the lemma.

We now turn to the estimate for A(t) in terms of the dispersive norm of φd(t) and
local decay estimates for e−iH0tPc(H0).

5.1. Estimates for A(t) under the hypotheses of Theorem 2.3.
Proposition 5.1. Suppose (H1)–(H6) hold. Then A(t), the solution of (4.11),

can be expanded as

A(t) = e

∫ t

0
ρ(s)ds

(
e−ε2ΓtA(0) +RA(t)

)
,(5.3)

RA(t) =

∫ t

0

e−ε2Γ(t−τ) Ẽ(τ) dτ,(5.4)

where Ẽ(t) is given in (4.13) and (5.9). For any α > 1, there exists a δ > 0 such that
RA(t) satisfies the estimates for T > 2(ε2Γ)−α,

sup
2(ε2Γ)−α≤t≤T

〈t〉r1 |RA(t)| ≤ C1e
−(ε2Γ)−δ

sup
0≤τ≤(ε2Γ)−α

|E(τ)|

+ Cε2Γ−1 sup
(ε2Γ)−α≤τ≤T

(〈τ〉r1 |E(τ)|) ,(5.5)

sup
0≤t≤2(ε2Γ)−α

〈t〉r1 |RA(t)| ≤ D (ε2Γ)−α(r1+1) sup
0≤τ≤2(ε2Γ)−α

|E(τ)|.(5.6)

Proof. To prove (5.5) we begin with (4.11). Let

Ã(t) ≡ e
−
∫ t

0
ρ(s)ds

A(t).(5.7)

Then, Ã satisfies the equation

∂tÃ = −ε2ΓÃ+ Ẽ(t),(5.8)

Ẽ(t) ≡ e
−
∫ t

0
ρ(s)ds

E(t).(5.9)

Solving (5.8) we get

Ã(t) = e−ε2ΓtÃ(0) +

∫ t

0

e−ε2Γ(t−s)Ẽ(s) ds(5.10)

≡ e−ε2ΓtÃ(0) + RA(t).(5.11)

Below, in Proposition 5.2 we show that the real part of the integral of ρ(t) is
uniformly bounded and of order O(ε2|||W |||2) for t ≥ 0. Therefore, for some C > 0,
we have by (5.7) and (5.9)

C−1|Ã(t)| ≤ |A(t)| ≤ C|Ã(t)|,(5.12)

C−1|Ẽ(t)| ≤ |E(t)| ≤ C|Ẽ(t)|.(5.13)

Consequently, it is sufficient to estimate Ã(t), in terms of Ẽ(t).
Remark 5.1. Estimates of Ra(t), which appear in the statement of Theorem 2.3,

are related to those for RA(t) via

Ra(t) = e
−iλ0t+

∫ t

0
ρ(s) ds

RA(t)−
(
1− e

�
∫ t

0
ρ(s)ds

)
e−ε2Γteiw(t)a(0).(5.14)
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Hence, by Proposition 5.2,

|Ra(t)| ≤ C |RA(t)|+O(ε2|||W |||2).(5.15)

From (5.10) we have for any M > 0

|Ã(t)| ≤ |A(0)|e−ε2Γt +

∫ M

0

e−ε2Γ(t−s)|Ẽ(s)|ds+
∫ t

M

e−ε2Γ(t−s)|Ẽ(s)| ds

= |A(0)|e−ε2Γt + I1(t) + I2(t).(5.16)

Set

M = (ε2Γ)−α, α > 1.

We now estimate the terms I1(t) and I2(t) in (5.16) for 2(ε
2Γ)−α ≤ t ≤ T .

〈t〉r1 I1(t) = 〈t〉r1
∫ M

0

e−ε2Γ(t−s)|Ẽ(s)|ds

≤ 〈t〉r1e− 1
2 ε

2Γt ·
∫ M

0

e−ε2Γ( 1
2 t−s) ds · sup

0≤τ≤(ε2Γ)−α

|Ẽ(τ)|

≤ sup
2(ε2Γ)−α≤t≤T

(
〈t〉r1e− 1

2 ε
2Γt
)
· C(ε2Γ)−1 · sup

0≤τ≤(ε2Γ)−α

|Ẽ(τ)|

≤ Ce−(ε2Γ)−δ

sup
0≤τ≤(ε2Γ)−α

|Ẽ(τ)|(5.17)

for some δ > 0. Therefore,

sup
2(ε2Γ)−α≤t≤T

(〈t〉r1 I1(t)) ≤ Ce−(ε2Γ)−δ

sup
0≤τ≤(ε2Γ)−α

|Ẽ(τ)|.(5.18)

We estimate I2(t) on the interval 2(ε
2Γ)−α ≤ t ≤ T as follows:

〈t〉r1 I2(t) ≤ 〈t〉r1
∫ t

(ε2Γ)−α

e−ε2Γ(t−s)〈s〉−r1 ds sup
(ε2Γ)−α≤τ≤T

(
〈τ〉r1Ẽ(τ)

)
.(5.19)

The integral is now bounded above using the estimate

〈t〉r1
∫ t

(ε2Γ)−α

e−ε2Γ(t−s) 〈s〉−r1 ds ≤ C(ε2Γ)−1, t ≥ 2(ε2Γ)−α.(5.20)

This gives

sup
2(ε2Γ)−α≤t≤T

〈t〉r1 I2(t) ≤ C(ε2Γ)−1 sup
(ε2Γ)−α≤τ≤T

(
〈τ〉r1Ẽ(τ)

)
.(5.21)

Assembling the estimates (5.18) and (5.21) yields estimate (5.5) of Proposition
5.1 provided that (5.12) and (5.13) hold. Estimate (5.6) is a simple consequence of
the definition of RA(t).

Thus it remains to prove (5.12) and (5.13). By (5.7) and (5.9) it is necessary and
sufficient to verify the following proposition.
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Proposition 5.2. Assume hypotheses (H1)–(H6). If ρ is given by (4.12), then

�
∫ t

0

ρ(s) ds ≤ Cε2|||W |||2, t ≥ 0,(5.22)

for some constant C depending on C, r1, and ξ; see (H6).
Proof of Proposition 5.2. Using the estimates (8.7) and (8.9) we can infer that

ρ(t), given by (4.12) is a series which converges uniformly on any compact subset of
R. For each fixed t, it can therefore be integrated term-by-term to give

�
∫ t

0

ρ(s)ds =
ε2

4
� i

∑
j,k∈Z,j �=k

∫ t

0

ei(µk−µj)s
(
βkψ0, (H0 − λ0 − µj − i0)−1Pcβjψ0

)
ds

=
ε2

4

∑
j,k∈Z,j �=k

�e
i(µk−µj)t − 1
µk − µj

(
βkψ0, (H0 − λ0 − µj − i0)−1Pcβjψ0

)
.(5.23)

Define

ρ̃j,k ≡ ei(µk−µj)t − 1
µk − µj

(
βkψ0, (H0 − λ0 − µj − i0)−1Pcβjψ0

)
.

Then (5.23) can be expressed as

�
∫ t

0

ρ(s)ds =
ε2

4

∑
j,k∈Z,j �=k

�ρ̃j,k = ε2

8

∑
j,k∈Z,j �=k

�(ρ̃j,k + ρ̃k,j).(5.24)

Now, since

ρ̃k,j = −e
−i(µk−µj)t − 1
µk − µj

(
βjψ0, (H0 − λ0 − µk − i0)−1Pcβkψ0

)

= −
[
ei(µk−µj)t − 1(. . .)

µk − µj

]∗ (
βkψ0, (H0 − λ0 − µk + i0)−1Pcβjψ0,

)
we have

�(ρ̃j,k + ρ̃k,j)

= �e
i(µk−µj)t − 1
µk − µj

(
βkψ0, (H0 − λ0 − µj − i0)−1 − (H0 − λ0 − µk + i0)−1Pcβjψ0

)
.

(5.25)

Moreover, by (8.5) we can infer

�(ρ̃j,k + ρ̃k,j) = �
(
ei(µk−µj)t − 1

)
ρj,k + 2�

(
e−i(µk−µj)t − 1

)
δj,k,

where, for j �= k ∈ Z,

ρj,k ≡ 1

µk − µj

(
βkψ0, (H0 − λ0 − µj − i0)−1 − (H0 − λ0 − µk − i0)−1Pcβjψ0

)
,

(5.26)
and for j �= k, j ∈ Z, k ∈ Ires,

δj,k ≡ π

µk − µj
(βjψ0, δ(H0 − λ0 − µk)βkψ0) .(5.27)
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Thus, by (5.24) and (5.25)

�
∫ t

0

ρ(s)ds =
ε2

8

∑
j,k∈Z,j �=k

�(ei(µk−µj)t − 1)ρj,k+ε2

4

∑
k∈Ires,k �=j∈Z

�(e−i(µk−µj)t − 1)δj,k.
(5.28)

We now derive a uniform bound for � ∫ t
0
ρ(s) ds.

Estimating the modulus of the above sum, we have for any t∣∣∣∣ �
∫ t

0

ρ(s) ds

∣∣∣∣ ≤ ε2

4

∑
j,k∈Z,j �=k

|ρj,k|+ ε2

2

∑
k∈Ires,k �=j∈Z

|δj,k| .(5.29)

By (H6), ∑
k∈Ires,k �=j∈Z

|δj,k| ≤ πξ |||W |||2.(5.30)

We now bound the first term in (5.29). This requires an estimate of

|ρj,k| =
∣∣∣∣ 1

µk − µj

(
βkψ0, (H0 − λ0 − µj − i0)−1 − (H0 − λ0 − µk − i0)−1Pcβjψ0

)∣∣∣∣
for j �= k ∈ Z. We rely on the hypothesis (H3b) (singular local decay estimate
(2.4)), which implies smoothness of the resolvent of H0 near accumulation points in
σcont(H0) of the set {λ0 + µj}j∈Z.

In order to treat both λ0 + µj ∈ σcont(H0) and λ0 + µj /∈ σcont(H0) case simulta-
neously we regularize ρj,k:

ρηj,k ≡
1

µk − µj

(
βkψ0, (H0 − λ0 − µj − iη)−1 − (H0 − λ0 − µk − iη)−1Pcβjψ0

)
.

(5.31)
Clearly ρj,k = limη↘0 ρ

η
j,k.

Now by the standard resolvent formula we have

ρηj,k =
(
βkψ0, (H0 − λ0 − µk − iη)−1(H0 − λ0 − µj − iη)−1Pcβjψ0

)
.

Thus, using the singular local decay estimate (H3b), we get

|ρj,k| =
∣∣∣∣ limη↘0

∫ ∞

0

(
βkψ0, e

−i(H0−λ0−µk−iη)s(H0 − λ0 − µj − iη)−1Pcβjψ0

)
ds

∣∣∣∣
≤ lim

η↘0

∫ ∞

0

e−ηs
∣∣(w+βkψ0, w−e−iH0s(H0 − λ0 − µj − iη)−1Pcw−w+βjψ0

)∣∣ ds
≤ ‖w+βk‖‖w+βj‖

∫ ∞

0

‖w−e−iH0s(H0 − λ0 − µj − i0)−1Pcw−‖ds

≤ C‖w+βk‖‖w+βj‖
∫ ∞

0

〈s〉−r1ds

≤ C‖w+βk‖‖w+βj‖(5.32)

for some constant C depending on C and r1. Summing on j, k ∈ Z, j �= k, yields∑
j,k∈Z, j �=k

|ρj,k| ≤ C |||W |||2(5.33)
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for some C > 0; see (2.7). Use of the bounds (5.30) and (5.33) in (5.29) gives∣∣∣∣ �
∫ t

0

ρ(s) ds

∣∣∣∣ ≤ C ε2|||W |||2

for some constant C depending on C, r1, and ξ.
This completes the proof of Proposition 5.2 and therewith Proposition 5.1.

5.2. Estimates for A(t) under the hypotheses of Theorem 2.1. In this
subsection we work under the hypotheses of Theorem 2.1. In particular, we drop
hypothesis (H6). We shall reuse the notation Ã and Ẽ for functions which are
different from but related to those defined in section 5.1.

Proposition 5.3. Suppose (H1)–(H5) hold. Then A(t), the solution of (4.11),
can be expanded as

A(t) = e

∫ t

0
η(s)ds

(
e
−ε2(Γt−

∫ t

0
σ(s)ds)

A(0) +RA(t)
)
,(5.34)

RA(t) =

∫ t

0

e
−ε2Γ(t−τ)+ε2

∫ t

τ
σ(s)ds

Ẽ(τ) dτ,(5.35)

where

σ(t) ≡ −π
4
�

∑
j∈Ires,j �=k∈Z

ei(µk−µj)t ( βkψ0, δ(H0 − λ0 − µj)βjψ0)(5.36)

is a real almost periodic function with mean M(σ) = 0, η in (5.46) is a function
whose real part has a bounded time integral of order O(ε2|||W |||2) and Ẽ(t) is given
in (5.42); see also (4.13). For any α > 1, there exists δ > 0 such that RA(t) satisfies
the estimates

sup
2(ε2Γ/2)−α≤t≤T

〈t〉r1 |RA(t)| ≤ C1e
−(ε2Γ/2)−δ

sup
0≤τ≤(ε2Γ/2)−α

|E(τ)|

+C(ε2Γ)−1 sup
(ε2Γ/2)−α≤τ≤T

(〈τ〉r1 |E(τ)|) ,(5.37)

sup
0≤t≤2(ε2Γ/2)−α

〈t〉r1 |RA(t)| ≤ D (ε2Γ/2)−α(r1+1) sup
0≤τ≤2(ε2Γ/2)−α

|E(τ)|.(5.38)

Proof. As in the previous subsection we begin with the equation for A(t):

∂tA(t) =
(
ρ(t) − ε2Γ

)
A(t) + E(t),(5.39)

where ρ(t) and E(t) are given by (4.12)–(4.13). In the previous section we transformed

away the term ρ(t)A(t) using the “integration factor” exp(
∫ t
0
ρ(s) ds). Under the

current hypotheses, this can’t be done because without (H6) � ∫ t
0
ρ(s) ds may be

unbounded as t → ∞, which could cause the estimates (5.12)–(5.13) to break down.
Instead, we proceed by a more refined analysis of ρ(t), which we now outline.

We express ρ(t) as ρ(t) = ε2σ(t) + η(t), where η(t) has a time integral whose
real part can be bounded by the estimates of section 5.1 and a part, ε2σ(t), which is
almost periodic and of mean zero. Using this decomposition of ρ(t) we write (5.39)
as

∂tA(t) =
[−ε2Γ + ε2σ(t) + η(t)

]
A(t) + E(t).
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Next introduce the change of variables

Ã(t) ≡ e
−
∫ t

0
η(s) ds

A(t)(5.40)

and obtain a reduction to

∂tÃ =
[ −ε2Γ + ε2σ(t)

]
Ã + Ẽ(t),(5.41)

Ẽ(t) ≡ e
−
∫ t

0
η(s)ds

E(t).(5.42)

With this strategy in mind we now proceed to derive the decomposition of ρ(t).
We are mostly interested in its real part, so we start with it.

�ρ(t) = � iε
2

4

∑
j,k∈Z,j �=k

ei(µk−µj)t
(
βkψ0, (H0 − λ0 − µj − i0)−1Pcβjψ0

)

= −ε
2

4
�

∑
j,k∈Z,j �=k

ei(µk−µj)t
(
βkψ0, (H0 − λ0 − µj − i0)−1Pcβjψ0

)

≡ −ε
2

4

∑
j,k∈Z,j �=k

�ηj,k

=
ε2

8

∑
j,k∈Z,j �=k

� (ηj,k + ηk,j) .(5.43)

In a manner similar to the derivation of (5.25) from (5.24) we find

�ηk,j = �ei(µk−µj)t
(
βkψ0, (H0 − λ0 − µk + i0)−1Pcβjψ0

)
.(5.44)

Using (8.5) in (5.44) and then replacing it in (5.43) we get

�ρ(t) = π

4
ε2�

∑
k∈Ires,k �=j∈Z

ei(µj−µk)t (βjψ0, δ(H0 − λ0 − µk)βkψ0)

− 1

8
ε2�

∑
j,k∈Z,j �=k

ei(µk−µj)t
(
βkψ0,

[
(H0 − λ0 − µj − i0)−1

−(H0 − λ0 − µk − i0)−1
]
Pcβjψ0

)
= � η(t) + ε2σ(t).

Therefore,

ρ(t) = �ρ(t) + i�ρ(t)
= η(t) + ε2σ(t),(5.45)

where

η(t) = i � ρ(t)− 1

8
ε2�

∑
j,k∈Z,j �=k

ei(µk−µj)t

(
βkψ0,

[
(H0 − λ0 − µj − i0)−1 − (H0 − λ0 − µk − i0)−1Pc

]
βjψ0

)
,(5.46)

σ(t) = −π
4
�

∑
j∈Ires,j �=k∈Z

ei(µk−µj)t ( βkψ0, δ(H0 − λ0 − µj)βjψ0) ;
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see also (5.36).

Note that � ∫ t
0
η(s)ds is uniformly bounded in t. To see this, recall the definition

of ρj,k in Lemma 5.2 (see (5.26)):

ρj,k ≡ 1

µk − µj

(
βkψ0,

[
(H0 − λ0 − µj − i0)−1 − (H0 − λ0 − µk − i0)−1

]
Pcβjψ0

)
.

By (8.7), � η(t) given by (5.46) converges uniformly on t ∈ R. Therefore, for each
t ∈ R we may integrate the series term-by-term to obtain

�
∫ t

0

η(s)ds =
1

8
ε2

∑
j,k j �=k

�(ei(µk−µj)t − 1)ρj,k.(5.47)

Moreover, the modulus of the right-hand side in (5.47) is less or equal than
1
4ε

2
∑

j,k j �=k |ρj,k|, which by (5.32) is bounded by Cε2|||W |||2 for some constant C
depending only on C and r1. Note that we derived (5.32) by using only hypothesis
(H3b) and not relying on (H6).

Thus we have

�
∫ t

0

η(s)ds ≤ Cε2|||W |||2.(5.48)

To summarize, we have split ρ(t) into

ρ(t) = η(t) + ε2σ(t)

such that (5.48) is valid. If we now define Ã as in (5.40), then by (4.11) Ã satisfies
(5.41). Solving (5.41) we get

Ã(t) = e
−ε2Γt+ε2

∫ t

0
σ(s)ds

Ã(0) +

∫ t

0

e
−ε2Γ(t−τ)+ε2

∫ t

τ
σ(s)ds

Ẽ(s) dτ

≡ e
−ε2Γt+ε2

∫ t

0
σ(s)ds

Ã(0) + RA(t).(5.49)

From (5.42) and (5.48) it is sufficient to estimate RA(t) in terms of Ẽ(t).
Remark 5.2. The estimates of Ra(t) which appear in the statement of Theorem

2.2 are related to those for RA(t) via

Ra(t) = e
−iλ0t+

∫ t

0
η(s)ds

RA(t)+
(
1−eε2(

∫ t

0
σ(s)ds−γt)+�

∫ t

0
η(s)ds)

e−ε2(Γ−γ)teiw(t)a(0).
(5.50)

Before we estimate RA(t), we review some properties of the function σ(t).
The function σ(t) is almost periodic since the sum of the moduli of its Fourier

coefficients is finite. Namely, by (2.20), the terms in the series (5.36) defining σ(t) are
majorized by those of a convergent series (whose sum is Cπ−1|||W |||2). Therefore,
the series in (5.36) is uniformly convergent. As the uniform limit of almost periodic
functions, σ(t) is then itself almost periodic, bounded by

sup
t∈R

|σ(t)| ≤ C|||W |||2(5.51)

for some constant C; see also section 9. Moreover, σ(t) has mean value zero since all
the Fourier exponents are nonzero; see (5.36) and section 9. Therefore∫ t

τ

σ(s)ds ≤ Γ

2
(t− τ), for t− τ ≥M(5.52)
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provided M is taken sufficiently large. It can be shown (see section 9 or [2, p. 42])
that (5.52) holds provided

M≥ 4 supt∈R{|σ(t)|} L(Γ/4)
Γ/2

,(5.53)

where L(Γ/4) (see Definition 9.1) is such that in each interval of length L(Γ/4) there
is at least one Γ/4 almost period for σ.

Using (5.51) and then (H5), we can choose

M = 8CL(Γ/4)/θ0(5.54)

independently of ε and still satisfy (5.53).
We now return to the estimation of RA. We split the integral in (5.35) into two

integrals, one from 0 to t−M and the other from t−M to t. For the former we use
(5.52) while for the latter we use (5.51). The result is

|RA(t)| ≤
∫ t−M

0

e−
1
2 ε

2Γ(t−τ)|Ẽ(τ)|dτ

+

∫ t

t−M
eε

2(C|||W |||2−Γ)(t−τ)|Ẽ(τ)|dτ.(5.55)

The first integral in (5.55) can be bounded exactly as the term
∫ t
0
e−ε2Γ(t−τ)|Ẽ(τ)|dτ

in the proof of Proposition 5.1. The second integral in (5.55) is bounded in the
following manner:

〈t〉r1
∫ t

t−M
eε

2(C|||W |||2−Γ)(t−τ)|Ẽ(τ)|dτ

≤ 〈t〉r1
〈t−M〉r1

∫ t

t−M
eε

2(C|||W |||2−Γ)(t−τ)dτ sup
t−M≤τ≤t

(〈τ〉r1 |E(τ)|)

≤ D sup
(ε2Γ/2)−α≤τ≤t

(〈τ〉r1 |E(τ)|) .(5.56)

Note that ε and consequently ε2Γ ∼ ε2|||W |||2 are small, so we can consider M "
(ε2Γ/2)−α and D ∼ M " (ε2Γ)−1. The result is (5.37). A simple bound, using the
definition of RA(t), yields (5.38).

This completes the proof of Proposition 5.3.

6. Dispersive estimates and local decay. In this section we prove the local
decay of φd and the decay in time of the remainder terms, E(t), in bound state
amplitude equation (4.11) of section 4. The arguments rely on hypotheses (H1)–(H5)
and results of the previous section, so we will handle Theorem 2.1 first. However, due
to the differences between Theorems 2.2 and 2.3 we separately finish their proofs in
the final two subsections of this section. We will repeatedly use the following lemma.

Lemma 6.1. For any η ∈ [0, r1] and j ∈ Z we have∥∥∥∥
∫ t

0

w−e−iH0(t−s)Pcf(s)ds

∥∥∥∥ ≤ C〈t〉−η sup
0≤τ≤t

(〈τ〉η‖w+f(τ)‖)(6.1)

and∥∥∥∥
∫ t

0

w−e−iH0(t−s)Pc(H0 − λ0 − µj − i0)−1f(s) ds

∥∥∥∥ ≤ C〈t〉−η sup
0≤τ≤t

(〈τ〉η ‖w+f(τ)‖) .
(6.2)
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Proof. The proof follows from the assumed local decay estimates on e−iH0t; see
(H3a). Namely, using that r1 > 1,∥∥∥∥
∫ t

0

w−e−iH0(t−s)Pcf(s) ds

∥∥∥∥ ≤
∫ t

0

‖w−e−iH0(t−s) Pcw−‖L(H)〈s〉−η ds

· sup
0≤τ≤t

(〈τ〉η‖w+f(τ)‖)

≤ C

∫ t

0

〈t− s〉−r1〈s〉−η ds sup
0≤τ≤t

(〈τ〉η‖w+f(τ)‖)

≤ C〈t〉−η sup
0≤τ≤t

(〈τ〉η ‖w+f(τ)‖) ,

which proves (6.1). The proof of (6.2) is identical and uses the singular local decay
estimate of (H3b).

We now define the norms

[A]α(T ) = sup
0≤τ≤T

〈τ〉α|A(τ)|(6.3)

and

[φd]LD,α(T ) = sup
0≤τ≤T

〈τ〉α‖w−φd(τ)‖.(6.4)

Then we have the following.
Proposition 6.1. For any T > 0 and η ∈ [0, r1],

[φd]LD,η(T ) ≤ C ( ‖w+φd(0)‖ + |ε| |||W ||| [A]η(T ) ) .(6.5)

Proof. From (4.9) we get, using the assumed local decay estimate for e−iH0t and
(6.1),

‖w−φd(t)‖ ≤
2∑

j=0

‖w−φj(t)‖

≤ C〈t〉−η ‖w+φd(0)‖+ C|ε|〈t〉−η [A]η(t) sup
0≤s≤t

‖w+W (s)ψ0‖

+ C |ε| |||W ||| 〈t〉−η [φd]LD,η (t).(6.6)

Since ‖w+W (s)ψ0‖ ≤ |||W ||| ‖ψ0‖ = |||W ||| and |ε| |||W ||| is assumed to be
small, multiplying both sides of this last equation by 〈t〉η and taking supremum over
t ≤ T yields (6.5).

We now estimate E(t).
Proposition 6.2. Let T > 0. For any η ∈ [0, r1]

[E]η(T ) ≤ C
(
ε2|||W |||2 |A(0)| + |ε| |||W ||| ‖w+φd(0)‖ + |ε|3|||W |||3 [A]η(T )

)
.

(6.7)
Proof. E(t) is defined in (4.13). From these equations it is seen that we need to

bound the following terms:

R1 ≡ 1

4
ε2|A(0)|

∑
j,k∈Z

∣∣(βkψ0, e
−iH0t (H0 − λ0 − µj − i0)−1Pcβjψ0

)∣∣ ,
R2 ≡ 1

4
ε2
∑
j,k∈Z

∣∣∣∣
(
βkψ0,

∫ t

0

e−iH0(t−s)(H0 − λ0 − µj − i0)−1Pce
−i(λ0+µj)s∂sA(s)βjψ0ds

)∣∣∣∣
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and

|ε (ψ0, W (t)φ0(t))| =
∣∣ε (W (t)ψ0, e

−iH0tφd(0)
)∣∣ ,

|ε (ψ0, W (t)φ2)| =
∣∣∣∣ε2
(
W (t)ψ0,

∫ t

0

e−iH0(t−s)PcW (s)φd(s)ds

)∣∣∣∣ .
The estimates of the above terms repeatedly use Lemma 6.1. Let η ∈ [0, r1].

Estimation of R1.

R1 =
1

4
ε2|A(0)|

∑
j,k∈Z

∣∣(w+βkψ0, w−e−iH0t(H0 − λ0 − µj − i0)−1Pcw− w+βjψ0

)∣∣
≤ C|A(0)| ε2|||W |||2 〈t〉−η(6.8)

by the local decay estimates (2.4).
Estimation of R2. From (4.11) we have that

|∂sA(s)| ≤ C|ε| |||W ||| |A(s)|+ |E(s)|(6.9)

since �ρ is linear in |ε| |||W ||| and �ρ, Γ are quadratic.
Applying Lemma 6.1 to R2 we then get

R2 =
1
4ε

2
∑

j,k∈Z

∣∣∣(w+βkψ0,
∫ t
0
w−e−iH0(t−s)(H0 − λ0 − µj − i0)−1Pcw−∂sA(s)w+βjψ0ds

)∣∣∣
≤ Cε2|||W |||2 〈t〉−η

(|ε| |||W ||| [A]η(t) + [E]η(t)
)
.

(6.10)
Estimation of |ε (ψ0, W (t)φ0(t))|. Since, by definition, φd(0) = Pcφd(0) we can

apply local decay estimates for e−iH0t to get

|ε (W (t)ψ0, φ0(t))| ≤ C|ε| |||W ||| 〈t〉−η ‖w+φd(0)‖.(6.11)

Estimation of |ε (ψ0, W (t)φ2)|. Applying Lemma 6.1 as before we get, for 0 ≤
t ≤ T ,

|ε (ψ0, W (t)φ2)| ≤ Cε2|||W |||2 〈t〉−η [φd]LD,η(T ).(6.12)

Using Proposition 6.1 to estimate [φd]LD,η(t) in (6.12), we get

|ε (ψ0, W (t)φ2)| ≤ Cε2|||W |||2 〈t〉−η {‖w+φd(0)‖ + |ε| |||W ||| [A]η(t)} .(6.13)

Finally, combining the above estimates, we can bound [E]η(T ) for any η ∈ [0, r1]
as follows:

[E]η(T ) ≤ C
{
ε2 |||W |||2 |A(0)|+ |ε| |||W ||| ‖w+φd(0)‖
+ ε2|||W |||2 [E]η(T ) + |ε|3|||W |||3 [A]η(T )

}
.(6.14)

Since |ε| |||W ||| is assumed to be small, Proposition 6.2 follows.
We can now complete the proof of Theorem 2.1. To prove the assertions concern-

ing the infinite time behavior, the key is to establish local decay of φd, in particular,
the uniform boundedness of [φd]LD,r1(T ). This will follow directly from Proposition

6.1 if we prove the uniform boundedness [A]r1(T ), or equivalently, [Ã]r1(T ).
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Proposition 6.3. Under the hypothesis of Theorem 2.1, there exists an ε0 > 0
such that for each real number ε, |ε| < ε0 there is a constant C∗ with the property
that for any T > 0

[A]r1(T ) ≤ C∗.

Proof. We begin with the expansion of A(t) given in Proposition 5.3. Multiplying
(5.34) by 〈t〉r1 , and taking the supremum over 0 ≤ t ≤ T we have

[A]r1(T ) ≤ C

(
|A(0)| (ε2Γ/2)−r1 + sup

0≤τ≤2(ε2Γ/2)−α

〈τ〉r1 |RA(τ)|

+ sup
2(ε2Γ/2)−α≤τ≤T

〈τ〉r1 |RA(τ)|
)
.(6.15)

The right-hand side of (6.15) is estimated using Proposition 5.3.

[A]r1(T ) ≤ C|A(0)| (ε2Γ/2)−r1 +D (ε2Γ/2)−α(r1−1) [E]0(2(ε
2Γ/2)−α)

+ C1 e−(ε2Γ/2)−δ

[E]0(2(ε
2Γ/2)−α) + C2 (ε

2Γ/2)−1[E]r1(T ).

Next, we apply Proposition 6.2 which yields

[A]r1(T ) ≤ C|A(0)| (ε2Γ/2)−r1 + D (ε2Γ/2)−α(r1+1) [E]0(2(ε
2Γ/2)−α)

+ C1e
−(ε2Γ/2)−δ

[E]0(2(ε
2Γ/2)−α)

+ C2(ε
2Γ/2)−1

(
ε2|A(0)||||W |||2 + |ε| |||W ||| ‖w+φd(0)‖
+ |ε|3|||W |||3 [A]r1(T )

)
.(6.16)

Note that by Proposition 6.2 and the simple bound

[A]0(T ) ≤ ‖φ0‖,

[E]0(2(ε
2Γ/2)−α) is bounded in terms of the initial data and |ε| |||W |||.

Choose ε0 such that

1− 2C2|||W |||3
Γ

ε0 = 0,

where C2 is the same as in (6).

Then, for |ε| < ε0

[A]r1(T ) ≤ C∗.(6.17)

Here, C∗ depends on ‖φ0‖, ‖w+φ0‖, r1, and ε.
This completes the proof of Proposition 6.3 and therewith the t→∞ asymptotics

asserted in Theorems 2.1–2.3.

It remains to finish the proofs of the Theorems 2.3 and 2.2. Due to some differ-
ences we consider them separately in the following two subsections.
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6.1. Proof of Theorem 2.3. In order to obtain (2.23) we note that (4.7), (5.3),
and (5.14) together with the definition of ω(t) in (2.16) already gives us

a(t) = e
−iλ0t+

∫ t

0
ρ(s)ds(

A(0)e−ε2Γt +RA(t)
)

= a(0)e−ε2Γteiω(t) +Ra(t),

which is in fact the second relation in (2.23). The third is a direct consequence of the
second since P (t) = |a(t)|2 while the fourth relation is exactly (4.9).

It remains to prove the intermediate time estimate (2.17). The ingredients are
contained in (6.7) and its proof. First, by (5.15)

|Ra(t)| ≤ C |RA(t)| + O(ε2|||W |||2).
So, it suffices to prove an O(|ε| |||W |||) upper bound for RA.

Using (5.4) and (5.13) we know that

|RA(t)| ≤ C

∫ t

0

e−ε2Γ(t−τ) |E(τ)| dτ.(6.18)

Let T0 denote an arbitrary fixed positive number. We estimate the equation (6.18)
for t ∈ [0, T0(ε

2Γ)−1]. We bound the exponential in the integrand by one (explicit
integration would give something of order (ε2Γ)−1) and bound |E(τ)| by estimating
the expressions in the proof of Proposition 6.2. First, the estimates of Proposition 6.2
for R1 and |ε (ψ0, W (t)φ0(t))| are useful as is. Integration of the bounds (6.8) and
(6.11) gives ∫ t

0

e−ε2Γ(t−τ)R1 dτ ≤ C ε2|||W |||2 ‖w+φ(0)‖,∫ t

0

e−ε2Γ(t−τ) |ε (ψ0, W (t)φ0(t))| dτ ≤ C |ε| |||W ||| ‖w+φ(0)‖.(6.19)

To estimate the contributions of R2, first observe that by (6.9) and Proposition 6.2
with η = 0

|∂sA(s)| ≤ C |ε| |||W ||| ‖w+φ(0)‖.(6.20)

Therefore, using local decay estimates we have∫ t

0

e−ε2Γ(t−τ)R2 dτ ≤ C T0(ε
2Γ)−1 |ε|3|||W |||3 ‖w+φ(0)‖

≤ D|ε| |||W ||| ‖w+φ(0)‖.
Finally, we come to the contribution of |ε (ψ0, W (t)φ2)|. We rewrite it as follows:

|ε (ψ0, W (t)φ2)| = ε2
∣∣∣∣
∫ t

0

(
W (s)eiH0(t−s)PcW (t)ψ0, φd(s)

)
ds

∣∣∣∣
=

∣∣∣∣
∫ t

0

ε2(w+W (s)w+ · w−eiH0(t−s)Pcw− · w+W (t)ψ0, w−φd(s)) ds
∣∣∣∣ .(6.21)

Recall that by (4.9) φd = φ0 + φ1 + φ2, where φ0(t) = e−iH0tφd(0). Using
local decay estimates (H3a), the contribution of the term φ0(t) can be bounded
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by C ε2|||W |||2 ‖w+φd(0)‖ 〈τ〉−r1 . Multiplication of this bound by e−ε2Γ(t−τ) and
integration with respect to t gives the bound C ε2|||W |||2‖w+φd(0)‖. To assess the
contributions from φ1 + φ2, note that local decay estimates (H3a) imply

‖w−(φ1 + φ2)‖ ≤ C |ε| |||W ||| ‖w+φ(0)‖.(6.22)

Putting together the contributions from φ0 and from φ1 + φ2, we have∫ t

0

e−ε2Γ(t−τ) |ε (ψ0, W (t)φ2)| dτ ≤ C
(
ε2|||W |||2 ‖w+φd(0)‖ + (ε2Γ)−1 |ε|3|||W |||3) .

(6.23)
The above estimates and (5.15) imply (2.17). Now, (2.18) is a direct consequence of
(2.17) and the relation P (t) = |a(t)|2.

This concludes the proof of Theorem 2.3.

6.2. Proof of Theorem 2.2. As in the proof of Theorem 2.3 relations (4.7),
(5.34), (5.50), and the definition of ω(t) in (2.16) gives

a(t) = e
−iλ0t+

∫ t

0
η(s)ds

(
A(0)e

−ε2
(
Γt−
∫ t

0
σ(s)ds

)
+RA(t)

)

= a(0)e−ε2(Γ−γ)teiω(t) +Ra(t),

which is the second relation in (2.15). In what follows, the only difference from the
previous argument is in estimating Ra(t).

We start with the relation (5.50):

Ra(t) = e
−iλ0t+

∫ t

0
η(s)ds

RA(t)+

(
1− e

ε2(
∫ t

0
σ(s)ds−γt)+�

∫ t

0
η(s)ds

)
e−ε2(Γ−γ)teiw(t)a(0).

(6.24)
Since σ(t) is an almost periodic function with zero mean, for any γ > 0 there is an
Mγ > 0 such that whenever |t| ≥ Mγ∫ t

0

σ(s)ds ≤ γt.

On the other hand for |t| <Mγ , using (5.51) we have∫ t

0

σ(s)ds ≤ CMγ |||W |||2.

So, in both cases, ∫ t

0

σ(s)ds− γt ≤ CMγ |||W |||2.

Substituting now in (6.24) and tacking into account that by (5.48),

�
∫ t

0

η(s)ds ≤ Cε2|||W |||2

uniformly in t, we get

|Ra(t)| ≤ C |RA(t)|+O(ε2|||W |||2).(6.25)

It remains to prove an O(|ε| |||W |||) for RA(t). Looking now at (5.55) we see that

we can bound the exponential by max{1, eε2(C|||W |||2−Γ)M}. Now, the same argument
as in the end of the previous subsection will give us the required result.

This completes the proof of Theorem 2.2.
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7. Generalizations. In the previous sections we considered perturbations of the
form εW (t), with W (t) independent of ε. In this section, we shall extend our theory
to a more general class of potentials, Wε, which are small for small ε but which may
deform nontrivially as ε varies.

Consider a family of perturbations W and the general system

i∂tφ(t) = (H0 +W (t))φ(t),

φ|t=0 = φ(0),(7.1)

where W ∈ W (compare to (2.1). The results are as follows.
Theorem 7.1. Suppose that H0 and any W ∈ W satisfy hypotheses (H1)–(H5).

In addition assume the following:
(H7) Equi-almost periodicity. There exists a positive constant Lθ0 , independent

of W ∈ W, such that in any interval of real numbers of length Lθ0 , the function
|||W |||−2 σ(t) (|||W ||| �= 0), where

σ(t) ≡ −π
4
�

∑
j∈Ires,j �=k∈Z

ei(µk−µj)t (βkψ0, δ(H0 − λ0 − µj)βjψ0)(7.2)

has a θ0/4 almost period, θ0 is given by (H5). More precisely, there exists Lθ0 > 0
which does not depend on W such that in any interval of length Lθ0 there is a number
τ = τ(θ0/4) such that for all t ∈ R∣∣ |||W |||−2σ(t+ τ) − |||W |||−2σ(t)

∣∣ ≤ θ0/4.(7.3)

If w+φ(0) ∈ H, then there exists an ε0 > 0 (depending on C, r1, θ0, and Lθ0)
such that whenever |||W ||| < ε0, the solution of (7.1) satisfies the local decay estimate
(identical with the one in Theorem 2.1)

‖w− φ(t)‖ ≤ C〈t〉−r1‖w+ φ0‖, t ∈ R.(7.4)

Sketch of the proof. Once we drop ε from all expressions (since it is not present
in the actual setting), the arguments in the previous sections hold in this case except
the analysis of σ(t) in Proposition 5.3. Formulas (5.36) and (7.2) are the same, but
now µj , βj , j ∈ Z, are not fixed as they define W by (H4) and W sweeps a general
class W. This may prevent us from finding a fixed time interval,M, independent of
W ∈ W, after which σ(t) is within Γ/2 distance from its mean; see relations (5.52)–
(5.54).

Nevertheless, (H7) is exactly what we need to overcome the difficulty. A straight-
forward calculation shows that any θ0/4 almost period of |||W |||−2σ(t) is a Γ/4 almost
period for σ(t). Consequently, L(Γ/4) in (5.54) is bounded above by L(θ0) given in
(H7). But the latter is fixed, so we can choose

M = 8CL(θ0)/θ0(7.5)

independent of W ∈ W and still satisfy (5.53) hence (5.52).
Finally, we can close the arguments exactly as we did for Theorem 2.1.
Remark 7.1. Theorems analogous to Theorem 2.2 (respectively, Theorem 2.3)

can be proved under hypotheses (H1)-(H5), (H7) (respectively, (H1)–(H6)).
Examples. (H7) holds trivially for
(1) W = {εW (t, x) : ε ∈ R, W fixed} or
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(2) W = {εW (ε−1t, x) : ε ∈ R− {0}, |ε| ≤ 1, W fixed}.
In Example (1), ε cancels in the formula |||W |||−2σ(t) while in Example (2) we

have a time dilation which shrinks the gaps between the almost periods, so the L(θ0)
valid for W (t, x) is good for the entire family.

(3) There are more general families of perturbations W for which (H7) holds.
For example, if W is equi-almost periodic, see section 9.

8. Appendix: Singular operators. In this section we present the definition
and the properties we needed previously for the singular operators

e−iH0t (H0 − Λ− i0)
−1
Pc, δ (H0 − Λ)Pc, P.V. (H0 − Λ)−1

Pc

and establish the identities

(H0 − Λ∓ i0)
−1
Pc = P.V. (H0 − Λ)−1

Pc ± iπδ (H0 − Λ)Pc

suggested by the well-known distributional identities

(x∓ i0)−1 = P.V.
1

x
± iπ δ(x).

Recall that we are in the complex Hilbert space H with self-adjoint “weights”
w± and projection operator Pc satisfying (i), (ii), and (iii). We can then construct
the complex Hilbert space H+ as the closure of the domain of w+ under the scalar
product (f, g)+ = (w+f, w+g) and the complex Hilbert space H− as the closure of
PcH under the scalar product (f, g)− = (w−f, w−g) .

By the hypotheses of section 2, H0 is a self-adjoint operator on H and satisfies
the local decay estimate (2.3). Based on this property, in [11, 22, 23] it is proved that
for Λ in the continuous spectrum of H0 and t ∈ R

Tt ≡ i lim
η↘0

∫ ∞

t

e−i(H0−Λ−iη)sdsPc,

T ∗
t ≡ −i lim

η↘0

∫ −t

−∞
e−i(H0−Λ+iη)sdsPc

are well defined linear bounded operators from H+ to H−. We then define

e−iH0t (H0 − Λ− i0)
−1
Pc ≡ e−iΛtTt,(8.1)

e+iH0t (H0 − Λ + i0)
−1
Pc ≡ e+iΛtT ∗

t ,(8.2)

and

P.V. (H0 − Λ)−1
Pc ≡ 1

2
(T0 + T ∗

0 ),(8.3)

δ (H0 − Λ)Pc ≡ 1

2πi
(T0 − T ∗

0 ).(8.4)

Note that the definitions imply the identities

(H0 − Λ∓ i0)
−1
Pc = P.V. (H0 − Λ)−1

Pc ± iπδ (H0 − Λ)Pc.(8.5)

Particularly important properties of these operators are their symmetries when viewed
as quadratic forms on H+ ×H+. For example, on any f, g ∈ H+ the quadratic form
induced by Tt is given by

(f, g) �→ (w+f, w−Ttg).
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Note that

lim
η↘0

(f, T η
t g) ≡ lim

η↘0

(
f, i

∫ ∞

t

e−i(H0−Λ−iη)sdsPcg

)
= (w+f, w−Ttg)(8.6)

by the following calculation:

lim
η↘0

(
f, i

∫ ∞

t

e−i(H0−Λ−iη)sdsPcg

)
= lim

η↘0

(
f,Pci

∫ ∞

t

e−i(H0−Λ−iη)sdsPcg

)

= lim
η↘0

(
f, w+w−Pci

∫ ∞

t

e−i(H0−Λ−iη)sdsPcg

)

= lim
η↘0

(
w+f, w−i

∫ ∞

t

e−i(H0−Λ−iη)sdsPcg

)
= (w+f, w−Ttg),

where we used that Pc is a projection operator commuting with the integral op-
erator, the identity w+w−Pc = Pc on H, the self-adjointness of w± and Pc, and
limη↘0 w−T

η
t = w−Tt in L(H+,H).

Identity (8.6) suggests the notation

(f, g) �→ (f, Ttg)

for the quadratic form induced by Tt, where (·, ·) can formally be treated as the scalar
product in H. Moreover, (8.6) implies

(f, Ttg) = (T
∗
t f, g).

Therefore, the quadratic form induced by P.V.(H0 − Λ)−1Pc is the symmetric part
of the one induced by T0 while δ(H0 − λ)Pc induces the skew-symmetric part of it
divided by the factor iπ. As a consequence both the forms corresponding to the last
two operators are symmetric.

In conclusion, for any f, g ∈ Domain(w+), t ∈ R, and Λ ∈ σcont(H0) we have

(f, e∓iH0t(H0 − Λ∓ i0)−1Pcg) ≡
(
w+f, w−e∓iH0t(H0 − Λ∓ i0)−1Pcg

)
≤ Ct ‖w+f‖ ‖w+g‖,(8.7)

(f, δ(H0 − Λ)Pcg) ≡ (w+f, w−δ(H0 − Λ)Pcg) ≤ C0

π
‖w+f‖ ‖w+g‖,(8.8)

(f,P.V.(H0 − Λ)−1Pcg) ≡
(
f, w−P.V.(H0 − Λ)−1Pcg

) ≤ C0 ‖w+f‖ ‖w+g‖.(8.9)

The inequalities are due to the boundedness of Tt, where Ct denotes the norm of Tt
in L(H+,H−). Moreover, the following symmetry properties hold:

(f, e∓iH0t(H0 − Λ∓ i0)−1Pcg) = (e
±iH0t(H0 − Λ± i0)−1Pcf, g),

(f, δ(H0 − Λ)Pcg) = (δ(H0 − Λ)Pcf, g),

(f,P.V.(H0 − Λ)−1Pcg) = (P.V.(H0 − Λ)−1Pcf, g).

9. Appendix: Almost periodic functions. In this section we present the
definition and the properties of almost periodic functions we used throughout this
paper. We will confine to functions of the form f : R → X, where X is a complex
Banach space with norm denoted by ‖ · ‖.
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Definition 9.1. We say that

f : R → X

is almost periodic if and only if it is continuous and for each ε > 0 there exists a
length L(ε, f) > 0 such that in any closed interval of length greater or equal than
L(ε, f) there is at least one τ with the property that for all t ∈ R we have

‖f(t+ τ)− f(t)‖ ≤ ε.(9.1)

The number τ with the property above is called an ε almost period for f .
We say that the family, F of almost periodic functions is equi-almost periodic if

L(ε, f) can be choosen independently of f ∈ F .
Example. Any continuous periodic function is almost periodic since for any ε > 0

we can choose the length L(ε) to be the period of the function.
Theorem 9.1. Any almost periodic function has a relative compact image.
The proof of the theorem can be found in [9, Property 1, p. 2]. In particular,

any almost periodic function f : R → X is in the Banach space of all bounded and
continuous functions on R with values in X, C(X), endowed with the uniform norm.
The next result is Bochner’s characterization of almost periodic functions; see, for
example, [9, Bochner’s theorem, p. 4].

Theorem 9.2 (Bochner). Let f : R → X be a continuous function. For f
to be almost periodic it is necessary and sufficient that the family of functions
{f(t+ h)}, −∞ < h <∞, is relatively compact in C(X).

As a consequence of Bochner’s criterion and Property 4 from [9, p. 3] we have
the following.

Theorem 9.3. Suppose X1, X2, . . . , Xk+1 are Banach spaces, fi : R → Xi, 1 ≤
i ≤ k are almost periodic functions, and g :

∏k
i=1 → Xk+1 is continuous. Then

g(f1(t), f2(t), . . . , fk(t)) is an almost periodic function.
The last theorem has very important consequences in the theory of almost periodic

functions. We will list only those which are useful in our presentation.
Corollary 9.1. A finite sum of almost periodic functions with values in the

same Banach space is an almost periodic function.
Corollary 9.2. A product between a complex valued almost periodic function

and an arbitrary almost periodic function is an almost periodic function.
Corollary 9.3. If H is a complex Hilbert space, L(H) is the Banach space of

the bounded linear operators on H, and W : R → L(H) is an almost periodic function,
then for any ϕ, ψ ∈ H the following functions are almost periodic:

t→W (t)ϕ,

t→ (ψ, W (t)ϕ) ,

t→ (W (t)ψ, W (t)ϕ) ,

where (·, ·) denotes the scalar product on H.
Another essential result in the theory of almost periodic functions is (see, for

example, [9, Property 3, p. 3]) the following.
Theorem 9.4. Any uniform convergent sequence of almost periodic functions

converges towards an almost periodic function.
Corollary 9.4. If {µj}j∈Z ⊂ R and {βj}j∈Z ⊆ X satisfies

∑
j∈Z

‖βj‖ < ∞,
then ∑

j∈Z

eiµjtβj
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is an X-valued almost periodic function of t.
Proof. According to Weierstrass’s criterion the series

∑
j∈Z

eiµjtβj is uniformly
convergent on R.

By Corollary 9.1 and the example above the partial sums of the above series are
almost periodic. The result follows now from Theorem 9.4.

We continue with the harmonic analysis results for almost periodic functions.
Theorem 9.5 (mean value). If f : R → X is almost periodic, then the following

limit exists and it is approached uniformly with respect to a ∈ R:

lim
t→∞

1

t

∫ a+t

a

f(s)ds =M(f) ∈ X.

Moreover, whenever

t ≥ 4 sups∈R ‖f(s)‖L(ε/2, f)
ε

we have ∥∥∥∥M(f)− 1

t

∫ a+t

a

f(s)ds

∥∥∥∥ ≤ ε

for all a ∈ R.
The proof of the mean value theorem in this form can be found in [2, pp. 39–

44]. Note that although Bohr’s book considers only complex valued almost periodic
functions the proof can be carried on to Banach space valued functions by simply
replacing the modulus by the norm and the Lebesque’s integral for complex valued
functions by the Bochner’s integral.

The results of the next theorem are presented in [9, Chapter 2].
Theorem 9.6 (fundamental theorem). If f, g : R → X are almost periodic, then
(a) for any µ ∈ R,

lim
t→∞

1

t

∫ t

0

f(s)e−iµsds = a(µ, f)

exists and is nonzero for at most a denumerable set of µ’s; if a(µ, f) �= 0, then a(µ, f)
is called a Fourier coefficient for f while µ is called a Fourier exponent;

(b) a(µ, f) = a(µ, g) for all µ ∈ R if and only if f ≡ g;
(c) let Λ(f) = {µ : a(µ, f) �= 0} denote the set of Fourier exponents for f ;

then there is an ordering on Λ(f), Λ(f) = {µ1, µ2, . . .} independent of the Fourier
coefficients, such that for any ε > 0 there exist the numbers N(ε) ∈ N, 0 ≤ kn,ε ≤
1, n ∈ N, with the property that the trigonometric polynomial

Pε(t) =

N(ε)∑
n=1

kn,εa(µn, f)e
iµnt

satisfies

‖f(t)− Pε(t)‖ ≤ ε for all t ∈ R.

Moreover, kn,ε can be choosen such that for any fixed n, limε↘0 kn,ε = 1.
In this paper we use a less general result than the above fundamental theorem,

namely, the following.
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Corollary 9.5. If f(t) =
∑

j∈Z
eiµjtβj, where {µj}j∈Z ⊂ R and

∑
j∈Z

‖βj‖ <
∞, then Λ(f) = {µj}j∈Z, a(µj , f) = βj , j ∈ Z, in particular if µj �= 0, j ∈ Z, then
M(f) = 0. Moreover, we can arbitrarily order Λ(f) and still have that for any ε > 0
there exists a natural number N(ε) such that

‖f(t)−
j=N(ε)∑
j=−N(ε)

eiµjtβj‖ ≤ ε

or, in other words, in this particular case the conclusion in part (c) of the fundamental
theorem is valid even if we have an arbitrary order on Λ(f) and we choose kj,ε ≡ 1.

Proof. By the Weierstrass criterion the series

f(t)e−iµt =
∑
j∈Z

ei(µj−µ)tβj

is uniformly convergent on R. So, when we compute a(µ, f) we can integrate term by
term and therefore use the identities

lim
t→∞

1

t

∫ t

0

e−iλsds =

{
0 if λ �= 0,
1 if λ = 0

to get the first part of the corollary. The last part is a direct consequence of the fact
that f is an absolute and uniform convergent series.
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Abstract. We develop some aspects of general homogenization theory for second order elliptic
difference operators and consider several models of homogenization problems for random discrete el-
liptic operators with rapidly oscillating coefficients. More precisely, we study the asymptotic behavior
of effective coefficients for a family of random difference schemes whose coefficients can be obtained
by the discretization of random high-contrast checker-board structures. Then we compare, for var-
ious discretization methods, the effective coefficients obtained with the homogenized coefficients for
corresponding differential operators.
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1. Introduction. We develop some aspects of general H-convergence and ho-
mogenization theory for second order elliptic difference operators and consider several
homogenization problems for random discrete elliptic operators with rapidly oscillat-
ing coefficients. More precisely, we study the asymptotic behavior of effective coeffi-
cients for a family of random difference schemes whose coefficients can be obtained by
the discretization of random high-contrast checker-board structures. Then we com-
pare, for various discretization methods, the effective coefficients obtained with the
homogenized coefficients for corresponding differential operators.

Many results can also be formulated in terms of the central limit theorem for
random walks in random statistically homogeneous media.

Originally, G- and H-convergence of differential operators and Γ-convergence of
the corresponding functionals were introduced by Spagnolo [27], De Giorgi [7], [8], and
Murat and Tartar [22]. Then these notions were developed and generalized essentially
in the works of Bensoussan, Lions, and Papanicolaou [4], Tartar [26], Murat [21], Jikov
et al. [28], G. Dal Maso [18], and many others. This resulted in the appearance of
advanced homogenization theory.

In recent years, significant progress has been achieved in the homogenization
theory of random differential operators. We refer to the original works of Kozlov
[13] and Papanicolaou and Varadhan [24], and to the book by Jikov, Kozlov, and
Oleinik [11] wherein an additional bibliography can be found. In particular, in case of
random high-contrast checker-board structures, the asymptotics of effective diffusion
have been constructed in Jikov, Kozlov, and Oleinik [11]. Berlyand and Golden in [5]
have improved this result in a special case.

In contrast with differential operators, the homogenization theory of difference
operators is not so well developed. There are only a few mathematical works on this
subject, among them Künnemann [17], Kozlov [14], [15], and Krasniansky [16]. In
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[17] it is proved that the central limit theorem holds for symmetric random walks
in random ergodic statistically homogeneous media. Then, many interesting results
for various kinds of random walks in random media were obtained in Kozlov [14].
The first homogenization results for difference schemes were formulated and proved
in Kozlov [15]. We also mention the work Bricmont and Kupiainen [6] where the
central limit theorem was obtained for a class of nonsymmetric random walks.

Perhaps the difference operators with rapidly oscillating coefficients did not at-
tract the attention of mathematicians because these operators did not appear in the
classical difference schemes approximation approach (see, for example, Quarteroni
and Valli [25]): the fast oscillation of coefficients of difference schemes would contra-
dict the regularity and even the measurability of coefficients of the initial differential
equations.

On the other hand, many modern practical and numerical applications involve
various homogenization problems for discrete operators with rapidly oscillating coeffi-
cients. For instance, when discretizing microinhomogeneous media, due to the natural
restrictions, it is not possible to keep the size of the numerical grid much smaller than
the typical size of inhomogeneity (the microscopic length scale) of the medium. This
leads to the appearance of difference operators with rapidly oscillating coefficients
(see, for instance, McCarthy [19], Nœtinger [23]). The most important question here
is, How far could the effective coefficients of a difference scheme diverge from ones
of corresponding differential operators? The first successful attempt to answer this
question was done by Avellaneda, Hou, and Papanicolaou [2] where it was shown that,
in the multidimensional case, the finite difference approach does not provide the right
homogenized coefficients unless the ratio of the size of a discretization mesh to the
microscopic length scale goes to 0.

In the present work we show that the effective coefficients of the difference schemes
approximating a family of elliptic PDEs with rapidly oscillating coefficients depend
essentially on the discretization method.

The paper is divided into two parts. The first one is devoted to H-convergence
and homogenization of difference operators.

Earlier homogenization problems for difference operators were investigated by
Kozlov in [15] where a number of homogenization results for difference schemes were
obtained. In the present work we extend further the homogenization theory of dis-
crete operators and prove a number of basic statements such as convergence of so-
lutions of the Neumann problem, convergence of energies and of arbitrary solutions,
Γ-convergence, and some others. To this end we mainly use the discrete analogue
of the compensated compactness technique originally introduced in Murat [21] and
Tartar [26] for functions of continuous arguments. Namely, we prove a version of
compensated compactness lemma, adapted to difference operators, and then apply
it systematically in our considerations in combination with the method of correctors
and variational techniques.

For the sake of completeness we also formulate some technical results from Kozlov
[15] and give another proof of the homogenization theorem for random difference op-
erators. An additional reason for this is the fact that we use a more general definition
of ellipticity than that in [15].

It should be noted that although some basic ideas here have been borrowed from
homogenization theory of differential equations, still the peculiarities of difference
operators such as the big dimension of difference gradient, the irreducibility and ellip-
ticity conditions in the case of boundary-value problems, and the asymptotic nature
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of difference schemes, create additional difficulties in studying these operators and
make the generalization of homogenization theory to difference operators nontrivial.

In the second part of the paper, we discretize high-contrast two-dimensional
checker-board structures, find the asymptotics of effective diffusion, and show that
different discretization methods lead to different asymptotics.

1.1. Difference elliptic operators. Let Q ⊂ R
d be a smooth bounded domain

and let Qε = Q ∩ εZd, where Z
d is the standard integer lattice in R

d and ε > 0. We
consider the discrete Dirichlet problem in Qε:

Aεu
ε(x) =

∑
z,z′∈Λ

∂ε−z (a
ε
zz′(x)∂εz′uε(x)) = fε(x) in Qε , uε(x) = 0 on ∂QΛ

ε .

(1.1)

Here Λ is a fixed finite subset of Z
d symmetric with respect to 0, the matrix Aε =

{aεzz′} is symmetric, ∂QΛ
ε is the boundary of Qε defined by

∂QΛ
ε

�
= (Qε + εΛ) \Qε = {x+ εz |x ∈ Qε, z ∈ Λ} \Qε ,

and ∂εz is the standard difference derivative: (∂εzv)(x)
�
= 1

ε (v(x+ ε z)− v(x)) . For
any vε : Qε 
→ R , we introduce the following norm (the L2(Qε)-norm): ‖vε‖2L2(Qε)

�
=

εd
∑

x∈Qε
|vε(x)|2 . We say that a function vε defined on εZd belongs to the space

W 1,2
0 (Qε) if v(x) = 0 for x ∈ Qε . We define the norm on the space W 1,2

0 (Qε) as

follows: ‖vε‖2
W 1,2

0 (Qε)
= εd

∑
x∈Qε

∑d
i=1 |∂ε±eiv

ε(x)|2 , where {ei}i=1,...,d is the stan-

dard basis in R
d and Qε

�
= Qε + εΛ = Qε ∪ ∂QΛ

ε ; W
−1,2(Qε) is the dual space to

W 1,2
0 (Qε).
In the summation in (1.1), we can consider only the elements from the set Λ\{0},

as the contribution of the element {0} is null.
Definition 1.1. We say that the family of problems (1.1) (or, simply, problem

(1.1)) is uniformly elliptic if there are c1, c2 > 0 and ε0 > 0 such that, for any
vε ∈W 1,2

0 (Qε) and any ε < ε0 ,

|aεzz′(x)| ≤ c1,(1.2)

c2‖vε‖2W 1,2
0 (Qε)

≤ εd
∑
x∈Qε

∑
z,z′∈Λ

aεzz′(x)∂z′vε(x)∂zv
ε(x) .(1.3)

Remark 1.2. The uniform boundedness of the matrix Aε implies the following
upper bound:

εd
∑
x∈Qε

∑
z,z′∈Λ

aεzz′(x)∂z′vε(x)∂zv
ε(x) ≤ c(Λ)‖vε‖2

W 1,2
0 (Qε)

.

Indeed, it suffices to represent z as a sum z = z1 + z2 + · · ·+ zN with |zi| = 1 for all
i = 1 . . . N . Then,

∂εzv
ε(x) =

N∑
k=1

∂εzkv
ε(x+ z1 + · · ·+ zk−1)
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and the required bound is the consequence of the finiteness of Λ.
In what follows we always assume the uniform ellipticity conditions (1.2)–(1.3) to

hold.
It should be noted that, in general, the uniform ellipticity condition (1.3) is rather

implicit. For instance, it neither requires the positiveness of the matrix {aεzz′(x)} nor
follows from the estimate

c3|ξ|2 ≤
∑

z,z′∈Λ

aεzz′(x)(ξ, z)(ξ, z′) ≤ c4|ξ|2, ξ ∈ R
d, c3 > 0 ,(1.4)

where (·, ·) is the scalar product in R
d . One can easily see this by considering the

one-dimensional problem with

aεzz′(x) =

{
1/2 if z = z′, |z| = 2,
0 otherwise.

Clearly, (1.3) is not satisfied although (1.4) holds.
In order to ensure the uniform ellipticity of problem (1.1) one should combine esti-

mates such as (1.4) with a proper irreducibility condition. Below we show that for two
important particular classes of difference operators commonly used in applications,
the ellipticity conditions can be easily verified.

Suppose we are given a family of functions pεz(x), x ∈ Qε, z ∈ Λ, possessing the
following properties:

1. positiveness: pεz(x) ≥ 0,
∑

z∈Λ p
ε
z(x) = 1 for each x ∈ Qε ,

2. pε±ei(x) ≥ δ > 0, i = 1, . . . , d ,
3. symmetry: pεz(x) = pε−z(x+ εz) .

Then, the family of problems

uε(x) =
∑
z∈Λ

pεz(x)u
ε(x+ εz) + ε2 fε(x) in Qε , uε(x) = 0 on ∂QΛ

ε ,(1.5)

can be easily rewritten in the form (1.1) with

aεzz′(x) =

{
pεz(x) if z = z′, z = 0,
0 otherwise.

(1.6)

Proposition 1.3. Let {pεz(x)} possess the abovementioned properties (1), (2),
and (3). Then problem (1.5) is uniformly elliptic.

Proof. Summing by parts, one can show after simple calculations that

δε−d‖vε‖2
W 1,2

0 (Qε)
= δ

∑
x∈Qε

d∑
i=1

|∂ε±eiv
ε|2

≤
∑
x∈Qε

∑
z,z′∈Λ

aεzz′(x)∂z′vε(x)∂zv
ε(x)

≤ C
∑
x∈Qε

∑
z∈Λ

|∂εzvε|2 ≤ c(Λ)ε−d‖vε‖2
W 1,2

0 (Qε)

uniformly in ε. This yields the desired result.
Assumption (2) can be relaxed as follows:
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(2′) For some N > 0 and δ > 0 and for any x′, x′′ ∈ Qε , |x′ − x′′| = ε ,
there is a finite sequence of vectors y1, y2, . . . , yk ∈ Λ , k ≤ N , such that
x′′ = x′ + ε

∑k
j=1 y

j and pεyj (x′ + ε
∑j−1

i=1 y
i) ≥ δ .

Another important class of uniformly elliptic operators is formed by matrices
{aεzz′(x)} that satisfy the estimate

∑
z,z′∈Λ

aεzz′(x) ηz ηz′ ≥ c

d∑
i=1

|η±ei |2 , η ∈ R
|Λ| ,

uniformly in ε and x ∈ Qε ; here we assume that all the vectors ±ei, i = 1, 2, . . . , d,
are elements of Λ; if it is not the case, the right-hand side (RHS) of the latter formula
does not make sense.

Clearly, the uniform ellipticity implies the coerciveness of problem (1.1) and we
have the following statement.

Proposition 1.4. Let problem (1.1) be uniformly elliptic and fε ∈ L2(Qε). Then
there exists a unique solution uε ∈W 1,2

0 (Qε) and the estimate

‖uε‖W 1,2
0 (Qε)

≤ c‖fε‖L2(Qε)

holds uniformly in ε. Henceforth we usually suppose that fε(·) is a discretization of
a given function f ∈ L2(Q) .

We also define the norm on the space W 1,2(Qε) by

‖vε‖2W 1,2(Qε)
= εd

∑
x∈Qε

d∑
i=1

|∂̄ε±eiv
ε(x)|2 + ‖vε‖2L2(Qε) ,

where we use the notation

∂̄εzϕ(x) =

{
∂εzϕ(x) if x+ εz ∈ Qε ,
0 otherwise.

2. Tools for discrete operators analysis.

2.1. Compensated compactness lemma. One of the main tools in the ho-
mogenization of differential operators is the so-called compensated compactness lemma
(see Murat [21] and Tartar [26]), which gives a sufficient condition for passing to the
limit in the inner product of two weakly converging sequences of vector functions.
In this section, we prove the discrete version of this result that serves the case of
functions defined on a grid.

First of all, we introduce the discrete divergence as follows: for any vector function

q ∈ (L2(Qε)
)|Λ|
,

divεΛ q(x)
�
=
∑
z∈Λ

∂ε−zqz(x).

It should be emphasized that the above divergence operator depends on the choice of
the set Λ.

Lemma 2.1. Let qε and vε be sequences of vector functions from
(
L2(Qε)

)|Λ|

such that

qε −−−→
ε→0

q0 weakly in L2(Qε) ,div
ε
Λq

ε −−−→
ε→0

f0 in W−1,2(Qε) ,

vε −−−→
ε→0

v0 weakly in L2(Qε) ,v
ε
z(x) = ∂εzu

ε(x) for some uε ∈W 1,2(Qε) .
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Then, the sequence (qε vε) converges "-weakly to q0 v0: qε vε
�−−−→

ε→0
q0 v0 .

Proof. According to Kozlov [15, Proposition 3], the weak convergence of qε in
L2(Qε) implies the following weak convergence in W

−1,2(Qε):

divεΛq
ε −−−→

ε→0

∑
z∈Λ

∂

∂z
q0z =

∑
z∈Λ

z · ∇q0z ;

here the standard notation ∂
∂z f(x) = z · ∇xf(x) for the derivative along arbitrary

vector z has been used. Thus,
∑

z∈Λ z · ∇q0z = f0, and we have

lim
ε→0

‖divεΛ(qε − q0)‖W−1,2(Qε) = 0 .

From now on, the notation like q0 or v0 is used both for the functions of continuous
argument and for their discretization (see Appendix A). Using the representation
qε vε = (qε−q0) vε+q0 vε and taking into account the "-weak convergence of qε v0 to
q0 v0, one can assume, without loss of generality, that q0 = 0 . Also, under the proper
choice of additive constant,

∑
x∈Qε

uε(x) = 0. Then, by the Poincaré inequality, the

sequence uε is uniformly bounded in the W 1,2-norm. For any ϕ ∈ C∞0 (Q) we get

εd
∑
x∈Qε

qε(x) vε(x)ϕ(x) = εd
∑
x∈Qε

∑
z∈Λ

qεz(x) ∂
ε
zu

ε(x)ϕ(x)

= εd
∑
x∈Qε

∑
z∈Λ

{qεz(x) ∂εz(uε(x)ϕ(x))− qεz(x)uε(x) ∂εzϕ(x)}+ τ(ε)

with limε→0 τ(ε) = 0 (see Appendix B). Summing by parts in the latter expression
leads to

εd
∑
x∈Qε

qε(x) vε(x)ϕ(x)

= εd
∑
x∈Qε

∑
z∈Λ

{
∂ε−zq

ε
z(x)u

ε(x)ϕ(x)− qεz(x)uε(x) ∂εzϕ(x)
}
+ τ(ε)

= εd
∑
x∈Qε

(divεΛ q
ε(x) , uε ϕ)− εd

∑
x∈Qε

∑
z∈Λ

qεz(x)u
ε(x) ∂εzϕ(x) + τ(ε) .

Since uε is uniformly bounded in W 1,2(Qε) and div
ε
Λ q

ε converges to 0 in the W−1,2-
norm, the first term in the RHS goes to 0 as ε → 0. The second term goes to
0 because qεz ∂

ε
zϕ converges to 0 in L2(Qε) weakly. Finally, for any ϕ ∈ C∞0 (Q),

limε→0

∑
x∈Qε

∑
z∈Λ q

ε
z(x) v

ε
z(x)ϕ(x) = 0 .

2.2. H-convergence and homogenization. In this section, we give the defi-
nitions of the H-convergence and the homogenization of discrete operators and then
study the main properties of this convergence (see Spagnolo [27], Murat and Tartar
[22] for the relevant definitions in case of differential operators).

Consider a family of uniformly elliptic discrete Dirichlet problems,

Aεu
ε = divεΛ

(∑
z′∈Λ

aεzz′ ∂εz′uε

)
= fε , uε ∈W 1,2

0 (Qε) ,(2.1)

and denote byAε(x) the matrices of the coefficients {aεzz′(x)}. LetA(x) = {azz′(x)}, x
∈ Q, be a |Λ| × |Λ| matrix.
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Definition 2.2 (H-convergence). We say that the matrix Aε H-converges to A
(Aε H−−−→

ε→0
A) if, for any sequence fε ∈W−1,2(Qε) such that f

ε −−−→
ε→0

f in W−1,2(Qε),

we have

uε −−−→
ε→0

u0 weakly in W 1,2
0 (Qε) ,

sε =
∑
z∈Λ

aεzz′ ∂εzu
ε −−−→

ε→0
s0 =

∑
z∈Λ

azz′
∂

∂z
u0 weakly in L2(Qε) ,

where u0 is the solution of the limit Dirichlet problem,

∑
z,z′∈Λ

− ∂

∂z

(
azz′(x)

∂

∂z′
u0

)
= f, u0 ∈W 1,2

0 (Q).

The homogenization is a particular case of H-convergence. Given a matrix-valued
function A1(x) = {a1

zz′(x)}, z, z′ ∈ Λ, x ∈ Z
d, we define the sequence Aε as follows:

Aε(x) = A1(x/ε), x ∈ Qε. Suppose that the corresponding family of problems
(defined in (2.1)) is uniformly elliptic.

Definition 2.3. The constant matrix A is the homogenized matrix for Aε(x) =
{aεzz′(x)} if, for any sequence fε ∈W−1,2(Qε) such that fε −−−→

ε→0
f in W−1,2(Q), the

solutions uε of the Dirichlet problems

divεΛ

(∑
z′∈Λ

aεzz′ ∂εz′uε

)
= fε, uε ∈W 1,2

0 (Qε) ,

converge to the solution u0 of the limit Dirichlet problem

−
∑

z,z′∈Λ

∂

∂z
azz′

∂

∂z′
u0 = f , u0 ∈W 1,2

0 (Q),(2.2)

in the following sense:

uε −−−→
ε→0

u0 weakly in W 1,2
0 (Q) ,∑

z′∈Λ

aεzz′ ∂εz′uε −−−→
ε→0

∑
z∈Λ

azz′
∂

∂z
u0 weakly in L2(Q) .

Remark 2.4. The dimension of the difference gradient of functions defined on
Qε is equal to |Λ| and does not coincide with the dimension of the standard gradient of
functions defined on Q. This is the reason we write the limit equation in the definitions
above in a nonstandard form. This allows us to define the convergence of streams. Of
course, one can easily transform the limiting equation to the standard form

∑
z,z′∈Λ

∂

∂z
azz′(x)

∂

∂z′
=

d∑
i,j=1

∂

∂xi
ǎij(x)

∂

∂xj
, ǎij(x) =

∑
z,z′∈Λ

(z, ei)azz′(x)(z′, ej) .

One of the remarkable properties of H- and G-convergences of differential oper-
ators is the compactness of a family of uniformly elliptic operators; see, for example,
Murat and Tartar [22], Zhikov et al. [28]. We proceed by quoting the compactness
result for a family of uniformly elliptic difference operators.
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Proposition 2.5 (see Kozlov [15, section 2]). Any uniformly elliptic sequence of
problems defined in (2.1) contains an H-convergent subsequence. The limit problem
involves a second order uniformly elliptic operator in divergence form:

Au = −
∑

z,z′∈Λ

∂

∂z

(
azz′(x)

∂

∂z′
u

)
= −

d∑
i,j=1

∂

∂xi

(
aij(x)

∂

∂xj
u

)
.

In the subsections below we prove a number of general results on H-convergence
and homogenization of difference operators that are not exhibited in the existing
literature.

2.2.1. Convergence of arbitrary solutions. One of the significant properties
of H-convergence is the fact that the H-limit operator depends only on the original
sequence of operators and does not depend on the type of boundary conditions and
on the domain. In a general form, this can be formulated as follows.

Theorem 2.6 (convergence of arbitrary solutions). Let a sequence of uniformly
elliptic operators Aε H-converge in a domain Q to the limit operator A, and suppose
that a sequence of functions wε ∈W 1,2(Qε) satisfies the conditions

wε −−−→
ε→0

w0 weakly in W 1,2(Qε) ,

divεΛ

(∑
z′∈Λ

aεzz′ (gz′ + ∂εz′wε)

)
= f ,(2.3)

where g ∈ (L2(Q)
)|Λ|

and f ∈ W−1,2(Q) do not depend on ε . Then, w0 satisfies the
homogenized equation

−
∑

z,z′∈Λ

∂

∂z

[
azz′

(
gz′ +

∂

∂z′
w0

)]
= f ,

and the streams do converge in L2(Qε) weakly:

∑
z′∈Λ

aεzz′ (gz′ + ∂εz′wε) −−−→
ε→0

∑
z′∈Λ

azz′

(
gz′ +

∂

∂z′
w0

)
.

Proof. Under the conditions of the theorem, the streams are uniformly bounded in
L2(Qε) . Thus, taking a proper subsequence, we have

∑
z′∈Λ a

ε
zz′ (gz′ + ∂εz′wε) −−−→

ε→0

ξzweakly in L
2(Qε) . Passing to the limit in (2.3), one can easily check that −

∑
z∈Λ

∂
∂z ξz

= f . We have to prove the relation ξz =
∑

z′∈Λ azz′
(
gz′ + ∂

∂z′w
0
)
. Let u0 be an ar-

bitrary function from W 1,2
0 (Q). Denote by uε the solution of the Dirichlet problem,

divεΛ

(∑
z′∈Λ

aεzz′ ∂εz′uε

)
=

∑
z,z′∈Λ

∂

∂z

(
azz′

∂

∂z′
u0

)
,

and consider the following identity:∑
z∈Λ

(gz + ∂
ε
zw

ε)
∑
z′∈Λ

aεzz′ ∂εz′uε =
∑
z∈Λ

∂εzu
ε
∑
z′∈Λ

aεzz′ (gz′ + ∂εz′wε) .(2.4)
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By the definition of H-convergence, we have

∑
z′∈Λ

aεzz′ ∂εz′uε −−−→
ε→0

∑
z′∈Λ

azz′
∂

∂z′
u0 weakly in L2(Qε) ,

while the limiting relation

∑
z∈Λ

(gz + ∂
ε
zw

ε) −−−→
ε→0

∑
z∈Λ

(
gz +

∂

∂z
w0

)
weakly in L2(Qε)

is an evident consequence of the weak convergence of wε . Now, passing to the limit
on the left-hand side (LHS) of (2.4), with the help of Lemma 2.1 we obtain

∑
z∈Λ

(gz + ∂
ε
zw

ε)
∑
z′∈Λ

aεzz′ ∂εz′uε
�−−−→

ε→0

∑
z∈Λ

(
gz +

∂

∂z
w0

) ∑
z′∈Λ

azz′
∂

∂z′
u0 .

The fact that gz does not depend on ε has also been used here.
Similarly, passing to the limit on the RHS of (2.4) gives

∑
z∈Λ

∂εzu
ε
∑
z′∈Λ

aεzz′ (gz′ + ∂εz′wε)
�−−−→

ε→0

∑
z∈Λ

∂

∂z
u0 ξz .

Finally, considering the fact that u0 is arbitrary function from W 1,2
0 (Q), we deduce

ξz =
∑
z′∈Λ

aεzz′

(
gz′ +

∂

∂z′
w0

)
.

Corollary 2.7 (local property of H-convergence). If Aε
H−−−→

ε→0
A in a domain

Q, then Aε
H−−−→

ε→0
A in any subdomain Q1 ⊂ Q .

2.2.2. Convergence of energies. In this section, we address a family of Dirich-
let problems with nonhomogeneous boundary conditions:

divεΛ

(∑
z′∈Λ

aεzz′ ∂εz′uε

)
= f , uε − u0 ∈W 1,2

0 (Qε) ,(2.5)

where u0 ∈W 1,2(Rd) and f ∈W−1,2(Q) are fixed given functions.
We suppose that the family {Aε} is uniformly elliptic and H-converges to the

limit operator A. Then, one can assume without loss of generality that the function
u0 satisfies the equation Au0 = f in the domain Q.

In order to show the uniform boundedness of {uε} in W 1,2(Qε), we replace u
ε by

uε − u0 in (2.5), multiply the resulting equation by u
ε − u0, and then sum over Qε.

After summation by parts we get∑
x∈Qε

∑
z,z′∈Λ

aεzz′(x) ∂εz
(
uε(x)− u0(x)

)
∂εz′(uε(x)− u0(x)) =

∑
x∈Qε

f(x)
(
uε(x)− u0(x)

)

−
∑
x∈Qε

∑
z,z′∈Λ

aεzz′(x) ∂εz
(
uε(x)− u0(x)

)
∂εz′u0(x).
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This implies the required boundedness.
By Theorem 2.6 (convergence of arbitrary solution), any weak limiting point of

the sequence {uε} coincides with u0 in Q. Hence, the whole family {uε} converges to
u0 in W 1,2(Qε) weakly.

Proposition 2.8 (convergence of energies). Let Aε
H−−−→

ε→0
A and let uε be the

solution of problem (2.5). Then the following limit relation holds true:

εd
∑
x∈Qε

∑
z,z′∈Λ

aεzz′(x) ∂εzu
ε(x) ∂εz′uε(x) −−−→

ε→0

∫
Q

∑
z,z′∈Λ

azz′(x)
∂

∂z
u0(x)

∂

∂z′
u0(x) dx .

Proof. By (2.5) we have

εd
∑
x∈Qε

∑
z,z′∈Λ

aεzz′(x) ∂εz(u
ε − u0)(x) ∂εz′(uε − u0)(x)

= εd
∑
x∈Qε

∑
z,z′∈Λ

aεzz′(x) ∂εzu
ε(x) ∂εz′(uε − u0)(x)

− εd
∑
x∈Qε

∑
z,z′∈Λ

aεzz′(x)
∂

∂z
u0(x) ∂εz′(uε − u0)(x) + τ(ε)

= εd
∑
x∈Qε

f(x) (uε − u0)(x)− εd
∑
x∈Qε

∑
z,z′∈Λ

aεzz′(x)
∂

∂z
u0(x) ∂εz′uε(x)

+ εd
∑
x∈Qε

∑
z,z′∈Λ

aεzz′(x)
∂

∂z
u0(x)

∂

∂z′
u0(x) + τ(ε) ;

here and afterwards τ(ε) stands for a generic function that vanishes as ε→ 0. On the
other hand,

εd
∑
x∈Qε

∑
z,z′∈Λ

aεzz′(x) ∂εz(u
ε − u0)(x) ∂εz′(uε − u0)(x)

= εd
∑
x∈Qε

∑
z,z′∈Λ

aεzz′(x) ∂εzu
ε(x) ∂εz′uε(x)

− 2εd
∑
x∈Qε

∑
z,z′∈Λ

aεzz′(x)
∂

∂z
u0(x) ∂εz′uε(x)

+ εd
∑
x∈Qε

∑
z,z′∈Λ

aεzz′(x)
∂

∂z
u0(x)

∂

∂z′
u0(x) + τ(ε) .

After subtraction we find

εd
∑
x∈Qε

∑
z,z′∈Λ

aεzz′(x) ∂εzu
ε(x) ∂εz′uε(x)− εd

∑
x∈Qε

∑
z,z′∈Λ

aεzz′(x)
∂

∂z
u0(x) ∂εz′uε(x)

− εd
∑
x∈Qε

f(x) (uε − u0)(x) + τ(ε) = 0 .(2.6)

Passing to the limit in the last relation, and taking into account the weak convergence
of uε − u0 to 0 in W 1,2

0 (Qε) and the weak convergence of the streams a
ε
zz′ ∂εz′uε in
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L2(Qε), we obtain

εd
∑
x∈Qε

∑
z,z′∈Λ

aεzz′(x) ∂εzu
ε(x) ∂εz′uε(x) −−−→

ε→0

∫
Q

∑
z,z′∈Λ

azz′(x)
∂

∂z
u0(x)

∂

∂z′
u0(x) dx .

In fact, the result on convergence of energies can be formulated in more “local”
form, as follows.

Proposition 2.9. Under the assumptions of Theorem 2.6 one has

∑
z,z′∈Λ

aεzz′(x)∂zw
ε(x)(∂z′wε(x) + gz′(x))

�−−−→
ε→0

∑
z,z′∈Λ

azz′(x)
∂

∂z
w0(x)

( ∂

∂z′
w0(x) + gz′(x)

)
.

(2.7)

Proof. In the expression∑
z,z′∈Λ

∂zw
ε(x)aεzz′(x)(∂z′wε(x) + gz′(x)) ,

the streams aεzz′(x)(∂z′wε(x) + gz′(x)) converge weakly in L2(Qε) ( by Theorem 2.6)

to the limit stream azz′(x)
(

∂
∂z′w

0(x) + gz′(x)
)
, and the family ∂zw

ε(x) converges

to ∂
∂zw

0(x) weakly by the assumption of Theorem 2.6. Now, the desired statement
follows from Lemma 2.1.

Remark 2.10. In the case of elliptic differential equations, H-convergence of
operators implies weak L1-convergence of the corresponding energy functions. This
result relies on the Meyers estimates of the gradient of solutions; see Meyers [20].

For the difference operators the Meyers-type estimates have not been obtained, so
the weak L1-convergence of energies is an open question.

2.2.3. Neumann problem. The notion of the H-limit operator has been ex-
pressed in terms of the operators of the corresponding Dirichlet problems. But, as
was already mentioned in the previous section, we can also consider other boundary
value problems. In this section, the Neumann problem is investigated.

Definition 2.11. Let f ∈ (L2(Q)
)|Λ|

. We say that uε ∈W 1,2(Qε) is a solution
of the Neumann problem for the equation

divεΛ

(∑
z′∈Λ

aεzz′ ∂εz′uε

)
=
∑
z∈Λ

∂ε−zf
ε
z

if the relation∑
x∈Qε

∑
z,z′∈Λ

aεzz′(x) ∂̄εzϕ
ε(x) ∂̄εz′uε(x) =

∑
x∈Qε

∑
z∈Λ

fεz (x) ∂̄
ε
zϕ

ε(x)(2.8)

holds true for any ϕ ∈W 1,2(Q); here we use the notation

∂̄εzϕ =

{
∂εzϕ if x+ εz ∈ Qε,
0 otherwise.

Clearly, the functions uε are defined up to an additive constant. To fix the choice
of the constant, we assume that

∑
x∈Qε

uε(x) = 0 .



64 ANDREY PIATNITSKI AND ELISABETH REMY

In order to study the Neumann problem, we should modify the definition of
uniform ellipticity and impose a slightly stronger condition because Definition 1.1
above does not ensure the coerciveness of problem (2.8).

Definition 2.12. We say that the family of operators {Aε} is N -elliptic in a
domain Qε if the inequality

∑
x∈Qε

∑
z,z′∈Λ

aεzz′(x) ∂̄εzϕ(x)∂̄
ε
z′ϕ(x) ≥ c

∑
x∈Qε

d∑
i=1

(
∂̄ε±eiϕ(x)

)2
, c > 0,(2.9)

holds for any ϕ.
It should be noted that N -ellipticity implies the uniform ellipticity in the same

domain Q and that, under the condition of Proposition 1.3, the family of operators is
always N -elliptic.

Example. To clarify the difference between the uniform ellipticity andN -ellipticity
we provide below a simple one-dimensional example which shows that due to “bound-
ary effects,” a uniformly elliptic operator is not necessary N -elliptic.

Let Q be an open interval (0, 1), and suppose Λ = {0,±1,±2,±3}. If we set

p±1(0) =
1

2
, pz(0) = 0 if z = ±1;

p−1(1) =
1

2
, p0(1) =

1

2
, pz(1) = 0 if z = −1, 0;

p±3(2) =
1

2
, pz(2) = 0 if z = ±3,

and extend this function periodically with period 3, then for ε = 1/n with integer
n > 3 we have

Qε =

{
1

n
,
2

n
, . . . ,

n− 1
n

}
, Qε =

{−2
n
,
−1
n
, 0,

1

n
,
2

n
, . . . ,

n− 1
n

, 1,
n+ 1

n
,
n+ 2

n

}
.

Consider the following test function:

ϕε(x) =

{
1 if x = − 2

n , − 3
n ,

0 otherwise.

For this function the LHS of (2.9) is equal to zero while the RHS is strictly positive.
Thus (2.9) cannot hold. On the other hand, one can easily verify that this problem
is uniformly elliptic.

Proposition 2.13. Suppose that a family of N -elliptic operators {Aε} H-
converges to the operator A in the domain Q. Then the solutions uε of problem
(2.8) converge, as ε→ 0, in W 1,2(Qε) to the solution of the limit Neumann problem:
for any ϕ ∈W 1,2(Q) ,

∫
Q


 ∑

z,z′∈Λ

azz′(x)
∂

∂z
ϕ(x)

∂

∂z′
u0(x)


 dx =

∫
Q

(∑
z∈Λ

fz(x)
∂

∂z
ϕ(x)

)
dx .

Moreover, the streams also converge.
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Proof. Using the Poincaré inequality, we derive from the N -ellipticity the uniform
coerciveness of problem (2.8). Thus, the family uε is uniformly bounded inW 1,2(Qε).
By Theorem 2.6, any limit point w0 of the family uε satisfies the H-limit equation
and

∑
z′∈Λ

aεzz′ ∂εz′uε −−−→
ε→0

∑
z′∈Λ

azz′
∂

∂z′
w0 weakly in L2(Qε) .

So, for any ϕ ∈W 1,2(Q), passing to the limit in (2.8), we get

∫
Q


 ∑

z,z′∈Λ

azz′(x)
∂

∂z
ϕ(x)

∂

∂z′
w0(x)


 dx =

∫
Q

(∑
z∈Λ

fz(x)
∂

∂z
ϕ(x)

)
dx .

Moreover,
∫
Q
w0(x) dx = 0.

2.2.4. Γ-convergence. The results proved in this section exhibit the relation
between the H-convergence of operators and a special kind of convergence of corre-
sponding quadratic forms, so-called Γ-convergence, that was introduced originally in
De Giorgi [8].

Proposition 2.14. Let Aε be a N -elliptic family of operators in a domain Q.

Then, Aε
H−−−→

ε→0
A in Q if and only if the following conditions are satisfied:

1. For any u0 ∈ W 1,2(Q) and for any sequence wε ∈ W 1,2(Qε) such that
wε −−−→

ε→0
u0 weakly in W 1,2(Qε), the following inequality holds:

lim inf
ε→0

εd
∑
x∈Qε

∑
z,z′∈Λ

aεzz′(x) ∂̄εzw
ε(x) ∂̄εz′wε(x)

≥
∫
Q

∑
z,z′∈Λ

azz′(x)
∂

∂z
u0(x)

∂

∂z′
u0(x) dx .

2. For any u0 ∈ W 1,2(Q), there exists a sequence uε ∈ W 1,2(Qε) such that
uε −−−→

ε→0
u0 weakly in W 1,2(Q), uε − u0 ∈W 1,2

0 (Q), and

lim
ε→0

εd
∑
x∈Qε

∑
z,z′∈Λ

aεzz′(x) ∂̄εzu
ε(x) ∂̄εz′uε(x)

=

∫
Q

∑
z,z′∈Λ

azz′(x)
∂

∂z
u0(x)

∂

∂z′
u0(x) dx .

Proof. Suppose that Aε
H−−−→

ε→0
A .

1. Consider the Neumann problem (2.8), with fz =
(∑

z′∈Λ azz′ ∂u0

∂z′

)
z∈Λ
, where

u0 is the solution of the H-limit Neumann problem. The solution uε of
(2.8) provides the minimum in the following variational problem: E =
infv∈W 1,2(Qε) J

ε(v) , where

Jε(v) = εd
∑
x∈Qε

∑
z,z′∈Λ

[
aεzz′(x) ∂̄εzv(x) ∂̄

ε
z′v(x)− 2azz′(x) ∂̄εzv(x)

∂

∂z′
u0(x)

]
.
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For any sequence {wε} such that wε → u0 weakly in W 1,2(Qε), we have

Jε(wε) ≥ Jε(uε) .(2.10)

Then, by Proposition (2.13), ∂εzu
ε −−−→

ε→0

∂

∂z
u0 weakly in L2(Qε) and, there-

fore,

εd
∑
x∈Qε

∑
z,z′∈Λ

aεzz′(x) ∂̄εzw
ε(x) ∂̄εz′wε(x)

= Jε(wε) + 2
∑
x∈Qε

∑
z,z′∈Λ

azz′(x) ∂̄εzw
ε(x)

∂

∂z′
u0(x)

≥ Jε(uε) + 2
∑
x∈Qε

∑
z,z′∈Λ

azz′(x) ∂̄εzw
ε(x)

∂

∂z′
u0(x)

= −
∑
x∈Qε

∑
z,z′∈Λ

azz′(x) ∂̄εzu
ε(x)

∂

∂z′
u0(x)

+2
∑
x∈Qε

∑
z,z′∈Λ

azz′(x) ∂̄εzw
ε(x)

∂

∂z′
u0(x)

−−−→
ε→0

∫
Q

∑
z,z′∈Λ

azz′(x)
∂

∂z
u0(x)

∂

∂z′
u0(x) dx .

Equation (2.8) has also been used here. Now, taking the infimum limit in
both sides of (2.10), we obtain the required inequality.

2. It is the statement of Proposition 2.8.

The remaining part of the proposition is an easy consequence of the uniqueness of the
H-limit.

Remark 2.15. The statements of Propositions 2.8 and 2.14 remain valid if we
replace the sums over x ∈ Qε by the sums over x ∈ Qε.

2.3. Description of the random environment. In this section we introduce
random difference elliptic operators with statistically homogeneous rapidly oscillating
coefficients.

Let (Ω,F , µ) be a standard probability space, where F is a σ-algebra of subsets
of Ω and µ is a probability measure. Let {Tx : Ω 
→ Ω; x ∈ Z

d} be a group of
F-measurable transformations which preserve the measure µ:

1. Tx : Ω 
→ Ω is F–measurable for all x ∈ Z
d,

2. µ(TxB) = µ(B), for any B ∈ F and x ∈ Z
d,

3. T0 = I , Tx ◦ Ty = Tx+y.

In what follows we assume that the group Tx is ergodic. That is, any f ∈ L1(Ω) such
that f(Tx ω) = f(ω) µ-a.s for each x ∈ Z

d is equal to a constant µ-a.s.

Let Λ be a finite subset of Z
d. Given a matrix-valued F-measurable function

{azz′(ω)}, z, z′ ∈ Λ, with values in the space of symmetric |Λ| × |Λ| matrices, we
define a family of difference operators Aε with the coefficients

aεzz′(x) = azz′(Tx/εω), x ∈ εZd, z, z′ ∈ Λ .(2.11)
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We suppose here that ±ei ∈ Λ, i = 1, . . . , d, and that

∑
z,z′∈Λ

azz′(ω)ηzηz′ ≥ c

d∑
i=1

|η±ei |2 , η ∈ R
|Λ| .(2.12)

|azz′(ω)| ≤ c1, z, z′ ∈ Λ.(2.13)

It is easy to see that these inequalities imply the N -ellipticity and the uniform ellip-
ticity of the corresponding family Aε in any regular domain Q.

In applications, especially in those related to random walks, we usually deal with
the following particular case of the above construction.

Let {q(ω, z), z ∈ Z
d} be a family of random variables such that µ-a.s,

1.
∑

z∈Zd

q(ω, z) = 1 ,

2. q(Txω, z) = q(Tx+zω,−z) ,
3. q(ω, z) ≥ 0, q(ω,±ei) ≥ δ > 0, i = 1, . . . , d (ellipticity condition).

We introduce a family of transition probabilities as follows:

pz(x) = q(Txω, z),

where the argument ω, treated as a realization of the medium, is omitted. The
important characteristic of a family of transition probabilities is the structure of its
support:

Λ =

{
z ∈ Z

d | ess sup
Ω

pz(x) = 0

}
.

In all the models considered below, the set Λ is finite.

Now, if we denote pεz(x) = pz(ε
−1x), x ∈ Qε, z ∈ Λ, then due to the assumptions

on q(ω, x), problem (1.5) is uniformly and N -elliptic.

It is convenient to define the “ω-divergence” operator:

for any random variable v ∈ L2(Ω) , divω v(ω)
�
=
∑
z∈Λ

v(T−zω)− v(ω) .

We will use it in the following analysis.

2.4. Homogenization of random operators. This section is devoted to ho-
mogenization of the random difference operators introduced in the preceding section.
The first proof of the homogenization theorem for such operators was obtained in [15],
where the “corrector technique” was used. Here we give another proof of the theorem,
which relies on the compensated compactness lemma.

2.4.1. Auxiliary problem. Let us define the following subspaces of
(
L2(Ω)

)|Λ|

(see Kozlov [15]):

L2
pot(Ω, Λ) is the closure of the set{

v ∈ (L2(Ω))|Λ| ; vz(ω) = u(Tzω)− u(ω) for some u ∈ L∞(Ω)
}
,

L2
sol(Ω, Λ) is the closure of the set:

{
v ∈ (L2(Ω))|Λ| ; divω v = 0

}
.

For λ ∈ R
|Λ| we denote by V2

pot,λ(Ω, Λ) the closed set
{
v + λ ; v ∈ L2

pot(Ω, Λ)
}
.
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Consider the following auxiliary problem: given λ ∈ R
|Λ|, find v ∈ V2

pot,λ(Ω, Λ)
such that

divω

(∑
z′∈Λ

azz′(ω) vz′(ω)

)
= 0 .(2.14)

In order to prove the existence and uniqueness of the solution of this problem we
introduce the operator

Apot : L2
pot(Ω, Λ) 
→ L2

pot(Ω, Λ)

(vz)z∈Λ 
→ Πpot

(∑
z′∈Λ

azz′(ω) vz′(ω)

)
,

where Πpot is the orthogonal projection onto the subspace L
2
pot(Ω, Λ).

In view of the Weyl decomposition (see Kozlov [15])
(
L2(Ω)

)|Λ|
= L2

pot(Ω,Λ)⊕
L2
sol(Ω,Λ) , we can rewrite the problem (2.14) in the following form: given λ ∈ R

|Λ|,
find v ∈ L2

pot(Ω) such that

Apotv = Πpot

(∑
z′∈Λ

azz′(ω)λz′

)
.

The operator Apot is coercive. Indeed, for any v ∈ L2
pot(Ω, Λ), we have

(Apotv, v) =
∑
z∈Λ

(
Πpot

(∑
z′∈Λ

azz′(ω) vz′(ω)

)
, vz(ω)

)
L2(Ω)

=
∑
z∈Λ

(∑
z′∈Λ

azz′(ω) vz′(ω), Πpot (vz(ω))

)
L2(Ω)

=
∑
z∈Λ

(∑
z′∈Λ

azz′(ω) vz′(ω), vz(ω)

)
L2(Ω)

.

According to hypothesis (2.12), this implies (Apotv, v) ≥ cE
[∑n

i=1 |v±ei |2
]
, where

E stands for the expectation with respect to the measure µ. On the other hand, for
any v of the form vz(ω) = u(Tzω)− u(ω), u ∈ L2(Ω) , we have

‖v‖2(L2(Ω))|Λ| = E

[∑
z∈Λ

|vz(ω)|2
]
= E

[∑
z∈Λ

|u(Tzω)− u(ω)|2
]

= E


∑
z∈Λ

∣∣∣∣∣∣
N(z)−1∑

i=0

u(Tζi+1ω)− u(Tζiω)
∣∣∣∣∣∣
2

 ,

where ζ0 = 0, ζN(z) = z, |ζi+1 − ζi| = 1, and N(z) ≤ d diam(Λ). Therefore,

‖v‖2(L2(Ω))|Λ| ≤ E

[
d(diam(Λ))2|Λ|

d∑
i=1

(v±ei(ω))
2

]
≤ c1(d,Λ)E

[
d∑

i=1

(v±ei(ω))
2

]
.

By definition, the said set of v(ω) is dense in L2
pot(Ω,Λ), and by the continuity argu-

ments, the latter estimate holds for any v ∈ L2
pot(Ω,Λ) .

Thus, (Apotv, v) ≥ c2(d,Λ) ‖v‖2(L2(Ω))|Λ| , and the desired existence and uniqueness

follow from the Lax–Milgram lemma.
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2.4.2. Homogenization. In this section, we study the family of random oper-
ators {Aε} with statistically homogeneous coefficients given by (2.11). The homog-
enization theorem for such operators was originally proved in [15]. We give another
proof based on the compensated compactness lemma, which seems to be easier and
shorter. The main result here is the following theorem.

Theorem 2.16. Let the coefficients of Aε be given by (2.11), and suppose the
condition (2.12) is fulfilled. Then, a.s., the family {Aε} admits homogenization and
the limit matrix A0 does not depend on ω.

Proof. For a fixed f ∈W−1,2(Q) , consider the following Dirichlet problems:

divεΛ

(∑
z′∈Λ

aεzz′∂εz′uε

)
= f , uε ∈W 1,2

0 (Qε) .(2.15)

Since uε and
∑

z′∈Λ a
ε
zz′ ∂εz′uε are uniformly bounded, respectively, in W 1,2(Qε) and

(L2(Qε))
|Λ|, we have

uε −−−→
ε→0

u0 weakly in W 1,2
0 (Qε) ,

sε −−−→
ε→0

s0 weakly in
(
L2(Qε)

)|Λ|
,

where sεz stands for
∑

z′∈Λ a
ε
zz′ ∂εz′uε.

Let vz(ω) solve the auxiliary problem (2.14). If we denote v
ε(x)

�
= v

(
Tx/ε ω

)
, qε

�
=

vεAε, i.e., ∀z ∈ Λ, qεz =
∑

z′∈Λ v
ε
z′ aεzz′ , then, the identity∑

x∈Qε

∑
z∈Λ

sεz(x) v
ε
z(x) =

∑
x∈Qε

∑
z∈Λ

qεz(x) ∂
ε
zu

ε(x)(2.16)

obviously holds. We introduce a constant matrix A to satisfy the relation E(qε) =
λA0. This matrix is well defined because qε is a linear functional of λ. By the Birkhoff
ergodic theorem, we have

vε −−−→
ε→0

E(vε) = λ weakly in L2(Qε) a.s.,

qε −−−→
ε→0

E(qε) = λA weakly in L2(Qε) a.s.

It follows from (2.14) and the definition of divω and div
ε
Λ that for almost all realizations

we have divεΛq
ε = 0, while the fact that v − λ ∈ L2

pot(Ω,Λ) implies a.s. the relation
vεz = ∂εzθ

ε for some (in general not statistically homogeneous) functions θε. Also,
from (2.15) we have divεΛs

ε = f . By Lemma 2.1,∑
z∈Λ

sεz v
ε
z

�−−−→
ε→0

∑
z∈Λ

s0z λz

and ∑
z∈Λ

qεz ∂
ε
zu

ε �−−−→
ε→0

∑
z,z′∈Λ

λz a
0
zz′

∂

∂z′
u0 ,

or, equivalently,

∑
z,z′∈Λ

vεz′ aεzz′ ∂εzu
ε �−−−→

ε→0

∑
z,z′∈Λ

λz a
0
zz′

∂

∂z′
u0;
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δpermeability 

permeability 1

Fig. 3.1. Example of a realization of the random medium.

we have also used here Proposition 3 from [15]. Hence, passing to the limit in (2.16)
and bearing in mind the fact that λ is an arbitrary vector, we find

s0z =
∑
z′∈Λ

a0
zz′

∂

∂z′
u0 .

Since
∑

z∈Λ
∂
∂z s

0
z = f , the function u0 is the solution of the homogenized problem

and A0 is the limit matrix.

3. Asymptotic behavior of the effective coefficient. In this second part
of the work, we consider the difference operators obtained by discretizing a random
two-dimensional high-contrast checker-board structure, as various discretization pro-
cedures are applied. For each discretization method, we find the asymptotics of the
effective coefficient. The results obtained in this section rely essentially on the fine
results from the percolation theory, such as channel property and related statements.
For the reader’s convenience, we formulate these results and provide necessary defini-
tions in section 3.1.

To define the random media, we split the plane R
2 into regular squares {[− 1

2 ,
1
2 ]

2+
j}, j ∈ Z

2, and assign a value of permeability, independently at each square, as follows:

κ(y)
�
=

{
δ with probability p
1 with probability 1− p , y ∈

[
−1
2
,
1

2

]2

+ j, j ∈ Z
2,

where δ is a small strictly positive parameter (see Figure 3.1). Then, we consider the
grid Z

2, fix a finite set Λ ⊂ Z
2, and define the transition probabilities {pz(x); x ∈

Z
2, z ∈ Λ} to be a function of {κ(x + z)}, z ∈ Λ. Finally, we define the coefficients
of operator Aε in terms of {pz(x)} by (1.6).

Henceforth, we suppose that the properties (1), (2), and (3) in section 1.1 are
satisfied. It then follows from the independence of κ(j) for different j ∈ Z

2 that the
family {pz(x)} is ergodic. Now, the following assertion is a direct consequence of
Theorem 2.16 (see also Kozlov [15, section 2]).

Proposition 3.1.
1. The operators Aε G-converge as ε → 0 to an elliptic operator

with constant nonrandom coefficients A = {azz′}z,z′∈Λ\(0,0).
2. The limit matrix is isotropic: A = aδ(p) I (I is the identity

matrix).
We call aδ(p) the effective coefficient and study its asymptotics as δ → 0 for

various p ∈ [0, 1].
3.1. Some results from percolation theory. In this section, we quote and

discuss briefly several results from percolation theory. We consider the so-called site
percolation model (see Grimmett [10]) and, following the tradition, say black and
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0 n

n

n

0 n

Fig. 3.2. The neighbor squares and black channels in the cases γ = 1 (left) and γ =
√
2 (right).

white squares instead of “δ” and “1” squares, respectively. All the squares are enu-
merated by the coordinates of their centers and the distance dist(i, j) between squares
i and j, (i, j ∈ Z

2), is defined as the Euclidean distance |i− j|.
Definition 3.2.

• Two black squares i and j are γ-connected if dist(i, j) ≤ γ. As soon as the
value of γ is fixed, we just refer to connected squares or neighbor squares.

• Consider the random subgraph containing only the black squares. The con-
nected components of this graph are called black clusters.

• A finite set of black squares forms a black channel if the squares can be enu-
merated in such a way that any two successive squares in this enumeration
are γ-connected (see Figure 3.2 for examples).

Similarly, we define γ-connected white squares, white clusters and white channels.
When the probability p varies, the geometric properties of the black clusters are
modified. The more p increases, the bigger are the sizes of the clusters, and they
eventually form the unique infinite cluster (see, for example, Grimmett [10]). Below,
some basic constructions of percolation theory are presented.

The probability space is introduced as follows. As sample space, we take K =
Πs∈Z2{δ, 1}. Each point of K: κ = (κ(s); s ∈ Z

2) is called a configuration. We take
G to be the σ-field of subsets of K generated by the finite dimensional cylinders.
And, for each p ∈ [0, 1], we define the probability measure Pp as the product measure
on (K,G) such that the random variables κ(s), s ∈ Z

2 are independent and satisfy
Pp(κ(x) = δ) = p.

In what follows we identify the probability space (K,G, Pp) with the general prob-
ability space (Ω,F , P ) defined above.

Let |C| be the cardinal of the cluster which contains the origin. The cluster-
size distribution is given by θn(p) = Pp(|C| = n), n ∈ N

∗ . The probability θ(p) =
Pp(|C| = +∞) that the origin belongs to the infinite cluster is called the percola-
tion probability. There exists a critical probability pc(γ), also called the percolation
threshold, such that {

θ(p) = 0 if p ≤ pc(γ) ,
θ(p) > 0 if p > pc(γ) .
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Table 3.1
Evolution of the number of infinite cluster with respect to p.

p 0 pc(2) pc(
√
2) pc(1) 1− pc(2) 1

γ = 1 White No infinite cluster Black

γ =
√
2 White Black and White Black

γ = 2 White Black and White Black

Thus, for each fixed γ, the critical probability is pc(γ)
�
= sup{p : θ(p) = 0} .

Figure 3.2 shows the sets of neighbor squares, with respect to the marked square,
in the cases γ = 1 and γ =

√
2, and it emphasizes the difference between the structures

of channels.
In Table 3.1, we can see, for three different values of γ, the presence of white

and black clusters with respect to the values of p. The following relation holds:
pc(1) + pc(

√
2) = 1, while pc(1) ∼ 0.59 and pc(

√
2) ∼ 0.41 (see Kesten [12]).

Moreover, according to Aizenman and Grimmett [1], pc(2) < pc(
√
2) .

3.1.1. The channel property. Denote by N(n) the number of mutually non-
intersecting black channels joining the left and the right sides of the box [0, n]2.

Proposition 3.3 (see Kesten [12, section 11]). Let γ = 1 or γ =
√
2. If

p > pc(γ), then for almost all κ ∈ K the inequality

N(n) ≥ c(p)n , c(p) > 0,

holds for any n ≥ n0(κ)
Remark 3.4. In fact, this result holds true for any value of γ (see Golden and

Kozlov [9]).
Remark 3.5. For all γ ≥ √

2, the percolation models admit the coexistence of
the channels of both colors (see Figure 3.2). The geometry of the white and black
subgraphs is rather different in subcritical and supercritical zones. In this connection,
it is interesting to study carefully what happens near pc(γ).

Proposition 3.6 (see Kesten [12, section 11]). There exist some strictly positive
constants c1, c2, c3, δ1, δ2 such that, for p > pc(γ),

Pp

(
N(n) ≥ c1 (p− pc(γ))δ1n

) ≥ 1− c2 (n+ 1) e−c3 n (p−pc(γ))α2
.

By the Borel–Cantelli lemma, we have

c(p) ≥ c1 (p− pc(γ))δ1 .(3.1)

Remark 3.7. One can easily check that all the channels can be chosen to be no
longer than θ(p)n .

3.2. Behavior of the effective coefficient. In this section, for the checker-
board model introduced above, we consider several discrete models characterized by

• the set of admissible jumps, i.e., the set Λ;
• the corresponding transition probabilities {pz}z∈Λ .

In all these models, the distribution of {pz}z∈Λ will be invariant with respect to
rotations at the angle π/2. This symmetry implies the isotropy of the effective tensor,
and thus there is only one scalar effective coefficient aδ(p) to be determined.

For each model, we study the limit behavior of the effective coefficient as δ → 0.
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3.2.1. Harmonic mean. We begin by considering the “harmonic mean” model.
Namely, we assume that

Λ = {±(1, 0), ±(0, 1), (0, 0)}
and define the transition probabilities as the harmonic mean of the values of κ(·) at
the corresponding points:

pz(x) =



1

4

2κ(x)κ(x+ z)

(κ(x) + κ(x+ z))
if z ∈ Λ \ {(0, 0)} ,

1−∑z∈Λ\{(0,0)} pz(x) if z = (0, 0) ,

0 if z ∈ Λ .
Clearly, the family {pz(x)} satisfies the conditions (1), (2), and (3) in section 1.1, and
moreover, its distribution is isotropic.

Remark 3.8. The choice of the harmonic mean is natural in the framework of
the finite volume approach. Indeed, with this choice for the coefficients, we conserve
the fluxes. This conservation is violated under another choices (see explanations in
McCarthy [19]).

The asymptotic behavior of the effective coefficient aδ(p) as δ → 0 is described
by the following statement.

Theorem 3.9. The effective coefficient aδ(p) satisfies, for small δ, the following
inequalities:

0 < c1(p) ≤ aδ(p) ≤ 1 if 0 ≤ p < pc(
√
2),

δ ≤ aδ(p) ≤ c2(p) δ, c2(p) > 0 if pc(
√
2) < p ≤ 1.

This means, in particular, that aδ(p) does not vanish as δ → 0 if p < pc(
√
2).

Proof.
1. Case 0 ≤ p < pc(

√
2).

Consider the percolation model with γ = 1. By Proposition 3.3, for 0 ≤ p <
1 − pc(1) there are at least N(n) = c(p)n mutually nonintersecting white
channels joining the left and the right sides of the square [0, n]2. We denote
by Ck the kth channel, 1 ≤ k ≤ N(n) .

Define on the space
(
L2(Ω)

)|Λ|
the following seminorm:

‖φ‖2 �
= E

{∑
z∈Λ

pz(ω) (φz(ω))
2

}
,(3.2)

where E is the expectation related to the measure µ. In fact, under the
assumptions of the theorem, it is a norm, but we will not use this fact.
Let P1(z) = z1 be the projection onto the first coordinate of vector z. Ac-
cording to Kozlov ([14, Chapter II, section 2], the effective coefficient aδ(p)
can be calculated as follows:

aδ(p) = inf
ϕ∈L2

pot(Ω,Λ)
‖P1(z)− ϕ‖2 ,(3.3)

where the subspace L2
pot(Ω,Λ) has been defined in section 2.4.1 of this paper.

Denote byH the linear setH = {ϕz(ω) = ϕ̃(Tzω)− ϕ̃(ω) ; ϕ̃ ∈ L∞(Ω)} . This
setH is dense in L2

pot(Ω,Λ) (see section 2.4.1) and the functional ϕ→ ‖z1−ϕ‖
is continuous in L2

pot(Ω,Λ). Therefore, the infimum over L2
pot(Ω,Λ) in (3.3)

can be replaced by the infimum over H.
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Let ϕ belong toH: there exists ϕ̃ ∈ L∞(Ω) such that ϕz(ω) = ϕ̃(Tz ω)−ϕ̃(ω).
Then,

‖P1(z)− ϕ‖2 = E

{∑
z∈Λ

pz(ω)(z1 − (φ̃(Tz ω)− φ̃(ω)))2
}
.

Since Tx is ergodic, by the Birkhoff theorem we have for almost all realizations

‖P1(z)− φ‖2 = lim
n→+∞

1

n2

∑
x∈Z2∩[0,n]2

∑
z∈Λ

pz(Tx ω)
(
z1 − φ̃(Tx+z ω) + φ̃(Tx ω)

)2

= lim
n→+∞

1

n2

∑
x∈Z2∩[0,n]2

∑
z∈Λ

pz(x)
(
z1 − φ̃(Tx+z ω) + φ̃(Tx ω)

)2

.(3.4)

Our goal now is to construct a uniformly positive lower bound for aδ(p). To
this end, on the RHS of the last formula, we first take into account only the
points x located inside the channels :

‖P1(z)− φ‖2 ≥ lim inf
n→+∞

1

n2

∑
x∈C

∑
z∈Λ

pz(x)
(
z1 − φ̃(Tx+z ω) + φ̃(Tx ω)

)2

,

where C stands for the union of white channels. Then, we enumerate the
points x along each channel in such a way that any consecutive numbers
correspond to neighbor points, and we replace the inner sum over z ∈ Λ(x)
by the sum over z such that x+ z belong to the same channel as x and have
greater index than x. Denote this latter set of z by λ(x), and notice that for
each x from the union of white channels λ(x) is not empty and consists of
only one element. For z ∈ λ(x), we clearly have pz(x) = 1/4. Hence,

‖P1 − ϕ‖2 ≥ lim inf
n→+∞

1

4n2

∑
x∈C

∑
z∈λ(x)

(
z1 − φ̃(Tx+z ω) + φ̃(Tx ω)

)2

,

If we denote S(x) =
∑

z∈λ(x) (z1 − ẽ(Tx+z ω) + ẽ(Tx ω)) , and enumerate the

channels C = ∪N(n)
k=1 Ck , then, for the kth channel, we have∑

x∈Ck

S(x) =
∑
x∈Ck

∑
z∈λ(x)

(z1 − φ̃(Tx+zω) + φ̃(Txω))

= n+
∑
x∈Ck

∑
z∈λ(x)

(−φ̃(Tx+zω) + φ̃(Txω))

= n+ φ̃(Txs(Ck)ω)− φ̃(Txf (Ck) ω) ≥ n− c ,

where c = 2 ‖φ̃‖L∞(Ω) , and xs(Ck) and xf (Ck) are, respectively, the starting
and final points of kth channel. Summing up over the channels, we obtain∑

x∈C

S(x) ≥ (n− c)N(n) .(3.5)

By the Cauchy inequality, taking into account Remark 3.7, we get

∑
x∈C

S(x)2 ≥
(∑

x∈C S(x)
)2

θ(p)nN(n)
.
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In view of (3.5) this implies

∑
x∈C

S(x)2 ≥ (n− c)2N(n)2
θ(p)nN(n)

,(3.6)

and

‖P1(z)− φ‖2 ≥ lim
n→+∞

1

4n2

c(p)

θ(p)
(n− c)2 ≥ c1 > 0 .(3.7)

Hence: aδ(p) ≥ c1 > 0 . The upper bound a
δ(p) ≤ 1 is obvious and, finally,

0 < c1 ≤ aδ(p) ≤ 1 .
2. Case pc(

√
2) < p ≤ 1.

Consider the percolation model with γ =
√
2. There are at least c(p)n non-

intersecting black channels Ck, k = 1, 2, . . . , N(n) , joining the left and the
right sides of the square [0, n]2 (see Proposition 3.3).
Let us denote ε = 1/n and define functions wε on εZ2 ∩ [0, 1]2 as follows:
• wε(·, 0) = 0 , wε(·, 1) = 1 (boundary conditions),
• wε(x) = (k−1/2)

N(n) for x ∈ εCk ,

• wε(x) = k
N(n) for x from the set bounded by εCk and εCk+1 .

Here, we suppose without loss of generality that the channels do not intersect
the bottom and top faces of the square. The above function wε has been
designed to possess the following properties :
• In the area situated between any two consecutive channels Ck and Ck+1,
this function is equal to a constant, the constants are different in distinct
areas.

• At each channel Ck the function w
ε makes a jump. The values of jumps

are uniformly distributed on the channels so that the total increment of
wε, as x2 varies from 0 to 1, is equal to one.

By the definition and according to Proposition 3.3, the sequence wε is uni-
formly bounded in W 1,2(Qε) and uniformly Lipschitz continuous; moreover,
the Lipschitz constant is less than or equal to c−1(p). Thus, for a proper
subsequence, we have

wε −−−→
ε→0

u0 weakly in W 1,2(Qε) ,

sup
x∈Q

|wε − u0| −−−→
ε→0

0 ,

where u0 ∈W 1,2(Q), u0(·, 0) = 0, u0(·, 1) = 1, and
|u0(x

1)− u0(x
2)| ≤ c−1(p)|x1 − x2| , x1, x2 ∈ [0, 1]2 .

Consider the expression

Jε(wε) = ε2
∑
x∈Qε

∑
z,z′∈Λ

aεzz′(x) ∂εzw
ε(x) ∂εz′wε(x) = ε2

∑
x∈Qε

∑
z∈Λ

pεz(x) (∂
ε
zw

ε(x))
2
.

(3.8)

It follows from the definitions of wε and pεz(x) that

Jε(wε) ≤ c−2(p) δ .(3.9)
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Fig. 3.3. Illustration of Theorem 3.10. The behavior of aδ(p).

Moreover, by Proposition 2.14, lim infε→0 J
ε(wε) ≥ aδ(p)

∫
[0,1]2

|∇u0(x)|2dx ≥
aδ(p) . Combining the last two estimates, we get the desired inequality aδ(p) ≤
c−2(p) δ . The lower bound aδ(p) ≥ δ is evident.

The next result describes the behavior of the effective coefficient aδ(p) for p from
a neighborhood of the critical point pc(

√
2).

Theorem 3.10. In the vicinity of pc(
√
2) , the following inequalities hold:

c1 (pc(
√
2)− p)α1 ≤ aδ(p) if p < pc(

√
2),

aδ(p) ≤ c2

(p− pc(
√
2))α2

δ if pc(
√
2) < p,

where c1, c2, α1, and α2 are strictly positive constants.

Figure 3.3 illustrates this result.

Proof. It is sufficient to substitute the estimate (3.1) in (3.7) and (3.9). The
required estimates are now straightforward.

3.2.2. Comparison with the behavior in continuous media. The asymp-
totic behavior of the effective coefficient described in the previous section (section
3.2.1) differs essentially from that obtained for the case of differential equations (see
Jikov, Kozlov, and Oleinik [11, Chapter 9]). One of the reasons for this disagreement
is the fact that we ignore the streams through the neighborhoods of vertices of the
checker-board structure.

Here we modify the model of the previous section by involving the streams along
the “diagonal directions,” so that the asymptotic behavior of the effective coefficient
as δ → 0 in this new model is similar to that obtained for the corresponding differential
operator.

Let us begin by describing the scheme of discretization. We set

Λ = {(0, 0),±e1,±e2,±(e1 + e2),±(e1 − e2)} , e1
�
= (1, 0), e2

�
= (0, 1),

(so, at each step, a trajectory of the corresponding random walk can choose one of
the eight nearest points of Z

2 or keep the same position).

In order to assign the values for pz(x), |z| =
√
2, we consider auxiliary periodic

checker-board structure with a cell of periodicity shown in Figure 3.4. The effective
coefficient of this medium is equal to

√
δ (see Jikov, Kozlov, and Oleinik [11, section

7.2]). This gives us an idea that, for the combination of squares shown in Figure 3.4,
the coefficient pz(x) with z = (e1 + e2), should be of order

√
δ.
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κ=δ

κ=δ

κ=1

κ=1

x+z

x

Fig. 3.4.

Inspired by these heuristic arguments, we define the transition probabilities by

pz(x) =




1
8 min

(
2κ(x)κ(x+z)
κ(x)+κ(x+z) ,

√
κ(x+z1e1)+κ(x+z2e2)

2
κ(x)+κ(x+z)

2

)
if |z| = √2 ,

1

8

2κ(x)κ(x+ z)

κ(x) + κ(x+ z)
if |z| = 1 ,

1−∑z∈Λ,z �=(0,0) pz(x) if z = (0, 0) ,

pz(x) = 0 if z ∈ Λ .

The following theorem describes the asymptotic behavior of the effective coeffi-
cient aδ(p).

Theorem 3.11. The effective coefficient aδ(p) satisfies, for small δ, the estimates

0 < c1(p) ≤ aδ(p) ≤ 1 if 0 ≤ p < pc(
√
2),

c2(p)
√
δ ≤ aδ(p) ≤ c3(p)

√
δ if pc(

√
2) < p < 1− pc(

√
2),

δ ≤ aδ(p) ≤ c4(p) δ if 1− pc(
√
2) < p ≤ 1,

where c1(p), c2(p), c3(p), and c4(p) are strictly positive.

Thus, the effective coefficient is uniformly positive when p < pc(
√
2), is of order√

δ when p is between pc(
√
2) and 1− pc(

√
2), and is of order δ when p > 1− pc(

√
2).

Proof. The cases 0 ≤ p < pc(
√
2) and 1− pc(

√
2) < p ≤ 1 can be studied exactly

in the same way as in Theorem 3.9.

Now, we proceed with the case pc(
√
2) < p < 1− pc(

√
2).

Consider the percolation model with γ =
√
2. Again, for sufficiently large n, there

are at least c(p)n mutually nonintersecting black
√
2-channels and white

√
2-channels

joining the left and the right sides of the square [0, n]2 (see Figure 3.5).

Lower bound. We consider the infinite white cluster. In order to obtain the lower
bound for aδ(p), we follow part (1) of the proof of Theorem 3.9. We point out that,
along each white channel, if both x and x + z belong to the channel and |z| ≤ √2,
then pz(x) ≥

√
δ/8. Indeed, in this case κ(x) = κ(x + z) = 1 and, by the definition,

pz(x) takes on one of the following values:
1
8 ,

1
8

√
1+δ
2 , 1

8

√
δ .
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Fig. 3.5. Intersection between a black and a white channel; p ∈] pc(
√
2), 1− pc(

√
2)[ .

From (3.4), (3.6) and the above estimate of pz(x), we get

‖P1(z)− ϕ‖2 = lim
n→+∞

1

n2

∑
x∈Z2∩[0,n]2

∑
z∈Λ(x)

pz(Tx ω)
(
z1 − φ̃(Tx+z ω) + φ̃(Tx ω)

)2

≥ lim inf
n→+∞

√
δ

8n2

∑
x∈Cw

∑
z∈Λ(x)

(
z1 − φ̃(Tx+z ω) + φ̃(Tx ω)

)2

≥ lim
n→+∞

√
δ

8n2

c(p)

θ(p)
(n− c)2 ≥ c

√
δ ,

where symbol Cw stands for the union of white channels. By virtue of (3.3), the last
inequality implies the required lower bound.

Upper bound. We consider the infinite black cluster and the N(n) = c(p)n black
channels Cb

k, k = 1, 2, . . . , N(n) in the square [0, n]
2.

The upper bound aδ(p) ≤ c3(p)
√
δ can be established with the help of the

following auxiliary functions:
• wε(·, 0) = 0 , wε(·, 1) = 1;
• wε(x) = (k−1/2)

N(n) for x ∈ εCb
k ;

• wε(x) = k
N(n) for x from the set bounded by εCb

k and εC
b
k+1 ,

where ε = 1/n. Direct calculations show that Jε(wε) ≤ c−2(p)
√
δ; indeed, by the

definition of {pz(x)}, we have pz(x) ≤ δ/8 if x belongs to a black channel, and

pz(x) ≤
√
δ

8 if x and x + z are situated at the opposite banks of a black channel. If
we denote by u0 an accumulating point of w

ε, then we have by Proposition 2.14

c(p)−2
√
δ ≥ lim

ε→0
Jε(wε) ≥ aδ(p)

∫
[0, 1]2

|∇u0(x)|2 dx ≥ aδ(p) .

Comparing these results with Jikov, Kozlov, and Oleinik [11, Chapter 9, Theorem
9.5] shows that the discrete operators considered in this section adopt the asymptotic
properties of the corresponding differential operators.

3.2.3. Geometric mean. Wemodify here the scheme of discretization of section
3.2.1 by taking the geometric mean in the definition of transition probabilities instead
of the harmonic mean:

pz(x) =



1

4

√
κ(x)κ(x+ z) if z ∈ Λ \ {(0, 0)} ,

1−∑z∈Λ\{(0,0)} pz(x) if z = (0, 0) ,

0 if z ∈ Λ ,
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Fig. 3.6. γ = 2. The neighbor squares (left), a black channel Ck (center), and one of its
possible modifications C̃k (right).

the set Λ being the same as in section 3.2.1 (i.e., with displacements toward the four
nearest neighbors). Then, the asymptotic behavior of the effective coefficient aδ(p) is
described by the following statement.

Theorem 3.12. The effective coefficient aδ(p) satisfies, for small δ, the esti-
mates:

0 < c1(p) ≤ aδ(p) ≤ 1 if 0 ≤ p < pc(
√
2),

c2(p)
√
δ ≤ aδ(p) ≤ c3(p)

√
δ if pc(

√
2) < p < 1− pc(2),

δ ≤ aδ(p) ≤ c4(p) δ if 1− pc(2) < p ≤ 1,
where c1(p), c2(p), c3(p), and c4(p) are strictly positive.

Proof.
1. In the case 0 ≤ p < pc(

√
2), we need to justify only the lower bound. It can

be done exactly in the same way as in Theorem 3.9. Another way to obtain
the lower bound is to notice that for |z| = 0 the coefficients pz(x) under
consideration majorate the respective coefficients defined as the harmonic
mean. By virtue of the convergence of energy result and Theorem 3.9 this
implies the desired lower bound.

2. In order to obtain the upper bound for pc(
√
2) < p < 1− pc(2) one can apply

the technique developed in the part (2) of the proof of Theorem 3.9.
To justify the lower bound in the case pc(

√
2) < p < 1 − pc(2), we consider

the percolation model with γ = 2 (see Remark 3.4). Here we encounter an
additional difficulty: for p ∈]1 − pc(

√
2) , 1 − pc(2)[ the white 2-channels are

not connected in a usual sense.
We proceed as follows. For each channel Ck we introduce its 1-neighborhood:

C+
k = {x ∈ Z

2 : |x− j| ≤ 1 for some j ∈ Ck} .
It is easily seen that C+

k contains a sequence of squares {xi} denoted by
C̃k, which joins the left and the right sides of the square [0, n]

2 and has the
following properties:
• |xi+1 − xi| = 1 for any consecutive xi and xi+1;
• pz(x) ≥

√
δ/4 for any x and z such that x, z + z ∈ C̃k and |z| = 1

(see Figure 3.6) These sets C̃k are connected in a usual sense and consist
in general of both white and black squares. Clearly, the number Ñ(n) of
mutually nonintersecting sets C̃k still satisfies the estimate Ñ(n) ≥ c̃(p)n,
c̃(p) > 0, for sufficiently large n. Then, one can use C̃k instead of Ck and
argue like in part (1) of the proof of Theorem 3.9.

3. The upper bound in the case 1 − pc(2) < p ≤ 1 requires slightly different
arguments than above. Consider the percolation model with γ = 2, and for
each white cluster C denote by C

+ the 1-neighborhood of C:

C
+ = {x ∈ Z

2 : |x− j| ≤ 1 for some j ∈ C} .
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Let C
+(0) be the set C

+ containing 0, and denote by W (0) the size of C
+(0).

If 0 does not belong to the 1-neighborhood of the union of white clusters,
then C

+(0) is empty and W (0) = 0.
We introduce the following sequence of random variables ϕ̃N (ω) ∈ L∞(Ω):

ϕ̃N =

{ − min
j∈C+(0)

j1 if 1 ≤W (0) ≤ N

0 otherwise,

and put ϕN
z (ω) = ϕ̃N (Tzω)− ϕ̃N (ω) , z ∈ Λ. It is clear that |ϕN

z (ω)| ≤ 2N .
According to Kesten [12, Theorem 5.1], the estimate

Pp{W (0) > n} ≤ c exp(−c(p)n) , c(p) > 0 ,(3.10)

holds for all p > 1− pc(2). Therefore, by the definition of ϕN
z , we have

Pp{ϕN
z ≥ n} ≤ c exp(−c1(p)n) , c1(p) > 0 , n = 1, 2, . . . , 2N .(3.11)

The random variables ϕN
z and pz possess the following properties:

• if both 0 and z belong to C
+(0) and W (0) ≤ N , then P1(z)− ϕN

z = 0 ;
• if at least one of them does not belong to C

+(0), then pz = δ/4 .
In combination with (3.10) and (3.11), this implies

aδ(p) ≤ ‖P1(z)− ϕN
z ‖ = E

∑
z∈Λ

pz(z1 − ϕN
z )

2

≤ c δ

2N∑
k=1

k exp(−c1(p)k) + c exp(−c(p)N)

≤ c̄ δ + c exp(−c(p)N) ,

where c̄ does not depend on N . Passing to the limit as N →∞ gives aδ(p) ≤
c̄ δ.

3.2.4. Arithmetic mean. This section deals with another modification of the
scheme of section 3.2.1. Namely, the transition probabilities are defined as the corre-
sponding arithmetic means

pz(x) =



1

4

κ(x) + κ(x+ z)

2
if z ∈ Λ \ {(0, 0)} ,

1−∑z∈Λ\{(0,0)} pz(x) if z = (0, 0) ,

0 if z ∈ Λ ,

while the set Λ remains the same as in section 3.2.1.
Theorem 3.13. The effective coefficient aδ(p) satisfies, for small δ, the estimates

0 < c1(p) ≤ aδ(p) ≤ 1 if 0 ≤ p < 1− pc(2),
δ ≤ aδ(p) ≤ c2(p) δ if 1− pc(2) < p ≤ 1,

where c1(p) and c2(p) are strictly positive.
Proof. The first estimate relies on the channel property of the percolation model

corresponding to γ = 2. As in the preceding theorem, we enlarge the white 2-channels
to make them connected, and note that along each modified channel the transition
probabilities are uniformly positive: pz(x) ≥ (1+δ)/8 if z ∈ Λ and x and x+z belong
to a modified channel. As above, this implies the lower bound aδ(p) ≥ c1(p) > 0.
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The proof of the second estimate is exactly the same as that of the last estimate
in the preceding theorem.

Remark 3.14. The statements of Theorems 3.9–3.11 remain unchanged if we
assume that the size of mesh h(ε) of a grid is less than ε while h(ε)/ε is a constant.

Appendices.

Appendix A. Convergence of discrete functions. Let fε be an arbitrary
function defined in the discrete domain Qε = εZd ∩ Q, and let f̃ε be the piecewise-
constant interpolation of fε:

f̃ε(x) = fε(y) if y ∈ Qε and x ∈ y +
[−ε
2
,
ε

2

]d
.

Definition A.1. We say that a family of functions fε ∈ L2(Qε) converges
strongly (resp., weakly) to the function f ∈ L2(Q) as ε → 0 if f̃ε converges strongly
(resp., weakly) to f in L2(Q). For this convergence we use the notation

fε −−−→
ε→0

f in L2(Qε) (resp., weakly in L2(Qε)) .

Similarly, one can define the W 1,2(Q)-convergence of discrete functions with f̃ε

being the piecewise linear interpolation of fε (instead of the piecewise constant one).
The convergence in W−1,2(Q) can be defined in terms of duality. Namely, we say

that fε ∈ W−1,2(Qε) converges to f ∈ W−1,2(Q) strongly (resp., weakly) if for any
sequence gε ∈ W 1,2

0 (Qε) and g ∈ W 1,2
0 (Q) such that gε → g weakly (resp., strongly)

in W 1,2(Q), we have

〈fε, gε〉 −−−→
ε→0

〈f, g〉 .

Definition A.2. Let wε ∈ L2(Qε) and w
0 ∈ L2(Q). The sequence wε converges

"-weakly to w0 if for any ϕ ∈ C∞0 (Q),

lim
ε→0

εd
∑
x∈Qε

wε(x)ϕ(x) =

∫
Q

w0(x)ϕ(x) dx .

Appendix B. The derivative of a product of discrete functions.
Proposition B.1. Let f and g belong to W 1,2(Qε). Then,∑

z∈Qε

|∂εz(fg)− f∂εzg − g∂εzf | ≤ ε
∑
z∈Qε

|∂εzf ||∂εzg| .

Proof. We have

ε ∂εz(f(x) g(x)) = f(x+ ε z) g(x+ ε z)− f(x) g(x)
= g(x) (f(x+ ε z)− f(x)) + f(x+ ε z) (g(x+ ε z)− g(x))
= ε [g(x) ∂εzf(x) + f(x+ ε z) ∂

ε
zg(x)] .

We have f(x+ ε z) = f(x) + ε∂εzf(x). Therefore,

∂εz(f(x) g(x)) = g(x) ∂εzf(x) + f(x) ∂
ε
zg(x) + ε∂

ε
zf(x)∂

ε
zg(x),
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and the desired estimate immediately follows.

Appendix C. The Friedrichs and Poincaré inequalities.
This appendix is devoted to the Friedrichs and Poincaré inequalities for grid

functions. In fact, in order to prove the propositions below, one can follow the same
ideas as in the case of the continuous argument. For this reason, we omit the proof.

Proposition C.1. Let Q be a bounded domain with piecewise smooth boundary
and denote the discretization of Q by Qε. Then, for any v

ε ∈W 1,2
0 (Qε) the following

inequality holds:

‖vε‖2L2(Qε)
≤ c(Q) εd

∑
x∈Qε

d∑
i=1

(∂ε±eiv
ε(x))2 .(C.1)

Proposition C.2. Let Q be a smooth bounded domain. Then, for all sufficiently
small ε and for any vε ∈W 1,2(Qε) such that

∑
x∈Qε

vε(x) = 0, the following inequality
is satisfied:

∑
x∈Qε

|vε(x)|2 ≤ C(q) εd
∑
x∈Qε

d∑
i=1

|∂̄ε±eiv
ε(x)|2 .(C.2)

Remark C.3. The statement of Proposition C.2 remains valid for the domain
Qε.
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Abstract. We prove existence and uniqueness of local and global solutions for a system of
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1. Introduction and statement of the results. An incompressible fluid is
subject to the following system of equations:

{
∂v

∂t
+ v · ∇v = ∇ · σ,

div v = 0,

where v is the velocity (v(x, t) ∈ R
d) and σ is the stress tensor (σ is a (d, d) symmetric

matrix). Moreover, σ can be decomposed as σ = τ − p Id, where τ is the tangential
part of the stress tensor and −p Id is the normal part (p being the pressure which is
the Lagrange multiplier for the divergence-free condition). For a Newtonian fluid, τ
depends linearly on ∇v and more precisely

τ = 2νD(v),(1.1)

where D(v) = 1
2 (∇v +t ∇v) is the deformation tensor and ν is the viscosity of the

fluid (ν > 0). Hence, we recover the classical incompressible Navier–Stokes system.

It turns out that many fluids do not satisfy the Newtonian law τ = 2νD(v) and
a general constitutive law satisfied by all fluids does not exist. Some fluids with shear
dependent viscosity are such that (1.1) is replaced by

τ = 2µ(|D(v)|2)D(v),(1.2)

where the viscosity µ(|D(v)|2) depends on |D(v)|. In the case of the power law, we
have

µ(|D(v)|2) = ν + β|D(v)|p−2,
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where ν ≥ 0, β > 0, and p ≥ 1. If

1 ≤ p < 2, we have a shear thinning fluid or a viscoplastic fluid,

p = 2, we have the classical Newtonian case,

p > 2, we have a shear thickening fluid or dilatant fluid.

In this paper, we are going to study another type of non-Newtonian fluid, namely,
fluids with memory. Indeed, for many fluids, it is not possible to determine at some
time t the value of τ knowing only D(u) at the same time, and one also has to know
the whole history of D(v). In these cases, we say that the fluid has a “memory”
and one has to write a differential equation for τ . One of the classical models is the
Oldroyd model, which writes

∂tτ + v · ∇τ + aτ + F (τ,∇v) = 0,

where a > 0 and F is a quadratic form in (τ,∇v). It turns out that since the
model should be invariant under change of coordinates, F cannot be the most general
quadratic form and we get the so-called Oldroyd model with eight constants, which
can be rewritten in the following way:

τ + λ1
Dτ
Dt +

1

2
µ0tr(τ)D(v)− 1

2
µ1{τD(v) +D(v)τ}+ 1

2
ν1(τ : D(v))Id

= 2η0

[
D(v) + λ2

DD(v)

Dt − µ2D(v)D(v) +
1

2
(D(v) : D(v))Id

]
,

where we have used “objective derivatives” (the so-called Oldroyd derivatives)

Dτ
Dt =

∂τ

∂t
+ v · ∇τ + τW (v)−W (v)τ,

and W (v) = 1
2 (∇v −t ∇v) is the vorticity tensor.

In this paper, we are going to study a simpler model, namely the Oldroyd B
model (with only four constants). It is given by

τ + λ1
Dbτ
Dt = 2η

(
D(v) + λ2

DbD(v)

Dt
)
,(1.3)

where

Dbτ
Dt =

∂τ

∂t
+ v · ∇τ + τW (v)−W (v)τ − b(D(v)τ + τD(v)).

In (1.3), λ1 is the relaxation time, λ2 is the retardation time (0 ≤ λ2 ≤ λ1), η is the
dynamical viscosity of the fluid, and b ∈ [−1, 1]. Fluids of this type have both elastic
properties and viscous properties. Indeed, the case λ2 = λ1 = 0 corresponds to purely
viscous case (incompressible Navier–Stokes equation), while the case λ1 > λ2 = 0 is
the purely elastic case (the Maxwell model). Decomposing τ into

τ = τNewtonian + τelastic with τNewtonian = 2η
λ2

λ1
D(v)
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we find that τelastic satisfies

τelastic + λ1
Dbτelastic
Dt = 2η

(
1− λ2

λ1

)
D(v).

Taking

a =
1

λ1
, µ2 =

2η

λ1

(
1− λ2

λ1

)
, and µ1 = 1

and writing τ instead of τelastic, we get the following system of equations:

(V E)




∂v

∂t
+ v · ∇v − ν∆v +∇p = µ1∇ · τ in Ω× (0, T ),

∂τ

∂t
+ v · ∇τ + aτ +Q(τ,∇v) = µ2D(v) in Ω× (0, T ),

div v = 0 in Ω× (0, T ),

(1.4)

where Ω = Rd or Ω = Td, u is the velocity vector field (v(x, t) ∈ Rd), τ is the non-
Newtonian part of the stress tensor, (τ(x, t) is a (d, d) symmetric matrix), (∇ · τ)i =∑
j ∂jτi,j , and p is the pressure which is a scalar. The constants ν, a, µ1, µ2 are

assumed to be nonnegative and the bilinear term Q has the following form:

Q(τ,∇v) = τW (v)−W (v)τ − b(D(v)τ + τD(v)),

b ∈ [−1, 1], D(v) = 1
2 (∇v+t∇v) is the deformation tensor, and W (v) = 1

2 (∇v−t∇v)
is the vorticity tensor. The system must be complemented with the following initial
conditions: {

v(0, ·) = v0 in Ω,
τ(0, ·) = τ0 in Ω.

(1.5)

Throughout this paper, solution means solution in the sense of distributions. As
usual, problems of regularity are motivated by the uniqueness problem.

The formal energy estimate is the following:

1

2

d

dt
(µ2‖v(t)‖2L2+µ1‖τ(t)‖2L2)+νµ2‖∇v(t)‖2L2+aµ1‖τ(t)‖2L2 ≤ |b| ‖Dv(t)‖L∞‖τ(t)‖2L2 .

The system (1.4) describes the motion of an incompressible fluid satisfying the Ol-
droyd [19] constitutive law. The existence and uniqueness of local strong solutions
in Hilbert spaces Hs have been established by Guillopé and Saut in [14]. These so-
lutions are global if the coupling between the two equations is small as well as the
initial data [15]. The case of Ls–Lr solutions has been treated by Fernandez Cara,
Guillén, and Ortega in [16]. Results for the stationary problem are due to M. Renardy
(see [20]). Recently, for b = 0, the existence of global weak solutions has been proved
by Lions and Masmoudi [17].

In this paper, we show existence and uniqueness results for local and global so-
lutions in some limit spaces, i.e., spaces invariant by the Navier–Stokes scaling. We
also show that in two dimensions, the L1

T (L
∞
x ) norm of τ controls the equation. For

this we show two results about the two-dimensional (2-D) Navier–Stokes system and
about a losing a priori estimate for the transport equation satisfied by τ .
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Our first result is related to Sobolev spaces and uses the special structure of the
system (V E).

Theorem 1.1. Let (v0, τ0) be an initial data in Hs with s strictly greater
than d/2. Then a unique strictly positive maximal time T � exists so that a unique
solution (v, τ) exists in the space L∞

loc([0, T
�[;Hs). Moreover, this solution is such

that v belongs to

L2
loc([0, T

�[;Hs+1) ∩ L∞
loc(]0, T

�[;Hs+1−ε) for any strictly positive ε.

We have the following necessary condition for blow up:

T � <∞ =⇒
∫ T�

0

(
µ1

µ2ν
‖τ(t)‖2L∞ + ‖∇v(t)‖L∞

)
dt = +∞.

As we shall see in section 2, the proof of this result in very classical. It is in the
spirit of the well-known Beale–Kato–Majda criterion (see [2]). We want to improve
the above necessary condition for blow up. The theorem is the following.

Theorem 1.2. In two space dimensions, the necessary condition for blow up of
Theorem 1.1 above becomes

T � <∞ =⇒
∫ T�

0

(‖τ(t)‖L∞ + |b| ‖τ(t)‖2L2)dt = +∞.

The first thing to notice here is that the required regularity is far from the regu-
larity prescribed by the scaling. Let us say a word about this. One of the key concepts
of the fundamental work of Fujita and Kato (see [12]) about local well-posedness for
the incompressible Navier–Stokes system is the scaling invariance. It means that if a
vector field v is a solution of incompressible Navier–Stokes system with initial data v0,

then vλ(t, x)
def
= λv(λ2t, λx) is a solution of incompressible Navier–Stokes system with

initial data v0,λ(x)
def
= λv0(λx). An easy computation will convince the reader that

|v0,λ|
H

d
2
−1 = |v0|

H
d
2
−1 .

We want to solve the system (V E) for initial data whose regularity fits with this
scaling, as, for instance, for the usual incompressible Navier–Stokes system. This
requires the use of Besov spaces. Let us recall the definitions of these spaces. For
this, we need the Littlewood–Paley decomposition.

Proposition 1.3. Let us denote by D(Ω) the space of C∞ functions whose
support is compact and included in Ω. Let us define C to be the ring of center 0 of
small radius 1/2 and great radius 2. There exist two nonnegative radial functions χ
and ϕ belonging, respectively, to D(B(0, 1)) and to D(C) so that

χ(ξ) +
∑
q≥0

ϕ(2−qξ) = 1,(1.6)

|p− q| ≥ 2⇒ Supp ϕ(2−q·) ∩ Supp ϕ(2−p·) = ∅.(1.7)

For instance, one can take χ ∈ D(B(0, 1)) such that χ ≡ 1 on B(0, 1/2) and take

ϕ(ξ) = χ(2ξ)− χ(ξ).
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Then we are able to define the Littlewood–Paley decomposition. Let us denote by F
the Fourier transform on Rd. Let h, h̃, ∆q, Sq (q ∈ ZZ) be defined as follows:

h = F−1ϕ and h̃ = F−1χ,

∆qu = F−1(ϕ(2−qξ)Fu) = 2qd
∫

h(2qy)u(x− y)dy,

Squ = F−1(χ(2−qξ)Fu) = 2qd
∫

h̃(2qy)u(x− y)dy.

In this paper, we shall use Bony’s decomposition which consists of writing

uv = Tuv + Tvu + R(u, v),

where

Tuv
def
=

∑
q∈Z

Sq−1u∆qv and R(u, v)
def
=

∑
|q−q′|≤1

∆q′u∆qv.

The Besov spaces we are going to use are homogeneous ones.
Definition 1.4. Let s be a real number and let p and r be two real numbers

greater than 1. Then we define the norm

‖u‖
B̃s

p,r

def
= ‖S0u‖Lp +

∥∥∥(2qs‖∆qu‖Lp)q∈N

∥∥∥
�r(N)

and the seminorm

‖u‖Bs
p,r

def
=

∥∥∥(2qs‖∆qu‖Lp)q∈Z

∥∥∥
�r(Z)

.

Definition 1.5.
• Let s be a real number and let p and r be two real numbers greater than 1.
We denote by B̃sp,r the space of tempered distributions u such that ‖u‖

B̃s
p,r

is

finite.
• If s < d/p or s = d/p and r = 1, we define the homogeneous Besov space Bsp,r
as the closure of compactly supported smooth functions for the norm ‖ · ‖Bs

p,r
.

Remarks. It is obvious that all of those spaces are Banach spaces. Moreover,
if p = 2, the Besov spaces can be described in the following way. The norm ‖u‖Bs

2,r

is equivalent to ∥∥∥∥∥2qs
(∫

2q≤|ξ|≤2q+1

|û(ξ)|2dξ
) 1

2

∥∥∥∥∥
�r(Z)

.

Let us point out that Bs2,2 is a usual Sobolev space Hs and that Bs∞,∞ is the usual
Hölder space Cs.

Now we state the following theorems.

Theorem 1.6 (existence). Let p be in [1,+∞[ and let us define sc
def
= d

p ·
If (v0, τ0) belongs to Bsc−1

p,1 × Bscp,1, then a strictly positive real number T exists

such that a solution (v, τ) of (V E) exists on [0, T ]×Rd; this solution belongs to

C([0, T ];Bsc−1
p,1 ) ∩ L∞

loc(]0, T ];B
sc
p,∞) ∩ L1([0, T ];Bsc+1

p,1 )× L∞([0, T ];Bscp,1).
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Moreover, a strictly positive constant c exists such that if

µ1µ2 ≤ c aν and ‖v0‖Bsc−1
p,1

+
µ1

a
‖τ0‖Bsc

p,1
≤ cν,

then the above time T may be +∞.
Moreover, if we define TV E by

TV E
def
= +∞ if µ1µ2 ≤ cνa and TV E

def
= −1

a
log

(
1− cνa

2µ1µ2

)
if µ1µ2 ≥ cνa,

(1.8)
then the above time T may be bounded from below by min{TV E , T(v0,τ0)}, where T(v0,τ0)

is the greatest strictly positive number such that

µ1
1− e−aT

a
‖τ0‖Bsc

p,1
+

∑
q

2q(sc−1)‖∆qv0‖Lp(1− e−cν2
2qT ) ≤ cν.

Now let us state a uniqueness theorem. The uniqueness, as, for instance, in the
work of Danchin and Desjardins about the KdV-type model (see [10]), requires a
restriction on p.

Theorem 1.7 (uniqueness). Let p be in [1, 2d[ and let us define sc
def
= d

p ·
If (v0, τ0) belongs to Bsc−1

p,1 ×Bscp,1, then a unique strictly positive real number T �

exists such that a unique solution (v, τ) of (V E) exists on [0, T �[×Rd in the space

C([0, T �[;Bsc−1
p,1 ) ∩ L1

loc([0, T
�[;Bsc+1

p,1 )× L∞
loc([0, T

�[;Bscp,1).

Moreover, a strictly positive constant c exists such that, if

µ1µ2 ≤ c aν and ‖v0‖Bsc−1
p,1

+
µ1

a
‖τ0‖Bsc

p,1
≤ cν,

then the above time T may be +∞. And if T � is finite, then

∫ T�

0

(‖∇v(t, ·)‖L∞ + ‖τ(t, ·)‖L∞)dt = +∞.

Now we want to state an equivalent of Theorem 1.2 in the framework of Besov
spaces. Unfortunately, it will be impossible to get it for critical regularity. Thus, we
need the following theorem.

Theorem 1.8. Let p be in [1, 2d[ and let us assume that, for some σ strictly
greater than sc, the initial data (v0, τ0) belongs to Bsc−1

p,1 ∩ Bσ−1
p,1 × Bscp,1 ∩ Bσp,1, then

the (unique) solution belongs to

C([0, T �[;Bσ−1
p,1 ) ∩ L∞

loc(]0, T
�[;Bσp,∞) ∩ L1

loc([0, T
�[;Bσ+1

p,1 )× L∞
loc([0, T

�[;Bσp,1).

Moreover, if the initial data (v0, τ0) belongs to L2, and if b = 0, then the solution
satisfies the energy estimate

µ2‖v(t)‖2L2+µ1‖τ(t)‖2L2+2

∫ t

0

(
νµ2‖∇v(t′)‖L2+aµ1‖τ(t′)‖2L2

)
dt′ = µ2‖v0‖2L2+µ1‖τ0‖2L2 .
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Finally, for this last theorem, we take p = 2, s ≥ d/2 and impose the same
regularity for v0 and τ0. In fact, we are going to use the particular form of the
equation and will not have to impose any restriction on the coupling to get the global
existence. For this theorem, we take nonhomogenous Besov spaces. We can also work
in Sobolev spaces if we impose in addition that s > d/2.

Theorem 1.9. Let s ≥ d
2 . A constant c exists such that for all nonnegative

constants ν, a, µ1, µ2 and for any (v0, τ0) ∈ B̃s2,1 × B̃s2,1 satisfying

‖v0‖Bs
2,1
≤ c min(ν,

√
aν) and ‖τ0‖Bs

2,1
≤ c min(ν,

√
aν)

√
µ

2√
µ

1

,

a unique global solution (v, τ) of (1.4) exists in

C([0,+∞[; B̃s2,1) ∩ L1([0,+∞[; B̃s+1
2,1 )× L∞(0,∞; B̃s2,1) ∩ L1([0,+∞[; B̃s2,1).

The structure of this text will be the following.
• The second section is devoted to the proof of the local well-posedness. We
use the very classical Friedrichs method.
• The third section consists of the proof of an a priori estimate for solutions of
2-D incompressible Navier–Stokes equations.
• The fourth section is the proof of a losing a priori estimate for solutions of
transport equations. This means that we estimate the norm of the solutions
of a transport equation in norms of Besov spaces whose index decreases in
time; estimates of this type have been proved in [1] and in [8].
• In the fifth section, we study global well-posedness in the case of small data.

2. Local well-posedness and energy methods. We shall use the very clas-
sical Friedrichs method (also called the Galerkin method in the periodic case) which
consists of an approximation of the system (V E) by a cut-off in the frequency space.

Let us define the operator Jn by

Jna
def
= F−1(1B(0,n)(ξ)û(ξ)),

where F denotes the Fourier transform in the space variables. Let us consider the
approximate (V En) system

(V En)




∂tvn − νJn∆vn = Jnµ1P∇ · τn + JnQ(Jnvn, Jnvn),
∂tτn + Jn(Jnvn · ∇Jnτn) + aJnτn = µ2D(vn) + JnQ(Jnτn, Jn∇vn),

div vn = 0,
(vn, τn)|t=0 = (Jnv0, Jnτ0).

It is obvious that all the bilinear operators on the right are continuous on L2 × L2.
Then, the above system appears as a system of ordinary differential equations on L2.
Thus, the usual Cauchy–Lipschitz theorem implies the existence of a strictly positive
maximal time Tn such that a unique solution exists which is continuous in time with
value in L2. However, as J2

n = Jn, we claim that Jn(vn, τn) is also a solution, so
uniqueness implies that Jn(vn, τn) = (vn, τn). So (vn, τn) is also a solution of the
following system, still denoted by (V En):

(V En)




∂tvn − ν∆vn = µ1P∇ · τn + JnQ(vn, vn),
∂tτn + Jn(vn · ∇τn) + aτn = µ2D(vn) + JnQ(τn,∇vn),

div vn = 0,
(vn, τn)|t=0 = (Jnv0, Jnτ0).
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The system (V En) turns out to be an ordinary differential equation in L2. So thanks to
the Cauchy–Lipschitz theorem, a unique maximal solution exists on an interval [0, T �n [
which is continuous in time with value in L2. The main step consists of the proof of
the following property:

For any real s strictly greater than d/2, a strictly positive constant c and a strictly
positive time T exist so that, for any n, we have T �n ≥ T , and

sup
t∈[0,T ]
n∈N

Es((vn, τn), t)+cνµ2

∫ T

0

‖∇vn(t)‖2Hsdt+cµ1a

∫ T

0

‖τn(t)‖2Hsdt ≤ 2Es((v, τ), 0),

(2.1)
where we defined

Eσ((v, τ), t)
def
= µ2‖v(t)‖2Hσ + µ1‖τ(t)‖2Hσ .

Let us prove this estimate. As Jn are Fourier multipliers, they commute with constant
coefficient differentiations; thus, applying the operator ∆q to the system (V En), we
obtain, by an energy estimate,

In(t)
def
=

d

dt
(µ2‖∆qvn(t)‖2L2 + µ1‖∆qτn‖2L2) + 2µ2ν‖∇∆qvn(t)‖2L2 + 2µ1a‖∆qτn‖2L2

= 2µ2(∆qJn(vn · ∇vn)|∆qvn)L2 − 2µ1(∆qJn(vn · ∇τn)|∆qτn)L2

− 2µ1(∆qJnQ(τun,∇vn)|∆qτn)L2 .

Using that Jn is a real Fourier multiplier and that Jnvn = vn, we get

d

dt
(µ2‖∆qvn(t)‖2L2 + µ1‖∆qτn‖2L2) + 2µ2ν‖∇∆qvn(t)‖2L2 + 2µ1a‖∆qτn‖2L2

= 2µ2(∆q(vn · ∇vn)|∆qvn)L2 − 2µ1(∆q(vn · ∇τn)|∆qτn)L2 − 2µ1(∆qQ(τn,∇vn)|∆qτn)L2 .

Up to the end of the proof of the inequality (2.1), we shall drop the index n.
The classical tame estimates for the product in Sobolev spaces (see, for instance,

Corollary 2.4.1 of [5]) imply that

‖Q(τ,∇v)‖Hs ≤ C
(
‖τ(t)‖L∞‖∇v(t)‖Hs + ‖τ(t)‖Hs‖∇v(t)‖L∞

)
.

Thus, we infer that∣∣∣2µ1(∆qQ(τ,∇v)|∆qτ)L2

∣∣∣
≤ C(1 + |b|)µ12

−qscq(t)
(
‖τ(t)‖L∞‖∇v(t)‖Hs + ‖τ(t)‖Hs‖∇v(t)‖L∞

)
‖∆qτ(t)‖L2 ,

(2.2)

where, as throughout this section, cq(t) denotes a positive series such that

∀t ,
∑
q

c2q(t) = 1.

Now we have to estimate terms of the type (∆q(v · ∇a)|∆qa)L2 . To do so, we use
Bony’s decomposition and write that

v · ∇a =
d∑
j=1

{
Tvj∂ja+ T∂jav

j +R(∂ja, v
j)
}
.
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The classical results about paraproduct and remainder operator (see, for instance,
Theorem 2.4.1. of [5]) imply that

‖T∂javj‖Hs + ‖R(∂ja, vj)‖Hs ≤ C‖a‖L∞‖∇v‖Hs .

Thus we get∣∣∣∣∣2µ1

(
∆q

d∑
j=1

(T∂jav
j+R(∂ja, v

j))|∆qa
)
L2

∣∣∣∣∣ ≤ Cµ12
−qscq(t)‖a(t)‖L∞‖∇v(t)‖Hs‖∆qa(t)‖L2 .

(2.3)
To estimate the last term, we start from a formula proved in [7]. Let us recall it:

d∑
j=1

(∆qTvj∂ja|∆qa)L2 =
∑
j,q′

([∆q, Sq′−1v
j ]∂j∆q′a|∆qa)L2

+
1

2

∑
j,q′,q′′

(
(Sq′′−1v

j − Sq′−1v
j)∆q∆q′a|∂j∆q∆q′′a

)
L2

.

As we have, by definition of the operators ∆q, that

[Sq′−1v
j ,∆q]b(x) = 2qd

∫
(Sq′−1v

j(x)− Sq′−1v
j(y))h(2q(x− y))b(y)dy,

we infer that

|[Sq′−1v
j ,∆q]b(x)| ≤ C‖∇v‖L∞2qd

∫
|x− y||h(2q(x− y)||b(y)|dy.

Thus we get that

‖[Sq′−1v
j ,∆q]b‖L2 ≤ C2−q‖∇v‖L∞‖b‖L2 .

Moreover, thanks to Lemma 3.1, and using the fact that |q′ − q′′|+ |q′ − q| ≤ N0, we
obtain that

‖(Sq′′−1v
j − Sq′−1v

j)∆q∆q′a‖L2 ≤ C2−q‖∇v‖L∞‖∆q′a‖L2 .

Thus we get that∣∣∣∣∣2µ1

(
∆q

d∑
j=1

Tvj∂ja|∆qa
)
L2

∣∣∣∣∣ ≤ C(1 + |b|)µ12
−qscq(t)‖a(t)‖Hs‖∇v(t)‖L∞‖∆qa(t)‖L2

(2.4)
Finally, applying estimates (2.2)–(2.4), we get

Jq(t)
def
=

d

dt
(µ2‖∆qv(t)‖2L2 + µ1‖∆qτ‖2L2) + 2µ2ν‖∇∆qvn(t)‖2L2 + 2µ1a‖∆qτn‖2L2

≤ Ccq(t)2
−qs

(
‖∇v(t)‖L∞µ2‖v(t)‖Hs‖∆qv(t)‖L2

+ (1 + |b|)‖∇v(t)‖L∞µ1‖τ(t)‖Hs‖∆qτ(t)‖L2(2.5)

+ ‖τ(t)‖L∞µ1‖∇v(t)‖Hs‖∆qτ(t)‖L2

)
.
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Then, summing in q gives

d

dt
Es(v, τ)(t) + 2µ2ν‖∇v(t)‖2Hs + 2µ1a‖τn‖2Hs ≤ C(1 + |b|)‖∇v(t)‖L∞Es(v, τ)(t)

+

(
Cµ1

µ2ν

) 1
2

‖τ(t)‖L∞(µ2ν)
1
2 ‖∇v(t)‖Hsµ

1
2
1 ‖τ(t)‖Hs .

So this implies that

d

dt
Es((v, τ), t)+µ2ν‖∇v(t)‖2Hs ≤ C

(
µ1

µ2ν
‖τ(t)‖2L∞ + (1 + |b|)‖∇v(t)‖L∞

)
Es((v, τ), t).

The Gronwall lemma implies that, for any time t,

Es((v, τ), t) + µ2ν

∫ t

0

‖∇v(t′)‖2Hsdt′

≤ Es((v, τ), 0) expC

∫ t

0

(
µ1

µ2ν
‖τ(t′)‖2L∞ + (1 + |b|)‖∇v(t′)‖L∞

)
dt′.

Let us define Tn as

Tn
def
= sup

{
t / ∀t′ ≤ t , Es((vn, τn), t

′) + µ2ν

∫ t′

0

‖∇vn(t′′)‖2Hsdt′′ ≤ 2Es((v, τ), 0)

}
.

As s > d/2, the Sobolev embedding implies that, for any t ≤ Tn,∫ t

0

(
µ1

µ2ν
‖τn(t′)‖2L∞ + ‖∇vn(t′)‖L∞

)
dt′

≤ C(1 + |b|)
(
(tEs((v, τ), 0)

µ2ν

) 1
2

(
1 +

(
tEs((v, τ), 0)

µ2ν

) 1
2

)
·

Thus, it is easily inferred that if

T ≤ min

{
Tn,

µ2ν

C(1 + |b|)Es((v, τ), 0)
}
,

then, for any n ∈ N and any t ∈ [0, T ], we have

Es((vn, τn), t) + µ2ν

∫ t

0

‖∇vn(t′)‖2Hsdt′ ≤ 2Es((v, τ), 0).

So this implies that, for any n ∈ N,

tn ≥ µ2ν

CEs((v, τ), 0)
·

Standard compactness arguments imply the existence of a solution (v, τ) in L∞
T (Hs)

so that the vector field v belongs to L2([0, T ];Hs+1).
Now let us use the smoothing effect of the heat equation; let us consider a solution

of (V E) which belongs to L∞([0, T ];Hs). Then it is obvious that

f
def
= −v · ∇v +∇p+∇ · τ ∈ L∞

T (Hs−1).
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So the smoothing effect of the heat equation, as described for instance in [6], implies
that if

∂tv − ν∆v = f,

then, for any p ∈ [1,∞], we get

‖∆qv‖Lp
T

(L2) ≤
C

ν
2−q(s+1)T

1
p ‖f‖L∞

T
(Hs−1) +

(
C

22qν

) 1
p

‖∆qv(0)‖L2 .

So taking p = 1 in the above estimate implies that, for any ε, the series (∆qv)q∈N is
convergent in L1

T (H
s+1−ε). Thus, for any strictly positive t0, a strictly positive time t1

exists so that v(t1, ·) belongs to Hs+1−ε. Let us apply the above estimate with p =∞;
we get that v belongs to L∞([t1, T ];H

s+1−ε). Thanks to Sobolev embeddings, the
fact that v is in L1

T (H
s+1−ε) implies that v belongs to L1

T (Lip).
Let us prove the uniqueness. Let us consider two solutions (v1, τ1) and (v2, τ2)

of (V E) in L∞
loc([0, T

�[;Hs). These solutions are such that vj belongs to

L2
loc([0, T

�[;Hs+1) ∩ L∞
loc(]0, T

�[;Hs+1−ε).

Denoting by (w, θ) the difference between those two solutions, we have the following
system:



∂w

∂t
− ν∆w + v2 · ∇w = µ1∇ · θ − w · ∇v1 −∇p,

∂θ

∂t
+ v1 · ∇θ + aθ = µ2Dw −Q(θ,∇v1)−Q(τ2,∇w)− w · ∇τ2,

divw = 0.

By the L2 energy estimate, we get

d

dt

(
µ2‖w(t)‖2L2 + µ1‖θ(t)‖2L2

)
+ 2µ2ν‖∇w(t)‖2L2 + 2µ1a‖θ(t)‖2L2

≤ 2µ1

∣∣∣(Q(τ2,∇w)|θ)L2 + (Q(θ,∇v1)|θ)L2

∣∣∣+2µ1

∣∣∣(w · ∇τ2|θ)L2

∣∣∣+ 2µ2

∣∣∣(w · ∇v1|w)L2

∣∣∣.
The following L2 estimates are obvious:

|µ2(w · ∇v1|w)L2 | ≤ µ2‖∇v1||L∞ ||w||2L2 ,

|µ1(Q(θ,∇v1)|θ)L2 | ≤ µ1(1 + |b|)‖∇v1||L∞‖θ‖2L2 , and

|µ1(Q(τ2,∇w)|θ)L2 | ≤ µ1(1 + |b|)‖τ2||L∞‖∇w‖L2‖θ‖L2

≤ νµ2

4
‖∇w‖2L2 +

4µ1(1 + |b|)2
µ2ν

‖τ2‖2L∞‖θ‖2L2 .

To estimate the term µ1(w · ∇τ2|θ)L2 , we have to be a little more careful. Using the
law of product in Sobolev spaces, we get, as s is strictly greater than d/2,

‖w · ∇τ2‖L2 ≤ ‖∇w‖L2‖τ2‖Hs ,

which yields

|µ1(w · ∇τ2|θ)L2 | ≤ µ1‖∇w‖L2 ||τ2||Hs ||θ||L2

≤ νµ2

4
||∇w||2L2 +

4µ2
1

µ2ν
(1 + |b|)2||τ2||2Hs ||θ||2L2 .
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Plugging these estimates together, we infer

d

dt

(
µ2‖w(t)‖2L2 + µ1‖θ(t)‖2L2

)
+ µ2ν‖∇w(t)‖2L2 + µ1a||θ(t)‖2L2

≤ C

(
‖∇v1(t)‖L∞ +

µ1

µ2ν
(1 + |b|)2‖τ2(t)‖2Hs

)(
µ2‖w(t)‖2L2 + µ1‖θ(t)‖2L2

)
.

So we get uniqueness by the Gronwall lemma.

3. Some a priori estimates for the 2-D Navier–Stokes system. Before
stating Theorem 3.3 and Lemma 3.5, we recall some basic facts about Littlewood–
Paley theory. We refer to [6] and [18] for the proof of the following results and for the
multiplication law in Besov spaces.

Lemma 3.1.

‖∆qu‖Lb ≤ 2d(
1
a− 1

b )q‖∆qu‖La for b ≥ a ≥ 1,

‖et∆∆qu‖Lb ≤ C2−ct2
2q‖∆qu‖Lb .

Then the following corollary is obvious.
Corollary 3.1. If b ≥ a ≥ 1, then we have the following continuous embeddings:

B
s−d

(
1
a− 1

b

)
b,r ⊂ Bsa,r.

Finally, we define the following space which will be used to control the system in
dimension 2.

Definition 3.2. Let p be in [1,∞] and r in R; the space L̃pT (C
r) is the space of

the distributions u such that

‖u‖
L̃p(0,T ;Cr)

def
= sup

q
2qr‖∆qu‖Lp

T
(L∞) <∞.

Now let us state one of the two theorems about the 2-D Navier–Stokes system that
we shall prove in this section.

Theorem 3.3. Let v be the solution of the 2-D Navier–Stokes system with initial
data in L2 that belongs to L2

T (H
1) and an external force f in L1

T (C
−1) ∩ L2

T (H
−1);

then, for any strictly positive ε, a T0 in the interval ]0, T [ exists such that

‖∇v‖
L̃1

[T0,T ]
(C0)
≤ ε.

The proof of this theorem will require two lemmas. The first one follows.
Lemma 3.4. A constant C exists such that if v is the solution of the 2-D Navier–

Stokes system with an initial data in L2 that belongs to L2
T (H

1) and an external
force f in L2

T (H
−1), then∑

q

‖∆qv‖2L∞
T

(L2) ≤
(
1 +

C

ν
‖v0‖2L2

)(
‖v0‖2L2 +

C

ν
‖f‖2L2

T
(H−1)

)
.

To prove this lemma, we apply the operator ∆q to the equation and, by energy
estimate, we deduce that

1

2

d

dt
‖∆q(t)‖2L2 + cν22q‖∆q(t)‖2L2 ≤ cν22q‖∆qv(t)‖2L2

+
C

ν

(
2−2q‖∆qf(t)‖2L2 + ‖∆q(v ⊗ v)(t)‖2L2

)
.
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So by integration and summation in q, we get

∑
q

‖∆qv‖2L∞
T

(L2) ≤ ‖v0‖2L2 +
C

ν
(‖f‖2L2

T
(H−1) + ‖v‖4L4

T
(L4)).

Applying the classical inequality ‖a‖4L4 ≤ C‖a‖2L2‖a‖2H1 , we get the result by the use
of the standard energy estimate.

The second lemma is the following.
Lemma 3.5. Let v be a solution of the Navier–Stokes system with initial data

in L2 and an external force f in L̃1
T (C

−1) ∩ L2
T (H

−1),

(NSν)




∂v

∂t
+ v · ∇v − ν∆v = −∇p+ f,

div v = 0,
v|t=0 = v0.

Then we have the following a priori estimate:

‖v‖
L̃1

T
(C1)
≤ CEν(v0, T ) +

C

ν
‖f‖

L̃1
T

(C−1)
+

C

ν2
‖∇v‖L2

T
(L2)

(
‖v0‖2L2 +

2

ν
‖f‖2L2

T
(H−1)

)
,

where Eν(v0, T ) is defined by

Eν(v0, T )
def
= sup

q
‖∆qv0‖L2

1− e−cνT22q

ν
·

To prove this lemma, we first apply the operator ∆q to the (NSν) system; this
gives

‖∆qv(t)‖L∞ ≤ ‖∆qv0‖L∞e−νc2
2qt +

∫ t

0

e−νc2
2q(t−t′)‖∆qf(t′)‖L∞dt′

+

∫ t

0

e−νc2
2q(t−t′)‖∆qQ(v(t′), v(t′))‖L∞dt′ ,

with

Q(v, v) =
∑
i,j

Ai,j(D)(vivj),

where Ai,j(D) are homogeneous Fourier multipliers of degree 1. Using that

2−q‖∆qv0‖L∞ ≤ ‖∆qv0‖L2 ≤ C‖v0‖L2

thus yields, after integration in time, that

‖v‖
L̃1

T
(C1)
≤ CEν(v0, T ) +

C

ν

(
‖Q(v, v)‖

L̃1
T

(C−1)
+ ‖f‖

L̃1
T

(C−1)

)
.(3.1)

Denoting by ϕ̃i,j(ξ) = ϕ(ξ)Ai,j(ξ) ∈ D(R2 \ {0}) we get

‖∆qAi,j(D)(vivj)‖L∞ ≤ C2q‖ϕi,j(2−qD)(vivj)‖L∞ .
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Then using the Bony’s decomposition, we get

ϕi,j(2−qD)(vivj) =
∑

p′≥q−2

|p−p′|≤2

ϕi,j(2−qD)(∆pv
i∆p′v

j)

+
∑

p′≥q−2

p<p′−2

ϕi,j(2−qD)(∆pv
i∆p′v

j) +
∑

p≥q−2

p′<p−2

ϕi,j(2−qD)(∆pv
i∆p′v

j).

For the first term, using the localization Lemma 3.1 and the fact that |p− p′| ≤ 2, we
have

‖ϕi,j(2−qD)(∆pv
i∆p′v

j)‖L∞ ≤ 2q‖∆pvi∆p′vj‖L2 ≤ C2q−p2
p
2 ‖∆pvi‖L22

p′
2 ‖∆p′vj‖L∞

≤ C2q−p
′‖v‖

H
1
2
2

p′
2 ‖∆p′vj‖L∞ .

Hence summing up over p (a finite set for any fixed p′), integrating over [0, T ], and
using the Hölder inequality, we get∥∥∥∥∥∥∥

∑
p′≥q−2

|p−p′|≤2

ϕi,j(2−qD)(∆pv
i∆p′v

j)

∥∥∥∥∥∥∥
L1

T
(L∞)

≤
∑

p′≥q−2

C2q−p
′‖v‖

L4
T

(H
1
2 )
2

p′
2 ‖∆p′vj‖

L
4
3 (L∞)

≤ C‖v‖
L4

T
(H

1
2 )
‖v‖

L̃
4
3 (C

1
2 ),

(3.2)

where we have used that 2
p′
2 ‖∆p′vj‖

L
4
3 (L∞)

≤ ‖v‖
L̃

4
3 (C

1
2 )
.

The second and the third terms are treated in the same way, we treat, for instance,
the second one. We have

‖ϕi,j(2−qD)(∆pv
i∆p′v

j)‖L∞ ≤ ‖∆pvi‖L∞‖∆p′vj‖L∞

≤ C2p‖∆pvi‖L2‖∆p′vj‖L∞

≤ C2
p−q
2 ‖v‖

H
1
2
2

p′
2 ‖∆p′vj‖L∞ .(3.3)

Hence integrating over [0, T ], using the Hölder inequality, and noticing that the sum
over p′ can be restricted to the set q + 2 ≥ p′ ≥ q − 2 which is finite, we get∥∥∥∥∥∥∥

∑
p′≥q−2

p≤p′−2

ϕi,j(2−qD)(∆pv
i∆p′v

j)

∥∥∥∥∥∥∥
L1

T
(L∞)

≤
∑
p≤q

C2
p−q
2 ‖v‖

L4
T

(H
1
2 )
‖v‖

L̃
4
3
T

(C
1
2 )
.(3.4)

Therefore, taking the supremum over q, we deduce that

‖Q(v, v)‖
L̃1

T
(C−1)

≤ C‖v‖
L4

T
(H

1
2 )
‖v‖

L̃
4
3
T

(C
1
2 )
.

Then by interpolation, we merely get that

‖v‖
L4

T
(H

1
2 )
≤ ‖v‖1/2

L2
T

(H1)
‖v‖1/2L∞

T
(L2).

On the other hand, we have for all q

2
q
2 ‖∆qv‖

L
4
3
T

(L∞)
≤ 2

q
2 ‖∆qv‖1/2L1

T
(L∞)
‖∆qv‖1/2L2

T
(L∞)

≤ 2
q
2 ‖∆qv‖1/2L1

T
(L∞)

2
q
2 ‖∆qv‖1/2L2

T
(L2)

≤ ‖v‖1/2
L̃1

T
(C1)
‖v‖1/2

L2
T

(H1)
.
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Thus, we infer that

‖Q(v, v)‖
L̃1

T
(C−1)

≤ C‖v‖L2
T

(H1)‖v‖
1
2

L∞
T

(L2)‖v‖
1
2

L̃1
T

(C1)
.

So plugging this estimate into (3.1), we obtain that

‖v‖
L̃1

T
(C1)
≤ CEν(v0, T ) +

C

ν
‖f‖

L̃1
T

(C−1)
+ C‖v‖L2

T
(H1)‖v‖

1
2

L∞
T

(L2)‖v‖
1
2

L̃1
T

(C1)
.

But the energy estimate implies that

‖v‖L∞
T

(L2) ≤
(
‖v0‖2L2 +

2

ν
‖f‖2L2

T
(H−1)

) 1
2

.

Thus, we infer that

‖v‖
L̃1

T
(C1)
≤ CEν(v0, T ) +

C

ν
‖f‖

L̃1
T

(C−1)

+
C

ν
‖∇v‖L2

T
(L2)

(
‖v0‖2L2 +

2

ν
‖f‖2L2

T
(H−1)

) 1
4

‖v‖ 1
2

L̃1
T

(C1)

≤ CEν(v0, T ) +
C

ν
‖f‖

L̃1
T

(C−1)

+
C

ν2
‖∇v‖2L2

T
(L2)

(
‖v0‖2L2 +

2

ν
‖f‖2L2

T
(H−1)

) 1
2

+
1

2
‖v‖

L̃1
T

(C1)
.

This concludes the proof of the lemma.

Now let us go the the proof of Theorem 3.3. First let us apply Lemma 3.5 between
some T0 in the interval ]0, T [ and T . This gives

‖v‖
L̃1

[T0,T ]
(C1)
≤ CEν(vT0 , T − T0) +

C

ν
‖f‖L1

[T0,T ]
(C−1)

+
C

ν2
‖∇v‖L2

[T0,T ]
(L2)

(
‖v0‖2L2 +

2

ν
‖f‖2L2

T
(H−1)

)
.

Lemma 3.4 implies in particular that, for any positive ε, an integer q0 exists such that

sup
q≥q0
‖∆qv‖L∞

T
(L2) ≤ εν

4C
·

Then it turns out that

Eν(vT0 , T − T0) ≤ ε

4C
+ C‖v0‖L2ν22q0(T − T0).(3.5)

Now it is easy to choose T0 such that, for any T ′ between T0 and T , we get

‖f‖L1
[T ′,T ]

(C−1) ≤
εν

4C
and ‖∇v‖L2

[T ′,T ]
(L2) ≤

εν2

4C

(
‖v0‖2L2 +

2

ν
‖f‖2L2

T
(H−1)

)−1

.
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4. A losing a priori estimate. The core of this section is the proof of a losing
estimate for transport equation in the spirit of [1]. After this proof, we shall apply
this estimate in order to prove Theorem 1.2.

Theorem 4.1. Let σ and β be two elements of ]0, 1[. A constant C exists that
satisfies the following properties.

Let T and λ be two positive numbers and v a smooth divergence-free vector field
so that

σ − λ‖∇v‖
L̃1

T
(C0)
≥ β.(4.1)

Consider two smooth functions f and g so that f is the solution of

(T )

{
∂tf + v · ∇f +Q(∇v, f) = g,

f|t=0 = f0.

Then we have, if λ ≥ 2C,

Mσ
λ (f) ≤ 2‖f0‖Bσ

p,∞ +
2C

λ
Mσ+1
λ (v) + TMσ

λ (g),(4.2)

where

Mσ
λ (c)

def
= sup

t∈[0,T ]
q

2qσ−Φq,λ(t)‖∆qc(t)‖Lp with(4.3)

Φq,λ(t, t
′)

def
= λ

∫ t

t′
‖Sq∇v(t′′)‖L∞dt′′ + λ

∫ t

t′
‖f(t′′)‖L∞dt′′ , Φq,λ(t) = Φq,λ(t, 0).(4.4)

To prove this theorem, we transform the transport equation (T ) along the flow

of v, in the following equation (Tq) on fq
def
= ∆qf , which is a transport equation along

the flow of Sqv.

(Tq)

{
∂tfq + Sqv · ∇fq = ∆qg −Rq(v, f),

fq |t=0 = ∆qf0.

Let us admit for a while the following estimate:

2qσ−Φq,λ(t)‖Rq(v(t), f(t))‖Lp ≤ Ce
Cλ‖∇v‖

L̃1
T

(C0)

×

‖f(t)‖L∞Mσ+1

λ (v) +


‖Sq∇v(t)‖L∞ +

∑
|q′−q|≤N

‖∆q′∇v(t)‖L∞


Mσ

λ (f)


 .(4.5)

Let us denote by ψq the flow of the vector field Sqv. The equation (Tq) may be
rewritten as

(T̃q)
d

dt
fq(t, ψq(t, x)) = ∆qg(t, ψq(t, x))−Rq(v(t), f(t))(ψq(t, x)).

As the vector field v, and of course also the vector field Sqv is divergence-free, we get,

after time integration in (T̃q), that

‖fq(t)‖Lp ≤ ‖fq(0)‖Lp +

∫ t

0

‖∆qg(t′)‖Lpdt′ +
∫ t

0

‖Rq(v(t′), f(t′))‖Lpdt′.
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After a multiplication by 2qσ−Φq,λ(t), we get

2qσ−Φq,λ(t)‖fq(t)‖Lp ≤ 2qσ‖∆qf0‖Lp +

∫ t

0

2−Φq,λ(t,t′)2qσ−Φq,λ(t′)‖∆qg(t′)‖Lpdt′

+

∫ t

0

2−Φq,λ(t,t′)2qσ−Φq,λ(t′)‖Rq(v(t′), f(t′))‖Lpdt′.

Then, using the inequality (4.5), we get

Mσ
λ (f) ≤ ‖f0‖Bσ

p,∞ + TMσ
λ (g) + e

Cλ‖∇v‖
L̃1
T

(C0)Mσ
λ (f) sup

t∈[0,T ]
q

∫ t

0

2−Φq,λ(t,t′)

×

‖f(t′)‖L∞Mσ+1

λ (v) +Mσ
λ (f)


‖Sq∇v(t′)‖L∞ +

∑
|q′−q|≤N

‖∆q′∇v(t′)‖L∞




 dt′.

As λ‖∇v‖
L̃1

T
(C0)

is smaller than (σ − β), we have

e
Cλ‖∇v‖

L̃1
T

(C0) ≤ eC(σ−β).

Moreover, by definition of Φq,λ(t, t
′), it is obvious that∫ t

0

2−Φq,λ(t,t′)‖f(t′)‖L∞dt′ ≤ 1

λ log 2
and

∫ t

0

2−Φq,λ(t,t′)‖Sq∇v(t′)‖L∞dt′ ≤ 1

λ log 2
·

Then we obtain that

Mσ
λ (f) ≤ ‖f0‖Bσ

p,∞ +
C

λ
Mσ+1
λ (v) + C‖∇v‖

L̃1
T

(C0)
Mσ
λ (f) + TMσ

λ (g) +
C

λ
Mσ
λ (f)

≤ ‖f0‖Bσ
p,∞ +

C

λ
Mσ+1
λ (v) + TMσ

λ (g) +
C

λ
Mσ
λ (f).

This proves the theorem of course if we prove the estimate (4.5). First of all, let us
decompose the operator Rq. We have

Rq(v, f) =

8∑
�=1

R�q(v, f) with

R1
q(v, f) =

d∑
j=1

∆q(T∂jfv
j),

R2
q(v, f) =

d∑
j=1

[∆q, Tvj∂j ]f,

R3
q(v, f) =

d∑
j=1

T(vj−Sqvj)∂j∆qf,

R4
q(v, f) =

d∑
j=1

−T∂j∆qfSqv
j ,

R5
q(v, f) =

d∑
j=1

∆q∂jR(v
j , f)−R(Sqv

j ,∆q∂jf),
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R6
q(v, f) =

d∑
j=1

∆qQ(T∇v, f),

R7
q(v, f) =

d∑
j=1

∆qQ(Tf ,∇v), and

R8
q(v, f) =

d∑
j=1

∆qQ(R(∇v, f)).

If f is a solution of (T ), then

∂tfq +∆q(v · ∇f) + ∆qQ(∇v, f) = ∆qg.

Now, let us use Bony’s decomposition of the products vj∂jf . We thus get

vj∂jf = Tvj∂jf + T∂jfv
j +R(vj , ∂jf) and ∆qQ(∇v, f) =

8∑
�=6

R�q(v, f).(4.6)

Then we have the following equalities:

∆q(v · ∇f) = R1
q(v, f) +

d∑
j=1

∆qTvj∂jf +∆qR(v
j , ∂jf)

=

2∑
�=1

R�q(v, f) +

d∑
j=1

Tvj∂j∆qf +∆qR(v
j , ∂jf),

=

3∑
�=1

R�q(v, f) +

d∑
j=1

TSqvj∂j∆qf +∆qR(v
j , ∂jf).

Then, using the definition of the paraproduct and the fact that the vector field v is
divergence-free, we infer that

∆q(v · ∇f) =
5∑
�=1

R�q(v, f) + Sqv · ∇∆qf.

Now let us prove that each term R�q(v, f) can be estimated with the right term of
inequality (4.5).

Let us begin with R1
q(v, f). By definition of the paraproduct, we have

R1
q(v, f) =

d∑
j=1

∑
q′

∆q(Sq′−1∂jf∆q′v
j).

As |q − q′| > N , the above term is then equal to 0, and we deduce that

‖R1
q(v(t), f(t))‖Lp ≤ C

∑
|q−q′|≤N

‖Sq′−1∇f‖L∞‖∆q′v(t)‖Lp .

Using the fact that, if |q− q′| ≤ N , then ‖Sq′−1∇f‖L∞ ≤ C2q‖f(t)‖L∞ , and we infer
that

‖R1
q(v(t), f(t))‖Lp ≤ C2q‖f(t)‖L∞

∑
|q−q′|≤N

‖∆q′v(t)‖Lp .
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So we claim that

2qσ−Φq,λ(t)‖R1
q(v(t), f(t))‖Lp

≤ C‖f(t)‖L∞Mσ+1
λ (v)

∑
|q−q′|≤N

2
−λ

∫ t

0
‖Sq∇v(t′)‖L∞dt′+λ

∫ t

0
‖Sq′∇v(t′)‖L∞dt′

.

However, it is obvious that∫ t

0

‖Sq′∇v(t′)‖L∞dt′ −
∫ t

0

‖Sq∇v(t′)‖L∞dt′ ≤
∫ t

0

‖(Sq′ − Sq)∇v(t′)‖L∞dt′.

Using the fact that |q − q′| ≤ N0 and that

‖∆qu‖Lp ≤ C2−q‖∇∆qu‖Lp ,

we get ∫ t

0

‖Sq′∇v(t′)‖L∞dt′ −
∫ t

0

‖Sq∇v(t′)‖L∞dt′ ≤ C‖∇v‖
L̃1

T
(C0)

.(4.7)

Thus it turns out that

2qσ−Φq,λ(t)‖R1
q(v(t), f(t))‖Lp ≤ C‖f(t)‖L∞2

Cλ‖∇v‖
L̃1
T

(C0)Mσ+1
λ (v).(4.8)

Now let us look at R2
q(v, f). By definition of the paraproduct, we have

R2
q(v, f) = −

d∑
j=1

∑
q′
[Sq′−1v

j∂j∆q′ ,∆q]f

= −
d∑
j=1

∑
q′
[Sq′−1v

j ,∆q]∂j∆q′f.

The terms of the above sum are equal to 0 except if |q − q′| ≤ N . Moreover, by
definition of the operators ∆q, we have

[Sq′−1v
j ,∆q]∂j∆q′f(x) = 2qd

∫
Rd

h(2q(x− y))(Sq′−1v
j(x)− Sq′−1v

j(y))∂j∆q′f(y)dy.

So we infer that

|[Sq′−1v
j ,∆q]∂j∆q′f(x)| ≤ 2−q‖∇Sq′−1v‖L∞2qd

((
2q| · | × |h(2q·)|

)
< |∂j∆q′f |

)
(x).

Then we have, using inequality (4.7),

2qσ−Φq,λ(t)‖[Sq′−1v
j ,∆q]∂j∆q′f‖Lp

≤ CMσ
λ (f)

∑
|q−q′|≤N

2
Cλ‖v‖

L̃1
T

(C1)(‖∇(Sq′−1 − Sq)v(t)‖L∞ + ‖Sqv(t)‖L∞).

We thus get

2qσ−Φq,λ(t)‖R2
q(v(t), f(t))‖Lp ≤ CMσ

λ (f)2
Cλ‖v‖

L̃1(C1)

×

‖Sq∇v(t)‖L∞ +

∑
|q−q′|≤N

‖∇(Sq′−1 − Sq)v(t)‖L∞


 .(4.9)
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The estimate about R3
q(v, f) is very easy to prove. By definition of the paraproduct,

we have

R3
q(v, f) =

∑
q′
(Sq′−1v

j − Sqv
j)∆q′∆qf,

so we get

‖R3
q(v, f)‖Lp ≤ C

∑
q′≥q

2q−q
′‖∆q′∇v(t)‖L∞‖Dqf(t)‖Lp .

So by definition of Mσ
λ (f) it is obvious that

2qσ−Φq,λ(t)‖R3
q(v(t), f(t))‖Lp ≤ CMσ

λ (f)
∑
q′≥q

2q−q
′‖∆q′v(t)‖L∞ .(4.10)

Now let us estimate R4
q(v, f). By definition of the paraproduct, we have

R4
q(v, f) =

d∑
j=1

∑
q′

Sq′−1∆q∂jf∆q′Sqv
j .

It is obvious by definition of the operators Sq and ∆q that if q
′ ≤ q, then Sq′−1∆q = 0

and if q′ ≥ q + 1, then ∆q′Sq = 0. So

R4
q(v, f) =

d∑
j=1

Sq−1∆q∂jf∆qSqv
j .

It turns out that

2qσ−Φq,λ(t)‖R4
q(v(t), f(t))‖Lp ≤ CMσ

λ (f)‖Sq∇v(t)‖L∞ .(4.11)

The estimate of R5
q(v, f) is a little bit more delicate. We have, using the fact that v

is divergence-free,

R5
q(v, f) =

2∑
�=1

R5,�
q (v, f) with

R5,1
q (v, f) =

d∑
j=1

∂j∆qR((Id−Sq)vj , f) and

R5,2
q (v, f) =

d∑
j=1

∆qR(Sqv
j , ∂jf)−R(Sqv

j , ∂j∆qf).

The estimate of R5,1
q (v, f) is analogous to the one of R5

q(v, f). We get

2qs−Φq,λ(t)‖R5,1
q (v(t), f(t))‖Lp ≤ Ce

Cλ‖∇v‖
L̃1
T

(C0)Ms
λ(f)

∑
q′≥q

2q−q
′
2q

′‖∆q′v(t)‖L∞ .

(4.12)
By definition of the remainder operators, it turns out that

R5,2
q (v, f) =

∑
|q′−q′′|≤1
q′≥q−N

[∆q,∆q′Sq(v
j)]∆q′′∂jf.
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Always along the same lines, we get

2qs−Φq,λ(t)‖R5,2
q (v(t), f(t))‖Lp ≤ Ce

Cλ‖∇v‖
L̃1
T

(C0)Ms
λ(f)

∑
q′≥q

2q−q
′
2q

′‖∆q′v(t)‖L∞ .

(4.13)
The term R6

q(v, f) is estimated exactly as the term R1
q(v, f), the term R7

q(v, f) exactly
as the term R3

q(v, f), and the term R8
q(v, f) exactly as the term R5

q(v, f). So putting
together estimates (4.8)–(4.13), we get the estimate (4.5) and thus Theorem 4.1.

Now we return to the proof of Theorem 1.2. We assume that we have a solution
given by Theorem 1.1 on an interval [0, T [. Let us assume that

T <∞ and

∫ T

0

(‖τ(t, ·)‖L∞ + b‖τ(t)‖2L2)dt <∞.

We want to prove that we can prolong the solution.

Theorem 1.1 says that, for any T0 in ]0, T [, the solution (v, τ) of (V E) belongs to
the space L∞

loc([T0, T [;H
s+1 ×Hs). Sobolev-type embeddings of Corollary 3.1 imply

that

(v, τ) ∈ L∞
loc

(
[T0, T [; B̃

s+1−2( 1
2− 1

p )
p,∞ × B̃

s−2( 1
2− 1

p )
p,∞

)
.

Choosing p = ∞ in the above assertion implies that (v, τ) ∈ L∞
loc(C̃

s × C̃s−1). As s
is greater than 1, the tensor τ belongs to L2([T0, T ];L

2) ∩ L1([T0, T ];C
0). So we can

apply Theorem 3.3. We thus choose T0 such that, with the notations of Theorem 4.1,
we have

‖∇v‖
L̃1

[T0,T ]
(C0)
≤ s− 1− β

2λ
·

The losing estimate of Theorem 4.1 applied with σ = s − 1 and between T0 and T
says exactly that the tensor τ satisfies

Ms−1
λ (τ) ≤ 2‖τ0‖Cs−1 +

(
C

λ
+ T − T0

)
Ms
λ(v).(4.14)

Now we have to estimate ∇v. The 2-D Navier–Stokes equation can be written as

∂tv − ν∆v = P (v · ∇v) + PDτ,

wherein P denotes the Leray projector on the divergence-free vector field. Along the
exact same lines as in the proof of Theorem 4.1, we have

2qs−Φq,λ(t)‖P (v · ∇v)− P (Sqv · ∇∆qv)‖L∞

≤ CMs
λ(v)


‖Sq∇v(t)‖L∞ +

∑
q′≥q

2q−q
′‖∇∆q′v(t)‖L∞


 .(4.15)

Moreover, it is obvious that

2q(s−
3
2 )−Φq,λ(t)‖P (Sqv · ∇∆qv)‖L∞ ≤ C‖v(t)‖

H
1
2
Ms
λ(v).



REGULAR SOLUTIONS FOR VISCOELASTIC FLUIDS 105

So it turns out that

2qs−Φq,λ(t)‖∆qP (v · ∇v)‖L∞

≤ CMs
λ(v)


‖Sq∇v(t)‖L∞ +

∑
q′≥q

2(q−q′‖∇v(t)‖L∞ + 2
q
2 ‖v(t)‖

H
1
2


 .(4.16)

Using well-known estimates on the heat equation (see, for instance, [6]) and inequal-
ities (4.14) and (4.16), we get that

Ms
λ(v) ≤ ‖v0‖Cs + 2‖τ0‖Cs−1 +

(
C

λ
+ T − T0 + 2

q
2Fq(T0, T )

)
Ms
λ(v)

with

Fq(T0, T )
def
= sup

t∈[T0,T ]

∫ t

T0

ecν2
2q(t−t′)‖v(t′)‖

H
1
2
dt′.

Hölder inequality implies immediately that

Fq(T0, T ) ≤ C

ν
3
4

2−
q
2 ‖v‖

L4
T0,T ]

(H
1
2 )
.

We thus infer that

Ms
λ(v) ≤ ‖v0‖Cs + 2‖τ0‖Cs−1 +

(
C

λ
+ T − T0 +

C

ν
3
4

‖v‖
L4

T0,T ]
(H

1
2 )

)
Ms
λ(v).

Now it is enough to choose T0 such that the quantity

C

λ
+ T − T0 +

C

ν
3
4

‖v‖
L4

[T0,T ]
(H

1
2 )

is small enough. Then as s is greater than 1, the solution (v, τ) of the system (V E)
is such that (∇v, τ) belongs to L∞([T0, T

�]×R2); this concludes the proof of Theo-
rem 1.2.

5. Local and global existence for initial data in Besov spaces. The proof
of Theorems 1.6 and 1.7 is based on the following lemma.

Lemma 5.1. Let s be in the interval ] − sc, sc + 1]. A constant C exists which
satisfies the following properties.

Let us consider any divergence-free vector field v in L1
T (B

sc+1
p,1 ) and any solu-

tion (w, τ) of the following linear system:

(V EL)




∂tw − ν∆w = Pµ1∇τ + f,
∂tτ + v · ∇τ +Q(τ,∇v) + aτ = µ2Dw + g,

(w, τ)|t=0 = (w0, τ0)

with (w0, τ0) ∈ Bs−1
p,1 ×Bsp,1 and (f, g) ∈ L1

T (B
s−1
p,1 )× L1

T (B
s
p,1).

Let us define

TV E
def
= +∞ if µ1µ2 ≤ cνa and TV E

def
= −1

a
log

(
1− cνa

2µ1µ2

)
if µ1µ2 ≥ cνa.

(5.1)
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Then, if T ≤ TV E, we get for some λ big enough

‖wλ‖L1
T

(Bs+1
p,1 ) ≤

C

ν

(∑
q

2q(s−1)‖∆qw0‖Lp(1− eC
−1ν22qT ) + ‖fλ‖L1

T
(Bs−1

p,1 )

+ µ1
1− e−aT

a

(
‖τ0‖Bs

p,1
+ ‖gλ‖L1

T
(Bs

p,1)

))
,(5.2)

‖wλ‖L∞
T

(Bs−1
p,1 ) ≤ C

(
‖w0‖Bs−1

p,1
+ ‖fλ‖L1

T
(Bs−1

p,1 )

+ µ1
1− e−aT

a

(
‖τ0‖Bs

p,1
+ ‖gλ‖L1

T
(Bs

p,1)

))
,(5.3)

‖τλ‖L∞
T

(Bs
p,1)
≤ C

(
1 +

µ1µ2

νa
(1− e−aT )

)(
‖τ0‖Bs

p,1
+ ‖gλ‖L1

T
(Bs

p,1)

)

+
Cµ2

ν

(∑
q

2q(s−1)‖∆qw0‖Lp(1− eC
−1ν22qT ) + ‖fλ‖L1

T
(Bs−1

p,1 )

)
(5.4)

with

aλ(t)
def
= a(t) exp

(
−λ

∫ t

0

‖∇v(t′)‖Bsc
p,1

dt′
)
.

Remark. The condition (1.8) µ1µ2 ≤ cνa means that the coupling effect between
the two equations is less important than the viscosity effect on the time interval [0, T ].
Let us also note that, in any case, spatially if a = 0, we may take

TV E =
ν

2Cµ1µ2
·

To prove the above lemma, we start with an estimate on τ (inequality (5.6) below)
and then plug it into a standard estimate on w.

We apply the operator ∆q on the transport equation on τ ; we thus get

∂t∆qτ + v · ∇∆qτ + a∆qτ = µ2D∆qw +∆qg +Rq(v, τ) with

Rq(v, τ)
déf
= [v · ∇,∆q]τ −∆qQ(τ,∇v).

Let us admit for a while the following estimate:

‖Rq(v(t), τ(t))‖Lp ≤ C2−qscq(t)‖∇v(t)‖Bsc+1
p,1
‖τ(t)‖Bs

p,1
,(5.5)

where, as all along this section, cq(t) denote a positive series whose sum over q is 1. As
the vector field v is divergence-free, we get, using integration along the characteristics
that

eat‖∆qτ(t)‖Lp ≤ ‖∆qτ0‖Lp + C2−qs
∫ t

0

cq(t
′)‖∇v(t′)‖Bsc+1

p,1
eat

′‖τ(t′)‖Bs
p,1

dt′

+ Cµ22
q

∫ t

0

eat
′‖∆qw(t′)‖Lpdt′ + C

∫ t

0

eat
′‖∆qg(t′)‖Lpdt′.



REGULAR SOLUTIONS FOR VISCOELASTIC FLUIDS 107

Then, using the multiplication by 2qs exp
(
−λ ∫ t

0
‖∇v(t′)‖Bsc

p,1
dt′

)
, we get

eat‖∆qτλ(t)‖Lp ≤ ‖∆qτ0‖Lp

+C

∫ t

0

cq(t
′)e

−λ
∫ t

t′ ‖∇v(t
′′)‖B

sc
p,1
dt′′‖∇v(t′)‖Bsc

p,1
eat

′‖τλ(t′)‖Bs
p,1

dt′

+Cµ22
q

∫ t

0

eat
′
2q(s+1)‖∆qwλ(t′)‖Lpdt′ + C

∫ t

0

eat
′
2qs‖∆qgλ(t′)‖Lpdt′.

Taking the sum over q, we get

eat‖τλ(t)‖Bs
p,1
≤ ‖τ0‖Bs

p,1
+ C

∫ t

0

e
−λ

∫ t

t′ ‖∇v(t
′′)‖B

sc
p,1
dt′′‖∇v(t′)‖Bsc

p,1
eat

′‖τλ(t′)‖Bs
p,1

dt′

+Cµ2

∫ t

0

eat
′‖wλ(t′)‖Bs+1

p,1
dt′ + C

∫ t

0

eat
′‖gλ(t′)‖Bs

p,1
dt′.

From this estimate, we get that

‖eatτλ(t)‖L∞
T

(Bs
p,1)
≤ ‖τ0‖Bs

p,1
+

C

λ
‖τλ‖L∞

T
(Bs

p,1)

+ Cµ2

∫ T

0

eat‖wλ(t)‖Bs+1
p,1

dt+ C

∫ T

0

eat‖gλ(t)‖Bs
p,1

dt.

So, if λ is large enough, we obtain

‖eatτλ(t)‖L∞
T

(Bs
p,1)
≤ 2‖τ0‖Bs

p,1
+ Cµ2

∫ T

0

eat‖wλ(t)‖Bs+1
p,1

dt+ C

∫ T

0

eat‖gλ(t)‖Bs
p,1

dt.

(5.6)

In particular, this implies that

‖τλ(t)‖L1
T

(Bs
p,1)
≤ C

1− eaT

a

(
‖τ0‖Bs

p,1
+ µ2‖wλ‖L1

T
(Bs+1

p,1 ) + ‖gλ‖L1
T

(Bs
p,1)

)
.(5.7)

Classical estimates about the heat equation (see, for instance, [6]) give

‖∆qw(t)‖Lp ≤ C‖∆qw0‖Lpe−C
−1ν22qt + C

∫ t

0

e−C
−1ν22q(t−t′)‖∆q f̃(t′)‖Lpdt′(5.8)

with f̃
def
= f + µ1∇ · τ . Then multiplying by 2qs exp

(
−λ ∫ t

0
‖∇v(t′)‖Bsc

p,1
dt′

)
, taking

the sum over q and integrating in time, we get

‖wλ‖L1
T

(Bs+1
p,1 ) ≤

C

ν

(∑
q

‖∆qw0‖Lp(1− e−C
−1ν22qT ) + ‖f̃λ‖L1

T
(Bs−1

p,1 )

)
.

By the definition of f̃ , we obtain, applying the estimate (5.7),

‖wλ‖L1
T

(Bs+1
p,1 ) ≤

C

ν

(∑
q

‖∆qw0‖Lp(1− e−C
−1ν22qT ) + ‖f̃λ‖L1

T
(Bs−1

p,1 )

+µ1
1− eaT

a

(
‖τ0‖Bs

p,1
+ µ2‖wλ‖L1

T
(Bs+1

p,1 ) + ‖gλ‖L1
T

(Bs
p,1)

))
.
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Then the condition (1.8) gives the estimate (5.2). To prove the inequality (5.3), let
us go back to the estimate (5.8). Multiplying by 2q(s−1) and taking the supremum in
time gives

2q(s−1)‖∆qwλ‖L∞
T

(Lp) ≤ C2q(s−1)‖∆qw0‖Lp +

∫ T

0

2q(s−1)‖∆q f̃λ(t)‖Lpdt.(5.9)

Summing over q and using that

‖wλ‖L∞
T

(Bs−1
p,1 ) ≤

∑
q

2q(s−1)‖∆qwλ‖L∞
T

(Lp),

we claim that

‖wλ‖L∞
T

(Bs−1
p,1 ) ≤ C(‖w0‖Bs−1

p,1
+ ‖f̃λ‖L1

T
(Bs

p,1)
).

Then using the estimates (5.2) and (5.7) gives the inequality (5.3). To obtain the
inequality (5.4), it is enough to plug the estimate (5.2) into (5.6).

Remark. In fact, we proved a better estimate which is∑
q

2q(s−1)‖∆qwλ‖L∞
T

(Lp) ≤ C(‖w0‖Bs−1
p,1

+ ‖f̃λ‖L1
T

(Bs
p,1)

).

However, we have to prove the inequality (5.5). The law of product in Besov
spaces implies that

‖Q(τ(t),∇v(t))‖Bs
p,1
≤ C‖τ(t)‖Bs

p,1
‖∇v(t)‖Bsc

p,1

because s is in the interval ]− sc, sc + 1]. Thus, we have

‖∆qQ(τ(t),∇v(t))‖Lp ≤ Ccq(t)2
−qs‖τ(t)‖Bs

p,1
‖∇v(t)‖Bsc

p,1
.

Then let us observe that, in [9], it is proved that

‖[v(t) · ∇,∆q]τ(t)‖Lp ≤ Ccq(t)2
−qs‖∇v(t)‖Bsc

p,1
‖τ(t)‖Bs

p,1
.

The estimate (5.5) is proved and so is the lemma.
Now let us prove Theorem 1.6. As D (the space of smooth compactly supported

functions) is dense in Bsc−1
p,1 ×Bscp,1, let us consider a sequence (vn,0, τn,0) of D which

converges to (v0, τ0) in the Banach space Bsc−1
p,1 × Bscp,1 and such that for all n, we

have ||vn,0||Bsc
p,1
≤ ||v0||Bsc

p,1
and ||τn,0||Bsc−1

p,1
≤ ‖τ0||Bsc−1

p,1
.

Theorem 1.1 claims that a smooth solution (vn, τn) exists on a time interval [0, Tn[.
Let us define

vn,L = eνt∆vn,0 and wn = vn − vn,L.

Now let us apply the above Lemma 5.1 with s = sc and

fn = Q(wn, wn) + 2Q(vn,L, wn) +Q(vn,L, vn,L), v = vn, g = 0.

Let us define

Wn,λ(T ) = ν||wn,λ||L1
T

(Bsc+1
p,1 ) + ||wn,λ||L∞

T
(Bsc−1

p,1 ),
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where we recall that

wλ(t) = w(t) exp

(
−λ

∫ t

0

‖∇v(t′)‖Bsc
p,1

dt′
)
.

Then we get, for any T ≤ min(TV E , Tn),

Wn,λ(T ) ≤ C
(
||fn,λ||L1

T
(Bsc−1

p,1 ) +
µ1

a
(1− e−a T )||τn,0||Bsc

p,1

)
.

Let us estimate ||fn,λ||L1
T

(Bsc−1
p,1 ). As Bscp,1 is an algebra,

||Q(a, b)||L1
T

(Bsc−1
p,1 ) ≤ C||a||L2

T
(Bsc

p,1)
||b||L2

T
(Bsc

p,1)
.

Then using classical interpolation results, we get

||a||L2
T

(Bsc
p,1)
≤ ||a||1/2

L1
T

(Bsc+1
p,1 )

||a||1/2
L∞

T
(Bsc−1

p,1 )
.

We thus infer that

||fn,λ||L1
T

(Bsc−1
p,1 ) ≤ C

(
W 2
n,λ +Wn,λ||vn,L||L2

T
(Bsc

p,1)
+ ||vn,L||2L2

T
(Bsc

p,1)

)
.

Using Lemma 5.1, we get that

Wn,λ(T ) ≤ C
(
||vn,L||2L2

T
(Bsc

p,1)
+W 2

n,λ(T ) +
µ1

a
(1− e−a T )||τn,0||Bsc

p,1

)
.

Let T ≤ min{T(vn,0,τn,0), TV E , Tn}, where T = T(vn,0,τn,0) is such that

Cµ1

aν
(1− e−a T )||τn,0||Bsc

p,1
+

C

ν

(∑
q

2q(s−1)‖∆qvn,0‖Lp(1− eC
−1ν22qT )

)
≤ 1

8C
·

We can see easily that T(vn,0,τn,0) goes to T(v0,τ0), when n goes to ∞. Next we recall
that (see, for instance, [6])

||v||
Lp

T
(B

sc−1+ 2
p

p,1 )
≤

∑
q

2q(s−1)‖∆qv‖Lp

(
1− eC

−1ν22qT

ν

)1/p

.

So we get

Wn,λ(T ) ≤ CW 2
n,λ(T ) +

1

5C

and, since Wn,λ(0) = 0 and that Wn,λ(t) is continuous in t, we deduce that for all T

Wn,λ(T ) ≤ 1

2C
·

This can be rewritten as follows:

ν||wn||L1
T

(Bsc+1
p,1 ) + ||wn||L∞

T
(Bsc−1

p,1 ) ≤
1

2C
exp

(
λ||vn,L||L1

T
(Bsc+1

p,1 ) + λ||wn||L1
T

(Bsc+1
p,1 )

)
.

If C is chosen big enough, we get

||wn||L1
T

(Bsc+1
p,1 ) ≤

1

3
exp(||wn||L1

T
(Bsc+1

p,1 )).



110 JEAN-YVES CHEMIN AND NADER MASMOUDI

Then using the following lemma, we conclude easily that ||wn||L1
T

(Bsc+1
p,1 ) ≤ 1.

Lemma 5.2. If f(t) is a continuous function satisfying for any t in [0, T ]

f(t) ≤ ηef(t)

with η < 1
e and f(0) = 0, then we have for all t ∈ [0, T ],

f(t) ≤ eη.

Then we deduce that wn is bounded in L∞
T (Bsc−1

p,1 ) ∩ L1
T (B

sc+1
p,1 ). Using Lemma

5.1 for τ , we get that τn is bounded in L∞
T (Bscp,1). The explosion condition in Sobolev

spaces and the fact that ||∇v||L∞ ≤ ||v||Bsc+1
p,1

and ||τ ||L∞ ≤ ||τ ||Bsc
p,1

show that

Tn ≥ min{T(vn,0,τn,0), TV E} and hence, one can take T = min{T(v0,τ0), TV E}.
Now let us prove the uniqueness part. We recall that we assume here that p is in

the interval [1, 2d]. This means that sc ≥ 1
2 . Let us consider (v, τ) a solution of (V E)

in L∞
T (Bsc−1

p,1 ) ∩ L1
T (B

sc+1
p,1 )× L∞

T (Bscp,1). It is obvious that

∂tv ∈ L1
T (B

sc−1
p,1 ) and that ∂tτ ∈ L1

T (B
sc−1
p,1 ).

So we get (v − v0, τ − τ0) ∈ C([0, T ];Bsc−1
p,1 × Bsc−1

p,1 ). Let us consider two solu-

tions (vj , τj) of (V E) associated to the same initial data. The difference (w, θ)
def
=

(v1 − v2, τ1 − τ2) is in C([0, T ];Bsc−1
p,1 ×Bsc−1

p,1 ) and satisfies




∂tw − ν∆w = Pµ1∇τ + 2Q(v1 + v2, w),
∂tθ + v1 · ∇θ + aθ = µ2Dw −Q(θ,∇v1)−Q(τ2,∇w)− w · ∇τ2,

(w, θ)|t=0 = (0, 0).

Applying Lemma 5.1 with s = sc − 1, we get

ν||wλ||L1
T

(Bsc
p,1)

+||wλ||L∞
T

(Bsc−2
p,1 )+||θλ||L∞

T
(Bsc−1

p,1 ) ≤ C
(
||fλ||L1

T
(Bsc−2

p,1 ) + ||gλ||L1
T

(Bsc−1
p,1 )

)
,

where

fλ = 2Q(v1+v2, w) and gλ = 2Q(v1+v2, w) = −Q(θ,∇v1)−Q(τ2,∇w)−w ·∇τ2.

Since we are looking for uniqueness, we can forget the λ. In what follows the constant

C will denote C exp(−λ ∫ T
0
‖∇v1(t

′)‖Bsc
p,1

dt′). Using classical results for products in

Besov spaces and the fact that sc + (sc − 1) ≥ 0, we get

||f ||L1
T

(Bsc−2
p,1 ) ≤ C

(
||v1||L2

T
(Bsc

p,1)
+ ||v2||L2

T
(Bsc

p,1)

)
||w||L2

T
(Bsc−1

p,1 )

≤ C
(
||v1||L2

T
(Bsc

p,1)
+ ||v2||L2

T
(Bsc

p,1)

)
||w|| 12

L1
T

(Bsc
p,1)
||w|| 12

L∞
T

(Bsc−2
p,1 )

and

||g‖L1
T

(Bsc−1
p,1 ) ≤ C

(
‖v1||L1

T
(Bsc+1

p,1 )||θ||L∞
T

(Bsc−1
p,1 ) + ||τ2||L∞

T
(Bsc

p,1)
||w||L1

T
(Bsc

p,1)

)
.

So, uniqueness is proved by application of the Gronwall lemma.
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Finally, we prove Theorem 1.9. Rewriting (2.5) in the framework of Besov spaces,
we get for q ≥ 0

Vq(t)
def
=

d

dt
(µ2‖∆qv(t)‖2L2 + µ1‖∆qτ‖2L2) + 2µ2ν‖∇∆qvn(t)‖2L2 + 2µ1a‖∆qτn‖2L2

≤ Ccq(t)2
−qs

(
‖∇v(t)‖Bs

p,1
µ2‖v(t)‖Bs

p,1
‖∆qv(t)‖L2

+ ‖∇v(t)‖Bs
p,1

µ1‖τ(t)‖Bs
p,1
‖∆qτ(t)‖L2

+ ‖τ(t)‖Bs
p,1

µ1‖∇v(t)‖Bs
p,1
‖∆qτ(t)‖L2

)
,

where the series cq(t) is now such that
∑
q cq(t) = 1. Then using that

(µ2‖∆qv(t)‖2L2 + µ1‖∆qτ‖2L2) ≥ 1

2
(
√
µ2‖∆qv(t)‖L2 +

√
µ1‖∆qτ‖L2)2

and that

2µ22
2qν‖∆qv(t)‖2L2 + 2µ1a‖∆qτ‖2L2 ≥ (2q

√
νµ2‖∆qv(t)‖L2 +

√
aµ1‖∆qτ‖L2)

×min(
√
ν,
√
a)(
√
µ2‖∆qv(t)‖L2 +

√
µ1‖∆qτ‖L2),

we get

d

dt
(
√
µ2‖∆qv(t)‖L2 +

√
µ1‖∆qτ‖L2) + min(

√
ν,
√
a)(2q

√
νµ2‖∆qv(t)‖L2 +

√
aµ1‖∆qτ‖L2)

≤ Ccq(t)2
−qs

(
‖∇v(t)‖Bs

p,1

√
µ2‖v(t)‖Bs

p,1

+‖∇v(t)‖Bs
√
µ1‖τ(t)‖Bs

p,1
+ ‖τ(t)‖Bs

p,1

√
µ1‖∇v(t)‖Bs

p,1

)
.

Then multiplying by 2qs and summing in q, we get

d

dt

(√
µ2‖v‖Bs

p,1
+
√
µ1‖τ‖Bs

p,1

)
+min(

√
ν,
√
a)(
√
νµ2‖v‖Bs+1

p,1
+
√
aµ1‖τ‖Bs

p,1
)

≤ C‖v(t)‖Bs+1
p,1

(√
µ2‖v(t)‖Bs

p,1
+
√
µ1‖τ‖Bs

p,1

)
.

Thus, if

(
√
µ2‖v0‖Bs

p,1
+
√
µ1‖τ0‖Bs

p,1
) ≤ cmin(

√
ν,
√
a)
√
νµ2,

we get the global existence.
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non-lipschitziens et méchanique des fluides, Arch. Rational Mech. Anal., 127 (1994), pp.
159–182.

[2] J. Beale, T. Kato, and A. Majda, Remarks on the breakdown of smoothness for the 3-D
Euler equations, Comm. Math. Phys., 94 (1984), pp. 61–66.

[3] J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées
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[19] J.G. Oldroyd, Non-Newtonian effects in steady motion of some idealized elastico-viscous

liquids, Proc. Roy. Soc. London Ser. A, 245 (1958), pp. 278–297.
[20] M. Renardy, Existence of slow steady flows of viscoelastic fluids with differential constitutive

equations, Z. Angew. Math. Mech., 65 (1985), pp. 449–451.
[21] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland,

Amsterdam, 1978.



ESTIMATES FOR PERIODIC AND DIRICHLET EIGENVALUES OF
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Abstract. Consider the Schrödinger equation −y′′ + V y = λy for a complex-valued potential
V of period 1 in the weighted Sobolev space Hw of 2-periodic functions f : R → C,

Hw ≡ Hw
C :=


f(x) =

∞∑
k=−∞

f̂(k)eiπkx| ‖f‖w <∞

 ,

where

‖f‖w :=
(
2
∑
k

w(k)2 |f̂(k)|2
)1/2

and w = (w(k))k∈Z denotes a symmetric, submultiplicative weight sequence. Denote by λn =

λn(V ) (n ≥ 0) the periodic eigenvalues of − d2

dx2 + V when considered on the interval [0, 2], listed

in such a way that λ2n, λ2n−1 = n2π2 + 0(1), and denote by µn = µn(V ) (n ≥ 1) the Dirichlet

eigenvalues of − d2

dx2 + V considered on [0, 1], listed in such a way that µn = n2π2 + 0(1).
Theorem. There exist (absolute) constants K1,K2 > 0, so that for any 1-periodic potential V

in Hw, ∑
n≥N

w(2n)2|λ2n − λ2n−1|2 ≤ K1(1 + ‖V ‖w)K2

and ∑
n≥N

w(2n)2|µn − λ2n|2 ≤ K1(1 + ‖V ‖w)K2 ,

where N := K1(1 + ‖V ‖w)2.

Key words. Schrödinger operators, periodic and Dirichlet eigenvalues, estimates on gap lengths

AMS subject classifications. 58F19, 58F07, 35Q35
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1. Introduction.

1.1. Summary of the results. Consider the Schrödinger equation on the in-
terval [0, 2],

−y′′ + V y = λy,(1.1)

where V is a complex-valued periodic potential of period 1 in the weighted Sobolev
space of 2-periodic functions,

Hw ≡ Hw
C
:=

{
f(x) =

∑
k

f̂(k)eiπkx | ‖f‖w <∞
}
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with

‖f‖w :=
(
2
∑
k

w(k)2 |f̂(k)|2
)1/2

and w = (w(k))k∈Z with w(k) ≥ 1 ∀k ∈ Z is a symmetric weight (w(k) = w(−k) ∀k ∈
Z) which is submultiplicative,

w(k + j) ≤ w(k)w(j) ∀k, j ∈ Z.

As an example of a submultiplicative weight we mention the Abel–Sobolev weight
wa,b(k) := (1 + |k|)aeb|k| with a ≥ 0 and b ≥ 0. An element f ∈ Hwa,b can be viewed

as a complex-valued function F (z) =
∑

k∈Z
f̂(k)eiπkz, z = x+ iy, analytic in the strip

|y| < b
π and such that F (x + i

b
π ) as well as F (x − i bπ ) are in the Sobolev space Ha,

defined by the weight w(k) := (1 + |k|)a. More generally, w(k) := (1 + |k|)aeb|k|α is
a submultiplicative weight for 0 ≤ α ≤ 1, a ≥ 0 and b ≥ 0; a function f ∈ Hw is a
function of Gevrey class.

The spectrum specPer(L) of the operator L := − d2

dx2 + V , when considered on
the interval [0, 2] and with periodic boundary conditions, is discrete and is a sequence
λn = λn(V ) (n ≥ 0) with the property that Reλn → +∞ for n → ∞. Here, the
eigenvalues λn are enumerated with their algebraic multiplicities and ordered so that

Reλn < Reλn+1 or Reλn = Reλn+1 and Imλn ≤ Imλn+1.

Notice that adding a constant to the potential V results in a shift of the eigenvalues
by the same constant. Hence we restrict ourselves—without loss of generality—to
potentials V of mean zero and introduce the subspace Hw

0 ⊆ Hw,

Hw
0 :=

{
f ∈ Hw

C
|
∫ 2

0

f(x)dx = 0

}
.

For the weight w ≡ 1, the spaces Hw
0 and Hw are also denoted by L2

0 and L
2,

respectively. For n sufficiently large (cf. Lemma 1.4 in section 1.2 for a reminder),
the eigenvalues come in pairs {λ2n, λ2n−1}, i.e., λ2n and λ2n−1 are close to each other
and separated from the rest of specper(L) by a distance of size n.

In section 2 of this paper, we prove the following theorem.
Theorem 1.1. There exist (absolute) constants K1,K2 > 0 so that for any

1-periodic potential V in Hw
0∑

n≥N
w(2n)2 |λ2n − λ2n−1|2 ≤ K1(1 + ‖V ‖w)K2 ,(1.2)

where N := K1(1 + ‖V ‖w)2.
(See Proposition 2.16 and section 2.8 for details.)
In the next theorem we state the main two terms in the asymptotics of the se-

quence of gap lengths, γn := λ2n − λ2n−1 as n→ ∞. For this purpose introduce

ρ(n) := V̂ (2n) +
1

π2

∑
j

V̂ (n− j)
n− j

V̂ (n+ j)

n+ j
.(1.3)

Notice that the last term in (1.3) is a convolution and well defined as V̂ (0) = 0.
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Theorem 1.2. There exist (absolute) constants K3,K4 > 0 so that for any
1-periodic potential V in Hw

0∑
n≥N

(1 + |n|)2w(2n)2min± | (λ2n − λ2n−1)± 2
√
ρ(n)ρ(−n) |2

≤ K3(1 + ‖V ‖w)K4 ,

(1.4)

where N := K3(1 + ‖V ‖w)2.
(See Theorem 2.20 and section 2.9 for further details.)
In our previous paper [8], we obtained estimate (1.2) and a weaker form of estimate

(1.4) for the Abel–Sobolev weights

wa,b := (1 + |k|)aeb|k|, (a ≥ 0, b ≥ 0),

using a Fourier approach. By a refined analysis we obtain in section 2 of the present
paper estimates (1.2) for general submultiplicative weights and a two-terms asymp-
totic (1.3)–(1.4) for the gap lengths. It turns out that submultiplicative weights
provide the right setup for applications to a KAM theorem for the Korteweg–deVries
equation (cf. [2]), as will be shown in a subsequent paper. Further, we present in the
present paper an analysis of the Riesz spaces together with estimates for the Dirichlet
eigenvalues. Let us explain this in more detail.

In section 3, we analyze the Riesz spaces En (n sufficiently large), i.e., the images
of the Riesz projectors defined by a circle of appropriate size around n2π2 as contour

and the operator L := d2

dx2 + V, considered on [0, 1] with periodic (for n even) or
antiperiodic (for n odd) boundary conditions (cf. (1.16)). We study the structure of L
by computing the matrix representation of the restriction of L−λ2n to En with respect
to an orthonormal basis fn, ϕn, where fn is a periodic or antiperiodic eigenfunction
in En. Moreover, we estimate the entries of this matrix which will be important for
estimates of the Dirichlet eigenvalues (cf. Theorem 3.5 and Proposition 3.6).

In section 4 we obtain estimates for the Dirichlet eigenvalues µn(V ) (n ≥ 1) of

the operator − d2

dx2 +V , considered on the interval [0, 1]. The eigenvalues µn ≡ µn(V )
are ordered in such a way that

Reµn < Reµn+1 or Reµn = Reµn+1 and Imµn ≤ Imµn+1.(1.5)

Theorem 1.3. There exist (absolute) constants K5,K6 > 0 so that for any
1-periodic potential V in Hw

0∑
n≥N

w(2n)2|µn − λ2n|2 ≤ K5(1 + ‖V ‖w)K6 ,(1.6)

where N := K5(1 + ‖V ‖w)K6 .
It turns out that by the methods used to prove Theorem 1.3, one can obtain

similar results for the eigenvalues of Lbc, where Lbc is the operator L with boundary
conditions bc from a special class B. In section 5, this class is defined and the spectrum
of the operators Lbc is analyzed.

It is well known that the decay of the gap lengths γn := λ2n − λ2n−1, associated
to specPer(L), depends on the smoothness properties of V (cf., e.g., [7], [13], [20]).
In particular Marc̆enko [13] obtains polynomial decay of the gap lengths in terms of
the Sobolev class of the potential and Trubowitz [20] proves exponential decay for
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real analytic potentials. Conversely, the question of smoothness of an L2-potential in
terms of the decay of the gap lengths has been addressed as well, mainly for real-valued
potentials (cf. [13], [15], [20]) but more recently also for complex-valued potentials.
It turns out that for complex-valued potentials, the decay of the gap lengths does
not suffice to determine the smoothness: Sansuc and Tkachenko [19] proved that a
periodic complex-valued potential V ∈ L2

0 belongs to the Sobolev space H
N
0 iff the

following two conditions are satisfied:∑
n≥1

(1 + |n|)2N |λ2n − λ2n−1|2 <∞ ;
∑
n≥1

(1 + |n|)2N |µn − λ2n|2 <∞,

where, as above, (µn)n≥1 denote Dirichlet eigenvalues.
The condition of the weight sequence (w(n))n∈Z to be submultiplicative could be

seen as purely technical and convenient in the proofs of the inequalities stated in the
theorems above, but it may be too restrictive for results like Theorem 1.1. Moreover,
the submultiplicativity implies that

lim
n→∞

logw(n)

n
= ω∗ <∞.

Thus, for ω > ω∗,

w(n) ≤ Cωe
ω|n| ∀n ∈ Z(1.7)

for some constant Cω > 0 and w(n) cannot grow faster than an exponential function.
Notice, however, that the slightest violation of the growth restriction (1.7) gives a
weight sequence which does not have the property stated by Theorem 1.1. This
follows from Harrell’s and Grigis’s analysis of the gap lengths for (real) polynomial
potentials. If V is a Mathieu potential

V (x) = t cos(2 · 2πx) 0 ≤ x ≤ 1,(1.8)

then Harrell [6] (cf. [1]) proved that the gap lengths γn satisfy the asymptotic estimates
(cf. [4, formula (1.8)])

γn =
tn

8n−1((n− 1)!)2

(
1 + 0

(
1

n2

))
,

and therefore, for some a, depending on t,

γn > e
−2n logn+an.(1.9)

Hence, if w(n) := eb|n| log |n| with b > 2, the analogue of Theorem 1.1 does not hold.
Indeed, we have

‖V ‖2
w =

π|t|2
2
w(4)2 <∞,

but (compare with (1.2))∑
n≥N

w(2n)2|γn|2 ≥
∑
n≥N

e4bn logne−4n logn+2an =∞.

A more refined analysis due to Grigis (see [4, Theorem 0.2]) shows that the above
weight is bad with any b > 0, i.e., does not have the property stated by Theorem 1.1.
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1.2. Preliminaries. General references on Schrödinger operators on the interval
and Hill’s operator can be found, e.g., in [11], [12], [18].

In this section we put together some well-known spectral properties of the operator

L := − d2

dx2 + V in a form convenient for our further analysis. The following three
lemmas are particular results in the general theory of nonselfadjoint boundary value
problems developed by Keldysh [9], [10]. Many details can be found in [14], section 6
of chapter 1, in particular in subsection 6.3 (Lemmas 6.6 and 6.7) and 6.4 (p. 34); cf.
also the appendix (pp. 215–219) where the paper [9] is translated into English.

Let us consider Dirichlet boundary conditions, bc = Dir, as well as periodic
Per+ and antiperiodic Per− boundary conditions, bc = Per±, i.e., for functions y in
H2

C
[0, 1],

(Dir) y(0) = 0 ; y(1) = 0;
(Per+) y(1) = y(0) ; y′(1) = y′(0);
(Per−) y(1) = −y(0) ; y′(1) = −y′(1).
For V ∈ L2

C
[0, 1] with

∫ 1

0
V (x)dx = 0 introduce the operator L := D2 + V , where

D = 1
i
d
dx . Given one of the above boundary conditions bc, denote by Lbc the closed

operator in L2
C
[0, 1] with domain dom(Lbc) := {f ∈ H2

C
([0, 1])|f satisfies bc}. Let

specbc(L) ≡ spec(Lbc) be the spectrum of Lbc. For the potential V ≡ 0, i.e., L = D2,
specbc(D

2) can be given explicitly,

specDir(D
2) = {k2π2|k ≥ 1},(1.10)

specPer+(D
2) = {0} ∪ {(2k)2π2, (2k)2π2|k ≥ 1},(1.11)

specPer−(D
2) = {(2k − 1)2π2, (2k − 1)2π2|k ≥ 1}.(1.12)

For r > 0 and k ∈ Z≥0, let D(k) ≡ Dr(k) be the open disc in C with center k2π2 and
radius r

D(k) := {z ∈ C | |z − k2π2| < r}
and, for r1, r2 > 0,R ≡ Rr1,r2 the open rectangle in C

R := {x+ iy | − r1 < x < r2; |y| < r2}.
Denote by ‖V ‖ the L2-norm of V ∈ L2

C
[0, 2], ‖V ‖ = (2∑k |V̂ (k)|2)1/2.

Lemma 1.4. There exist absolute constants K7 ≥ 1 and K8 ≥ 1 so that, for any
given M ≥ 1, boundary condition bc ∈ {Dir, Per±}, N ≥ 2K8(M+1), and 1-periodic
potential V ∈ L2

C
[0, 2] with ‖V ‖ ≤M , the following holds:

spec(Lbc) ⊂ R ∪
∞⋃

k=N+1

D(k),(1.13)

where D(k) ≡ Dr(k) with r := K8(M + 1) and R = Rr1,r2 with r1 = K7(1 +M)
4/3

and r2 = (N
2 +N)π2.

We point out that specPer+(D
2) ∪ specPer−(D2) (cf. (1.11) and (1.12)) is the

spectrum specPer(D
2) of the operator D2 on [0, 2] with periodic boundary conditions.

Obviously, for any 1-periodic potential V ,

specPer+(L) ∪ specPer−(L) ⊆ specPer(L).
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For a real-valued potential the converse inclusion

specPer(L) ⊆ specPer+(L) ∪ specPer−(L)(1.14)

also holds, as one can see from an elementary application of Floquet theory. More
generally, by a simple counting argument, Lemma 1.4 implies that (1.14) holds for
complex-valued potentials.

The periodic eigenvalues of L on [0, 2] have been denoted by (λn)n≥0 (cf. (1.7)).
According to Lemma 1.4, the eigenvalues λ2n−1 and λ2n are close to n

2π2 for n suffi-
ciently large. At certain occasions (cf., e.g., section 2.8), one of the two eigenvalues,
either λ2n or λ2n−1, will satisfy a certain property, but it will not be possible to de-
cide which of the two. For such a situation, it is convenient to introduce λ+

n , λ
−
n as a

different notation for the eigenvalues λ2n, λ2n−1,

{λ+
n , λ

−
n } = {λ2n, λ2n−1}.

By Lemma 1.4, it follows that the Riesz projectors P∗ ≡ P∗;bc and Pk ≡ Pk;bc are
well defined for ‖V ‖ ≤M ,

P∗ :=
1

2πi

∫
∂R
(z − Lbc)−1dz,(1.15)

Pk :=
1

2πi

∫
∂D(k)

(z − Lbc)−1dz, (k ≥ N + 1),(1.16)

where the contours ∂R and ∂D(k) are counterclockwise oriented. Denote by ‖T‖L(L2)

the operator norm of a bounded linear operator T : L2
C
[0, 1]→ L2

C
[0, 1].

Lemma 1.5. There exist absolute constants K9 and K10 so that under the same
assumptions as in Lemma 1.4,

‖P∗‖L(L2) ≤ K9 log(2 +M),(1.17)

‖Pk‖L(L2) ≤ K10, (k ≥ N + 1).(1.18)

Further, for any f ∈ L2
C
[0, 1],

f = P∗f +
∞∑

k=N+1

Pkf,(1.19)

where the series (1.19) converges in L2.

Lemma 1.6. There exists an absolute constant K11 ≥ 1 so that under the same
assumptions as in Lemma 1.4,

‖(λ− Lbc)−1(Id− Pk)‖L(L2) ≤ K11
1

k
∀λ ∈ Dr(k), ∀k ≥ N + 1.(1.20)
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2. Periodic eigenvalues.

2.1. Fourier block decomposition. Denote by L the Schrödinger operator
L := D2 + V, D = 1

i
d
dx with a complex-valued potential V ∈ Hw

0 of period 1,
considered as an unbounded operator on L2

C
[0, 2], with periodic boundary conditions.

For V = 0, the spectrum is discrete: 0, π2, π2, (2π)2, (2π)2, . . . ; i.e., the eigenvalues
k2π2 are double for k ≥ 1 and the eigenvalues (n + 1)2π2 and n2π2 are (2n + 1)π2

apart. Further, for n ≥ 1, einπx, e−inπx is a basis of the eigenspace corresponding
to the eigenvalue n2π2. Viewing the potential V as a perturbation of D2, it follows
that for n sufficiently large, L has a pair of eigenvalues near n2π2, isolated from
the remaining spectrum of L. Our aim is to obtain an estimate for the distance
between the two eigenvalues and to compare eigenfunctions and eigenvalues with the
corresponding ones for V = 0. Notice, however, that L might have double eigenvalues
of geometric multiplicity 1 as V is complex-valued.

The Fourier series decomposition leads to an isometric isomorphism F between
L2

C
[0, 2] and /2(Z) with F(eiπkx) = ek, (ek)k∈Z being the standard basis in /2(Z).

Decompose L̂ = FLF−1 with respect to the orthogonal sum /2(Z) = Ce−n ⊕ Cen ⊕
/2(Z\{±n}). To express L̂, introduce the involution operator J : /2(Z)→ /2(Z),

(Ja)(k) := a(−k) (k ∈ Z)

and the shift operator S : /2(Z)→ /2(Z),

(Sa)(k) := a(k + 1) (k ∈ Z).

Sn = S ◦ · · · ◦ S denotes the n*th iterate of S. For any subset K ⊂ Z, the restriction
of S on /2(K) with values in /2(S(K)) is denoted by S as well. This leads to the
block decomposition of L̂− λ, λ = n2π2 + z,

L̂− (n2π2 + z) =


 −z V̂ (−2n) (SnJV̂ )t

Z(n)

V̂ (2n) −z (S−nJV̂ )t
Z(n)

(SnV̂ )Z(n) (S−nV̂ )Z(n) An − z


 ,(2.1)

where Z(n) := Z\{±n}, the superscript t denotes the transpose, andAn : /2(Z\{±n})→
/2(Z\{±n}) is the linear operator with matrix representation

An(j, k) = π
2(k2 − n2)δjk + V̂ (j − k), (j, k ∈ Z(n)).

The (possibly) complex number λ = n2π2 + z is a periodic eigenvalue of L if there
exists a 2-periodic function f ∈ H2

C
([0, 2]) such that (L− λ)f = 0. With

xf := f̂(−n), yf := f̂(n), F := (f̂(k))Z(n),

the equation (L − λ)f = 0, or its equivalent (L̂ − λ)f̂ = 0, leads to the following
homogeneous system of equations:

−zxf + V̂ (−2n)yf + [SnJV̂ , F ]Z(n) = 0,(2.2)

V̂ (2n)xf − zyf + [S−nJV̂ , F ]Z(n) = 0,(2.3)

(SnV̂ )Z(n)x
f + (S−nV̂ )Z(n)y

f + (An − z)F = 0,(2.4)
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where [a, b]K =
∑

k∈K a(k)b(k) (no complex conjugation). Equation (2.4) will be
referred to as the external equation. The system of equations (2.2)–(2.4) is analyzed
as follows. First we solve the external equation (2.4) for F , regarding xf , yf , and z as
parameters. The solution F of (2.4) is then substituted into the equations (2.2)–(2.3).
This leads to a linear homogeneous system of two equations for the unknowns xf , yf

with parameter z. The determinant of this system vanishes iff λ = n2π2 + z is an
eigenvalue of L. In section 3.3 we will also consider the inhomogneous version of the
system (2.2)–(2.4) in order to obtain, among other results, an orthonormal basis of
the root space of a double eigenvalue of L of geometric multiplicity 1.

2.2. Analysis of the external equation. To analyze the operator (An − z) :
/2(Z(n)) → /2(Z(n)), we write An = Dn + Bn, where Dn is the diagonal part of An
(recall that V̂ (0) = 0),

Dn(k, j) := π
2(k2 − n2)δkj , (k, j ∈ Z(n) = Z\{±n}).(2.5)

Notice that Dn is invertible and that Bn has matrix elements

Bn(k, j) = V̂ (k − j), (k, j ∈ Z(n)).

Write

An − z = Dn − (z −Bn) = (Id− Tn)Dn; Tn := (z −Bn)D−1
n ,(2.6)

where Tn is an operator on /
2(Z(n)) with matrix elements

(zδkj − V̂ (k − j)) 1

π2(j − n2)
.

Further, denote by ‖V ‖ the norm of V in L2
C
([0, 2]), ‖V ‖ = (2∑k |V̂ (k)|2)1/2.

Lemma 2.1. (i) For n ≥ 1,

‖D−1
n ‖ ≤ 1

π2

1

n
,(2.7)

‖Tn‖ ≤ 1

3n
(|z|+ ‖V ‖);(2.8)

(ii) for n ≥ 1 and z ∈ C with |z|+ ‖V ‖ ≤ n,

‖(An − z)−1‖ ≤ 2

π2

1

n
.(2.9)

Proof. (i) (2.7) follows from (2.5). Concerning (2.8) we prove ‖Tn‖HS ≤ 1
3n (|z|+‖V ‖) with ‖Tn‖HS denoting the Hilbert–Schmidt norm of T (which leads to a stronger

version of (2.8) as ‖Tn‖ ≤ ‖Tn‖HS):

‖Tn‖2
HS =

∑
j,k∈Z(n)

|zδkj − V̂ (k − j)|2
|π2(k2 − n2)|2

≤
∑

k∈Z(n)

1

π4

2|z|2 + 2‖V̂ ‖2

(k − n)2(k + n)2 .
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As ∑
k �=±n

1

(k − n)2(k + n)2 =
1

6

(π
n

)2

− 3

8

1

n4
,(2.10)

we conclude that ‖Tn‖HS ≤ 1
3n (|z|+ ‖V ‖).

(ii) If ‖Tn‖ ≤ 1
2 , (An − z) is invertible (cf. (2.6)) and

‖(An − z)−1‖ ≤ 2‖D−1
n ‖ ≤ 2

π2

1

n
.

In view of (2.8), ‖Tn‖ ≤ 1/2 for |z|+ ‖ V ‖ ≤ n.
As an immediate consequence of Lemma 2.1, one obtains the following proposi-

tion.
Proposition 2.2. Let n ≥ 1 and z ∈ C satisfy |z|+ ‖ V ‖ ≤ n. Then, for any

choice of xf , yf in C, (2.4) has a unique solution F

F = (z −An)−1(SnV̂ )Z(n)x
f + (z −An)−1(S−nV̂ )Z(n)y

f .(2.11)

Substituting the solution F , given by (2.11), into (2.2)–(2.3), one gets( −z + α(−n, z) V̂ (−2n) + β(−n, z)
V̂ (2n) + β(n, z) −z + α(n, z)

)(
xf

yf

)
=

(
0
0

)
,(2.12)

where, for n ∈ Z\{0}, satisfying |z|+ ‖V ‖ ≤ n, we define, with An := A|n|,

α(n, z) := [S−nJV̂ , (z −An)−1(S−nV̂ )Z(n)]Z(n),(2.13)

β(n, z) := [S−nJV̂ , (z −An)−1(SnV̂ )Z(n)]Z(n).(2.14)

In the following sections, the coefficients α(n, z) and β(n, z) will be analyzed. Often,
we will write [·, ·], for [·, ·]Z(n).

2.3. Identity for α(n, z). Throughout this and the following section, we as-
sume that n ≥ 1 and z ∈ C are such that |z| + ‖V ‖ ≤ n. To simplify notation
we drop the subindex n in An, Bn, Dn, and Tn with the understanding that n is
fixed in this subsection. Denote by (z − A)t the transpose of z − A, (z − A)t(j, k) :=
(z −A)(k, j)(∀k, j ∈ Z(n)).

Lemma 2.3. (i) JSn = S−nJ ;
(ii) (z −A) = J(z −A)tJ .
Proof. Part (i) is verified in a straightforward way. Regarding (ii), it is to prove

that for k, j ∈ Z(n),

(z −A)(k, j) = (z −A)(−j,−k).(2.15)

The identity (2.15) follows from the definition

(z −A)(k, j) = zδkj − π2(k2 − n2)δkj − V̂ (k − j)

and the identities

δkj = δ(−j)(−k); V̂ (k − j) = V̂ (−j − (−k)).
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We obtain the following identity for α(n, z).
Lemma 2.4. α(n, z) = α(−n, z).
Proof. With (S−nV̂ )Z(n) = S−nV̂Z\{0,2n} and (z − A)−1 = (J(z − A)tJ)−1 =

J((z −A)−1)tJ (Lemma 2.3) it follows that

α(n, z) = [S−nJV̂ , (J(z −A)tJ)−1S−nV̂Z\{0,2n}]Z(n)

= [JSnV̂ , J((z −A)−1)tJS−nV̂Z\{0,2n}]Z(n)

= [(z −A)−1SnV̂ , JS−nV̂Z\{0,2n}]Z(n)

= [SnJV̂ , (z −A)−1SnV̂ ]Z(n)

= α(−n, z).

As a consequence of Lemma 2.4, the vanishing of the determinant of the 2 × 2
matrix in (2.12) leads to the following equation for z:

(z − α(n, z))2 −
(
V̂ (2n) + β(n, z)

)(
V̂ (−2n) + β(−n, z)

)
= 0.(2.16)

Equation (2.16) is solved in two steps: for ζ given, we first solve the following equation,
referred to as the z-equation, for z:

z = α(n, z) + ζ.(2.17)

Substituting the solution z = z(ζ) of (2.17) into (2.16), we obtain the following
equation for ζ, referred to as the ζ-equation:

ζ2 −
(
V̂ (2n) + β(n, z(ζ))

)(
V̂ (−2n) + β(−n, z(ζ))

)
= 0.(2.18)

In the next four sections, (2.17) and (2.18) will be analyzed.

2.4. Estimates of α(n, z) and the z-equation (2.17). In this section we
solve (2.17), using the contractive mapping principle. For this purpose we need the
following lemma.

Lemma 2.5. For n ≥ 1 and z ∈ C satisfying |z|+ ‖V ‖ ≤ n,
(i) |α(n, z)| ≤ ‖V ‖2/3n;
(ii) | ddzα(n, z)| ≤ ‖V ‖2/9n2.
Proof. (i) By the definition (2.13) and Lemma 2.1,

|α(n, z)| ≤ ‖V ‖‖(z −A)−1 ‖ ‖V ‖ ≤ 2

π2

1

n
‖V ‖2.

(ii) Notice that

d

dz
α(n, z) = [S−nJV̂ ,−(z −A)−2S−nV̂ ]Z(n),

and therefore, ∣∣∣∣ ddzα(n, z)
∣∣∣∣ ≤ ‖V ‖‖(z −A)−1‖2‖V ‖ ≤ 4

π4

1

n2
‖V ‖2.

Denote by DM ≡ DM (0) the disc {z ∈ C||z| < M} and denote by DM its closure.
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Proposition 2.6. Let V ∈ L2
0. Then for any M > 0 and n ≥ 1 satisfying

n ≥ ‖V ‖+M , and for any ζ ∈ DM/2, the equation

z = ζ + α(n, z)(2.19)

has a unique solution zn = zn(ζ) in DM . The solution zn(ζ) depends analytically on
ζ ∈ DM/2.

Proof. For z ∈ DM ,

|z|+ ‖V ‖ ≤M + ‖V ‖ ≤ n,

and thus, by Lemma 2.5, |α(n, z)| ≤M/3. It follows that for ζ ∈ DM/2, z ∈ DM

|ζ|+ |α(n, z)| ≤M/2 +M/3 < M.

Thus, for ζ ∈ DM/2, g(z) := ζ +α(n, z) defines a map on DM into DM . Furthermore,
g is a contraction, as for any z1, z2 ∈ DM

|g(z1)− g(z2)| < 1

9
|z1 − z2|,

where we used that by Lemma 2.5

sup
|z|≤M

∣∣∣∣ ddzα(n, z)
∣∣∣∣ ≤ 1

9

1

n2
‖V ‖2 ≤ 1

9
.

Hence there exists a fixed point z = z(ζ) of g with |z| ≤M, z with

dz

dζ
=

(
1− dα

dz
(n, z(ζ))

)−1

∀|ζ| < M/2.

In a next step, we analyze (2.18). To obtain estimates for the coefficient β(n, z)
we need to establish bounds for the norm of the operator T = (z−B)D−1 introduced
in section 2.2, viewed as an operator on a weighted /2-space.

2.5. Estimates of norms of Tn. Recall that, with n arbitrary and fixed, T ≡
Tn = (z − B)D−1 : /2(Z(n)) → /2(Z(n)) is a bounded operator (cf. (2.6)). If V ∈
Hw

0 , T can also be viewed as an element in L(/2S±nw(Z(n))), where S±nw is the shifted
weight

(S±nw)(j) := w(±n+ j).(2.20)

Denote by W± : /2S±nw(Z(n))→ /2(Z(n)) the diagonal operator given by

W±(k, j) = w(k ± n)δkj .
Notice that W± : /2S±nw(Z(n))→ /2(Z(n)) is an isometry. Therefore,

‖T±‖L(�2) = ‖Tn‖L(�2S±nw
),(2.21)

where T± :=W±TnW−1
± : /2(Z(n))→ /2(Z(n)).

Lemma 2.7. For n ≥ 1

‖Tn‖L(�2S±nw
) ≤ |z|+ ‖V ‖w

3n
.



124 T. KAPPELER AND B. MITYAGIN

Proof. In view of (2.21) it suffices to estimate the Hilbert–Schmidt norm of T±
in L(/2). As w is submultiplicative,

(S±nw)(j)
(S±nw)(k)

≤ w(j − k).

In view of (2.21), (2.6), and V̂ (0) = 0,

‖T±‖2
HS =

∑
j,k �=±n

∣∣∣∣S±nw(j)
S±nw(k)

∣∣∣∣
2

|V̂ (j − k)|2 1

π4|k2 − n2|2

+
∑
k �=±n

|z|2 1

π4|k2 − n2|2

≤ (‖V ‖2
w + |z|2)

∑
k �=±n

1

π4

1

(k − n)2(k + n)2

≤ |z|2 + ‖V ‖2
w

9

1

n2
,

where in the last inequality, we again use (2.10). This estimate leads to ‖T±‖HS ≤
|z|+‖V ‖n

3n .
As an immediate consequence of Lemma 2.7 one obtains the following corollary.
Corollary 2.8. For n ≥ 1, and z ∈ C with |z|+‖V ‖w ≤ n, Id−Tn is invertible

and

‖(Id− Tn)−1‖L(�2S±nw
) ≤ 2.

Corollary 2.8 can be used to obtain an estimate of the solution F of the external
equation established in Proposition 2.2. According to (2.11),

F = xfF+ + y
fF−,

where

F± = (z −An)−1(S±nV̂ )Z(n).(2.22)

Corollary 2.9. For n ≥ 1 and z ∈ C with |z|+ ‖V ‖w ≤ n,

‖F±‖�2S±nw
≤ 2

π2n
‖V ‖w.

Proof. By (2.6), (z −An)−1 = −D−1
n (Id− Tn)−1, and by Corollary 2.8

‖(Id− Tn)−1‖L(�2S±nw
) ≤ 2.

AsDn is the diagonal operator on /
2(Z(n)) with coefficientsDn(k, j) = π

2(k2−n2)δkj ,
we have

‖D−1
n ‖L(�2S±nw

) ≤ 1

π2n
.

Combining these estimates yields the claimed estimate.
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2.6. Estimate for β(n, z). Substitute, for z ∈ C satisfying |z|+ ‖V ‖ ≤ n,

(z −A)−1 = −D−1 −D−1T (Id− T )−1

into the expression for β(n, z) to obtain

β(n, z) = β1(n) + β2(n, z)(2.23)

= β1(n) + β2(n, 0) + z

∫ 1

0

(
d

dz
β

)
(n, tz)dt,

where

β1(n) := −[S−nJV̂ ,D−1(SnV̂ )Z(n)]Z(n),(2.24)

β2(n, z) := −[S−nJV̂ ,D−1T (Id− T )−1(SnV̂ )Z(n)]Z(n).(2.25)

The term β1(n) is independent of z and

β1(n) =
1

π2

(
V̂

k
∗ V̂
k

)
(2n),(2.26)

or

β1(n) =
1

π2

∑
k �=±n

V̂ (n− k)
n− k

V̂ (n+ k)

n+ k
,(2.27)

where we use that −D(k, j) = −π2(k2 − n2)δkj = π2(n − k)(n + k)δkj . In the
subsequent lemmas, β1(n), β2(n, 0), and

d
dzβ(n, z) are estimated separately. Given

the weight w and α > 1/2, introduce a new weight (wα(k))k∈Z,

wα(k) :=

(
1 + |k

2
|
)α
w(k).

Notice that wα is again symmetric and submultiplicative.
Lemma 2.10. (

∑
n∈Z

w1(2n)
2β1(n)

2)1/2 ≤ ‖V ‖2
w.

Proof. By Lemmas A.1 and A.2 (in particular, Lemma A.2 for α = 1) and (2.26),

(∑
n∈Z

w1(2n)
2β1(n)

2

)1/2

≤ 1

π2

∥∥∥∥∥ V̂k ∗ V̂
k

∥∥∥∥∥
w1

≤ 6

π2

∥∥∥∥∥ V̂k
∥∥∥∥∥

2

w1

≤ ‖V̂ ‖2
w.

Lemma 2.11. For |n| ≥ nw :=M + ‖V ‖w,

(1 + |n|)w(2n) sup
|z|≤M

|β2(n, z)| ≤ 1

3
‖V ‖2

w.

Proof. By (2.25), for any |z| ≤M and |n| ≥ nw,

|β2(n, z)| = 1

π2

∣∣∣∣∣
(
V̂

k
∗ S−nT (Id− T )−1(SnV̂ )Z(n)

k

)
(2n)

∣∣∣∣∣
≤ 1

π2

∑
k �=±n

|V̂ (n− k)|
|n− k|

|a(n)(n+ k)|
|n+ k| ,(2.28)
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where

a(n)(k) := S−nT (Id− T )−1(SnV̂ )Z(n)(k), (k ∈ Z\{−2n, 0}).

Using that ‖T‖L(�2Snw) ≤ M+‖V ‖w

3|n| = nw

3|n| (Lemma 2.7) and ‖(Id − T )−1‖L(�2Sn
w

) ≤ 2

(Corollary 2.8), we conclude that

‖a(n)‖w ≤ nw
3|n|2‖V ‖w ≤ 2

3
‖V ‖w.(2.29)

As w1 is submultiplicative, we then obtain from (2.28)

(1 + |n|)w(2n)|β2(n, z)|
≤ 1

π2

∑
k �=±n

2w(n− k)|V̂ (n− k)|2w(n+ k)|a(n)(n+ k)|

≤ 4

π2
‖V ‖w‖a(n)‖w ≤ 1

3
‖V ‖2

w.

Lemma 2.12.
 ∑

|n|≥nw

(1 + |n|)4w(2n)2|β2(n, 0)|2



1/2

≤ (1 + nw)‖V ‖3
w.

Proof. By (2.25),

β2(n, 0) = [S−nJV̂ ,D−1BD−1(Id− Tz=0)
−1(SnV̂ )Z(n)]Z(n).

Write (Id − Tz=0)
−1 = Id + Tz=0(Id − Tz=0)

−1 to obtain β2(n, 0) = β3(n) + β4(n)
with

β3(n) :=[S−nJV̂ ,D−1BD−1SnV̂ )Z(n)]Z(n),

β4(n) :=[S−nJV̂ ,D−1BD−1Sna(n)]Z(n),

and

a ≡ a(n) := S−nTz=0(Id− Tz=0)
−1(SnV̂ )Z(n).

Let us first treat β3. As w is submultiplicative,

w(2n) ≤ w(n− k)w(n+ k) ≤ w(n− k)w(n+ j)w(k − j),

one obtains, for |n| ≥ nw,

(1 + |n|)2w(2n)β3(n)(2.30)

≤ 1

π4

∑
k �=±n

j �=±n

(1 + |n|)2w(n− k)|V̂ (n− k)|
|n− k||n+ k| w(k − j)|V̂ (k − j)|w(n+ j)|V̂ (n+ j)||n− j||n+ j|

=
1

π4
(R1 +R2 +R3 +R4),



ESTIMATES FOR PERIODIC AND DIRICHLET EIGENVALUES 127

where R1, R2, R3, R4 denote the partial sums corresponding to the index sets I1, I2, I3,
I4 ⊆ {(k, j) ∈ Z

2|k �= ±n, j �= ±n} defined as follows:
I1 := {|k − n| > |n|; |j − n| > |n| | k, j �= ±n},
I2 := {|k − n| > |n|; |j − n| < |n| | k, j �= ±n},
I3 := {|k − n| < |n|; |j − n| > |n| | k, j �= ±n},
I4 := {|k − n| < |n|; |j − n| < |n| | k, j �= ±n}.

Let us first estimate R2(n). For k, j with |k−n| > |n|, |j−n| < |n|, one has 1+ |n| ≤
|k − n| and 1 + |n| ≤ |j + n|, and thus,

(1 + |n|)2
|k − n||j + n| ≤ |k − n|

|k − n|
|j + n|
|j + n| ≤ 1.

Therefore, R2(n) is bounded by

∑
(k,j)∈I2

w(n− k)|V̂ (n− k)|
|n+ k| w(k − j)|V̂ (k − j)|w(n+ j)|V̂ (n+ j)||n− j| .(2.31)

Let ξ(j) := w(j)|V̂ (j)|. Then
∑

|j−n|<|n|
j �=n

ξ(k − j)ξ(n+ j)|n− j| =
∑

|
−2n|<|n|
2n−� �=0

ξ(k + n− /) ξ(/)

|2n− /| ≤ ρ.(2.32)

Hence, for h ∈ /2(Z),∑
|n|≥nw

|h(n)|R2(n) ≤
∑
n,k,�

|h(n)|ξ(n+ k)|k + n|
ξ(k + n− /)ξ(/)

|2n− /|

=
∑
n,k,�

h(n)ξ(k + n− /)
2n− /

ξ(n− k)ξ(/)
|k + n|

≤

∑
n,k,�

|h(n)|2ξ(k + n− /)2
|2n− /|2




1/2 
∑
n,k,�

ξ(n− k)2ξ(/)2
|k + n|2




1/2

≤

∑
n,j,�

|h(n)|2ξ(j)2
|2n− /|2




1/2 
∑
j,�,n

ξ(j)2ξ(/)2

|2n− j|2




1/2

≤ ·2‖h‖ ‖ξ‖ · 2‖ξ‖2 = 4‖h‖ ‖ξ‖3.

Thus we have proved that
 ∑

|n|≥nw

R2(n)
2




1/2

≤ 4‖ξ‖3 ≤ 4‖V ‖3
w.

Using the convolution estimate ‖U ∗ V ‖�2 ≤ ‖U‖�2‖V ‖�1 one obtains, for j = 1, 3,
and 4, 

 ∑
|n|≥nw

Rj(n)
2




1/2

≤ 4‖V ‖3
w.
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Hence, 
 ∑

|n|≥nw

(1 + |n|)4w(2n)2|β3(n)|2



1/2

≤ 1

π4
4 · 4 · ‖V ‖3

w ≤ ‖V ‖3
w.

To estimate β4(n) we proceed similarly. By definition,

β4(n) =
∑
k �=±n

V̂ (n ≤ k)
∑
j �=±n

1

π2(k2 − n2)
V̂ (k − j) 1

π2(j2(j2 − n2)
a(n+ j),

whence

(1 + |n|)2w(2n)|β4(n)|

≤ 1

π4

∑
k �=±n

j �=±n

(1 + |n|)2w(n− k)V̂ (n− k)
|n− k| |n+ k| w(k − j)V̂ (k − j)w(n+ j)|a(n+ j)||n− j| |n+ j|

=
1

π4
(Q1 +Q2 +Q3 +Q4),

where Q1, Q2, Q3, Q4 denote the partial sums corresponding to the index sets I1, I2, I3,
I4 defined above. Each of the four terms Qi = Qi(n)(1 ≤ i ≤ 4) is estimated in the
same way, so we concentrate only on one of them, say, Q2. Similarly as in (2.31) we
obtain

∑
(k,j)∈I2

w(n− k)|V̂ (n− k)|
|n+ k| w(k − j)|V̂ (k − j)|w(n+ j) |a(n+ j)||n− j| .

Let η(j) ≡ η(n)(j) := w(j)|a(j)| and ξ(j) := w(j)|V̂ (j)|. Then
∑

|j−n|<|n|
j �=n

ξ(k − j)η(n+ j)|n− j| =
∑

|
−2n|<|n|
2n−� �=0

ξ(k + n− /) η(/)

|2n− /| ≤ δ(n)(n+ k),

where

δ(n)(k + n) :=
∑
� �=2n,0

ξ(k + n− /) η(n)(/)

|2n− /| .

Using the convolution estimate ‖U ∗ V ‖�2 ≤ ‖U‖�2‖V ‖�1 one concludes that (with
2 · ∑j≥1

1
j2 = 2 · π2

6 < 4)

‖δ(n)‖�2 ≤ ‖η(n)‖�2‖ξ‖�2

∑
j �=0

1

j2




1/2

≤ 2‖η(n)‖�2‖ξ‖�2 .

As ‖TZ=0‖L(�2Snw) ≤ nw

3|n| (Lemma 2.7) and ‖(Id−IZ=0)
−1‖L(�2Snw) ≤ 2 (Corollary 2.8),

one has

‖η(n)‖�2 ≤ nw

3|n|1‖V ‖w, (∀|n| ≥ nw).
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Hence,

‖δ(n)‖�2 ≤ 4nw
3|n| ‖V ‖2

w, (∀|n| ≥ nw).

This leads to

Q2(n) ≤
∑

|k−n|>|n|
k �=−n

ξ(n− k)δ(n)(k + n)

|k + n| ≤ ‖ξ‖�2 4nw
3|n| ‖V ‖2

w · 2,

and hence, 
 ∑

|n|≥ww

Q2(n)
2




1/2

≤ 8nw
3

‖V ‖3
w


 ∑

|n|≥nw

1

n2




1/2

≤ 16nw
3

‖V ‖3
w.

Similar estimates hold for Q1, Q3, and Q4, and thus,
 ∑

|n|≥nw

(1 + |n|)4w(2n)2|β4(n)|2



1/2

≤ 4 · 1
π4

· 16nw
3

‖V ‖3
w.

Combined with the estimate for β3(n), this leads to the claimed statement.
Lemma 2.13.

 ∑
|n|≥nw

(1 + |n|)4w(2n)2 sup
|z|≤M

∣∣∣∣ ddz β(n, z)
∣∣∣∣
2



1/2

≤ 2(1 + nw)
1/2‖V ‖2

w.

Proof. Let η(n, z) := d
dzβ(n, z) and notice that

η(n, z) = −[S−nJV̂ , (z −A)−2(SnV̂ )Z(n)]Z(n).

Recall that (z −A)−1 = −D−1(Id− T )−1 = −D−1 −D−1T (Id− T )−1 and thus

(z −A)−2 =
(−D−1 −D−1T (Id− T )−1

)
(z −A)−1

= D−2 +D−2T (Id− T )−1 −D−1T (Id− T )−1)(z −A)−1

= D−2 +D−2T (Id− T )−1 +D−1T (Id− T )−1D−1(Id− T )−1.

This is used to write η(n, z) as a sum,

η(n, z) = η1(n) + η2(n, z) + η3(n, z),

where

η1(n) :=− [S−nJV̂ ,D−2(SnV̂ )Z(n)]Z(n),

η2(n, z) :=− [S−nJV̂ ,D−2T (Id− T )−1(SnV̂ )Z(n)]Z(n),

η3(n, z) :=− [S−nJV̂ ,D−1T (Id− T )−1D−1(Id− T )−1(SnV̂ )Z(n)]Z(n).
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The three terms η1, η2, and η3 are estimated separately. The coefficient η1 is inde-
pendent of z and

η1(n) =
1

π4

(
V̂

k2
∗ V̂
k2

)
(2n)

=
1

π4

∑
k �=±n

V̂ (n− k)
(n− k)2

V̂ (n+ k)

(n+ k)2
.

Hence, by Lemmas A.1 and A.2 (cf. formula (A.2) for α = 2),(∑
n∈Z

w2(2n)
2η1(n)

2

)1/2

≤ 1

π4

∥∥∥∥∥ V̂k2
∗ V̂
k2

∥∥∥∥∥
w2

≤ 6

π4

∥∥∥∥∥ V̂k2

∥∥∥∥∥
2

w2

≤ 6

π4
‖V̂ ‖2

w.(2.33)

To estimate η2(n, z), introduce, for |z| ≤M, |n| ≥ nw, and k ∈ Z\{−2n, 0},
a(k, z) ≡ a(n)(k, z) := −S−nT (Id− T )−1(SnV̂ )Z(n)(k).

Then ‖T‖L(�2Sn
w

) ≤ nw

3|n| (Lemma 2.7) and ‖(Id − T )−1‖L(�2Sn
w

) ≤ 2 (Corollary 2.8);

hence

‖a(n)‖w ≤ nw
3|n|2‖V ‖w,

and, as w2(n) = (1 + |n|)2w(2n) is submultiplicative,

(1 + |n|)2w(2n)|η2(n, z)| ≤ 1

π4

∣∣∣∣∣ V̂k2
∗ a(n)

k2

∣∣∣∣∣ (2n)
≤ 1

π4

∑
k �=±n

(1 + |n− k|)2
|n− k|2 w(n− k)|V̂ (n− k)| (1 + |n+ k|)2

|n+ k|2 |a(n)(n+ k)|

≤ 42

π4
‖V ‖w‖a(n)‖w ≤ 42

π4

2

3

nw
|n| ‖V ‖2

w

and


 ∑

|n|≥nw

(1 + |n|)4w(2n)2 sup
|z|≤M

|η2(n, z)|2



1/2

≤ 42

π4

2

3
‖V ‖2

w


n2

w

∑
|n|≥nw

1

n2




1/2

≤ 42

π4

2

3
(2(1 + nw))

1/2‖V ‖2
w ≤ 42

π4
(1 + nw)

1/2‖V ‖2
w.

(2.34)

Hence, we used that N2
∑

|n|≥N
1
n2 ≤ 2N2( 1

N2 +
∫∞
N

dx
x2 ) = 2(1 + N). To estimate

η3(n, z), we proceed in the same way as for η2(n, z). Introduce, for |z| ≤M, |n| ≥ nw,
and k ∈ Z\{−2n, 0},

a(k, z) ≡ a(n)(k, z) = S−nT (Id− T )−1D−1(Id− T )−1(SnV̂ )Z(n)(k).
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Then, by Lemma 2.7 and Corollary 2.8,

‖a(n)‖w ≤ nw
3|n|2

1

π2|n|2‖V ‖w,

where we use that |D−1
kk | = 1

π2|n2−k2| ≤ 1
π2|n| ∀k ∈ Z(n). As w2 is submultiplicative,

(1 + |n|)2w(2n)|η3(n, z)| ≤ 1 + |n|
π2

∣∣∣∣∣ V̂k ∗ a(n)
k

∣∣∣∣∣ (2n)
≤ 1 + |n|

π2

∑
k �=±n

1 + |n− k|
|n− k| w(n− k)|V̂ (n− k)|1 + |n− k|

|n+ k| w(n+ k)|a(n)(n+ k)|

≤ 4

π2
(1 + |n|)‖V ‖w‖a(n)‖w

≤ 42

π4

1

3

|n|+ 1
|n|

nw
|n| ‖V ‖2

w

and, with
 ∑

|n|≥nw

(
1 + |n|
n2

)2



1/2

≤
√
2

((
1 + nw
n2
w

)2

+

∫ ∞

nw

(
1

x4
+
2

x3
+
1

x2

)
dx

)1/2

≤ 4n−1/2
w ,

one obtains 
 ∑

|n|≥nw

(1 + |n|)4w(2n)2 sup
|z|≤M

|η3(n, z)|2



1/2

≤ 43

π4

1

3

4√
nw
nw‖V ‖2

w ≤ 44n
1/2
w

3π4
‖V ‖2

w.

(2.35)

Combining (2.34)–(2.35), we get
 ∑

|n|≥nw

(1 + |n|)4w(2n)2 sup
|z|≤M

∣∣∣∣ ddz β(n, z)
∣∣∣∣
2



1/2

≤ 6 + 42 + 44/3

π4
(nw + 1)

1/2‖V ‖2
w ≤ 2(nw + 1)

1/2‖V ‖2
w.

The previous lemmas lead us to the following main result of this section.
Proposition 2.14. The following statements hold:

(i)
(∑

|n|≥nw
(1 + |n|)4w(2n)2 sup|z|≤M |β2(n, z)|2

)1/2

≤ 2(1 + nw)
3/2‖V ‖2

w,

(ii)
(∑

|n|≥nw
(1 + |n|)2w(2n)2|β1(n)|2

)1/2

≤ ‖V ‖2
w,

(iii)
(∑

|n|≥nw
(1 + |n|)2w(2n)2 sup|z|≤M |β(n, z)|2

)1/2

≤ 2(1 + nw)
3/2‖V ‖2

w.

Proof. (i) By (2.23), for |z| ≤M ,

|β2(n, z)| ≤ |β2(n, 0)|+M sup
|z|≤M

∣∣∣∣ ddz β(n, z)
∣∣∣∣
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with M + ‖V ‖w = nw
 ∑

|n|≥nw

(1 + |n|)4w(2n)2 sup
|z|≤M

|β2(n, z)|2



1/2

≤ ‖V ‖3
w + 2M(1 + nw)

1/2‖V ‖2
w

≤ ‖V ‖2
w(‖V ‖w + 2M)(1 + nw)1/2;

(ii) Lemma 2.10;
(iii) It follows from conditions (i) and (ii).

2.7. The ζ-equation. In this section, we analyze the ζ-equation, stated in
(2.18),

ζ2 −
(
V̂ (2n) + β(n, z(ζ))

)(
V̂ (−2n) + β(−n, z(ζ))

)
= 0.(2.36)

Given M > 0 and V ∈ L2
0, define

rn := max
ε=±1

|V̂ (ε2n)|+ max
ε=±1

|β1(εn)|+ max
|z|≤M

ε=±1

|β2(εn, z)|,(2.37)

and let n∗ :=M + ‖V ‖. By Lemmas 2.10 and 2.11, applied for the weight w = 1,
rn ≤ ‖V ‖+ 2‖V ‖2 ∀n with |n| ≥ n∗.

Proposition 2.15. Assume that M > 0 satisfies

3(1 + ‖V ‖)2 ≤ M

4
.(2.38)

Then, for n ≥ n∗, ζ-equation (2.36) has exactly two (counted with multiplicity) solu-
tions in the disc Drn .

Notation. We label these two solutions by ζ+n , ζ
−
n in an arbitrary way, but then

we keep them fixed.
Proof. Clearly, ζ2 = 0 has precisely two roots in any disc Dr. For |ζ| = Krn with

1 < K < 2 close to 1 and any n ≥ n∗, by (2.37) and (2.23),

sup
|z|≤M

|
(
V̂ (2n) + β(n, z)

)(
V̂ (−2n) + β(−n, z)

)
| ≤ r2n < |ζ|2(2.39)

and |ζ| < 2rn ≤ M
2 . Taking into account (2.38), it follows from Proposition 2.6 that

zn(ζ) ∈ DM depends analytically on ζ for |ζ| < M/2 and n ≥ n∗. Therefore, the left
side of (2.36), denoted by g(ζ), is an analytic function of ζ in DM/2 and, by (2.39),

g(ζ) = ζ2 + g1(ζ) ; |g1(ζ)| < |ζ|2 for |ζ| ≤ M

2
.

Therefore, by Rouché’s theorem, (2.36) has precisely two roots in DKrn . As the two
roots are independent of K, and 1 < K < 2 is arbitrarily close to 1, we conclude that
ζ±n ∈ Drn .

Let, for n ≥ n∗,

z±n := z(ζ
±
n ) = ζ

±
n + α(n, z(ζ

±
n )),(2.40)
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where ζ±n are the two solutions of (2.36), given by Proposition 2.15, and define

λ±n := n
2π2 + z±n .(2.41)

Then λ±n is a pair of periodic eigenvalues, λ
±
n ∈ specper(− d2

dx2 +V ). In the next section
we want to deduce estimates for the gap length sequence (λ+

n − λ−n )n≥1.

2.8. Gap length estimates.
Proposition 2.16. Assume that M > 0 satisfies

3(1 + ‖V ‖w)2 ≤ M

4
.

Then, with nw :=M + ‖V ‖w,

 ∑
n≥nw

w(2n)2|λ+
n − λ−n |2




1/2

≤ 8(1 + nw)
3/2(1 + ‖V ‖w)2.

Remark. With N := 13(1 + ‖V ‖w)2,K1 = 500 and K2 = 5. Proposition 2.16
gives Theorem 1.1.

Proof. Notice that, for n ≥ nw, by (2.19),

|λ+
n − λ−n | = |z+n − z−n | ≤ |ζ+n − ζ−n |+ sup

|z|≤M

∣∣∣∣ ddzα(n, z)
∣∣∣∣ |z+n − z−n |.(2.42)

By Lemma 2.5, (as |z|+ ‖V ‖ ≤M + ‖V ‖w = nw ≤ n),∣∣∣∣ ddzα(n, z)
∣∣∣∣ ≤ ‖V ‖2

9n2
≤ ‖V ‖2

9n2
w

≤ 1

9
.(2.43)

Substituting the estimate (2.43) into (2.42) yields

1

2
|z+n − z−n | ≤ |ζ+n − ζ−n |.

As |ζ+n − ζ−n | ≤ |ζ+n | + |ζ−n | ≤ 2rn, with rn defined by (2.37), we then conclude that,
for n ≥ nw,

|z+n − z−n | ≤ 4rn.

In view of Proposition 2.14,


 ∑
n≥nw

w(2n)2r2n




1/2

≤ 4 · 2(1 + nw)3/2(1 + ‖V ‖w)2.

2.9. Gap length asymptotics. In this section, we obtain the first two terms
in the asymptotics of λ+

n − λ−n for n→ ∞. Let

ρ(±n) := V̂ (±2n) + β1(±n),(2.44)

η(z) ≡ η(n, z) := β2(−n, z)ρ(n) + β2(n, z)ρ(−n) + β2(−n, z)β2(n, z),
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where the decomposition β(±n, z) = β1(±n) + β2(±n, z) has been defined in (2.24)–
(2.25). Then (2.36) can be written as

ζ2 − ρ(n)ρ(−n)− η(z(ζ)) = 0.(2.45)

Lemma 2.17. Assume that M > 0 satisfies 3(1 + ‖V ‖w)2 ≤ M
4 . Then the

following estimates hold:
(i) |ρ(n)| ≤ M

4 ∀n; ‖@‖w ≤ ‖V ‖w + ‖V ‖2
w;

(ii)
(∑

n≥nw
(1 + |n|)2w(2n)2 sup|z|≤M |η(n, z)|

)1/2

≤ 4(1 + nw)
3/2(1 + ‖V ‖w)2.

Proof. (i) By Lemma 2.10, |β1(n)| ≤ ‖V ‖2, and therefore,

|ρ(n)| ≤ 2(1 + ‖V ‖)2 ≤ M

4
.

Moreover, we have ‖@‖w < ‖V ‖w + ‖V ‖2
w. (ii) By the definition of η(n, z), and

Proposition 2.14(i)∑
n≥nw

(1 + |n|)2w(2n)2 sup
|z|≤M

|η(n, z)|

≤ 2


 ∑

|n|≥nw

(1 + |n|)4w(2n)2 sup
|z|≤M

|β2(n, z)|2



1/2

2(1 + ‖V ‖w)2

+
∑
n≥nw

(1 + |n|)2w(2n)2 sup
|z|≤M

|β2(n, z)|2

≤ 4(1 + ‖V ‖w)2 · 2(1 + nw)3/2(1 + ‖V ‖w)2 + 4(1 + nw)3(1 + ‖V ‖w)4
≤ 12(1 + nw)

3(1 + ‖V ‖w)4.
Lemma 2.18. Assume that M > 0 satisfies 3(1 + ‖V ‖w)2 ≤ M

4 . Then, for

n ≥ nw, either of the two roots ζ̂ ∈ {ζ±n } satisfies

min± |ζ̂ ± (ρ(n)ρ(−n))1/2| ≤ 5 sup
|z|≤M

|η(z)|1/2.

Proof. Choose an arbitrary rootR of R2 = ρ(n)ρ(−n) and let s := sup|z|≤M |η(z)|.
We distinguish the following two cases.

Case 1: |R2| ≤ 4s: we have, with ẑ = z±n for ζ̂ = ζ±n ,

|(ζ̂ ± R)2| ≤ 2|ζ̂2|+ 2|R2|
≤ 2|R2|+ 2|η(ẑ)|+ 2|R2|
≤ 4|R2|+ 2|η(ẑ)| ≤ 18s ≤ (5s1/2)2.

Case 2: |R2| > 4s: in this case, |R2| > 0 and (2.45) can be rewritten as

ζ2 = R2

(
1 +

η(z(ζ))

R2

)
,(2.46)

where z(ζ) is a solution of the z-equation (2.17). Let ξ := ζ
R . Then, (2.46) can be

written as

ξ2 = 1 +
η(z(ζ))

R2
.(2.47)
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By assumption, |R2| > 4s and, as |z(ζ)| ≤ M , |η(z(ζ))/R2| ≤ 1
4 . Denoting by

(1 + w)1/2 the branch of the square root determined by 11/2 = 1, we obtain the
equations

ξ = F±(ξ),(2.48)

where F±(ξ) := ±(1 + η(z)
R2 )

1/2, with z ≡ z(Rξ). Let us first consider the equation

ξ = F+(ξ). Let D 1
4
(1) := {ξ ∈ C | |ξ− 1| < 1

4} and notice that, for ξ ∈ D 1
4
(1), ζ =

Rξ satisfies |ζ| ≤ M
4

5
4 <

M
2 , where we used the estimate |R| ≤ M

4 of Lemma 2.17(i).
According to Proposition 2.6, z = ζ + α(n, z) has a unique solution z(ζ) ∈ DM . This

shows that F+(ξ) = (1 +
η(z(Rξ))

R2 )1/2 is well defined for ξ ∈ D1/4(1).

As |(1 + x)1/2 − 1| ≤ 2
3 |x| for x ∈ D1/4(0) and |R2| > 4s, we conclude that F+

maps D1/4(1) into itself. Furthermore, F+ is continuous, and therefore, by Brower’s

fixed point theorem, ξ = F+(ξ) admits at least one fixed point ξ
I ∈ D1/4(1),

ξI = F+(ξ
I) =

(
1 +

η(zI)

R2

)1/2

,

where zI = z(RξI) and ξI satisfies the estimate

|ξI − 1| ≤
∣∣∣∣∣
(
1 +

η(zI)

R2

)1/2

− 1

∣∣∣∣∣ ≤ 2

3

∣∣∣∣η(zI)R2

∣∣∣∣ ≤ 2

3
· 1
2

s1/2

|R| ,

where, for the last inequality, we used that |R2| > 4s. Hence, ζI := RξI satisfies

|ζI −R| ≤ 1

2
sup

|z|≤M
|η(z)|1/2 = 1

2
s1/2.

The same arguments can be used to show that there exists a solution ξII ∈ D1/4(−1)
of the equation ξ = F−(ξ) so that ζII := RξII satisfies

|ζII +R| ≤ 1

2
sup

|z|≤M
|η(z)|1/2 = 1

2
s1/2.

Therefore, with 2|R| ≥ 4s1/2

|ζI − ζII | = |2R− (R− ζI)− (ζII +R)|
≥ 2|R| − 1

2
S1/2 − 1

2
S12 ≥ 3S1/2 > 0;

(2.49)

hence, ζI �= ζII . Moreover, ζI and ζII are solutions of (2.45) and thus satisfy, in view
of (2.36),

|ζI |, |ζII | ≤ rn := max± |V̂ (±2n)|+max± |β1(±n)|+ max
|z|≤M

|β2(±n, z)|.

Therefore, by Proposition 2.15, {ζI , ζII} = {ζ+n , ζ−n }.
For later use, we state the following application of Lemma 2.18.
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Corollary 2.19. Let V ∈ Hw
0 be a 1-periodic potential. Then for M with

3(1 + ‖V ‖w)2 ≤ M
4 ,


 ∑
h≥nw

w(2n)2|ζ±n |2



1/2

≤ 9(1 + nw)
3/2(1 + ‖V ‖w)4.

Proof. By (2.45)


 ∑
n≥nw

w(2n)2|ζ±n |2



1/2

≤

 ∑
n≥nw

w(2n)2|ρ(n)ρ(−n)|



1/2

+


 ∑
n≥nw

w(2n)2 sup
|z|≤M

|η(n, z)|



1/2

.

By Lemma 2.17,


 ∑
n≥nw

w(2n)2 sup
|z|≤M

|η(n, z)|



1/2

≤ 4(1 + nw)
3/2(1 + ‖V ‖w)2

and, with ρ(n) = V̂ (2n) + β1(n),


 ∑
n≥nw

w(2n)2|ρ(n)ρ(−n)|



1/2

≤

 ∑
n≥nw

w(2n)2|ρ(n)|2



1/2 
 ∑
n≥nw

w(2n)2|ρ(−n)|2



1/2

≤ (‖V ‖w + ‖V ‖2
w)

2 ≤ (1 + ‖V ‖w)4,

where we have used Lemma 2.17.

Recall that λ±n = n
2π2+z±n denote periodic eigenvalues of the operator − d2

dx2 +V
and ρ(±n) have been defined in (2.44).

Theorem 2.20. Let V ∈ Hw
0 be 1-periodic. Then, for any M > 0 with 3(1 +

‖V ‖w)2 ≤ M
4 and nw =M + ‖V ‖w,


 ∑
n≥nw

(1 + |n|)2w(2n)2
(
min±

(
(λ+
n − λ−n )± 2(ρ(n)ρ(−n))1/2

))2



1/2

≤ 50(1 + nw)
3/2(1 + ‖V ‖w)4.(2.50)

Remark. With N := 13(1 + ‖V ‖w)2,K3 := 106, and K4 := 14, Theorem 2.20
gives Theorem 1.2.

Proof. For n ≥ nw, λ
+
n −λ−n = z+n −z−n . Furthermore, z±n = ζ±n +α(n, z±n ) and, by
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Lemma 2.18 min±|(ζ+n −ζ−n )±2(ρ(n)ρ(−n))1/2| ≤ 10 sup|z|≤M |η(n, z)|1/2. Therefore,

min± |(λ+
n − λ−n )± 2(ρ(n)ρ(−n))1/2|

≤ min± |(ζ+n − ζ−n )± 2(ρ(n)ρ(−n))1/2|+
(
sup

|z|≤M

∣∣∣∣ ddzα(n, z)
∣∣∣∣
)

|z+n − z−n |

≤ 10 sup
|z|≤M

|η(n, z)|1/2 + ‖V ‖2

n2
|z+n − z−n |,

where for the last inequality we used Lemma 2.5(ii). By Lemma 2.17(ii) (estimate for
sup|z|≤M |η(n, z)|1/2) and by Proposition 2.16 (estimate for |z+n − z−n | = |λ+

n − λ−n |),

 ∑
n≥nw

(1 + |n|)2w(2n)2min± |(λ+
n − λ−n )± 2(ρ(n)ρ(−n))1/2|2




1/2

≤ 10
(
4(1 + nw)

3/2(1 + ‖V ‖w)2
)

+‖V ‖2


 ∑
n≥nw

(1 + n)2

n4
w(2n)2|z+n − z−n |2




1/2

≤ 40(1 + nw)
3/2(1 + ‖V ‖w)2 + ‖V ‖2

w8(1 + nw)
3/2(1 + ‖V ‖w)2

≤ 50(1 + nw)
3/2(1 + ‖V ‖w)4.

3. Eigenfunctions and Riesz’s spaces.

3.1. Eigenfunctions. In this section we review the estimates of the Fourier
coefficients of an L2-normalized eigenfunction f corresponding to a periodic eigenvalue

λ = n2π2 + z of L = − d2

dx2 + V . f is a 2-periodic function in H
2
loc(R;C) satisfying

(L− λ)f = 0; ‖f‖ = 1.

Recall that xf := f̂(−n), yf := f̂(n), and F := (f̂(k))k∈Z(n). By Proposition 2.2,

F = xfF+ + y
fF− and, by (2.22), F± := (z − An)

−1(S±nV̂ )Z(n). For n ≥ nw, F+

and F− satisfy the estimates (cf. Corollary 2.9)

‖F+‖�2Snw
≤ 2

π2n
‖V ‖w,(3.1)

‖F−‖�2S−nw
≤ 2

π2n
‖V ‖w.(3.2)

By the normalization of f

1 =

∫ 2

0

f(x)f(x)dx = 2


|xf |2 + |yf |2 +

∑
k �=±n

|f̂(k)|2

 .(3.3)

In particular, one has

|xf |2 + |yf |2 ≤ 1

2
.(3.4)
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Hence, by Cauchy’s inequality |F (k)| ≤ (|xf |2 + |yf |2)1/2(|F+(k)|2 + |F−(k)|2)1/2, we
obtain in view of (3.1)–(3.2)

‖F‖�2(Z(n)) ≤
(
1

2
· 2 · 2

π2n
‖V ‖

)1/2

≤ 1

4n
‖V ‖w.

Thus, for n with n ≥ nw,

‖F‖�2(Z(n)) ≤ 1

4
.

Together with (3.3)–(3.4), this yields

1

4
≤ |xf |2 + |yf |2 ≤ 1

2
.(3.5)

We summarize our estimates as follows.
Lemma 3.1. Let V ∈ Hw

0 be 1-periodic. Then for any M > 0 and n ≥ nw with

3(1 + ‖V ‖w)2 ≤ M

4
; n ≥ nw :=M + ‖V ‖w,

an eigenfunction f with ‖f‖ = 1, corresponding to an eigenvalue λ with |λ− n2π2| ≤
M , has the following properties:

(i) f(x) = xfe−inπx + yfeinπx + xfF+ + y
fF−;

(ii) 1
4 ≤ |xf |2 + |yf |2 ≤ 1

2 ;

(iii) ‖F+‖�2Snw
≤ ‖V ‖w

4n ; ‖F−‖�2S−nw
≤ ‖V ‖w

4n .

3.2. Riesz’s spaces. Given a 1-periodic potential V ∈ Hw
0 , let M > 0 satisfy

3(1 + ‖V ‖w)2 ≤ M
4 . For n ≥ nw := M + ‖V ‖w, there are precisely two (counted

with multiplicity) eigenvalues, λ+
n and λ

−
n , near n

2π2 of L = − d2

dx2 + V . Recall that
specL = specLPer+ ∪ specLPer− . Denote by P±

n the Riesz projectors corresponding
to the boundary conditions Per± (cf. (1.16)) and let

E2n := P
+
n (L

2[0, 1]); E2n−1 := P
−
n (L

2[0, 1]), (∀n ≥ 1).

If λ+
n �= λ−n or λ+

n = λ
−
n is of geometric multiplicity 2, there exist two linearly indepen-

dent eigenfunctions, corresponding to the eigenvalues λ+
n and λ

−
n , and En is given by

the linear span of these two eigenfunctions. In the case where λ+
n = λ

−
n is of geometric

multiplicity 1, En denotes the root space of λ
+
n . Notice that this case might happen if

the potential V is complex-valued. As an example we mention V = εe2πix (ε �= 0 ar-
bitrary). The periodic eigenvalues of − d2

dx2 + εe
2πix (considered on the interval [0, 2])

are given by n2π2 (n ≥ 0), where for every n ≥ 1, n2π2 is a double eigenvalue of
geometric multiplicity 1 (cf. [3], [5] for details).

Let us describe En in the case where λ
+
n = λ−n is of geometric multiplicity 1 in

more detail. Denote by f an L2-normalized eigenfunction corresponding to λ
+
n = λ

−
n ,

Lf = λ+
n f . Choose an L2-normalized element ϕ in En, orthogonal to f . Then

En = span(f, ϕ) and ϕ satisfies

(L− λ+
n )ϕ = ξnf

with ξn �= 0. Denote by c(x, λ) and s(x, λ) the fundamental solution of −y′′+V y = λy
with

c(0, λ) = 1, c′(0, λ) = 0; s(0, λ) = 0, s′(0, λ) = 1.(3.6)
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Lemma 3.2. Assume λ2n = λ2n−1 and
∫ 1

0
s(x, λ2n)

2dx �= 0. Then λ2n is of
geometric multiplicity 2 iff λ2n is a Dirichlet eigenvalue of the operator L on [0, 1].

Proof. Assume that λ ≡ λ2n is of geometric multiplicity 2. Then the fundamental
solutions c(x, λ) and s(x, λ) are eigenfunctions, both either periodic or antiperiodic,
and s(0, λ) = 0. It follows that s(1, λ) = 0, and therefore, λ is a Dirichlet eigenvalue.
Conversely, assume that λ ∈ specDir(L) is a double periodic eigenvalue. Then ∆(λ) :=
c(1, λ) + s′(1, λ) = ±2 and ∆̇(λ) := d

dλ∆(λ) = 0, as well as

s(1, λ) = 0.(3.7)

By the Wronskian identity,

1 = c(1, λ)s′(1, λ)− c′(1, λ)s(1, λ) = c(1, λ)s′(1, λ)
and, combined with ∆(λ) = ±2, one obtains

c(1, λ) = s′(1, λ) = ±1.(3.8)

Take the derivative of the Wronskian identity with respect to λ and use ∆̇(λ) = 0 to
conclude that

0= ċ(1, λ)c′(1, λ) + c(1, λ)ṡ′(1, λ)
−ċ′(1, λ)s(1, λ)− c′(1, λ)ṡ(1, λ)

= ± (ċ(1, λ) + ṡ′(1, λ))− c′(1, λ)ṡ(1, λ)
= 0− c′(1, λ)ṡ(1, λ).

As λ ∈ specDir(L), and
∫ 1

0
s(x, λ)2dx �= 0, ṡ(1, λ) �= 0, and therefore,

c′(1, λ) = 0,(3.9)

i.e., λ is a Neumann eigenvalue of the operator L on [0, 1]. By (3.6)–(3.9), c(x, λ)
and s(x, λ) are both periodic eigenfunctions of L on [0, 2]; hence, λ has geometric
multiplicity 2.

3.3. Orthonormal basis of En. In this section we obtain properties for an
orthonormal basis f, ϕ of the two-dimensional subspace En introduced above (n ≥ nw,

where nw :=M+‖V ‖w). Here f is an eigenfunction of L = − d2

dx2+V , with ‖f‖L2 = 1,
corresponding to the eigenvalue λ+ ≡ λ+

n

Lf = λ+f(3.10)

and ϕ is an element in En with

〈φ, f〉 = 0; ‖ϕ‖L2 = 1.(3.11)

Notice that ϕ is determined up to a scalar κ ∈ {z ∈ C | |z| = 1}. Here 〈p, q〉 denotes
the L2-inner product

〈p, q〉 =
∫ 2

0

p(x)q(x)dx.

In the case when λ+ ≡ λ+
n is a double eigenvalue, ϕ satisfies an equation of the form

Lϕ = λ+ϕ+ ξf (λ+ = double eigenvalue),(3.12)
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where ξ ≡ ξn = 0 if λ+
n has geometric multiplicity 2 and ξ �= 0 if λ+ has geometric

multiplicity 1. In the case where λ− ≡ λ−n �= λ+
n , choose a normalized eigenfunction

f− ≡ f−n of λ− such that the following holds:

0 ≤ a := 〈f−, f〉 ≤ 1; ‖f−‖L2 = 1.(3.13)

Write f− as a linear combination of f and ϕ,

f− = af + bϕ,(3.14)

where now the scalar κ for ϕ (cf. (3.11)) is chosen in such a way that 0 ≤ b. Then
a2 + b2 = 1, and b �= 0, or

a = cos θ; b = sin θ; 0 < θ ≤ π/2.(3.15)

The function ϕ = 1
bf

− − a
b f satisfies

Lϕ = λ−
1

b
f− − λ+ a

b
f

= λ+

(
1

b
f− − a

b
f

)
+ (λ− − λ+)

1

b
f−

= λ+ϕ+ (λ+ − λ−)1
b
(f − f−)− (λ+ − λ−)1

b
f.

Thus, in the case λ+ �= λ−, with λ ≡ λ+,

Lϕ = λϕ+ ξf + γh,(3.16)

where γ ≡ γn = λ
+
n − λ−n , h = 1

b (f − f−), and ξ ≡ ξn is defined by

ξn := −(λ+
n − λ−n )

1

b
(case λ+

n �= λ−n ).(3.17)

Notice that (3.12) has the same form as (3.16) if we set h equal to 0. It turns out
that we will no longer have to treat the following three cases separately.

Case 1. λ+ = λ− and ξ = 0;
Case 2. λ+ = λ− and ξ �= 0;
Case 3. λ+ �= λ−.
The next result shows that the term γh = (λ+ − λ−) 1b (f − f−) in (3.16) is well

under control.
Lemma 3.3. If λ+ �= λ−, then b �= 0 and ‖h‖ ≤ √

2.
Proof. By (3.15), b = sinθ �= 0 for λ+ �= λ−. By (3.14) and (3.15), h =

1
b (f − f−) = 1−cosθ

sinθ f − ϕ, and therefore, as f and ϕ are orthogonal,

‖h‖2 =

∣∣∣∣1− cos θ

sin θ

∣∣∣∣
2

+ 1 ≤ 2

as 1−cosθ
sinθ =

2sin2 θ
2

2cos θ
2 sin θ

2

= tan θ2 ≤ 1 for 0 < θ ≤ π
2 .

In the remaining part of this section our aim is to obtain estimates for ξn (cf. (3.12)
and (3.17)). To this end, we write (3.16) in Fourier space. Introduce

ϕ = xϕe−inπx + yϕeinπx +
∑
k �=±n

Φ(k)eikπx; Φ = (Φ(k))k∈Z(n),
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and, similarly

h = xhe−inπx + yheinπx +
∑
k �=±n

H(k)eikπx, H := (H(k))k∈Z(n).(3.18)

In view of (2.2)–(2.4), (3.16) leads to the following inhomogeneous system:

−zxϕ + V̂ (−2n)yϕ + [SnJV̂ ,Φ]Z(n) = ξnx
f + γnx

h,(3.19)

V̂ (2n)xϕ − zyϕ + [S−nJV̂ ,Φ]Z(n) = ξny
f + γny

h,(3.20)

(SnV̂ )Z(n)x
ϕ + (S−nV̂ )

Z(n)y
ϕ + (An − z)Φ = ξnF + γnH,(3.21)

where, as usual, z ≡ z+n = λ
+
n − n2π2.

We use this system to obtain an estimate for ξn. The sequence Φ is obtained from
(3.21),

Φ = (z −An)−1(SnV̂ )Z(n)x
ϕ + (z −An)−1(SnV̂ )Z(n)y

ϕ(3.22)

− (z −An)−1ξnF − (z −An)−1γnH

and, by (2.11), F is given by

F = (z −An)−1(SnV̂ )Z(n)x
f + (z −An)−1(S−nV̂ )Z(n)y

f .(3.23)

Hence,

Φ = (z −An)−1(SnV̂ )Z(n)x
ϕ + (z −An)−1(SnV̂ )Z(n)y

ϕ

− (z −An)−2(SnV̂ )Z(n)ξnx
f − (z −An)−2(S−nV̂ )Z(n)ξny

f

− (z −An)−1γnH.

In this form, substitute Φ into (3.19)–(3.20) to obtain, with α(n, z) and β(n, z) defined
by (2.13) and (2.14),( −z + α(n, z) V̂ (−2n) + β(−n, z)

V̂ (2n) + β(n, z) −z + α(n, z)
)(

xϕ

yϕ

)

= ξn

(
xf − d

dzα(n, z)x
f − d

dzβ(−n, z)yf
yf − d

dzβ(n, z)x
f − d

dzα(n, z)y
f

)

+γn

(
xh + [SnJV̂ , (z −An)−1H]

yh + [S−nJV̂ , (z −An)−1H]

)
,

where we used α(n, z) = α(−n, z), Lemma 2.4, and (cf. Lemma 2.5)
d

dz
α(n, z) = −[S−nJV̂ , (z −An)−2(S−nV̂ )Z(n)]Z(n)

and

d

dz
β(n, z) = −[S−nJV̂ , (z −An)−2(SnV̂ )Z(n)]Z(n).
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Therefore,

ξn

(
Id2 − d

dz

(
α(n, z) β(−n, z)
β(n, z) α(n, z)

) )(
xf

yf

)
(3.24)

=

( −ζ+n V̂ (−2n) + β(−n, z)
V̂ (2n) + β(n, z) −ζ+n

)(
xϕ

yϕ

)

−γn
(
xh + [SnJV̂ , (z −An)−1H]

yh + [S−nJV̂ , (z −An)−1H]

)
,

where ζ+n = z+n − α(n, z+n ), Id2 denotes the 2 × 2 identity matrix, and to simplify
notation, [·, ·] = [·, ·]Z(n). Let V ∈ Hw

0 be 1-periodic and choose M > 0 with 3(1 +

‖V ‖)2 ≤ M
4 . By Lemma 2.5, for any n ≥ nw :=M + ‖V ‖w and z = z+n∣∣∣∣ ddzα(n, z)

∣∣∣∣ ≤ 1

9

‖V ‖2

n2
≤ 1

9
,(3.25)

where we use that, by Lemma 2.5 and Propositions 2.6 and 2.15, |z+n | ≤M . Further,
by Lemma 2.13, applied to w = 1,

(1 + |n|)2
∣∣∣∣ ddz β(n, z)

∣∣∣∣ ≤ 2(1 + nw)
1/2‖V ‖2, (|n| ≥ nw, |z| ≤M).

Use that for |n| ≥ nw,
‖V ‖2

1+|n| ≤ M/12
nw

≤ 1
12 . Thus, for |n| ≥ nw and z ≡ z+n ,∣∣∣∣ ddz β(n, z)

∣∣∣∣ ≤ 1

6
.(3.26)

Combining (3.25) and (3.26), the left-hand side of (3.24) can be estimated from below,
for n ≥ nw, ∥∥∥∥ξn

(
Id2 − d

dz

(
α(n, z) β(−n, z)
β(n, z) α(n, z)

))(
xf

yf

)∥∥∥∥
2

≥ |ξn|2
(
|xf |2

(
1− 1

10

)
+ |yf |2

(
1− 1

10

))
≥

(
1

3
|ξn|

)2

,

(3.27)

where we used that 1
4 ≤ |xf |2 + |yf |2 (cf. Lemma 3.1). Further, we need an estimate

for [S±JV̂ , (z −An)−1H] with H as in (3.18).
Lemma 3.4. For n ≥ nw,
(i) |xh| ≤ √

2; |yh| ≤ √
2;

(ii) |[S±nJV̂ , (z −An)−1H]| ≤ ‖V ‖
πn .

Proof. The proof of (i) follows from Lemma 3.3. To prove (ii), notice that for
n ≥ nw and z = z

+
n ,

|[S±nJV̂ , (z −An)−1H]|
≤ ‖V ‖‖(z −An)−1‖‖H‖ ≤ 2

π2

1

n
‖V ‖

√
2

≤ 2

π2

1

n
‖V ‖

√
2,
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where we used that
√
2‖H‖ ≤ ‖h‖ ≤ √

2 (cf. (3.18), Lemma 3.3), and ‖(z−An)−1‖ ≤
2
π2

1
n by Lemma 2.1.
Lemma 3.4 enables us to obtain an estimate from above of the right-hand side of

(3.24). Lemma 3.4 and estimate (3.27), together with |xϕ|2 + |yϕ|2 ≤ 1, are used to
deduce from (3.24) that, for n ≥ nw =M + ‖V ‖w,

1

3
|ξn| ≤

(
|ζ+n |+ |V̂ (2n)|+ |β(n, z)|

)
+

(
|ζ+n |+ |V̂ (−2n)|+ |β(−n, z)|

)
+ |γn|

(√
2 +

2‖V ‖
πn

)
≤ 2|ζ+n |+ |V̂ (2n)|+ |V̂ (−2n)|+ |β(n, z)|+ |β(−n, z)|+ 3|γn|.

(3.28)

Estimate (3.28), combined with earlier estimates for β(±n, z) and γn, leads to the
following inequality:

|ξn| ≤ C

w(2n)
∀n ≥ nw,(3.29)

where C > 0 depends only on ‖V ‖w. In fact, the following stronger statement holds.
Theorem 3.5. Let V ∈ Hw

0 be a 1-periodic potential and let M > 0 satisfy
3(1 + ‖V ‖w)2 ≤ M

4 . Then the sequence (ξn)n≥nw
(cf. (3.12), (3.17)) satisfies


 ∑
n≥nw

w(2n)2|ξn|2



1/2

≤ 120(1 + nw)
2(1 + ‖V ‖w)2

with nw :=M + ‖V ‖w.
Proof. The terms on the right side of (3.28) are estimated separately. Recall that,

by Corollary 2.19,


 ∑
n≥nw

w(2n)2|ζ+n |2



1/2

≤ 5(1 + nw)
2(1 + ‖V ‖w)2,(3.30)

by Proposition 2.14,


 ∑

|n|≥nw

w(2n)2 sup
|z|≤M

|β(n, z)|2



1/2

≤ 2(1 + nw)
2(1 + ‖V ‖w)2,(3.31)

and by Proposition 2.16, with |γn| = |λ+
n − λ−n |,


 ∑
n≥nw

w(2n)2|γn|2



1/2

≤ 8(1 + nw)
2(1 + ‖V ‖w)2.(3.32)

Combining (3.30)–(3.32) with (3.28) leads to the following estimate:

1

3


 ∑
n≥nw

w(2n)2|ξn|2



1/2

≤ 40(1 + nw)
2(1 + ‖V ‖w)2.
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3.4. Restriction of L on En. Here we summarize the results of sections 3.1–3.3
as a statement on the structure of the restriction of L on the Riesz spaces En.

Proposition 3.6. Let V ∈ Hw
0 be a 1-periodic potential. Then, for n sufficiently

large, the Riesz space En has an orthonormal basis f ≡ fn, ϕ ≡ ϕn such that

LPerεf = λ2nf ; LPerεϕ = λ2nϕ+ ξnf + γnh,

where ε ∈ {+,−} is + for n even and − for n odd and h ≡ hn ∈ En. Moreover, the
following inequalities hold:

‖h‖ ≤ 2; |ξn| ≤ C

w(2n)
; |γn| ≤ C

w(2n)

with C > 0 independent of n. (For stronger estimates, cf. (3.30) and (3.32).)

4. Dirichlet spectrum.

4.1. Candidates for Dirichlet eigenfunctions. In section 3.2 we have intro-
duced, for n sufficiently large, the two-dimensional subspaces En,

E2n = Range(P
+
n ); E2n−1 = Range(P

−
n ).(4.1)

We have chosen an orthonormal basis (f, ϕ) of En with f being a normalized eigen-
function for the eigenvalue λ ≡ λ+

n ,

Lf = λf,

and we showed that ϕ satisfies an equation of the form

Lϕ = λϕ+ ξf + γh,(4.2)

where γ ≡ γn = λ2n − λ2n−1, h satisfies ‖h‖ ≤ 2 (cf. Lemma 3.3), and estimates for
ξ have been established in Theorem 3.5. The following lemma gives an element G in
En, satisfying Dirichlet boundary conditions.

Lemma 4.1. Assume that 3(1 + ‖V ‖w)2 ≤ M
4 and n ≥ nw = M + ‖V ‖w. Then

there exists an element G in En of the form

G = αf + βϕ; 0 ≤ α ≤ 1; |α|2 + |β|2 = 1(4.3)

so that

G(0) = 0; G(1) = 0.

Proof. First consider the case where f(0) = 0. Then, as f is either periodic or
antiperiodic,

f(1) = ±f(0) = 0.(4.4)

ThusG := f has the required properties. If f(0) �= 0, notice that G̃(x) := −f(0)ϕ(x)+
ϕ(0)f(x) is a nonzero element in En, satisfying Dirichlet boundary conditions. Then

G := κ G̃
‖G̃‖ = αf + βϕ, with κ ∈ C, |κ| = 1, chosen to guarantee 0 ≤ α ≤ 1, has the

stated properties.
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Using (4.2) and (4.3) one obtains

LG = αLf + βLϕ(4.5)

= αλf + β(λϕ+ ξf + γh)

= λG+ ξβf + γβh.

For n ≥ nw, both ξ ≡ ξn and γ ≡ γn are small and G almost looks like a Dirichlet
eigenfunction.

In the next sections we prove that λ, respectively, G, are good approximations of
the Dirichlet eigenvalue µn, respectively, Dirichlet eigenfunction g.

4.2. Fourier block decomposition. Let LDir be the closed operator LDir =

− d2

dx2 + V with domain domLDir := {f ∈ H2[0, 1] | f(0) = 0; f(1) = 0}. In
this section, let us fix n with n ≥ max(nw, 2K8(M + 1)) (cf. Lemma 1.4 for K8).
PDir ≡ Pn,Dir denotes the Riesz projector

PDir :=
1

2πi

∫
|z−n2π2|=M

(z − LDir)−1dz

acting on L2([0, 1];C). Let QDir := Id− PDir. Notice that

QDirf ∈ domLDir ∀f ∈ domLDir,(4.6)

QDirLDirf = LDirQDirf ∀f ∈ domLDir,(4.7)

and

QDir · PDir = 0; PDir ·QDir = 0; P 2
Dir = PDir; Q2

Dir = QDir.(4.8)

According to Lemma 1.5,

‖PDir‖ ≤ K10,

K10 being an absolute constant, and, therefore

‖QDir‖ ≤ K10 + 1.

Notice that (cf. (1.13) and (1.16))

RangePDir = {ag | a ∈ C},

where g is an L2-normalized eigenfunction for the Dirichlet eigenvalue µ ≡ µn,

LDirg = µg; ‖g‖ = 1.

As G (cf. Lemma 4.1) is in dom(LDir), it admits a decomposition

G = PDirG+QDirG = κg + u,(4.9)

where u ∈ Range(QDir) ⊂ dom(LDir). Therefore,

LDirG = κµg + LDiru(4.10)
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and

PDiru = 0; QDiru = u.(4.11)

Hence, (4.7) implies that QDirLDiru = LDiru, and thus,

LDiru ∈ Range(QDir).(4.12)

On the other hand, by (4.5), LG = λG+R, where

R := ξβf + γβh.(4.13)

Thus by (4.9),

LDirG = λκg + λu+ PDirR+QDirR.(4.14)

The left sides of (4.10) and (4.14) being the same, we conclude that

κµg + LDiru = κλg + λu+ PDirR+QDirR.(4.15)

This equation leads to the following lemma.
Lemma 4.2. Assume that 3(1 + ‖V ‖w)2 ≤ M

4 and n ≥ max(nw, 2K8(M + 1)).
Then

κ(µ− λ)g = PDirR,(4.16)

(LDir − λ)u = QDirR.(4.17)

Proof. Apply PDir to (4.15). In view of (4.7), (4.8), and (4.11)

PDirLDiru = PDirLDirQDiru = PDirQDirLDiru = 0.

Further, use that PDirg = g and PDirQDirR = 0 to conclude the identity (4.16).
Similarly, by applying QDir to (4.15), the second identity (4.17) is obtained.

4.3. External equation. In this section we obtain estimates for the difference
µ−λ between the nth Dirichlet eigenvalue µ ≡ µn and the eigenvalue λ ≡ λ2n. Recall
that G = αf + βϕ with |α|2 + |β|2 = 1 (cf. (4.3)), U ≡ Un = QDirG = G − κg
(cf. (4.9)), Lϕ = λϕ+ ξf + γh (cf. (4.2)), and R = β(ξf + γh) (cf. (4.13)).

Lemma 4.3. Assume that 3(1 + ‖V ‖w)2 ≤ M
4 and n ≥ max(nw, 2K8(M + 1)).

Then

‖un‖ ≤ K11
1

n
(|ξn|+ 2|γn|),

where K8 > 0 is the absolute constant from Lemma 1.4 and K11 > 0 is the absolute
constant from Lemma 1.6.

Proof. Apply Lemma 1.6 to (4.17) to get

‖u‖ ≤ ‖(λ− LDir)−1QDirR‖ ≤ K11
1

n
‖R‖.

By the definition (4.13) and |β| ≤ 1,

‖R‖ ≤ |ξ|+ 2|γ|,
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where we used that ‖f‖ = 1 and ‖h‖ ≤ √
2 (cf. Lemma 3.3).

From the estimate of ‖u‖ we obtain an estimate of κ ≡ κn in G = κg + u from
below.

Lemma 4.4. Assume that 3(1 + ‖V ‖w)2 ≤ M
4 . Then there exists Nw with Nw ≥

max(1 + nw, 2K8(M + 1)) so that

|κn| ≥ 1

2
∀n ≥ Nw.

Proof. By (4.9), |κ| = ‖κg‖ = ‖G− u‖ ≥ ‖G‖ − ‖u‖ = 1− ‖u‖. By Lemma 4.3,
‖u‖ ≤ K11

1
n (|ξ|+ 2|γ|), and by Theorem 3.5

|ξn| ≤ 120(1 + nw)
2(1 + ‖V ‖w)2 ∀n ≥ nw

and (cf. Proposition 2.16)

|γn| ≤ 8(1 + nw)
3/2(1 + ‖V ‖w)2.

Thus, for n ≥ Nw, with Nw defined by

Nw := 300(K8 +K11)(1 + nw)
2(1 + ‖V ‖w)2; Nw ≥ e,(4.18)

it follows that ‖u‖ ≤ 1/2, and thus |κ| ≥ 1/2.

4.4. Estimates for the Dirichlet eigenvalues. From the identity (4.16) we
deduce an estimate for µ− λ, using the bound for κ established in Lemma 4.4.

Theorem 4.5. Assume 3(1 + ‖V ‖w)2 ≤ M
4 . Then, for any n ≥ Nw, with Nw

given by (4.18),

|µn − λ+
n | ≤ 2 ·K10(|ξn|+ 2|γn|),

where K10 is an absolute constant given by Lemma 1.5.
Proof. By (4.16)

|κ||µ− λ| ≤ ‖PDir‖‖R‖ ≤ K10‖R‖(4.19)

and, by (4.13)

‖R‖ ≤ |ξ|+ 2|γ|,(4.20)

where we used that ‖f‖ = 1, ‖h‖ ≤ √
2, and |β| ≤ 1. Combine the estimates

(4.19) and (4.20) with the estimate |κ| ≥ 1
2 of Lemma 4.4 to obtain the claimed

statement.
Combined with the estimates for γn (Proposition 2.16) and for ξn (Theorem 3.5)

we obtain the following theorem.
Theorem 4.6. Assume 3(1 + ‖V ‖w)2 ≤ M

4 . Then, with Nw given by (4.18),


 ∑
n≥Nw

w(2n)2|µn − λ+
n |2




1/2

≤ 300K1013
2(1 + ‖V ‖w)6.

Proof. By Theorem 3.5,
 ∑
n≥nw

w(2n)2|ξn|2



1/2

≤ 120(1 + nw)
2(1 + ‖V ‖w)2.
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By Proposition 2.16
 ∑
n≥nw

w(2n)2|λ+
n − λ−n |2




1/2

≤ 80(1 + nw)
3/2(1 + ‖V ‖w)2.

Apply this to Theorem 4.5 to obtain the claimed statements.

5. Spectrum for a special class of boundary conditions.

5.1. Special class of boundary conditions. An elementary observation
(Lemma 4.1) provided us with a nonzero function Gn in the periodic or antiperi-
odic 2-dimensional Riesz subspace En (cf. (4.1)) which satisfied Dirichlet boundary
conditions. If the boundary condition has such a feature, the results of section 4 can
be extended. This is explained in section 5.2.

We ask the question which boundary conditions bc, given by two linearly indepen-
dent, homogeneous equations, have the property that, for any n, the 2-dimensional
subspace En contains a nonzero function satisfying these bc. Any boundary condi-

tions bc for the operator L = − d2

dx2 + V on [0, 1], given by two linearly independent
homogeneous equations, is a 2-dimensional subspace E in

C
4 = C

2 × C
2 = {(y0, y′0; y1, y′1)},

where we think of y0 = y(0), y′0 = y′(0), y1 = y(1), and y′1 = y′(1) as given by a
solution y(x) ≡ y(x, λ) of Ly = λy. We want E to have a nontrivial intersection with
both 2-dimensional subspaces

E+ := {(y0, y′0; y1, y′1) ∈ C
4 | y0 = y1; y′0 = y′1}

and

E− := {(y0, y′0; y1, y′1) ∈ C
4 | y0 = −y1; y′0 = −y′1},

i.e., with 2-dimensional planes of periodic and antiperiodic boundary conditions. It
implies that

dim(E ∩ E+) ≥ 1; dim(E ∩ E−) ≥ 1.

But

E+ ∩ E− = {0},
which is obvious from the definition of E+ and E−. Therefore,

dim(E ∩ E±) = 1(5.1)

and

E ∩ E+ = {ze+|z ∈ C}; e+ := (a, b; a, b) �= 0,(5.2)

E ∩ E− = {ze−|z ∈ C}; e− := (c, d;−c,−d) �= 0.(5.3)

We conclude that

E = {ξe+ + ηe−|ξ, η ∈ C}.
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It is easy to see that the orthogonal complement of E in C
4 is given by

E⊥ = {ξ/1 + η/2|ξ, η ∈ C},

where /1 = (b,−a; b,−a) and /2 = (d,−c;−d, c). Hence,

E = {(y0, y′0; y1, y′1) ∈ C
2 × C

2|b(y0 + y1)− a(y′0 + y′1) = 0; d(y0 − y1)− c(y′0 − y′1) = 0}.

In this way, we come, by necessity, to the following two homogeneous linear equations:

b(y0 + y1)− a(y′0 + y′1) = 0,(5.4)

d(y0 − y1)− c(y′0 − y′1) = 0.

They are linearly independent for any pairs (a, b) �= 0, (c, d) �= 0 given by (5.2) and
(5.3).

We can assume without loss of generality that

|a|2 + |b|2 = 1; |c|2 + |d|2 = 1.(5.5)

5.2. Spectrum for Lbc with bc of class B. In this section we consider only
regular boundary conditions (see [16, section 4.8(b)] of the type (5.4). A simple verifi-
cation along the definition [16, section 4.8(b), (39)] shows that the boundary conditions
(5.4) are regular iff

ac �= 0 or a = c = 0.(5.6)

We denote by B the class of boundary conditions (5.4) which satisfy (5.5) and (5.6).
Examples. (i) Dirichlet bc : (a, b) = (c, d) = (0, 1).
(ii) Neumann bc : (a, b) = (c, d) = (1, 0).
(iii) More generally, if (a, b) = eiθ(c, d), i.e., det(ac

b
d ) = 0, and ac �= 0, let

β := b
a . Then the boundary conditions bc (5.4) can be rewritten as

y′(0) = βy(0); y′(1) = βy(1),

so bc splits and the conditions at the left and right end points of the interval [0, 1] are
the same.

Let us analyze spec(Lbc) for the potential V = 0 and boundary conditions bc from
the class B. The domain of Lbc is defined as

domLbc := {f ∈ H2[0, 1]|(f0, f ′0; f1, f ′1) ∈ (5.4)}.

We write, routinely,

−f ′′ = λf ; λ = ω2;

f = p cosωx+ q
sinωx

ω

and try to find all ω’s such that, with this f , the linear system (5.4) has a nonzero
solution (p, q) ∈ C

2. This leads to the characteristic equation

(bd+ acω2)
sinω

ω
= 0
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or

(bd+ acλ)
sin

√
λ√
λ

= 0.

If a = c = 0 (Dirichlet bc, cf. example (i) above), then

spec(Lbc) = {π2k2|k ∈ Z≥1}
and all eigenvalues are simple. If ac �= 0,

spec(Lbc) = {λ0} ∪ {π2k2|k ∈ Z≥1},
where λ0 = − bd

ac . In this case all eigenvalues are simple, except if λ0 = π
2k2 for some

k ∈ Z≥1.

Now we can claim that for any V ∈ L2[0, 1] and L = − d2

dx2 + V , the operator
Lbc with bc from the class B has a discrete spectrum spec(Lbc) which consists, up
to a possible additional eigenvalue ν0, of a sequence (νn)n≥1 which we enumerate as
in (1.5). Further, the operator Lbc, its resolvent and Riesz projectors have all the
properties stated in Lemmas 1.4–1.6 with obvious semantic adjustments.

Property (5.1) gives a substitute for Lemma 4.1. Now we have all the tools to
repeat the constructions and the proofs of section 4 for bc in the class B to get the
following theorem.

Theorem 5.1. There exist absolute constants K12,K13 such that for any 1-
periodic potential V in Hw

0 and any bc in the class B,∑
n≥N

w(2n)2|νn − λ2n|2 ≤ K12(1 + ‖V ‖w)K13 ,

where N = K12(1 + ‖V ‖w)K13 .

Appendix. We present two lemmas used in section 1.7 concerning the convolu-
tion operation in sequence spaces. For a weight v = (v(k))k∈Z let

C2
v := sup

m∈Z

∑
k∈Z

(
v(m)

v(k)v(m− k)
)2

and denote by /2v ≡ /2v(Z;C) the space of sequences (a(k))k∈Z with

‖a‖v :=
(∑

k

v(k)2|a(k)|2
)1/2

<∞.

Lemma A.1. If Cv <∞, then /2v(Z;C) is a convolution algebra and

‖a ∗ b‖v ≤ Cv‖a‖v‖b‖v.
Remark. Lemma A.1 is a special case of a much more general result due to

Nikolski [17].
Proof of Lemma A.1. Let a, b ∈ /2v be with norm 1 and define c = (c(k))k∈Z by

c(k) :=
∑
j

a(k − j)b(j).
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We have to show that (v(k)c(k))k∈Z is a sequence in /
2. Let α(k) := v(k)|a(k)| and

β(k) := v(k)|b(k)| (k ∈ Z).

For any sequence γ(k))k∈Z in /
2,

∑
k

v(k)|c(k)||γ(k)| ≤
∑
k

∑
j

|γ(k)| v(k)

v(k − j)v(j)α(k − j)β(j)

≤

∑

i,j

| v(i+ j)
v(i)v(j)

|2|γ(i+ j)|2



1/2 
∑

i,j

(α(i)β(j))2




1/2

,

where for the last inequality we used Cauchy’s inequality in /2(Z×Z). As
∑

i,j α(i)
2β(j)2

= 1 by assumption and

∑
i,j

∣∣∣∣ v(i+ j)v(i)v(j)
γ(i+ j)

∣∣∣∣
2

≤
∑
m

∑
j

∣∣∣∣ v(m)

v(m− j)v(j)
∣∣∣∣
2

|γ(m)|2 ≤ C2
v

∑
m

|γ(m)|2

with (γ(m))m∈Z ∈ /2 arbitrary, it follows that ‖c‖v ≤ Cv.

For any submultiplicative weight (w(k))k∈Z and α ≥ 0, define

wα(k) :=

(
1 +

|k|
2

)α
w(k).

Notice that wα is again submultiplicative.

Lemma A.2. If α > 1/2, then Cwα <∞.

Proof of Lemma A.2. As w is submultiplicative,

wα(k)

wα(j)wα(k − j) ≤ (1 + 1
2 |k|)α

(1 + 1
2 |j|)α(1 + 1

2 |k − j|)α ,

and therefore,

Cwα ≤ C(α),

where C(α) <∞ is a constant satisfying

∑
j

((
1 +

|j|
2

)(
1 + |k − j

2
|
))−2α

≤ C(α)2
(
1 +

|k|
2

)−2α

.(A.1)

By an elementary computation one could show that

C(α)2 ≤ 2(1 + 22α)
2α+ 1

2α− 1
.(A.2)
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Abstract. We prove results of uniqueness and stability at the boundary for the inverse problem
of electrical impedance tomography in the presence of possibly anisotropic conductivities. We assume
that the unknown conductivity has the form A = A(x, a(x)), where a(x) is an unknown scalar
function and A(x, t) is a given matrix-valued function. We also deduce results of uniqueness in the
interior among conductivities A obtained by piecewise analytic perturbations of the scalar term a.
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1. Introduction. In this paper we shall consider the inverse conductivity prob-
lem in an anisotropic medium. Given, in a domain Ω ⊂ R

n (representing an elec-
trostatic conductor), a symmetric, positive definite matrix A = A(x), x ∈ Ω (the
conductivity tensor), the Dirichlet-to-Neumann map associated to A is the operator
ΛA which, for each solution u (the electrostatic potential) of the elliptic equation

div(A∇u) = 0 in Ω,(1.1)

associates to its Dirichlet data u| ∂Ω (the boundary voltage) the corresponding Neu-
mann data (the boundary current density)

ΛA u| ∂Ω = A∇u · ν| ∂Ω.(1.2)

The inverse conductivity problem then consists of determining A from the knowledge
of ΛA. While for the case when A is a priori known to be isotropic (that is, A(x) =
a(x) I, where a is a scalar function) the uniqueness issue can be considered solved
(see [SU], [N]), the situation is more complicated in the anisotropic case.

Since Tartar’s observation [KV1] that any diffeomorphism of Ω which keeps the
boundary points fixed has the property of leaving the Dirichlet-to-Neumann map
unchanged, whereas A is modified, different lines of research have been pursued.

One direction has been the one of proving that the conductivity A is uniquely
determined up to a change of variables in the space coordinates (see [LeU], [S], [N],
[LaU]).

Another direction has been the one of assuming that the conductivity A is a priori
known to depend on a restricted number of unknown spatially dependent parameters.
Kohn and Vogelius [KV1] suggested the study of matrices A which are completely
known with the exception of one of their eigenvalues. In [A] it is considered the case
when A(x) is a priori known to have the structure A(x) = A(a(x)), where t→ A(t) is
a given matrix-valued function and a = a(x) is an unknown scalar function. In other
words, it is assumed that at each point x the conductivity may take one value among
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a one-parameter family of admissible matrices A(t) which is a priori known. In [A]
results of uniqueness and stability at the boundary are proven under the additional
assumption of monotonicity

DtA(t) ≥ Const. I > 0.

Lionheart [L] has proven results of uniqueness at the boundary when A(x) has the
structure

A(x) = a(x)A0(x),

where A0(x) is given and a = a(x) is an unknown scalar parameter. This structure
condition may be interpreted as if at every point the anisotropic character of the
conductivity were known with the exception of a scaling factor a(x) which may vary
from point to point.

The aim of this paper is to show that the method of singular solutions introduced
in [A] enables us also to treat the case when A(x) has the more general structure

A(x) = A(x, a(x)),

where a(x) is an unknown scalar function and A(x, t) is given and satisfies the mono-
tonicity assumption

DtA(x, t) ≥ Const. I > 0 .

We shall prove results of uniqueness and stability at the boundary which improve in
various respects the results in [A] and can also be applied to the problem introduced
in [L].

In Theorem 2.1 we shall prove a result of Lipschitz continuity of the boundary
values of A(x, a(x)) in terms of its corresponding Dirichlet-to-Neumann map.

Theorem 2.2 gives Hölder estimates on the dependence from the Dirichlet-to-
Neumann map of higher order derivatives of A(x, a(x)). This theorem is expressed
in a local form. Theorem 2.3 contains the uniqueness result in the determination
of A(x, a(x)) and its derivatives on the boundary. Also in this case, the result is
expressed in local terms.

Theorem 2.4 gives a global uniqueness result of A(x, a(x)) among perturbations
A(x, b(x)), where a(x) − b(x) is piecewise analytic. The procedure under which
Theorem 2.3 implies global uniqueness results in the piecewise analytic category is
by now well known (see [KV2], [A], [L]); we wish to stress, however, that the present
result does not require any condition of higher order differentiability on the given
matrix A(x, t); this also gives a substantial improvement to Theorem 3.4 in [L].

We conclude the paper with a discussion of the so-called one-eigenvalue-problem
treated by Kohn and Vogelius [KV1]. In fact, we observe that this problem does not
precisely fit the scheme of our Theorems 2.1–2.4 since, in this case, the monotonicity
assumption is not satisfied. We present, however, some arguments showing how the
monotonicity assumption can be relaxed in such a way that Theorems 2.1–2.4 continue
to hold and, at the same time, it enables us to encompass the one-eigenvalue-problem.

The plan of the paper is as follows. In section 2 we give some basic definitions
and the statements of the main Theorems 2.1–2.4. Section 3 contains the proofs
of the stability results, Theorems 2.1 and 2.2. Section 4 contains the proofs of the
uniqueness results, Theorems 2.3 and 2.4. Finally, section 5 contains the discussion
of a generalization of the above theorems which enables us also to treat the one-
eigenvalue-problem by Kohn and Vogelius.
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2. Main results. In what follows we shall need the following quantitative for-
mulation of the Lipschitz regularity of the boundary of Ω.

Definition 2.1. Given positive numbers L, r, and h satisfying h ≥ Lr, we say
that a bounded domain Ω ∈ R

n has a Lipschitz boundary if, for every x0 ∈ ∂Ω, there
exists a rigid transformation of coordinates which maps x0 into the origin such that,
setting x = (x ′, xn), x ′ ∈ R

n−1, xn ∈ R, we have

Ω ∩ { x = (x ′, xn) | |x ′| < r, |xn| < h}
= { x = (x ′, xn) | |x ′| < r, |xn| < h, xn ≥ f(x ′) },

where f = f(x ′) is a Lipschitz function defined for |x ′| < r, which satisfies

f(0) = 0,

|f(x ′)− f(y ′)| ≤ L |x ′ − y ′|
for every x ′, y ′ ∈ R

n−1, with |x ′|, | y ′| < r.
Let us introduce here the class of functions A(x, t) which will be considered as

admissible conductivities in our results.
Definition 2.2. Given p > n, E > 0, and denoting by Symn the class of n× n

real-valued symmetric matrices, we say that A(·, ·) ∈ H if the following conditions
hold:

A ∈W 1, p(Ω× [λ−1, λ] , Symn),(2.1)

D tA ∈W 1, p(Ω× [λ−1, λ] , Symn),(2.2)

supess t∈ [λ−1,λ]

(
‖ A(·, t) ‖Lp(Ω) + ‖ DxA(·, t) ‖Lp(Ω)

+ ‖ DtA(·, t) ‖Lp(Ω) + ‖ DtDxA(·, t) ‖Lp(Ω)

)
≤ E,(2.3)

λ−1|ξ|2 ≤ A(x, t)ξ · ξ ≤ λ|ξ|2 for almost every x ∈ Ω,

for every t ∈ [λ−1, λ] , ξ ∈ R
n,(2.4)

DtA(x, t) ξ · ξ ≥ E−1|ξ|2 for almost every x ∈ Ω ,

for every t ∈ [λ−1, λ] , ξ ∈ R
n.(2.5)

We observe that (2.4) is a condition of uniform ellipticity, whereas (2.5) is a
condition of monotonicity with respect to the last variable t. Denoting by 〈·, ·〉 the
L2(∂Ω)-pairing between H

1
2 (∂Ω) and its dual H− 1

2 (∂Ω), the Dirichlet-to-Neumann
map

ΛA(x, a) : H
1
2 (∂Ω) −→ H− 1

2 (∂Ω)

is defined by

〈ΛA(x, a) u, φ〉 =
∫

Ω

A(x, a(x))∇u(x) · ∇φ(x) dx
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for any φ ∈ H1(Ω) and for any u ∈ H1(Ω) which is a weak solution to

div(A(x, a(x))∇u(x)) = 0.

We shall denote by ‖ · ‖∗ the norm on the Banach space of bounded linear

operators between H
1
2 (∂Ω) and H− 1

2 (∂Ω).
Theorem 2.1 (Lipschitz stability of boundary values). Given p > n, let Ω be a

bounded domain with Lipschitz boundary with constants L, r, h. Let a, b satisfy

λ−1 ≤ a(x), b(x) ≤ λ for every x ∈ Ω,(2.6)

‖ a ‖W 1,p(Ω) , ‖ b ‖W 1,p(Ω) ≤ E.(2.7)

Let A ∈ H; then we have

‖ A(x, a(x))−A(x, b(x)) ‖L∞ ( ∂Ω)≤ C ‖ ΛA(x, a) − ΛA(x, b) ‖∗ .(2.8)

Here C > 0 is a constant which depends only on n, p, L, r, h, diam(Ω), λ, and E.
Theorem 2.2 (Hölder stability of derivatives at the boundary). Let a, b satisfy

(2.6), (2.7) and let A ∈ H. Given y ∈ ∂Ω and a neighborhood U of y in Ω̄, assume
that, for some positive integer k and some α, 0 < α < 1, we have

A ∈ C k, α( Ū × [λ−1, λ] ),(2.9)

‖ A ‖ C k, α( Ū×[λ−1, λ]) ≤ E k,(2.10)

‖ a− b ‖ C k, α( Ū) ≤ E k.(2.11)

Then, for every neighborhood W of y in Ω̄ such that W̄ ⊂ U ,

‖ D k(A(x, a(x))−A(x, b(x))) ‖L∞ (∂ Ω ∩ W̄ )

≤ C ‖ ΛA(x, a) − ΛA(x, b) ‖ δ k α∗ ,(2.12)

where

δk =

k∏
j = 0

α

α+ j
.(2.13)

Here C > 0 is a constant which depends only on n, p, L, r, h, diam(Ω), dist(W ∩
∂Ω, Ω \ U), λ, E, α, k, and Ek.

Theorem 2.3 (uniqueness at the boundary). Let a, b satisfy (2.6), (2.7) and let
A ∈ H. Given y ∈ ∂Ω and a neighborhood U of y in Ω̄, assume that, for some positive
integer k, we have

a− b ∈ C k(Ū) .(2.14)

If

ΛA (x, a(x)) = ΛA (x, b(x)),



DETERMINING CONDUCTIVITY 157

then

Dj(a− b) = 0 on ∂Ω ∩ Ū for all j ≤ k.(2.15)

If, in addition, we have

A ∈ C k
(

Ū × [λ−1, λ]
)

,(2.16)

then

Dj(A(x , a(x))) = Dj(A(x , a(x))) on ∂Ω ∩ Ū for all j ≤ k.(2.17)

Theorem 2.4 (uniqueness in the interior). Let a, b satisfy (2.6), (2.7) with
p = ∞. Let A ∈ H and, in addition, A ∈W 1,∞(Ω× [λ−1, λ], Symn

)
. Suppose that

Ω can be partitioned into a finite number of Lipschitz domains, {Aj}j = 1,... ,N such
that a− b is analytic on each Āj.

If

ΛA(x, a) = ΛA(x, b),

then we have

A(x, a(x)) = A(x, b(x)) in Ω.(2.18)

3. Proofs of the stability theorems. We need to introduce a unitary vector
field ν̃ locally defined near ∂Ω such that (i) ν̃ is C ∞ smooth, and (ii) ν̃ is nontangential
to ∂Ω. To this purpose we shall make use of the following lemmas.

Lemma 3.1. For every x0 ∈ ∂Ω, let (x ′, xn) be the coordinates suited for the
local representation of ∂Ω given by Definition 2.1. Let x = (x ′, f(x ′)) be such that
|x ′| ≤ ρ, where ρ = h

2L , then, picking l = h
2 , we have that the truncated cone

Tl(x) = { z = (z ′, zn) | f(x ′)− l < zn < f(x ′),
|z ′ − x ′| < −L (f(x ′)− zn)}

has an empty intersection with Ω.
Proof. It suffices to verify that the base of Tl(x) is contained in the cylinder

Cr, h = {x = (x ′, xn)| |x ′| < r, |xn| < h}.
Hence, the verification consists of elementary calculations.

Lemma 3.2. There exists a finite number of points x1, . . . , xk ∈ ∂Ω and rotations
Rl : R

n −→ R
n, l = 1, . . . , k, such that (i) the open cylinders Vl = x l+R lCρ, h cover

∂Ω, (ii) the axis of each cylinder V l coincides with the nth coordinate axis for the local
representation of ∂Ω near x l given by Definition 2.1, and (iii) for every x ∈ ∂Ω∩ V l,
l = 1, . . . , k, the truncated cone x+R lT l(0) does not intersect Ω.

Proof. The proof follows easily from the previous lemma and the compactness of
∂Ω.

Lemma 3.3. For any x0 ∈ ∂Ω, let V l be the cylinder introduced in the previous
lemma such that x0 ∈ V l. Setting ν̃ as the nth coordinate unit vector along the axis
of V l which points to the exterior of Ω, we have that the point

zσ = x0 + σν̃(3.1)
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satisfies

Cσ ≤ d(zσ, ∂Ω) ≤ σ for every σ, 0 ≤ σ ≤ σ0 ,(3.2)

where σ0 and C depend only on L, r, h.
Proof. The proof is an elementary consequence of Definition 2.1 and the previous

lemmas.
Let us recall some results about singular solutions of elliptic equations. We con-

sider elliptic operators

L =
∂

∂xi

(
aij

∂

∂xj

)
in BR =

{
x ∈ R

n| |x| < R
}
,(3.3)

where the coefficient matrix (aij(x)) is symmetric and satisfies

λ−1| ξ|2 ≤ aij(x)ξi ξj ≤ λ| ξ|2 for every x, ξ, x ∈ BR, ξ ∈ R
n,(3.4)

and also

‖ aij ‖W 1, p(BR)≤ E, i, j = 1, . . . , n,(3.5)

where p > n and λ, E are positive constants.
Theorem 3.4 (singular solutions). Let L satisfy (3.3)–(3.5). For every spherical

harmonic Sm of degree m = 0, 1, 2, . . . , there exists u ∈W 2, p
loc (BR \ {0}) such that

Lu = 0 in BR \ { 0},(3.6)

and furthermore

u(x) = log | Jx | S 0

(
Jx

| Jx |

)
+ w(x), when n = 2 and m = 0,(3.7)

u(x) = | Jx | 2−n−m Sm

(
Jx

| Jx |

)
+ w(x) otherwise,(3.8)

where J is the positive definite symmetric matrix such that J =
√
(aij(0))−1 and w

satisfies

| w(x)|+ | x | |Dw(x)| ≤ C | x | 2−n−m+α in BR \ { 0 },(3.9)

(∫
r<|x|<2r

|D2w|p
) 1

p

≤ C r−n−m+α+n
p for every r, 0 < r < R/2.(3.10)

Here α is any number such that 0 < α < 1 − n
p , and C is a constant depending

only on α, n, p, R, λ, and E.
Proof. See Theorem 1.1 in [A].
We shall also need the following lemma.
Lemma 3.5. Let the hypotheses of Theorem 3.4 be satisfied. For every m =

0, 1, 2, . . . , there exists a spherical harmonic Sm of degree m such that the solution
u on (3.6) given by Theorem 3.4 also satisfies

|Du(x)| > |x| 1−(n+m)(3.11)
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for every x, 0 < |x| < r0, where r0 > 0 depends only on λ, E, p, m, and R.
Proof. The proof of this lemma can be obtained along the same lines as the proof

of [A, Lemma 3.1].
Lemma 3.6. Let Ω be a domain in R

n (n ≥ 2) with Lipschitz boundary ∂Ω. Let
A ∈ H and let a be a function satisfying conditions (2.6), (2.7). Then we have

A(·, a(·)) ∈W 1, p(Ω, Symn),(3.12)

and furthermore,

‖ A(·, a(·)) ‖W 1, p(Ω)≤ CE(1+ ‖ a ‖W 1, p(Ω)),(3.13)

where C is a positive constant depending only on λ, Ω, n, and p.
Proof. We observe that the two functions

t −→ A(x, t),

t −→ DxA(x, t)

are absolutely continuous functions for almost every x ∈ Ω (see [M, Lemma 3.1.1]).
Then the following identities hold:

A(x, a(x)) = A(x, λ)−
∫ λ

a(x)

D tA(x, t) dt ,(3.14)

D xA(x, t)|t= a(x) = D xA(x, λ)−
∫ λ

a(x)

D tD xA(x, t) dt(3.15)

for almost every x ∈ Ω.
We obtain

‖ A(·, a(·)) ‖Lp(Ω)≤ λ E.(3.16)

Similarly, by (3.15) and by the Sobolev inequality

‖ DtA(·, t) ‖L∞(Ω)≤ C
(
‖ DtA(·, t) ‖Lp(Ω) + ‖ DxDtA(·, t) ‖Lp(Ω)

)
,

we deduce

‖ DxA(·, a(·)) ‖Lp(Ω)≤ λ E + CE ‖ Dxa ‖Lp(Ω) .(3.17)

By (3.16), (3.17), the proof is completed.
Proof of Theorem 2.1. We start from the identity (see, for instance, [A])∫

Ω

(A(x, a)−A(x, b))Du ·Dv = 〈(ΛA(x, a) − ΛA(x, b)) u, v〉,(3.18)

where u, v are two arbitrary solutions to

div(A(x, a)gradu) = 0 , div(A(x, b)gradv) = 0 ,

respectively. Let x0 ∈ ∂Ω be such that

|(a− b)(x0)| = ‖ a− b ‖L∞( ∂Ω),
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and set, for convenience, (a−b)(x0) > 0. Let Vl be one of the neighborhoods, selected
in Lemmas 3.2 and 3.3, such that x0 ∈ V l. We let ν̃ be defined according to Lemma
3.3. Let us consider zσ = x0+σν̃, where σ satisfies 0 < σ ≤ min{σ0, r02 }, where σ0 is
the number fixed in Lemma 3.3, and r0 is the number appearing in Lemma 3.5 when
the integerm is chosen to be equal to zero. We observe that we can continue a(x), b(x)
to BR(zσ) in such a way that A(x, a(x)) and A(x, b(x)) continue to satisfy uniform
bounds of ellipticity and on the W 1, p-norm. We now consider the ball Bρ(zσ), with
ρ = r0 and fix the two solutions u, v ∈ W 2, p(Ω) found in Theorem 3.4 having a
Green function type of singularity at zσ, that is, m = 0 and

u(x) = |Ja(x− zσ)| 2−n +O(|x− zσ| 2−n+α),(3.19)

v(x) = |Jb(x− zσ)| 2−n +O(|x− zσ| 2−n+α),(3.20)

where Ja =
√

A(zσ, a(zσ))−1, Jb =
√

A(zσ, b(zσ))−1.
Applying (3.18) to the two solutions u, v above, we obtain

‖ ΛA(x, a) − ΛA(x, b) ‖∗‖ u ‖
H

1
2 (∂Ω)

‖ v ‖
H

1
2 (∂Ω)

≥
∣∣∣∣∣
∫
Bρ(zσ) ∩ Ω

(A(x, a(x))−A(x, b(x)))Du ·Dv

∣∣∣∣∣
−
∣∣∣∣∣
∫

Ω \ Bρ(zσ)

(A(x, a(x))−A(x, b(x)))Du ·Dv

∣∣∣∣∣ .(3.21)

Then using (3.9) we end up with∣∣∣∣∣
∫
Bρ(zσ) ∩ Ω

(A(x, a)−A(x, b))J 2
a (x− zσ) · J 2

b (x− zσ)

|Ja(x− zσ)| n|Jb(x− zσ)| n
∣∣∣∣∣

≤ C

∫
Bρ(zσ) ∩ Ω

|x− zσ| 2−2n+α

+

∫
Ω \ Bρ(zσ)

|A(x, a)−A(x, b)| |x− zσ| 2−2n

+ ‖ ΛA(x, a) − ΛA(x, b) ‖∗‖ u ‖
H

1
2 (∂ Ω)

‖ v ‖
H

1
2 (∂ Ω)

.(3.22)

We recall that, by Lemma 3.6 and by our assumptions, A(x, a(x)) ∈ W 1, p(Ω) with
p > n; hence A(x, a(x)) is Hölder continuous with exponent β = 1− np in Ω̄. Therefore,

A(x, a(x))−A(x, b(x)) = A(x0, a(x0))−A(x0, b(x0)) +O(|x− x0|β).
We obtain∫

Bρ(zσ) ∩ Ω

J 2
b (A(x

0, a(x0))−A(x0, b(x0)))J 2
a (x− zσ) · (x− zσ)

|Ja(x− zσ)| n|Jb(x− zσ)| n

≤ C

∫
Bρ(zσ) ∩ Ω

|x− zσ| 2−2n|x− x0| β

+C

∫
Bρ(zσ) ∩ Ω

|x− zσ| 2−2n+α

+

∫
Ω \ Bρ(zσ)

|A(x, a)−A(x, b)| |x− zσ| 2−2n

+ ‖ ΛA(x, a) − ΛA(x, b) ‖∗‖ u ‖
H

1
2 (∂ Ω)

‖ v ‖
H

1
2 (∂ Ω)

.(3.23)
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We now consider the quantity J2
b (A(x

0, a) − A(x0, b))J2
a(x − zσ) · (x − zσ), which

appears on the left-hand side of (3.23). Recalling that J2
a = A(zσ, a(zσ))

−1, we have

|J2
a −A(x0, a(x0))−1| ≤ C|zσ − x0| β ≤ Cσ β

and likewise, |J2
b −A(x0, b(x0))−1| ≤ Cσ β . Therefore,

J2
b (A(x

0, a)−A(x0, b)) J2
a(x− zσ) · (x− zσ)

≥ (A(x0, b)−1 −A(x0, a)−1)(x− zσ) · (x− zσ)

−Cσβ(a(x0)− b(x0))|x− zσ|2.

Using the ellipticity assumption (2.4) and the monotonicity assumption (2.5), we
compute

(A(x0, b)−1 −A(x0, a)−1)(x− zσ) · (x− zσ)

=

(∫ b(x0)

a(x0)

Dt(A(x
0, t))−1 dt

)
(x− zσ) · (x− zσ)

=

(∫ b(x0)

a(x0)

−A−1(x0, t)DtA(x
0, t)A−1(x0, t) dt

)
(x− zσ) · (x− zσ)

≥
∫ a(x0)

b(x0)

E−2λ−2 |x− zσ|2 dt.

Hence, we have

J2
b (A(x

0, a)−A(x0, b)) J2
a(x− zσ) · (x− zσ)

≥ (E−2λ−2 − Cσ β)(a(x0)− b(x0)) C |x− zσ|2

and, choosing

σ ≤
( 1
2C

E−2 λ−2
) 1

β

,

we obtain

J2
b (A(x

0, a)−A(x0, b)) J2
a(x− zσ) · (x− zσ)

≥ C (a(x0)− b(x0)) |x− zσ|2.(3.24)

By applying (3.24) to (3.23),

‖ a− b ‖L∞(∂Ω)

∫
Bρ(zσ) ∩ Ω

|x− zσ| 2−2n

≤ C

{∫
Bρ(zσ) ∩ Ω

|x− zσ| 2−2n|x− x0| β

+

∫
Bρ(zσ) ∩ Ω

|x− zσ| 2−2n+α

+

∫
Ω \ Bρ(zσ)

|A(x, a)−A(x, b)| |x− zσ| 2−2n

+ ‖ ΛA(x, a) − ΛA(x, b) ‖∗‖ u ‖
H

1
2 (∂ Ω)

‖ v ‖
H

1
2 (∂ Ω)

}
.
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By estimating the integrals appearing above and the H
1
2 (∂Ω) norms of u and v, we

obtain

‖ a− b ‖L∞(∂ Ω) σ 2−n ≤ C

{
σ 2−n+β + σ 2−n+α + C

+ ‖ ΛA(x, a) − ΛA(x, b) ‖∗ σ 2−n
}
;

see [A, Proof of Theorem 1.2] for details. Therefore,

‖ a− b ‖L∞(∂ Ω) ≤ C
{

ω(σ)+ ‖ ΛA(x, a) − ΛA(x, b) ‖∗
}

,(3.25)

where ω(σ)→ 0 as σ → 0. From (3.25) we obtain the following estimate:

‖ a− b ‖L∞(∂ Ω) ≤ C ‖ ΛA(x, a) − ΛA(x, b) ‖∗ .(3.26)

Recalling that, for almost every x ∈ Ω, the function

t −→ A(x, t)

is absolutely continuous on [λ−1, λ], we may write

|A(x, a(x))−A(x, b(x))| =
∣∣∣∣∣
∫ a(x)

b(x)

DtA(x, t) dt

∣∣∣∣∣
≤
∫ a(x)

b(x)

Sup t, x|DtA(x, t) | dt

≤ C | (a(x)− b(x)) |

for every x ∈ Ω̄. Taking the L∞-norm on both sides, we obtain

‖ A(x, a)−A(x, b) ‖L∞(∂ Ω)≤ C ‖ a− b ‖L∞(∂ Ω) .(3.27)

By combining (3.26) and (3.27) we obtain (2.8).
Proof of Theorem 2.2. Possibly reducing the values of h, r in Definition 2.1, it

suffices to consider the case when U = V l ∩ Ω̄, where V l is one of the cylinders found
in Lemma 3.2 and W = 1

2 V l ∩ Ω̄, where 1
2 V l is the cylinder having the same center

as V l and half sizes compared to V l. First, we shall prove∥∥∥∥ ∂j

∂ν̃j
(a− b)

∥∥∥∥
L∞(∂Ω ∩ W̄ )

≤ C ‖ ΛA(x, a) − ΛA(x, b) ‖ δ j∗ for every j ≤ k,(3.28)

where δj is given by (2.13) and ν̃ is the unit vector introduced in Lemma 3.3. We
proceed by induction on k. Using (3.26) in the proof of Theorem 2.1, we have that
(3.28) is satisfied when k = 0. Let us assume that (3.28) holds when j = k− 1, and
let us prove it for j = k.

Let m be a positive integer. Let x0 ∈ ∂Ω∩W be such that (up to exchanging the
roles of a and b)

(−1)k ∂k

∂ν̃k
(a− b)(x0) =

∥∥∥∥ ∂k

∂ν̃k
(a− b)

∥∥∥∥
L∞ (∂ Ω ∩ W̄ )

.(3.29)
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Let zσ = x0 + σν̃, with σ ≤ min{σ0, ρ2
}
, where σ0 is the number appearing

in Lemma 3.3 and ρ = min
{
r0, h

4L

}
, where r0 is the number chosen in Lemma 3.5

in dependence of m. We consider the ball Bρ(zσ); we have that Bρ(zσ) ∩ Ω will be
nonempty and also

Bρ(zσ) ∩ Ω̄ ⊂ U.(3.30)

As we did in Theorem 2.1, we can continue A(x, a(x)), A(x, b(x)) outside of Ω.
Consequently, let u, v be the solutions obtained in Theorem 3.4 having a singularity
at zσ and corresponding to the spherical harmonic Sm indicated in Lemma 3.5. We
apply (3.18) to two such solutions. We now use the property

A(x, t) ∈ C1(Ū × [λ−1, λ])

and from the Lagrange theorem, for every x ∈ Ū there exists t(x), 0 < t(x) < 1, such
that (

A(x, a(x))−A(x, b(x))
)

Du ·Dv = (a(x)− b(x))

·DtA(x, t)|t= c (x)Du ·Dv,

where c(x) = a(x) + t(x)(b(x)− a(x)), hence

‖ ΛA(x, a) − ΛA(x, b) ‖∗‖ u ‖
H

1
2 (∂ Ω)

‖ v ‖
H

1
2 (∂ Ω)

≥
∫

Ω

(A(x, a)−A(x, b))Du ·Dv

≥
∫
Bρ(zσ) ∩ Ω

(a− b)
(

DtA(x, t)| t= c
)

Du ·Dv

−
∫

Ω \ Bρ(zσ)

|A(x, a)−A(x, b)| |Du | |Dv |.

From the formulas (3.8)–(3.9) we have

|Du−Dv| ≤ C(|x− zσ| 1−n−m | a(zσ)− b (zσ)|
+|x− zσ| 1−n−m+α)

≤ C
(
|x− zσ|1−n−m|a(x0)− b(x0)|

+ |x− zσ|1−n−m σβ + |x− zσ|1−n−m+α
)

,

and since |x− zσ| ≥ Cσ, for every x ∈ Bρ(zσ) and α < β,

|Du−Dv| ≤ C(|x− zσ|1−n−m| a(x0)− b(x0)|
+|x− zσ|1−n−m+α).(3.31)

Let us compute

DtA(x, t)| t= c(x)Du ·Dv

= DtA(x, t)| t=c(x)Du ·Du+DtA(x, t)| t= c (x)Du · (Dv −Du)

≥ C |Du| 2

−C |Du|
{
|x− zσ| 1−n−m| a(x0)− b (x0)|+ |x− zσ| 1−n−m+α

}
.
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Therefore,

DtA(x, t)| t= c (x)Du ·Dv

≥ C |x− zσ| 2−2(n+m) − C|x− zσ| 2−2(n+m)| a(x0)− b (x0)|
−C |x− zσ| 2−2(n+m)

(
1− | a(x0)− b (x0)| − |x− zσ| α

)
(3.32)

for almost every x ∈ Bρ(zσ) ∩ Ω.
Recalling that (3.28) holds for j = 0, we obtain

DtA(x, t)| t= c (x)Du ·Dv

≥ C|x− zσ| 2−2(n+m)
(
1− C ‖ ΛA(x, a) − ΛA(x, b) ‖∗ −|x− zσ| α

)
for almost every x ∈ Bρ(zσ) ∩ Ω. Let us observe that, without loss of generality, we
can assume

‖ ΛA(x, a) − ΛA(x, b) ‖∗ ≤ 1

2C
;(3.33)

in fact, if we had the opposite inequality we would trivially obtain

‖ Dk(a− b) ‖L∞(∂ Ω) ≤ Ek

≤ Ek(2C)
δk ‖ ΛA(x, a) − ΛA(x, b) ‖ δk∗ ,

which would prove the induction step. Hence, using (3.33), we have

D tA(x, t)| t= c (x) ≥ C|x− zσ| 2−2(n+m)
(1
2
− |x− zσ| α

)
(3.34)

for almost every x ∈ Bρ(zσ) ∩ Ω.
Possibly choosing a smaller value of ρ, we may assume that

|x− zσ| α <
1

4
for every x ∈ Bρ(zσ),

and therefore,

D tA(x, t)| t= c (x)Du ·Dv ≥ C |x− zσ| 2−2(n+m)(3.35)

for almost every x ∈ Bρ(zσ) ∩ Ω.
Note that every x ∈ U can be uniquely represented as

x = y − sν̃,(3.36)

where y ∈ ∂Ω and 0 ≤ s ≤ σ0, where 0 < σ0 < h− L r.
Hence, by Taylor’s formula we have∥∥∥∥ ∂ k

∂ν̃k
(a− b)

∥∥∥∥
L∞(∂ Ω ∩ W̄ )

sk ≤ k ! (a− b)(x)

+C

{
k−1∑
j = 0

∥∥∥∥ ∂j

∂ν̃j
(a− b)

∥∥∥∥
L∞(∂ Ω ∩ W̄ )

sj

+ sk|x− x0| α
}

.(3.37)
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We obtain

‖ ΛA(x, a) − ΛA(x, b) ‖∗‖ u ‖
H

1
2 (∂ Ω)

‖ v ‖
H

1
2 (∂ Ω)

≥
∫
Bρ(zσ) ∩ Ω

(a− b)DtA(x, t)| t= cDu ·Dv

−
∫

Ω \ Bρ(zσ)

|A(x, a)−A(x, b)| |x− zσ| 2−2(n+m)

≥
∥∥∥∥ ∂ k

∂ν̃ k
(a− b)

∥∥∥∥
L∞(∂ Ω)

∫
Bρ(zσ) ∩ Ω

(d(x, ∂Ω)) kDtA(x, t)| t= cDu ·Dv

−
k−1∑
j = 0

∥∥∥∥ ∂ j

∂ν̃ j
(a− b)

∥∥∥∥
L∞(∂ Ω)

∫
Bρ(zσ) ∩ Ω

(d(x, ∂Ω)) jDtA(x, t)| t= cDu ·Dv

−
∫
Bρ(zσ) ∩ Ω

(d(x, ∂Ω)) k|x− x0| αDtA(x, t)| t= cDu ·Dv

−
∫

Ω \ Bρ(zσ)

|A(x, a)−A(x, b)| |x− zσ| 2−2(n+m).

Therefore,

∥∥∥∥ ∂ k

∂ν̃k
(a− b)

∥∥∥∥
L∞(∂ Ω)

∫
Bρ(zσ) ∩ Ω

|x− zσ| 2−2(n+m)(d(x, ∂Ω)) k

≤ C

{∫
Ω \ Bρ(zσ)

| a(x)− b(x)| |x− zσ| 2−2(n+m)

+

∫
Bρ(zσ) ∩ Ω

|x− zσ| 2−2(n+m)|x− zσ| 2−2(n+m)|x− x0| α(d(x, ∂Ω)) k

+

k−1∑
j = 0

∫
Bρ(zσ) ∩ Ω

|x− zσ| 2−2(n+m)(d(x, ∂Ω)) j
∥∥∥∥ ∂ j

∂ν̃ j
(a− b)

∥∥∥∥
L∞(∂ Ω)

+ ‖ ΛA(x, a) − ΛA(x, b) ‖∗ ‖ u ‖
H

1
2 (∂ Ω)

‖ v ‖
H

1
2 (∂ Ω)

}
.

Choosing m sufficiently large, depending only on k, estimating the integrals in the
above formula (see [A, Proof of Theorem 1.2]), and recalling the induction hypothesis,
we obtain∥∥∥∥ ∂ k

∂ν̃ k
(a− b)

∥∥∥∥
L∞(∂ Ω ∩ W̄ )

≤ C

{
‖ ΛA(x, a) − ΛA(x, b) ‖ δ k−1∗ σ−k + σ α

}

for every 0 < σ ≤ σ0.

By optimizing the choice of σ, we obtain (3.28) for j = k. Let us now recall the
interpolation inequality

‖ Df ‖L∞(∂ Ω ∩ Ū) ≤ C

{∥∥∥∥ ∂

∂ν̃
f

∥∥∥∥
L∞(∂ Ω)

+ ‖ f ‖
α

1−α

L∞(∂ Ω ∩ Ū)
‖ f ‖

1
1+α

C 1+α(Ū)

}
(3.38)
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for every f ∈ C 1, α(Ω̄) (see, for instance, (3.17) in [A, Lemma 3.2]). From (3.28) and
an iterated use of (3.38), we obtain

‖ D k(a− b) ‖L∞(∂ Ω ∩ W̄ )≤ C ‖ ΛA(x, a) − ΛA(x, b) ‖ δ k∗ .(3.39)

Finally, we observe that, by an elementary induction argument, for every multi-
index β, |β| ≤ k the following identity holds:

D βA(x, a(x)) =
∑

γ + δ ≤ β
Pγ δ(a(x), . . . , D | δ |a(x))

·D γ
x D

|δ|
t A(x, a(x)),(3.40)

where Pγ δ is a polynomial. Hence, recalling hypothesis (2.9), which has not been
used yet, we obtain

‖ Dk(A(x, a(x))−A(x, b(x))) ‖L∞(∂ Ω ∩ W̄ ) ≤ C ‖ a− b ‖ αCk(∂ Ω ∩ W̄ ) ,(3.41)

which in combination with (3.39) readily implies (2.12).

4. Proofs of the uniqueness theorems.
Proof of Theorem 2.3. Let us observe that it suffices to prove (2.15) and (2.17)

on ∂Ω ∩ W̄ , where W is an arbitrary open subset of Ω̄ such that W̄ ⊂ U . Therefore,
similarly to what we did in the proof of Theorem 2.2, we can reduce ourselves to the
case when U = V l∩Ω̄, W = 1

2V l∩Ω̄, where V l is one of the cylinders found in Lemma
3.2. Let ν̃ be the unit vector introduced in Lemma 3.3, suited for the neighborhood
U . As a first step, let us prove

∂ j

∂ν̃ j
(a− b) = 0 on ∂Ω ∩ W̄ for every j ≤ k,(4.1)

by induction on k. When k = 0, (4.1) is a consequence of Theorem 2.1 (see also (3.26)).
Let us assume that (4.1) holds for every j ≤ k− 1, and suppose by contradiction that
there exists a point x0 ∈ ∂Ω ∩ W̄ such that, without loss of generality,

(−1) k ∂ k

∂ν̃ k
(a− b)(x0) > 0.

Letm be a positive integer to be chosen later on, and let r0 be accordingly defined
as in Lemma 3.5. Let zσ = x0+σν̃, σ > 0, and ρ > 0 be chosen as we did in Theorem
2.2. Possibly choosing a smaller value of ρ, by (3.30) and the representation (3.36),
Taylor’s formula gives us

(a− b)(x) ≥ 1
2

(−s) k

k !

∂ k

∂ν̃ k
(a− b)(x0) for every x ∈ U.

We intend to consider again the formula (3.18) with u, v being the singular solutions
chosen in the proof of Theorem 2.2. For almost every x ∈ Ω we have

A(x, a(x))−A(x, b (x)) =

∫ a(x)

b(x)

DtA(x, t) dt,(4.2)
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and by the monotonicity assumption (2.5)

(∫ a(x)

b (x)

DtA(x, t) dt

)
ξ · ξ =

∫ a(x)

b (x)

DtA(x, t)ξ · ξ dt

≥
∫ a(x)

b(x)

E−1| ξ |2 dt

= (a− b)(x)E−1| ξ |2.

In other words,

∫ a(x)

b(x)

DtA(x, t) dt = (a− b)(x)M(x) for every x ∈ U,

where the matrix M satisfies

M(x)ξ · ξ ≥ E−1| ξ |2 for almost every x ∈ U, for every ξ ∈ R
n.

By rephrasing the arguments leading to (3.35) and by using the induction hypoth-
esis, which enables us to assume that the continuations of a(x), b(x) to BR(zσ) \ Ω̄
coincide, we obtain

M(x)Du ·Dv ≥ C |x− zσ| 2−2(n+m) for almost every x ∈ U.(4.3)

From (3.18) we obtain

0 =

∫
Ω

(A(x, a)−A(x, b))Du ·Dv

=

∫
Ω ∩ Bρ(zσ)

(A(x, a)−A(x, b))Du ·Dv

+

∫
Ω \ Bρ(zσ)

(A(x, a)−A(x, b))Du ·Dv

≥
∫

Ω ∩ Bρ(zσ)

(a− b)(x)M(x)Du ·Dv

− C

∫
Ω \ Bρ(zσ)

| a− b | |x− zσ| 2−2(n+m).

Using (4.3), and provided we choose m > k−1
2 ,

0 ≥ 1
2

(−1) k
k !

∂ k

∂ν̃ k
(a− b)(x0)

∫
Ω ∩ Bρ(zσ)

(d(x, ∂Ω)) k |x− zσ| 2−2(n+m)

− C

∫
Ω \ Bρ(zσ)

| a− b | |x− zσ| 2−2(n+m) ,

and therefore,

(−1)k
k !

∂ k

∂ν̃ k
(a− b)(x0) ≤ C σ n+2m−2−k .
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Pickingm such that n+2m−2−k > 0 and letting σ → 0, we are led to a contradiction.
Then we can conclude that (4.1) holds, and consequently,

D j(a− b) = 0 on ∂Ω ∩W for every j ≤ k.(4.4)

Finally, (2.17) follows from (2.15) and (3.40).

Proof of Theorem 2.4. It suffices to prove iteratively that a = b on each Aj . This
is obtained by the argument developed in [A, Proof of Corollary 1.1], which is based on
the result of uniqueness at the boundary on the analytic continuation of a− b within
each Aj and on the Runge approximation theorem (see [KV2] and also [G, Theorem
2.4]). We remark that this last theorem requires only the Lipschitz continuity of
the conductivity A(x, a(x)). Therefore, without need of higher order differentiability
on A(x, t), the method in [A, Proof of Corollary 1.1] also applies to the present
situation.

5. The one-eigenvalue-problem. Kohn and Vogelius have considered the case
in which the n−1 eigenvalues and eigenvectors of a conductivity matrix A are known
(see [KV1]). Their result is the following theorem.

Theorem 5.1. Let A, B be two symmetric, positive definite matrices with entries
in L ∞(Ω), and let {λ j}j = 1,... ,n, {λ̄ j}j = 1,... ,n and {ej}j=1,... ,n, {ēj}j=1,... ,n be the
corresponding eigenvalues and eigenvectors. For x0 ∈ ∂Ω, let B be a neighborhood of
x0 relative to Ω̄, and suppose that

A, B ∈ C ∞(B) and ∂Ω ∩B is C ∞,(5.1)

ej = ēj , λj = λ̄j in B, 1 ≤ j ≤ n− 1 ,(5.2)

en(x
0) · ν(x0) �= 0 ,(5.3)

ΛA(φ) = ΛB(φ) for every φ ∈ H
1
2 (∂Ω) with supp(φ) ⊂ B ∩ ∂Ω.(5.4)

Then

Dkλn(x
0) = Dkλ̄n(x

0) for any k ≥ 0.(5.5)

Let us rephrase the problem of Kohn and Vogelius in terms of our setting. Letting
a(x) be the nth eigenvalue, the conductivity matrix A has the structure

A = A(x, a(x)), where

A(x, t) = R(x)




λ1(x) 0 . . . 0
0 λ2(x) . . . 0
...

...
...

0 0 . . . λn−1(x)
0 0 . . . t


R �(x),
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where λ1(x), . . . , λn−1(x) are given positive functions and, for each x, R(x) is a known
orthogonal matrix. In this case, we have

D tA(x, t) = R(x)




0 0 . . . 0
0 0 . . . 0
0 0 . . . 0
...
...

...
0 0 . . . 1


R �(x).

We observe that the property (2.5) of monotonicity is not satisfied in this case;
in fact, the following equality holds:

DtA(x, t) ξ · ξ = |(R �(x) ξ)n| 2(5.6)

for every x ∈ Ω, t ∈ [λ−1, λ], ξ ∈ R
n, where the subscript n denotes the nth compo-

nent.
However, it is possible to modify our previous arguments in order to prove

theorems analogous to Theorems 2.1–2.4 as follows. Notice that condition (5.3) is
not needed here.

Claim. Theorems 2.1, 2.2, 2.3, 2.4 continue to hold if the monotonicity assump-
tion (2.5) is replaced by

E−1|(R �(x) ξ)n| 2 ≤ D t A(x, t) ξ · ξ ≤ E |(R �(x) ξ)n| 2(5.7)

for almost every x ∈ Ω, for every t ∈ [λ−1, λ], for every ξ ∈ R
n, where R = R(x) is

a given orthogonal matrix depending on the space variable x.
Proof of the Claim. For the sake of brevity, we shall point out only the crucial

modification in the proof of Theorem 2.1, since the corresponding changes in the
subsequent theorems follow by straightforward adaptations.

Let us recall that we have obtained∫
B ρ(zσ) ∩ Ω

J 2
b (A(x

0, a(x0))−A(x0, b(x0))) J 2
a (x− zσ) · (x− zσ)

|J a(x− zσ)| n |J b(x− zσ)| n

≤ C

∫
B ρ(zσ) ∩ Ω

|x− zσ| 2−2n |x− x0| β

+ C

∫
B ρ(zσ) ∩ Ω

|x− zσ| 2−2n+ α

+

∫
Ω \ Bρ(zσ)

|A(x, a)−A(x, b)| |x− zσ| 2−2n

+ ‖ ΛA(x, a) − ΛA(x, b) ‖∗‖ u ‖
H

1
2 (∂ Ω)

‖ v ‖
L

1
2 (∂ Ω)

.

Notice that the monotonicity assumption was used for obtaining a lower bound
on the left-hand side. Assuming (5.7), we proceed as follows:

J 2
b (A(x

0, a)−A(x0, b)) J 2
a (x− zσ) · (x− zσ)

≥
(
(A(x0, b))−1 − (A(x0, a))−1

)
(x− zσ) · (x− zσ)

− C σ β(a(x0)− b(x0)) |x− zσ|2

=

(∫ b(x0)

a(x0)

D t(A(x
0, t))−1 dt

)
(x− zσ) · (x− zσ) dt

− C σ β (a(x0)− b(x0)) |x− zσ|2.(5.8)
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And now (assuming without loss of generality R(x0) = I)

∫ b(x0)

a(x0)

D tA
−1 ξ · ξ dt

=

∫ a(x0)

b(x0)

A−1 (D tA)A−1 ξ · ξ dt

=

∫ a(x0)

b(x0)

(D tA)A−1ξ ·A−1 ξ dt

≥ C

∫ a(x0)

b(x0)

(
ξ · en

) 2

dt

= C (a(x0)− b(x0)) (ξ · en)2,

where en denotes the nth coordinate unit vector. Then we obtain

J 2
b (A(x

0, a)−A(x0, b)) J 2
a (x− zσ) · (x− zσ)

≥ C (a(x0)− b(x0)) | (x− zσ)n | 2
− C σ β (a(x0)− b(x0)) |x− zσ|2,

and hence

‖ a− b ‖ L∞(∂ Ω)

∫
B ρ(zσ) ∩ Ω

(x− zσ)
2
n

|x− zσ| 2n

≤ C

{∫
Bρ(zσ) ∩ Ω

|x− zσ| 2−2n |x− x0| β

+

∫
Bρ(zσ) ∩ Ω

|x− zσ| 2−2n+ α

+

∫
Bρ(zσ) ∩ Ω

σ β |x− zσ| 2−2n

+

∫
Ω \ Bρ(zσ)

|A(x, a)−A(x, b) | |x− zσ| 2−2n

+ ‖ ΛA(x, a) − ΛA(x, b) ‖∗‖ u ‖
H

1
2 (∂ Ω)

‖ v ‖
H

1
2 (∂ Ω)

}
.(5.9)

We need to estimate the quantity
∫
B ρ(zσ) ∩ Ω

(x−zσ)n
|x−zσ| 2n from below.

Let Br(P ) be a ball with center P on the axis passing through zσ and x0 and

radius r ≤ min
{
r0

2 − 3
4σ, σ

}
. In this case, we have that Br(P ) ⊂⊂ (Bρ(zσ)∩Ω), and

we consider a cube Q inscribed in Br(P ) with an axis parallel to en. Then we can
compute ∫

Q

|(x− zσ)n| 2
|x− zσ| 2n ≥ Cσ 2−n,(5.10)

and next the proof can proceed as before.
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Abstract. We study the dynamics of an interior spike of the Gierer–Meinhardt system. Under
certain assumptions on the domain size, the diffusion coefficients, and the decay rates, we prove that
the velocity of the center of the spike is proportional to the negative gradient of R(ξ, ξ), where R(x, ξ)
is the regular part of the Green’s function of the Laplacian with the Neumann boundary condition.
Hence, an interior spike moves towards local minima of R(ξ, ξ) and therefore stays as an interior
spike forever. This dynamics is fundamentally different from that of the shadow Gierer–Meinhardt
system where an interior spike moves towards the closest point on the boundary.

Key words. Gierer–Meinhardt system, activator-inhibitor reaction, spikes, spike dynamics

AMS subject classifications. 35B25, 35C20, 35J60, 35K99, 92C15, 92C40

PII. S0036141099364954

1. Introduction.

1.1. The Gierer–Meinhardt system. We consider the Gierer–Meinhardt sys-
tem, for A = A(x, t) and H = H(x, t),


At = DA∆A− kAA+ lAA
2/H, x ∈ δΩ = {δz | z ∈ Ω}, t > 0,

Ht = DH∆H − kHH + lHA2, x ∈ δΩ, t > 0,

∂nA = 0 = ∂nH, x ∈ ∂(δΩ), t > 0,

A(x, 0) = A0(x) > 0, H(x, 0) = H0(x) > 0, x ∈ δΩ.
(1.1)
Here Ω ⊂ R

N , N = 2, 3, is a bounded domain with C3 boundary and unit volume,
∆ is the Laplace operator, ∂n is the exterior normal derivative, and δ is the size of
the physical domain. System (1.1) was proposed in [6] (see also [12]) as a model for
biochemical reactions of activator-inhibitor type in which a short-range substance,
the activator A, promotes its own production as well as that of a rapidly diffusing
antagonist, the inhibitor H.

In this paper, we assume that DA, DH , kA, and kB , representing the diffusion
coefficients and the decaying rates of species A and H, are positive constants and
satisfy

kA
kH

� 1,
DA
kA

� δ2 � DH
kH

.(1.2)

These conditions reflect the following scenario: (i) the half-life (ln 2/kA) of the acti-
vator A is much longer than that of the inhibitor H; (ii) with respect to the size δ
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of the domain and the half-life of the species, the diffusion rate DA/(kAδ
2) of A is

small whereas that of H is large; namely, regional population differences of A are not
easily evened out in the life time of the component A, whereas regional population
differences of H are almost instantaneously evened out by the diffusion. In such a
scenario, a local increase in the concentration of the activator will be further amplified
(due to the lAA

2/H term), forming regions with high concentration of the activator
surrounded by the “sea” of, essentially uniformly distributed, inhibitors. We speak
of spikes if the activator concentrates near a single point or a set of isolated points.
Since stability results available at this point ([8, 17] in one dimension and [19, 20] in
two dimensions) seem to suggest that in the range of parameters considered in the
present paper, spikes concentrated at more than one point are unstable; therefore,
here we study only the dynamics of single spike solutions.

We introduce dimensionless constants

τ =
kA
kH

, ε2 =
DA
kAδ2

, D =
DH
kHδ2

,(1.3)

and we rescale the independent and dependent variables via

t �→ t

kA
, x �→ δx, A �→ kH

lHεN
A, H �→ kAlB

kH lA
εNH.(1.4)

Then the Gierer–Meinhardt system (1.1) takes the nondimensional form


At = ε2∆A−A+ f(A,H), x ∈ Ω, t > 0,

τHt = D∆H −H + ε−Ng(A), x ∈ Ω, t > 0,

∂nA = 0 = ∂nH, x ∈ ∂Ω, t > 0,

A(x, 0) = A0(x) > 0, H(x, 0) = H0(x) > 0, x ∈ Ω,

(1.5)

where

f(A,H) = A2H−1, g(A) = A2.(1.6)

Formally, as D →∞ one obtains the following shadow Gierer–Meinhardt system,
for A = A(x, t) and H = H(t):



At = ε2∆A−A+ f(A,H), x ∈ Ω, t > 0,

τHt = −H + ε−N
∫
Ω
g(A), x ∈ Ω, t > 0,

∂nA = 0 = ∂nH, x ∈ ∂Ω, t > 0,

A(x, 0) = A0(x) > 0, H(0) =
∫
Ω
H0(x)dx > 0, x ∈ Ω.

(1.7)

Note that steady states to (1.7), after the change of variables y = x/ε, are solutions
to

∆yA−A+ f(A,
∫
Ωε

Ady) = 0, y ∈ Ωε := ε−1Ω.(1.8)

In recent years there has been much interest in studying (1.5), (1.7), and especially
the associated steady state problem (1.8). In a series of papers [14, 15, 16], Ni and
Takagi (also with Lin [11]) established the existence of stationary spikes (solutions
to (1.8) with homogeneous Neumann boundary condition) concentrating at points of
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maximal mean curvature of ∂Ω. We refer the readers to the recent review article by
Ni [13] and the references therein for more details on this subject.

In [3] we studied the evolution of single-spike solutions to (1.7) and showed that
a single, interior spike located at ξ = ξ(t) ∈ Ω moves toward the boundary ∂Ω with
velocity

ξ̇ :=
d

dt
ξ(t) ∝ ∇ξe−2d(ξ)/ε,(1.9)

where d(ξ) is the distance from ξ to ∂Ω. From this formula, one sees that single
interior spikes for the shadow Gierer–Meinhardt system move towards their closest
points on ∂Ω, possibly with the exception of those which have more than one closest
point on the boundary. We would like to point out that the dynamics (1.9) for the
shadow Gierer–Meinhardt system (1.7) was first derived by Iron and Ward in [7],
whereas in [3] we provided a rigorous proof (see also related work [19]).

In the present paper we assume that D is large, but D � ε2emaxξ∈Ω d(ξ)/4ε. In
such a case one does not expect the spike to move exponentially slowly. In fact we
show that if ε3−2N−κ � D � ε2emaxξ∈Ω d(ξ)/4ε for some κ > 0, then an interior spike
moves with a velocity

ξ̇ ∝ −ε2D−1 DξR(ξ, ξ),(1.10)

where Dξ is the total derivative with respect to ξ, and R(x, ξ) is the regular part of the
Green’s function for ∆ with the Neumann boundary condition. Since R(ξ, ξ) → ∞
as x, ξ → ∂Ω, one sees from the formula (1.10) that an interior spike moves towards
local minima of R(ξ, ξ) and hence stays in Ω forever.

Clearly, the dynamics (1.10) for the Gierer–Meinhardt system (1.5) is totally
different from the dynamics (1.9) for the shadow Gierer–Meinhardt system (1.7).

The main purpose of this paper is to prove rigorously the asymptotic formula
(1.10), following the so called invariant manifold approach developed by Alikakos
and Fusco in [1, 2] to study motions of circular fronts (bubbles) in solutions to the
Cahn–Hilliard equation.

1.2. Statement of the main result. In this paper we shall use the following
notation:

〈φ〉 :=
∫

Ω

φ(x) dx, 〈φ, ψ〉 := 〈φψ〉 =
∫

Ω

φψ, ‖u‖p := ‖u‖Lp(Ω), Ωε := ε−1Ω.

We assume that τ � 1 and D � 1. Then we can argue from (1.5) that H(·, t) is
almost a constant equal to ε−N 〈g(A)〉 = ε−N 〈g(A(·, t))〉. (Recall that the volume of
Ω is 1.) Hence, it is convenient to decompose H as

H(x, t) = ε−N 〈g(A)〉+ h(x, t),

h(x, t) = h0(t) + h1(x, t),

h0(t) := 〈H〉 − ε−N 〈g(A)〉,
h1(x, t) := H(x, t)− ε−N 〈g(A)〉 − h0(t) = H − 〈H〉.

Then (1.5) can be written in terms of unknowns A, h0, and h1:


At − ε2∆A+A = f(A, ε−N 〈g(A)〉+ h0 + h1), x ∈ Ω, t > 0,

τh0,t + h0 = −τε−N 〈g′(A)At〉, t > 0,

τh1,t −D∆h1 + h1 = ε−N [g(A)− 〈g(A)〉], x ∈ Ω, t > 0,

∂nA = 0 = ∂nh1, x ∈ ∂Ω, t > 0.

(1.11)
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If we ignore h0 and h1 and use the stretched variable y = x/ε, the first equation
of (1.11) becomes

At −∆yA+A = f(A,
∫
Ωε

g(A)dy), y ∈ Ωε, t > 0,(1.12)

which is the limit, as τ → 0, of the shadow Gierer–Meinhardt system (1.7). Since
ε� 1, a solution to the equation

−∆yA+A = f(A,
∫

RN g(A)dy) in R
N(1.13)

will be almost a stationary solution.
With f and g given by (1.6), it is known that (1.13) has a unique, positive, radially

symmetric solution, which we denote by W (r), r = |y|. As W (r) → 0 exponentially
fast as r → ∞, for every ξ ∈ Ω, {A = W (|x − ξ|/ε), h0 = 0, h1 = 0} is almost an
equilibrium of (1.11). In what follows, a solution with A(x, t) ≈ W (|x − ξ(t)|/ε),
h0 ≈ 0 and h1 ≈ 0 will be called a spike solution located at ξ(t) at time t.

We consider only spikes that initially stay away from the boundary. To this
end we define d(ξ) = distance from ξ to ∂Ω and let µ be a parameter in the range
maxξ∈Ω d(ξ) > µ > 4ε log(Dε−2). We set

Ωµ = {ξ ∈ Ω | d(ξ) > µ}.(1.14)

Observe that if D satisfies ε3−2N−κ � D � emaxξ∈Ω d(ξ)/8ε for some κ > 0, then
Ωµ �= ∅ for all sufficiently small ε.

It is convenient to work with approximate solutions to (1.11) which have compact
support. Hence, we modify W (|y|) and W (|x− ξ|/ε) into compactly supported func-
tions W ε(y) and wε(x, ξ) as follows. Let ζ(s) be a cutoff function such that ζ = 1 if
|s| < 1/2, ζ = 0 if |s| > 1, and |Dnζ| ≤ 2n+1, n = 1, 2, 3. We define

W ε(y) = W (|y|)ζ(|y|ε/µ), y ∈ R
N ,

wε(x, ξ) = W ε(|x− ξ|/ε) = W (|x− ξ|/ε)ζ(|x− ξ|/µ), x, ξ ∈ Ω.
(1.15)

We define the approximate invariant manifold M by

M = {wε(·, ξ) | ξ ∈ Ω̄}.(1.16)

It is known (see Lemma 3.1 to follow) that there exists a positive constant c0 > 0
(depending only on Ω) such that if dist(A(·, t),M) ≤ c0ε

N/2, then we can uniquely
decompose A(·, t) as

A(x, t) = wε(x, ξ(t))+φ(x, t), ξ(t) ∈ Ω̄, ‖φ(·, t)‖2 = dist(A(·, t),M) := inf
w∈M

‖A−w‖2.
(1.17)
We define

T ∗ := sup{T > 0 | dist(A(·, t),M) ≤ c0ε
N/2, ξ(t) ∈ Ωµ ∀ t ∈ [0, T ] }.(1.18)

Theorem 1.1 (quasi-invariance of the manifold M). Let κ ∈ (0, 1/8) be any
fixed constant. Let ε, τ , D, and µ be positive parameters such that there hold the
relations

0 < ε < 1, 0 < τ < 1, ε2−N−2κ < D, 4ε log(Dε−2) < µ < max
ξ∈Ω

d(ξ).(1.19)
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Let (A, h0, h1) be solutions to (1.11) with initial values h0(0), h1(·, 0), and A(·, 0) =
wε(·, ξ0) + φ(·, 0), where 〈h1(·, 0)〉 = 0, ξ0 ∈ Ωµ, and ‖φ(·, 0)‖2 = dist(A(·, 0),M).
Assume that

|h0(0)|+ ‖h1(·, 0)‖∞ + ε−N/2‖φ(·, 0)‖2 ≤ D−1ε2−N−κ.(1.20)

Decompose A as in (1.17) in the interval [0, T ∗] with T ∗ defined as in (1.18).
There exist small positive constants ε0 and τ0 and a positive constant C0, all of

which depend only on Ω and κ, such that if ε ∈ (0, ε0] and τ ∈ (0, τ0], then

|h0(t)|+‖h1(·, t)‖∞+ε−N/2‖φ(·, t)‖2 ≤ C0D
−1ε2−N−κ < c0 ∀t ∈ (0, T ∗).(1.21)

In addition, either T ∗ =∞ or d(ξ(T ∗)) = µ (i.e., ξ(T ∗) ∈ ∂Ωµ).
To describe the dynamics of the spike (and therefore show that T ∗ = ∞), we

introduce the Green’s function G(x, ξ) of ∆ with the Neumann boundary condition;
i.e, for each ξ ∈ Ω, G(·, ξ) solves


−∆xG(x, ξ) = δ(x− ξ)− 1 in Ω,
∂nG = 0 on ∂Ω,∫
Ω
G(x, ξ) dx = 0.

(1.22)

Let Γ(x) = −(2π)−1 log |x| for N = 2 and = (4π|x|)−1 for N = 3 be the fundamental
solution of ∆ and let R(x, ξ) := G(x, ξ)− Γ(x− ξ) be the regular part of the Green’s
function.

Theorem 1.2 (dynamics of an interior spike). In addition to the assumptions of
the previous theorem we assume that

‖h1(·, 0)− (D∆)−1{[wε(·, ξ0)]2 − 〈(wε(·, ξ0)2〉}‖∞ ≤ D−2ε4−2N−2κ.

The following formula holds true:

ξ̇ = α0D
−1ε2

(
−DξR(ξ, ξ)+O(ε)d(ξ)−N+O(ε3−2N−2κD−1)

)
∀ t ∈ (0, T ∗),

(1.23)
where α0, given in (2.13) below, is a positive constant depending only on N .

Consequently, if we further assume that D ≥ ε2−N−3κ and µ is sufficiently small,
then T ∗ =∞ and ξ(t) ∈ Ωµ for all t > 0.

Remark 1.1. Condition (1.19) implicitly imposes an upper bound on D:

D < ε2eµ/(4ε) < ε2emaxξ∈Ω d(ξ)/(4ε).

If D is too large, say, log(D) > 1/ε, then (1.5) should be considered as a small
perturbation of the shadow Gierer–Meinhardt system, and therefore the dynamics
(1.9) should prevail.

Intuitively, for any given ξ ∈ Ω, making the magnitudes of the right-hand sides of
(1.9) and (1.10) equal should give us the critical size ofD to determine which dynamics
dominates. We believe that when D is exponentially large, i.e., log(D) = O(1/ε), our
analysis in [3] and the analysis presented in this paper can be combined to obtain
the leading order expansion of the velocity of motion of single interior spikes, which
somehow should be the sum of the right-hand sides of (1.10) and (1.9).

Remark 1.2. Our lower bound ε2−N−2κ for the magnitude of D for the quasi-
invariance of the manifold M in Theorem 1.1 is possibly sharp. Indeed, it is proved
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in [20] that when N = 2 and D = 1, the stationary spike attains a maximum of the
order O(| ln ε|) as ε→ 0, whereas in our case the spikes remain bounded by a constant
independent on ε.

Remark 1.3. One of the main points of our paper is to study the dynamics of a
single spike in the case when D = D(ε) and τ is a small parameter independent on ε or
D. In this context we refer the reader to [3] where the key spectral estimate (Lemma
3.2 to follow) is established. Although we believe that this estimate is true for more
general systems than the one considered here, for instance, with A2/H replaced by
Ap/Hq and A2 replaced by Ar/Hs, where qr/[(p − 1)(s + 1)] > 1; however, at the
moment such results are only available in the one-dimensional case [17]. Given higher
dimensional generalization of the spectral estimate in [17], one could easily adopt our
method to study the dynamics of interior spikes for the more general Gierer–Meinhardt
system.

Remark 1.4. One notices that taking smaller κ in our theorems makes the results
stronger. Nevertheless, we cannot take κ = 0. We expect terms involving log ε will
come up if we set κ = 0.

In (1.23), the term O(ε3−2N−2κD−1) does not match with the combination Eκ :=
ε2−N−κD−1. We believe that the actual size of this term should be O(Eκ). To prove
this, one needs an approximation better than approximatingH by a constant function.
This could, for instance, be accomplished by finding an ansatz for H from the equation
D∆H −H + ε−NW 2 = 0 (c.f. [20]).

Remark 1.5. We observe that since wε is bounded by a constant independent
on ε, therefore the assumptions on h1(·, 0) in Theorems 1.1 and 1.2 can be satisfied
simultaneously.

Remark 1.6. When N = 2 and Ω is a disk of radius 1/
√
π (so area of Ω is 1), we

have an explicit formula for R(x, ξ). Indeed, identifying points as complex numbers,
the Green’s function is given by

G(z, ξ) = − 1

2π
(ln |z−ξ|+ln |ξ̄z−1/π|)+ 1

4
(|z|2+ |ξ|2)+K0, K0 = − 3

4π
lnπ+

5

16π
.

It then follows that

R(ξ, ξ) = − 1

2π
ln ||ξ|2 − 1/π|+ 1

2
|ξ|2 +K0, DξR(ξ, ξ) =

2− π|ξ|2
1− π|ξ|2 ξ ∀ξ ∈ Ω.

Hence, a spike will move towards the origin in the radial direction.

For more explicit formulae of the regular part R(x, ξ) of the Green’s function of
certain other domains, see Fraenkel [5].

Later, in Lemma 3.5, we shall show that for any smooth domain Ω, |DξR(ξ, ξ)| ∝
d(ξ)1−N as ξ → ∂Ω, so that DξR(ξ, ξ) is the leading order term in (1.23).

In the next section we shall formally derive the dynamics of ξ(t). Then in the
subsequent sections, we verify the dynamics rigorously.

In what follows, we shall always assume that ε and τ are small positive constants
and that D,µ satisfy (1.19).

2. Formal derivation of the dynamics. To better explain our idea of the
proof, here we first provide a formal derivation of the dynamics (1.23).

Let W (r) be the solution to (1.13) and W ε, wε be functions defined in (1.15). We
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define

σε =
∫

RN g(W ε(|y|)) dy = ε−N
∫
|x−ξ|<µ g(w

ε(x, ξ)) dx ,

rε = rε(x, ξ) = ε2∆wε − wε + f(wε, σε)
= ∆yW

ε −W ε + f(W ε, σε)|y=(x−ξ)/ε .

(2.1)

Since W (y) decays to zero exponentially fast as |y| → ∞, we can regard rε as zero.
(On the contrary, for the shadow Gierer–Meinhardt system, rε is the main term forcing
a spike to move towards the boundary.)

If we decompose A(x, t) as in (1.17), then the first equation of (1.11) can be
written as

N∑
j=1

wεξj ξ̇j + φt = Lξφ+ fH(w
ε, σε)(h0 + h1) + rε +N ,(2.2)

where

Lξφ = ε2∆φ− φ+ fA(w
ε, σε)φ+ fH(w

ε, σε)ε−N 〈g′(wε)φ〉,
N = f(wε + φ, ε−N 〈g(wε + φ)〉+ h0 + h1)− f(wε, σε)

−fA(w
ε, σε)φ− fH(w

ε, σε)(ε−N 〈g′(wε)φ〉+ h0 + h1).

(2.3)

Multiplying (2.2) by wεξi and using

∫
Ω

wεξiw
ε
ξj = δij〈|wεξi |2〉,

∫
Ω

φtw
ε
ξi = −

∫
Ω

φwεξi,t = −
N∑
j=1

∫
Ω

φwεξiξj ξ̇j

(since φ ⊥ TM, 〈φ,wξi〉 = 0 for all i), we obtain

〈|wεξi |2〉ξ̇i−
N∑
j=1

〈wεξiξj , φ〉ξ̇j =
∫

Ω

wεξiLξ(φ)+
∫

Ω

fH(w
ε, σε)(h0+h1)w

ε
ξi+

∫
Ω

Nwεξi .

(2.4)
Since wξi is almost in the kernel of Lξ and therefore it is in the kernel of its adjoint

Lξ∗, we can ignore terms involving φ and N to obtain

ξ̇i〈|wεξi |2〉 ≈
∫

Ω

fH(w
ε, σε)(h0 + h1)w

ε
ξi =

∫
Ω

(h0 + h1)[Q(wε, σε)]ξi ,(2.5)

where

Q(w, σ) =

∫ w

0

fH(s, σ) ds = − w3

3σ2
∀w, σ ∈ (0,∞).(2.6)

Since Q(wε, σε)ξi = −Q(wε, σε)xi and Q ≡ 0 on ∂Ω, we have

ξ̇i〈|wεξi |2〉 ≈
∫

Ω

Q(wε, σε)(h0 + h1)xi =

∫
Ω

Q(wε, σε)h1,xi .(2.7)

Because τ is small and D is large, the third equation of (1.11) for h1 gives

h1 ≈ ε−N (−D∆)−1(g(wε)− 〈g(wε)〉).(2.8)
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Writing the Green’s function for ∆ as G(x, x′) = Γ(x − x′) + R(x, x′) and using the
fact that 〈G(·, x′)〉 = 0, we then have

h1 ≈ ε−ND−1

∫
Ω

G(x, x′)[g(wε)− 〈g(wε)〉](x′) dx′ = ε−ND−1

∫
Ω

G(x, x′)g(wε) dx′

= ε−ND−1

∫
Ω

Γ(x− x′)g(wε)(x′) dx′ + ε−ND−1

∫
Ω

R(x, x′)g(wε)(x′) dx′m

=: h11 + h12 .

Therefore,

ξ̇i〈|wεξi |2〉 ≈
∫

Ω

[Q(wε, σε)h11,xi +Q(wε, σε)h12,xi ] .(2.9)

Since wε and h11 are radially symmetric about ξ and wε has compact support,

∫
Ω

Q(wε, σε)h11,xi =

∫
RN

Q(wε, σε)h11,xi = 0.(2.10)

Hence

ξ̇i〈|wεξi |2〉 ≈ ε−ND−1

∫
Ω×Ω

Q(wε, σε)(x)Rxi(x, x
′)g(wε(x′, ξ)) dx′dx

= εND−1

∫
Ω

(∫
Ω

ε−NQ(wε(x, ξ), σε)Rxi(x, x
′) dx

)
ε−Ng(wε(x′, ξ)) dx′ .

Observe that as ε→ 0,

ε−Ng(wε(x′, ξ))→ c1δ(x
′ − ξ), c1 :=

∫
RN g(W (y)) dy,

ε−NQ(wε(x, ξ))→ −c2δ(x− ξ), c2 =
∫

RN |Q(W (y))| dy,
ε2−N ∫

Ω
|wεξi |2 =

∫
Ωε
|W ε

yi |2 → c3, c3 := 1
N

∫
RN |∇W |2.

(2.11)

We then have

ξ̇i ≈ −c1c2
c3

ε2

D
Rxi(ξ, ξ) = −c1c2ε

2

2c3D
DξR(ξ, ξ) =: −α0ε

2D−1DξR(ξ, ξ),(2.12)

by using the fact that R(ξ, x) = R(x, ξ) so ∇xR(ξ, ξ) = ∇ξR(ξ, ξ) = 1
2DξR(ξ, ξ).

Finally, using the definition of g, σ, and Q we have

α0 :=
c1c2
2c3

=
N
∫

RN W 3

6
∫

RN |∇W |2 ∫
RN W 2

=
N
∫

RN (|∇W |2 +W 2)

6
∫

RN |∇W |2 .(2.13)

Here in the last equality, we have used the identity
∫

RN W 3/
∫

RN W 2 =
∫

RN (|∇W |2+
W 2) obtained by integrating 0 = W (−∆W +W −W 2/

∫
RN W 2) over R

N .

In what follows we shall make the derivation of (2.12) rigorous.
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3. Preliminaries.

3.1. The ground state W . With f(A,H) = A2/H, (1.13) for W reads

−∆W +W − W 2∫
RN W 2

= 0 in R
N .

It is well known that this equation possesses a unique, nonnegative, radially symmetric
solution W (refered to as the ground state) with its unique maximum attained at the
origin. In addition, there exists a positive constant K such that as r →∞,

|DαyW (y)| ≤ Ke−|y|, α = 0, 1, 2.(3.1)

For more details on the ground state solutionW , see [4, 10, 9, 18, 21] and the references
therein.

From (3.1) one sees that there exists a positive constant C, which is independent
of ε and µ, such that rε(x, ξ) defined in (2.1) satisfies

|rε(x, ξ)|+ |∇ξrε(x, ξ)| ≤ Ce−µ/(2ε) ≤ CD−2ε4 ∀x, ξ ∈ Ω,

since µ ≥ 4ε log(Dε−2).

3.2. Local coordinates near M. For convenience, in what follows we shall
often drop the superscript and write σε = σ, wε = w, etc.

Lemma 3.1. There exists a positive constant c0 depending only on Ω such that if
ε ∈ (0, 1] and

dist(u,M) = inf
w∈M

‖u− w‖L2(Ω) < c0ε
N/2,(3.2)

then there exists a unique ξ ∈ Ω̄ such that

u = w(·, ξ) + ψ, ‖ψ‖2 = dist(u,M).(3.3)

Consequently, if ξ ∈ Ω, then ψ ⊥ TξM, the tangent space of M at w(·, ξ); that is,
〈ψ,wξi(·, ξ)〉 = 0 for all i = 1, . . . , N . The standard proof of this result is left to the
reader.

3.3. Eigenvalue estimates. Multiplying (2.2) by φ and integrating over Ω
yields, after using φ ⊥ TξM,

1

2

d

dt
‖φ‖22 = 〈Lξφ, φ〉+ h0〈fH , φ〉+ 〈h1fH , φ〉+ 〈rε +N , φ〉,(3.4)

where the operator Lξ can be written as

Lξφ = ε2∆φ− φ+ 2σ−1wφ− 2ε−Nσ−2〈w, φ〉w2, w = wε(·, ξ), σ = σε.(3.5)

Lemma 3.2. There exists a positive constant ν which is independent of ε and µ
such that for all sufficiently small positive ε,

〈Lξφ, φ〉 ≤ −ν{ε2‖∇φ‖22 + ‖φ‖22} ∀φ ∈ H1(Ω), φ ⊥ TξM, ξ ∈ Ωµ.(3.6)

This lemma was first established in [3, Lemma 2.4]; for completeness we include
the proof in the section 8. It is worth mentioning here that this eigenvalue estimate
is the key to our whole analysis.
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3.4. Some L∞ estimates for parabolic equations.

Lemma 3.3. There exists a positive constant C(Ω) such that for every constant
D ≥ 1, τ > 0, and T > 0, and functions v0 : Ω → (0,∞) and F (·, ·) : Ω × (0, T ) →
(0,∞), the solution v to




τvt −D∆v + v = F (x, t) in Ω× (0, T ),
∂nv = 0 on ∂Ω× (0, T ),
v(·, 0) = v0(·) in Ω× {0}

(3.7)

satisfies

min
Ω×[0,T ]

v ≥ 1

C(Ω)
min

{
min

Ω̄
v0, min

[0,T ]

∫
Ω

F (x, t) dx

}
.(3.8)

Lemma 3.4. For each p > N/2, there exists a positive constant C(Ω, p) such that
for every positive constant T , τ and η, and every function F ∈ L∞((0, T );Lp(Ω)) and
v0 ∈ L∞(Ω) with 〈v0〉 = 〈F (·, t)〉 = 0 for all t, the solution v to




τvt −∆v + ηv = F (x, t) in Ω× (0, T ),
∂nv = 0 on ∂Ω× (0, T ),
v(x, 0) = v0(x) in Ω× {0}

(3.9)

satisfies, for every t0 ∈ [0, T ],

‖v(·, t0)‖∞ ≤ ‖v0‖∞ + C(Ω, p) sup
0≤s≤t0

‖F (·, s)‖p .(3.10)

We leave the proofs of the above two lemmas until the last section.

3.5. The regular part of the Green’s function. We assume that Ω is a
bounded domain in R

N (N = 2, 3) with C3 boundary and of unit volume. We denote
by G(x, ξ) the Green’s function for ∆ in Ω with homogeneous Neumann boundary
condition, i.e., the solution to (1.22). For each ξ ∈ Ω sufficiently close to the boundary
∂Ω, the distance function d(x) defined as the distance from x to ∂Ω will be smooth
near ξ so that there is a unique reflection point ξ∗ = ξ − 2d(ξ)∇ξd(ξ) of ξ about ∂Ω.

Lemma 3.5. For all ξ sufficiently close to ∂Ω,

G(x, ξ) = Γ(x− ξ) +R(x, ξ), R(x, ξ) = Γ(x− ξ∗) + J(x, ξ),(3.11)

where ξ∗ = ξ − 2d(ξ)∇ξd(ξ) ∈ Ωc is the unique reflection point of ξ with respect to
∂Ω and the function J(x, ξ) satisfies

|∇xJ(ξ, ξ)| ≤ C(Ω) d(ξ)2−N .(3.12)

Consequently,

DξR(ξ, ξ) = 2∇xR(ξ, ξ) = 22−N (ωN )−1d(ξ)1−N [−∇ξd(ξ)+O(d(ξ))] as ξ → ∂Ω,
(3.13)
where ωN is the area of the unit sphere in R

N .

We leave the proof until the last section of the paper.
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4. L∞ estimates.

4.1. A lower bound on H.
Lemma 4.1. Assume that D > 1, τ > 0, and that the initial value H(·, 0) of H

satisfies

‖H(x, 0)− σε‖∞ ≤ σε

4
.(4.1)

There exists a constant C = C(Ω) > 0 such that for all t ∈ (0, T ∗),

H(x, t) ≥ 1

C(Ω)
.(4.2)

Proof. First of all, the constant σε :=
∫

RN (W ε(y))2dy = ε−N
∫
|x−ξ|≤µ(w

ε)2dx is

bounded and positive, uniformly in ε ∈ (0, 1].
When t ∈ (0, T ∗), A = w + φ with ‖φ‖2 ≤ c0ε

N/2. It then follows that

σ̄(t) := ε−N
∫

Ω

g(A) = ε−N
∫

Ω

A2 = ε−N
∫

Ω

(w + φ)2 ∈ (σε/2, 3σε/2)(4.3)

(taking smaller c0 if necessary). The assertion of the lemma then follows directly from
Lemma 3.3 with F (x, t) = ε−Ng(A).

4.2. An upper bound for A.
Lemma 4.2. There exists a positive constant C(Ω) such that

‖A‖∞,Ω×[0,T∗] ≤ C(Ω), ‖φ‖∞,Ω×[0,T∗] ≤ C(Ω) .(4.4)

Proof. Set y = x/ε. Then (1.5) can be written as

At −∆yA+A = f(A,H) in Ωε × (0, T ∗).

Fix p ∈ (N/2, 2). Then the local and boundary parabolic estimates yield

‖A‖∞,Ω×[0,T∗] ≤ ‖A(·, 0)‖∞+C sup
0<t≤T∗

sup
y∈Ωε

(‖A(·, t)‖L2(B1(y)∩Ωε)+‖f(A,H)‖Lp(B1(y)∩Ωε)),

(4.5)
where C depends only on the C2+α norm of ∂Ωε and hence is bounded independently
on ε ∈ (0, 1]. As f(A,H) = A2/H,

‖f(A,H)‖Lp(B1(y)∩Ωε) ≤
‖A2‖p,Ωε

minH
≤ C ‖A‖2−2/p

∞ ‖A‖2/p2,Ωε

≤ δ‖A‖∞ + C(δ)‖A‖2/(2−p)2,Ωε
= δ‖A‖∞ + C(δ)

(∫
Ω

ε−NA2dx

)1/(2−p)
.

Taking small δ, we then obtain from (4.5) that

‖A‖∞,Ω×[0,T∗] ≤
{
‖A(·, 0)‖∞ + C sup

(0,T∗)

[σ̄(t) + C(δ)σ̄1/(2−p)(t)]
}
(1− Cδ)−1

≤ C(Ω),

where σ̄(t) is as in (4.3). The proof of the lemma is complete.
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5. The flow in the normal space to M.

5.1. Estimates for φ. With f and g given by (1.6),

H = ε−N 〈(w + φ)2〉+ h = σ + 2ε−N 〈φw〉+ ε−N‖φ‖22 + h,

and (2.2) reads

∇ξw · ξ̇ + φt = rε + Lξφ− w2

σ2
h−N [w, φ],(5.1)

where rε = ε2∆w − w + w2/σ and

N [w, φ] =
φ2

H
− ε−N‖φ‖22w2

σ2
− (h+ 2ε−N 〈wφ〉+ ε−N‖φ‖22)wφ

σH
+

w2(H − σ)2

σ2H
.

(5.2)
Lemma 5.1. The following estimates hold for all t ∈ [0, T ∗]:

|N [w, φ]| ≤ C ( φ2 + ε−N‖φ‖22w2 + h2w2 ),(5.3)

1

2

d

dt
‖φ‖22 ≤ (ε2‖∇φ‖22 + ‖φ‖22)

(
ε−N/2‖φ‖2 − ν

2

)
+ C(ν)(εN‖h‖2∞ + |rε|2∞),(5.4)

where ν > 0 is the constant in Lemma 3.2.
Proof. The estimate (5.3) follows from Lemma 4.1, the bounds

‖φ‖2 ≤ c0ε
N/2, ‖w‖pp = εN

∫
RN

(W ε)pdy = O(εN ) ∀ p > 1,(5.5)

and a straightforward calculation.
To prove (5.4), we multiply (5.1) by φ, integrate over Ω, and use φ ⊥M, obtaining

1

2

d

dt
‖φ‖22 ≤ 〈Lξφ, φ〉+ |〈rε, φ〉|+ |〈w2hσ−2, φ〉|+ |〈N [w, φ], φ〉|.(5.6)

Let ν be the constant in Lemma 3.2. Using the bounds in (5.5), we can estimate

|〈rε, φ〉| ≤ ν

8
‖φ‖22 + C‖rε‖2∞,

|〈w2hσ−2, φ〉| ≤ CεN/2‖φ‖2‖h‖∞ ≤ ν

8
‖φ‖22 + CεN‖h‖2∞,

|〈φ2, φ〉| ≤ ‖φ‖33 ≤ Cε−N/2‖φ‖2(ε2‖∇φ‖22 + ‖φ‖22),
ε−N‖φ‖22|〈w2φ〉| ≤ Cε−N/2‖φ‖32,

|〈h2w2φ〉| ≤ CεN/2‖h‖2∞‖φ‖2 ≤ CεN‖h‖2∞.

Substituting these estimates into (5.6) and (5.3), and using Lemma 3.2, we then obtain
(5.4).

5.2. Estimates for h. We first estimate h1. It is convenient to further decom-
pose h1 = h11 + h12, where

τD−1h11,t −∆h11 +D−1h11 = ε−ND−1(w2 − 〈w2〉) ,
τD−1h12,t −∆h12 +D−1h12 = ε−ND−1[(2φw + φ2)− 〈2φw + φ2〉].

Both h11 and h12 satisfy the homogeneous Neumann boundary condition, h12(·, 0) ≡
0, and h11(x, 0) = h1(x, 0) = H(x, 0)− 〈H(·, 0)〉.
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Lemma 5.2. Assume that h12(·, 0) ≡ 0 and for some κ ∈ (0, 1/4), ‖h11(·, 0)‖∞ ≤
D−1ε2−N−κ. Then there exists C = C(κ,Ω) such that

‖h11‖∞,Ω×[0,T∗] ≤ CD−1ε2−N−κ ,(5.7)

‖h12‖∞,Ω×[0,T∗] ≤ CD−1ε2−N−κ(ε−N/2‖φ‖2).(5.8)

Proof. We set p = N/(2− κ) ∈ (N/2, 2). Using Lemma 3.4 we obtain

‖h11‖∞,Ω×[0,T∗] ≤ ‖h11(·, 0)‖∞ + CD−1 sup0<s<T∗ ‖ε−Nw2‖p ,

‖h12‖∞,Ω×[0,T∗] ≤ CD−1 sup0<s<T∗ ‖ε−N (2wφ+ φ2)‖p .
(5.9)

Since ε−N‖w2‖p ≤ Cε−N+N/p = Cε2−N−κ, the estimate (5.7) follows from (5.9).
Also, we have

‖ε−Nwφ‖p ≤ ε−N‖φ‖2‖w‖2p/(2−p) ≤ Cε−N+N(2−p)/(2p)‖φ‖2 = Cε−N−κ(ε−N/2‖φ‖2) ,
‖ε−Nφ2‖p ≤ ε−N‖φ‖2/p2 ‖φ‖2−2/p

∞ ≤ Cε2−N−κ(ε−N/2‖φ‖2)

since ‖φ‖∞ ≤ C and ε−N/2‖φ‖2 ≤ c0. The inequality (5.8) then follows from (5.9)
and the preceding estimates.

In what follows we denote

Eκ = Eκ(ε,D) = D−1ε2−N−κ for κ ∈ (0, 1/4) .(5.10)

We shall now estimate h0, which solves

h0,t + τ−1h0 = −2ε−N
∫

Ω

AAt .(5.11)

Lemma 5.3. The following estimate holds true for all t ∈ [0, T ∗],

1

2

d

dt
h2

0+τ−1h2
0 ≤ C(κ,Ω)[‖rε‖2∞+‖h‖2∞+ε−N‖φ‖22+ε−N |h0|(ε2‖∇φ‖22+‖φ‖22)].

(5.12)

Proof. Substituting∫
Ω

AAt =

∫
Ω

(w + φ){rε + Lξφ− σ−2w2h+N [w, φ]}

into (5.11) and using a straightforward calculation similar to that in the proofs of
Lemmas 5.1 and 5.2, we obtain (5.12). We omit the details.

5.3. Proof of Theorem 1.1. Adding estimates (5.4) and (5.12) we obtain

1

2

d

dt
(h2

0 + ε−N‖φ‖22) ≤ (C|h0|+ Cε−N‖φ‖22)− ν/2ε−N (ε2‖∇φ‖22 + ‖φ‖22)
+(C − τ−1)h2

0 + C‖h‖2∞ + Cε−N‖rε‖2∞ .(5.13)

By Lemma 5.2,

‖h‖2∞ = ‖h0 + h11 + h12‖2∞ ≤ 2h2
0 + 2‖h11‖2∞ + 2‖h12‖2∞

≤ 2h2
0 + C(Eκ)2(1 + ε−N‖φ‖22) .



SPIKE DYNAMICS IN THE GIERER–MEINHARDT SYSTEM 185

Since ‖rε‖∞ ≤ Ce−µ/(2ε) < CD−2ε4, taking τ0, ε0, c0 (in Lemma 3.1) sufficiently
small we obtain from (5.13) that if ε ∈ (0, ε0], τ ∈ (0, τ0], then

1

2

d

dt
(h2

0 + ε−N‖φ‖22) ≤ − 1

2τ
h2

0 − (ν/4− C|h0|)ε−N (ε2‖∇φ‖2 + ‖φ‖22) + C2(Eκ)2

≤ − 1

C1
(h2

0 + ε−N‖φ‖2) + C2(Eκ)2(5.14)

for all t ∈ [0, T̂ ], where [0, T̂ ] is the maximal interval in [0, T ∗] in which |h0| ≤ ν/(8C).
Here C1 and C2 are constants depending only on N,κ, and Ω.

Applying Gronwall’s inequality to (5.14), we conclude that there exists a constant
C = C(Ω, κ,N) such that when ε ∈ (0, ε0] and τ ∈ (0, τ0],

h2
0 + ε−N‖φ‖22 ≤ C(Eκ)2 = C(D−1ε2−N−κ)2

for all t ∈ (0, T̂ ]. Since we assume that D > ε2−N−2κ, we see from the above estimate
that, taking ε0 smaller if necessary, |h0| ≤ ν/(16C) and ε−N/2‖φ‖2 ≤ c0/2. Thus, we
must have T̂ = T ∗ and, by the definition of T ∗, either T ∗ =∞ or ξ(T ∗) ∈ ∂Ωµ. This
completes the proof of Theorem 1.1.

6. The flow in the tangent space of M. In what follows, we assume that
ε ∈ (0, ε0], τ ∈ (0, τ0], and that D and µ satisfy (1.19). Then the assertion of Theorem
1.1 holds true.

6.1. The velocity.
Lemma 6.1. For all t ∈ [0, T ∗),

ξ̇ =
ε2

3σ2c3

(
I +O(Eκ)

)(
− ε−N 〈∇xh11, w

3〉+O(ε−1Eκ2)
)
,(6.1)

where I is the identity matrix and c3 = N−1
∫

RN |∇W (y)|2dy.
Proof. Multiplying (5.1) by wξj and integrating the resulting equation over Ω

yields

N∑
i=1

ξ̇i

(
〈wξi , wξj 〉−〈wξiξj , φ〉

)
= 〈rε, wξj 〉+〈Lξφ,wξj 〉−〈σ−2w2h,wξj 〉+〈N , wξj 〉.

(6.2)
Note that

〈wξi , wξj 〉 = εN−2

∫
RN

W ε
yiW

ε
yj dy = εN−2c3δij(1 +O(e−µ/ε)) ,

|〈wξiξj , φ〉| ≤ CεN−2(ε−N/2‖φ‖2) ≤ CεN−2Eκ .

(6.3)

Hence, (6.2) can be written as

c3ε
N−2(I +O(Eκ))ξ̇ = 〈rε, wξ〉+ 〈Lξφ,wξ〉 − 〈σ−2w2h,wξ〉+ 〈N , wξ〉.(6.4)

We shall now estimate each term on the right-hand side.
First of all,

|〈rε, wξ〉| ≤ ‖rε‖∞|〈|wξ|〉 ≤ Ce−µ/(2ε)εN−1 ≤ CεN−1Eκ2.(6.5)
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Denote

(Lξ)∗ψ = ε2∆ψ − ψ + 2σ−1wψ − 2ε−Nσ−2〈w2ψ〉w
= Lξψ − 2σ−2ε−N (〈w2ψ〉w − 〈wψ〉w2).

Then (Lξ)∗wξ = Lξwξ = rεξ . It follows that

|〈Lξφ,wξ〉| = |〈φ, (Lξ)∗wξ〉| = |〈φ, rεξ〉| ≤ Ce−µ/(2ε)εN/2Eκ ≤ εN−1Eκ2.

Next, from (5.3) we obtain

|〈N , wξ〉| ≤ C

∫
Ω

(φ2 + ε−N‖φ‖22w2 + h2w2)|wξ|

≤ CεN−1[ε−N‖φ‖22 + ‖h‖2∞] ≤ CεN−1Eκ2.

As h = h0(t) + h1(x, t) = h0 + h11 + h12,

〈σ−2w2h,wξ〉 = 〈σ−2w2h1, wξ〉 = 〈σ−2w2h11, wξ〉+ 〈σ−2w2h12, wξ〉

and

|〈σ−2w2h12, wξ〉| ≤ CεN−1‖h12‖∞ ≤ CεN−1Eκ2(6.6)

by Lemma 5.2.
Finally, observe that

〈w2h11, wξ〉 = −1

3
〈h11, (w

3)x〉 = 1

3
〈∇xh11, w

3〉.

Substituting all these estimates into (6.4) we then obtain (6.1) and complete the
proof of the lemma.

Lemma 6.2. Under the assumptions of Theorem 1.2, formula (1.23) holds with
α0 given by (2.13).

Proof. From (6.1), it suffices to estimate the term 〈∇xh11, w
3〉.

We write h11 = h110 + h111, where

−∆h110 = D−1ε−N [w2 − 〈w2〉],
τD−1h111,t −∆h111 +D−1h111 = −D−1(τh110,t + h110)

(6.7)

with the homogeneous Neumann boundary condition for both h110 and h111. Note
that

h111(·, 0) = h11(·, 0)− h110(·, 0) = h1(·, 0)− (D∆)−1(w(·, ξ0)2 − 〈w2(·, ξ0)〉).

Using the Green’s function for the ∆, we have

h110(x) = D−1ε−N
∫

Ω

Γ(x− η)w2(η, ξ) dη +D−1ε−N
∫

Ω

R(x, η)w2(η, ξ) dη

def
= ψ1(|x− ξ|) + ψ2(x, ξ).

Note that 〈w3,∇xψ1〉 = 0 so that 〈∇xh110, w
3〉 = 〈∇xψ2, w

3〉.
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As |∇x∇ξR(x, ξ)| ≤ C(Ω)d(ξ)−N for all x ∈ Ω,∣∣∣∣
∫

Ω

Rxi(x, η)w
2(η, ξ) dη −Rxi(x, ξ)

∫
Ω

w2(η, ξ) dη

∣∣∣∣
≤
∫
|η−ξ|≤µ

|Rxi(x, η)−Rxi(x, ξ)|w2(η, ξ) dη

≤
∫
|η−ξ|<µ/2

|∇x∇ξR| |η − ξ| w2dη

+

∫
µ/2<|η−ξ|≤µ

|Rxi(x, η)−Rxi(x, ξ)|w2(η, ξ) dη ≤ CεN+1d(ξ)−N .

Similarly, since |∇x∇xR(x, ξ)| ≤ Cd(ξ)−N ,∣∣∣∣
∫

Ω

Rxi(x, ξ)w
3(x, ξ) dx−Rxi(ξ, ξ)

∫
Ω

w3(x, ξ) dη

∣∣∣∣ ≤ CεN+1d(ξ)−N .

It then follows that

〈ε−Nw3, h110,ξ〉 = D−1

∫
Ω

ε−Nw3(x, ξ)

∫
Ω

ε−NRxi(x, η)w
2(η, ξ) dηdx

= D−1Rxi(ξ, ξ)

∫
RN

W 2

∫
RN

W 3 +O(ε)D−1d(ξ)−N .(6.8)

On the other hand, by Lemma 3.4 we have

‖h111‖∞ ≤ ‖h110(·, 0)‖∞ + sup
0<t<T∗

D−1(τ‖h110,t‖p + ‖h110‖p)

≤ CEκ2 +D−2 sup
0<t<T∗

(τ‖∆−1[ε−Nw∇ξw · ξ̇]‖p + ‖∆−1ε−Nw2‖p)

≤ CEκ2 + CD−2 sup
0<t<T∗

[(τ |ξ̇|+ 1)ε−N‖w2‖p]

≤ CEκ2

since from (5.7) and (6.1) |ξ̇| = o(1) as long as t < T ∗. Thus,

ε−N |〈w2h111, wξi〉| ≤ Cε−1‖h111‖∞ ≤ Cε−1Eκ2.(6.9)

Hence, from (1.23), the preceding estimates, and the definition of α0, we obtain

ξ̇ = α0ε
2D−1

(
I +O(Eκ)

)(
−DξR(ξ, ξ) +O(ε)d(ξ)−N +O(ε3−2N−2κD−1)

)
.

Finally, notice that |EκDξR(ξ, ξ)| ≤ Cd(ξ)1−Nε2−N−κD−1 = Cε3−2N−κD−1[ε/d(ξ)]N−1

≤ Cε3−2N−2κD−1. Equation (1.23) thus follows.

6.2. Proof of Theorem 1.2. It remains to show that T ∗ = ∞ when D >
ε3−2N−3κ and µ is small.

When ξ(t) is near the boundary ∂Ω, we have, from (1.23) and (3.13),

ξ̇ = 22−Nα0ε
2(ωND)−1d(ξ)1−N

(
∇ξd(ξ) +O(ε/d(ξ)) +O(ε3−2N−2κD−1d(ξ)N−1)

)
.

It then follows that d
dtd(ξ(t)) > 0 whenever ξ(t) is close enough to the boundary.

Consequently, d(ξ(t)) > µ for all t ∈ [0, T ∗] if we take µ small enough. Therefore, by
Theorem 1.1, T ∗ =∞.
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7. Proofs of auxiliary lemmas.
Proof of Lemma 3.3. Integrating the differential equation over Ω yields

τ
d

dt

∫
Ω

v +

∫
Ω

v =

∫
Ω

F (x, t) dx ≥ min
[0,T ]

∫
Ω

F (x, t) dx .(7.1)

Gronwall’s inequality then gives∫
Ω

v(x, t) dx ≥ min

{∫
Ω

v0(x) dx, min
[0,T ]

∫
Ω

f(x, t) dx

}
.(7.2)

To prove (3.10), we consider two cases: (i) t0 ∈ [0, τ ]; (ii) t0 ∈ [τ, T ].
Case (i): t0 ∈ [0, τ ]. Comparing v with a subsolution v = e−t/τ minΩ̄ v0 gives

v(x, t0) ≥ v ≥ 1

e
min

Ω̄
v0 ∀x ∈ Ω.(7.3)

Case (ii): t0 ∈ [τ, T ]. We define

s = D(t− t0)/τ + 1, ṽ = e (t−t0)/τv = e (s−1)/Dv .

Then ṽs −∆ṽ ≥ 0 so that there exists C̃(Ω) such that

min
Ω

ṽ(·, 1) ≥ C̃(Ω)

∫
Ω

ṽ(·, 0) = C̃(Ω)e−1/D

∫
Ω

v(·, t0 − τ/D);(7.4)

namely,

min
Ω

v(·, t0) ≥ C̃(Ω)e−1/D

∫
Ω

v(·, t0 − τ/D) ∀t0 ∈ [τ, T ].(7.5)

Combining (7.2)–(7.5) then yields the assertion (3.10) of the lemma.
Proof of Lemma 3.4. Since the equation is linear we can assume that v0 ≡ 0.

In addition, by the change of variables t′ = t/τ we can also assume that τ = 1.
Furthermore, we can assume that η = 0 because, by defining ṽ = e ηtv and F̃ = e ηtF ,
if (3.10) holds for (ṽ, F̃ ), then it automatically holds for (v, F ) by the assumption that
η ≥ 0. Thus it suffices to establish (3.10) for the case when τ = 1, η = 0, and v0 ≡ 0.

Integrating the differential equation over Ω yields 〈v〉 = 0 for all t ∈ [0, T ].
Multiplying the differential equation by v and integrating the resulting equation

over Ω gives

1

2

d

dt

∫
Ω

v2 +

∫
Ω

|∇v|2 =

∫
Ω

Fv

≤ ‖F‖(2∗)′‖v‖2∗ ≤ C(δ)‖F‖2(2∗)′ + δ‖v‖22∗ ,

where 2∗ = 2N/(2 − N) for N ≥ 3 and any large number when N = 2. First
applying the Poincare inequality ‖v‖2∗ ≤ C(Ω)‖∇v‖2, then choosing δ = 1/(2C(Ω)),
and finally applying the Gronwall’s inequality, we then obtain

‖v(·, t)‖2 ≤ C sup
0<s<t

‖F (·, s)‖p

for any p > (2∗)′ = 2N/(2 +N) when N ≥ 3 and p > 1 when N = 2. The assertion
of the lemma then follows from the parabolic estimate

‖v(·, t)‖∞ ≤ C(Ω, p) sup
0<s<t

(‖v(·, s)‖2 + ‖f(·, s)‖p) ∀p ∈ (N/2,∞),
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since v(·, 0) = 0. The proof of the lemma is complete.
Proof of Lemma 3.5. Since (3.13) follows directly from (3.12) and the definition

of Γ and ξ∗, we need to show only (3.12).
Note that J(x, ξ) := G(x, ξ)− Γ(x− ξ)− Γ(x− ξ∗) satisfies ∆xJ(x, ξ) = 1 in Ω,

∂nJ(x, ξ) = b(x, ξ) on ∂Ω, and
∫
Ω
J(x, ξ)dx = c(ξ), where

b(x, ξ) = −∂nΓ(x− ξ)− ∂nΓ(x− ξ∗), c(ξ) = −
∫

Ω

(Γ(x− ξ) + Γ(x− ξ∗)) dx .

A geometric argument shows that for all x ∈ ∂Ω and ξ ∈ Ω,

|b(x, ξ)| = 1

ωN

∣∣∣∣ (x− ξ) · n(x)
|x− ξ|N +

(x− ξ∗) · n(x)
|x− ξ∗|N

∣∣∣∣ ≤ C(Ω)|ξ − x|2−N .(7.6)

Using the Green’s formula and noting that 〈G(·, ξ)〉 = 0, we have

J(x, ξ) = c(ξ) +

∫
∂Ω

b(x′, ξ)G(x, x′) dSx′ ,

∇xJ(x, ξ) =
∫
∂Ω

b(x′, ξ)∇xG(x, x′) dSx′ .(7.7)

Using the known fact that |∇xG(x, x′)| ≤ C(Ω)|x−x′|1−N , we then obtain from (7.6)
and (7.7) that

|∇xJ(ξ, ξ)| ≤ C(Ω)

∫
∂Ω

|ξ − x′|2−N |x′ − ξ|1−NdSx′ ≤ C(Ω)d(ξ)2−N .

This completes the proof.

8. Proof of Lemma 3.2. In this section, we prove Lemma 3.2.
We first consider the problem on R

N , N = 2, 3. In what follows, 〈f〉∗ =∫
RN f(x)dx.

Set σ0 = 〈W 2〉∗. Then
∆W −W + σ−1

0 W 2 = 0 in R
N .

Lemma 8.1. Let L0 be an operator defined as

L0φ
def
= ∆φ− φ+ 2σ−1

0 Wφ.

Then the following conditions hold:
(1) The principal eigenvalue λ0 of L0 is positive and its associated eigenfunction

φ0 is positive.
(2) Zero is an eigenvalue of L0 with multiplicity N ; its associated eigenspace is

spanned by Wx1
, . . . ,WxN .

(3) There exists ν0 > 0 such that

L0(φ, φ)
def
= 〈−|∇φ|2 − φ2 + 2σ−1

0 Wφ2〉∗ ≤ ν0〈φ2〉∗
for all φ ∈ H1(RN ) satisfying φ ⊥ φ0,Wx1 , . . . ,WxN (in L2(RN ) sense).

This lemma follows directly from more general results of [16].
Lemma 8.2. Let L1 be an operator defined by

L1φ
def
= L0φ− σ−2

0 〈Wφ〉∗W 2 − σ−2
0 〈W 2φ〉∗W.(8.1)

Then L1 has the following properties:



190 XINFU CHEN AND MICHA�L KOWALCZYK

(1) The operator L1 is self-adjoint.
(2) The function W is an eigenfunction of L1 with eigenvalue −σ−2

0 〈W 3〉∗.
(3) For each i = 1, . . . , N, Wxi is an eigenfunction of L1 with eigenvalue zero.
(4) Assume that N ≤ 3. Then there exists a positive constant ν1 ∈ (0, 1] such

that

L1(φ, φ)
def
= 〈−|∇φ|2 − φ2〉∗+2σ−1

0 〈Wφ2〉∗−2σ−2
0 〈Wφ〉∗〈W 2φ〉∗ ≤ −ν1〈φ2〉∗

for all φ ∈ H1(RN ) satisfying φ ⊥Wx1 , . . . ,WxN .
Proof. The first three assertions follow by direct verification. To prove assertion

(4), we need to consider only those φ which are orthogonal to W,Wx1
, · · · ,WxN . We

will argue by contradiction. Since the essential spectrum of L1 lies in (−∞,−1], if
assertion (4) is not true, then there exists (λ, φ) such that

(i) λ is real and nonnegative,
(ii) φ ⊥W,Wx1 , . . . ,WxN , and
(iii) L1φ = λφ.

We will show that conditions (i)–(iii) cannot hold simultaneously.
From the definition of L1 and conditions (ii) and (iii), we have

(L0 − λ)φ = σ−2
0 〈W 2φ〉∗W.(8.2)

First we claim that λ �= λ0. In fact, if λ = λ0, then (L0 − λ0)φ ⊥ φ0 so that
〈W 2φ〉∗〈Wφ0〉∗ = 0. Consequently, as φ0 > 0 and W > 0, 〈W 2φ〉∗ = 0, so that
(L0 − λ0)φ = 0. Thus φ is a multiple of φ0. But this contradicts 〈W 2φ〉∗ = 0. Hence,
λ �= λ0.

Restricted to the space orthogonal to Wx1 , . . . ,WxN , L0 − λ is invertible, so that
(8.2) implies that

φ = α(L0 − λ)−1W, α = σ−2
0 〈W 2φ〉∗.

Hence, α �= 0. Taking the inner product with σ−2
0 W 2/α, we obtain

1 = σ−2
0 (W 2, (L0 − λ)−1W )

= σ−1
0 (L0W, (L0 − λ)−1W ) (as L0W = σ−1

0 W 2)

= σ−1
0 ((L0 − λ)W, (L0 − λ)−1W ) + σ−1

0 λ(W, (L0 − λ)−1W )

= σ−1
0 〈W 2〉+ σ−1

0 λ(W, (L0 − λ)−1W )

= 1 + σ−1
0 λ(W, (L0 − λ)−1W ).

Consider the function F (z) = (W, (L0 − z)−1W ) for z ∈ (0, λ0) ∪ (λ0,∞). We have

F ′(z) = (W, (L0 − z)−2W ) = ((L0 − z)−1W, (L0 − z)−1W ) > 0.

Since L0(W + 1
2x · ∇W ) = W , L0

−1W = W + 1
2x · ∇W +ΣNi=1ciWxi . It then follows

that F (0) = (W,W + 1
2x · ∇W ) = (1− N

4 )〈W 2〉 > 0 as N ≤ 3. Thus, F (z) > 0 for all
z ∈ (0, λ0). As F (∞) = 0, we also have F (z) < 0 for all z ∈ (λ0,∞). Hence, we have
λ �∈ (0,∞).

Finally, we show that λ �= 0. In fact, if λ = 0, then as φ ⊥ Wxi for all i,
φ = αL0

−1W = α(W + 1
2x · ∇W ). But this implies that (φ,W ) = α(1 − 1

2 )〈W 2〉∗
> 0, contradicting the assumption φ ⊥ W . This completes the proof of the
lemma.
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Remark 8.1. If N = 4, one sees that φ = W + 1
2x · ∇W is an eigenfunction of L0

with eigenvalue zero.
Next, we extend Lemma 8.2 to large balls BR = {x | |x| < R}.
Lemma 8.3. Assume N ≤ 3. There exist positive constants R0 and ν2 such that

for each R > R0 and each φ ∈ H1(BR) satisfying φ ⊥ Wxi , i = 1, . . . , N in L2(BR)
there holds

L1
R(φ, φ)

def
=

∫
BR

(−|∇φ|2 − φ2 + 2σ−1
0 Wφ2)− 2σ−2

0

∫
BR

Wφ

∫
BR

W 2φ(8.3)

≤ −ν2

∫
BR

(|∇φ|2 + φ2).

Proof. We will argue by contradiction. Suppose the assertion is not true. Then
there exists a sequence {Rk, φk}∞k=1 such that Rk > k, φk ∈ H1(BRk

), φk ⊥ Wxi in
L2(BRk

) for all i,
∫
BRk

(|∇φk|2 + φ2
k) = 1, and

lim sup
k→∞

L1
Rk(φk, φk) ≥ 0.(8.4)

Since H1 is weakly compact and the embedding H1 → L2 is compact, we can
assume, by taking a subsequence if necessary, that there exists φ ∈ H1(RN ) such
that limk→∞ φk = φ, weakly in H1(BR) and strongly in L2(BR) for every R > 0. In
addition, ‖φ‖H1(RN ) ≤ 1.

Since W decays exponentially fast, we have, 〈φWxi〉∗ = limk→∞
∫
BRk

φkWxi = 0

for all i = 1, . . . , N . In addition, as k →∞,

γk
def
=

∫
Bk

2σ0−1Wφk − 2σ−2
0

∫
BRk

Wφk

∫
BRk

W 2φk

→ γ
def
= 2σ−1

0 〈Wφ2〉∗ − 2σ−2
0 〈Wφ〉∗〈W 2φ〉∗.

If φ ≡ 0, then γ = 0 so that

L1
Rk(φk, φk) = γk − 1 < −1/2

for all large k. But this contradicts (8.4).
If φ �≡ 0, then by Lemma 8.2, as φ ⊥ Wxj for all j, L1(φ, φ) ≤ −ν1〈φ2〉∗. As φ ∈

H1(R), there exists a large M such that ‖φ‖2H1(RN\BM ) ≤ 1
2ν1〈φ2〉∗. Consequently,

γ −
∫
BM

(|∇φ|2 + φ2)dx ≤ −1

2
ν1〈φ2〉∗.

It then follows that

lim sup
k→∞

L1
Rk(φk, φk) ≤ lim sup

k→∞

{
γk −

∫
BM

(|∇φk|2 + φ2
k)
}
≤ γ −

∫
BM

(|∇φ|2 + φ2) < 0 .

Again, we obtain a contradiction. The proof is now complete.
Proof of Lemma 3.2. We will denote

〈f〉ε =
∫

Ωε

f, Ωε =
1

ε
Ω.
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We also set

Lξ,ε(φ, ψ) def
= 〈−∇φ · ∇ψ − φψ + 2σ−1wφψ〉ε − 2σ−2〈wφ〉ε〈w2ψ〉ε.

We will show that there exists a positive constant ν which is independent of ε such
that for every sufficiently small positive ε,

Lξ,ε(φ, φ) ≤ −ν〈|∇φ|2 + φ2〉ε ∀φ, 〈φ,wξi(·, ξ)〉ε = 0,(8.5)

which is equivalent to the spectral estimate in Lemma 3.2. By scaling, we can as-

sume that 〈φ2 + |∇φ|2〉ε = 1. Set dε(ξ) = dist(ξ)
ε and R = dε(ξ). (Note that

R ≥ 2| ln(Dε−2)| ≥ R0 if ε is sufficiently small.) Translating Ωε if necessary, we
can always achieve ξ = 0.

Let L1
R(φ, φ) be defined as in (8.4). As |w − W |L∞ + |σ − σ0| = O(ε) and

|W | = O(ε) outside BR, we have

Lξ,ε(φ, φ) = LR(φ, φ)−
∫

Ωε\BR

(|∇φ|2 + φ2) +O(ε).(8.6)

Now let φR = φ −∑N
i=1 ciWxi be the L2(BR) orthogonal projection of φ on

{Wx1 , . . . ,WxN }⊥. Then, 0 = 〈φWxi〉ε =
∫
BR

φWxi + O(ε), so that ci = O(ε) for all

i. Hence, ‖φ− φR‖H1(BR) = O(ε) and

L1
R(φ, φ) = L1

R(φR, φR) +O(ε).(8.7)

From Lemma 8.2 we have

L1
R(φR, φR) ≤ −ν1

∫
BR

(
|∇φR|2 + (φR)2

)
= −ν1

∫
BR

(|∇φ|2 + φ2) +O(ε) .

Combining this with (8.6) and (8.7) then gives

Lξ,ε(φ, φ) ≤ −
∫

Ωε\BR

(|∇φ|2 + φ2)− ν1

∫
BR

(|∇φ|2 + φ2) +O(ε)(8.8)

≤ −ν1〈φ2 + |∇φ|2〉ε +O(ε).

Taking ε sufficiently small, we then obtain the assertion of the lemma.
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Abstract. In this paper we study the algebraic and geometric structure of the space of com-
pactly supported biorthogonal wavelets. We prove that any biorthogonal wavelet matrix pair (which
consists of the scaling filters and wavelet filters) can be factored as the product of primitive para-
unitary matrices, a pseudo identity matrix pair, an invertible matrix, and the canonical Haar matrix.
Compared with the factorization results of orthogonal wavelets, it now becomes apparent that the
difference between orthogonal and biorthogonal wavelets lies in the pseudo identity matrix pair and
the invertible matrix, which in the orthogonal setting will be the identity matrix and a unitary
matrix. Thus by setting the pseudo identity matrix pair to be the identity matrix and using the
Schmidt orthogonalization method on the invertible matrix, it is very straightforward to convert a
biorthogonal wavelet pair into an orthogonal wavelet.
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1. Introduction. The theory of wavelet analysis has grown explosively in the
last fifteen years. The terminology “wavelet” was first introduced, in the context
of a mathematical transform, in 1984 by Grossmann and Morlet [12]. In 1988,
Daubechies [9] introduced a class of compactly supported orthogonal wavelets with
growing smoothness for increasing support. Mallat [22] and Meyer [23] presented the
theory of multiresolution analysis. The spline family was first studied by Battle [1],
Chui [5], and Lemarié [21]. The necessary and sufficient conditions for orthonormal
wavelet bases were given by Cohen [7] and Lawton [20]. Except for the Haar wavelet,
compactly supported orthogonal wavelets can not be symmetric, though symmetry is
highly desired, for example, in the applications in signal processing, where symmetry
corresponds to linear phase. To obtain symmetry and keep the property of perfect
reconstruction, the orthogonal condition was replaced by biorthogonality and the the-
ory of biorthogonal wavelets [6, 8, 30] was established. (One of the earliest examples
of a nonorthogonal biorthogonal representation is in Paley and Wiener’s book on the
Fourier transform in the complex domain [24].) At the same time, pioneer work has
been done by many scientists from mathematics, physics, and engineering. For more
details of wavelet theory, we refer to [3, 4, 10, 14, 23, 26, 27, 31, 32].

In this paper we will study the algebraic and geometric structure of the space
of compactly supported biorthogonal wavelets. We will prove that any biorthogonal
wavelet matrix pair can be decomposed into four components: an orthogonal com-
ponent V (z), a pseudo identity matrix pair, an invertible matrix G, and a constant
matrix H. There have been several factorization results for biorthogonal wavelets
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reported in [2, 11, 14, 19], etc. Our contribution in this paper is that we require a
zeroth order vanishing moment condition (2.3) on the wavelet matrix. This vanishing
moment condition is necessary, because it is required for the existence of scaling func-
tions and wavelet functions. So we are placing emphasis on the wavelet factorization
instead of perfect reconstruction filter banks. This paper is also partly motivated
by the problem of finding nontrivial mappings between orthogonal and biorthogo-
nal wavelets. To achieve this goal, we arrange our factorization formula so that it
is closely connected with the factorization formula for orthogonal wavelets, which is
another difference between our factorization and those in [2, 11, 14, 19].

The paper is organized as follows. In section 2 we give a brief review of some defi-
nitions and properties of biorthogonal and orthogonal wavelets. The parametrization
of biorthogonal wavelets is presented in section 3. We will define a group structure
on biorthogonal wavelets under the Pollen product. Because of its special role in the
biorthogonal factorization, the pseudo identity matrix pair will be studied in section
4. We propose a sufficient condition on the pseudo identity matrix pair such that
it can be factored as the product of primitive pseudo identity matrices. We discuss
conversion between orthogonal and biorthogonal wavelets in section 5, and a simple
example is given in section 6. We conclude the paper in section 7.

Note that in this paper we will assume entries in wavelet matrices are real-valued.
The generalization to a subfield F of complex numbers C closed under complex con-
jugation is straightforward. Some examples of F will be the rational numbers Q, the
real numbers R, the Gaussian rational numbers Q(i) := Q + iQ, and the complex
numbers C itself.

2. Preliminaries. For a matrix A = (ai,j) consisting of m rows of vectors with
only a finite number of entries ai,j being nonzero, define submatrices Ak of size m×m
of A in the following manner:

Ak = (ai,km+j), 0 ≤ i ≤ m− 1, 0 ≤ j ≤ m− 1.

In other words, A is expressed in terms of block matrices in the form

A = (. . . , A−1, A0, A1, . . .),

where, for instance,

A0 =




a0,0 a0,1 · · · a0,m−1

...
...

am−1,0 am−1,1 · · · am−1,m−1


 .

From the matrix A, we construct the formal power series

A(z) :=
∑
k∈Z

Akz
−k =

k1∑
k=k0

Akz
−k,(2.1)

where k0 and k1 are the smallest and largest indices that Ak �= 0, respectively. We
call A(z) the Laurent series of the matrix A and k0 the leading index. We can equally
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well write A(z) as an m×m matrix

A(z) =




∑
k a0,kmz

−k · · · ∑
k a0,km+m−1z

−k
...

...
· · · ∑

k ai,km+jz
−k · · ·

...
...∑

k am−1,kmz
−k · · · ∑

k am−1,km+m−1z
−k



,

which we will refer to as the polyphase decomposition of A. For the case of m = 2, we
find

A(z) =

( · · · a0,−2z + a0,0 + a0,2z
−1 · · · , · · · a0,−1z + a0,1 + a0,3z

−1 · · ·
· · · a1,−2z + a1,0 + a1,2z

−1 · · · , · · · a1,−1z + a1,1 + a1,3z
−1 · · ·

)
.

Let

g := k1 − k0 + 1

be the number of nonzero terms in the summation (2.1) and call g the genus of the
Laurent series A(z) and the matrix A. Thus A has a size of m×mg. Finally we define
the adjoint Ã(z) of the Laurent series A(z) by

Ã(z) := A∗(z−1) :=

k0+g−1∑
k=k0

A∗
kz
k =

−k0∑
k=−k0−g+1

A∗
−kz

−k,

where A∗
k := Atk is the Hermitian adjoint of the m×m matrix Ak. When Ak is a real

matrix, A∗
k = Atk.

Definition 2.1. A pair of m×mg matrices L = (li,j), R = (ri,j) is said to be a
biorthogonal wavelet matrix pair of rank m and genus g if their polyphase decompo-
sitions L(z) and R(z) satisfy

L(z)R̃(z) = mIm(2.2)

and

∑
j

li,j =
∑
j

ri,j =

{
m if i = 0,
0 if 1 ≤ i ≤ m− 1,

(2.3)

where Im is the m×m identity matrix.
We call L the analysis matrix and R the synthesis matrix of the biorthogonal

wavelet matrix pair. We will refer to (2.2) and (2.3) as the perfect reconstruction and
linear conditions defining a biorthogonal wavelet matrix pair, respectively. The perfect
reconstruction condition (2.2) is equivalent to saying that L(z), R(z) are invertible
polynomials in SL(m;R[z, z−1]) (a proof can be found in [11]), that is,

det(L(z)) = clz
−b, det(R(z)) = crz

−b, with clcr = m(2.4)

for some integer b. Note that in the theory of wavelet analysis, we will systematically
employ the linear constraint (2.3) in addition to the perfect reconstruction condition
(2.2). Actually (2.3) (which is exactly the zeroth order vanishing moment condition
of scaling functions and wavelet functions) is a necessary condition for the existence
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of scaling functions and wavelet functions. This is one of the main differences between
wavelets and perfect reconstruction filter banks.

For a biorthogonal wavelet matrix pair (L,R), suppose that φ(x) and φ̃(x) are
L2 solutions of the refinement equations

φ(x) =
∑
k

l0,kφ(mx− k), φ̃(x) =
∑
k

r0,kφ̃(mx− k),

and define ψ1(x), . . . , ψm−1(x), ψ̃1(x), . . . , ψ̃m−1(x) by

ψi(x) :=
∑
k

ri,kφ(mx− k), ψ̃i(x) :=
∑
k

li,kφ̃(mx− k), i = 1, . . . ,m− 1,

then ψ1
j,k, . . . , ψ

m−1
j,k , ψ̃1

j,k, . . . , ψ̃
m−1
j,k constitute a weak dual frame of L2(R), that is,

for any f(x), g(x) ∈ L2(R),

lim
J→∞

m−1∑
i=1

J∑
j=−J

∞∑
k=−∞

〈f, ψij,k〉〈ψ̃ij,k, g〉 = 〈f, g〉,

where

ψij,k(x) := mj/2ψi(mjx− k), ψ̃ij,k(x) := mj/2ψ̃i(mjx− k).

We call φ(x), ψ1(x), . . . , ψm−1(x), φ̃(x), ψ̃1(x), . . . , ψ̃m−1(x) the analysis scaling func-
tion, analysis wavelet functions, synthesis scaling function, and synthesis wavelet func-
tions, respectively. With some additional conditions [6, 8, 20, 30], one can derive a
(strong) dual frame and even dual Riesz bases of L2(R).

A special and also widely used subset of biorthogonal wavelets are the orthogonal
wavelets.

Definition 2.2. An m×mg matrix A is said to be an orthogonal wavelet matrix
of rank m and genus g if (A,A) is a biorthogonal wavelet matrix pair.

Similarly, starting from an orthogonal wavelet matrix A, one can define the scaling
function φ(x) and the wavelet functions ψ1(x), . . . , ψm−1(x) and their rescaled and
translated version ψij,k. In this setting, the wavelet functions ψ1(x), . . . , ψm−1(x) will

generate a tight frame, that is, for any f(x) ∈ L2(R),

f(x) =

m−1∑
i=1

∞∑
j=−∞

∞∑
k=−∞

(di)j,kψ
i
j,k(x),

where the coefficients are given by

(di)j,k =

∫
R

f(x)ψij,k(x) dx.

With an additional Cohen condition [7] or equivalent Lawton condition [20], ψij,k(x)

constitute an orthonormal basis of L2(R).

3. Parametrization of biorthogonal wavelets. In this section we formulate
the parametrization of the space of compactly supported biorthogonal wavelets. Bor-
rowing the eigenfilter approach from [29], the following lemma will be derived.
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Lemma 3.1. If (L,R) is a biorthogonal wavelet matrix pair of rank m and genus
g, then there exist unit column vectors v1, v2, . . . , vd such that

L(z) = z−k0V1(z)V2(z) · · ·Vd(z)C(z)L(1),(3.1)

R(z) = z−k0V1(z)V2(z) · · ·Vd(z)D(z)R(1),(3.2)

where k0 is the leading index of L, d = b −mk0, where b is the integer appearing in
(2.4), and

Vi(z) = Im − viv
∗
i + viv

∗
i z

−1, i = 1, 2, . . . , d,

C(z) =

kc∑
k=0

Ckz
−k, D(z) =

0∑
k=kd

Dkz
−k,

with kc ≤ g − 1, and

C(z)D̃(z) = Im, det(C(z)) = det(D(z)) = 1, C(1) = D(1) = Im.

Let v be a unit column vector, that is, v∗v = 1. Define the Laurent matrix

V (z) := I − vv∗ + vv∗z−1,(3.3)

and let V be the corresponding m× 2m matrix. We will say that a matrix V of the
form (3.3) is a primitive paraunitary matrix. It is easy to verify (see [29]) that

V (z)Ṽ (z) = Im, det(V (z)) = z−1.

Proof of Lemma 3.1. Without loss of generality, assume k0 = 0 (and so b = d),
and

L(z) =

g−1∑
k=0

Lkz
−k, R(z) =

kr+g−1∑
k=kr

Rkz
−k.

Now

L(z)R̃(z) =

(
g−1∑
k=0

Lkz
−k
)(

kr+g−1∑
k=kr

R∗
kz
k

)
=

(
g−1∑
k=0

Lkz
−k
) −kr∑

k=−kr−g+1

R∗
−kz

−k




= L0R
∗
kr+g−1z

kr+g−1 + · · ·+ Lg−1R
∗
krz

kr−g+1 = mIm.

From (2.4)

det(L(z)) = clz
−d, det(R(z)) = crz

−d, with clcr = m

for some integer d ≥ 0.
If d > 0, then kr + g − 1 must be positive (otherwise det(R(z)) �= crz

−d). It
follows that

L0R
∗
kr+g−1 = 0.
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So L0 must be a singular matrix (if R
∗
kr+g−1 = 0, then L0R

∗
kr+g−2 = 0). Then choose

a vector v1 of unit length such that

v1
∗L0 = 0,

and define

V1(z) = Im − v1v1
∗ + v1v1

∗z−1,

as a primitive paraunitary matrix. Note that

Ṽ1(z) = Im − v1v1
∗ + v1v1

∗z.

Define

L1(z) = Ṽ1(z)L(z), R1(z) = Ṽ1(z)R(z).

It follows that (L1, R1) is a biorthogonal wavelet matrix pair of rank m and

L(z) = V1(z)L
1(z), R(z) = V1(z)R

1(z).(3.4)

Notice that

L1(z) = (Im − v1v1
∗ + v1v1

∗z)

(
g−1∑
k=0

Lkz
−k
)

= (v1v1
∗L1 + (Im − v1v1

∗)L0) + · · ·+ (Im − v1v1
∗)Lg−1z

−g+1 =

l1∑
k=0

L1
kz

−k,

where l1 ≤ g − 1. Take the determinant on both sides of (3.4)

clz
−d = z−1det(L1(z)), crz

−d = z−1det(R1(z)),

which implies that

det(L1(z)) = clz
−d+1, det(R1(z)) = crz

−d+1.

Thus the degree of the determinant det(L1(z)) is increased by 1, compared with
det(L(z)). Proceeding in this fashion, we obtain

L(z) = V1(z)V2(z) · · ·Vd(z)Ld(z), R(z) = V1(z)V2(z) · · ·Vd(z)Rd(z),(3.5)

where det(Ld(z)) = cl,det(R
d(z)) = cr, and

Ld(z) =

ld∑
k=0

Ldkz
−k, Rd(z) =

k2∑
k=k1

Rdkz
−k,

with ld ≤ ld−1 ≤ · · · ≤ l1 ≤ g − 1. We claim that k2 = 0. If not, then k2 must
be positive (since det(Rd(z)) = cr). Apply the factorization one more time to obtain
Ld(z) = Vd+1(z)L

d+1(z), where det(Ld+1(z)) = clz which is impossible, since L
d+1(z)

is the summation of nonpositive powers of z.
Because L(1)R̃(1) = mIm, L(1), R(1) are invertible matrices. Now set

Ld(z) = C(z)L(1), Rd(z) = D(z)R(1),(3.6)
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with

C(z) =

kc∑
k=0

Ckz
−k, D(z) =

0∑
k=kd

Dkz
−k,

where kc = ld, Ck = Ldk(L(1))
−1, kd = k1, Dk = Rdk(R(1))

−1. Since Vi(1) = Im, i =
1, . . . , d, we have det(C(z)) = det(D(z)) = 1. Combining (3.5) and (3.6), the lemma
follows.

Remark 1. It is possible to have d = 0 and C(z) �= Im, that is, a biorthogonal
wavelet matrix pair with no primitive paraunitary matrices in the factorization. A
simple example is

L(z) =

(
2− z−1 z−1

−1 1

)
, R(z) =

(
1 1
−z −z + 2

)
.(3.7)

Next we will study the structure of the matrix pair (L(1), R(1)) appearing in the
factorization of Lemma 3.1. For this purpose, we define a biorthogonal Haar wavelet
matrix pair (HL, HR) to be a biorthogonal wavelet matrix pair with genus g equal
to 1. Thus in the polyphase decomposition there is exactly only one term in the
summations, that is,

HL(z) = z−kL




l0,0 · · · l0,m−1

...
...

· · · li,j · · ·
...

...
lm−1,0 · · · lm−1,m−1




and

HR(z) = z−kR




r0,0 · · · r0,m−1

...
...

· · · ri,j · · ·
...

...
rm−1,0 · · · rm−1,m−1



,

where kL, kR ∈ Z. It is easy to verify that kL = kR. And without loss of generality,
we will always assume kL = kR = 0 for a biorthogonal Haar wavelet matrix pair
(HL, HR), since a multiplication with z−k is just a shift of index j in li,j and ri,j .

Let us now provide a characterization of biorthogonal Haar wavelet matrix pairs.
Recall that the general linear group GLm−1 is the group of (m−1)× (m−1) matrices
G such that G is invertible.

Theorem 3.2. Two m × m matrices HL, HR constitute a biorthogonal Haar
wavelet matrix pair if and only if

HL =

(
1 0
0 G

)
H, HR =

(
1 0
0 (G−1)∗

)
H,

where G ∈ GLm−1 is an invertible matrix, and H is the canonical Haar matrix of
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rank m, which is defined by

H :=




1 1 · · · · · · · · · · · · 1

−√m− 1
√

1
m−1 · · · · · · · · · · · ·

√
1

m−1

...
. . .

. . . · · · · · · · · · ...

0 0 · · · −
√

im
i+1

√
m
i2+i · · ·

√
m
i2+i

... · · · · · · · · · . . .
. . .

...
0 · · · · · · · · · 0 −√m

2

√
m
2



,

where i = m− 1, . . . , 2, 1.
Proof. First, assume HL and HR are of the form

HL =

(
1 0
0 G

)
H, HR =

(
1 0
0 (G−1)∗

)
H.

By the definition of the canonical Haar matrix H, we have

HH̃ = mIm, H




1
1
...
1


 =




m
0
...
0


 .

Now it is easy to check that HL and HR will satisfy (2.2) and (2.3). Thus HL and
HR is a biorthogonal Haar wavelet matrix pair.

Conversely, if (HL, HR) is a biorthogonal Haar wavelet matrix pair, define

L =
1

m
HLH̃, R =

1

m
HRH̃,

then

HL = LH, HR = RH.

From the linear constraint (2.3)


m
0
...
0


 = HL




1
1
...
1


 = LH




1
1
...
1


 = L




m
0
...
0


 ,

then L should be of the form

L =

(
1 α
0 G1

)
,

where α is an (m− 1) dimensional row vector and G1 is an (m− 1)× (m− 1) matrix.
Similarly

R =

(
1 β
0 G2

)
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for an (m− 1) dimensional row vector β and an (m− 1)× (m− 1) matrix G2. Since

mIm = HLH̃R = LHH̃R̃ = mLR̃,

it follows that

LR̃ = Im,

that is, (
1 α
0 G1

)(
1 0
β∗ G2

∗

)
= Im.

Thus

G2 = (G1
−1)∗, α = β = 0.

Let (L,R) be a biorthogonal wavelet matrix pair of rank m and let L(z), R(z)
be their Laurent series. Define the characteristic Haar matrix pair (χ(L), χ(R)) of
(L,R) by

χ(L) := L(1), χ(R) := R(1).

We now have the following theorem which relates biorthogonal wavelet matrix pairs
to biorthogonal Haar wavelet matrix pairs.

Theorem 3.3. If (L,R) is a biorthogonal wavelet matrix pair of rank m, then
(χ(L), χ(R)) is a biorthogonal Haar wavelet matrix pair of rank m. Thus χ is a well
defined mapping from biorthogonal wavelet matrix pairs of rank m to biorthogonal
Haar wavelet matrix pairs of rank m.

Proof. Evaluate (2.2) and (2.3) at z = 1; thus it follows that (χ(L), χ(R)) is a
biorthogonal wavelet matrix pair of rank m and genus 1.

With Lemma 3.1, Theorem 3.2, and Theorem 3.3, we now have a complete char-
acterization of biorthogonal wavelet matrix pairs.

Theorem 3.4 (biorthogonal factorization theorem). A pair of m ×mg matri-
ces (L,R) is a biorthogonal wavelet matrix pair of rank m if and only if there exist
primitive paraunitary matrices V1, . . . , Vd, d ≥ 0, such that

L(z) = z−k0V1(z)V2(z) · · ·Vd(z)C(z)
(

1 0
0 G

)
H,

R(z) = z−k0V1(z)V2(z) · · ·Vd(z)D(z)

(
1 0
0 (G−1)∗

)
H,

where k0 ∈ Z, d = b−mk0, b is the exponent of det(L(z)), G ∈ GLm−1 is an invertible
matrix, H is the canonical Haar matrix of rank m, and

C(z) =

kc∑
k=0

Ckz
−k, D(z) =

0∑
k=kd

Dkz
−k,

with kc ≤ g − 1, and

C(z)D̃(z) = Im, C(1) = D(1) = Im.
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Proof. It is straightforward to verify that a pair of (L,R) with the above form of
factorization is indeed a biorthogonal wavelet matrix pair.

For the converse part, the proof comes from Lemma 3.1, Theorem 3.2, and The-
orem 3.3.

Remark 2. Note that in the above theorem, d can be 0, i.e., there are no Vi(z)
factors. Such a biorthogonal wavelet matrix pair is given in (3.7).

For two biorthogonal wavelet matrix pairs of rank m, (L1, R1) and (L2, R2), that
have the same characteristic Haar matrix pair, we define the Pollen product by the
formula

L1 �HL
L2 := L, R1 �HR

R2 := R

if their Laurent series satisfy

L(z) = L1(z)H−1
L L2(z), R(z) = R1(z)H−1

R R2(z),

where

HL = χ(L1) = χ(L2), HR = χ(R1) = χ(R2).

The characteristic Haar matrix pair of (L,R) is also (HL, HR). The set of biorthogonal
wavelet matrix pairs of the same characteristic Haar matrix pair is a group under this
product.

Theorem 3.5. Given a biorthogonal Haar wavelet matrix pair (HL, HR), let
WM(HL, HR) be the collection of biorthogonal wavelet matrix pairs whose character-
istic Haar matrix pair is (HL, HR). Then WM(HL, HR) is a group with the noncom-
mutative product

((L1, R1), (L2, R2)) �−→ (
L1 �HL

L2, R1 �HR
R2
)

and the unit element is (HL, HR).
The proof of this theorem is elementary and is omitted.
With the Pollen product, we can rephrase Theorem 3.4 into a factorization inside

the group WM(HL, HR).
Theorem 3.6. For a biorthogonal wavelet matrix pair (L,R) of rank m and genus

g, there exist biorthogonal wavelet matrix pairs (L1, R1), . . . , (Ld, Rd), and (C1, D1)
such that

L = z−k0L1�HL
L2�HL

· · ·�HL
Ld�HL

C1, R = z−k0R1�HR
R2�HR

· · ·�HR
Rd�HR

D1,

where k0 ∈ Z, HL = χ(L), HR = χ(R), and

Li(z) = Vi(z)HL = (Im − vivi
∗ + vivi

∗z−1)HL,

Ri(z) = Vi(z)HR = (Im − vivi
∗ + vivi

∗z−1)HR,

with unit column vectors v1, . . . , vd, i = 1, . . . , d, and

C1(z) =

kc∑
k=0

C1
kz

−k, D1(z) =

0∑
k=kd

D1
kz

−k,

with kc ≤ g − 1, and

C1(z)D̃1(z) = mIm.
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4. The pseudo identity matrix pair. In the factorization process in the
previous section, a biorthogonal wavelet matrix pair is reduced to a matrix pair
(C(z), D(z)) with the following four properties:

1. C(z) =
∑kc
k=0 Ckz

−k, D(z) =
∑0
k=kd

Dkz
−k,

2. C(z)D̃(z) = Im,
3. det(C(z)) = det(D(z)) = 1,
4. C(1) = D(1) = Im.

The above four properties are redundant. With a C(z) satisfying properties 1
and 3, there always exists a D(z) satisfying properties 1, 2, and 3. With property 2,
all other three properties of D(z) can be derived from those of C(z). With properties
1 and 2, property 3 can be derived from property 4. Actually, properties 3 and 4
are just normalization conditions. In the rest of this section, we will concentrate on
properties 1 and 2.

In an orthogonal setting (i.e., C = D), one can prove that C(z) and D(z) must
be equal to the identity matrix Im. However, in a biorthogonal setting, there exist
nontrivial pairs of (C(z), D(z)) satisfying all four properties. Here is an example:

C(z) =

( −1 1
−4 3

)
+

(
2 −1
4 −2

)
z−1, D(z) =

( −2 −4
1 2

)
z +

(
3 4
−1 −1

)
.

For convenience, we will call (C(z), D(z)) a pseudo identity matrix pair.
Definition 4.1. A matrix pair (C(z), D(z)) is a pseudo identity matrix pair if

C(z) =

kc∑
k=0

Ckz
−k, D(z) =

0∑
k=kd

Dkz
−k, C(z)D̃(z) = Im, C(1) = D(1) = Im.

In this section, we will study the structure of the pseudo identity matrix pair.
When the size is of m × 2m (which is the minimal length for a nontrivial pair), we
have the following lemma.

Lemma 4.2. If two m× 2m matrices C and D satisfy

C(z) = C0 + C1z
−1, D(z) = D−1z +D0, C(z)D̃(z) = Im, C(1) = D(1) = Im,

then there exists an m×m nilpotent matrix N , N2 = 0, such that

C(z) = Im −N +Nz−1, D(z) = −N∗z + Im +N∗.

Proof. Since C(1) = D(1) = Im, we have

C0 = Im − C1, D0 = Im −D−1.

Now

C(z)D̃(z) =
(
Im − C1 + C1z

−1
) (
Im −D∗

−1 +D∗
−1z

−1
)

= Im − C1 −D∗
−1 + C1D

∗
−1 +

(
D∗

−1 + C1 − 2C1D
∗
−1

)
z−1 + C1D

∗
−1z

−2.

It follows that

C1D
∗
−1 = 0,(4.1)

D∗
−1 + C1 − 2C1D

∗
−1 = 0.(4.2)
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Substituting (4.1) into (4.2), we have

D∗
−1 = −C1.

Combined with (4.1), it follows that

(C1)
2 = 0.

For an m×m nilpotent matrix N , with N2 = 0, define the Laurent matrix pair

LN (z) := Im −N +Nz−k, RN (z) := −N∗zk + Im +N∗,(4.3)

and let (LN , RN ) be the corresponding matrix pair. We will say that a matrix pair
(LN , RN ) of form (4.3) is a primitive pseudo identity matrix pair of degree k. It’s easy
to verify that (LN , RN ) is indeed a pseudo identity matrix pair. In addition, for any
positive integer n,

(LN (z))
n = Im − nN + nNz−k, (RN (z))

n = −nN∗zk + Im + nN∗.

In the case of m = 2, N2 = 0 implies

N =

(
w u
v −w

)

for some w, u, v satisfying uv = −w2, which means N has parameter freedom of 2. So
when m = 2, a primitive pseudo identity matrix pair will be of the form

LN (z) =

(
1− w(1− z−k) −u(1− z−k)
−v(1− z−k) 1 + w(1− z−k)

)
,

RN (z) =

(
1 + w(−zk + 1) v(−zk + 1)
u(−zk + 1) 1− w(−zk + 1)

)
,

with uv = −w2.
Lemma 4.3. For

C(z) =

kc∑
k=0

Ckz
−k, D(z) =

0∑
k=kd

Dkz
−k,

if

C(z)D̃(z) = Im

and both Ckc−1 and Dkd+1 are invertible matrices, then there exists a nilpotent matrix
N , with N2 = 0, such that

C(z) =

(
kc−1∑
k=0

C1
kz

−k
)
LN (z), D(z) =

(
0∑

k=kd+1

D1
kz

−k
)
RN (z),

with

LN (z) = Im −N +Nz−1, RN (z) = −N∗z + Im +N∗.
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Proof. Since

C(z)D̃(z) =

(
kc∑
k=0

Ckz
−k
)(

0∑
k=kd

D∗
kz
k

)
=

(
kc∑
k=0

Ckz
−k
)(−kd∑

k=0

D∗
−kz

−k
)
= Im,

we have

CkcD
∗
kd

= 0, CkcD
∗
kd+1 + Ckc−1D

∗
kd

= 0.

Now set

N = (Ckc−1)
−1Ckc = −D∗

kd
(D∗

kd+1)
−1,

then

N2 = 0, CkcN = 0, ND∗
kd

= 0,

−Ckc−1N + Ckc = 0, ND∗
kd+1 +D∗

kd
= 0.

So

C(z)(LN (z))
−1 =

(
kc∑
k=0

Ckz
−k
)
(Im +N −Nz−1) =

kc−1∑
k=0

C1
kz

−k,

D(z)(RN (z))
−1 =

(
0∑

k=kd

Dkz
−k
)
(N∗z + Im −N∗) =

0∑
k=kd+1

D1
kz

−k.

That is,

C(z) = C1(z)LN (z) =

(
kc−1∑
k=0

C1
kz

−k
)
LN (z),

D(z) = D1(z)RN (z) =

(
0∑

k=kd+1

D1
kz

−k
)
RN (z).

Notice that the genus of C1 and D1 is reduced by one (from kc+1 to kc and from
−kd+1 to −kd) simultaneously, compared with C and D. The reduction from (C,D)
to (C1, D1) totally depends on whether or not Ckc−1 and Dkd+1 are invertible. We
formulate this condition as follows.

Condition 1. For m = 2,

C(z) =

kc∑
k=0

Ckz
−k, D(z) =

0∑
k=kd

Dkz
−k,

if

C(z)D̃(z) = I2,
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and p is the smallest positive integer such that Ckc−p �= 0, then both Ckc−p and Dkd+p

are invertible matrices.
Because of the symmetry of C and D, if p′ is the smallest positive integer such

that Dkd+p′ �= 0, then the above condition asserts that both Ckc−p′ and Dkd+p′ are
invertible.

Theorem 4.4. If Condition 1 is true, then for any pair (C,D) of rank 2 satisfying

C(z) =

kc∑
k=0

Ckz
−k, D(z) =

0∑
k=kd

Dkz
−k, C(z)D̃(z) = I2, C(1) = D(1) = I2,

there exist nilpotent matrices N1, N2, . . . , Nq, N
2
i = 0, i = 1, 2, . . . , q, such that

C(z) = LNq (z) · · ·LN2(z)LN1(z), D(z) = RNq (z) · · ·RN2(z)RN1(z),

with

LNi(z) = I2 −Ni +Niz
−ki , RNi(z) = −N∗

i z
ki + I2 +N∗

i , for i = 1, 2, . . . , q,

and

k1 + k2 + · · ·+ kq = kc = −kd.

Proof. Assume k1 is the smallest integer such that either Ckc−k1 or Dkd+k1 is
nonzero. By Condition 1, both Ckc−k1 and Dkd+k1 are invertible matrices. Similar to
the proof of Lemma 4.3, from

C(z)D̃(z) =

(
kc∑
k=0

Ckz
−k
)(

0∑
k=kd

D∗
kz
k

)

=

(
kc−k1∑
k=0

Ckz
−k + Ckcz

−kc
)(−kd−k1∑

k=0

D∗
−kz

−k +D∗
kd
z−kd

)
= I2,

we have

CkcD
∗
kd

= 0, CkcD
∗
kd+k1 + Ckc−k1D

∗
kd

= 0.

Define

N1 = (Ckc−k1)
−1Ckc = −D∗

kd
(D∗

kd+k1)
−1,

LN1(z) = I2 −N1 +N1z
−k1 , RN1(z) = −N∗

1 z
k1 + I2 +N∗

1 .

Then it can be easily verified that

N2
1 = 0,

C(z) =

(
kc−k1∑
k=0

C1
kz

−k
)
LN1

(z) = C1(z)LN1
(z),
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D(z) =

(
0∑

k=kd+k1

D1
kz

−k
)
RN1(z) = D1(z)RN1(z).

The genus of C1 and D1 is reduced by k1, compared with C and D. Now repeating
the genus reduction procedure on the new pair (C1, D1), one can eventually obtain

C(z) = LNq (z) · · ·LN2(z)LN1(z), D(z) = RNq (z) · · ·RN2(z)RN1(z),

with k1 + k2 + · · ·+ kq = kc = −kd.
Remark 3. Note that Condition 1 is actually a very strong condition to guarantee

the existence of a nilpotent matrix for the genus reduction procedure. All we need for
such a genus reduction is a weaker condition

−Ckc−pN + Ckc = 0, ND∗
kd+p +D∗

kd
= 0

for some nilpotent matrix N , N2 = 0. The advantage of Condition 1 is that it’s much
easier to check.

Theorem 4.5. If Condition 1 is true, and a pair of matrices (L,R) is a biorthog-
onal wavelet matrix pair of rank 2, then there exist primitive paraunitary matrices
V1, . . . , Vd, d ≥ 0, and primitive pseudo identity matrix pairs (LN1 , RN1), (LN2 , RN2),
. . ., (LNq , RNq ), q ≥ 0, such that

L(z) = z−k0V1(z) · · ·Vd(z)LNq
(z) · · ·LN1

(z)

(
1 0
0 c

)(
1 1
−1 1

)
,

R(z) = z−k0V1(z) · · ·Vd(z)RNq (z) · · ·RN1(z)

(
1 0
0 c−1

)(
1 1
−1 1

)
,

where k0 ∈ Z, d = b− 2k0, b is the exponent of det(L(z)), c �= 0 is a constant.

5. Conversion between orthogonal and biorthogonal wavelets. Theo-
rem 3.4 tells us that a biorthogonal wavelet matrix pair (L,R) can be decomposed
into four components:

L(z) = V (z)C(z)

(
1 0
0 G

)
H, R(z) = V (z)D(z)

(
1 0
0 (G−1)∗

)
H,

with

V (z) = z−k0V1(z)V2(z) · · ·Vd(z),
(C(z), D(z)) is the pseudo identity matrix pair discussed in section 4, G is an invertible
matrix, and H is the canonical Haar matrix. Only the first and second components
V (z), (C(z), D(z)) contain the variable z. The fourth component H is a constant
matrix, depending only on the rank m. The third component G doesn’t contain z,
and it can be easily determined by the value of L(1) (or equivalently R(1)), since

L(1) =

(
1 0
0 G

)
H.

When looking at the determinant, if

det(L(z)) = clz
−b, det(R(z)) = crz

−b, clcr = m,
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then

det(V (z)) = z−b, det(C(z)) = det(D(z)) = 1, det(G) = cl/
√
m, det(H) =

√
m.

Thus these four components have distinctive determinant values from each other.
Recall that in the theory of orthogonal wavelet matrices [13, 16, 25, 26, 28, 29],

we have the following characterization result.
Theorem 5.1 (orthogonal factorization theorem). An m ×mg matrix A is an

orthogonal wavelet matrix if and only if there exist primitive paraunitary matrices
V1, . . . , Vd, d ≥ 0, such that

A(z) = z−kV1(z)V2(z) · · ·Vd(z)
(

1 0
0 U

)
H,

where k ∈ Z, U ∈ Um−1 is a unitary matrix, that is, U
∗U = Im−1, and H is the

canonical Haar matrix of rank m.
Comparing Theorem 5.1 with Theorem 3.4, it is now clear that the difference

between a biorthogonal wavelet matrix pair and an orthogonal wavelet matrix lies in
the pseudo identity matrix pair (C(z), D(z)) and the invertible matrix G. If C(z)
and D(z) are both equal to the identity matrix and G is unitary, then a biorthogonal
wavelet matrix pair (L,R) is actually an orthogonal wavelet matrix (and L = R).
Thus to “orthogonalize” a biorthogonal wavelet matrix pair (L,R), one needs to and
only needs to throw away the pseudo identity matrix pair (C(z), D(z)) and “orthog-
onalize” the invertible matrix G.

In linear algebra, a standard method to convert an invertible matrix to a unitary
matrix is the Schmidt orthogonalization method. Given an invertible matrix G ∈
GLm−1, its m− 1 row vectors α1, . . . , αm−1 are linearly independent. Now define

e1 :=
α1

||α1|| ;

then e1 is a unit vector and has the same direction as α1. From α2 we construct a
unit vector e2 perpendicular to e1 by

β2 = α2 − 〈α2, e1〉e1, e2 :=
β2

||β2|| .

Proceeding in this fashion, we can define e3, . . . , em−1 by

β3 = α3 − 〈α3, e1〉e1 − 〈α3, e2〉e2, e3 :=
β3

||β3|| ,

...

βm−1 = αm−1 − 〈αm−1, e1〉e1 − · · · − 〈αm−1, em−2〉em−2, em−1 :=
βm−1

||βm−1|| .

Then the matrix

U :=




e1
e2
...

em−1
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is a unitary matrix.
Thus using the Schmidt orthogonalization method, we can convert a biorthog-

onal wavelet matrix pair to an orthogonal matrix with the same rank. (Note that
orthogonalizing the analysis matrix and synthesis matrix will give the same orthog-
onal wavelet matrix.) Conversely we can retrieve invertible matrices from a unitary
matrix by setting up a mapping from unitary matrices to invertible matrices. By
adding an additional pseudo identity matrix pair, one can construct biorthogonal
wavelet matrix pairs from orthogonal wavelet matrices.

In general, any mapping from the invertible matrix group to the unitary matrix
group will define a mapping from biorthogonal wavelet matrix pairs to orthogonal
wavelet matrices,

(L,R) −→ A,

(C(z), D(z)) �−→ Im,

G �−→ U.

Next, we will discuss one interesting case, namely, how to preserve the vanishing
moments. It can be proved that the vanishing moment conditions of scaling functions
and/or wavelet functions can be translated into equivalent conditions on the wavelet
matrix (or matrix pair). First, let’s assume the orthogonal wavelet matrix A has
vanishing moments up to order n on the scaling function φ(x), that is,∑

j

a0,j = m,(5.1)

∑
j

a0,jj
k = 0, k = 1, . . . , n.(5.2)

The zeroth order vanishing moment condition (5.1) is already in the definition of an
orthogonal wavelet matrix. For the first order vanishing moment (k = 1), since

∑
j

a0,jj =
∑
j

(
m−1∑
l=0

a0,mj+l(mj + l)

)

= m
∑
j

j

(
m−1∑
l=0

a0,mj+l

)
+

m−1∑
l=1

l


∑

j

a0,mj+l




and

A′(z) =


∑

j

Ajz
−j




′

= −
∑
j

jAjz
−j−1,

A′(1) = −
∑
j

jAj ,

it follows that the first order vanishing moment of the scaling function φ(x) is equiv-
alent to a linear equation on the entries of the first row of A(1) and A′(1). Simi-
larly, one can convert all vanishing moment conditions (up to order n) of the scal-
ing function and/or wavelet functions into some linear equations on the entries of
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A(1), A′(1), A(2)(1), . . . , A(n)(1). Equivalently, with a biorthogonal wavelet matrix
pair (L,R), one can also convert all vanishing moment conditions into linear equa-
tions of L(1), L′(1), L(2)(1), . . ., L(n)(1), and R(1), R′(1), R(2)(1), . . . , R(n)(1).

Thus a sufficient condition to preserve the vanishing moment conditions when
constructing a biorthogonal wavelet matrix pair (L,R) from an orthogonal wavelet
matrix A is that

L(1) = R(1) = A(1),

L′(1) = R′(1) = A′(1),

...

L(n)(1) = R(n)(1) = A(n)(1).

One could choose a (C(z), D(z)) component pair such that

C(1) = D(1) = Im,

C(k)(1) = D(k)(1) = 0, k = 1, . . . , n.

Then the resulting biorthogonal wavelet matrix pair (L,R)

L(z) = A(z)C(z), R(z) = A(z)D(z)

will preserve all vanishing moments from A. For example, one can take

C(z) = Im +N(1− z−1)n+1, D(z) = Im −N∗(1− z)n+1,

with an m×m nilpotent matrix N , satisfying N2 = 0.

6. Examples. In this section we will give a simple example to illustrate the
factorization of biorthogonal wavelet matrices. We take the 3-5 biorthogonal wavelet
matrix pair from [8]. The analysis matrix L is given by

L =

(
− 1

4
1
2

3
2

1
2 − 1

4 0
1
2 −1 1

2 0 0 0

)
.

Its Laurent series is

L(z) =

(
− 1

4
1
2

1
2 −1

)
+

(
3
2

1
2

1
2 0

)
z−1 +

(
− 1

4 0

0 0

)
z−2.

The four component decomposition will be

L(z) = V1(z)C(z)

(
1 0
0 −1

)
H,

where

V1(z) = I2 − v1v
t
1 + v1v

t
1z

−1 =

(
1
5 − 2

5

− 2
5

4
5

)
+

(
4
5

2
5

2
5

1
5

)
z−1,
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with

v1 =

(
2√
5

1√
5

)
,

and

C(z) =

(
41
40

1
8

1
5 1

)
+

(
0 − 1

10

− 1
4 − 1

20

)
z−1+

(
− 1

40 − 1
40

1
20

1
20

)
z−2, H =

(
1 1
−1 1

)
.

Consequently, the synthesis matrix R can be factored as

R(z) = V1(z)D(z)

(
1 0
0 −1

)
H,

where (C(z), D(z)) is a pseudo identity matrix pair. Now since C1 in C(z) is invertible,
based on the techniques in Lemma 4.3, C(z) can be further factored as

C(z) = LN1
(z) · LN2

(z)

=

(
I2 −

(
1
5

1
10

− 2
5 − 1

5

)
+

(
1
5

1
10

− 2
5 − 1

5

)
z−1

)

·
(
I2 −

(
− 1

4 − 1
4

1
4

1
4

)
+

(
− 1

4 − 1
4

1
4

1
4

)
z−1

)
.

Thus

D(z) =

(
−
(

1
5 − 2

5
1
10 − 1

5

)
z + I2 +

(
1
5 − 2

5
1
10 − 1

5

))

·
(
−
(
− 1

4
1
4

− 1
4

1
4

)
z + I2 +

(
− 1

4
1
4

− 1
4

1
4

))
.

To derive an orthogonal wavelet matrix A from L, one can simply throw away C(z)
and get

A(z) = V1(z)

(
1 0
0 −1

)(
1 1
−1 1

)
=

(
− 1

5
3
5

2
5 − 6

5

)
+

(
6
5

2
5

3
5

1
5

)
z−1.

For illustration, we include the graphs of the analysis scaling function and the synthesis
scaling function constructed from the 3-5 biorthogonal wavelet matrix pair (L,R), and
the graph of the scaling function constructed from the orthogonal wavelet matrix A
in Figures 1 and 2, respectively. The analysis scaling function in Figure 1 is a linear
spline function, and it is in C1−ε, for any 0 < ε < 1, while the synthesis scaling
function is not even continuous. The scaling function of the “orthogonalized” wavelet
matrix A in Figure 2 is in C0.3219. Thus in this example, the smoothness of the
“orthogonalized” scaling function is between those of the analysis scaling function
and the synthesis scaling function of the original biorthogonal wavelet.
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CDF 3−5: Analysis Scaling Function
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(a) Analysis Scaling Function (b) Synthesis Scaling Function

Fig. 1. Scaling functions of the 3-5 biorthogonal pair.
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Scaling function after Orthogonalization

Fig. 2. Scaling function of the “orthogonalized” wavelet matrix.

7. Conclusions. In this paper we study the algebraic and geometric structure
of the space of compactly supported biorthogonal wavelets. The wavelet matrix can
be real-valued, complex-valued, or in any subfield of complex numbers closed under
the complex conjugation. We present a complete characterization of biorthogonal
wavelet matrix pairs. The conversion between orthogonal and biorthogonal wavelets
is provided. We also discuss how to preserve the vanishing moment condition in such
a conversion. There are still several open problems in the factorization of biorthogonal
wavelet matrix pairs, such as how to construct symmetric biorthogonal wavelets from
the factorization formula, the smoothness estimate of biorthogonal wavelets from the
factorization formula, etc. We are currently investigating these problems and the
progress will be reported in a forthcoming paper.
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After completion of this work, Fritz Keinert [17] showed to us a counterexample

of Condition 1 (and even the weaker condition) as follows:

C(z) =

(
1 0
0 1

)
+

(
0 1
0 0

)
(z−1 − z−2),

D(z) =

(
0 0
1 0

)
(z2 − z) +

(
1 0
0 1

)
.

For the above pseudo identity matrix pair (C,D), they can be factored as

C(z) =
(
I2 −N +Nz−1

) · (I2 +N −Nz−2
)
,

D(z) =
(
N∗z2 + I2 −N∗) · (−N∗z + I2 +N∗) ,

where

N =

(
0 1
0 0

)
.

Thus they could still be factored as the product of primitive pseudo identity matrix
pairs even though Condition 1 could not hold. Finding the necessary and sufficient
condition such that a pseudo identity matrix pair could be factored as the product
of primitive pseudo identity matrix pairs remains an open problem. Keinert develops
a numerical algorithm to generate all pseudo identity matrix pairs by an explicit
parametrization. Interested readers are referred to [18]. He also drew our attention
to [15], which obtained a similar result to Theorem 3.6 in this paper. We would like
to thank Keinert for his helpful comments and for sharing his work with us.
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Phys., 110 (1987), pp. 610–615.

[2] S. Borac and R. Seiler, Loop Group Factorization of Biorthogonal Wavelet Bases, preprint.
[3] C. S. Burrus, R. A. Gopinath, and H. Guo, Introduction to Wavelets and Wavelet Trans-

forms, Prentice-Hall, Englewood Cliffs, NJ, 1997.
[4] C. K. Chui, An Introduction to Wavelets, Academic Press, Boston, MA, 1992.
[5] C. K. Chui, On cardinal spline wavelets, in Wavelets and Their Applications, Jones and

Bartlett, Boston, 1992, pp. 419–438.
[6] C. K. Chui and J. Z. Wang, A general framework of compactly supported splines and wavelets,

J. Approx. Theory, 71 (1992), pp. 263–304.
[7] A. Cohen, Ondelettes, analyses multirésolutions et filtres miroir en quadrature, Ann. Inst. H.
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Abstract. Hsiao and Serre in [Chinese Ann. Math. Ser. B, 16B (1995), pp. 1–14] showed the
solution to the system 


vt − ux = 0, (t, x) ∈ R+ ×R,

ut + p(v, s)x = −αu, α > 0,

st = 0

with initial data

(v, u, s)(0, x) = (v0, u0, s0)(x) → (v, u±, s) as x→ ±∞
tends to the following nonlinear parabolic equation time-asymptotically:{

ṽt = − 1
α
p(ṽ, s0)xx, (t, x) ∈ R+ ×R,

ũ = − 1
α
p(ṽ, s0)x.

In this paper we find its convergence rate, which will be optimal.

Key words. asymptotic behavior, the system of compressible adiabatic flow, convergence rate

AMS subject classifications. 35L65, 35L67, 76L05
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1. Introduction. We consider the Cauchy problem for the equation of the form


vt − ux = 0, (t, x) ∈ R+ ×R,

ut + p(v, s)x = −αu, α > 0,

st = 0,

(1.1)

which can be used to model the adiabatic gas flow through porous media. Here v is
the specific volume, u denotes the velocity, s stands for the entropy, and p denotes
the pressure with p > 0, pv < 0 for v > 0. A typical example of p is p(v, s) =
(γ − 1)v−γes (γ > 1).

In Hsiao and Serre [2, 3], it has been proved that the solution of the Cauchy
problem (1.1) with

(v, u, s)(0, x) = (v0, u0, s0)(x)→ (v±, u±, s±), v+ = v−, s+ = s− as x→ ±∞
(1.2)
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can be described time-asymptotically by the solution of the following equations:{
ṽt = − 1

αp(ṽ, s0)xx, (t, x) ∈ R+ ×R,

ũ = − 1
αp(ṽ, s0)x

(1.3)

or

(1.3′)

{
ṽt − ũx = 0, (t, x) ∈ R+ ×R,

p(ṽ, s0)x = −αũ.

The system (1.3′) is obtained from (1.1) by approximating the momentum equation
(1.1)2 (the second equation of (1.1)) with Darcy’s law.

In the case of isentropic flow, namely, s(t, x) ≡ constant, Hsiao and Liu [4] have
proved that the solution to the Cauchy problem (1.1) converges to that of (1.3) with

a rate t−
1
2 in the sense of the L2∩L∞-norm. More precisely, for any smooth function

m0(x) with compact support satisfying∫
R

m0(x)dx = 1,(1.4)

we put




v̂ ≡ −u+ − u−
α

m0(x)e
−αt,

û ≡ e−αt
[
u− + (u+ − u−)

∫ x

−∞
m0(y)dy

](1.5)

and uniquely determine (ṽ, ũ)(t, x) by∫
R

{v0(x)− ṽ(0, x)}dx = u+ − u−
−α

.(1.6)

Then it holds that

‖(v − ṽ − v̂, u− ũ− û)(t, ·)‖L2∩L∞ = O(t−
1
2 ).(1.7)

Moreover, the first author has obtained sharper rates than that [9]. Precisely, if we
put (v − ṽ − v̂, u− ũ− û) = (Vx, z) due to (1.7), it holds that

‖(Vx, z)(t, ·)‖L2(R) = O(t−
1
2 , t−1)(1.8)

and

‖(Vx, z)(t, ·)‖L∞(R) = O(t−
3
4 , t−

5
4 ),(1.9)

which are based on the L2-energy estimates for the reformulated problem




Vtt + {pv(ṽ)Vx}x + αVt =
1

α
p(ṽ)xt − {p(Vx + ṽ + v̂)− p(ṽ)− pv(ṽ)Vx}x,

V (0, x) =

∫ x

−∞
(v − ṽ − v̂)(0, y)dy, Vt(0, x) = (u− ũ− û)(0, x).

(1.10)
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Moreover, the fact that Vtt decays quickly suggests that V has parabolic structure as
t → ∞. In fact, it is also shown that, if v+ = v− and (V, z)(0, x) ∈ L1(R) × L1(R),
then

‖(Vx, z)(t, ·)‖L∞(R) = O(t−1, t−
3
2 ).(1.11)

In the nonisentropic case, the asymptotic stability in the case of v+ = v− and
s+ = s− has been obtained in [2, 3]. Our purpose in this paper is to obtain its
convergence rate, especially its second order term of asymptotic, which is on the same
line as in [9, 10, 11]. See also Gallay and Raugel [1].

In the case of v+ = v− and s+ = s−, Hsiao and Luo [5] have obtained the stability
theorem. Furthermore, in Marcati and Pan [8], the stability results with convergence
rates have been obtained in the following cases: (1) v+ = v− and s+ = s−; (2)
p(v−, s−) = p(v+, s+). Hence the case s+ = s− has been partly solved. We note
that in these papers all data are so small that the solutions are smooth. Since large
data generally yield the singularity after a finite time, we need to consider the weak
solution to treat large data. See also Hsiao and Luo [6] and the references therein.

Throughout this paper we denote several generic constants by c or C. By Hm(R)
denote the usual Sobolev space with its norm

‖f‖m :=
m∑
k=0

‖∂kxf‖, ‖ · ‖ = ‖ · ‖0 = ‖ · ‖L2(R).

2. Preliminaries and theorems. For simplicity, we restrict our case to v+ =
v− := v, u+ = u− := 0, s+ = s− := s, so that (v̂, û)(t, x) ≡ (0, 0). The constant α is
normalized to 1 without loss of generality.

First, let us consider the problem (1.3) in order to reformulate our problem (1.1),
(1.2). Since ũ is defined by (1.3)2, we investigate the Cauchy problem of ṽ to the
parabolic equation {

ṽt + p(ṽ, s0)xx = 0, (t, x) ∈ R+ ×R,

ṽ(0, x) = ṽ0(x)→ v (x→ ±∞).(2.1)

Equation (2.1)1 has a stationary solution v̄(x) defined by

p(v̄(x), s0(x)) = p(v, s).(2.2)

For a typical form of p(v, s) in gas dynamics, v̄ is given by

v̄(x) = e
1
γ (s0(x)−s)v.(2.3)

Our first proposition is on the property of ṽ, which is necessary to investigate the
behavior of solutions to (1.1), (1.2).

Proposition 2.1 (asymptotic property of ṽ). Suppose that p(v, s) is a smooth
function with p > 0, pv < 0 for v > 0. If (ṽ0−v̄, s0−s) ∈ H6(R)×H6(R) is sufficiently
small, then there exists a unique global solution ṽ(t, x) to (2.1), which satisfies that

∂it(ṽ − v̄) ∈ C([0,∞);H6−2i(R)), ∂jt qx ∈ C([0,∞);H5−2j(R)),

qtttx ∈ L2(0,∞;L2(R)),
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where q = p(v̄, s)− p(ṽ, s) and i = 0, 1, 2, 3, j = 0, 1, 2, and that

3∑
k=0

(1 + t)2k‖∂kt (ṽ − v̄)(t)‖2 +
2∑
k=0

(1 + t)2k+1‖∂kt qx(t)‖2

+

∫ t

0

(
3∑
k=1

(1 + τ)2k−1‖∂kt (ṽ − v̄)(τ)‖2 +
3∑
k=0

(1 + τ)2k‖∂kt qx(τ)‖2
)

dτ

≤ C‖(ṽ0(·)− v̄(·), s0(·)− s)‖26.

(2.4)

Moreover, if (ṽ0 − v̄, s0 − s) ∈ L1(R)× L1(R) is assumed, then ṽ satisfies


‖ṽ(t, ·)− (v̄(·) + θ̄0(t, ·))‖L∞ ≤ C(1 + t)−1,

‖(ṽ − θ̄0)t(t, ·)‖L∞ ≤ C(1 + t)−2,

‖(ṽ − θ̄0)tt(t, ·)‖L∞ ≤ C(1 + t)−
11
4 ,

‖ṽ(t, ·)− (v̄(·) + θ̄0(t, ·))‖L2 ≤ C(1 + t)−
3
4 ,

‖(ṽ − θ̄0)t(t, ·)‖L2 ≤ C(1 + t)−
7
4 ,

‖(ṽ − θ̄0)tt(t, ·)‖L2 ≤ C(1 + t)−
5
2 ,

(2.5)

where θ̄0 is given by the explicit formula

θ̄0(t, x) =
−pv(v, s)

−pv(v̄, s)

∫
R

G(t, x− y){ṽ0(y)− v̄(y)}dy(2.6)

by using the Green function of vt + pv(v, s)vxx = 0.
Remark 1. In Proposition 2.1, we assume that the initial disturbance is in H6(R)

in order to obtain the decay estimates for ṽttt, qtttx, etc., which will be used in the
proofs of Theorems 1 and 2 below. The function θ̄0(t, x) satisfies

(θ̄0)t =
a

a(x)
(a(x)θ̄0)xx,(2.7)

where a(x) = −pv(v̄(x), s0(x)) and a = −pv(v, s). Since ‖(a(·)θ̄0, a(·)θ̄0t)(t)‖L∞ =

O(t−
1
2 , t−

3
2 ), etc., we can say from (2.5) that v̄(x) + θ̄0(t, x) is an asymptotic profile

of ṽ as t → ∞. It seems to be curious, because θ̄0 satisfies (2.7) instead of (θ̄0)t =
(a(x)θ̄0)xx, the linearized equation of (2.1) around ṽ. However, we have adopted θ̄0

in (2.6) which has an explicit formula.
We also obtain the asymptotic property of ũ.
Proposition 2.2. The function ũ defined by (1.3′)2 for ṽ obtained in Proposition

2.1 satisfies {‖(ũ− q̄0x)(t, ·)‖L∞ ≤ C(1 + t)−
3
2 log(2 + t),

‖(ũ− q̄0x)(t, ·)‖L2 ≤ C(1 + t)−
5
4 ,

(2.8)

where q̄0 is given by

q̄0(t, x) = −pv(v, s)

∫
R

G(t, x− y){ṽ0(y)− v̄(y)}dy.(2.9)
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The proofs of Propositions 2.1 and 2.2 will be given in section 3.

We now turn to the original problem (1.1), (1.2) with v± = v and u± = 0. If

ṽ0(x) = v + δ0√
4π
exp(− (x−x0)

2

4 ), δ0 =
∫
R
(v0(y) − v)dy, then

∫
R
(v0 − ṽ0)(x)dx = 0.

Hence
∫
R
(v − ṽ)(t, x)dx ≡ 0 follows from (1.1)1 and (1.3

′)1. Thus, putting

(V, z)(t, x) =

(∫ x

−∞
(v − ṽ)(t, y)dy, (u− ũ)(t, x)

)
,(2.10)

we have the reformulated problem

(RP )




Vt − z = 0,

zt + {p(Vx + ṽ, s)− p(ṽ, s)}x + z = p(ṽ, s)xt,

(V, z)(0, x) = (V0, z0)(x)

:=

(∫ x

−∞
{v0(y)− ṽ(0, y)}dy, u0(x)− ũ(0, x)

)

→ 0 as x→ ±∞,

where s(t, x) ≡ s0(x) =: s(x).

Hsiao and Serre [2, 3] have shown that (ṽ, ũ)(t, x) → (v̄(x), 0) as t → ∞ and
that (Vx, z) = (v − ṽ, u− ũ)(t, x)→ 0 as t→∞ under suitable smallness conditions.
Namely, the solution (v, u) to (1.1), (1.2) tends to (v̄(x), 0) as t tends to infinity. In
this paper, we obtain those convergence rates by applying not only the L2-energy
method but also the Green function of parabolic equation.

Using the property of ṽ in Proposition 2.1, we obtain the following first main
theorem based on the L2-energy method.

Theorem 1. In addition to the assumptions in Proposition 2.1, suppose that
v0 − ṽ0 ∈ L1(R). If (V0, z0) ∈ H3(R)×H2(R) is sufficiently small, then there exists
a unique global solution (V, z)(t, x) to (RP ), which satisfies

1∑
k=0

(1 + t)k‖∂kxV (t)‖2 +
3∑
k=2

(1 + t)k‖∂k−1
x P (t)‖2 +

1∑
k=0

(1 + t)k+2‖∂kxz(t)‖2

+(1 + t)3‖zxx(t)‖2 + (1 + t)4‖Pxt(t)‖2 +
1∑
k=0

(1 + t)2k+3‖∂kxzt(t)‖2 + (1 + t)5‖ztt(t)‖2

+

∫ t

0

{‖Vx(τ)‖2 + (1 + τ)‖Px(τ)‖2 + (1 + τ)2‖Pxx(τ)‖2 + (1 + τ)3‖Pxt(τ)‖2
}
dτ

+

∫ t

0

{
2∑
k=0

(1 + τ)k+1‖∂kxz(τ)‖2 +
1∑
k=0

(1 + τ)k+3‖∂kt zt(τ)‖2 + (1 + τ)5‖ztt(τ)‖2
}

dτ

≤ C
(‖V0‖23 + ‖z0‖22 + ‖(ṽ0(·)− v̄(·), s0(·)− s)‖26

)
.

(2.11)

Here P = P (Vx) = P (Vx; ṽ, s)(t, x) := p(Vx(t, x) + ṽ(t, x), s(x))− p(ṽ(t, x), s(x)).

Proof. The proof is given by the same method as in [9].

Remark 2. The decay estimate of (Vx, z), corresponding with (1.9), is derived as
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follows. By the Sobolev inequality and C−1|Vx| ≤ |P (Vx)| ≤ C|Vx|,


‖Vx(t, ·)‖L∞ ≤ C‖P (t;Vx, ṽ, s)‖

≤ C‖P (t;Vx, ṽ, s)‖ 1
2 ‖P (t;Vx, ṽ, s)x‖ 1

2

≤ C‖Vx(t)‖ 1
2 ‖P (t;Vx, ṽ, s)x‖ 1

2

≤ C(1 + t)−
1
4 (1 + t)−

1
2 = C(1 + t)−

3
4

and

‖z(t, ·)‖L∞ ≤ C‖z(t)‖ 1
2 ‖zx(t)‖ 1

2

≤ C(1 + t)−
1
2 (1 + t)−

3
4 = C(1 + t)−

5
4 .

Next, we obtain the optimal convergence rate, corresponding with (1.11), assum-
ing that (V0, z0) ∈ L1(R)× L1(R). The linearized problem of (RP ) is{

Vtt + {pv(ṽ, s)Vx}x + Vt = p(ṽ, s)xt − Fx,

V (0, x) = V0(x), Vt(0, x) = z0(x),
(2.12)

where F = p(Vx + ṽ, s) − p(ṽ, s) − pv(ṽ, s)Vx. Regarding (2.12) as the parabolic
equation of V with “forcing terms,” we have the expression

V (t, x) =

∫
R

G(t, x− y)V0(y)dy −
∫ t

0

∫
R

G(t− τ, x− y)(Vtt + Fx)dydτ

+

∫ t

0

∫
R

G(t− τ, x− y)p(ṽ, s)xtdydτ

−
∫ t

0

∫
R

G(t− τ, x− y){(pv(ṽ, s)− pv(v, s))Vx}xdydτ,

(2.13)

which are estimated by using the result in Theorem 1. Thus we have the following
theorem.

Theorem 2. In addition to the assumptions in Theorem 1, suppose that (V0, z0) ∈
L1(R)× L1(R). Then the global solution (V, z) to (RP ) satisfies{‖(Vx, z)(t)‖L∞ = O(t−1, t−

3
2 ),

‖(Vx, z)(t)‖L2 = O(t−
3
4 , t−

5
4 ).

(2.14)

Combining Propositions 2.1 and 2.2 and Theorem 2, we have the last theorem.
Theorem 3. Suppose the same assumptions as those in Theorem 2. Then the

global solution to (1.1), (1.2) satisfies


‖v(t, ·)− (v̄(·) + θ̄0(t, ·))‖L∞ ≤ C(1 + t)−1,

‖u(t, ·)− q̄0x(t, ·)‖L∞ ≤ C(1 + t)−
3
2 log(2 + t),

‖v(t, ·)− (v̄(·) + θ̄0(t, ·))‖L2 ≤ C(1 + t)−
3
4 ,

‖u(t, ·)− q̄0x(t, ·)‖L2 ≤ C(1 + t)−
5
4 .

(2.15)
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Remark 3. If, eventually,
∫
R
(v0 − v̄)(x)dx = 0, then we can put (V, z)(t, x) =

(
∫ x
−∞(v(t, y) −v̄(y))dy, (u− ū)(t, x)), which yields the simpler problem

{
Vt − z = 0,

zt + {p(Vx + v̄, s)− p(v̄, s)}x + z = 0.

In the result, we have ‖v(t, ·) − v̄(·)‖L∞ = O(t−1) instead of (2.15). Hence, the
estimate (2.15) almost implies that the diffusion wave θ̄0(t, x) carries on the amount∫
R
(v0(x)− v̄(x))dx. In (2.15), we could not remove log(2 + t).

The proofs of Theorems 1–3 will be done in sections 4–5.

3. Asymptotic behavior of the parabolic equation. In this section, we
prove Propositions 2.1 and 2.2. By setting θ as

θ := ṽ − v̄,(3.1)

the Cauchy problem (2.1) is rewritten as

{
θt = q(θ, x)xx,
θ|t=0 = θ0(x) ≡ ṽ0(x)− v̄(x),

(3.2)

where

q(θ, x) ≡ p(v̄(x), s(x))− p(θ + v̄(x), s(x)).(3.3)

Applying the L2-energy method, we first prove the following proposition.

Proposition 3.1. Suppose that p(v, s) is a smooth function with p > 0, pv < 0
for v > 0. If (θ0, s0 − s) ∈ H6(R) × H6(R) is sufficiently small, then there exists a
unique global solution θ(t, x) to (3.2), which satisfies that

∂itθ ∈ C([0,∞);H6−2i(R)), ∂jt qx ∈ C([0,∞);H5−2j(R)),

qtttx ∈ L2(0,∞;L2(R)),

where i = 0, 1, 2, 3 and j = 0, 1, 2, and that

3∑
k=0

(1 + t)2k‖∂kt θ(t)‖2 +
2∑
k=0

(1 + t)2k+1‖∂kt qx(t)‖2

+

∫ t

0

(
3∑
k=1

(1 + τ)2k−1‖∂kt θ(τ)‖2 +
3∑
k=0

(1 + τ)2k‖∂kt qx(τ)‖2
)

dτ

≤ C‖(θ0(·), s0(·)− s)‖26.

(3.4)

Next, using the Green function, we obtain an asymptotic profile under the as-
sumption of θ0 ∈ L1(R), which gives the optimal decay rates of θ.

Proposition 3.2. In addition to the assumptions in Proposition 3.1, suppose
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that (θ0, s0 − s) ∈ L1(R)× L1(R). Then the global solution θ(t, x) to (3.2) satisfies




‖(θ − θ̄0)(t, ·)‖L∞ ≤ C(1 + t)−1,

‖(θ − θ̄0)t(t, ·)‖L∞ ≤ C(1 + t)−2,

‖(θ − θ̄0)tt(t, ·)‖L∞ ≤ C(1 + t)−
11
4 ,

‖(θ − θ̄0)(t, ·)‖L2 ≤ C(1 + t)−
3
4 ,

‖(θ − θ̄0)t(t, ·)‖L2 ≤ C(1 + t)−
7
4 ,

‖(θ − θ̄0)tt(t, ·)‖L2 ≤ C(1 + t)−
5
2 .

(3.5)

Since

ũ = −p(θ + v̄, s0)x = −{p(θ + v̄, s0)− p(v, s)}x
= −{p(θ + v̄, s0)− p(v̄, s0)}x = qx,

we also estimate ũ by using the Green function. Differentiating q in t, we obtain
qt = −pv(θ + v̄, s0)θt. Substituting this into (3.2), we have

qt = −pv(θ + v̄, s0)qxx.(3.6)

Then the following proposition holds.
Proposition 3.3. Suppose the same assumptions as those in Proposition 2.2.

Then the global solution q(t, x) of (3.6) with ũ = qx satisfies


‖(q − q̄0)(t, ·)‖L∞ ≤ C(1 + t)−1,

‖(q − q̃0)x(t, ·)‖L∞ ≤ C(1 + t)−
3
2 log(2 + t),

‖(q − q̄0)(t, ·)‖L2 ≤ C(1 + t)−
3
4 ,

‖(q − q̃0)x(t, ·)‖L2 ≤ C(1 + t)−
5
4 .

(3.7)

The assertions of Proposition 2.1 follow from Proposition 3.1 and 3.2, and those
of Proposition 2.2 follow from Proposition 3.3. The proofs of Propositions 3.1 and 3.2
will be divided into several steps. Proposition 3.3 will be proved at the end of this
section.

Proof of Proposition 3.1. The proof is given by the combination of the local
existence with a priori estimates. Since the local existence theorem is obtained in a
standard way [7], we devote ourselves to the estimates under the a priori assumption

N1(T ) := sup
0≤t≤T

{
3∑
k=0

(1 + t)k‖∂kt θ(t)‖+
2∑
k=0

(1 + t)k+
1
2 ‖∂kt qx(t)‖

}
≤ ε.(3.8)

Estimate 1. Multiplying (3.2)1 by q(θ, x) and integrating it over [0, t]×R, we get∫
R

Q(θ, x)dx+

∫ t

0

∫
R

{q(θ, x)x}2dxdτ

=

∫
R

Q(θ, x)dx

∣∣∣∣
t=0

≤ C‖(θ0, s0 − s)‖2,
(3.9)
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where Q(θ, x) =
∫ θ
0
q(η, x)dη, which is equivalent to θ2.

Estimate 2. Define V̄ = q(θ, x)x. Then

V̄t = qxt.(3.10)

Mutiplying (3.10) by (1 + t)V̄ and integrating it over R, we have

1

2

d

dt

{
(1 + t)

∫
R

q2
xdx

}
+ (1 + t)

∫
R

(−pv)θ
2
t dx =

1

2

∫
R

q2
xdx.(3.11)

Integrating (3.11) and applying (3.9), we get

(1 + t)

∫
R

q2
xdx+

∫ t

0

(1 + τ)

∫
R

(−pv)θ
2
t dxdτ

≤ C‖(θ0, s0 − s)‖21.
(3.12)

Estimate 3. Differentiate (3.2)1 in t:

(θt)t = {q(θ, x)t}xx.(3.13)

Multiplying (3.13) by (1 + t)2qt and integrating it over R, we have

1

2

d

dt

{
(1 + t)2

∫
R

(−pv)θ
2
t dx

}
+ (1 + t)2

∫
R

q2
txdx

= (1 + t)

∫
R

(−pv)θ
2
t dx− (1 + t)2

∫
R

(−pv)tθ
2
t dx

≤ (1 + t)

∫
R

(−pv)θ
2
t dx+ C(1 + t)2 sup |θt|

∫
R

θ2
t dx,

(3.14)

and hence, by (3.12) and N1(T ) ≤ ε,

(1 + t)2
∫
R

(−pv)θ
2
t dx+

∫ t

0

(1 + τ)2
∫
R

q2
txdxdτ

≤ C‖(θ0, s0 − s)‖22.
(3.15)

Estimate 4. Multiply (3.13) by −pv(θ + v̄, s) to obtain

qtt = (−pv)qtxx + (−pv)tθt.(3.16)

Multiplying (3.16) by (1 + t)3(−qtxx) yields

1

2

d

dt

{
(1 + t)3

∫
R

q2
txdx

}
+ (1 + t)3

∫
R

(−pv)q
2
txxdx

=
3

2
(1 + t)2

∫
R

q2
txdx+ (1 + t)3

∫
R

qtxx(pv)tθtdx

(3.17)

and

(1 + t)3
∫
R

q2
txdx+

∫ t

0

(1 + τ)3
∫
R

(−pv)q
2
txxdxdτ

≤ C‖(θ0, s0 − s)‖23
(3.18)
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in a similar fashion to Estimate 3.
Estimate 5. Similar methods to Estimates 3 and 4 give the estimates

(1 + t)4
∫
R

(−pv)θ
2
ttdx+

∫ t

0

(1 + τ)4
∫
R

q2
ttxdxdτ

≤ C‖(θ0, s0 − s)‖24,
(3.19)

(1 + t)5
∫
R

q2
ttxdx+

∫ t

0

(1 + τ)5
∫
R

(−pv)q
2
ttxxdxdτ

≤ C‖(θ0, s0 − s)‖25,
(3.20)

and

(1 + t)6
∫
R

(−pv)θ
2
tttdx+

∫ t

0

(1 + τ)6
∫
R

q2
tttxdxdτ

≤ C‖(θ0, s0 − s)‖26.
(3.21)

Combining Estimates 1–5 completes the proof of Proposition 3.1.
Remark 4. Since q(θ, x) = p(v̄, s)−p(θ+ v̄, s) = −pv(·, s)θ, the Sobolev inequality

and (3.4) yield

sup
R
|θ| ≤ C sup

R
|q|

≤ C‖q(t)‖ 1
2 ‖qx(t)‖ 1

2

≤ C‖θ(t)‖ 1
2 ‖qx(t)‖ 1

2 ≤ C(1 + t)−
1
4 .

(3.22)

Due to qt = −pv(θ + v̄, s)θt, we have

sup
R
|θt| ≤ C sup

R
|qt|

≤ C‖qt(t)‖ 1
2 ‖qtx(t)‖ 1

2

≤ C‖θt(t)‖ 1
2 ‖qtx(t)‖ 1

2 ≤ C(1 + t)−
5
4 .

(3.23)

Since qtt = −pvvθ
2
t − pvθtt,

supR |qtt| ≤ C‖qtt(t)‖ 1
2 ‖qttx(t)‖ 1

2

≤ C
(‖θ2

t (t)‖+ ‖θtt(t)‖
) 1

2 ‖qttx(t)‖ 1
2

≤ C (‖θt(t)‖L∞‖θt(t)‖+ ‖θtt(t)‖)
1
2 ‖qttx(t)‖ 1

2

≤ C(1 + t)−
9
4

(3.24)

and

sup
R
|θtt| ≤ C

(
sup
R
|qtt|+ sup

R
|θt(t)|2

)
.(3.25)
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Therefore,

sup
R
|θtt(t)| ≤ C(1 + t)−

9
4 .(3.26)

Proof of Proposition 3.2.
First step. We first investigate the Cauchy problem for the homogeneous lin-

earized equation to (3.2)1: {
θ̄t = (a(x)θ̄)xx,

θ̄|t=0 = θ0(x),
(3.27)

where a(x) ≡ −pv(v̄(x), s(x)) → −pv(v, s) ≡ a as x → ±∞. To obtain the precise
decay estimates of θ̄, we here again combine the L2-energy method with the explicit
formula using the Green function. First, multiplying (3.27)1 by a(x)θ̄ and integrating
it over [0, t]×R, we have

1

2

∫
R

a(x)θ̄2dx+

∫ t

0

∫
R

{(a(x)θ̄)x}2dxdτ = 1

2

∫
R

a(x)θ̄2
0dx.(3.28)

Next, multiplying (3.27)1 by a(x) and differentiating it in x, we obtain

(a(x)θ̄)xt = {a(x)(a(x)θ̄)xx}x.(3.29)

Multiplying (3.29) by (1 + t)(a(x)θ̄)x and integrating it over [0, t]×R, we have

1

2
(1 + t)

∫
R

{(a(x)θ̄)x}2dx+
∫ t

0

(1 + τ)

∫
R

a(x){(a(x)θ̄)xx}2dxdτ

=
1

2

∫
R

{(a(x)θ̄0)x}2dx+
∫ t

0

∫
R

{(a(x)θ̄)x}2dxdτ.
(3.30)

By virtue of (3.28) and (a(x)θ̄)xx = θ̄t, we obtain

(1 + t)

∫
R

{(a(x)θ̄)x}2dx+
∫ t

0

(1 + τ)

∫
R

a(x)
[{(a(x)θ̄)xx}2 + θ̄2

t

]
dxdτ

≤ C‖(θ0, s0 − s)‖21.
(3.31)

Since (∂kt θ̄)t = (a(x)∂kt θ̄)xx, k = 1, 2, 3, similar estimates to those above give the
following.

Lemma 3.1. If (θ0, s− s) ∈ H6(R)×H6(R), then it holds that

3∑
k=0

{
(1 + t)2k

∫
R

a(x)(∂kt θ̄)
2dx+ (1 + t)2k+1

∫
R

{(a(x)∂kt θ̄)x}2dx
}

+

2∑
k=0

∫ t

0

(1 + τ)2k
∫
R

{a(x)(∂kt θ̄)x}2dxdτ(3.32)

+

2∑
k=0

∫ t

0

(1 + τ)2k+1

∫
R

a(x)[{(a(x)∂kt θ̄)xx}2 + (∂kt θ̄t)2]dxdτ

≤C‖(θ0, s0 − s)‖26.
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Remark 5. By the Sobolev inequality and (3.32), we obtain

supR |θ̄| = sup
R
|a(x)−1| sup

R
|a(x)θ̄|

≤ C‖
√

a(x)θ̄(t)‖ 1
2 ‖(a(x)θ̄)x(t)‖ 1

2

≤ C(1 + t)−
1
4 ,

(3.33)

sup
R
|θ̄t| ≤ C‖

√
a(x)θ̄t(t)‖ 1

2 ‖(a(x)θ̄t)x(t)‖ 1
2

≤ C(1 + t)−
5
4 ,

(3.34)

and

supR |θ̄tt| ≤ C‖
√

a(x)θ̄tt(t)‖ 1
2 ‖(a(x)θ̄tt)x(t)‖ 1

2

≤ C(1 + t)−
9
4 .

(3.35)

Second step. Assuming that θ0 ∈ L1(R), we now obtain an asymptotic profile θ̄0

of θ̄ defined in (2.6). Rewrite (3.27)1 as

θ̄t = aθ̄xx + {(a(x)− a)θ̄}xx

to have the expression

θ̄(t, x) =

∫
R

G(t, x− y)θ0(y)dy +

∫ t

0

∫
R

G(t− τ, x− y){(a(y)− a)θ̄(τ, y)}yydydτ,
(3.36)

where

G(t, x) =
1√
4πat

exp

(
− x2

4at

)
.

Integration by parts yields

∫ t

t
2

∫
R

G · {(a(y)− a)θ̄(τ, y)}yydydτ

= −1
a

∫ t

t
2

∫
R

Gτ · (a(y)− a)θ̄(τ, y)dydτ

= −1
a

[∫
R

G · (a(y)− a)θ̄(τ, y)dy

]t
t
2

+
1

a

∫ t

t
2

∫
R

G · (a(y)− a)θ̄τ (τ, y)dydτ

= −1
a
(a(x)− a)θ̄(t, x) +

1

a

∫
R

G

(
t

2
, x− y

)
(a(y)− a)θ̄(τ, y)dy

+
1

a

∫ t

t
2

∫
R

G · (a(y)− a)θ̄τ (τ, y)dydτ.
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Hence by (3.36)

(θ̄ − θ̄0)(t, x) =
1

a(x)

∫
R

G

(
t

2
, x− y

)
(a(y)− a)θ̄

(
t

2
, y

)
dy

+
a

a(x)

∫ t
2

0

∫
R

Gyy(t− τ, x− y)(a(y)− a)θ̄(τ, y)dydτ

+
1

a(x)

∫ t

t
2

∫
R

G(t− τ, x− y)(a(y)− a)θ̄τ (τ, y)dydτ

≡ I1 + I2 + I3.

(3.37)

Here we have used θ̄0 =
a

a(x)

∫
R
G · θ0(y)dy.

By θ0 ∈ L1(R), it is easy to see

|θ̄0(t, x)| ≤ Ct−
1
2 .(3.38)

Since s0 − s ∈ L1(R), a(y)− a ∈ L1(R). Hence

|I1| ≤ C sup
R

∣∣∣∣G
(

t

2
, x− y

)∣∣∣∣ sup
R

∣∣∣∣θ̄
(

t

2
, y

)∣∣∣∣ ‖a(·)− a‖L1

≤ Ct−
3
4 ,

(3.39)

|I2| ≤ C

∫ t
2

0

sup
R
|Gyy| sup

R
|θ̄(τ, y)|‖a(·)− a‖L1dτ

≤ C

∫ t
2

0

(t− τ)−
3
2 (1 + τ)−

1
4 dτ,

≤ Ct−
3
4 ,

(3.40)

and

|I3| ≤ C

∫ t

t
2

sup
R
|G| sup

R
|θ̄τ (τ, y)|‖a(·)− a‖L1dτ

≤ C

∫ t
2

0

(t− τ)−
1
2 (1 + τ)−

5
4 dτ

≤ Ct−
3
4 .

(3.41)

Here we have used (3.33) and (3.34). Combining (3.37)–(3.41), we obtain

sup
R
|(θ̄ − θ̄0)(t, x)| ≤ Ct−

3
4 .(3.42)
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Next, we estimate supR |(θ̄ − θ̄0)t(t, x)|. Differentiate (3.37) in t to have

(θ̄ − θ̄0)t(t, x) =
1

a(x)

∫
R

Gt

(
t

2
, x− y

)
(a(y)− a)θ̄

(
t

2
, y

)
dy

+
1

a(x)

∫
R

G

(
t

2
, x− y

)
(a(y)− a)θ̄τ

(
t

2
, y

)
dy

+
a

a(x)

∫ t
2

0

∫
R

Gyyt · (a(y)− a)θ̄(τ, y)dydτ

+
1

a(x)

∫ t

t
2

∫
R

G · (a(y)− a)θ̄ττ (τ, y)dydτ.

(3.43)

In a similar fashion to the previous estimates, we have

sup
R
|(θ̄ − θ̄0)t(t, x)| ≤ Ct−

7
4 .(3.44)

Differentiating (3.43) in t, we also obtain

sup
R
|(θ̄ − θ̄0)tt(t, x)| ≤ Ct−

11
4 .(3.45)

Here, we go back to (3.37). By virtue of (3.42) and (3.44),{
supR |θ̄(t, x)| ≤ supR |θ̄0(t, x)|+ Ct−

3
4 ≤ Ct−

1
2 ,

supR |θ̄t(t, x)| ≤ supR |(θ̄0)t(t, x)|+ Ct−
7
4 ≤ Ct−

3
2 .

(3.46)

Therefore, applying (3.46), instead of (3.33) and (3.34), to (3.37), we obtain

sup
R
|θ̄(t, x)− θ̄0(t, x)| ≤ Ct−1.(3.47)

Similarly, we have

sup
R
|(θ̄ − θ̄0)t(t, x)| ≤ Ct−2.(3.48)

However, this method is not applicable to (θ̄ − θ̄0)tt because we have θ̄ttt in the
expression of (θ̄ − θ̄0)tt.

The L2-estimates to θ̄ − θ̄0 are also obtained by applying the Hausdorff–Young
inequality. Thus we have the following lemma.

Lemma 3.2. In addition to the assumption in Lemma 3.1, if (θ0, s−s) ∈ L1(R)×
L1(R), then it holds that as t→∞,


‖((θ̄ − θ̄0), (θ̄ − θ̄0)t, (θ̄ − θ̄0)tt)(t, ·)‖L∞ = O(t−1, t−2, t−

11
4 ),

‖((θ̄ − θ̄0), (θ̄ − θ̄0)t, (θ̄ − θ̄0)tt)(t, ·)‖L2 = O(t−
3
4 , t−

7
4 , t−

5
2 ).

(3.49)

Third step. We now turn to (3.2). The perturbation Θ := θ − θ̄ satisfies{
Θt = (a(x)Θ)xx +Φ(θ, x)xx,

Θ|t=0 = 0,
(3.50)
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where

Φ(θ, x) = −{p(θ + v̄, s)− p(v̄, s)− pv(v̄, s)θ}.(3.51)

Similar to (3.37), we have the expression

Θ(t, x) =
1

a(x)

∫
R

G

(
t

2
, x− y

)
(a(y)− a)Θ

(
t

2
, y

)
dy

+
1

a(x)

∫ t
2

0

∫
R

Gt · (a(y)− a)Θ(τ, y)dydτ

+
1

a(x)

∫ t

t
2

∫
R

G · (a(y)− a)Θτ (τ, y)dydτ

+
a

a(x)

∫ t
2

0

∫
R

Gyy · Φdydτ +
1

a(x)

∫ t

t
2

∫
R

Gt · Φ(τ, y)dydτ

≡ II1 + II2 + II3 + II4 + II5.

(3.52)

We estimate each term in (3.52). By virtue of (3.22), (3.23), and (3.46),

‖Θ(t)‖L∞ ≤ ‖θ(t)‖L∞ + ‖θ̄(t)‖L∞

≤ C(1 + t)−
1
4

(3.53)

and

‖Θt(t)‖L∞ ≤ ‖θt(t)‖L∞ + ‖θ̄t(t)‖L∞

≤ C(1 + t)−
5
4 .

(3.54)

Hence II1–II3 are easily estimated as

|II1, II2, II3| ≤ Ct−
3
4 .(3.55)

Estimates of II4 and II5 are as follows:

|II4| ≤ C

∫ t
2

0

sup
R
|Φ|‖Gyy(t− τ)‖L1dτ

≤ C

∫ t
2

0

sup
R
|θ|2(t− τ)−1dτ

≤ Ct−
1
2

(3.56)
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and

|II5| ≤ C

∣∣∣∣∣−
[∫

R

GΦ(τ, y)dy

]t
t
2

+

∫ t

t
2

∫
R

GΦτ (τ, y)dydτ

∣∣∣∣∣
≤ C

{
|Φ(θ, x)|+

∣∣∣∣
∫
R

G

(
t

2
, x− y

)
Φdy

∣∣∣∣
+

∫ t

t
2

sup
R
|Φτ (τ, y)|‖G(t− τ)‖L1dτ

}

≤ C

{
sup
R
|θ|2 +

∫ t

t
2

sup
R
|θ| sup

R
|θt|dτ

}

≤ Ct−
1
2 .

(3.57)

Therefore, we obtain

‖Θ(t)‖L∞ ≤ C(1 + t)−
1
2 ,(3.58)

and hence

‖θ(t)‖L∞ ≤ ‖Θ(t)‖L∞ + ‖θ̄(t)‖L∞ ≤ C(1 + t)−
1
2 .(3.59)

Applying (3.54) and (3.58), instead of (3.53), to (3.52) again, we have

‖Θ(t)‖L∞ ≤ C(1 + t)−
3
4 .(3.60)

If we obtain faster decay of ‖Θt(t)‖L∞ than (3.54), then ‖Θ(t)‖L∞ will decay faster
than (3.60). Hence we next estimate ‖Θt(t)‖L∞ using the explicit formula. Since Θt
satisfies 


(Θt)t = (aΘt)xx + {(a(x)− a)Θt}xx + (Φ(θ, x)t)xx,

Θt|t=0 = Φ(θ0, x)xx,
(3.61)

we also have the expression, similar to (3.52),

Θt(t, x) =
a

a(x)

∫
R

G

(
t

2
, x− y

)
(a(y)− a)Θt

(
t

2
, y

)
dy

+
1

a(x)

∫ t
2

0

∫
R

Gt · (a(y)− a)Θt(τ)dydτ +
1

a(x)

∫ t

t
2

∫
R

G · (a(y)− a)Θtt(τ)dydτ

+
1

a(x)

{∫
R

Gt

(
t

2
, x− y

)
Φ

(
t

2

)
dy +

∫ t
2

0

∫
R

Gtt · Φdydτ

}

+
1

a(x)

{∫ t

t
2

∫
R

G · Φtt(τ, y)dydτ +
∫
R

G

(
t

2
, x− y

)
Φtdy − Φt(θ, x)

}
.

≡ III1 + III2 + III3 + III4 + III5.

(3.62)
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Applying (3.54) and (3.59), we obtain

|III1| ≤ C sup
R

∣∣∣∣G
(

t

2

)∣∣∣∣ sup
R
|Θt|‖a(·)− a‖L1

≤ Ct−
7
4 ,(3.63)

|III2| ≤ C‖a(·)− a‖L1

∫ t
2

0

sup
R
|Gt(t− τ)| sup

R
|Θt(τ, y)|dτ

≤ C

∫ t
2

0

(t− τ)−
3
2 (1 + τ)−

5
4 dτ(3.64)

≤ Ct−
7
4 ,

and

|III4| ≤ C

{
sup
R

∣∣∣∣Gt

(
t

2

)∣∣∣∣ sup
R

∣∣∣∣Φ
(

t

2
, y

)∣∣∣∣+
∫ t

2

0

‖Gtt(t− τ)‖L1 sup
R
|Φ(τ, y)|dτ

}

≤ C

{
(1 + t)−1−1 +

∫ t
2

0

(t− τ)−2(1 + τ)−1dτ

}

≤ C(1 + t)−2 log(2 + t).

(3.65)

Since

‖Θtt(t)‖L∞ ≤ ‖θtt(t)‖L∞ + ‖θ̄tt(t)‖L∞ ≤ C(1 + t)−
9
4

by (3.26), (3.49), and ‖(θ̄0)tt(t)‖L∞ ≤ C(1 + t)−
5
2 , we have

|III3| ≤ C‖a(·)− a‖L1

∫ t

t
2

sup
R
|G(t− τ)| sup

R
|Θtt(τ, y)|dτ

≤ C

∫ t

t
2

(t− τ)−
1
2 (1 + τ)−

9
4 dτ ≤ Ct−

7
4

(3.66)

and

|III5| ≤ C

{∫ t

t
2

‖G(t− τ)‖L1 sup
R
|Φtt (τ) |dτ +

∥∥∥∥G
(

t

2

)∥∥∥∥
L1

sup
R

∣∣∣∣Φt
(

t

2

)∣∣∣∣
+sup

R
|Φt(t, y)|

}

≤ C

{∫ t

t
2

(sup
R
|θt(τ)|2 + sup

R
|θ(τ)| sup

R
|θtt(τ)|)dτ

+sup
R

∣∣∣∣θ
(

t

2

)∣∣∣∣ sup
R

∣∣∣∣θt
(

t

2

)∣∣∣∣+ sup
R
|θ(t)| sup

R
|θt(t)|

}

≤ C

{∫ t

t
2

(1 + τ)−
5
2 dτ + (1 + t)−

7
4

}
≤ Ct−

3
2 .

(3.67)
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Here we have used |∂tΦ(θ, x)| ≤ C|θ||θt|, |∂ttΦ(θ, x)| ≤ C(|θt|2 + |θ||θtt|). Combining
(3.62)–(3.67) we have

‖Θt(t)‖L∞ ≤ Ct−
3
2 ,(3.68)

and hence

‖θt(t)‖L∞ ≤ ‖Θt(t)‖L∞ + ‖θ̄t(t)‖L∞ ≤ Ct−
3
2 .(3.69)

Applying (3.68), instead of (3.54), and (3.69) to (3.62) again, we have

‖Θt(t)‖L∞ ≤ C(1 + t)−
7
4 .(3.70)

We now go back to the estimate of ‖Θ(t)‖L∞ . Applying (3.60) and (3.70) to (3.52),
we obtain the sharper estimate

‖Θ(t)‖L∞ ≤ C(1 + t)−1 log(2 + t).(3.71)

By differentiating (3.61)1 with respect to t, we have the explicit formula of Θtt, similar
to (3.62). Estimating all terms, we obtain

‖Θtt(t)‖L∞ ≤ C(1 + t)−
11
4 ,(3.72)

the details of which are omitted. If we apply (3.72) to (3.62), then we get

‖Θt(t)‖L∞ ≤ C(1 + t)−2 log(2 + t).(3.73)

The L2-estimates of Θ are also obtained by the Hausdorff–Young inequality:

‖Θ(t)‖L2 ≤ C(1 + t)−

3
4 ,

‖Θt(t)‖L2 ≤ C(1 + t)−
7
4 ,

‖Θtt(t)‖L2 ≤ C(1 + t)−
5
2 .

(3.74)

Once more, applying (3.74) to (3.52) and (3.62), we obtain{‖Θ(t)‖L∞ ≤ C(1 + t)−1,

‖Θt(t)‖L∞ ≤ C(1 + t)−2.
(3.75)

Thus we obtain the following lemma.
Lemma 3.3. In addition to the assumptions in Lemma 3.1, if (θ0, s − s) ∈

L1(R)× L1(R), then it holds that as t→∞,

‖(Θ,Θt,Θtt)(t, ·)‖L∞ = O(t−1, t−2, t−

11
4 ),

‖(Θ,Θt,Θtt)(t, ·)‖L2 = O(t−
3
4 , t−

7
4 , t−

5
2 ).

(3.76)

Combining Lemmas 3.2 and 3.3, we conclude the proof of Proposition 3.2.
Proof of Proposition 3.3. Rewrite (3.6) as

qt − aqxx = −{pv(θ + v̄, s0) + a}qxx(3.77)
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to have the expression

q(t, x) =

∫
R

G(t, x− y)q0(y)dy −
∫ t

0

∫
R

G(t− τ, x− y){pv(θ + v̄, s0) + a}qyydydτ.
(3.78)

Here we put q(0, x) = q0(x) and a = −pv(v, s). Integration by parts yields

−
∫ t

2

0

∫
R

G(t− τ, x− y){pv(θ + v̄, s0) + a}qyydydτ

=

∫ t
2

0

∫
R

G(t− τ, x− y)(qτ − aθτ )dydτ

=

{[∫
R

G(t− τ, x− y)(q − aθ)dy

] t
2

0

−
∫ t

2

0

∫
R

Gτ (t− τ, x− y)(q − aθ)dydτ

}
.

(3.79)

Thus we obtain

(q − q̄0)(t, x) =

∫
R

G · (q − aθ)dy

∣∣∣∣
τ= t

2

−
∫ t

2

0

∫
R

Gτ (t− τ, x− y)(q − aθ)dydτ

−
∫ t

t
2

∫
R

G(t− τ, x− y){pv(θ + v̄, s0) + a}qyydydτ

(3.80)

and

(q − q̄0)x(t, x) =

∫
R

Gx · (q − aθ)dy

∣∣∣∣
τ= t

2

−
∫ t

2

0

∫
R

Gxτ (t− τ, x− y)(q − aθ)dydτ

−
∫ t

t
2

∫
R

Gx(t− τ, x− y){pv(θ + v̄, s0) + a}qyydydτ.

(3.81)

Here we have used q̄0(t, x) = a
∫
R
G(t, x− y)θ0(y)dy. Dividing the final term of (3.81)

as

−
(∫ t−1

t
2

+

∫ t

t−1

)∫
R

Gx · {pv(θ + v̄, s0) + a}qyydydτ = (i) + (ii),

we seek the L∞-estimate of (i) and (ii). Noting that


q − aθ = −{p(θ + v̄, s0)− p(v̄, s0)− pv(v̄, s0)θ + (pv(v̄, s0)− pv(v, s))θ}

= O(|θ|2 + |a(x)− a||θ|),

pv(θ + v̄, s0) + a = pv(θ + v̄, s0)− pv(v̄, s0) + pv(v̄, s0)− pv(v, s)

= O(|θ|+ |a(x)− a|),
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we obtain

|(i)| ≤ C

∫ t−1

t
2

∫
R

|G|(|θ|+ |a(y)− a|)|θτ |dydτ

≤ C

∫ t−1

t
2

‖G(t− τ)‖L∞ (‖θ(τ)‖L2‖θτ (τ)‖L2 + ‖a(y)− a‖L1‖θτ (τ)‖L∞) dτ

≤ C

∫ t−1

t
2

(t− τ)−1(1 + τ)−
3
2 dτ ≤ Ct−

3
2 log(2 + t)

and

|(ii)| ≤ C

∫ t

t−1

‖G(t− τ)‖L2‖θτ (τ)‖L∞ (‖θ(τ)‖L2 + ‖a(y)− a‖L2) dτ

≤ C

∫ t

t−1

(t− τ)−
3
4 (1 + τ)−

3
2 dτ ≤ Ct−

3
2 .

The other terms are estimated in a similar fashion to Proposition 3.2. The details are
omitted.

4. Pointwise estimate by the approximate Green function. In this final
section, we devote ourselves to the proof of Theorem 2. In an expression obtained
by differentiating V of (2.13) in x,

∫ t
t
2

∫
R
Gx · {(pv(ṽ, s) + a)Vy}ydydτ is rewritten as

follows:

−
∫ t

t
2

∫
R

Gx · {(pv(ṽ, s) + a)Vy}ydydτ

= −
∫ t

t
2

∫
R

Gyy · (pv(ṽ, s) + a)Vydydτ

=
1

a

∫ t

t
2

∫
R

Gτ · (pv(ṽ, s) + a)Vydydτ

=
1

a

{[∫
R

G · (pv(ṽ, s) + a)Vydy

]t
t
2

−
∫ t

t
2

∫
R

G · {(pv(ṽ, s) + a)Vy}τdydτ
}

=
(pv(ṽ, s) + a)

a
Vx(t, x)− 1

a

∫
R

G · (pv(ṽ, s) + a)Vydy

∣∣∣∣
τ= t

2

−1
a

∫ t

t
2

∫
R

G · {(pv(ṽ, s) + a)Vy}τdydτ,

where G is defined in (2.6) and a = −pv(v, s). Hence
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Vx(t, x) =
a

−pv(ṽ, s)

∫
R

Gx(t, x− y)V0(y)dy

− a

−pv(ṽ, s)

(∫ t
2

0

+

∫ t

t
2

)∫
R

Gx{Fy + Vττ}dydτ

+
a

−pv(ṽ, s)

(∫ t
2

0

+

∫ t

t
2

)∫
R

Gxp(ṽ, s)yτdydτ

− 1

−pv(ṽ, s)

∫
R

(pv(ṽ, s) + a)G

(
t

2

)
Vy

(
t

2

)
dy

− a

−pv(ṽ, s)

∫ t
2

0

∫
R

(pv(ṽ, s) + a)GyyVydydτ

− 1

−pv(ṽ, s)

∫ t

t
2

∫
R

{(pv(ṽ, s) + a)Vy}τ Gdydτ

= J1 + (J21 + J22) + (J31 + J32) + J4 + J5 + J6.

(4.1)

By V0 ∈ L1(R), it is easy to see

|J1| ≤ Ct−1.(4.2)

To estimate all other terms, we use (2.5) in Proposition 2.1 and (2.11) in Theorem 1.
Integration by parts in x yields

|J21| ≤ C

∣∣∣∣∣
∫ t

2

0

(∫
R

GyyFdy +

∫
R

Gyzτdy

)
dτ

∣∣∣∣∣
≤ C

[∫ t
2

0

∫
R

|Gyy||F |dydτ +
∣∣∣∣∣
[∫

R

Gyzdy

] t
2

0

−
∫ t

2

0

∫
R

Gyτzdydτ

∣∣∣∣∣
]

≤ C

[∫ t
2

0

sup
R
|Gyy(t− τ)|‖Vy(τ)‖2dτ +

∥∥∥∥Gy

(
t

2

)∥∥∥∥
∥∥∥∥z

(
t

2

)∥∥∥∥
+sup

R
|Gy(t)|‖z(0)‖L1 +

∫ t
2

0

‖Gτ (t− τ)‖‖zy(τ)‖dτ
]

≤ C

[
t−

3
2

∫ t
2

0

‖Vy(τ)‖2dτ + t−
3
4−1 + t−1 + t−

5
4

∫ t
2

0

(1 + τ)−
3
2 dτ

]

≤ Ct−1

(4.3)

and

|J22| ≤ C

∣∣∣∣∣
∫ t

t
2

∫
R

GyyFdxdτ +

∫ t

t
2

∫
R

Gxzτdxdτ

∣∣∣∣∣
≤ C

∣∣∣∣∣1a
([∫

R

GFdx

]t
t
2

−
∫ t

t
2

∫
R

GFτdxdτ

)
+

∫ t

t
2

∫
R

Gxzτdxdτ

∣∣∣∣∣
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≤ C

{
sup
R
|F (t)|+ sup

R

∣∣∣∣F
(

t

2

)∣∣∣∣
∥∥∥∥G

(
t

2

)∥∥∥∥
L1

+

∫ t

t
2

∫
R

(|Vy|2|ṽ|+ |Vy||zy|)|G|dxdτ +
∫ t

t
2

‖Gx(t− τ)‖‖zτ (τ)‖dτ
}

≤ C

{
sup
R
|Vx(t)|2 +

∫ t

t
2

sup
R
|Vy|2 sup

R
|ṽ|‖G(t− τ)‖L1dτ

+

∫ t

t
2

sup
R
|Vy|‖zy(τ)‖‖G(t− τ)‖dτ +

∫ t

t
2

‖Gx(t− τ)‖‖zτ (τ)‖dτ
}

≤ C
{
t−

3
2 + t−

3
2− 3

2+1 + t−
3
4− 3

2+ 3
4 + t−

3
2+ 1

4

}
≤ Ct−

5
4 .

(4.4)

For J3, we have

|J31| ≤ C

∣∣∣∣∣
∫ t

2

0

∫
R

Gyyp(ṽ, s)τdydτ

∣∣∣∣∣
≤ C

∫ t
2

0

‖Gyy(t− τ)‖L1 sup
R
|ṽτ (τ)|dτ

≤ C

∫ t
2

0

(t− τ)−1(1 + τ)−
3
2 dτ ≤ Ct−1

(4.5)

and

|J32| ≤ C

∣∣∣∣∣
∫ t

t
2

∫
R

Gyyp(ṽ, s)τdydτ

∣∣∣∣∣
≤ C

∣∣∣∣∣
∫ t

t
2

∫
R

Gτp(ṽ, s)τdydτ

∣∣∣∣∣
= C

∣∣∣∣∣
[∫

R

Gp(ṽ, s)τdy

]t
t
2

−
∫ t

t
2

∫
R

Gp(ṽ, s)ττdydτ

∣∣∣∣∣
≤ C

{
sup
R
|ṽτ (t)|+ sup

R

∣∣∣∣ṽτ
(

t

2

)∣∣∣∣
∥∥∥∥G

(
t

2

)∥∥∥∥
L1

+

∫ t

t
2

(
sup
R
|ṽτ |2 + sup

R
|ṽττ |

)
‖G(t− τ)‖L1dτ

}

≤ C
(
t−

3
2 + t−

5
2+1

)
≤ Ct−

3
2 .

(4.6)

For the last three terms, we have

|J4| ≤ C

(
sup
R
|Vy(t)|‖ṽ(t, ·)− v̄(·)‖

∥∥∥∥G
(

t

2

)∥∥∥∥+ ‖s(·)− s‖L1 sup
R

∣∣∣∣G
(

t

2

)∣∣∣∣ sup
R
|Vy(t)|

)

≤ C
(
t−

3
4− 1

4− 1
4 + t−

1
2− 3

4

)
≤ Ct−

5
4 ,

(4.7)
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|J5| ≤ C

(∫ t
2

0

sup
R
|Vy(τ)|‖ṽ(t, ·)− v̄(·)‖‖Gyy(t− τ)‖dτ

+‖s(·)− s‖L1

∫ t
2

0

sup
R
|Gyy(t− τ)| sup

R
|Vy(τ)|dτ

)

≤ C

(∫ t
2

0

(1 + τ)−
3
4 (1 + τ)−

1
4 (t− τ)−

5
4 dτ +

∫ t
2

0

(t− τ)−
3
2 (1 + τ)−

3
4 dτ

)

≤ C
{
t−

5
4 log(2 + t) + t−

3
2+ 1

4

}
≤ Ct−

5
4 log(2 + t),

(4.8)

and

|J6| ≤ C

(∫ t

t
2

sup
R
|zy(τ)|‖G(t− τ)‖‖ṽ(t, ·)− v̄(·)‖dτ

+‖s(·)− s‖L1

∫ t

t
2

sup
R
|zy(τ)| sup

R
|G(t− τ)|dτ

+C

∫ t

t
2

sup
R
|ṽt(τ)| sup

R
|Vy(τ)|‖G(t− τ)‖L1dτ

)

≤ C
(
t−

3
2− 1

4+ 3
4 + t−

3
2+ 1

2 + t−
3
2− 3

4+1
)
≤ Ct−1.

(4.9)

Combining (4.2)–(4.9) we have the desired rate

sup
R
|Vx(t, x)| ≤ Ct−1.(4.10)

Next, we estimate supx |z(t, x)| in a similar way to that above. Differentiating
(2.13) in t, we have

z(t, x) =

∫
R

Gt(t, x− y)V0(y)dy +

∫
R

G · p(ṽ, s)yτdy
∣∣∣∣
τ= t

2

−
{∫ t

2

0

∫
R

Gτ · p(ṽ, s)yτdydτ −
∫ t

t
2

∫
R

G · p(ṽ, s)yττdydτ
}

−
∫
R

G · {Fy + Vττ}dy
∣∣∣∣
τ= t

2

+

{∫ t
2

0

∫
R

Gt{Fy + Vττ}dydτ +
∫ t

t
2

∫
R

G · {Fyt + Vτττ}dydτ
}

−
∫
R

{(pv(ṽ, s) + a)Gy}y V dy

∣∣∣∣
τ= t

2

−
∫ t

2

0

∫
R

{(pv(ṽ, s) + a)Gy}yt V dydτ

−
∫ t

t
2

∫
R

{(pv(ṽ, s) + a)Vy}τ Gydydτ.

(4.11)

Here we have used the integration by parts to gather the derivatives of G in the part
on the domain

[
0, t2

]
and, on the other hand, to gather those in the other part on the
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domain
[
t
2 , t

]
. By almost the same calculations as the estimate of supR |Vx(t, x)|, we

have the desired rate

sup
R
|z(t, x)| ≤ Ct−

3
2 .(4.12)

Applying the Hausdorff–Young inequality, we also have the L2-estimate

‖(Vx, z)(t, ·)‖L2 = O(t−
3
4 , t−

5
4 ),

which completes the proof of Theorem 2.
Remark 6. We can also get

‖V (t, ·)‖L∞ ≤ Ct−
1
2 , ‖V (t, ·)‖L2 ≤ Ct−

1
4 .
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Abstract. We investigate how to place an obstacle B within a domain Ω in Euclidean space so
as to maximize or minimize the principal Dirichlet eigenvalue for the Laplacian on Ω \B. The shape
of B is fixed a priori (usually as a ball), and only its position varies. We establish that for a certain
class of domains the minimizing B is in contact with ∂Ω, while the maximizing B is in the interior,
typically at the center (supposing that the domain is sufficiently symmetric for this statement to
be meaningful). Under special circumstances we can characterize the optimizing configurations with
multiple obstacles. Our method relies on the Hadamard perturbation formula and a moving plane
analysis.

Similar facts are proved when the hard obstacle is replaced by a central nonnegative potential
function supported in B, and we consider the Schrödinger operator with this potential. Complemen-
tary facts are proved when the obstacle is replaced by a central nonpositive potential function.
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1. Introduction. In this article we study how to minimize or maximize the fun-
damental eigenvalue of the Laplacian or Schrödinger operator defined within a fixed,
bounded, open domain Ω, with zero Dirichlet boundary conditions on the boundary.
Inside this domain we shall place an obstacle or a well, the position of which is under
our control, and our goal is to locate the optimal position of the piece under our
control.

The obstacles we consider may be hard, by which we mean that zero Dirichlet
conditions are additionally imposed on the boundary of some open subset B of Ω, or
they may be soft, by which we mean that the operator we analyze is of the following
form:

−∇2 + α χB(x),(1.1)

where α > 0 and χB is the indicator function of the region B. Loosely, a hard obstacle
corresponds to α = +∞. The term “well” refers to the situation where the constant
α in operator (1.1) is negative. These operators are defined in standard ways (e.g.,
[Da95]), and by our sign convention the fundamental eigenvalue with an obstacle is
positive and denoted λ; in the case of a well, λ might be negative. We recall that λ
is nondegenerate and has an eigenfunction u which does not change sign. As usual,
we choose u(x) > 0 and normalize it in L2 on Ω (respectively, on Ω \B in the case of
a hard obstacle).
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Of particular interest for the light they shed on the relationship of geometry to
the fundamental eigenvalue are the following questions about the placement of the
interior obstacle:

1. Is it true that the optimal placement of an obstacle so as to minimize λ is
in contact with the boundary, while the optimal placement to maximize λ is in the
interior?

2. Given an affirmative answer to question 1, can the optimal position be located
precisely?

For the placement of wells, we pose the same questions, with our expectations
regarding the minimizing and maximizing positions reversed. In this article we shall
describe some circumstances when the first question can be answered affirmatively,
and some more narrow circumstances when the second question can be answered.

These expectations are suggested by perturbative analysis. If either α or the size
of B is small, then to leading order in perturbation theory the effect of adding a soft
obstacle or well is asymptotic to

α

∫
B

u2dnx .

Thus (for example, considering the case with α > 0) the strategy to minimize λ is
to place the obstacle near the boundary, while the strategy to maximize λ is to place
the obstacle in the interior, near the maximum of u(x). The situation with a small
hard obstacle is similar (using the estimates in [Fl95]), while the situation with a well
is reversed.

In many of the situations in this article the inside region B will be a ball. It
is clear that for many purposes it is only necessary for B to have certain reflection
symmetries, but we have preferred to focus on the case where the statement of the
result is simplest. (See section 4, Example 7.)

In 1995, E. B. Davies asked two of us (E.H. and P.K.) questions of this type, for
a hard spherical obstacle within a sphere. We answered the questions privately, using
methods like those of this article: The minimizing position of the interior sphere is at
the boundary of Ω, while the maximizing position is at the center of the exterior Ω.
Quite recently we have learned from Ashbaugh and Chatelain [As99] that in response
to the same query from A. G. Ramm, they have answered it with similar methods.

Independently, one of us (K.K.) had been considering the problem of placing a
positive potential with a specified integral within a region Ω, so as to minimize λ.
This work appears in [CGIKO99].

In both these independent lines of investigation, the minimizing obstacles are in
contact with the boundary. One aim here is to explore this phenomenon further.

We are not aware of other work on this problem, although there are some asymp-
totic estimates for small obstacles (especially [Fl95]), and some work on optimization
of capacity on annular domains in [Fl93] and [Co94].

Our technique is to treat the motion of the obstacle or well as a perturbation,
and estimate the perturbation with a reflection technique reminiscent of the classical
method of moving planes [Al60], [Se71], [BeNi91], which, curiously, has heretofore not
been used as much in spectral theory as in nonlinear analysis.

The first insight we use is that a translation of the obstacle or well can be regarded
as a perturbation of a boundary. For a hard obstacle, the Hadamard boundary pertur-
bation formula [Ha08], [GaSc53] applies. When specialized to the case of a translation,
it reads simply as follows.
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Proposition 1.1 (the Hadamard perturbation formula, special case). Let B be
an interior hard obstacle which can be moved rigidly a positive distance in the direction
of a unit vector v. The boundary of B is assumed piecewise smooth. Then

∂λ

∂v
=

∫
∂B

|∇u|2 n · v dS.(1.2)

Here and throughout, n is the unit normal at the surface of the obstacle B. Our
choice of orientation is outward with respect to B and hence inward with respect to
Ω. We recall for later purposes that at a boundary with zero Dirichlet conditions, the
gradient of u is parallel to the normal vector, provided the latter is defined.

When α > 0 is finite, the derivative of the eigenvalue with respect to a translation
of a soft obstacle is obtainable from Green’s theorem. As for Hadamard’s formula,
the derivative is proportional to a certain surface integral. As a first step in deriving
the formula for this derivative, we prepare an estimate for the eigenvalue λ(ε) and
L2-normalized eigenfunction u(ε) of a soft obstacle B(ε) obtained by shifting B by a
distance ε.
Lemma 1.2. (a) There exist constants ε0 > 0 and C, depending only on Ω, such

that

|λ(ε)− λ| ≤ Cε

for every 0 < ε < ε0.
(b) ‖u(ε)− u‖L∞(Ω) → 0 as ε→ 0.
Proof. According to the min-max principle,

λ(ε) ≤
∫

Ω

|∇u|2 dx+ α

∫
Ω

χB(ε)u
2 dx = λ+ α

∫
Ω

(χB(ε) − χB)u2 dx.

Recall that u and u(ε) ∈ L∞(Ω) with ‖u(ε)‖∞ ≤ C1, with C1 depending only on Ω
(see, e.g., [GiTr83, Theorem 8.15]). Since also∫

Ω

|(χB(ε) − χB)| dx ≤ C2ε,

we obtain

λ(ε)− λ ≤ C3ε.

By an analogous argument, λ− λ(ε) ≤ C4ε, completing the proof of (a).
Next, it is easy to see that {u(ε)}0<ε<ε0 is bounded in H1

0 (Ω), so there exists a
subsequence of {u(ε)}0<ε<ε0 which converges weakly in H1

0 (Ω). Actually, u(ε) must
converge to u weakly in H1

0 (Ω) and strongly in L2(Ω), since the weak limit of any
subsequence of {u(ε)}0<ε<ε0 is the first eigenfunction u associated to λ and hence
unique. Let w(ε) := u(ε)− u. Then w(ε) satisfies

−∆w(ε) + (αχB(ε) − λ)w(ε) = (λ(ε)− λ)u(ε)− α(χB(ε) − χB)u.

Applying the uniform L∞ estimate from [GiTr83, Theorem 8.15] to w(ε), we have

‖w(ε)‖L∞(Ω) ≤ ‖w(ε)‖L2(Ω) + C5|λ(ε)− λ|+ C6‖χB(ε) − χB‖L1(Ω).

This yields the desired estimate.
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We shall need the following elementary formula.
Lemma 1.3. Suppose ζ ∈ C1(Ω). Then

1

ε

(∫
B(ε)

ζ2 dx−
∫
B

ζ2 dx

)
→
∫
∂B

ζ2(v · n) dS

as ε→ 0.
Proof. Since

∫
B(ε)

ζ2 dx =
∫
B
ζ2(y + εv) dy, we get

1

ε

(∫
B(ε)

ζ2 dx−
∫
B

ζ2 dx

)
=

∫
B(ε)

(
ζ(y + εv)− ζ(y)

ε

)
(ζ(y + ε(v)) + ζ(y))dy

→ 2

∫
B

∂ζ

∂v
ζdy =

∫
B

∇ · (ζ2v
)
dy.

The divergence theorem implies the desired result.
Proposition 1.4. Consider the case of a soft obstacle or a well (1.1), where B

is assumed to have a piecewise smooth boundary. Suppose that B can be moved rigidly
a positive distance in the direction of a unit vector v. Then

∂λ

∂v
= α

∫
∂B

|u|2n · v dS.(1.3)

Proof. We denote by λ(ε) and λ the fundamental eigenvalues of the operators
−∆ + αχB(ε) and −∆ + αχB , respectively. Here B(ε) = {y ∈ Rn;y = x + εv} for
small ε > 0. We choose 0 < ε < ε0, where ε0 > 0 is sufficiently small so that B(ε) ⊂ Ω.
We also denote by u(ε) and u the L2-normalized eigenfunctions associated with λ(ε)
and λ, respectively. Thus u(ε) and u satisfy∫

Ω

∇u(ε) · ∇φ+ αχB(ε)u(ε)φdx = λ(ε)

∫
Ω

u(ε)φdx

and ∫
Ω

∇u · ∇ψ + αχBuψ dx = λ

∫
Ω

uψ dx

for every φ, ψ ∈ H1
0 (Ω). Substituting φ = u and ψ = u(ε), we have

(λ(ε)− λ)
∫

Ω

u(ε)u dx = α

∫
Ω

(χB(ε) − χB)u(ε)u dx.

By Lemma 1.2(b), we have∣∣∣∣
∫

Ω

u(ε)u dx−
∫

Ω

u2 dx

∣∣∣∣ = o(1)

and ∣∣∣∣
∫

Ω

(χB(ε) − χB)(u(ε)u− u2) dx

∣∣∣∣ = o(ε).

Hence it follows from Lemma 1.2(a) that

(λ(ε)− λ)
ε

=
α

ε

∫
Ω

(χB(ε) − χB)u2 dx+ o(1).
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Since u ∈ C1,β(Ω) for 0 < β < 1 (see, e.g., [GiTr83]), Lemma 1.3 yields

dλ

dv
=
dλ(ε)

dε
|ε=0 = α

∫
∂B

u2(v · n) dS.

Since the possible centers of the obstacle or well form a compact subset of Ω, it
is immediate from Lemmas 1.2 and 1.3 that under the assumptions of this article, the
maximizing and minimizing positions of B exist.

2. The technique of domain reflection. If a domain has a certain reflection
property with respect to an axis of symmetry of the obstacle, then we shall be able
to identify the sign of the directional derivative of the fundamental eigenvalue with
respect to the position of an obstacle or well. Roughly speaking, when this property
holds, we shall show that the eigenvalue increases as the obstacle moves away from a
nearby portion of the boundary of Ω.

To avoid complications, we henceforth assume that the set B is convex as well
as piecewise smooth. We also require that it be reflection-symmetric about some
hyperplane (or plane, or line) P of dimension n − 1. When we consider specific
examples, B will often be a ball.

DEFINITION. Let P be a hyperplane of dimension n − 1 which intersects Ω. For
any connected set S which does not intersect P , we let SP denote its reflection through
P . The domain Ω is said to have the interior reflection property with respect to P if
there is a connected component Ωs of Ω \ P such that ΩPs is a proper subset of the
other connected component Ωb of Ω \ P . Any such P will be called a hyperplane of
interior reflection for Ω. Moreover, Ωs will be called the small side of Ω (and Ωb will
be called the big side).

The following theorem states formally that when this property holds, the eigen-
value is strictly increasing as a symmetric obstacle is moved away from the small
side.
Theorem 2.1. Assume that Ω has the interior reflection property with respect

to a hyperplane P about which the set B is reflection-symmetric. Suppose that B is
translated in the direction of a unit vector v perpendicular to P and pointing from the
small side to the big side.

Then, in the case of a hard or soft obstacle,

dλ

dv
> 0.

In the case of a well,

dλ

dv
< 0.

Remark. Actually, the soft obstacle or well here could be any reflection-symmetric
function supported within the closure of B, not just its indicator function.

Proof. There are three cases to consider, that of a hard obstacle, a soft obstacle,
and a well. We consider the hard obstacle last.

For the other two cases, we claim that for any point x of ∂B which is on the small
side of Ω, u(x) < u(xP ). The theorem will then follow in these cases from (1.3).

To establish the claim, we consider w(x) := u(x)− u
(
xP
)
on the small side Ωs.

On the interior of this region,(−∇2 + αχB
)
w = λ w,
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while on its boundary, w(x) ≤ 0. Observing that w is strictly negative on part
of that boundary and that λ is less than the fundamental Dirichlet eigenvalue of
−∇2 + αχB , we conclude from the maximum principle [PrWe84] that w(x) < 0 in
the interior of this region, and hence that u(x) < u(xP ) for x in ∂B on the small side
of Ω.

This establishes the claim except for the case of a hard obstacle, where we use
the Hadamard formula (1.2) in place of (1.3). This time we consider the function
w(x) := u(x) − u(xP ) on the small side Ωs but excluding B. Just as before, the
maximum principle tells us that w(x) < 0 on the interior of this region. To finish
the proof in this case, we appeal to the boundary-point lemma of [Se71, p. 308],
according to which, at every smooth point of the part of ∂B on the small side, either
the normal derivative of w(x) is strictly positive or else the second derivative of
w(x) in this direction is strictly positive. However, the latter possibility is excluded
because it contradicts the eigenvalue equation (since the Laplacian of w is negative
while all second derivatives in tangential directions at the boundary are 0). Hence
|∇u(x)| < |∇u(xP )| for x in ∂B on the small side of Ω. The theorem then follows
from (1.2).

In the final section of this article we consider many examples where it can be
shown that either the domain Ω or a suitable related domain Ω′ contains a dense
subset of points which lie on a hyperplane of interior reflection. In preparation for
that we state here an obvious corollary of Theorem 2.1.

Corollary 2.2. Let x ∈ Ω denote the center of a spherical obstacle B. At any
maximizing x,

(a) Ω has no hyperplane P of interior reflection containing x.

Moreover, at any minimizing x, either statement (a) above is true, or else

(b) ∂B intersects the small side of ∂Ω.

Convexity ensures that Ω enjoys the interior reflection property with respect to
some secant plane passing through any point sufficiently close to the boundary. This
immediately implies the following.

Corollary 2.3. Assume that Ω is convex and that B is a ball of radius ρ. There
exists R0 > 0 depending on Ω such that if ρ < R0, then there are neighborhoods N1,2

of the boundary, such that

(a) the maximizing (resp., minimizing) obstacle (resp., well) for λ lies outside
N1; and

(b) any obstacle (resp., well) which minimizes (resp., maximizes) λ subject to
being located within N2 must touch the boundary of Ω.

In principle, given any convex Ω it is straightforward to identify neighborhoods
N1,2 explicitly. In the following section we consider some cases where N2 = Ω and
where the optimal positions can be determined exactly, sometimes even without con-
vexity.

At the level of generality of Corollary 2.3 there is a “hole” in the interior of a
convex Ω within which we can say little about the optimal placement of obstacles.
With a reflection symmetry, however, the hole can be reduced to a slit, because
together with convexity this implies that every point of Ω is either reflection-symmetric
or else on a hyperplane of interior reflection.

Corollary 2.4. Suppose Ω and the obstacle are as in Corollary 2.3, and in
addition that Ω is symmetric with respect to reflection through a hyperplane H. Then
at the minimizing position the obstacle is in contact with the boundary, while at the
maximizing position its center is on H.
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Next we note an extension of Theorem 2.1 to the case of Schrödinger operators,
which is useful for discussions of soft obstacles and of interest in its own right.
Theorem 2.5. Consider the Schrödinger operator H := −∇2+V (x) on a domain

Ω, where the potential V (x) is a real-valued function in L∞(Ω) (or more generally
satisfying conditions guaranteeing that the fundamental eigenvalue is discrete; see,
e.g., [ReSi78]). Assume that Ω has the interior reflection property with respect to a
hyperplane P about which the set B is reflection-symmetric, and that on the small
side Ωs,

V (x) ≥ V
(
xP
)
almost everywhere.

Suppose that B is translated in the direction of a unit vector v perpendicular to
P and pointing from the small side to the big side.

Then, in the case of a hard or soft obstacle (i.e., −∇2 + V (x) + α χB(x)),

dλ

dv
> 0.

In the case of a well,

dλ

dv
< 0.

Proof. The proof is like that of Theorem 2.1. This time, however, w(x) :=
u(x)− u (xP ) is no longer a solution of the eigenvalue equation on Ωs but is instead
a subsolution, i.e.,

(H − λ)w(x) = − (V (x)− V (xP ))u (xP ) ≤ 0.
This, however, suffices for the maximum principle, by the following argument.

First we observe that w(x) ≤ 0 on Ωs as before. Indeed, if U = {w(x) > 0} were
nonempty, then the inequality in the proof of Theorem 2.5 would imply that λ ≥ µ1,
where µ1 is the first eigenvalue of H on U . However, U ⊂ Ωs ⊂ Ω and λ is the first
eigenvalue of H on Ω. As a consequence of the unique continuation theorem (e.g.,
[JeKe85]), we find that µ1 > λ, which is a contradiction.

Next, to conclude that w(x) < 0 in Ωs, we appeal to the strong maximum prin-
ciple.

We close this section by observing that for sufficiently small α, any globally min-
imizing soft obstacle (resp., maximizing well) touches the boundary.
Theorem 2.6. Suppose Ω is convex and that it contains a soft spherical obstacle,

i.e., a potential α χB(x), where B is a sufficiently small ball. Then there exists α0 > 0
such that for every α with 0 < α < α0, when B is at the position where it minimizes
the first eigenvalue, it touches the boundary ∂Ω.

Proof. We let Bε(w) denote the obstacle when centered at w, and we assume
that the radius ε > 0 of the obstacle is sufficiently small.

First we claim that there exists a compact subset G ⊂ Ω, independent of ε, such
that if w ∈ G′ and B(w) ⊂ Ω, then B(w) cannot be an optimal obstacle. Here
G′ := Ω \ G. This follows from Corollary 2.3. We observe that G may be chosen
independently of ε for ε sufficiently small; the choice of G depends only on Ω.

Let ψ be the L2-normalized first eigenfunction of the Dirichlet Laplacian on Ω,
and let [Ω]δ = {x ∈ Ω;ψ(x) > δ} for δ > 0. Then there exists a small δ > 0 such that
G ⊂⊂ [Ω]δ. We fix a value of the radius ε > 0 sufficiently small so that

ε < min(dist(∂G, ∂[Ω]δ), (1/2)dist(∂Ω, ∂[Ω]δ)).
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Next we assert that, as shown in [CGIKO99], there exists a small α0 > 0 such
that if w ∈ G, then Bε(w) cannot be a minimizing obstacle for any 0 < α < α0,
because

‖u(ε,w)− ψ‖L∞(Ω) ≤ Cα

for some constant C which does not depend on w.
Here u(ε,w) denotes the L2-normalized first eigenfunction of −∆+αχBε(w). Note

that ifw ∈ G, then Bε(w) ⊂ {ψ(x) > δ}, and we can find a ball Bε(w′) ⊂ {ψ(x) < δ}.
Hence, for sufficiently small α0,∫

Bε(w)

u(ε,w)2 dx >

∫
Bε(w′)

u(ε,w)2 dx

for all 0 < α < α0. Together with the variational principle, this implies that Bε(w)
cannot be a minimizing obstacle for w ∈ G and for 0 < α < α0, completing the proof.

3. Optimization at a vertex or corner. It is not difficult to show that an
ellipse has the interior reflection property with respect to any secant line which is
perpendicular to the boundary at one of its crossing points and which does not coincide
with one of the axes. It thus follows fairly easily from Theorem 2.1 that if the radius
of the ball B is sufficiently small so that it fits inside an elliptical domain Ω, then
the minimizing ball touches the boundary. Actually, we can locate the minimizing
position at the vertex of the ellipse, and the maximizing position at the center, for a
class of domains generalizing the ellipse (see Theorem 3.2, below).

We shall show that this phenomenon, that minimizing obstacles are located at
parts of the boundary where the curvature is maximized, also occurs in certain other
situations. Unfortunately, we are not able to determine the degree of generality of
this phenomenon.

We begin by extending Theorem 2.1 to the case where B moves along the bound-
ary; to keep the statement simple, we restrict it to the case of spherical B.
Proposition 3.1. Let B be a ball which is tangent to the boundary of Ω, assumed

of class C2 in a neighborhood of the point of contact. Suppose furthermore that Ω has
the interior reflection property with respect to a hyperplane P normal to the boundary
at the point of contact. Then λ is strictly increasing as B is moved in contact with
the boundary towards the big side.

Sketch of the proof. The argument is by domain perturbation as for Theorem 2.1,
with the further complication that as the domain B moves along a smooth boundary,
it is not only translated and but also continuously rotated. For nonspherical domains,
Propositions 1.1 and 1.4 would need to be modified with additional terms to reflect
this. For spherical domains, however, the additional terms do not arise, and the
formulae for the directional derivatives are as before.

We next identify a class of roughly elliptical regions for which we can carry out a
complete analysis of the maximizing and minimizing positions of an obstacle or well.

DEFINITION. A vertex of a domain with boundary of class C2 is a point on the
boundary at which the curvature is locally maximal. Outward pointing corners of a
piecewise C2 boundary are also considered vertices.
Theorem 3.2. Let Ω be a two-dimensional convex domain with the following

properties:
(a) Ω is reflection symmetric with respect to both the x and y Cartesian axes.
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(b) The boundary of Ω is of class C2 for x, y �= 0.
(c) In any quadrant of the plane, the curvature of the boundary of Ω is monotonic

as a function of x (or equivalently of y or of the arclength s).
Suppose that the obstacle (resp., well) B is a disk.
If the radius of B is less than the radius of curvature at the vertex of Ω, then λ

is minimized (resp., maximized) when B is in contact with a vertex, and maximized
(resp., minimized) when the obstacle (resp., well) is at the origin.

This theorem certainly generalizes to three-dimensional ellipsoidal domains Ω
which are rotationally symmetric. We also remark that, as a special case, when both
Ω and B are balls, λ is a strictly increasing function of the distance of B from the
boundary until it reaches the center, where it is maximized. (This answers the query
of Davies [Da95a].)

Theorem 3.2. is a direct corollary of the following.
Proposition 3.3. A region as in Theorem 3.2 enjoys the interior reflection prop-

erty with respect to any line normal to its boundary, except for the lines of symmetry
(x and y axes). The small side of the normal line at a boundary point P is the side
of increasing curvature of the boundary moving from P.

Proof. We may and shall assume without loss of generality that the curvature of
the boundary of Ω is strictly increasing as a function of y in the first quadrant of the
plane (and hence strictly monotonic in any quadrant of the plane). We also orient
the arclength s counterclockwise, so that s is an increasing function of y. We observe
that Ω is convex and that in the first quadrant the distance from the origin to a point
on ∂Ω increases with y. For simplicity we assume that ∂Ω is of class C2 even at the
possibly exceptional points (x = 0 or y = 0); it will be clear that this does not affect
the result.

Let ϕ be the angle of the normal to the boundary as measured counterclockwise
from the x-axis. Because of our assumptions, the angle ϕ can be used to parametrize
the points of ∂Ω; we henceforth do this, and use the notation P (ϕ) for those points.
Let L designate the normal line to ∂Ω at some specific P (α) in the first quadrant.

We claim first that if β := the angle > α where L intersects ∂Ω, then β < π + α.
The statement that β < π+α is easily seen to be equivalent to the statement that L
passes above the center of Ω, which in turn means that ϕ < θ, where θ is the usual
polar coordinate of P (α).

In order to show that the reflection of ∂Ω for α < ϕ+ < β fits within Ω, we
make some definitions. Let (+ be the distance from P (ϕ+) to L and let t be as the
distance from P (α) to the point on L closest to P (ϕ+). At a given value of t, there
is an analogous point P (ϕ−) on the other side of L, at some ϕ− < α; we define the
distance from P (ϕ−) to L as (−.

We thus need to show that (+ ≤ (− for the same value of t. Hence we consider
the maps ϕ± → t, for which

dt = sin(ϕ− α)ds = 1

κ(ϕ)
|sin(ϕ− α)| dϕ.

Here, κ designates the curvature of the boundary at the point corresponding to ϕ.
For α < φ < α+ π

2 ,

t(ϕ)− t(2α− ϕ) =
∫ ϕ

α

(
1

k(φ)
− 1

k(2α− φ)
)
| sin(φ− α)|dφ < 0 for θ < α+

π

2
,

since the integrand is negative.
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Furthermore, this difference is negative for all α < ϕ < β because the integral
is antisymmetric about π

2 + α and β <
(
π
2 + α

)
+
(
π
2 − α

)
= π. We conclude that

t(ϕ) > t(2α − ϕ) (2α − ϕ is the angle reflected through α) for this range of ϕ, and
therefore if we consider the two maps ϕ→ t, we see

|ϕ− α|(t)above L > |ϕ− α|(t)below L.

Also, both t(ϕ) and t(2α− ϕ) are monotonic increasing functions of ϕ for ϕ > α.

Since d�±ds = cot(ϕ−α) and cot is a decreasing function for 0 < |ϕ−α| < |β−α| <
π, we conclude by integrating that

(+ < (− for 0 < t < t(β).

Theorem 3.4. (a) Suppose that Ω and B are as in Theorem 3.2, and that the
radius of B is small enough for it to fit within Ω but larger than the radius of curvature
at its vertex. Then λ is minimized (resp., maximized) when B is in as close as possible
to a vertex and maximized (resp., minimized) when the obstacle (resp., well) is at the
origin.

(b) Suppose that Ω is an equilateral polygon centered at the origin. Then λ is
minimized (resp., maximized) when the ball is as close as possible to any vertex of Ω
and maximized (resp., minimized) when the obstacle (resp., well) is at the origin.

Proof. We discuss the case of an obstacle. As usual, the case of a well uses the
same argument, with a reversal of “maximal” and “minimal.”

Part (a) is an obvious variant of Theorem 3.2. It is necessary only to notice that
if B is anywhere other than at the origin, the interior reflection holds with respect
to the horizontal or vertical plane through the center of B. By Corollary 2.2, the
only possibility for the maximizing position is the center, whereas at the minimizing
position B is in contact with ∂Ω.

To localize the minimizer more precisely, we observe that if the contact point is
not a point of symmetry of ∂Ω, and B is not obstructed from displacements to the
small side of Ω, then Proposition 3.1 excludes the configuration as a candidate for a
minimizer. It is moreover easy to see that any attainable point of symmetry other
than a vertex is excluded from being a contact point of a minimizing obstacle. (It
would in fact be a constrained maximizing position, given contact with the boundary.)
The only remaining possibility is that described in statement (a).

The argument for part (b) is similar. From Theorem 2.1, using the symmetry of
the polygon we see that if the center of B is anywhere other than at the center of Ω,
then it lies on a hyperplane of interior reflection, and λ decreases as B moves per-
pendicularly away from any line of symmetry of Ω. The argument at the boundary is
much as for case (a). The perpendicular line from the point of contact is a hyperplane
of interior reflection except when the contact is at the midpoint of an edge of the
polygon, but λ decreases when the point of contact is moved away from a midpoint
on either side. The claim then results from possibility (b) of Corollary 2.2.

4. Extensions and some instructive examples. Although at first sight our
technique seems to be restricted to regular, convex regions, we now proceed to illus-
trate by example how it can be extended. In this section we describe only problems
with obstacles. In most cases, however, the same examples illustrate the situation for
wells, with the usual reversal of “min” and “max.”
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We shall omit details of the proofs when they consist only of recalling Corollary 2.2
and elementary exercises in finding possible hyperplanes of interior reflection.

Example 1. Let Ω be a finite region bounded by two spheres in RN , and suppose
that a spherical obstacle B has radius ρ small enough so that it fits into Ω. For
definiteness, suppose that the larger sphere has its center at the origin and radius R,
and that the smaller one has its center on the x1-axis at coordinate x1 = a ≥ 0, and
radius r ≤ R.

There are five possibilities as follow.

(a) Ω is gibbous (simply connected and convex: Ω is the intersection of two balls,
and R − r < a < R + r). Then at the minimizing positions of B, it is as near as
possible to a vertex. (There are two such positions if N = 2, and otherwise they form
a sphere of dimension N −2.) At the maximizing position x the center of B is located
on the x1-axis with x1 in the interval [

R−r+a
2 , R

2−r2+a2

2a ] ∩ [a − r + ρ,R − ρ]. (Note:
R2−r2+a2

2a is the x-coordinate of the intersection of the two circles.)

Example 1(a)

max

min

(b) Ω is crescent (simply connected and nonconvex: Ω is the intersection of the
larger ball and the exterior of the smaller ball, and R − r < a < R + r). Then at
the minimizing positions of B, it is as near as possible to a vertex. (There are two
such positions if N = 2, and otherwise they form a sphere of dimension N − 2.) At
the maximizing position x the center of B is located on the x1-axis with x1 in the
interval [−R−r+a

2 , 0] ∩ [−R+ ρ, a− r − ρ].

Example 1(b)

min

max

(c) Ω is annular but not concentrically so, and ρ > R−(r+a)
2 . This is essentially like

the case of the crescent: At the minimizing positions of B, it is as near as possible
to the point x1 = R on the x1-axis. (There are two such positions if N = 2, and
otherwise they form a sphere of dimension N − 2.) The maximizing position x of the
center of B is located on x1-axis with x1 in the interval [

−R−r+a
2 , 0]∩[−R+ρ, a−r−ρ],

as in part (b).
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Example 1(c)

min

max

(d) Ω is annular but not concentrically so, and ρ < R−(r+a)
2 . The maximizing

position x of B is as in parts (b) and (c). The minimizing positions satisfy a+r+ρ <
x1 <

a+R+r
2 .

Example 1(d)

min

max

(e) Ω is a concentric annulus (spherical shell). Necessarily, ρ < R−r
2 . At maxi-

mum, the position of the center x of B satisfies r + ρ ≤ |x| ≤ R+r
2 . At minimum,

either x is in the same annulus or else |x| = R−ρ (contact with the outer boundary).
These possibilities rely on Corollary 2.2; among the hyperplanes of interior reflec-

tion to consider are horizontal hyperplanes and the bisecting planes of the spheres.
Our technique does not allow us to eliminate one of the two possibilities for the min-
imum in 1(e). We suspect the true alternative to be that the minimizing obstacle is
in contact with the outer boundary, and we will establish this in Example 12 when
the inner radius is sufficiently small and the obstacle is soft.

Example 2. Horseshoe-shaped domains: Let Ω0 be the concentric annular domain
of Example 1(e) in 2 dimensions, and let Sα be the sector |x2| < αx1 for some α > 0.
For some fixed opening angle β ≤ π/2, let σ± denote two open circular sectors of
radius R−r and centered at the inner edge of Ω0, i.e., at (

r
(1+α2)1/2 ,± αr

(1+α2)1/2 ), such

that one edge lies on ∂Sα. Ω := {Ω0 ∩ Scα} ∪ σ− ∪ σ+. The hard or soft obstacle is a
disk of radius < R− r.

The maximizing position is on the x1-axis and is otherwise as in Example 1(e),
while the unique two minimizing positions have the obstacle wedged in the corners of
the sectors σ±.

Example 2

max

min
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The proof is obtained by noting that rays from the origin other than the negative
x1-axis are lines of interior reflection whenever they intersect Ω0, as are rays beginning
at ( r

(1+α2)1/2 ,± αr
(1+α2)1/2 ) and passing through σ±.

We note that appending σ± allowed us to be precise about the minimizing posi-
tion; without them, the minimizing position would be in contact with ∂Sα, but our
method would not give the exact position.

Example 3. (a) A ball Ω with two interior hard spherical obstacles B1 and B2,
which can be placed independently, and may have different radii, the sum of which is
less than the radius of Ω. In this case the minimizing configuration has both obstacles
touching the boundary and each other. In the maximizing configuration the centers
of B1 and B2 lie on a diameter of Ω.

(b) The same example, except that one of the obstacles is allowed to be soft. The
maximizing and minimizing configurations are as for part (a).

Example 3

minimizing with two obstacles

We observe that the minimizing configuration disconnects Ω.

Denote by x1 and x2 the centers of the balls B1 and B2, respectively. We begin
by considering the relative positions of the balls as fixed a priori and treating them
as a single obstacle. Unless they lie on a diameter of Ω, the line passing through both
their centers is a line of interior reflection. We thus conclude that at maximum they
lie on a diameter of Ω, while at minimum at least one of them touches ∂Ω.

Having established that at least one obstacle touches the boundary when λ1 is
minimized, we can assume for the minimizing problem that one spherical obstacle is
fixed to ∂Ω in some standard orientation, rotating the entire problem as necessary,
while letting the position of the second obstacle vary. This, however, is the situation
of Example 1(b). Hence we know that at minimum the two obstacles touch each other
and ∂Ω.

Example 4. (a) The same as Example 3, except that we also insert a third, hard
obstacle of positive capacity and any shape small enough that it can be translated
and rotated so as to fit inside Ωs := the smaller of the two domains into which Ω is
disconnected at the minimizing configuration of Example 3. (Ω1 is of course defined
only up to rotations of the two larger obstacles about the center of Ω.) Then the
minimizing configuration is as in Example 3, with the third obstacle anywhere within
Ω1. This can be a unique minimizer or highly nonunique, depending on the size and
shape of the third obstacle.
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minimizing with three obstacles

Example 4(a)

(b) As a variant of (a), we replace the large sphere Ω with Ω′ := Ω \ Υ, where
Υ ⊂ Ω1 for some fixed possible Ω1 as in (a), and is otherwise an arbitrary closed set
of positive capacity. We consider Ω′ as the exterior region, and insert two spherical
obstacles. Then the minimizing configuration is as in Example 3, oriented so that Υ
lies within the Ω1 created by the disconnection of Ω. Again, this can be unique or
nonunique.

Example 4(b)

minimizing with two obstacles

Here we recall the principle of domain monotonicity, which shows that the minimal
fundamental eigenvalue for Example 3 is the same as the that of the larger of the
two domains into which Ω is disconnected. In case (a), if the third obstacle were
inserted into this domain, the eigenvalue would strictly increase (cf. [Co95], [McG96],
[McG98]). On the other hand, the eigenvalue is unaffected in comparison to Example 3
if the third obstacle is inserted into Ω1. Case (b) follows by virtually the same
argument, recalling Theorem 2.5.

Example 5. Balls with sectors or lines (resp., hyperplane) segments removed.
(a) Consider a domain Ω formed by removing from a ball of radius R centered at

the origin, some subset Υ of a closed sector S symmetric about the x1-axis, within the
half-plane x1 ≥ a ≥ 0; otherwise, Υ is assumed closed and of positive capacity. We
call the angle between the edge of the sector and the positive x1-axis β. The obstacle
is a hard or soft ball of radius ρ < a+R

2 .
The maximizing position is then within the triangle (2 dimensions) or cone (3 or

more dimensions) bounded by x1 =
a−R

2 , x1 = 0, and the cone with vertex at the
origin and making an angle of arccot(cot β + a

R−a csc β ) with the negative x1-axis.
(Further restrictions on the maximizing position could be precisely formulated if ρ is
not sufficiently small.)

The minimizing position(s) are in contact with S (possibly penetrating into its
interior).
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(b) As a special case of (a), suppose that Υ is a symmetric sector with vertex at
x1 = a, including the limiting case of a line segment. Then we can more precisely say
that the maximizing position lies on the negative x1-axis with

a−R
2 < x1 < 0, and the

minimizing positions are in contact with both the spherical part of ∂Ω and with ∂S.
The minimizing position is not unique.

Example 5

max

min

Here we identify as hyperplanes of interior reflection all planes perpendicular to
the x1-axis with intersection at −R < x1 < a−R

2 , all planes perpendicular to the
x1-axis with intersection at 0 ≤ x1 < R, and all planes through the origin which do
not intersect S. It is a trigonometric exercise with the latter which leads to the angle
identified.

As for case (b), there are additional hyperplanes of interior reflection consisting
of all hyperplanes through the origin except those containing the x1-axis.

Example 6. Let Ω be an equilateral n-sided polygon, modified by the replacement
of its edges with outward circular arcs of equal angular measure ≤ 2π

n , containing a
hard or soft circular obstacle B. Then the maximizing position x of the center of B
is at the center of the polygon, and the minimizing positions of B put it as near as
possible to a vertex.

Example 6

max

min

(Straightforward exercise.)

Example 7. Let Ω be a rectangle and suppose that the convex obstacle B has two
axes of symmetry parallel to the sides of the rectangle. We consider translations of
the obstacle B. The maximizing position is at the center and the minimizing position
is as near as possible to a vertex.

The proof is similar to the proof of Theorem 3.4.

Example 8. Let Ω be an equilateral triangle, modified by the replacement of its
edges with inward circular arcs of equal angular measure ≤ π

2 , containing a hard or
soft circular obstacle B. Then the maximizing position x of the center of B is at the
center of the triangle, and the minimizing positions of B put it as near as possible to
a vertex.
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Example 8

max

min

(Straightforward exercise.)

Example 9. Let Ω be the concentric annulus (or spherical shell) of Example
1(e), and suppose that it contains two independently placeable hard obstacles as in
Example 3(a). In the maximizing configuration, the two obstacles lie on a common
hyperplane which bisects both spheres, and on opposite sides of the center. In the
minimizing configuration, either the two obstacles lie on a common hyperplane which
bisects both spheres, and on the same side of the center, or else they are in contact
with each other (or both).

In this case, unless the obstacles are positioned as claimed, then if one of them is
treated as fixed, the hyperplane passing through the origin and through the center of
the second obstacle is a hyperplane of interior reflection.

Example 10. Let H be the portion of a regular helix in Rn, n ≥ 3, at distance R
from the x1-axis for −L ≤ x1 ≤ L. Define Ω := {x : dist(x, H) < r} for some r < R.
(This looks like a spring with hemispherical caps on both ends.) Let the hard or soft
obstacle be a ball B of radius ρ < r. Then the minimizing positions of B put it into
contact with either of the two tips where H intersects ∂Ω. At the maximizing position
the center x of B lies on the plane perpendicular to H intersecting H at x1 = 0.

Remark. Moreover, there exists ρ0 > 0, depending on the specific geometry of
the helix, such that for ρ < ρ0 there is an upper bound on |x| strictly smaller than
the one needed for B to fit within Ω. We do make it precise here.

The proof in this case requires a small twist in the interior reflection property on
which Theorem 2.1 relies. Whereas Ω does not have the standard interior reflection
property as given in the definition above Theorem 2.1, it has the following alternative
property: Any hyperplane perpendicular to H other than the one intersecting it
at x1 = 0 divides Ω into two pieces, one of which is congruent to a subset of the
other, by a half rotation instead of a reflection (equivalently, by two reflections).
Applying this operation, rather than a reflection as in the proof of Theorem 2.1,
we still see that the values of u and |∇u| on one half of ∂B dominate those on the
other half pointwise, allowing us to show that λ is strictly monotonic with respect to
displacements tangential to H by (1.2) or, respectively, (1.3).

Our next example involves a soft obstacle and shows that our analysis is stable
with respect to some perturbations of Ω which destroy both convexity and symmetry.

Example 11. A half ellipse with a small handle: Let Ω0 := {(x, y) ∈ R2;x2 +
(y/l)2 < 1, x > 0}, where l is a fixed constant, l > 1. Now consider the domain
Ωε := interior (Ω0 ∪Hε), where Hε is a “handle” with the following properties:

(i) Hε is a closed subset of {x ≤ 0},
(ii) Hε ⊂ {|y| ≤ ε},
(iii) 0 < vol(H) ≤ Cε for some fixed positive constant C.

Fix the radius r < 1 of a spherical soft obstacle B, and denote LΩε := −∆+αχB
on Ωε. We claim that for all ε > 0 and sufficiently small, the minimizing obstacle is
situated within Ω0 at the greatest possible distance from the x-axis. (There are two
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possibilities, one with y > 0 and one with y < 0.)

Example 11

min

Proof. We assume that ε is sufficiently small that the obstacle does not fit into the
handle. All horizontal lines with {|y| > ε} are lines of interior symmetry for Ωε, so at
the minimizing positions for the obstacle, either it is in contact with the boundary or
else its center lies within {|y| ≤ ε}. The argument used to prove Theorem 3.2 is easily
adapted for Ωε, and shows that the only possible minimizing positions are either as
stated in the theorem, i.e., with the maximal value of |y|, or else confined to a strip
of the form {|y| ≤ c1ε}, where c1 is a constant depending only on l.

We next eliminate the possible positions in the epsilonic strip by a continuity
argument, for we know by the modification of Theorem 3.2 that for Ω0, an obstacle in
the strip gives rise to a fundamental eigenvalue strictly larger than when the obstacle
is at the maximal value of |y| (i.e., the unique two minimizing positions for Ω0).

Consider the operator LΩ := −∆+αχB on some domain Ω with Dirichlet bound-
ary conditions on ∂Ω for a ball B ⊂ Ω of radius r, and denote, respectively, by λΩ(B)
and uΩ,B(B)(x) the first eigenvalue and L

2-normalized first eigenfunction.
Case 1. Candidate positions where B does not lie wholly inside Ω0. In this case,

according to Lemma 1.2, the obstacle can be shifted into the interior of Ω0, raising λ
by a small error. By a variant of the argument for Theorem 2.5 and uniform control
on ‖u‖∞ (e.g., [GiTr83, Theorem 8.15]), this error tends to 0 as ε → 0 uniformly
in these possible candidate positions. Hence it suffices to consider only candidate
positions inside Ω0.

Case 2. Candidate positions inside Ω0 and inside the epsilonic strip {|y| ≤ c1ε}.
Here estimates as in [HiMa91], [GeZh94], [McG96], [McG98] show that λΩε

(B) →
λΩ0(B) as ε→ 0.

Example 12. Example 1(e) revisited: Ω is a concentric annulus (spherical shell) of
outer radius R and inner radius r. In it we place a soft spherical obstacle centered at
w and of radius ρ; as in 1(e), necessarily, ρ < R−r

2 . If r is sufficiently small, then at
the minimizing position the support |w| = R− ρ, i.e., the obstacle touches the outer
boundary of the annulus.

The strategy of the proof is rather general and can be applied to some other cases
as indicated below. For this reason we discuss it in some detail. For simplicity, we
discuss the case of two dimensions.

Fix the radius ρ of the obstacle and the coupling α. We already know that
w ∈ C1 ∪ C2, where

C1 := {r + ρ ≤ |x| ≤ (R+ r)/2}, C2 = {|x| = R− ρ}.
Note that R/2 < R− ρ, and

C1 ⊂ C∗1 ≡ {ρ ≤ |x| ≤ R/2}.
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We denote by Λ and Λr the minima of the fundamental eigenvalues given a soft
obstacle of radius ρ in domains Ω0 = {|x| < R} and Ωr, respectively.

Now we claim the following.
Claim A. We have |Λ− Λr| ≤ C/| log r|, where C is a constant independent of r.
Indeed, denoting by Br∗ = Br∗,ρ the optimal ball for the problem on Ωr, we have

Λε = λΩr (B
r
∗) ≥ λΩ0(B

r
∗) ≥ Λ because of domain monotonicity. Here λΩ(B) is the

first eigenvalue of −∆ + αχB on Ω. On the other hand, denoting by B∗ = B∗,ρ the
optimal ball for the problem on Ω0, we know by [Sw63, Theorem 2], for example, that

λΩr (B∗) ≤ λΩr (B∗) +
C

| log r| .

This yields

Λr ≤ Λ + C

| log r| ,

which implies Claim A.
We know that for Br∗(w(r)),

ρ+ r ≤ |w(r)| ≤ (R+ r)/2 or |w(r)| = R− ρ.

If the conclusion did not hold, then there would exist a subsequence {rj}, rj → 0 and
Brj (w(rj)), such that

ρ+ rj ≤ |w(rj)| ≤ (R+ rj)/2.

By passing if necessary to a further subsequence, we may assume that w(rj) converges
to w0 with |w0| ∈ [ρ,R/2]. We use the notation

B0 = Bρ(w0), Bj∗ = B
rj∗ (w(rj)),

for simplicity. Next we claim the following.
Claim B. As j →∞, λΩrj

(Bj∗)− λΩrj
(B0)→ 0.

Again using [Sw63], we obtain

|λΩrj
(B0)− λΩ0

(B0)| → 0.

Granting (B), we get

|λΩrj
(Bj∗)− λΩ0

(B0)| ≤ |λΩrj
(Bj∗)− λΩrj

(B0)|+ |λΩrj
(B0)− λΩ0

(B0)| → 0.

Combining this with (A), we conclude that

λΩ0(B0) = Λ,

which contradicts the definition of B0 and the stated fact about Λ. Thus, we conclude
the desired statement.

It remains only to prove Claim B.
We shall show that

|λΩrj
(Bj∗)− λΩrj

(B0)| ≤ αM |Bj∗ �B0|1/2,
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where A�B = (A\B)∪(B\A). As a consequence we obtain λΩrj
(Bj∗)−λΩrj

(B0)→ 0.

First, by definition, λΩrj
(Bj∗) ≤ λΩrj

(B0). Denote by φrj the normalized eigen-

function associated with λΩrj
(Bj∗). Then

λΩrj
(B0) ≤

∫
Ωrj

|∇φrj |2 + αχB0
φ2
rj

=

∫
|∇φrj |2 + αχ(Bj

∗)φ
2
rj dx+ α

(∫
B0

φ2
rj dx−

∫
Bj

∗
φ2
rj dx

)

≤ λΩrj
(Bj∗) + α

∫
B0�(Bj

∗)

φ2
rj dx

≤ λΩrj
(Bj∗) + α‖φrj‖2L4(Ωrj

)|B0 � (Bj∗)|1/2.

It is easy to see that λΩrj
(Bj∗) is bounded, and hence that

∫
Ωrj
|∇φrj |2 ≤ M . By

the Sobolev embedding theorem, we obtain ‖φrj‖2L4(Ωrj
) ≤ M , yielding the desired

estimate.

The strategy of the perturbation argument used for Example 12 can be used in
many other situations. To summarize, let Ωε be a (singular) perturbation of Ω and
assume, for simplicity, Ωε ⊂ Ω. For a fixed D ⊂ Ω, assume that λε(D) → λ(D) as
ε → 0. Here λε(D) and λ(D) are the fundamental eigenvalues of −∆ + αχD on Ωε
and Ω, respectively. We denote by Λ = λ(B(x0)) and Λε = λ(B(xε)) the optimal
eigenvalues on Ωε and Ω, respectively. Then, if x0 ∈ C0 and xε ∈ C0 ∪ Cε with Cε ⊂ C,
and if infy∈C λ(B(y)) > Λ, then xε ∈ C0 for sufficiently small ε.

We close by stating another perturbative result related to Examples 5 and 12.

Example 13. In two dimensions, let Ωε = {ε < |x| < b}\{(r, θ); ε < r < b, |θ| ≤ β}
with β < π/2, and suppose that it contains a soft spherical obstacle. Then for
sufficiently small ε, at the minimizing position the obstacle is as close as the corner
points (r, θ) = (b,±β).
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Abstract. Under certain mode-matching conditions, small-amplitude waves can be trapped by
coupling to solitons of nonlinear fields. We present a model for this phenomenon, consisting of a
linear equation coupled to the Korteweg–de Vries (KdV) equation. The model has one parameter,
a coupling constant κ. For one value of the coupling constant, κ = 1, the linear equation becomes
the linearized KdV equation, for which the linear waves can indeed be trapped by solitons and,
moreover, for which the initial value problem for the linear waves has been solved exactly by Sachs
[S83] in terms of quadratic forms in the Jost eigenfunctions of the associated Schrödinger operator.
We consider in detail a different case of weaker coupling, κ = 1/2. We show that in this case
linear waves may again be trapped by solitons, and like the stronger coupling case κ = 1, the initial
value problem for the linear waves can also be solved exactly, this time in terms of linear forms in
the Jost eigenfunctions. We present a family of exact solutions, and we develop the completeness
relation for this family of exact solutions, finally giving the solution formula for the initial value
problem. For κ = 1/2, the scattering theory of linear waves trapped by solitons is developed. We
show that there exists an explicit increasing sequence of bifurcation values of the coupling constant,
κ = 1/2, 1, 5/3, . . ., for which some linear waves may become trapped by solitons. By studying a
third-order eigenvalue equation, we show that for κ < 1/2 all linear waves are scattered by solitons,
and that for 1/2 < κ < 1, as well as for κ > 1, some linear waves are amplified by solitons.

Key words. solitons, Korteweg–de Vries equation, coupled systems, completeness relations,
wave trapping
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1. Introduction. This paper is concerned with solving the coupled system of
equations

∂tA+ ∂x

[
1

2
A2 + ∂2

xA

]
= 0,(1)

∂tB + ∂x
[
κAB + ∂2

xB
]

= 0 ,(2)

where κ is a real parameter. Of course, the nonlinear equation for A(x, t) is simply
the Korteweg–de Vries (KdV) equation, and it can be solved independently by the
inverse-scattering transform [GGKM67]. The coupled system (1) and (2) is a partially
linearized version of the system proposed by Hirota and Satsuma [HS81] as a model
for the dynamics of coupled long waves.

The coupled system (1) and (2) can be solved exactly when κ = 1 and when
κ = 1/2. The case of κ = 1 is well known, for then the equation (2) is just the KdV
equation itself linearized about the solution A(x, t). An elementary exact solution of
the linear equation (2) in this case is given by B(x, t) = ∂xA(x, t). Further solutions
can be expressed in terms of derivatives of the squared eigenfunctions of the related
Schrödinger operator with potential A [S83].
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The case of κ = 1/2 is essentially different. In this case, the linear equation (2) is
no longer the linearization of KdV about any solution. An elementary exact solution
of the linear equation in this case is given simply by B(x, t) = A(x, t). The main goal
of this paper is to construct the general solution of the initial value problem for this
linear equation when A(x, t) is a multisoliton solution of KdV.

One way to make clear the difference between the cases κ = 1 and κ = 1/2 is to
consider A(x, t) to be the simple soliton solution of KdV (1):

A(x, t) = 12η2sech2(η(x− 4η2t− α)) = −V (χ) ,(3)

where χ = x− ct−α and the velocity is c = 4η2. If we look for solutions of the linear
equation (2) that are traveling waves with speed c, we find the equation

[−κV (χ)B(χ) +B′′(χ)]
′

= cB′(χ) .(4)

Integrating once, using vanishing boundary conditions at χ = ±∞, yields a Schrödinger
eigenvalue problem for B:

−B′′(χ) + κV (χ)B(χ) = EB(χ) ,(5)

where E = −c. For κ = 1/2, it follows from the fact that B(x, t) = A(x, t) is a
solution of (2) that the function B(χ) = V (χ) is an eigenfunction of the Schrödinger
operator with eigenvalue E = −c = −4η2. Since it has no zeros, it is the ground
state eigenfunction. We will see below that there is also one excited state for κ = 1/2,
although it is not relevant here since it corresponds to a different velocity. On the
other hand, for κ = 1, B(x, t) = ∂xA(x, t) is a solution of (2), which implies that
the function B(χ) = ∂xV (χ) is an eigenfunction of the Schrödinger operator with the
same eigenvalue E = −c = −4η2. In this case, the eigenfunction has a single zero and
therefore is the first excited state. It follows that there are at least two eigenvalues
for κ = 1. In fact, there are exactly three states in this case. A final observation is
that from the construction of the one-soliton solution of KdV (see (8), (9), and (10)
below) it follows that for κ = 1/6, the function B(χ) = V (χ) is an eigenfunction of
the Schrödinger operator with eigenvalue E = −c/4 = −η2. It is the ground state
and the only eigenfunction. These relationships are summarized in Figure 1.1. We
will have more to say about this picture when we discuss the trapping of linear waves
by solitons for general values of κ in section 6.

The rest of this paper is primarily concerned with developing the general solution
of the initial value problem for (2) with κ = 1/2 when A(x, t) is an N -soliton solution
of KdV (1). In section 2 we show how for κ = 1/2 a large family of exact solutions of
(2) can be obtained from the simultaneous solutions of the Lax pair for KdV. When
the solution of KdV contains only solitons and no radiation, the construction of Lax
eigenfunctions is completely algorithmic and algebraic, and consequently the corre-
sponding family of solutions of (2) for κ = 1/2 can be obtained with great practicality.
In section 3 we then establish that in the N -soliton case there are enough of these
exact solutions of (2) for κ = 1/2 to expand for fixed t any absolutely continuous
L1(R) function of x. This fact then leads to a general solution formula for (2) simply
by expanding the initial data. We present and discuss this formula in section 4. There
will turn out to be N linearly independent solutions that are asymptotically confined
to the union of soliton trajectories and can therefore be considered to be bound states.
In section 5 we compute the scattering matrix that relates the asymptotic behavior of
bound states for t→ −∞ to the corresponding behavior for t→ +∞. In section 6 we
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Fig. 1.1. Energy levels of the 12κη2sech2(ηχ) potential for three different values of the coupling
constant κ.

consider general values of the coupling constant κ and describe the behavior of some
solutions of (2) when A(x, t) is a one-soliton solution of KdV (1). These calculations
indicate the exceptional nature of the two values κ = 1/2 and κ = 1. In the appendix,
we describe several physical applications of the coupled system (1) and (2) to topics
in molecular dynamics, mechanics, soliton theory, and the fluid dynamics of internal
waves.

2. Exact solution formulas for κ = 1/2. As is well known [GGKM67], the
KdV equation (1) is the compatibility condition for a pair of linear equations involving
a complex parameter λ for an auxiliary function f(x, t, λ). This pair of linear equations
is

∂2
xf = −λ

2

4
f − 1

6
Af and ∂tf =

1

6
∂xA · f +

(
λ2 − 1

3
A

)
∂xf(6)

and is called a Lax pair. A simultaneous solution f(x, t, λ) of these linear equations
exists if and only if the function A(x, t) satisfies KdV (1). Suppose that this is the
case. Then, it is a direct matter to verify that for fixed but arbitrary λ ∈ C, the two
functions defined by

B(x, t) := ∂x

[
f(x, t, λ) exp

(
± i

2
(λx+ λ3t)

)]
(7)

are solutions of the linear equation (2) when κ = 1/2. Note here an important point
of departure from the other solvable case, namely, κ = 1, where (2) is the linearized
KdV equation. In the latter case, particular solutions are expressed in terms of the
x-derivative of the square of the Lax eigenfunction f(x, t, λ) [GGKM74, S83]. By
contrast, the formula (7) for solutions of (2) for κ = 1/2 is linear in f(x, t, λ). This
fact leads to some important simplifications.
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The formula (7) is only really practical to use if one can explicitly compute the
function f(x, t, λ). This will be the case if the solution A(x, t) of KdV (1) is a pure
N -soliton solution. For each fixed t, A(x, t) is then a reflectionless potential of the
Schrödinger equation in the Lax pair (6). The multisoliton solutions of KdV and the
associated solutions of the Lax pair are constructed as follows [KM56]. Let f+(x, t, λ)
be given by

f+(x, t, λ) :=

(
1 +

N−1∑
n=0

λn−Nfn(x, t)

)
exp

(
− i

2
(λx+ λ3t)

)
,(8)

where the fn(x, t) are unknown coefficients. Choose N positive numbers η1 > η2 >
· · · > ηN , and N arbitrary real numbers α1, . . . , αN , and insist that f+(x, t, λ) satisfy
the relations

f+(x, t, 2iηn) = (−1)n+1 exp(2ηnαn)f+(x, t,−2iηn)(9)

for all n = 1, . . . , N . It is easy to see that these relations imply a square linear algebraic
system for the coefficients fn(x, t). The determinant of the system is always nonzero,
and so the coefficients fn(x, t) are determined uniquely from the soliton eigenvalues
{λn = 2iηn} and the norming constants {αn} in terms of exponential functions. From
this construction, it can be shown that if one chooses

A(x, t) := 6i∂xfN−1(x, t) ,(10)

then f+(x, t, λ) and f−(x, t, λ) := f+(x, t,−λ) are two simultaneous solutions of the
Lax pair (6), and the function A(x, t) defined by (10) satisfies KdV (1). The two
functions f±(x, t, λ) are linearly independent for all nonzero λ 	= ±2iηn. According
to the linear relations (9) that determine the coefficients, at the exceptional values of
λ the two functions are proportional.

The solution A(x, t) of KdV so constructed represents the interaction of N soli-
tons. In particular, as t→ ±∞, the solution can be represented in the form

A(x, t) ∼
N∑
n=1

A±
n (x, t) , where A±

n (x, t) := 12η2
nsech2(ηn(x−α±

n )−4η3
nt) ,(11)

where the asymptotic phase constants α±
n are functions of the ηn and αn.

Below we will need the asymptotic behavior of the functions f±(x, t, λ) as x →
±∞ for λ and t fixed. It can be shown that the coefficient functions fn(x, t) remain
bounded as x → ±∞. Then, letting x tend to ±∞ in the linear relations (9), one
finds from dominant balance arguments that

lim
x→±∞

(
1 +

N−1∑
n=0

λn−Nfn(x, t)

)∣∣∣∣∣
λ=±2iηn

= 0 .(12)

These relations imply that

lim
x→±∞

(
1 +

N−1∑
n=0

(±λ)n−Nfn(x, t)

)
= λ−N

N∏
n=1

(λ− 2iηn) .(13)

Therefore, for all λ ∈ C,

lim
x→±∞ f+(x, t, λ) exp

(
i

2
(λx+ λ3t)

)
= λ−N

N∏
n=1

(λ∓ 2iηn) .(14)
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The large |x| asymptotics for the other solution f−(x, t, λ) follow from the definition
f−(x, t, λ) = f+(x, t,−λ). From these asymptotics, it is easy to construct the appro-
priate linear combinations of f±(x, t, λ) that correspond to the Jost functions of the
Schrödinger equation, normalized at x = ±∞.

In the formula (7) we have a choice of sign in the exponent. In fact, it is easy
to see that if one considers the totality of solutions obtained for all complex λ, the
choice of sign is redundant. In what follows, we adopt a particular choice of the sign
and maintain generality by using both Lax eigenfunctions f+(x, t, λ) and f−(x, t, λ).
Thus, the particular solutions of the linear equation (2) for κ = 1/2 that we will
consider below will be denoted by h±(x, t, λ), given by

h±(x, t, λ) := ∂xg±(x, t, λ) , where g±(x, t, λ) := f±(x, t, λ) exp

(
i

2
(λx+ λ3t)

)
.

(15)
From the Schrödinger equation (6) for f±(x, t, λ), it follows that g±(x, t, λ) satisfies
the ODE

−i∂2
xg± − i

A

6
g± = λ∂xg± .(16)

This ODE plays an important role in suggesting the completeness relation for the
solutions h±(x, t, λ).

3. The completeness relation for κ = 1/2. Having in hand a large family
of exact solutions of the linear equation (2) for κ = 1/2 is certainly useful, but we
may then ask whether there are enough of these solutions to construct the general
solution of the initial value problem by superposition. A completeness relation is a
formula that gives the expansion of arbitrary initial data in terms of such a collection
of functions. In this section, we will establish the completeness relation for the exact
solutions h±(x, t, λ) obtained in section 2.

The form of the completeness relation is suggested by a similar argument to that
used by Sachs [S83] in his investigation of the completeness of squared eigenfunction
solutions to the linearized KdV equation. The idea is that ideally we would like
to have a differential eigenvalue problem in standard form satisfied by the functions
h±(x, t, λ):

L(t)h±(x, t, λ) = λh±(x, t, λ) ,(17)

where λ is the eigenvalue and L(t) is some second-order linear differential operator in
x. Then, using the two explicit solutions h±(x, t, λ) of this problem, we could solve
the inhomogeneous problem

L(t)ψ − λψ = φ(18)

by variation of parameters, i.e., by writing ψ as a linear combination of h±(x, t, λ)
with nonconstant coefficients, and substituting into (18). For a fixed function φ(x),
this determines ψ(x, t, λ), and we have thus constructed the resolvent of the operator
L(t),

ψ(x, t, λ) = (L(t)− λI)−1φ(x) .(19)

If the spectrum of L(t) is contained in a bounded region of the complex plane (and
also under some milder conditions), then the Dunford–Taylor integral of the resolvent
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on a positively oriented contour enclosing the spectrum yields the identity operator

− 1

2πi

∮
ψ(x, t, λ) dλ = − 1

2πi

∮
(L(t)− λI)−1φ(x) dλ = φ(x) .(20)

However, we do not have a second-order eigenvalue problem for h±(x, t, λ). In-
stead we have the second-order equation (16) for g±(x, t, λ). However, we make the
guess that a similar procedure will apply here. Namely, for appropriate side conditions
(see below) we solve the inhomogeneous equation

−i∂2
xψ − i

A

6
ψ − λ∂xψ = φ(21)

for ψ(x, t, λ) using variation of parameters with the two functions g±(x, t, λ) solving
the homogeneous equation (16), and then we differentiate the resulting formula with
respect to x. Formally speaking only, we have thus constructed the resolvent of the
“operator”

L(t) = −i∂x − iA
6
∂−1
x .(22)

The obstruction to rigor here is that ∂−1
x is not well defined. Nonetheless, we are

guided to hypothesize that

− 1

2πi

∮
∂xψ(x, t, λ) dλ = φ(x)(23)

for an appropriate contour of integration. This formula turns out to be correct, al-
though a direct proof must be supplied. The proof we use follows Miller and Akhme-
diev [MA98].

3.1. Solving the inhomogeneous problem. We express the solution of the
inhomogeneous problem in the form

ψ(x, t, λ) = C+(x, t, λ)g+(x, t, λ) + C−(x, t, λ)g−(x, t, λ) ,(24)

subject to the usual “reduction of order” condition

∂xC+(x, t, λ) · g+(x, t, λ) + ∂xC−(x, t, λ) · g−(x, t, λ) = 0 .(25)

Substituting (24) into the equation for ψ, and using (25), one finds

∂xC+(x, t, λ) = −iφ(x)g−(x, t, λ)

W (g+, g−)
and ∂xC−(x, t, λ) = i

φ(x)g+(x, t, λ)

W (g+, g−)
,(26)

where W (g+, g−) := g+∂xg− − g−∂xg+ is the Wronskian.
From the differential equation (16) satisfied by g±(x, t, λ), it follows that

∂xW (g+, g−) = iλW (g+, g−) .(27)

Using the large |x| asymptotics of f±(x, t, λ) obtained in section 2, one then solves
(27) uniquely and finds that

W (g+, g−) = iλ1−2N exp(i(λx+ λ3t))

N∏
n=1

(λ2 + 4η2
n) .(28)
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In solving the inhomogeneous equation (21) for ψ, we really should impose appro-
priate side conditions. Here, the side conditions we use are not related to boundary
conditions in x as much as to analyticity conditions in λ. It is easy to check that for
each x0,U , the function ψU (x, t, λ) defined by

ψU (x, t, λ) = −
∫ x

x0,U

g−(z, t, λ) exp(−i(λz + λ3t))φ(z)

λ1−2N
N∏
n=1

(λ2 + 4η2
n)

dz · g+(x, t, λ)(29)

+

∫ x

−∞

g+(z, t, λ) exp(−i(λz + λ3t))φ(z)

λ1−2N
N∏
n=1

(λ2 + 4η2
n)

dz · g−(x, t, λ)

is a solution analytic in λ for (λ) > 0 and |λ| sufficiently large. Similarly, ψL(x, t, λ)
defined for each x0,L by

ψL(x, t, λ) = −
∫ x

x0,L

g−(z, t, λ) exp(−i(λz + λ3t))φ(z)

λ1−2N
N∏
n=1

(λ2 + 4η2
n)

dz · g+(x, t, λ)(30)

−
∫ ∞

x

g+(z, t, λ) exp(−i(λz + λ3t))φ(z)

λ1−2N
N∏
n=1

(λ2 + 4η2
n)

dz · g−(x, t, λ)

is a solution analytic for (λ) < 0 and |λ| sufficiently large. The qualification of |λ|
being sufficiently large is necessary because the expressions have poles at the soliton
eigenvalues in the respective half-planes where the two functions g±(x, t, λ) become
proportional. However, these are the only finite singularities, and both solutions
ψU (x, t, λ) and ψL(x, t, λ) are meromorphic in the whole of their respective open half-
planes.

The arbitrariness of the parameters x0,U and x0,L would seem to be a problem;
however, it will turn out that these terms contribute nothing to the Dunford–Taylor
integral that we will prove gives the required completeness relation.

3.2. Integrating the resolvent. Here we show that the guess we made is indeed
correct.
Theorem 3.1. Let φ(x) be an absolutely continuous function in L1(R). Let x0,U

and x0,L be constants, and let t ∈ R be fixed. Then,

φ(x) = − 1

2πi
lim
R→∞

[∫
CU

∂xψU (x, t, λ) dλ+

∫
CL

∂xψL(x, t, λ) dλ

]
,(31)

where CU is the positively oriented half-circle from R to −R in the upper half-plane
and CL is the positively oriented half-circle from −R to R in the lower half-plane.

Proof. First, we show that the terms depending on the arbitrary parameters x0,U

and x0,L converge to zero as R→∞. This will justify calling the function ψU or ψL
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a “resolvent” even though the inverse is not unique. Consider the integral

JU :=

∫
CU

∂x


−

∫ x

x0,U

g−(z, t, λ) exp(−i(λz + λ3t))φ(z)

λ1−2N
N∏
n=1

(λ2 + 4η2
n)

dz · g+(x, t, λ)


 dλ

= −
∫
CU

λ2Nh+(x, t, λ)

λ

N∏
n=1

(λ2 + 4η2
n)

∫ x

x0,U

g−(z, t, λ) exp(−i(λz + λ3t))φ(z) dz dλ ,

(32)

where we have used the relation (25). Recall that

h+(x, t, λ) =

N∑
n=1

λ−n∂xfN−n(x, t) ,

g−(z, t, λ) exp(−i(λz + λ3t)) = 1 +

N∑
n=1

(−λ)−nfN−n(z, t) .

(33)

Therefore, for all λ with |λ| = R > 1,

|h+(x, t, λ)| ≤ 1

R

N∑
n=1

|∂xfN−n(x, t)|(34)

and

sup
z∈R

|g−(z, t, λ) exp(−i(λz + λ3t))| ≤ 1 + sup
z∈R

N∑
n=1

|fN−n(z, t)| .(35)

This latter relation assumes the uniform boundedness of the functions fk(z, t) in z.
Finally, it is clear that for |λ| = R > supn 2ηn∣∣∣∣∣λ1−2N

N∏
n=1

(λ2 + 4η2
n)

∣∣∣∣∣ ≥ R
N∏
n=1

(
1− 4η2

n

R2

)
.(36)

It follows that for all λ with |λ| = R sufficiently large,

|JU | ≤ K(x, t)

R
‖φ‖1(37)

where

K(x, t) = π
N∏
n=1

(
1− 4η2

n

R2

)−1

·
(

N∑
n=1

|∂xfN−n(x, t)|
)
·
(

1 + sup
z∈R

N∑
n=1

|fN−n(z, t)|
)
.

(38)

The bound (37) clearly vanishes as R→∞. A nearly identical argument shows that
the integral
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(39)

JL :=

∫
CL

∂x


−

∫ x

x0,L

g−(z, t, λ) exp(−i(λz + λ3t))φ(z)

λ1−2N
N∏
n=1

(λ2 + 4η2
n)

dz · g+(x, t, λ)


 dλ

satisfies the same bound (37) as JU .
Now we consider integrating the second terms of ∂xψU (x, t, λ) and ∂xψL(x, t, λ),

respectively. For brevity, define

Y (x, z, t, λ) :=
g+(z, t, λ) exp(−i(λz + λ3t))h−(x, t, λ)

λ1−2N
N∏
n=1

(λ2 + 4η2
n)

.(40)

Note that this can be written as

Y (x, z, t, λ) = exp (iλ(x− z))

(
1 +

N∑
n=1

fN−n(z, t)

λn

)

λ

N∏
n=1

(
1 +

4η2
n

λ2

)(41)

×
(
iλ

(
1 +

N∑
n=1

fN−n(x, t)

(−λ)n

)
+

N∑
n=1

∂xfN−n(x, t)

(−λ)n

)
,

and therefore,

Y (x, z, t, λ) = i exp(iλ(x− z)) (1 + ∆(x, z, t, λ)) ,(42)

where ∆(x, z, t, λ) = O(λ−1) uniformly in x and z for fixed t. It also follows from
additional cancellation that for z = x, ∆(x, x, t, λ) = O(λ−2) uniformly in x. Finally,
derivatives of ∆ are controlled as well: ∂z∆(x, z, t, λ) = O(λ−1) uniformly. The
integral we need to compute for the contribution of ∂xψU (x, t, λ) is∫
CU

∫ x

−∞
Y (x, z, t, λ)φ(z) dz dλ = i

∫
CU

∫ x

−∞
exp(iλ(x− z))φ(z) dz dλ

+ i

∫
CU

∫ x

−∞
∆(x, z, t, λ) exp(iλ(x− z))φ(z) dz dλ .(43)

Note that since the integrand is analytic in the upper half-plane, the first term can
be written as

i

∫
CU

∫ x

−∞
exp(iλ(x− z))φ(z) dz dλ = −i

∫ R

−R

∫ x

−∞
exp(iλ(x− z))φ(z) dz dλ .(44)

In order to control the error term, it is necessary to integrate by parts once:

i

∫
CU

∫ x

−∞
∆(x, z, t, λ) exp(iλ(x− z))φ(z) dz dλ = −φ(x)

∫
CU

∆(x, x, t, λ)

λ
dλ

+

∫
CU

∫ x

−∞

exp(iλ(x− z))
λ

∂z(∆(x, z, t, λ)φ(z)) dz dλ .

(45)
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The boundary term at z = −∞ vanishes because ∆(x, z, t, λ) is bounded there, φ is
continuous and integrable, and exp(iλ(x − z)) is exponentially small for (λ) > 0.
Since the exponential is bounded in magnitude by unity for (λ) > 0 and the contour
is of length πR, the above estimates of ∆ imply that there exist K0(x, t), K1(x, t),
and K2(x, t) all positive, such that∣∣∣∣

∫
CU

∫ x

−∞
∆(x, z, t, λ) exp(iλ(x− z))φ(z) dz dλ

∣∣∣∣
=
K0(x, t)

R2
|φ(x)|+ K1(x, t)

R
‖φ‖1 +

K2(x, t)

R
‖φ′‖1 .

(46)

This proves that

(47)

lim
R→∞

∫
CU

∫ x

−∞
Y (x, z, t, λ)φ(z) dz dλ = −i lim

R→∞

∫ R

−R

∫ x

−∞
exp(iλ(x− z))φ(z) dz dλ .

Similar arguments applied to the contribution of ∂xψL(x, t, λ) show that

− lim
R→∞

∫
CL

∫ ∞

x

Y (x, z, t, λ)φ(z) dz dλ = −i lim
R→∞

∫ R

−R

∫ ∞

x

exp(iλ(x− z))φ(z) dz dλ ,

(48)
and therefore,

− 1

2πi
lim
R→∞

[∫
CU

∂xψU (x, t, λ) dλ+

∫
CL

∂xψL(x, t, λ) dλ

]

=
1

2π
lim
R→∞

∫ R

−R

∫ ∞

−∞
exp(iλ(x− z))φ(z) dz dλ = φ(x)

(49)

with the last equality following from Fourier inversion. This establishes (31) and the
theorem.

As it stands, the completeness relation given in Theorem 3.1 is not really an ex-
pansion of φ(x) in terms of the functions h−(x, t, λ) because the expansion coefficients
themselves depend on x. This is easily remedied by casting the right-hand side of the
completeness relation into a more useful form. We do this now.
Theorem 3.2. Let φ(x) be an absolutely continuous function in L1(R). Let t ∈ R

be fixed, and choose any w ∈ R ∪ {−∞,+∞}. Define the mode function
H(x, t, λ) := λNh−(x, t, λ) ,(50)

which is an entire function of λ, and the amplitudes

b+(t, λ) :=

∫ ∞

w

λNg+(z, t, λ) exp(−i(λz + λ3t))

λ

N∏
n=1

(λ2 + 4η2
n)

φ(z) dz ,

b−(t, λ) :=

∫ w

−∞

λNg+(z, t, λ) exp(−i(λz + λ3t))

λ

N∏
n=1

(λ2 + 4η2
n)

φ(z) dz ,

(51)
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and set b(t, λ) := b+(t, λ) + b−(t, λ). The amplitudes have simple poles at λ = 0 and
λ = ±2iηn for n = 1, . . . , N . Finally, set

b0(t) :=
1

2
Res
λ=0

(b+(t, λ)− b−(t, λ)) and b±n (t) := ∓ Res
λ=±2iηn

b∓(t, λ) .

(52)
Then we have the expansion

φ(x) = lim
R→∞

1

2πi
P.V.

∫ R

−R
b(t, λ)H(x, t, λ) dλ

+ b0(t)H(x, t, 0) +

N∑
n=1

[
b−n (t)H(x, t,−2iηn) + b+n (t)H(x, t, 2iηn)

]
.

(53)

Remark 1. Since w is now fixed and not a function of x, this expansion (53) is
a true completeness relation, expressing an arbitrary given function φ(x) as a sum of
known functions H(x, t, λ). From the exact formulas (50), (15), and (8), it is clear
that the part of the expansion (53) represented by the singular integral is Fourier-
like, with the corresponding components of the solution, H(x, t, λ) for λ ∈ R being
bounded oscillatory functions tending to complex exponentials for large x. On the
other hand, the discrete contributions to the solution represent bound states. The
2N + 1 bound state terms in (53) are not linearly independent. From the fact that
at the eigenvalues ±2iηn the functions g−(x, t, λ) are all linear combinations of the
same N functions f0(x, t), . . . , fN−1(x, t), it is clear that only N of the bound states
are linearly independent. These facts are easiest to see when one takes w to ∞ or
−∞. Then, half of the contributions from the eigenvalues disappear, and it remains
only to express the bound state at zero, H(x, t, 0), in terms of H(x, t,±2iηn). This
can be done directly. From the exact formulas (50), (15), and (8), we see that

H(x, t, 0) = (−1)N∂xf0(x, t) ,(54)

and making use of the relations (9) satisfied by f+ at the eigenvalues,

H(x, t, 2iηn) = (−1)n+1 exp(−2ηnαn)

N−1∑
p=0

(2iηn)p∂xfp(x, t) .(55)

Expressing H(x, t, 0) in terms of H(x, t, 2iηn) is therefore a polynomial interpolation
problem. Introduce the polynomial

P (λ) =

N−1∑
p=0

∂xfp(x, t)λ
p .(56)

Given isolated values of this polynomial

P (2iηn) = (−1)n+1 exp(2ηnαn)H(x, t, 2iηn) for n = 1, . . . , N ,(57)

we are to find P (0) and thus H(x, t, 0) = (−1)N∂xf0(x, t) = (−1)NP (0). Expressing
P (λ) explicitly in terms of Lagrange polynomials gives

P (λ) =
N∑
n=1

(−1)n+1 exp(2ηnαn)H(x, t, 2iηn)
∏
k 
=n

λ− 2iηk
2iηn − 2iηk

,(58)
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and therefore

H(x, t, 0) =

N∑
n=1


(−1)n exp(2ηnαn)

∏
k 
=n

ηk
ηn − ηk


H(x, t, 2iηn) .(59)

There is, indeed, a similar expression for H(x, t, 0) in terms of H(x, t,−2iηn).
Remark 2. An important distinction between the completeness relation stated

in Theorem 3.2 and that found by Sachs [S83] for derivatives of squared Schrödinger
eigenfunctions is in the nature of the singularity at λ = 0. Sachs shows that in the
expansion of φ in terms of derivatives of squared eigenfunctions, there is an appar-
ent singularity at λ = 0 that is in fact removable. On the other hand, the integral
in Theorem 3.2 is essentially singular and the residue contribution of b0(t) is
nonzero.

Proof of Theorem 3.2. We first establish that in the formulas (29) for ∂xψU (x, t, λ)
and (30) for ∂xψL(x, t, λ) we may replace x in the limits of integration by any other
value without changing the result of the theorem. That is, we will now show that the
integral ∫

CU

∫ w

−∞
Y (x, z, t, λ)φ(z) dz dλ−

∫
CL

∫ ∞

w

Y (x, z, t, λ)φ(z) dz dλ ,(60)

which we have already seen converges as R tends to infinity to −2πiφ(x) in the case
that w = x, is in fact independent of w. Holding R fixed and differentiating with
respect to w, we must show that for sufficiently large R,

φ(w)

∮
|λ|=R

Y (x,w, t, λ) dλ ≡ 0(61)

identically in x, w, and t. Being as the integrand is meromorphic in the finite λ
plane, we can evaluate the integral by residues. There are simple poles at λ = 0 and
λ = ±2iηn for n = 1, . . . , N . Using the linear relations (9) satisfied by f± at the
eigenvalues λ = 2iηn, we find

Res
λ=2iηk

Y (x,w, t, λ) =

N−1∑
p=0

(2iηk)N+p−1

Dk
∂xfp(x, t)

+
N−1∑
p,q=0

(−1)N−q (2iηk)p+q−1

Dk
fq(w, t)∂xfp(x, t) ,

Res
λ=−2iηk

Y (x,w, t, λ) =

N−1∑
p=0

(−1)N−p (2iηk)N+p−1

Dk
∂xfp(x, t)

+
N−1∑
p,q=0

(−1)N−p (2iηk)p+q−1

Dk
fq(w, t)∂xfp(x, t) ,(62)

where

Dk :=
∏
n 
=k

(2iηk − 2iηn)

N∏
n=1

(2iηk + 2iηn) .(63)
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Similarly, for the residue at zero,

Res
λ=0

Y (x,w, t, λ) = (−1)N
f0(w, t)∂xf0(x, t)

N∏
n=1

4η2
n

.(64)

Adding all the residues and collecting coefficients of the terms ∂xfp(x, t) and fq(w, t)
∂xfp(x, t), we find that the sum of the residues will be zero if

Ip :=

N∑
k=1

(2iηk)p

Dk
= 0(65)

for all odd p = 1, 3, 5, . . . , 2N − 3, and if

1
N∏
n=1

4η2
n

+ 2

N∑
k=1

1

2iηkDk
= 0 .(66)

These expressions are themselves sums of residues of meromorphic differentials. Thus,
by inspection, one finds that for p = 1, 3, 5, . . . , 2N − 3,

Ip =
1

2πi

∮
C

λp dλ
N∏
n=1

(λ2 + 4η2
n)

,(67)

where C is any simple counterclockwise oriented contour that encircles the points
λ = 2iηn for n = 1, . . . , N (but without enclosing the conjugate eigenvalues or λ = 0).
With p bounded by 2N − 3, the path of integration can be blown out to infinity in
the upper half-plane and then brought down to the real axis so that

Ip =
1

2πi

∫ ∞

−∞

λp dλ
N∏
n=1

(λ2 + 4η2
n)

= 0(68)

with the last equality following from the oddness of the integrand for odd p. Finally,
consider the integral I−1 defined by

I−1 :=
1

2πi

∮
C

dλ

λ

N∏
n=1

(λ2 + 4η2
n)

.(69)

Evaluating the residues inside C, we find

I−1 =

N∑
k=1

1

2iηk
∏
n 
=k

(2iηk − 2iηn)

N∏
n=1

(2iηk + 2iηn)

.(70)



274 P. D. MILLER AND S. R. CLARKE

On the other hand, we can again blow the contour C out to infinity in the upper
half-plane and bring it down to the real axis. This time, there is a singularity at
λ = 0, so the Plemelj formula must be used. We find

I−1 = −1

2
· 1
N∏
n=1

4η2
n

+
1

2πi
P.V.

∫ ∞

−∞

dλ

λ

N∏
n=1

(λ2 + 4η2
n)

.(71)

Once again, by oddness, the principal value integral vanishes identically, and then
combining this result with the previous expression, we obtain the required vanishing.

This shows that for any w,

φ(x) = − 1

2πi
lim
R→∞

[∫
CU

∫ w

−∞
Y (x, z, t, λ)φ(z) dz dλ−

∫
CL

∫ ∞

w

Y (x, z, t, λ)φ(z) dz dλ

]
.

(72)
Establishing (53) and therefore the theorem now amounts to using the residue theorem
once again to deform the integration paths CU and CL in (72) to the real axis. One
finds discrete contributions at the poles λ = ±2iηn, and then applying the Plemelj
formula to contract the contour to the real axis in the neighborhood of λ = 0 gives a
discrete contribution proportional to H(x, t, 0) and the principal value regularization
of the singular integral over the continuous spectrum.

4. Solution of the initial value problem for κ = 1/2. It is easy to see
that when A(x, t) is an N -soliton solution of KdV (1), one can use the completeness
relation to solve the initial value problem

∂tB + ∂x

[
1

2
AB + ∂2

xB

]
= 0 , B(x, 0) = φ(x) .(73)

Setting t = 0, and picking a convenient value of w, say, w = +∞, one computes the
amplitudes (51) and discrete coefficients (52). Then, because the function H(x, t, λ)
satisfies (2) for κ = 1/2 and for each complex λ, the expression

B(x, t) := lim
R→∞

1

2πi
P.V.

∫ R

−R
b(0, λ)H(x, t, λ) dλ

+ b0(0)H(x, t, 0) +

N∑
n=1

[
b−n (0)H(x, t,−2iηn) + b+n (0)H(x, t, 2iηn)

]
,

(74)

provides the solution of the initial value problem (73), generally in the sense of distri-
butions. That is, B(x, 0) = φ(x) by Theorem 3.2, and for each test function ϕ(x, t)
that is differentiable in t and three times differentiable in x and has compact support
in (x, t) ∈ R× R+, one shows by exchanging the order of integration that∫ ∞

0

∫ ∞

−∞

[
∂tϕ(x, t) +

1

2
A(x, t)∂xϕ(x, t) + ∂3

xϕ(x, t)

]
B(x, t) dx dt = 0 .(75)

The solution will be classical in as much as it is possible to differentiate with respect to
x and t under the integral sign in the solution formula (74). This requires additional
smoothness and decay assumptions on the initial data φ(x) that we do not consider
here.
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5. Scattering of bound states for κ = 1/2. Of particular interest in ap-
plications is the N -dimensional (recall that A(x, t) is an N -soliton solution of KdV)
subspace of solutions of (2) for κ = 1/2 consisting of bound states. This subspace
represents linear waves that are trapped by the solitons of the potential A(x, t). For
large |t|, these bound state solutions are all confined to the trajectories of the solitons.
Therefore, it follows that each bound state B(x, t) has two asymptotic representations:

B(x, t) ∼
N∑
n=1

β±n A
±
n (x, t) , t→ ±∞ ,(76)

for some constants β±n depending on B(x, t), where A±
n (x, t) are defined by (11). Since

there are exactly N linearly independent bound states, it follows that the constants
β+
n are completely determined from the constants β−n . In particular, there exists an

invertible N × N matrix T with entries depending only on the data specifying the
N -soliton solution A(x, t), such that

β+
j =

N∑
k=1

Tjkβ
−
k .(77)

The matrix T is called the bound state scattering matrix. In this section, we compute
the scattering matrix explicitly and show that its elements only depend on the soliton
eigenvalues η1, . . . , ηN .

If A(x, t) is an N -soliton solution of KdV (1), then a family of solutions to (2) for
κ = 1/2, parametrized by complex λ, is given by

h+(x, t, λ) =
A(x, t)

6iλ
+

N−2∑
n=0

λn−N∂xfn(x, t) .(78)

We want to analyze these solutions in the limit of large |t|, in a frame of reference
traveling with constant velocity c.

The first step is to see how the coefficients fn(x, t) behave for large |t|. Let χ =
x− ct be fixed as τ = t goes to either +∞ or −∞. Begin by taking η2

m < 4c < η2
m−1

to see how the coefficients behave in between the solitons. In the limit τ → +∞, the
equations (9) imply that

1 +
N−1∑
k=0

(−2iηn)k−Nfk → 0 , n = 1, . . . ,m− 1 ,

1 +

N−1∑
k=0

(2iηn)k−Nfk → 0 , n = m, . . . , N .

(79)

This is an invertible Vandermonde system for the coefficients fk, so that as τ →
+∞, the fk all become constants, independent of χ and τ . Thus, ∂xfk(x, t) vanishes
between the solitons for all k. The analogous result holds as τ → −∞. This shows
that the solutions of (2) for κ = 1/2 described by the formula (78) are asymptotically
confined to the individual frames of reference of the moving solitons in the potential
field A(x, t).
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Now set c = 4η2
m to go into the moving frame of reference of one of the solitons.

Taking the limit τ → +∞ yields

1 +

N−1∑
k=0

(−2iηn)k−Nfk → 0 , n = 1, . . . ,m− 1 ,

1 +

N−1∑
k=0

(2iηn)k−Nfk → 0 , n = m+ 1, . . . , N .

(80)

This is a system of N−1 equations in N unknowns, so it can be used to asymptotically
eliminate ∂χf0 through ∂χfN−2 in favor of ∂χfN−1, which we know is proportional to
the N -soliton solution of KdV, A(x, t). Thus, as τ → +∞, with c = 4η2

m,

∂χfk = Qmk∂χfN−1 =
1

6i
QmkA(81)

for k = 0, . . . , N − 2, where the numbers Qmk are the unique solution of the inhomo-
geneous system of linear algebraic equations

(−2iηn)−1 +

N−2∑
k=0

(−2iηn)k−NQmk = 0 , n = 1, . . . ,m− 1 ,

(2iηn)−1 +

N−2∑
k=0

(2iηn)k−NQmk = 0 , n = m+ 1, . . . , N .

(82)

One can similarly show that as τ → −∞, with c = 4η2
m,

∂χfk = Q∗
mk∂χfN−1 =

1

6i
Q∗
mkA(83)

for k = 0, . . . , N − 2, where the star denotes complex conjugation.
Now consider particular solutions Bj(x, t) of (2) for κ = 1/2 obtained as linear

combinations of N others expressed by the formula (78) evaluated on the N soliton
eigenvalues. The formula for Bj(x, t) is

Bj(x, t) =

N∑
k=1

Fjkh+(x, t, 2iηk) =

N∑
k=1

Fjk

[
−A(x, t)

12ηk
+

N−2∑
n=0

(2iηk)n−N∂xfn(x, t)

]
,

(84)
where F = {Fjk} is a matrix of arbitrary constants. From the asymptotics of fn(x, t),
we have as τ → −∞ with c = 4η2

m

Bj → A

N∑
k=1

FjkG
−
km , where G−

km := − 1

12ηk
+

1

6i

N−2∑
n=0

(2iηk)n−NQ∗
mn .(85)

So, with the choice that the matrix {Fjk} is the inverse of the matrix G− = {G−
km},

the particular solution Bj(x, t) of (2) for κ = 1/2 will be completely confined as
t→ −∞ to the frame of reference moving with speed c = 4η2

j , where it will be locally
indistinguishable from the solution A(x, t) of KdV. Let us now determine how Bj(x, t)
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will behave in the various soliton frames as t→ +∞. Passing to the limit of τ → +∞
in the frame with velocity c = 4η2

m gives

Bj → A

N∑
k=1

FjkG
+
km , where G+

km := − 1

12ηk
+

1

6i

N−2∑
n=0

(2iηk)n−NQmn .(86)

These asymptotics give us a formula for the bound state scattering matrix:

T :=
[
(G−)−1G+

]T
.(87)

It is clear that the elements of T depend only on the N soliton eigenvalues η1, . . . , ηN .
There is no dependence on the soliton phase variables α1, . . . , αN . Therefore, the
asymptotic scattering properties of linear waves in (2) with κ = 1/2 are insensitive
to phase shifts among the solitons in the potential A(x, t). As a concrete example of
the scattering matrix, we compute it explicitly for N = 2 for arbitrary η1 > η2 > 0:

T =
1

η2
1 − η2

2

[
(η1 − η2)2 2η2(η1 − η2)

2η1(η1 − η2) −(η1 − η2)2

]
.(88)

The fact that T22 is negative means that it is possible for the interactions of the solitons
in A(x, t) to convert trapped linear waves of elevation into waves of depression, and
vice-versa.

6. General values of κ. We expect that for most values of κ, the linear waves
satisfying (2) will not be permanently trapped by solitons present in the potential
A(x, t). This is suggested by considering the simplest case, namely, taking A(x, t) to
be the one-soliton solution of KdV (1). The soliton travels with velocity c = 4η2 so
that A = −V (χ) with χ = x − ct − α. Corresponding traveling wave solutions B(χ)
of the linear problem that propagate with the same velocity and decay as χ → ±∞
satisfy

−B′′(χ) + κV (χ)B(χ) = −cB(χ) .(89)

Since c is fixed, we can view this as an eigenvalue equation with κ as the eigenvalue.
We therefore expect that only isolated values of κ will admit nontrivial decaying
solutions B(χ). We have already seen that κ = 1/2 and κ = 1 are indeed eigenvalues.
For κ = 1/2 the eigenfunction B(χ) is an even function of χ, while for κ = 1 the
eigenfunction B(χ) is odd in χ. Since eigenfunctions of (89) must be nondegenerate
and therefore have either odd or even parity in χ, there cannot exist a nontrivial
bound state eigenfunction of (89) for all κ ∈ [1/2, 1] because the eigenfunction would
have to change parity from one endpoint to the other. Therefore, at least one value
of κ ∈ [1/2, 1] is not an eigenvalue. For such κ, there is no bound state traveling wave
solution of (2) that is trapped in the soliton trajectory.

We can be more precise about this phenomenon. The left-hand side of (89) can
also be viewed as a Schrödinger operator L(κ) depending on a coupling constant κ, and
the condition for wave trapping by solitons is simply that −c ∈ Σp(L(κ)), where Σp

denotes the point spectrum. The number of discrete eigenvalues is a nondecreasing
function of κ > 0, corresponding to the deepening of the potential well. There is
an infinite unbounded sequence of cutoff values κcut

n of κ at which the number of
eigenvalues changes by one, and the new eigenvalue is born from the continuum.
Each eigenvalue, once born, is distinct and is a decreasing function of κ. From these
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arguments, it follows that there exists an infinite unbounded sequence of bifurcation
values κbif

n of κ at which one eigenvalue crosses the level E = −c, and a bound state
traveling wave solution of (2) exists.

It is easy to find the bifurcation points because the hyperbolic secant squared
potential is so well understood. The potential κV (χ) is exactly reflectionless for
12κ = n(n+ 1) for n = 1, 2, 3, . . .. The corresponding energy levels are En,k = −k2η2

for k = 1, . . . , n. Therefore, for n > 1 in this sequence, there is always one eigenvalue
that is exactly equal to −c = −4η2. The corresponding eigenstate is always the
(n − 1)st state and therefore has n − 2 zeros. It follows that the bifurcation points
are κ = κbif

n = (n+ 1)(n+ 2)/12 for n = 1, 2, 3, . . ..
The fact that some linear waves may be permanently trapped by isolated solitons

at a bifurcation point κ = κbif
n does not necessarily imply that there will be no losses to

radiation when solitons in the field A(x, t) interact with one another. Such a lossless
interaction might suggest the “integrability” of the linear equation (2). We have
indeed seen that this is the case for the first two bifurcation points, κ = κbif

1 = 1/2
and κ = κbif

2 = 1, but it is by no means clear that the trend continues for higher-order
bifurcation points. For the rest of this section, we therefore restrict attention to the
case N = 1, that is, we take the nonlinear field A(x, t) to be a one-soliton solution of
KdV (1).

Using (3) and the change of variables x′ = η(x − 4η2t − α) and t′ = η3t, (2)
becomes, after dropping primes,

∂tB + ∂x[−4B + 12κ sech2(x)B + ∂2
xB] = 0 .(90)

This equation is of course solved by separation of variables. We seek separated solu-
tions B(x, t) = bσ(x) exp(σt) and obtain the third-order eigenvalue problem

[4bσ(x)− 12κ sech2(x)bσ(x)− b′′σ(x)]′ = σbσ(x) ,(91)

where the prime denotes differentiation with respect to x. In this context, what we
have been calling “trapped linear waves” correspond to bound-state eigenfunctions of
(91) with σ = 0. Such solutions have finite mass and energy and are stationary in
the moving frame of reference of the soliton A(x, t). As we know, such eigenfunctions
with σ = 0 exist only at the bifurcation values of κ = κbif

n . However, it is clear that
for general values of κ there are other possibilities. There may be eigenvalues σ that
are purely imaginary, giving rise to oscillating modes that travel in the soliton frame.
More generally, if an eigenvalue has a nonzero real part for some κ, then there will
be a mode that is either amplified or exponentially damped as it propagates with the
soliton.

The eigenvalue problem (91) has two simple symmetries. Whenever bσ(x) is an
eigenfunction with eigenvalue σ, then bσ(−x) is an eigenfunction with eigenvalue −σ
and bσ(x)∗ is an eigenfunction with eigenvalue σ∗. Therefore, the eigenvalues either
come in purely real pairs (|σ|,−|σ|), purely imaginary pairs (i|σ|,−i|σ|), or in complex
quartets (σ,−σ, σ∗,−σ∗). These symmetries indicate the distinguished role of σ = 0
as a point that if it appears in the spectrum for some κ can signal a bifurcation in
the number of eigenvalues. This explains our terminology and notation for the values
κ = κbif

n .
Most points on the imaginary σ axis correspond to continuous spectrum. This

can be seen by the following argument. Let κ be fixed. Suppose σ = iω with ω ∈ R.
For large |x|, the solutions of (91) have the form of linear combinations of exp(ikω,jx)
where k = kω,j are the three roots of k3 + 4k − ω = 0. Exactly one of these roots,
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say, k = kω,0, is real, while the other two form a complex-conjugate pair. If we seek a
generalized eigenfunction normalized to exp(ikω,0x) as x→ −∞ through a “shooting”
method, we have three complex constants to exploit: the coefficient of the decaying
mode for large negative x, and the coefficients of the decaying mode for large positive
x and the finite amplitude contribution for large positive x. Matching the values of
biω(x), b′iω(x), and b′′iω(x) at x = 0 gives three complex equations in three complex
unknowns. If this system of equations is solvable at all, one expects it to be solvable
for almost all real ω, yielding a generalized eigenfunction. For exceptional values of
ω where there is not a generalized eigenfunction, there will be a genuine bound-state
eigenfunction since the spectrum is a closed set.

We have used a numerical Fourier-based collocation (pseudospectral) method to
find the discrete eigenvalues of (91) over a range of values of the coupling constant κ.
Essentially this involves approximating the continuous function bσ(x) by a periodic
discrete series. Then the derivative ∂x can be approximated to exponential accuracy
by a derivative matrix D for which an explicit formula is given in [CHQZ88]. This is
then used to construct a discrete approximation to the operator on the left-hand side of
(91). Standard techniques can then be used to obtain the eigenvalues and eigenvectors
of this matrix. The corresponding eigenfunctions always decay exponentially, but
sometimes they decay very slowly for large x of one or the other sign—luckily not both.
To obtain accurate results it was necessary in these cases to change the dependent
variable by multiplying by an appropriate exponential function of x to enhance the
decay on the slowly decaying side without changing decay into growth on the other
side. Our results over the range 0 < κ < 5 are shown in Figure 6.1. The bifurcation
values κbif

n appear to be of two different types. If n is odd, then when κ increases
through the value κ = κbif

n , a new pair of real eigenvalues is born from the origin
σ = 0. As κ is further increased, the pair of eigenvalues moves at first away from the
imaginary axis and then changes direction and contracts toward the origin. When
κ increases through the even bifurcation value κ = κbif

n+1, the pair enters the origin
and re-emerges as a complex eigenvalue quartet. Further increasing the value of κ
causes the quartet of eigenvalues to move through a maximum in the magnitude of
the real part and then toward the imaginary axis with the magnitude of the real part
decreasing to zero while the magnitude of the imaginary part increases without bound.
It does not appear that the quartet of eigenvalues ever disappears into the continuous
spectrum, although it comes arbitrarily close as κ increases. This scenario is repeated
again and again as κ increases through each odd bifurcation value. Representative
eigenfunctions are plotted in Figure 6.2. Here, one can see that when the eigenvalue
σ has a nonzero imaginary part, the decay of the eigenfunction can be quite slow on
the “downstream” side of the soliton. As remarked above, this effect is compensated
for in our numerics by working with a modified eigenfunction.

There are no discrete eigenvalues at all for κ < 1/2 (and in particular for κ < 0),
and for all κ satisfying 1/2 < κ < 1 and κ > 1, there is always at least one eigenvalue
with a nonzero real part, which corresponds to an exponentially growing eigenfunction
and therefore instability. The values κ = 1/2 and κ = 1 are distinguished as the only
values for which there exist discrete eigenvalues and at the same time all eigenvalues
have zero real parts, so the system is neutrally stable. For all other values of κ,
either there are no discrete eigenvalues at all in which case all initial conditions for
(2) disperse away algebraically in time, or there are discrete eigenvalues with positive
real parts in which case the linear waves are amplified by the soliton in the field
A(x, t).
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Fig. 6.1. Real (above) and imaginary (below) parts of the discrete eigenvalues σ for the eigen-
value problem (91) as a function of the parameter κ. Different eigenvalue branches are displayed
with different styles of lines (solid, dashed, etc.).

7. Conclusion. The coupled system consisting of the KdV equation (1) and the
linear equation (2) is integrable for two distinct values of the coupling parameter κ.
The integrable case of κ = 1 has been studied by other authors [GGKM74, S83]. In
this paper, we have given new results for the other integrable case, namely, κ = 1/2.
In particular, we have shown how to construct the general solution of (2) for κ = 1/2
when the nonlinear field A(x, t) is an N -soliton solution of the KdV equation. This
general solution is represented in terms of a number of bound states (equal to the
number N of solitons in the field A(x, t)) and a continuum superposition of radiative
states given by a singular integral. With the help of numerical computations, we
have placed the integrable cases in context by examining the behavior of the linear
equation (2) for general values of κ, when A(x, t) is a one-soliton solution of KdV.
These calculations show that the linear equation (2) behaves as an unstable dynamical
system for most positive κ. The integrable value of κ = 1, for which the equation
(2) is the linearized KdV equation, is an isolated stable point, since a small change
of either sign in the value of κ will lead to the presence of exponentially growing
modes. The other integrable value of κ = 1/2 represents the boundary between a
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Fig. 6.2. Above: the real-valued eigenfunction corresponding to the eigenvalue σ with positive
real part for κ = 0.85. Below: the complex-valued eigenfunction corresponding to the eigenvalue
σ in the first quadrant for κ = 1.2. The solid curve is the real part and the dashed curve is the
imaginary part.

stable system without any bound states for κ < 1/2 and an exponentially unstable
system for κ > 1/2.

In physical applications of the coupled system (1) and (2) as discussed in the
appendix, the presence of instabilities indicates that more terms need to be included in
the model. However, in the stable cases the model is indeed expected to be physically
meaningful. And in this regard, the two integrable cases can provide useful starting
points for perturbation theory.

As a final remark, let us indicate the kind of calculations that are possible for the
coupled system (1) and (2) for κ = 1/2 with the aid of the completeness relation. For
a family of relevant initial data for the linear equation, one can explicitly compute the
projection onto the bound states and consequently determine the long time behavior
of the corresponding solution of (2). Also, the long time behavior of the dispersive part
of the solution can be computed from the explicit representation of this component
of the solution as a singular integral. We leave such applications of the completeness
relation for further investigations.

Appendix A. Some applications. It is useful to keep in mind some applica-
tions in which the coupled system (1) and (2) might arise. In fact, such equations
appear in the modeling of coupling of acoustic phonons in long polymer molecules.
Many organic polymers (e.g., DNA and α-helix proteins like acetanelide) may be con-
sidered from the mechanical point of view as long chains of nearly identical masses.
This “backbone” of the molecule supports a longitudinal vibrational mode in which
the masses are all moving in tandem with zero frequency (i.e., simple translation) in
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Fig. A.1. The equilibrium configuration of the mechanical model.

the long-wave limit; the associated quanta are called acoustic phonons. In the pres-
ence of intrinsic weak nonlinearity, the KdV equation describes these vibrations in the
long-wave limit. Usually, the masses making up the chain contain internal degrees of
freedom (e.g., the “breathing” modes of base-pairs in DNA, and the so-called amide
I exciton modes of the C=O bond in each peptide group of an α-helix protein). The
coupling of these internal degrees of freedom to the motion of the backbone leads to
a variety of interesting dynamical models (e.g., the discrete sine-Gordon equation for
DNA and the discrete nonlinear Schrödinger equation for α-helix proteins).

We may consider a situation in which the internal degrees of freedom are them-
selves acoustic phonons associated with transverse vibrational modes. This can be
visualized with the help of a concrete mechanical model, whose equilibrium configu-
ration is shown in Figure A.1. The backbone is made of heavy masses M connected
by stiff springs. Mounted on each heavy mass is a transversely-oriented frictionless
track in which rides a small mass m. The mass M is assumed to include the mass of
the track and small mass m. The small masses are themselves connected by weaker
springs. Assigning longitudinal displacements un to the large massesM and transverse
displacements vn to the small masses m in the frictionless tracks, the Hamiltonian of
the mechanical model is

H =
∑
n

[
1

2
Mu̇2

n +
1

2
mv̇2n +W (L+ un+1 − un)

+V
(√

(L+ un+1 − un)2 + (vn+1 − vn)2
) ]

,

(A1)
where W is the potential energy of the stiff springs connecting the large masses and
V is the potential energy of the weaker springs.

The associated equations of motion are

Mün = W ′(L+ un+1 − un)−W ′(L+ un − un−1)

+ S(Dn+1)(L+ un+1 − un)− S(Dn)(L+ un − un−1),

mv̈n = S(Dn+1)(vn+1 − vn)− S(Dn)(vn − vn−1) ,

(A2)
where we have set S(D) := V ′(D)/D and Dn :=

√
(L+ un − un−1)2 + (vn − vn−1)2.
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It is clear that one may take the undisturbed state of the internal modes vn+1 = vn
for all n to hold exactly, in which case only the backbone motion is relevant. We will
be interested in small amplitude, linear motions of the vn, and how they are affected
by the motion of the backbone.

The disparity between the masses M and m, and that of the strengths of the
associated springs, is introduced by letting µ be a small parameter and assuming
m = µM and V = µU (and correspondingly, S = µZ). We make the small-amplitude
long-wave ansatz

un(t) = hu(X = hn, T = ht) and vn(t) = hv(X = hn, T = ht) ,

(A3)
where h is a small lattice-spacing parameter. Expanding the functions W and Z
in Taylor series about the equilibrium position, the equations of motion become

Mh3∂2
Tu = h3W ′′(L)∂2

Xu+
h5

12
W ′′(L)∂4

Xu

+h5W ′′′(L)∂Xu · ∂2
Xu+O(h6) +O(h3µ) ,

Mh3∂2
T v = h3Z(L)∂2

Xv +
h5

12
Z(L)∂4

Xv

+h5Z ′(L)∂2
Xu · ∂Xv + h5Z ′(L)∂Xu · ∂2

Xv +O(h6).

(A4)
Trapping of v-waves by u-waves becomes possible if the wave speeds are equal. There-
fore, we assume that W ′′(L) = Z(L) = Mc2. Changing variables to χ = X − cT and
τ = h2T yields

Mh2∂2
τu− 2Mc∂χ∂τu =

Mc2

12
∂4
χu+W ′′′(L)∂χu · ∂2

χu+O(h) +O(µ/h2) ,

Mh2∂2
τv − 2Mc∂χ∂τv =

Mc2

12
∂4
χv + Z ′(L)∂2

χu · ∂χv + Z ′(L)∂χu · ∂2
χv +O(h) .

(A5)
As h ↓ 0 with µ� h2, we find the coupled system

∂τA + ∂χ

[
1

2
A2 +

c

24
∂2
χA

]
= 0 ,

∂τB + ∂χ

[
Z ′(L)

W ′′′(L)
AB +

c

24
∂2
χB

]
= 0

(A6)
as a formal limit, where A = W ′′′(L)∂χu/(2Mc) and B = ∂χv. After a simple
rescaling of χ and τ , this becomes (1) and (2) with κ = Z ′(L)/W ′′′(L). As described
in section 6, the influence of solitons on linear waves can be qualitatively different for
different values of the coupling constant κ with important bifurcations occurring at
the values κ = κbif

n = (n + 1)(n + 2)/12 for n = 1, 2, 3, . . .. As we have seen, this
coupled system can be solved exactly in (at least) two cases: κ = 1 and κ = 1/2. The
former case is just the linearized KdV; see Sachs [S83]. The latter case is the one that
is solved in the main text of this paper.

Consider this example with the potential of the strong and weak springs given
respectively by
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W (D) :=
1

2
κwD

2 +
1

24
αD4 and V (D) := µ(

1

2
κvD

2 +
1

24
βD4) .

(A7)
Thus β = 3ακ and the condition that the wave speeds are equal is

1

2
αL2(κ− 1) = κw − κv .

(A8)
The effect of each bifurcation point in κ is now clear. At κ = 1/2 the first har-
monic of the v-waves begins to resonate with the u-waves. As κ increases through
κ = 1 we pass through a transition from supercritical resonance to subcritical reso-
nance. Similarly, at the odd bifurcation points, κ = κbif

2m−1 for m = 1, 2, 3, . . ., the
mth harmonic v-wave begins to resonate with the u-waves. Then at the even bifur-
cation points, κ = κbif

2m for m = 1, 2, 3, . . ., the nature of the resonance for this mode
changes from supercritical to subcritical.

Coupled systems of equations like the pair (1) and (2) often arise as formal asymp-
totic reductions of mechanical models for complicated one-dimensional waves. Often
these asymptotic models are integrable. For example, in an elastic rod, the interaction
between axial twist waves and helical deformation waves gives rise to an integrable
Manakov system of coupled nonlinear Schrödinger equations [LG99].

The coupled system (1) and (2) for κ = 1/2 is also intimately connected with
an integrable multicomponent (an arbitrary number of components, all appearing
symmetrically) coupled KdV equation [MC99]. Indeed, from one point of view it is
this connection that yields the solvability of (1) and (2) for κ = 1/2 described in
detail in this paper. The solution method presented here also can be used to give the
complete solution of the coupled KdV system. That system in turn can be interpreted
as a phenomenological model for the transport of the mass integral through an N -
soliton solution of KdV [MC99].

Finally, we would like to point out that there are also some applications in which
linear equations of the form (2) occur with κA(x, t) being a given function. In this
case, c(x, t) = κA(x, t) represents a given spatiotemporal modulation of the speed of
linear dispersive waves, say, due to propagation in an inhomogeneous medium. Such
problems arise in the modeling of the propagation of weak internal waves in a channel
of varying width [CG99]. For such applications, we may view the solvability of the
coupled system (1) and (2) for κ = 1 and κ = 1/2 as a kind of (big) catalog of special
cases of the function c(x, t) for which the linear equation (2) is solvable in its own
right. For other values of κ > 1/2 the linear wave system is unstable, while for all
values of κ < 1/2 it is stable.
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Abstract. The geometric approach to singular perturbation problems is based on powerful
methods from dynamical systems theory. These techniques have been very successful in the case
of normally hyperbolic critical manifolds. However, at points where normal hyperbolicity fails, the
well-developed geometric theory does not apply. We present a method based on blow-up techniques,
which leads to a rigorous geometric analysis of these problems. A detailed analysis of the extension
of slow manifolds past fold points and canard points in planar systems is given. The efficient use of
various charts is emphasized.
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1. Introduction. We consider singularly perturbed ordinary differential equa-
tions (ODEs) in the standard form

εẋ = f(x, y, ε),
ẏ = g(x, y, ε),

x ∈ R
n, y ∈ R

m, 0 < ε� 1,(1.1)

where f , g are Ck-functions with k ≥ 3. Properties of solutions of (1.1) can be studied
using geometric methods from dynamical systems theory. This approach, known as
geometric singular perturbation theory, has been very successful in many contexts, yet
has encountered difficulties in certain situations. In this article we show how some of
the limitations of geometric singular perturbation theory can be removed.

Before describing our results we present a brief survey of the existing theory. Let
τ denote the independent variable in (1.1). The variable τ is referred to as the slow
time scale. By switching to the fast time scale t := τ/ε one obtains the equivalent
system

x′ = f(x, y, ε),
y′ = εg(x, y, ε).

(1.2)

One tries to analyze the dynamics of (1.1) by suitably combining the dynamics of the
reduced problem

0 = f(x, y, 0),
ẏ = g(x, y, 0)

(1.3)
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and the dynamics of the layer problem

x′ = f(x, y, 0),
y′ = 0,

(1.4)

which are the limiting problems for ε = 0 on the slow and the fast time scales,
respectively.

The foundation of geometric singular perturbation theory was laid by Fenichel
[8]. The basic reasoning is as follows. The reduced problem (1.3) is a dynamical
system on the set S := {(x, y) ∈ R

n+m : f(x, y, 0) = 0}. In the following we refer
to S as the critical manifold. A normally hyperbolic invariant manifold of equilibria
S0 ⊂ S of the layer problem (1.4) persists as a locally invariant slow manifold Sε
of (1.1) for ε sufficiently small. The restriction of (1.1) to Sε is a small smooth
perturbation of the reduced problem (1.3). Moreover, there exist a stable and an
unstable invariant foliation with base Sε with the dynamics along each foliation being
a small perturbation of the suitable restriction of the dynamics of (1.4). For an
excellent introduction to geometric singular perturbation theory and an overview of
applications, we refer the reader to the survey by Jones [11].

However, despite many efforts, points on the critical manifold S where normal
hyperbolicity breaks down remained a major obstacle to the geometric theory. This
was a definite shortcoming in view of the abundance of nonhyperbolic points in ap-
plications.

One cause for the breakdown of normal hyperbolicity of a critical manifold S are
bifurcation points due to a zero eigenvalue of the Jacobian ∂f

∂x . The most common case
are folded critical manifolds. A well-known phenomenon in this context are relaxation
oscillations, i.e., solutions slowly moving towards a fold point, jumping from the fold
point to another stable branch of S, following the slow dynamics again until another
fold point is reached, jumping again, etc., thus, possibly forming periodic solutions
[9], [18], and [20].

Another delicate phenomenon occuring at folds are canard solutions which were
discovered and first analyzed by Benoit, Callot, Diener, and Diener [3]; see also [2].
A canard solution is a solution of a singularly perturbed system which is contained
in the intersection of an attracting slow manifold and a repelling slow manifold. The
existence of a canard solution can lead to canard explosion, i.e., a transition from
a small limit cycle to a relaxation oscillation through a sequence of canard cycles
[3], [6], [7]. For planar vector fields canards are nongeneric and occur persistently in
one-parameter families; yet in dimensions larger than two they can occur in generic
situations [2], [19], [23].

In this article we show how geometric singular perturbation theory can be ex-
tended to fold points and canard points in planar systems, i.e., we restrict our atten-
tion to the case n = m = 1. A fold point corresponds to the situation when the
critical manifold has a generic fold. Depending on the stability properties of the crit-
ical manifold and on the direction of the reduced flow, a number of cases are possible.
We analyze the so-called jump point, for which the reduced flow is directed towards
the fold. This is the situation which is relevant for relaxation oscillations. We show
how the slow manifolds (existing by the normally hyperbolic theory) extend in the
neighborhood of the singularity. The treatment of the fold point is a refinement of
the analysis in our earlier work [13]. A canard point is a fold point with an additional
degeneracy leading to a possibility of a canard solution. Again we analyze how slow
manifolds extend and show that a canard solution occurs along a codimension one
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curve in the parameter plane. In a complementary work [15] we carry out a similar
analysis for singularities of pitchfork and transcritical type.

Our approach relies on the blow-up method, which is a way of partially desin-
gularizing the vector field in the neighborhood of a singular point. After a blow-up
transformation, standard methods from dynamical systems theory can be applied.
Our proof of the existence of a canard solution is based on a variant of the Melnikov
method. The blow-up method was first applied to a singular perturbation problem
in the pioneering work of Dumortier and Roussarie [6], who analyzed the existence
of canard cycles in the van der Pol equation. One of the purposes of this work is to
build a bridge between the methods of [6] and geometric singular perturbation theory;
in particular, we use the blow-up method to answer the question of extending slow
manifolds near nonhyperbolic singularities.

The sequel of this article [14] is devoted to relaxation oscillations and canard
explosion. The methods and results of this paper are of central importance in our
analysis of these phenomena. Since the analysis of canard cycles is a more delicate
problem, we find it advantageous to treat these issues separately. In particular, we
prefer to use blow-up to obtain local results which in a second step can be used to
study global phenomena. We feel that this point of view is also useful in the analysis
of related problems. In this sense, our work is intended as a complement to the more
global approach in the work of Dumortier [5] and Dumortier and Roussarie [6].

In this article and in [14] we restrict our attention to the planar case. However,
the analysis carries over to higher-dimensional problems with one-dimensional critical
manifolds containing fold points. By means of a center-manifold reduction, all nor-
mally hyperbolic directions can be eliminated and one recovers the planar problems
considered here. A well-known problem where this is relevant is the traveling wave
problem for the FitzHugh–Nagumo equation [11]. For a similar approach to problems
with higher-dimensional critical manifolds, we refer the reader to [17] and [23].

The article is organized as follows. Section 2 contains the description and the
analysis of a generic fold. Here we give a detailed expository presentation of the
blow-up method. In section 3 we analyze a canard point.

2. Generic fold.

2.1. Assumptions and results. Consider the singularly perturbed ODE (1.2),
where (x, y) ∈ R

2 and ε is a small real parameter. Suppose that (x0, y0) is such that

f(x0, y0, 0) = 0,
∂f

∂x
(x0, y0, 0) = 0.(2.1)

Our goal is to obtain a characterization of the dynamics in a neighborhood of (x0, y0)
for sufficiently small values of ε. We make the following nondegeneracy assumptions:

∂2f

∂x2
(x0, y0, 0) �= 0,

∂f

∂y
(x0, y0, 0) �= 0, g(x0, y0, 0) �= 0.(2.2)

We assume, without loss of generality, that

(x0, y0) = (0, 0),
∂2f

∂x2
(0, 0, 0) > 0,

∂f

∂y
(x0, y0, 0) < 0

hold.
As before let S = {(x, y) : f(x, y, 0) = 0} be the critical manifold. The nondegen-

eracy assumptions imply that there exists a neighborhood U of the origin such that
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Fig. 2.1. Critical manifold, slow manifolds, and sections for the fold point.

(0, 0) is the only point in U ∩S, where ∂f
∂x vanishes and that S ∩U is approximately a

parabola. Let Sa (resp., Sr) denote its left (resp., right) branch, so that S = Sa ∪ Sr
(see Figure 2.1). The assumption ∂2f

∂x2 (0, 0, 0) > 0 implies that for y > 0 the branch Sa
is attracting and the branch Sr is repelling for the layer problem, which also explains
the notation. The origin is nonhyperbolic, weakly attracting from the left and weakly
repelling to the right (see Figure 2.1).

To determine the reduced dynamics we solve the equation f(x, y, 0) = 0 for y as
a function of x, i.e., y = ϕ(x). The reduced dynamics is then determined by

ϕ′(x)ẋ = g(x, ϕ(x), 0),(2.3)

which is singular at x = 0. Our assumptions on f and g imply that the direction
of the reduced flow is determined by the sign of g(0, 0, 0). We assume g(0, 0, 0) < 0.
This implies that the reduced flow on Sa and Sr is directed towards the fold point;
see Figure 2.1. Actually, orbits on Sa and Sr reach the fold point in finite time due
to the singularity at the fold point. The only possibility to continue from there in
the singular limit is along the (weakly) unstable fiber of the layer problem along the
positive x-axis. Thus, the curve Sa ∪ {(x, 0), x > 0} is expected to be a zeroth order
approximation. This is the situation relevant to relaxation oscillations; we refer to
this case as jump point. The case g(0, 0, 0) > 0 can be analyzed similarly.

It follows from the standard theory [8] that outside an arbitrarily small neigh-
borhood V of (0, 0), the manifolds Sa and Sr perturb smoothly to locally invariant
manifolds Sa,ε and Sr,ε for sufficiently small ε �= 0. We would like to point out that
Sa,ε and Sr,ε are actually very simple. They consist of single solutions. Note that
the slow manifolds are obtained as sections ε = const. of two-dimensional, locally
invariant, center-like manifolds Ma (resp., Mr) of the extended system

x′ = f(x, y, ε),
y′ = εg(x, y, ε),(2.4)

ε′ = 0

in the extended phase space R
3. For this extended system S × {0} is a manifold of

equilibria. Outside of a neighborhood of the fold point (0, 0, 0) the linearization of
system (2.4) at points Sa×{0} has a double zero eigenvalue and one uniformly hyper-
bolic (stable) eigenvalue. This allows us to conclude the existence of the attracting
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center-like manifold Ma; the manifold Mr is obtained in a similar way. At the fold
point (0, 0, 0) the linearization has a triple eigenvalue zero and the construction of
the slow manifolds breaks down. We focus our attention on Sa and investigate how
Sa,ε as well as nearby solutions behave as they pass near the fold point. We expect
that close to the fold point a transition from slow motion along Sa,ε to a fast motion
almost parallel to the unstable fibers occurs. A similar analysis could be carried out
for Sr,ε.

Remark 2.1. It is known that the slow manifolds Ma and Mr and hence their
sections Sa,ε and Sr,ε are not unique and are determined only up to O(e−c/ε), where
c is some positive constant. We make an arbitrary choice of Ma and Mr and indicate
at the end that our results are independent of this choice.

We now view the previously introduced neighborhood U as a neighborhood of
(0, 0, 0) in R

3. We pick U sufficiently small, so that g(x, y, ε) �= 0 for (x, y, ε) ∈ U .
Before stating the main results we rewrite system (1.2) (resp., (2.4)) in a canonical
form. By rescaling x, y, ε, and t we obtain

x′ = −y + x2 + h(x, y, ε),

y′ = εg(x, y, ε),(2.5)

ε′ = 0

with h(x, y, ε) = O(ε, xy, y2, x3), g(x, y, ε) = −1 +O(x, y, ε), where the new function
g is related to the original one by the rescaling. This form of the equations will be
used throughout the forthcoming analysis.

For small ρ > 0 and a suitable interval J ⊂ R let

∆in = {(x, ρ2), x ∈ J}

be a section in U transverse to Sa and let

∆out = {(ρ, y), y ∈ R}

be a section in U transverse to the fast fibers (see Figure 2.1). Note, that the same
constant ρ is used throughout this paper.

Let π : ∆in → ∆out be the transition map for the flow of (1.2).
Theorem 2.1. Under the assumptions made in this section there exists ε0 > 0

such that the following assertions hold for ε ∈ (0, ε0]:
1. The manifold Sa,ε passes through ∆out at a point (ρ, h(ε)), where h(ε) =
O(ε2/3).

2. The transition map π is a contraction with contraction rate O(e−c/ε), where
c is a positive constant.

In the context of matched asymptotic expansions assertion (1) of the theorem is
well known; see, e.g., [18]. A blow-up based derivation of the asymptotic expansion of
h(ε) is given in [16]. Assertion (2) of the theorem explains why the nonuniqueness of
the slow manifold Ma (resp., Sa,ε) does not affect our results. Two different choices
of these manifolds are exponentially close at ∆in and even more so at ∆out due to the
exponential contraction during the passage.

2.2. Blow-up. In this section we define and describe the blow-up transforma-
tion. The basic observation is that the fold point (0, 0, 0) is a more degenerate equi-
librium point of system (2.5) than the other points of the critical manifold S. The
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linearization of system (2.5) at the origin has a triple zero eigenvalue while the lin-
earization at the other points of the critical manifold S has a double zero eigenvalue
and one negative (resp., positive) eigenvalue for x < 0 (resp., x > 0).

The important insight in [6] is that blow-up techniques are the right tool to
analyze nilpotent equilibria like the fold point, viewed as a degenerate equilibrium
of the extended system (2.4). The blow-up method is essentially a clever coordinate
transformation by which the degenerate equilibrium is “blown-up” to a two-sphere. In
certain directions transverse to the sphere and even on the sphere, one gains enough
hyperbolicity to allow a complete analysis by standard techniques. The technique
is a generalization of the well known blow-up methods for degenerate equilibria of
planar vector fields [5]. In the simplest situations this corresponds to blowing-up
the degenerate equilibrium to the circle r = 0 by rewriting the vector field in polar
coordinates (r, ϑ) ∈ R× S1. The analysis is often simplified substantially by using a
quasi-homogeneous blow-up, i.e. by using different powers (weights) of r for different
variables in the defining transformation.

The blow-up transformation for system (2.5) is

x = r̄x̄, y = r̄2ȳ, ε = r̄3ε̄(2.6)

with weights 1, 2, and 3. We define B = S2 × [0, ρ], where the constant ρ > 0 is
related to ε0 by ε0 = ρ3. We consider the blow-up transformation as a mapping

Φ : B → R
3(2.7)

with (x̄, ȳ, ε̄) ∈ S2. We choose ρ > 0 sufficiently small such that system (2.4) is
described by the canonical form (2.5) in the region Φ(B). We will be interested only
in nonnegative values of ε̄ and r̄, but everything that follows makes sense for negative
values as well, i.e., there are no technical problems at ∂B.

LetX denote the vector field corresponding to (2.5). SinceX vanishes at the point
(0, 0, 0), there exists a vector field X̄ on B such that Φ∗X̄ = X, where Φ∗ is induced
by Φ. It remains to study the vector field X̄ on the manifold B. Note that this suffices,
since Φ(B) is a full neighborhood of the origin. In principle one could use spherical
coordinates on S2; however, this would lead to rather lengthy computations. It is
natural and almost mandatory to use different charts for the manifold B to simplify
the analysis. One reason for this is that—as we will see later—the dynamics in the
individual charts is very different.

We will now introduce the charts used later in this paper. Loosely speaking, we
will define a chartK2, which describes a neighborhood of the upper half-sphere defined
by ε̄ > 0, and charts K1 and K3 which describe neighborhoods of parts of the equator
of S2 which are needed in the analysis. In problems where a neighborhood of the
whole equator needs to be analyzed, two further charts must be defined analogously.
The subscripts in K1, K2, and K3 denote the order in which the charts are used later.

The charts K1, K2, and K3 are obtained by setting ȳ = 1, ε̄ = 1, and x̄ = 1,
respectively, in the blow-up transformation (2.6). The blow-up transformation in the
charts Ki, i = 1, 2, 3 is given by

x = r1x1, y = r21, ε = r31ε1,(2.8)

x = r2x2, y = r22y2, ε = r32,(2.9)
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x = r3, y = r23y3, ε = r33ε3(2.10)

with coordinates (x1, r1, ε1) ∈ R
3, (x2, y2, r2) ∈ R

3, and (r3, y3, ε3) ∈ R
3. The point

(0, 0, 0) is blown-up to the plane ri = 0, i = 1, 2, 3. In our analysis we will need to
change coordinates between these charts on their overlap domains. A simple compu-
tation gives the following lemma.

Lemma 2.2. Let κ12 denote the change of coordinates from K1 to K2. Then κ12

is given by

x2 = x1ε
−1/3
1 , y2 = ε

−2/3
1 , r2 = r1ε

1/3
1 for ε1 > 0,(2.11)

and κ−1
12 is given by

x1 = x2y
−1/2
2 , r1 = r2y

1/2
2 , ε1 = y

−3/2
2 for y2 > 0 .(2.12)

Let κ23 denote the change of coordinates from K2 to K3. Then κ23 is given by

r3 = r2x2, y3 = y2x
−2
2 , ε3 = x−3

2 for x2 > 0,(2.13)

and κ−1
23 is given by

x2 = ε
−1/3
3 , y2 = y3ε

−2/3
3 , r2 = r3ε

1/3
3 for ε3 > 0 .(2.14)

The above constructions make perfect sense if restricted to B. We introduce the
following notation: P̄ denotes an object in the blow-up which corresponds to an
object P in the original problem. If P̄ is described in one of the charts, then Pi
denotes the object in chart Ki, i = 1, 2, 3. This notation is used only when necessary,
mostly to denote various invariant manifolds.

Remark 2.2. In the work of Dumortier and Roussarie the chart K2 corresponding
to a directional blow-up in the direction of ε is called family rescaling, and charts used
near the equator are called phase directional rescaling.

2.3. Blow-up of (1.2) with ε = 0. It is instructive to recall how the usual
blow-up method applies to the layer problem, i.e., system (2.5) with ε = 0. Setting
ε̄ = 0 in (2.6) defines a (planar, polar) blow-up of the degenerate equilibrium at the
origin. To see this, note that B ∩ {ε̄ = 0} = S1 × [0, ρ], where S1 = {(x̄, ȳ, 0) ∈ S2}.
Due to the equation ε′ = 0, the set S1 × [0, ρ] is invariant for X̄, which, restricted to
S1 × [0, ρ], is the blow-up of (1.2) with ε = 0.

Let X̄0 = X̄|S1×[0,ρ]. Figure 2.2 shows the phase portrait of X̄0. We briefly
describe this phase portrait, referring the reader to the sections on charts K1 and
K3 for technical details. On the invariant circle S1, there are four equilibria: pa, pr,
qin, qout. These equilibria are hyperbolic for the flow on S1, the points pa and qout
are attracting, and pr and qin are repelling. The points pa and pr are end points
of the blown-up critical manifolds S̄a and S̄r, which are lines of equilibria for X̄0.
Hence the radial direction is nonhyperbolic at pa and pr. The points qin and qout are
the intersection points of S1 with the blow-up of the critical fiber. These points are
hyperbolic in the radial direction.

2.4. Dynamics in chart K2. The dynamics of the blown-up vector field X̄ in
a neighborhood of the upper half-sphere is studied in chart K2. The transformation
(2.9) is just a rescaling of (x, y), since r2 = ε1/3. By inserting (2.9) into system (2.5)
we obtain the vector field X̄ in chart K2. Since r

′
2 = 0, this blown-up system is still a
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qin qout

prpa

Fig. 2.2. Phase portrait of the blown-up vector field for ε̄ = 0.

family of planar vector fields with parameter r2. We now desingularize the equations
by rescaling time t2 := r2t, so that the factor r2 disappears. This desingularization is
necessary to obtain a nontrivial flow on the blown-up locus r2 = 0. We obtain

x′2 = x2
2 − y2 +O(r2),

y′2 = −1 +O(r2),(2.15)

r′2 = 0,

where ′ denotes differentiation with respect to t2.
Remark 2.3. The rescaled form (2.15) of the original problem plays a crucial

role in all approaches to the fold point by means of asymptotic expansions; e.g. [12],
[18], and [20]. In these investigations solutions of (2.15) are used as inner solutions
connecting (matching) solutions obtained as perturbations of the reduced problem to
solutions obtained as solutions of the layer problem.

We first consider the case r2 = 0, which gives

x′2 = x2
2 − y2,(2.16)

y′2 = −1.
This is a Riccati equation whose solutions can be expressed in terms of special func-
tions. The relevant results can be found in [18, pp. 68–72]. Here we restate the
results needed in our analysis. For the sake of readability we omit the subscript 2 of
the variables.

Proposition 2.3 (see [18]). The Riccati equation (2.16) has the following prop-
erties:

1. Every orbit has a horizontal asymptote y = yr, where yr depends on the orbit
such that x→∞ as y approaches yr from above.

2. There exists a unique orbit γ2 which can be parametrized as (x, s(x)), x ∈ R

and is asymptotic to the left branch of the parabola x2 − y = 0 for x→ −∞.
The orbit γ2 has a horizontal asymptote y = −Ω0 < 0 such that x→∞ as y
approaches −Ω0 from above.

3. The function s(x) has the asymptotic expansions

s(x) = x2 +
1

2x
+O

(
1

x4

)
, x→ −∞,
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s(x) = −Ω0 +
1

x
+O

(
1

x3

)
, x→∞.

4. All orbits to the right of γ2 are backward asymptotic to the right branch of
the parabola x2 − y = 0.

5. All orbits to the left of γ2 have a horizontal asymptote y = yl > yr, where yl
depends on the orbit, such that x→ −∞ as y approaches yl from below.

Remark 2.4. The constant Ω0 is the smallest positive zero of

J−1/3(2z
3/2/3) + J1/3(2z

3/2/3),

where J−1/3 (resp., J1/3) are Bessel functions of the first kind [18].

γ2

y2

x2

−Ω0

Fig. 2.3. Solutions of the Riccati equation (2.16).

The assertions of Proposition 2.3 are illustrated in Figure 2.3. We will see that
the orbit γ̄ corresponding to the special solution γ2 is backward asymptotic to the
equilibrium pa on the equator of S2. The importance of the orbit γ̄ is that it “leads”
the incoming attracting slow manifold across the upper half of the sphere S2 to the
point qout from where take-off in the direction of the fast flow occurs.

We need to describe the transition map for (2.15) within a bounded domain D2.
Within such a domain we can deduce properties of the flow of (2.15) from Proposition
2.3 by using regular perturbation theory. A detailed study of the effect of the O(r2)
perturbations outside D2, i.e., close to infinity, will be carried out in the charts K1

and K3. For δ > 0 we define the following sections:

Σin2 = {(x2, y2, r2) : y2 = δ−2/3}, Σout2 = {(x2, y2, r2) : x2 = δ−1/3}.
Let Π2 be the transition map of the flow (2.15) from Σin2 to Σout2 . Let q0 = γ2 ∩ Σin2 .

Proposition 2.4. The transition map Π2 has the following properties:
1.

Π2(q0) = (δ−1/3,−Ω0 + δ
1/3 +O(δ), 0).

2. A neighborhood of q0 is mapped diffeomorphically onto a neighborhood of
Π2(q0).

Proof. The proof follows directly from Proposition 2.3 and regular perturbation
theory.
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Fig. 2.4. Geometry and dynamics in chart K1.

2.5. Dynamics in chart K1. Chart K1 is used to analyze the dynamics of the
blown-up vector field X̄ in a neighborhood of the equator containing the equilibria
pa and pr. By inserting (2.8) into system (2.5), we obtain the vector field X̄ in chart
K1. We desingularize the blown-up vector field X̄ by dividing by r1. This gives

x′1 = −1 + x2
1 +

1

2
ε1x1 +O(r1),

r′1 =
1

2
r1ε1(−1 +O(r1)),(2.17)

ε′1 =
3

2
ε21(1 +O(r1)) ,

where ′ denotes differentiation with respect to a rescaled time variable t1.
Remark 2.5. The equation for ε′1 is obtained from the equation ε′ = 0, which

implies the relation 3r21r
′
1ε1 + r31ε

′
1 = 0. Hence ε = r31ε1 is a constant of motion in

chart K1. Nevertheless, we will see that it is useful to treat the blown-up system as a
three-dimensional problem. This seemingly artificial construction is actually crucial
for the whole approach.

Remark 2.6. For r1 > 0, system (2.17) has the same orbits as the blown-up vector
field X̄ with the corresponding solutions having a different time parametrization.
Since we deal only with transition maps between sections, time parametrization of
solutions has no significance to our analysis.

System (2.17) has two invariant subspaces, namely, the plane r1 = 0 and the
plane ε1 = 0. Their intersection is the invariant line l1 := {(x1, 0, 0) : x1 ∈ R};
see Figure 2.4. The dynamics on l1 is governed by x′1 = −1 + x2

1. There are two
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equilibria pa = (−1, 0, 0) and pr = (1, 0, 0). For the flow on the line l1 both points are
hyperbolic, the relevant eigenvalue is −2 for pa and 2 for pr, i.e., pa is attracting and
pr is repelling. The dynamics in the invariant plane ε1 = 0 is governed by

x′1 = −1 + x2
1 +O(r1),(2.18)

r′1 = 0.

This system has a normally hyperbolic curve Sa,1 of equilibria emanating from pa
and a curve Sr,1 of equilibria emanating from pr; see Figure 2.4. For r1 small, this
follows from the implicit function theorem. Actually, Sa,1 and Sr,1 are precisely the
branches of the critical manifold S described in section 2.1; this also explains the
notation. Along the curve Sa,1 the linearization of (2.18) has one zero eigenvalue, the
other eigenvalue is negative and close to −2 for r1 small. Along Sr,1 the situation is
similar; however, the nonzero eigenvalue is positive and close to 2 for r1 small.

Remark 2.7. Equation (2.18) is the directional (in the positive y-direction) blow-
up of the fold point (0, 0) of the layer problem, i.e., system (1.2) with ε = 0. The
line l1 = 0 corresponds to the fold point. We have gained normal hyperbolicity of
the lines of equilibria Sa,1 (resp., Sr,1) at the points pa (resp., pr) due to the blow-up
(compare Figure 2.2).

The dynamics in the invariant plane r1 = 0 is governed by

x′1 = −1 + x2
1 +

1

2
ε1x1,(2.19)

ε′1 =
3

2
ε21 .

We recover the equilibria points pa and pr; however, there exists an additional zero
eigenvalue due to the second equation. The corresponding eigenvector is (−1, 4) at
both equilibria. Hence, there exist one-dimensional center manifolds Na,1 at pa and
Nr,1 at pr along which ε1 increases for ε1 > 0. Note that the branch of the attracting
center manifold Na,1 at pa in the half space ε1 > 0 is unique, while the repelling
center manifold Nr,1 at pr in the half space ε1 > 0 is not unique; see Figure 2.4. We
collect the information we have obtained so far in the following lemma.

Lemma 2.5. The linearization of system (2.17) at pj, j = a, r has the following
real eigenvalues: λ1 = −2 at pa and λ1 = 2 at pr with eigenvector (1, 0, 0) correspond-
ing to the flow on l1, λ2 = 0 with an eigenvector tangent to Sj,1, and λ3 = 0 with
an eigenvector (−1, 0, 4) corresponding to the center direction in the invariant plane
r1 = 0.

We restrict our attention to the set

D1 := {(x1, r1, ε1) : x1 ∈ R, 0 ≤ r1 ≤ ρ, 0 ≤ ε1 ≤ δ},
where ρ > 0 is the constant defining the sections ∆in and ∆out in section 2.1 and
δ > 0 is the constant defining the sections Σin2 and Σout2 in section 2.4. Note that all
objects defined later extend smoothly to negative values of r1 and ε1; i.e., there are
no problems due to the boundaries r1 = 0 and ε1 = 0. We have the following result.

Proposition 2.6. For ρ, δ sufficiently small the following assertions hold for
system (2.17):

1. There exists an attracting two-dimensional Ck-center manifold Ma,1 at pa
which contains the line of equilibria Sa,1 and the center manifold Na,1. In D1

the manifold Ma,1 is given as a graph x1 = ha(r1, ε1). The branch of Na,1 in
r1 = 0, ε1 > 0 is unique.
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2. There exists a repelling two-dimensional Ck-center manifold Mr,1 at pr which
contains the line of equilibria Sr,1 and the center manifold Nr,1. In D1 the
manifold Mr,1 is given as a graph x1 = hr(r1, ε1). The branch of Nr,1 in
r1 = 0, ε1 > 0 is not unique.

3. There exists a stable invariant foliation Fs with baseMa,1 and one-dimensional
fibers. For any c > −2 there exists a choice of positive ρ and δ such that the
contraction along Fs during a time interval [0, T ] is stronger than ecT .

4. There exists an unstable invariant foliation Fu with base Mr,1 and one-
dimensional fibers. For any c < 2 there exists a choice of positive ρ and
δ such that the expansion along Fu during a time interval [0, T ] is stronger
than ecT .

5. The unique branch of Na,1 in r1 = 0, ε1 > 0 is equal to γ1 := κ−1
12 (γ2),

wherever κ−1
12 is defined, i.e., along the part of γ2 corresponding to y2 > 0.

Proof. Assertions (1)–(4) follow from Lemma 2.5 and center manifold theory; see,
e.g., [4], [10]. Proposition 2.3 and the coordinate transformation (2.12) imply that
κ−1

12 (γ2) has the expansion

(
x2

(
x2

2 +
1

2x2
+O

(
1

x4
2

))−1/2

, 0,

(
x2

2 +
1

2x2
+O

(
1

x4
2

))−3/2
)

as x2 → −∞. Expanding these terms in powers of x2 shows that κ−1
12 (γ2) converges

to pa tangent to the center-direction (−1, 0, 4) as x2 → −∞. This and the uniqueness
of the branch of Na,1 in r1 = 0, ε1 > 0 imply assertion (5).

Remark 2.8. Clearly, the center manifold Ma,1 in chart K1 corresponds to a
locally invariant manifold M̄a of the blown-up vector field X̄. The importance of
assertion (5) in the above proposition is that it allows us to track the manifold M̄a

as it moves across the sphere S2 guided by the special orbit γ̄ corresponding to the
solution γ2 of the Riccati equation.

We now define the following sections:

Σin1 := {(x1, r1, ε1) ∈ D1 : r1 = ρ}, Σout1 := {(x1, r1, ε1) ∈ D1 : ε1 = δ}.

Remark 2.9. Note that Σin1 maps under the blow-up transformation (2.8) to ∆in

and Σout1 maps under the coordinate transformation (2.11) to Σin2 . An important
part of our description of the flow near the fold is the description of the transition map
from Σin1 to Σout1 near the center manifoldsMa,1 andMr,1. Since the neighborhood of
Ma,1 corresponds to the neighborhood of the attracting branch of the slow manifold
of (1.2), we are more interested in understanding the dynamics near Ma,1. Yet the
analysis of the two cases is very similar, so we handle them simultaneously.

Let R1 be the rectangle in Σin1 defined by |1+x1| ≤ β1, and let R2 be the rectangle
in Σout1 defined by |1− x1| ≤ β1 for sufficiently small β1 > 0. The constants ρ, δ, and
β1 can be chosen such that Ma,1 ∩ Σin1 ⊂ R1 and Mr,1 ∩ Σout1 ⊂ R2. For 0 ≤ ε̃ ≤ δ
and 0 ≤ r̃ ≤ ρ, let Ia(ε̃) be the line R1 ∩{ε1 = ε̃} and Ir(r̃) be the line R2 ∩{r1 = r̃}.

In the neighborhood of pj , j = a, r, the flow of (2.17) carries Σin1 to Σout1 . Let
Π1 : Σin1 → Σout1 be the transition map defined by the flow of (2.17). The map Π1

is well defined on R1, at least for small enough values of ρ, δ, and β1. The map Π1

is defined in a wedge-shaped set in Σin1 around Mr,1 that shrinks to Sr,1 for ε1 → 0.
The reason for this difference is thatMa,1 is attracting andMr,1 is repelling. We have
the following estimate of transition times.
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Lemma 2.7. The transition time T of a solution of system (2.17) from a point
p = (x1, ρ, ε1) ∈ Σin1 to the point Π1(p) ∈ Σout1 satisfies

T =
2

3

(
1

ε1
− 1

δ

)
(1 +O(ρ)) .(2.20)

Proof. The evolution of ε1 determines the transition time of solutions from Σin1 to
Σout1 . The relevant equation is

ε′1 =
3

2
ε21(1−O(r1)) .(2.21)

The result follows immediately by integrating (2.21).
Proposition 2.8. For ρ, δ, and β1 sufficiently small the transition map Π1 :

Σin1 → Σout1 defined by the flow of system (2.17) has the following properties:
1. Π1(R1) is a wedge-like region in Σout1 . Π−1

1 (R2) is a wedge-like region in Σin1 .
2. More precisely, for fixed c < 2 there exists a constant K depending on the

constants c, ρ, δ, and β1 such that
(i) for ε1 ∈ (0, δ] the map Π1|Ia(ε1) is a contraction with contraction rate

bounded by Ke
− 2c

3

(
1
ε1

− 1
δ

)
.

(ii) for r1 ∈ (0, ρ] the map Π−1
1 |Ir(r1) is a contraction with contraction rate

bounded by Ke
− 2c

3

(
ρ3

r3
1
δ
− 1

δ

)
.

Proof. The assertions follow from Proposition 2.6 and Lemma 2.7. The estimate
for the contraction rate of Π−1

1 in the second assertion uses the identity ε1ρ
3 = δr31

for p = (x1,in, ρ, ε1) and Π1(p) = (x1,out, r1, δ) to express the transition time in terms
of r1.

All our results concerning the dynamics in chart K1 are illustrated in Figure 2.4.

2.6. Dynamics in chart K3. We use chart K3 to analyze the dynamics of the
blown-up vector field X̄ in a neighborhood of the equator containing the point qout.
Applying transformation (2.10) to system (2.5) and desingularizing by dividing out
the factor r3, we obtain

r′3 = r3F (r3, y3, ε3),

y′3 = ε3(−1 +O(r3))− 2y3F (r3, y3, ε3),(2.22)

ε′3 = −3ε3F (r3, y3, ε3),
where F (r3, y3, ε3) := 1− y3 + O(r3). The planes ε3 = 0 and r3 = 0 and the y3-axis
are invariant under the flow of (2.22).

Lemma 2.9. The point qout = (0, 0, 0) is a hyperbolic equilibrium of system
(2.22) with eigenvalues: λ1 = 1 with eigenvector (1, 0, 0) corresponding to the flow in
ε3 = 0, λ2 = −2 with eigenvector (0, 1, 0) corresponding to the flow on the y3-axis,
and λ3 = −3 with eigenvector (0, 1, 1) corresponding to the flow in r3 = 0.

Proof. Computation.
Now we transform the part of the special orbit γ2 (introduced in Proposition 2.3)

corresponding to x2 > 0 to chart K3; i.e., we define γ3 := κ23(γ2).
Lemma 2.10. The orbit γ3 lies in the plane r3 = 0, converges to qout as ε3 → 0,

and is tangent at qout to the vector (0, 1, 0).
Proof. The coordinate transformation (2.13) and assertion (3) from Proposi-

tion 2.3 imply that the orbit γ3 has the expansion (0, −Ω0ε
2/3
3 + ε3 +O(ε

5/3
3 ), ε3 ) as

ε3 → 0. The lemma follows.
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Lemma 2.10 implies that parts of the manifold M̄a corresponding to r̄ > 0 come
close to the equilibrium qout. Hence, we need a precise description of the dynamics
of system (2.22) close to qout. This is a somewhat delicate problem because of the
resonance λ2 = λ1 + λ3, which implies that there exists no smooth transformation of
the nonlinear flow to the flow of the corresponding linearization. It turns out that,
due to the simple form of the equations, it is quite easy to work out the lowest order
approximation of the flow.

For the description of the flow in a neighborhood of qout we define sections Σin3
and Σout3 as follows:

Σin3 = {(r3, y3, ε3) : r3 ∈ [0, ρ], y3 ∈ [−β3, β3], ε3 = δ},
Σout3 = {(r3, y3, ε3) : r3 = ρ, y3 ∈ [−β3, β3], ε3 ∈ [0, δ]},

where ρ and δ are the same constants as before, and β3 > 0 is sufficiently small; see
Figure 2.5.

Let Π3 be the transition map from Σin3 to Σout3 . Our goal is to obtain a formula
for the map Π3. Before stating the relevant result we need to discuss the structure of
(2.22) in more detail. We first divide (2.22) by the factor F (r3, y3, ε3), which is close
to one near qout, and obtain

r′3 = r3,

y′3 = −2y3 − ε3
1− y3 + r3ε3G(r3, y3, ε3),(2.23)

ε′3 = −3ε3,
where G(r3, y3, ε3) is a C

k-function. Consider (2.23) with r3 = 0, namely,

y′3 = −2y3 − ε3
1− y3 ,

ε′3 = −3ε3.(2.24)

By construction, system (2.24) is, up to rescaling of time, the Riccati equation (2.16)
transformed to K3. The corresponding linearization has eigenvalues λ2 = −2 and
λ3 = −3; hence, (2.16) can be linearized by a near identity transformation of the
form

y3 = ψ(ỹ3, ε3),(2.25)

where the function ψ is Ck smooth and ψ(ỹ3, ε3) = ỹ3 + O(ỹ3ε3); see [22]. The
corresponding inverse transformation is denoted by ỹ3 = ψ̃(y3, ε3) = y3 + O(y3ε3).
Under the transformation (2.25) system (2.23) becomes

r′3 = r3,(2.26a)

ỹ′3 = −2ỹ3 − ε3 + r3ε3H(r3, ỹ3, ε3),(2.26b)

ε′3 = −3ε3,(2.26c)

with a Ck-function H. We have the following result.
Proposition 2.11. The transition map Π3 for system (2.22) has the form

Π3(r3, y3, δ) =




ρ

Π32(r3, y3, δ)(
r3
ρ

)3

δ
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with Π32(r3, y3, δ) given by

Π32(r3, y3, δ) = (ψ̃(y3, δ)− δ)
(
r3
ρ

)2

+O(r33 ln r3).

Proof. In the following we suppress the subscript 3 in system (2.26). Fix (ri, ỹi, δ) ∈
Σin and (ρ, ỹo, εo) ∈ Σout. Consider a solution (r, ỹ, ε)(t) of (2.26) and T > 0 such
that r(0) = ri, r(T ) = ρ, ỹ(0) = ỹi, ỹ(T ) = ỹo, ε(0) = δ, ε(T ) = εo. We will now com-
pute (T, ỹo, εo) as a function of (ri, ỹi). Equations (2.26a) and (2.26c) have explicit
solutions r = etri, ε = δe−3t. The requirement r(T ) = ρ produces an expression for
T , namely,

T = ln

(
ρ

ri

)
.(2.27)

Let z be a new coordinate defined by ỹ = e−2t(ỹi−δ+z)+δe−3t. We get the following
equation for z:

z′ = riHz(z, ri, ỹi, t),(2.28)

where Hz(z, ri, ỹi, t) = δH(etri, e
−2t(ỹi − δ + z) + δe−3t, δe−3t). The transition time

T is still given by (2.27). Note that the function Hz is uniformly bounded on the
relevant domain. Using (2.28) we obtain z(T ) = riO(T ) = O(ri ln(

ρ
ri
)). It follows

that

ỹ(T ) = (ỹi − δ)
(
ri
ρ

)2

+O

(
r3i
ρ2

ln

(
ρ

ri

))
.(2.29)

Hence

Π32(r3, y3, δ) = ψ

(
(ψ̃(y3, δ)− δ)

(
r3
ρ

)2

+O(r33 ln r3),

(
r3
ρ

)3

δ

)

= (ψ̃(y3, δ)− δ)
(
r3
ρ

)2

+O(r33 ln r3)

and the result follows.
Remark 2.10. The following observation will be used later in this paper to obtain

the leading order asymptotics of the extended slow manifold Sa,ε. The y3 coordinate
of the point where the special orbit γ3 intersects the section Σin3 is y∗3 = δ2/3s(δ−1/3)
(see the proof of Lemma 2.10). By comparing the asymptotics of γ3 and the exact
solution of system (2.26) restricted to r3 = 0, i.e., the Riccati equation written in the
linearizing coordinates (ỹ3, ε3), it follows that ψ̃(y

∗
3 , δ)− δ = −Ω0δ

2/3.

2.7. Phase portrait on the upper part of S2. The sphere S2 is invariant
under the desingularization of the blown-up vector field X̄. The equator S1 is invari-
ant. On S1 there are four equilibria pa, pr, qin, qout. These equilibria are hyperbolic
for the flow on S1, the points pa and qout are attracting, and pr and qin are repelling.
All orbits in S2,+ are forward asymptotic to qout. The special orbit γ̄ is backward
asymptotic to pa and, as it arrives at qout, it is tangent to S

1. Besides γ̄ there exist
two families of trajectories: backward asymptotic to pr or backward asymptotic to
qin. The corresponding phase portrait of S2 is shown in Figure 2.6.
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Fig. 2.5. Geometry and dynamics of system (2.22) near the equilibrium qout.

pr
pa

qin qoutγ

Fig. 2.6. Blow-up of a fold (jump) point restricted to S2.
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2.8. Proof of the main result. In this section we prove Theorem 2.1 by com-
bining the results obtained in the individual charts. The idea of the proof is to analyze
the evolution of the center manifold Ma,1 and the rectangle R1 under the flow of the
blown-up vector field X̄. We denote the corresponding global invariant manifold by
M̄a. The intersection of M̄a with S2,+ is the special orbit γ̄ connecting the equilibria
pa and qout. It follows that a trajectory starting in or nearby M̄a will remain close to
γ̄ until it reaches the vicinity of qout. There the trajectory follows the local dynamics
near qout and is repelled in the unstable direction of qout.

Proof of Theorem 2.1. We define the map Π : Σin1 → Σout3 by

Π := Π3 ◦ κ23 ◦Π2 ◦ κ12 ◦Π1.

The map Π is the transition map from Σin1 to Σout3 for the flow induced by the blown-
up vector field X̄ on B. We will analyze Π(R1 ∩Ma,1) and then use the fact that, by
construction, the transition map π is given by π = Φ ◦Π ◦ Φ−1 for ε > 0.

It follows from Proposition 2.8 that Π1(R1 ∩ Ma,1) ⊂ Σout1 is a smooth curve
transverse to the set {r1 = 0}. It follows that κ12(Π1(R1 ∩ Ma,1)) is a smooth
curve transverse to the plane {r2 = 0}. Proposition 2.4 implies that the image of
this curve under Π2 has the form {(δ−1/3, hout2 (r2), r2) : r2 ∈ [0, ρδ1/3]}, where
hout2 : [0, ρδ1/3] → R is a smooth function. Under the transformation κ23, this
curve transforms to a smooth curve of the form {(r3, hin3 (r3), δ) : r3 ∈ [0, ρ]} with
(0, hin3 (0), δ) = κ23(γ2∩Σout2 ). Proposition 2.11 now implies that Π(R1∩Ma,1) has the

form {(ρ, hout3 (ε3), ε3) : ε3 ∈ [0, δ]}, where hout3 (ε3) = O(ε
2/3
3 ). This proves assertion

(1) of the theorem.
We now prove assertion (2). It follows from Proposition 2.8 that Π1(R1) is a

wedge-like region around Π(R1 ∩ Ma,1) of width O(e−c/ε1), where c > 0 is some
constant. Since κ12, Π2 and κ23 are diffeomorphisms restricted to Σout1 , Σin2 , and Σout2 ,
respectively, it follows that κ23 ◦Π2 ◦κ12 ◦Π1(R1) is also a wedge-like region of width
O(e−c/ε1) around κ23 ◦Π2 ◦κ12 ◦Π1(R1∩Ma,1). Finally, we apply Proposition 2.11 to
conclude that Π(R1) is a wedge-like region of width O(e−c/ε1) around Π(R1 ∩Ma,1).
The evolution of R1 in the three charts is shown in Figure 2.7. Because ε = ρ3ε1 =
ρ3ε3 is a constant of motion for the flow of X̄, lines ε1 = ε/ρ3 in Σin1 are mapped
to lines ε3 = ε/ρ3 in Σout3 . Restricted to such lines the map Π is a contraction with
contraction rate O(e−c/ε1) for some c > 0. Assertion (2) follows by applying the
appropriate blow-down transformations.

The dynamics of the blown-up vector field X̄, and in particular the center manifold
M̄a, are shown in Figure 2.7.

Remark 2.11. Remark 2.10 implies that the function hout3 (ε3) has the asymptotic
expansion

hout3 (ε3) = −Ω0ε
2/3
3 + o(ε

2/3
3 ).

The corresponding expansion for the function h(ε) in Theorem 2.1 is

h(ε) = −Ω0ε
2/3 + o(ε2/3).

This result is well known; see, e.g., [18], where it is also shown that the next term in
the expansion is O(ε ln ε). Our analysis, in particular the description of the map Π3

in Proposition 2.11, shows that the occurrence of this term is due to the resonance
λ2 = λ1 + λ3 at the equilibrium qout; see section 2.6.
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Fig. 2.7. Geometry and dynamics of the blown-up vector field X̄.

3. Canard point.

3.1. Assumptions and results. In this section we consider a one parameter
family of ODEs similar to (1.2), namely,

x′ = f(x, y, λ, ε),
y′ = εg(x, y, λ, ε).(3.1)

We assume that (x0, y0) = (0, 0) is a nondegenerate fold point of the critical manifold
f(x, y, λ, 0) = 0 for λ0 = 0. We assume further that g(0, 0, 0, 0) = 0. This gives the
following set of defining conditions for the considered singularity:

f(0, 0, 0, 0) = 0,
∂f

∂x
(0, 0, 0, 0) = 0, g(0, 0, 0, 0) = 0(3.2)

with the nondegeneracy assumptions

∂2f

∂x2
(0, 0, 0, 0) �= 0,

∂f

∂y
(0, 0, 0, 0) �= 0.(3.3)

This implies that the critical manifold has a nondegenerate fold point for λ in a
suitable interval. Without loss of generality we assume that the fold point is (0, 0)
for all values of λ. This can always be achieved by a λ-dependent translation. The
remaining nondegeneracy assumptions defining a canard point are

∂g

∂x
(0, 0, 0, 0) �= 0,

∂g

∂λ
(0, 0, 0, 0) �= 0 .(3.4)
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These conditions insure that the nullcline g(x, y, λ, 0) = 0 is transverse to the critical
manifold S and the intersection point of S and g(x, y, λ, 0) = 0 passes through the
fold point (0, 0) with nonzero speed as λ varies.

Let the critical manifold S, its left and right branches Sa and Sr, and the neigh-
borhoods U and V be defined as in section 2. The manifolds Sa,ε and Sr,ε exist
outside of V just as they did for a simple fold. Here we ask basically the same ques-
tion, namely, How can Sa and Sr be extended? The situation is, however, quite
different, since, for special choices of λ and ε, Sa,ε extends to Sr,ε. This is caused by
the special structure of the slow flow for λ = 0.

As in the case of the fold point, the reduced dynamics is governed by the equation

ẋ =
g(x, ϕ(x), 0, 0)

ϕ′(x)
,(3.5)

where ϕ(x) is obtained by solving the equation f(x, y, 0, 0) for y as a function of x.
It follows from the above assumptions that the right-hand side of (3.5) is a smooth
function at the origin. Let x0(t) denote a maximal solution of (3.5) with the property
that x0(0) = 0. It follows that x0(t) exists and passes through the fold point (see
Figure 3.1a). If x0(t) connects Sa to Sr then, heuristically, one can expect a connection
from Sa,ε to Sr,ε. In what follows we show that such a connection exists along a curve
in the (λ, ε)-plane.

Remark 3.1. The case when x0(t) connects Sr to Sa can also be treated with the
methods of this article, but it is less interesting and will be omitted.

aS

x

(b)

y
SraS

∆r∆a

Sa
ε Sr

ε

(a)

x

y

Fig. 3.1. Reduced flow. (a) λ = 0, (b) λ > 0.

It follows from assumptions (3.2) and (3.3) that using simple coordinate changes
(scaling and translations) one can transform (3.1) to the canonical form

x′ = −yh1(x, y, λ, ε) + x
2h2(x, y, λ, ε) + εh3(x, y, λ, ε),

y′ = ε (±xh4(x, y, λ, ε)− λh5(x, y, λ, ε) + yh6(x, y, λ, ε)) ,(3.6)

where

h3(x, y, λ, ε) = O(x, y, λ, ε),

hj(x, y, λ, ε) = 1 +O(x, y, λ, ε), j = 1, 2, 4, 5.

We assume that the sign in front of the term xh4 is positive. In this case, x0(t)
connects Sa to Sr. Clearly, the signs of the various terms in the above equation
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correspond to a certain choice of signs in the nondegeneracy conditions made earlier.
The parameter λ has been rescaled such that the reduced flow has an equilibrium on
Sr for λ > 0 (see Figure 3.1b).

We introduce the following notation:

a1 =
∂h3

∂x
(0, 0, 0, 0), a2 =

∂h1

∂x
(0, 0, 0, 0), a3 =

∂h2

∂x
(0, 0, 0, 0),

a4 =
∂h4

∂x
(0, 0, 0, 0), a5 = h6(0, 0, 0, 0),

and define

A = −a2 + 3a3 − 2a4 − 2a5.(3.7)

The constant A will show up in various computations and results related to the
analysis of the dynamics near the canard point. In particular, we will need the
genericity condition A �= 0 in the analysis of canard explosion in [14].

For j = a, r let ∆j = {(x, ρ2), x ∈ Ij} be a section of Sj near the fold point with
ρ sufficiently small and suitable intervals Ij (see Figure 3.1a). Define qj,ε = ∆j ∩Sj,ε.
Let π be the transition map for the flow of (3.1) from ∆a to ∆r. The following
theorem describes the behavior of Sa,ε and Sr,ε near the canard point.

Theorem 3.1. Assume that system (3.1) satisfies the defining conditions (3.2)–
(3.4) of a canard point. Assume that the solution x0(t) of the reduced problem connects
Sa to Sr. Then there exists ε0 > 0 and a smooth function λc(

√
ε) defined on [0, ε0]

such that for ε ∈ (0, ε0] the following assertions hold:

1. π(qa,ε) = qr,ε if and only if λ = λc(
√
ε).

2. The function λc has the expansion

λc(
√
ε) = −

(
a1 + a5

2
+

1

8
A

)
ε+O(ε3/2).(3.8)

3. The transition map π is defined only for λ in an interval around λc(
√
ε) of

width O(e−c/ε) for some c > 0.
4.

∂

∂λ
(π(qa,ε)− qr,ε)

∣∣∣∣
λ=λc(

√
ε)

> 0.

Remark 3.2. For λ = λc(
√
ε) the slow manifold Sa,ε extends to the slow manifold

Sr,ε, i.e., the slow manifold consists of a single canard solution. We use the term
canard solution only for solutions with this property. In other works all solutions
of system (1.1) which follow Sr,ε for a time interval of order O(1) are called canard
solutions. The solution described in the above theorem is then called a maximal
canard solution.

For the special case of the van der Pol equation the above results are contained
in [6]. Here we treat the general case of a canard point and identify the important
parameter A. Also, besides using the same blow-up our proof of the existence of a
canard solution based on extending slow manifolds combined with a Melnikov-type
argument is new.
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3.2. Blow-up. The analysis in this section is, in many aspects, similar to that
in section 2. In particular we apply a blow-up transformation, yet the weights (powers
of r) must be different than in the case of simple fold. Furthermore, the parameter
λ is now included in the blow-up. The blow-up transformation Φ maps B = S2 ×
[−µ, µ]× [0, ρ] to R

4 according to

x = r̄x̄, y = r̄2ȳ, ε = r̄2ε̄, λ = r̄λ̄.(3.9)

The constants µ and ρ are chosen small enough such that equations (3.6) are valid
in Φ(B). Let X̄ denote the corresponding blown up vector field. In section 2 we
used the charts K1, K2, and K3 to obtain the dynamics of X̄. Here charts K1

and K2 are sufficient to describe the relevant phenomena. In chart K1, the blow-up
transformation (3.9) is

x = r1x1, y = r21, ε = r21ε1, λ = r1λ1,(3.10)

where (x1, r1, ε1, λ1) are the coordinates in R
4. In chart K2, the blow-up transforma-

tion (3.9) is

x = r2x2, y = r22y2, ε = r22, λ = r2λ2,(3.11)

where (x2, y2, r2, λ2) are the coordinates in R
4. A simple computation gives the fol-

lowing lemma.
Lemma 3.2. Let κ12 denote the change of coordinates from K1 to K2. Then κ12

is given by

x2 = x1ε
−1/2
1 , y2 = ε−1

1 , r2 = r1ε
1/2
1 , λ2 = ε

−1/2
1 λ1 for ε1 > 0.(3.12)

Similarly, κ21 = κ−1
12 is given by

x1 = x2y
−1/2
2 , r1 = r2y

1/2
2 , ε1 = y−1

2 , λ1 = λ2y
−1/2
2 for y2 > 0.(3.13)

3.3. Dynamics in chart K2—preliminary analysis. After dividing out a
factor r2 in a manner analogous to that in section 2, the transformed equations (3.6)
have the form

x′2 = −y2 + x2
2 + r2G1(x2, y2) +O(r2(λ2 + r2)),

y′2 = x2 − λ2 + r2G2(x2, y2) +O(r2(λ2 + r2)),(3.14)

where

G(x2, y2) =

(
G1(x2, y2)
G2(x2, y2)

)
=

(
a1x2 − a2x2y2 + a3x

3
2

a4x
2
2 + a5y2

)
.

Remark 3.3. It turns out that for r2 = λ2 = 0 the system (3.14) is integrable.
For this reason the O(r2) and O(λ2) terms are crucial for the analysis.

Setting r2 = λ2 = 0 in (3.14) we obtain

x′2 = −y2 + x2
2,

y′2 = x2.(3.15)

Equation (3.15) is integrable. More precisely, we have the following lemma.
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Lemma 3.3. The function

H(x2, y2) =
1

2
e−2y2

(
y2 − x2

2 +
1

2

)
(3.16)

is a constant of motion for (3.15).
Proof. A computation gives

x′2 = e2y2
∂H

∂y2
(x2, y2),

y′2 = −e2y2 ∂H
∂x2

(x2, y2).(3.17)

The result follows.
Lemma 3.3 implies that the solutions of (3.15) are determined by the level curves

of H(x2, y2). Observe that (3.15) has an equilibrium at (0, 0) of center type, sur-
rounded by a family of periodic orbitsH(x2, y2) = h, h ∈ (0, 1/4). The setsH(x2, y2) =
h, h ≤ 0, correspond to unbounded solutions. The locus of the solution determined
by h = 0 is the parabola x2

2 − y2 = 1/2, and this solution is given by

γc,2(t2) = (xc,2(t2), yc,2(t2)) =

(
1

2
t2,

1

4
t22 −

1

2

)
, t2 ∈ R.

The special solution γ̄c is of central importance to the canard phenomenon. We will
see that γ̄c connects the endpoint pa of the critical manifold Sa across the sphere S2

to the endpoint pr of the critical manifold Sr. As in the analysis of the fold point,
the points pa and pr lie on the equator of S2 and will be studied in chart K1. Our
goal is to investigate how this connection breaks under perturbation. The tool for this
investigation will be a variant of the Melnikov method in which again both charts K1

and K2 will be used.

3.4. Dynamics in chart K1. We proceed in a manner analogous to that in
section 2.5 and obtain the following system of equations:

x′1 = −1 + x2
1 + r1(a1ε1x1 − a2x1 + a3x

3
1)−

1

2
ε1x1F (x1, r1, ε1, λ1)

+O(r1(r1 + λ1)),(3.18a)

r′1 =
1

2
r1ε1F (x1, r1, ε1, λ1),(3.18b)

ε′1 = −ε21F (x1, r1, ε1, λ1),(3.18c)

λ′1 = −1

2
λ1ε1F (x1, r1, ε1, λ1),(3.18d)

where

F (x1, r1, ε1, λ1) = x1 − λ1 + r1(a4x
2
1 + a5) +O(r1(r1 + λ1)).

It suffices to consider λ1 ∈ (−µ, µ), where µ > 0 can be chosen small. Many features
of the dynamics in chart K1 are analogous to section 2.5; therefore, we provide fewer
details. The hyperplanes r1 = 0, ε1 = 0, and λ1 = 0 are invariant, and the invariant
line l1 := {(x1, 0, 0, 0) : x1 ∈ R} contains two equilibria pa = (−1, 0, 0, 0) and pr =
(1, 0, 0, 0) which are endpoints of lines of equilibria Sa,1 and Sr,1, respectively. For the



308 M. KRUPA AND P. SZMOLYAN

flow on the line l1, the equilibrium pa is attracting and pr is repelling. Considered as
equilibria of system (3.18), both equilibria have a triple eigenvalue zero.

In the invariant plane r1 = λ1 = 0 system (3.18) reduces to

x′1 = −1 + x2
1 −

1

2
ε1x

2
1,

ε′1 = −ε21x1.(3.19)

Consequently, the sign of ε′1 is negative for initial conditions near pr, which implies
that the repelling center manifold Nr,1 at pr in the half space ε1 > 0 is unique. The
attracting center manifold Na,1 at pa in the half space ε1 > 0 is also unique, just as
in section 2.5. Let

D1 := {(x1, r1, ε1, λ1) : −2 < x1 < 2, 0 ≤ r1 ≤ ρ, 0 ≤ ε1 ≤ δ,−µ < λ1 < µ},

where δ, ρ, and µ will be chosen small.

Proposition 3.4. Choose c1 < 2 < c2. The constants ρ, δ and µ can be chosen
sufficiently small such that the following assertions hold for system (3.18):

1. There exists an attracting three-dimensional Ck-center manifold Ma,1 at pa
that contains the line of equilibria Sa,1 and the center manifold Na,1. In D1

the manifold Ma,1 is given as a graph x1 = ha(r1, ε1, λ1). The branch of Na,1
in r1 = λ1 = 0, ε1 > 0 is unique and equal to γc,1 := κ21(γc,2), where γc,2
is the part of the special trajectory introduced in section 3.3, corresponding to
x2 close to −∞.

2. There exists a repelling three-dimensional Ck-center manifold Mr,1 at pr
which contains the line of equilibria Sr,1 and the center manifold Nr,1. In
D1 the manifold Mr,1 is given as a graph x1 = hr(r1, ε1, λ1). The branch of
Nr,1 in r1 = λ1 = 0, ε1 > 0 is unique and equal to κ21(γc,2) for x2 close to
∞.

3. There exists a stable invariant foliation Fs with baseMa,1 and one-dimensional
fibers. There exist positive constants Ka,1 and Ka,2 such that the contraction
along Fs in a time interval of length T can be estimated by Ka,2e

−c2T from
below and by Ka,1e

−c1T from above.
4. There exists an unstable invariant foliation Fu with base Mr,1 and one-

dimensional fibers. There exist positive constants Kr,1 and Kr,2 such that
the expansion along Fu in a time interval of length T can be estimated by
Kr,1e

c1T from below and by Kr,2e
c2T from above.

Proof. The proof is analogous to the proof of Proposition 3.4.

We now define the following sections:

Σina,1 := {(x1, r1, ε1, λ1) ∈ D1 : r1 = ρ, |1 + x1| < β},
Σouta,1 := {(x1, r1, ε1, λ1) ∈ D1 : ε1 = δ, |1 + x1| < β},
Σinr,1 := {(x1, r1, ε1, λ1) ∈ D1 : ε1 = δ, |1− x1| < β},
Σoutr,1 := {(x1, r1, ε1, λ1) ∈ D1 : r1 = ρ, |1− x1| < β},

where β > 0 is chosen small. For j = a, r, let Πj,1 be the transition map defined by
the flow of (3.18a) from section Σinj,1 to Σoutj,1 . With these definitions, results analogous
to Lemma 2.7 and Proposition 2.8 hold for the canard point as well.
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3.5. Phase portrait on S2,+
0 . Based on the analysis in charts K1 and K2, we

can now describe the dynamics of X̄ restricted to S2,+
0 , i.e., for r̄ = λ̄ = 0. The

equator S1 is invariant. On S1 there are four equilibria: pa, pr, qin, qout. These
equilibria are hyperbolic for the flow on S1, the points pa and qout are attracting,
and pr and qin are repelling. The special trajectory γ̄c is a connecting orbit between
pa and pr. Besides γ̄c, there are three types of orbits in S2,+: a concentric family of
periodic orbits, an equilibrium of center type, and a family of orbits joining qin to
qout. The corresponding phase portrait is shown in Figure 3.2.

pr

γc

pa

qin qout

Fig. 3.2. Blow-up of a canard point restricted to S2,+0 for λ̄ = 0.

Remark 3.4. It turns out that the connection γ̄c from pa to pr breaks for λ̄ �= 0.
Some important aspects of the dynamics near S2,+

0 leading to Theorem 3.1 can be
understood by investigating whether the intersection of the three-dimensional center
manifolds M̄a and M̄r at γ̄c is transverse. The relevant computation is carried out in
the next section. Bifurcations from the center equilibrium and the family of periodic
orbits and their relevance to canard explosion are studied in [14].

3.6. Melnikov computation of the separation between Ma,2 and Mr,2.
The analysis of the previous sections implies that Ma,2 and Mr,2 intersect along γc,2
for r2 = λ2 = 0. To prove Theorem 3.1 we compute the first order separation between
Ma,2 and Mr,2 with respect to r2 and λ2. The splitting of the manifolds off the
sphere for λ2 = 0 is shown in Figure 3.3. All functions defined below are considered
as functions of r2 ∈ [0, ρ] and λ2 ∈ (−µ, µ), for small ρ > 0 and µ > 0, without
indicating this dependence explicitly. In the formulas below we drop the subscript of
the time variable t2 from chart K2, i.e., t = t2.

Let γa,1 be the trajectory of system (3.18) contained inMa,1 for which r1
√
ε1 = r2.

Let γa,2(t) = (xa,2(t), ya,2(t)) be the continuation of γa,1 to chartK2, i.e., γa,2 is a solu-
tion of (3.14), parametrized such that xa,2(0) = 0. Analogously, let γr,1 be the trajec-
tory of (3.18) contained inMr,1 for which r1

√
ε1 = r2 and let γr,2(t) = (xr,2(t), yr,2(t))

be the corresponding, backward continued solution of (3.14) parametrized such that
xr,2(0) = 0.

With these definitions, measuring the separation of Ma,2 and Mr,2 corresponds
to measuring ya,2(0)− yr,2(0), which is equivalent to estimating the distance function

Dc(r2, λ2) := H(0, ya,2(0))−H(0, yr,2(0)),(3.20)
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Fig. 3.3. Splitting of M̄a and M̄r for λ̄ = 0.

since ∂H
∂y2

(0, y2) �= 0 for y2 < 0. We define

dr2 =

∫ ∞

−∞
gradH(γc,2(t)) ·G(γc,2(t))dt,(3.21)

where G is the function defined in section 3.3. Similarly we define

dλ2 =

∫ ∞

−∞
gradH(γc,2(t)) ·

(
0
−1

)
dt.(3.22)

We will prove the following result.
Proposition 3.5. For ρ and µ small enough, the distance function Dc(r2, λ2) is

a Ck-function and has the expansion

Dc(r2, λ2) = dr2r2 + dλ2
λ2 +O(2).(3.23)

Proof. By construction Dc is Ck smooth and Dc(0, 0) = 0. Thus we have to
verify the expansion. We carry out the computation for r2. The result for λ2 can be
obtained in a similar way. We set λ2 = 0 and consider r2 ∈ [0, ρ]. We will show that

H(0, ya,2(0)) = r2

∫ 0

−∞
gradH(γc,2(t)) ·G(γc,2(t))dt+O(r22).(3.24)

An analogous argument yields

H(0, yr,2(0)) = −r2
∫ ∞

0

gradH(γc,2(t)) ·G(γc,2(t))dt+O(r22),(3.25)
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which implies the proposition.
We define T (r2, δ) < 0 such that ya,2(T ) = δ

−1, where δ is the constant from the
definition of Σout1,a . We write

H(0, ya,2(0)) = H(xa,2(T ), δ
−1) +

∫ 0

T

dH

dt
(γa,2(t))dt.

By standard methods [4]∫ 0

T

dH

dt
(γa,2(t))dt = r2

∫ 0

T

gradH(γa,2(t)) ·G(γa,2(t))dt+O(r22).

It turns out to be very natural to compute H(xa,2(T ), δ
−1) in chart K1. We begin by

parametrizing γa,1 by ε1, i.e.,

γa,1(ε1) =

(
xa,1(ε1),

r2√
ε1
, ε1, 0

)
, ε1 ∈

[(
r2
ρ

)2

, δ

]
,

where ρ is the constant used in the definition of Σina,1. Let H1 = H ◦ κ12, i.e.,

H1(x1, ε1) = H

(
x1√
ε1
,
1

ε1

)
= e−2/ε1

(
1

4
+

1

2ε1
− x2

1

2ε1

)
.(3.26)

We wish to estimate H1(xa,1(δ), δ). Note that H1(xa,1((
r2
ρ )

2), ( r2ρ )
2) is exponentially

small in r2. Hence,

H1(xa,1(δ), δ) =

∫ δ

(
r2
ρ )2

d

dε1
H1(xa,1(ε1), ε1)dε1 +O(r

2
2).

From (3.26) we obtain

∂H1

∂x1
= −e−2/ε1

x1

ε1
,

∂H1

∂ε1
= e−2/ε1

1

ε21

(
1

2
x2

1 −
x2

1

ε1
+

1

ε1

)
.(3.27)

Note that dH1

dε1
evaluated along a trajectory of (3.18) is given by

dH1

dε1
=
∂H1

∂x1

x′1
ε′1

+
∂H1

∂ε1
,

where x′1 and ε′1 are given by (3.18a) and (3.18c), respectively. By using (3.27),
expanding and using the relation r1 = r2/

√
ε1 to eliminate r1, we obtain the following

formula for dH1

dε1
evaluated along a trajectory of (3.18):

dH1

dε1
(x1, ε1) = e

−2/ε1ε
−7/2
1

[
r2(a1x1ε1 − a2x1 + a3x

3
1 +

1− x2
1

x1
(a4x

2
1 + a5)) +

1√
ε1
O(r22)

]
.

(3.28)

We set

η(x1, ε1) = e
−2/ε1ε

−7/2
1

(
a1x1ε1 − a2x1 + a3x

3
1 +

1− x2
1

x1
(a4x

2
1 + a5)

)
.(3.29)
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It follows that∫ δ

(
r2
ρ )2

d

dε1
H1(xa,1(ε1), ε1)dε1 = r2

∫ δ

(
r2
ρ )2

η(xa,1(ε1), ε1)dε1 +O(r
2
2),

where we have used that the integral of the error term in (3.28) is O(r22) because of the
exponentially small prefactor. To complete the computation, recall that (xc,1(ε1), ε1)
parametrizes Na,1, and, by center manifold theory,

|xc,1(ε1)− xa,1(ε1)| = O(r1) = O
(
r2√
ε1

)
.

By using this estimate it follows that

H1(xa,1(δ), δ) = r2

∫ δ

0

η(xc,1(ε1), ε1)dε1 +O(r
2
2),

where we have again used the exponentially small prefactor of the integrand to esti-
mate the error caused by first replacing xa,1 by xc,1 and then changing the interval of
integration to [0, δ]. By applying the change of variables formula, we transform this
integral to chart K2 and obtain∫ δ

0

η(xc,1(ε1), ε1)dε1 =

∫ T

−∞
gradH(γc,2(t)) ·G(γc,2(t))dt.

The result follows.
Remark 3.5. The formulas for the constants dr2 and dλ2 are the usual Melnikov

integrals for the splitting of saddle-saddle connections for perturbations of planar
Hamiltonian vector fields. However, the situation considered above is not covered by
the usual Melnikov theory.

Proof of Theorem 3.1. It follows from the above results that for (r2, λ2) ∈ [0, ρ)×
(−µ, µ) a connection from Sa,ε to Sr,ε exists if and only if

Dc(r2, λ2) = 0.(3.30)

We have shown that Dc(r2, λ2) = dr2r2 + dλ2λ2 + O(2). Hence, (3.30) can be solved
for λ2 by the implicit function theorem provided that dλ2 �= 0. The solution has the
expansion

λ2 = − dr2
dλ2

r2 +O(r
2
2).(3.31)

By using the parametrization of γc,2 and repeated integration by parts, we compute

dr2 =

∫ ∞

−∞
e−2y2(−a1x

2
2 + (a2 − a4 + a5)x

2
2y2 + (a4 − a3)x

4
2 − a5y

2
2)dt

= −e
4

(
a1 + a5 +

1

4
A

)∫ ∞

−∞
e−t

2/2dt(3.32)

and

dλ2 = −
∫ ∞

−∞

1

2
e−2y2dt = −e

2

∫ ∞

−∞
e−t

2/2dt.(3.33)
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This proves assertion (1). Property (2) follows by applying transformation (3.11)
to the the expansion (3.31). Assertion (3) follows from the above combined with
Proposition 3.4 becauseMa,2 must be exponentially close toMr,2 to reach the section
Σoutr,1 . Finally, the inequality dλ2 < 0 implies that the intersection of the slow manifolds
breaks as described in assertion (4).

Remark 3.6. It is known that the function λc from Theorem 3.1 which describes
the canard curve actually has a power series in ε; see [3], [7], [19]. It is interesting
to observe that this fact can be explained by a symmetry property of the blow-
up transformation. The form of the blow-up transformation (3.9) implies that the
transformation

(x̄, ȳ, r̄, λ̄) �→ (−x̄, ȳ,−r̄,−λ̄)(3.34)

is a time-reversal symmetry of the blown-up vector field X̄; i.e., it maps orbits to
orbits. Note that for prescribed slow manifolds outside V , the canard curve is uniquely
determined. Since the transformation (3.34) maps a canard curve to a canard curve,
it follows that −λc,2(r2) = λc,2(−r2) and consequently λc(r2) = λc,2(−r2). From
this we conclude that an asymptotic expansion of the canard curve is quadratic in r2
and hence is a power series in ε. If the original vector field is smooth and the slow
manifolds are chosen smooth, then, by a theorem of Schwartz [21], λc is a smooth
function of ε.

The function λc depends on the choice of the slow manifolds. However all slow
manifolds are exponentially close and the corresponding functions λc differ only by
exponentially small terms and have the same asymptotic expansion.
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Abstract. We study the Maxwell–Bloch equations governing a two-level laser in a ring cavity.
For Class A lasers, these equations have two widely separated time scales and form a singularly
perturbed, semilinear hyperbolic system with two distinct characteristics. We extend Fenichel’s
geometric singular perturbation theory [N. Fenichel, J. Differential Equations, 31 (1979), pp. 53–98]
to the Maxwell–Bloch equations by proving the persistence of a Ck, 0 < k <∞, slow manifold under
an unbounded perturbation. The proof is obtained by a modified graph transform method. We use
uniform decay estimates of Constantin, Foias, and Gibbon [Nonlinearity, 2 (1989), pp. 241–269] to
obtain a cone condition. These estimates rely on the energy preserving nature of the nonlinearity
and the existence of two distinct characteristics. The cone condition and the fact that the unbounded
perturbation generates a continuous group are used to define the graph transform. The slow manifold
is a globally attracting, positively invariant manifold, with infinite dimension and codimension, that
contains the attractor of the system. The slow manifold depends only continuously on ε and converges
uniformly on (strongly) compact sets to the critical manifold. This enables us to rigorously decouple
the slow and fast time scales and obtain a reduced (but still infinite-dimensional) dynamical system
described by a functional differential equation.

Key words. Maxwell–Bloch equations, invariant manifolds, geometric singular perturbation
theory
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1. Introduction.

1.1. The Maxwell–Bloch equations. We shall study the asymptotic dynam-
ics of the laser equations proposed by Risken and Nummedal [25]. These are amplitude
equations describing a two-level laser derived by a semiclassical approximation. The
electric field obeys the classical Maxwell equations, and the light-matter interaction
is modeled by the quantum mechanical Bloch equations. There are numerous simpli-
fications in this model, several of which are pointed out in [25]. Nevertheless, these
equations are quite faithful to the underlying physics and are also mathematically
tractable in certain limits. The equations we will study are

Eτ + Ex = κ(P − E),(1.1)

Pτ = γ⊥[ED − (1 + iδ)P ],(1.2)

Dτ = γ‖

[
λ+ 1−D − λ

2
(E∗P + EP ∗)

]
.(1.3)

E,P ∈ C, and D ∈ R are periodic on the domain [0, 1]; E is the electric field, P is
the polarization of the gain medium, and D is a measure of the population inversion;
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κ, γ⊥, γ‖ > 0 are phenomenological damping constants; λ > 0 is a pumping term;
δ ∈ R is a detuning parameter. All the variables are dimensionless and have been
scaled to the continuous wave (cw) solutions. By these we mean spatially homogeneous
steady states of (1.1)–(1.3) that correspond to a steady output from the laser. In
another scaling these equations are also known as the Lorenz PDE. The Lorenz ODEs
are contained in the system (1.1)–(1.3) when δ = 0, and attention is restricted to real
valued, spatially independent solutions.

Constantin, Foias, and Gibbon were the first to study these equations rigor-
ously [9]. They proved the existence of global weak solutions and a C∞ global at-
tractor in L2 with finite Hausdorff dimension. Recently Xin and Moloney studied the
equations in three dimensions with the addition of a transverse dispersive term [28].
They proved the existence and uniqueness of weak solutions in Lp, 2 ≤ p < ∞, and
an attractor with finite regularity. Naturally, one must expect the dynamics to de-
pend strongly on the parameter values, and in some parameter ranges the analysis
will be easier than in others. Kovacic and Wettergren studied the Maxwell–Bloch
equations (in a different scaling) near an integrable limit in [20, 27], respectively. The
motivation there is to use the knowledge of the geometry of the integrable limit to
understand the dynamics when the damping and forcing are small.

1.2. Adiabatic elimination for Class A lasers. Different types of lasers have
vastly different dynamics because of the wide variation in parameters κ, γ⊥, and γ‖.
Arecchi proposed a characterization of lasers based on the range of damping param-
eters, and we shall consider what he terms Class A lasers [1, p. 17]. For this class
of lasers, we have γ⊥ ≈ γ‖ � κ. This scaling has also been called the good cav-
ity limit [10], but strictly speaking, the good cavity limit refers to the case where
γ⊥ + γ‖ ≥ κ and includes a much broader range of dynamics than we consider.
Nevertheless, the range of Class A lasers is sufficiently wide to be physically and
mathematically interesting. For Class B lasers, γ⊥ � κ>̃γ‖, and for Class C lasers,
all three damping constants are comparable. For Class A and B lasers one may hope
to simplify the dynamics by separating the evolution on fast and slow time scales.
Such adiabatic eliminations are common in the physics literature (see the expository
article [1] and the references therein). Our aim is to examine such a reduction from a
more mathematical viewpoint. The simplest case is of Class A lasers, and we consider
only this scaling henceforth.

Let γ⊥ → 1
ε , γ‖ →

γ‖
ε , with 0 < ε	 1. The laser equations are rewritten as

Eτ + Ex = κ(P − E),(1.4)

εPτ = ED − (1 + iδ)P,(1.5)

εDτ = γ‖

[
λ+ 1−D − λ

2
(E∗P + EP ∗)

]
.(1.6)

This suggests we formally eliminate the “fast” variables P and D, i.e., we set the left-
hand sides of (1.5) and (1.6) to zero, solve for P,D as functions of E, and substitute in
(1.4). This adiabatic approximation is often used in the physics literature [1, 10, 15]
although it is typically used with finite-dimensional modal truncations [16, pp. 156,
290]. It is not apparent that this formal reduction is valid or if the solutions to the
singular limit are similar to those of the full system. Indeed, we will show that this
reduction leads to false predictions about the asymptotic behavior.

The failure of the formal reduction should not be unexpected. The laser equations
are a semilinear hyperbolic system with two characteristics: x − t =constant and



MAXWELL–BLOCH EQUATIONS 317

x =constant. The formal reduction procedure eliminates one of these characteristics
and thus neglects essential information. Nevertheless, there is some merit in studying
the reduced system since it provides some insight into the range of possible asymptotic
behavior. We may then attempt to verify if similar behavior persists when γ⊥ and γ‖
are sufficiently large but finite.

1.3. Geometric singular perturbation theory. A rigorous geometric theory
for singularly perturbed ODE was developed by Fenichel [12]. To apply his methods
to this problem, one would proceed as follows. First, one regularizes the problem
by rescaling time, t = τ

ε . The new time scale, t, is referred to as fast time. In this
variable, the laser equations are

Et = ε[−Ex + κ(P − E)],(1.7)

Pt = ED − (1 + iδ)P,(1.8)

Dt = γ‖

[
λ+ 1−D − λ

2
(E∗P + EP ∗)

]
.(1.9)

Here E changes slowly with time (O(ε)), and P and D have a time rate of change
that is O(1). In the limit ε = 0 the slow variable E is constant. The fast variables
still change rapidly except at the equilibria of (1.7)–(1.9). Solving for these equilibria
we see that they form a manifold, M0, given as a graph over the slow variable E.
Thus the singularities of the slow time system (1.4)–(1.6) are equilibria of the fast
time system (1.7)–(1.9). The formal reduction is equivalent to the assumption that
M0 remains invariant and there is a well-defined flow in slow time restricted to it.
How good is this assumption? Some intuition is provided by considering ODE.

The underlying geometry is essentially the same for singularly perturbed ODE.
We are given a manifold of equilibria and we want to justify a reduction of the flow to
this manifold. Under the crucial hypothesis of normal hyperbolicity, Fenichel proved
that a compact manifold of equilibria, M0, continues smoothly to a family of slow
manifolds,Mε, for sufficiently small ε > 0. Furthermore, if we consider the augmented
system obtained by appending the equation εt = 0 to the ODE, then these manifolds
are contained in a global center manifold given as a graph over the slow variable
and ε. The singular perturbation problem is then reduced to a regular perturbation
problem restricted to this center manifold, and asymptotic expansions in ε are reduced
to Taylor series calculations. Fenichel’s methods are powerful, and several problems
that lie outside the reach of conventional (and typically heuristic) asymptotic methods
are easily studied within his framework. There has been much progress in this area;
see [19] for a readable introduction.

For PDE the situation is not so simple. There are several obstructions, some of
which are technical; for instance, the phase space is no longer locally compact. But
another obstruction is essential. For ε > 0 the perturbed flow is not close to the
unperturbed flow in the C1 topology because of the unbounded operator ε∂x. Hence
there are no general persistence theorems that one can invoke to prove the existence
of the slow manifolds Mε (the definitive results in this direction are due to Bates,
Lu, and Zeng and may be found in a set of articles beginning with [4]). Furthermore,
even if these manifolds exist, one should not expect them to fit together smoothly
in ε or to be contained in a smooth global center manifold restricted to which we
obtain a regular perturbation problem. Thus there are difficulties in justifying the
existence of asymptotic expansions. The addition of an unbounded perturbation also
leads to some unexpected phenomenon. For example, one finds new instabilities that
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are hidden in the adiabatic elimination. Risken and Nummedal [25] showed that the
cw solutions of (1.1)–(1.3) are linearly unstable for sufficiently large λ. On the other
hand, the adiabatic elimination predicts that these solutions are always stable. We
comment on this point again in section 6.

1.4. Main results. The goals of this paper are to understand rigorously the
relation between the adiabatic elimination and the full Maxwell–Bloch system and to
develop in the process geometric singular perturbation theory for PDE in the setting
of a concrete example. Our main theorem, Theorem 4.1, establishes the persistence
of a globally attracting, positively invariant manifold diffeomorphic to the manifold of
equilibria. This manifold contains the attractor of the system. In infinite dimensions,
the persistence of a global invariant manifold under unbounded perturbations is itself
a significant fact, and Theorem 4.1 lies considerably outside the scope of general
theorems in this field (see, e.g., [2, 3, 8, 4]). This being said, we must in fairness note
that the proof relies strongly on the structure of the Maxwell–Bloch equations and
is special to this system. There are two facts that play a key role in the analysis.
The first is that the addition of the unbounded perturbation for ε > 0 corresponds
to the splitting of characteristics that are parallel in the limit. The second is that
the nonlinearities of the Maxwell–Bloch equations satisfy strong energy estimates
that follow from their physical origin. In particular, the nonlinearities in (1.1)–(1.3)
appear only as skew terms and ensure the uniform decay of the polarization and
inversion (see 2.5). These estimates were derived by Constantin, Foias, and Gibbon [9].
We utilize these estimates to establish a cone condition of the flow similar to that
in [4, 13]. The cone condition, and the fact that the unbounded perturbation generates
a continuous group, are crucial ingredients of the proof.

The convergence of the slow manifold to the critical manifold is subtly altered
by the unbounded perturbation. We are only able to prove that the convergence is
uniform on strongly compact sets (Theorem 6.1). However, one should keep in mind
that the phase space is not locally compact.

As a sidelight, we note that the persistence theorem provides an example of an
inertial manifold (albeit infinite dimensional) in a problem with no diffusion. Infinite-
dimensional inertial manifolds for reaction diffusion equations coupled to ODE (e.g.,
the Hodgkin–Huxley equations) have been studied by Marion [22]. Marion’s methods
are a natural complement to methods used for reaction diffusion equations [13] and
depend on the control over high wave numbers provided by diffusion. Our methods
are quite different and depend strongly on the absence of diffusion.

The rest of this paper is organized as follows. Section 2 contains a priori estimates
and results on well-posedness. Section 3 studies the peculiarities of the singular limit.
Sections 4 and 5 are dedicated to a proof of the main theorem. The existence of the
invariant manifold provides a basis for rigorously decoupling the slow and fast time
scales in the system. This is considered in section 6. We also remark on the relation
between the formal limit and the slow dynamics there.

2. Existence and uniqueness. In this section we will prove that the laser equa-
tions define a smooth (C∞) dynamical system in the space of continuous functions.
Constantin, Foias, and Gibbon [9] proved that the laser equations define a Lipschitz
dynamical system in L2. The reason for choosing a more restrictive phase space is
that smoothness of the flow is essential for invariant manifold techniques. The ob-
struction to smoothness in L2 is the quadratic nonlinearity in (1.8) and (1.9). The
product of two L2 functions does not lie in L2 in general. For continuous functions,
however, multiplication is a smooth map. The motivation for choosing L2 as a phase
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space is that the laser rises out of noise and the initial data cannot be prepared to
be smooth. In view of this, choosing C0 as the phase space is obviously a restriction
in our study. Nevertheless, Theorem 4.2 of [9] states that asymptotically all solutions
approach an attractor composed of C∞ functions. Thus, in order to study asymptotic
behavior it is sufficient to restrict our attention to continuous functions.

Our work relies strongly on the a priori estimates proved by Constantin, Foias,
and Gibbon and the estimates of this section are largely rescaled versions of their
work [9]. A derivation of these estimates, motivated by the underlying physics, may
be found in their work. We make no claim to originality for these estimates, and they
are included for completeness and to prove well-posedness of the laser equations in a
form appropriate for this paper.

To better illustrate the structure of the equations, we rescale the dependent vari-
ables. Define µ =

√
λγ‖ and set

u = E , v = µP, w = D.(2.1)

Thus, (1.7)–(1.9) are transformed to

ut = ε

[
−ux + κ

(
v

µ
− u

)]
,(2.2)

vt = µuw − (1 + iδ)v,(2.3)

wt = γ‖(λ+ 1− w)− µ

2
(u∗v + uv∗).(2.4)

2.1. Notation. The space of continuous functions from the circle into a Eu-
clidean space E is denoted by C(S1;E). The phase space for our dynamical system
is X = X1 × X2, where X1 = C(S1;C) and X2 = C(S1;C × R). A typical element of
X is denoted by the triplet (u, v, w). The norm in X1 is ‖u‖ = supx∈S1 |u(x)|, and
the norm of (v, w) ∈ X2 is ‖(v, w)‖ = supx∈S1(|v(x)|2 + |w(x)|2)1/2. The norm of
(u, v, w) ∈ X is (‖u‖2 + ‖(v, w)‖2)1/2. The projections from X into Xi are denoted
by Πi. The space of k-linear maps between two Banach spaces Y1 and Y2 will be
denoted as Lk(Y1,Y2). For k = 1, we drop the superscript.

2.2. A priori estimates. Notice that if ε > 0, it is sufficient to obtain a priori
estimates for either the slow or fast system since they are equivalent. In the rest of
this section ε > 0 is fixed.

We first derive a pointwise decay estimate. For all x ∈ S1, we have

∂t(|v(t, x)|2 + |w(t, x)|2) = −2|v|2 − 2γ‖|w|2 + 2(λ+ 1)γ‖w
≤ −2β(|v|2 + |w|2) + γ‖(λ+ 1)2,

where β = min(1, γ‖/2). Integrating the resulting inequality and taking the sup over
x ∈ S1 we obtain

‖(v, w)(t)‖2 ≤ e−2βt(‖(v, w)(0)‖2) + (λ+ 1)2 γ‖
2β
|1− e−2βt|

=: e−2βt(‖(v, w)(0)‖2) + ρ2
v|1− e−2βt|,(2.5)

where we have defined the constant ρ2
v = γ‖(λ+1)2/2β. The miraculous cancellation in

the nonlinear terms that leads to this strong energy estimate is actually a consequence
of the underlying physics; see [9] for details. Since the nonlinear terms uv∗ and uw
in (2.3)–(2.4) do not influence the change in energy, we say that the nonlinearity
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is energy preserving. Equation (2.2) admits an equally strong estimate. A smooth
solution satisfies

(∂t + ε∂x)(|u(t, x)|2) = −2κε|u(t, x)|2 + 2εκ
µ
Re (u∗v)

≤ −εκ|u(t, x)|2 + εκ

µ2
|v(t, x)|2.

Integrating this inequality along the characteristic x− εt =constant, we have

|u(t, x)|2 ≤ e−εκt|u(0, x− εt)|2 + εκ

µ2

∫ t

0

e−εκ(t−s)|v(s, x− ε(t− s))|2ds.(2.6)

Taking the sup over x ∈ S1, and using the energy estimate (2.5), we obtain

‖u(t)‖2 ≤ e−εκt‖u(0)‖2 + εκ

µ2
e2β(t)‖(v, w)(0)‖2 + ρ2

v

µ2
(1− e−εκt),(2.7)

where we have defined the exponentially decaying function

eα(t) =
e−εκt − e−αt

α− εκ
,(2.8)

assuming that εκ < α.
These energy estimates will be used to establish the existence of global mild

solutions. They also immediately establish the existence of positively invariant regions
in X. Trajectories will satisfy ‖(v, w)(t)‖ < ‖(v, w)(0)‖, for all t > 0, provided

‖(v, w)(0)‖ > ρv.(2.9)

Let c(ε) = supt≥0 εκe2β(t)/(1− e−εκt). Since e2β(t) ≤ te−εκt we find that

c(ε) ≤ sup
y>0

y

ey − 1 = 1.

Suppose that the initial conditions satisfy (2.9). The energy estimate (2.7) shows that
a sufficient condition for ‖u(t)‖ < ‖u(0)‖ for all t > 0 is

‖u(0)‖2 >
‖(v, w)(0)‖2

µ2
+

ρ2
v

µ2
.(2.10)

Conditions (2.9) and (2.10) show that the region

D0 = {‖u‖2 ≤ 4ρ2
v/µ

2, ‖(v, w)‖2 ≤ 2ρ2
v}(2.11)

is strictly positively invariant. D0 is also an absorbing region for the flow. The energy
estimates (2.5) and (2.7) show that all trajectories enter D0 at the slow exponential
rate e−εκt and that the time taken to enter D0 is uniform on bounded sets.

Remark 2.1. It is important to note that the size of the absorbing region is
uniform for 0 < εκ < 2β. We will use this in our construction of slow manifolds.

Let (ui, vi, wi), i = 1, 2, be two smooth solutions. We will estimate the growth of
their difference. Define (ξ, η, ζ) = (u1, v1, w1)−(u2, v2, w2) and (ū, v̄, w̄) = ((u1, v1, w1)
+(u2, v2, w2))/2. The differences satisfy

ξt = ε

[
−ξx + κ

(
η

µ
− ξ

)]
,(2.12)

ηt = −(1 + iδ)η + µ(ūζ + w̄ξ),(2.13)

ζt = −γ‖ζ − µ Re (ū∗η + v̄∗ξ).(2.14)
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Equations (2.13) and (2.14) give the pointwise error estimate

∂t(|η|2 + |ζ|2) = −2|η|2 − 2γ‖|ζ|2 + 2µ Re (ξη∗w̄ − ξζv̄∗)

≤ −β(|η|2 + |ζ|2) + µ2|ξ|2
β

(|v̄|2 + |w̄|2).

In the second step we have used the elementary inequality 2pq ≤ βp2 + q2/β. Inte-
grating and taking the sup over x ∈ S1, we obtain

‖(η, ζ)(t)‖2 ≤ e−βt‖(η, ζ)(0)‖2 + µ2

β

∫ t

0

e−β(t−s)‖ξ(s)‖2‖(v̄, w̄)(s)‖2ds.(2.15)

The definition of (v̄, w̄), combined with the energy estimate (2.5), gives

‖(v̄, w̄)(t)‖2 ≤ C ∀t ≥ 0,(2.16)

where C is a constant that is uniform for initial conditions in any fixed ball.
An energy estimate for ξ can be obtained from (2.12). For two smooth solutions

we have

(∂t + ε∂x)(|ξ|2) = 2εκ
(
−|ξ|2 + 1

µ
Re (ξ∗η)

)

≤ 2εκ
(
−|ξ|2 + |ξ|

2

2
+
|η|2
2µ2

)
= −εκ|ξ|2 + εκ

µ2
|η|2.

Integrating this inequality along the characteristic x− εt =constant, we have

|ξ(t, x)|2 ≤ e−εκt|ξ(0, x− εt)|2 + εκ

µ2

∫ t

0

e−εκ(t−s)|η(s, x− ε(t− s))|2ds,

and taking the sup over x ∈ S1 we obtain

‖ξ(t)‖2 ≤ e−εκt‖ξ(0)‖2 + εκ

µ2

∫ t

0

e−εκ(t−s)‖(η, ζ)(s)‖2ds.(2.17)

Since the expressions ‖ξ(t)‖2 and ‖(η(t), ζ(t))‖2 occur often below, we now intro-
duce separate notation for them. Let

a(t) = ‖ξ(t)‖2, b(t) = ‖(η, ζ)(t)‖2.(2.18)

Combining the inequalities (2.15), (2.16), and (2.17) with the notation of (2.18), we
obtain

b(t) ≤ b(0)e−βt +
Cµ2

β

∫ t

0

e−β(t−s)
(
e−εκsa(0) +

εκ

µ2

∫ s

0

e−εκ(s−τ)b(τ)dτ
)
ds

= b(0)e−βt +
Cµ2

β
a(0)eβ(t) +

Cεκ

β

∫ t

0

∫ s

0

e−β(t−s)−εκ(s−τ)b(τ)dτds

= b(0)e−βt +
Cµ2

β
a(0)eβ(t) +

Cεκ

β

∫ t

0

b(τ)e−βt+εκτ
∫ t

τ

e(β−εκ)sdsdτ.

Computing the inner integral we obtain the estimate

b(t) ≤ b(0)e−βt +
Cµ2

β
a(0)eβ(t) +

Cεκ

β

∫ t

0

eβ(t− τ)b(τ)dτ.(2.19)
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Here eβ(t) is defined as in (2.8). Thus, we have eβ(t) ≤ te−εκt for positive times (we
suppose that 0 < εκ < β). As in [9], we apply Gronwall’s inequality to (2.19), and
use the resulting estimate in (2.17) to obtain

sup
t∈[0,T ]

(a(t) + b(t)) ≤ C(T, ‖(ui, vi, wi)(0)‖)(a(0) + b(0)).

We have made the assumption that t ≥ 0 for simplicity. One may work through the
estimates again to find that for any fixed T > 0,

sup
t∈[−T,T ]

(a(t) + b(t)) ≤ C(T, ‖(ui, vi, wi)(0)‖)(a(0) + b(0)).(2.20)

2.3. Existence of a smooth flow. We now define precisely the dynamical
system we will be studying and then prove the existence of a smooth global flow.

Definition 2.2. (u(t), v(t), w(t)) ∈ X is a mild solution to the laser equations
(2.2)–(2.4) if it satisfies the integral equations

u(t) = e−εκte−εt∂xu(0) +
εκ

µ

∫ t

0

e−εκ(t−s)e−ε(t−s)∂xv(s)ds,(2.21)

v(t) = e−(1+iδ)tv(0) + µ

∫ t

0

e−(1+iδ)(t−s)u(s)w(s)ds,(2.22)

w(t) = e−γ‖tw(0) + (λ+ 1)(1− e−γ‖t)− µ

∫ t

0

e−γ‖(t−s) Re (u(s)∗v(s))ds.(2.23)

The notation e−εt∂x , with t ∈ R, refers to the one parameter linear group gener-
ated by the wave equation ut + εux = 0 in C(S1;C). It is defined by the shift map
(e−εt∂xu)(x) = u(x− εt).

Remark 2.3. The integrals in (2.21)–(2.23) are interpreted as elements in X.
Since we are considering continuous functions, the integrals are well defined if and
only if they are defined at each point x ∈ S1. Notice that the product u(s)w(s) is a
well-defined continuous function. In [9] the laser equations do not admit a variation
of constants formula in L2. In our work a variation of constants formula is essential.

Remark 2.4. The integral equations (2.22) and (2.23) are equivalent to the differ-
ential equations (2.3) and (2.4) since the right-hand side of the differential equations
contains no unbounded operator. Thus the a priori estimates (2.5) and (2.15) apply to
all mild solutions, not just smooth solutions. The a priori estimates on u and ξ, (2.7)
and (2.17), are extended to all mild solutions by approximating continuous functions
with C1 functions.

Theorem 2.5 (C∞ flow). The laser equations define a C∞ global flow in the
sense of mild solutions. That is, there exists a C∞ map Φ : R × X → X with the
following properties:

(a) Φ(t, u0, v0, w0) is the unique solution to (2.21)–(2.23) with initial conditions
Φ(0, u0, v0, w0) = (u0, v0, w0).

(b) The set of maps ϕt : X→ X, t ∈ R defined by ϕt(u0, v0, w0) = Φ(t, u0, v0, w0)
is a one parameter group of C∞ diffeomorphisms of X.

Sketch of the proof. A contraction mapping argument shows that for every point in
X within the ball of radius ρ there is a unique mild solution defined for a time interval
[−T (ρ), T (ρ)]. A well-known theorem of Segal [26] asserts that solutions fail to exist
after a finite time, Tcrit, if and only if they blow up, i.e., ‖(u(t), v(t), w(t))‖ → ∞
as t → Tcrit. The a priori estimates (2.5) and (2.7) show that this is impossible.



MAXWELL–BLOCH EQUATIONS 323

Thus through every point (u0, v0, w0) there is a unique solution for all t ∈ R denoted
by Φ(t, u0, v0, w0) with Φ(0, u0, v0, w0) = (u0, v0, w0). Let ϕt be defined as in (b).
Clearly, ϕ0 = Id. Then (2.20) shows that each ϕt is continuous (in fact, locally
Lipschitz). The group property follows from uniqueness of solutions.

The proof that the flow is C∞ is by induction on the order of the derivative.
Each step of the argument follows. For any positive integer r, formal differentiation
of the equations for the (r − 1)th derivative yields a linear integral equation that the
rth derivative must satisfy (for r = 1, we differentiate (2.21)–(2.23)). The existence
of a unique solution to this integral equation on a time interval [−T (ρ, r), T (ρ, r)]
is proven by a contraction mapping argument. Gronwall estimates show that the
derivative grows at worst exponentially in time. Thus, the derivatives of the flow are
defined for all t ∈ R. This is a standard calculation (see, e.g., [6, 18]) and we omit the
details. The heart of the matter is that the nonlinear terms on the right-hand side of
(2.22)–(2.23) are smooth, and thus all derivatives exist.

Remark 2.6. We did not need the full strength of the estimates for differences
(2.15)–(2.17) in this proof. The estimates will be used in section 4 to prove the cone
property.

2.4. Asymptotic dynamics. The laser equations are dissipative. All trajec-
tories must enter the trapping region D0 in finite time. To capture the asymptotic
behavior of the system, we define the global attractor

A =
⋂
t≥0

ϕt(D0).

Since D0 is absorbing and closed, this agrees with the definition of the attractor as
the ω-limit set of the absorbing ball

ω(D0) =
⋂
T≥0

⋃
t≥T

ϕt(D0).

Although the flow is dissipative, it is not smoothing, and it is not obvious that
this definition of the attractor is meaningful. However, this follows from the asymp-
totic smoothing property of the laser equations proved by Constantin, Foias, and
Gibbon [9]; see also [23]. Let B denote the attractor in L2. The main result of
Constantin, Foias, and Gibbon is that B is composed of C∞ functions and that it
has finite Hausdorff dimension. Thus it also has finite topological dimension. In [23]
the regularity result was improved: The attractor B is in every Gevrey class Gs for
s > 1, i.e., the attractor is “almost analytic.” Furthermore, the estimates in [9, 23]
show that the attractor is compact by the Arzela–Ascoli theorem. Since the inclusion
ι : X→ L2 is continuous, these results apply immediately to the flow in X. Applying
the regularity result we see that ι(A) = B. Furthermore, since B is compact, the
inverse map restricted to B is continuous. Hence A and B are homeomorphic and
have the same topological dimension.

These theorems are independent of the scaling assumptions of our paper. We
assert that under suitable scaling hypotheses, one can simplify the geometry further
by constructing a normally hyperbolic invariant manifold that contains the attractor.

3. Geometry in the limit ε = 0. If ε = 0, then ut = 0 in (2.2). By inspection
one sees the existence of a manifold of equilibria, M0, given as the graph of a map
h : X1 → X2. We denote its components by h(u) = (hv(u), hw(u)). These maps are
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defined pointwise for x ∈ S1 by

hv(u)(x) = µ(1− iδ)
(λ+ 1)u(x)

1 + δ2 + λ|u(x)|2 , hw(u)(x) =
(1 + δ2)(λ+ 1)

1 + δ2 + λ|u(x)|2 .(3.1)

For large |u(x)| the denominator dominates; therefore,M0 is uniformly bounded. The
pointwise maps hv(u)(x) and hw(u)(x) are C

∞ as functions of u(x). Since pointwise
operations extend naturally in C(S1), we find that h is C∞ as a map between X1 →
X2. Thus,M0 is a C∞ manifold.

In this limit we can solve the laser equations explicitly. We split (u, v) into their
real and imaginary parts, i.e., (u, v) = (Re(u),Re(v)) + i(Im(u), Im(v)), and then
rewrite (2.3)–(2.4) as

∂t


 Re(v)
Im(v)
w


 = A(u)


 Re(v)
Im(v)
w


+


 0

0
γ‖(λ+ 1)


 ,(3.2)

where A(u) is the bounded multiplication operator defined by

A(u) =


 −1 δ µRe(u)

−δ −1 µIm(u)
−µRe(u) −µIm(u) −γ‖


 .(3.3)

Thus, the solution to the laser equations (2.3)–(2.4) in this limit is u = u(x), and
 Re(v)(t)
Im(v)(t)
w(t)


 = etA(u)


 Re(v)(0)
Im(v)(0)
w(0)


+ ∫ t

0

e(t−s)A(u)


 0

0
γ‖(λ+ 1)


 ds.(3.4)

Here u is treated as a parameter and the fibers of constant u are invariant under the
flow. Within each fiber, trajectories decay to the equilibrium (u, h(u)). The next
lemma states that the decay rate is uniform overM0.

Lemma 3.1. ‖etA(u)‖ ≤ e−βt for all u ∈ X1.
Proof. This follows from an estimate similar to (2.5). The operator A(u) is broken

into two parts: a diagonal matrix that is independent of u and a skew matrix that
depends on u. The skew matrix does not influence the growth or decay of energy, and
hence u cannot influence the decay in ‖(v, w)(t)‖.

Clearly, Lemma 3.1 reflects a strong stability of M0 that depends on the skew
nonlinearity. As we have emphasized earlier, this is actually a consequence of the
underlying physics. Figure 3.1 describes the geometry of the flow with two key ge-
ometric objects. The first is the critical manifold M0, the second is the smooth
invariant family Fu0 := {(u, v, w)|u = u0} parametrized by u0 ∈ X1. There is a
purely metric characterization of Fu0 : For any 0 < γ < β these manifolds are γ-stable
manifolds in the sense of Chow, Lin, and Lu [7]; i.e., for t ∈ R+ and fixed (u0, h(u0))
the set of points {(u, v, w) : ‖ϕt(u, v, w) − ϕt(u0, h(u0))‖ = O(e−γt)} is identical to
Fu0

. For ε > 0 the system is dissipative in the X1 direction as well, and all trajecto-
ries are sucked into the absorbing region D0. Thus, it is sufficient to show that M0

and Fu0 persist within D0. Roughly speaking, we shall show that there is an ε∗ > 0
so that for all 0 ≤ ε ≤ ε∗, there is a smooth (but not C∞) invariant manifold Mε

given as a graph (u, hε(u)) over Π1(D0) that contains the asymptotic dynamics (in
particular the attractor A) and is exponentially attracting.
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u (slow)

fixed points
Manifold of

Stable foliations
(v,w)  (fast)

Fig. 3.1. Geometry in the singular limit ε = 0.

4. Existence of the invariant manifold.

4.1. The main theorem.
Theorem 4.1. For any integer r, there is an ε∗(r) > 0 so that for each

ε ∈ [0, ε∗(r)] there is a positively invariant Cr manifold, Mε, given as a graph over
Π1(D0). This manifold attracts all initial conditions exponentially fast and contains
the attractor A of the Maxwell–Bloch equations.

Sections 4 and 5 are devoted to a proof of the main theorem. The consequences
of this theorem are explored in section 6.

4.2. The modified equations. We will use Hadamard’s graph transform method
to prove the existence of a persisting manifold [14]. We will restrict our attention to
the flow within an absorbing ball and modify the nonlinearity outside this ball. This
approach has been used to prove the existence of finite-dimensional attracting mani-
folds for dissipative dynamical systems (e.g., reaction diffusion equations) [13].

Let R1 = 2ρv/µ and R2 =
√
2ρv. Then R1 and R2 are sufficiently large that the

region

D = {‖u‖X1 ≤ 2R1, ‖(v, w)‖X2 ≤ 2R2}(4.1)

is absorbing and positively invariant (see (2.11) and the discussion preceding it). We
denote this region by D and note that D = 2D0.

Let χ1 : C→ [0, 1] be a C∞ function with compact support that takes the values
χ1(s) = 1, 0 ≤ |s| ≤ 1, χ1(s) = 0 for 2 ≤ |s| < ∞ and has uniformly bounded
derivative |Dχ1(s)| ≤ 2. Let χ2 : C× R→ [0, 1] be a cut-off function with analogous
properties. Define the cut-off functions χRi : Xi → [0, 1] by χR1(u)(x) = χ1(u(x)/R1)
and χR2(v, w)(x) = χ2((v(x), w(x))/R2). One may prove that χRi , i = 1, 2, are C

∞.
As is common in invariant manifold theory, we will modify the laser equations so as
to obtain global estimates. Let

κ

(
v

µ
− u

)
χR1(u)χR2(v, w) = g(u, v, w) and uχR1(u) = f(u).(4.2)
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Consider the modified laser equations

ut = −εux + εg(u, v, w),(4.3)

vt = −(1 + iδ)v + µf(u)w,(4.4)

wt = γ‖(λ+ 1− w)− µRe(f(u)v∗).(4.5)

We modify only the u term in the nonlinearity in (2.3)–(2.4). This allows us to retain
an estimate similar to the energy estimate (2.15).

Lemma 4.1. For (ui, vi, wi) ∈ X, i = 1, 2, we have
(a) ‖f(u1, v1, w1)− f(u2, v2, w2)‖ ≤ 5‖u1 − u2‖,
(b) ‖g(u1, v1, w1)−g(u2, v2, w2)‖ ≤ κ(5+4

√
2)(‖u1−u2‖+µ−1‖(v1, w1)−(v2, w2)‖).

Proof. Without loss of generality suppose max(|ui(x)|) = |u2(x)|. If |u2(x)| ≤
2R1,

|u1χR1(u1)(x)− u2χR1(u2)(x)|
≤ |u1(x)− u2(x)||χR1(u1)(x)|+ |u2(x)||χR1(u1)(x)− χR1(u2)(x)|
≤ |u1(x)− u2(x)|+ 2R1

2

R1
|u1(x)− u2(x)| ≤ 5‖u1 − u2‖.

If min(|u1(x)|, |u2(x)|) > 2R1, the above inequality is trivial since the left-hand side
is zero. Finally, if |u2(x)| > 2R1 and |u1(x)| ≤ 2R1, we have

|u1χR1(u1)(x)−u2χR1(u2)(x)| = |u1χR1(u1)(x)−u1χR1(u2)(x)| ≤ 4‖u1−u2‖.(4.6)

Taking the sup over x we obtain (a). Similar calculations show that the difference in
g is bounded by

κ

((
5 +

4R2

µR1

)
‖u1 − u2‖+

(
5

µ
+
4R1

R2

)
‖(v1, w1)− (v2, w2)‖

)
.

But R2/R1 = µ/
√
2. Simplifying the above estimate, we obtain (b).

Remark 4.2. We make the following important observation regarding the modi-
fied flow. Suppose ‖u(0)‖ > 2R1. Then there exists an open interval I in S1 so that
|u(0)(x)| > 2R1 for all x ∈ I, and hence g((u, v, w)(0)) = 0, on this interval. Integrat-
ing (4.3) along the characteristic x − εt = constant, we find that u(t, x) is constant
on the characteristics through I × {t = 0}. Thus, ‖u(t)‖ > 2R1 for all t ∈ R, and the
region {‖u‖ > 2R1} in phase space is invariant for the modified flow. This implies its
complement is also invariant. Hence the phase space splits into two invariant regions,
the closed cylinder {‖u‖ ≤ 2R1} and its exterior.

Remark 4.3. Within the region {‖u‖ ≤ R1, ‖(v, w)‖ ≤ R2} the modified and
unmodified equations agree on a dense set, and hence their flows agree locally in
time. But by the choice of Ri, this region is positively invariant, and thus the flows
agree for all positive time. As a result they have identical asymptotic dynamics
within this region. We will prove the following invariant manifold theorem for the
mild formulation of the modified equations (4.3)–(4.5). The mild formulation is

u(t) = e−εt∂xu(0) + ε

∫ t

0

e−ε(t−s)∂xg(u(s), v(s), w(s))ds,(4.7)

v(t) = e−(1+iδ)tv(0) + µ

∫ t

0

e−(1+iδ)(t−s)f(u(s))w(s)ds,(4.8)

w(t) = e−γ‖tw(0) + (λ+ 1)(1− e−γ‖t)(4.9)

−µ
∫ t

0

e−(t−s)γ‖ Re (f(u(s))∗v(s))ds.
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Theorem 4.4. For any integer r, there exists an ε∗(r) > 0 so that for each
ε ∈ [0, ε∗(r)] there is a Cr manifold, Mε, invariant under the flow of the modified
Maxwell–Bloch equations (4.7)–(4.9). Mε is given as a graph over Π1(D). This
manifold attracts all points in the absorbing region exponentially fast and contains the
attractor A of the Maxwell–Bloch equations (2.21)–(2.23).

Theorem 4.4 implies Theorem 4.1 because, by Remark 4.3, the asymptotic dy-
namics of modified and unmodified systems agree within D0. Since D0 is only posi-
tively invariant, the invariance of the manifold in Theorem 4.4 is weakened to positive
invariance in Theorem 4.1.

4.3. A priori estimates. We reconsider the a priori estimates of section 2 in
light of the above modifications. Henceforth, in sections 4 and 5, ϕt denotes the
flow of the modified equations (4.7)–(4.9). In all that follows, we will only consider
trajectories that start within the positively invariant region D. Thus the constants,
Cj , that occur in inequalities will generally depend on Ri and the parameters κ, λ, γ‖,
and µ. We also assume that the time t is positive.

Remark 4.2 implies the uniform bound

‖u(t)‖ ≤ 2R1, t ∈ R,(4.10)

for all trajectories starting within D. The modification has also been chosen so that
the energy estimate (2.15) is unchanged (i.e., we retain the cancellation of nonlinear
terms). Thus, by the choice of R2 trajectories starting within D satisfy the uniform
bound

‖(v, w)(t)‖ ≤ 2R2, t ≥ 0.(4.11)

Estimates for differences between trajectories are derived as in section 2. As in (2.17)
we have

a(t) ≤ eC1εta0 + C2ε

∫ t

0

eC1ε(t−s)b(s)ds(4.12)

for Ci = Ci(κ, µ,Ri), i = 1, 2. The analogue of (2.15) is derived from (4.3) and (4.4).
The differences (η, ζ) now satisfy

∂t(|η|2 + |ζ|2) = −2|η|2 − 2γ‖|ζ|2 + 2Re (η∗(f(u1)w1 − f(u2)w2))

−2Re (ζ(f(u1)v
∗
1 − f(u2)v

∗
2))

= −2|η|2 − 2γ‖|ζ|2 +Re ((f(u1)− f(u2))(w̄η
∗ − v̄∗ζ)) .(4.13)

Notice that the choice of the modification is such that the term involving f(u1)+f(u2)
cancels. This is important as it ensures that we retain the uniform decay normal to
the manifoldM0, independent of the basepoint u. One can now use Lemma 4.1 and
the energy estimate (4.11) in (4.13) and integrate to find

b(t) ≤ e−βtb(0) + C3

∫ t

0

e−β(t−s)a(s)ds.(4.14)

The constant C3 depends only on the parameters κ, µ, λ, β and the radii Ri. We also
need lower estimates on a(t) and b(t) that are derived similarly. For example, (4.3)
yields

(∂t + ε∂x)|ξ(t, x)|2 ≥ −Cε|ξ|(|ξ|+ |η|) ≥ −C1ε|ξ|2 − C2ε|η|2,
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so that integrating between t1 ≤ t2 and taking the sup over x we have

a(t2) ≥ e−C1ε(t2−t1)a(t1)− C2ε

∫ t2

t1

e−C1ε(t2−s)b(s)ds.(4.15)

Finally, from (4.13) and the energy estimate (4.11) we have the pointwise inequality

∂t(|η(t, x)|2 + |ζ(t, x)|2) ≥ −3β̃(|η|2 + |ζ|2)− C|ξ|2,(4.16)

where we have defined β̃ = max(1, γ‖). Integrating this inequality and taking the sup
over x ∈ S1 we obtain

b(t2) ≥ e−3β̃(t2−t1)b(t1)− C4

∫ t2

t1

e−3β̃(t2−s)a(s)ds.(4.17)

These a priori estimates can be used to prove the existence of a C∞ flow for the
dynamical system defined by (4.7)–(4.9) as in Theorem 2.5. We will not state a
separate theorem.

4.4. The cone property. The graph transform will be defined by applying the
map ϕT to Lipschitz sections of the normal bundle of the critical manifoldM0. Over
sufficiently large time we expect the flow to contract strongly in the normal direction.
This is made precise in the cone condition formulated by Conley, and used since then
by several authors. It is an essential geometric feature in the persistence theorem of
Bates, Lu, and Zeng and a comprehensive list of references may be found in their
article [4].

Choose T > 0 so that

e−βT/2 =
1

32
.(4.18)

T will be held fixed in all that follows. In the following propositions ε∗ denotes an
upper limit that may only decrease from one assertion to the next. This follows the
convention in [4]. For (u, v, w) ∈ D, we will use the cone

KL(u, v, w) = {(u1, v1, w1) ∈ D : ‖(v1, w1)− (v, w)‖X2 ≤ L‖u1 − u‖X1}.(4.19)

Lemma 4.2 (the moving cone lemma). There exists ε∗ > 0 and L > 0 such that
for ε ∈ [0, ε∗], t ∈ [0, T ], and each point (u, v, w) ∈ D, the cone KL(u, v, w) is carried
by the diffeomorphism ϕt into the cone KL(ϕt(u, v, w)).

Remark 4.5. The statement of Lemma 4.2 is uniform over all points in the
absorbing region. Geometrically, this implies a squeezing property of the flow.

Proof. D is positively invariant: thus for any (u, v, w) ∈ D, L > 0, and t ≥ 0, ϕt
carries the cone KL(u, v, w) into D. It remains to prove that for suitable L > 0, if two
trajectories start in D and satisfy b0 ≤ L2a0, then b(t) ≤ L2a(t) for all t ∈ [0, T ]. Since
the initial conditions lie in D, a(t) and b(t) must satisfy the a priori estimates (4.12)
and (4.14). Our proof will demonstrate a technique of dealing with these coupled
inequalities by exploiting the gap in the exponential rates.

For any γ ∈ (C1ε, β) we define |a|γ,t = sups∈[0,t] a(s)e
γs. Similarly, we define

|b|γ,t. It follows that |a|γ,t is an increasing function of t. We will use γ = β/2, though
the argument will work for any γ that satisfies the gap condition C1ε < γ < β. We
further assume that ε∗ is so small that C1ε∗ < β/2.
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We multiply (4.12) by eβs/2 to obtain

a(s)eβs/2 ≤ e(β/2+C1ε)sa0 + C2ε

∫ s

0

e(β/2+C1ε)(s−τ)eβτ/2b(τ)dτ

≤ e(β/2+C1ε)sa0 +
C2ε

β/2 + C1ε

(
e(β/2+C1ε)s − 1

)
|b|β/2,s

≤ e(β/2+C1ε)s
(
a0 + εC2s|b|β/2,s

)
.

In the last step we have used the elementary inequality 1 − e−t ≤ t for positive t.
Taking the sup over s ∈ [0, t], and using the fact that |a|γ,s is an increasing function
of s, we obtain

|a|β/2,t ≤ e(β/2+C1ε)t
(
a0 + C2εt|b|β/2,t

)
.(4.20)

We apply a similar calculation to (4.14) to obtain

b(s)eβs/2 ≤ b0e
−βs/2 + C3

∫ s

0

e−β(s−τ)/2eβτ/2a(τ)dτ

≤ b0 + C3
(1− e−βs/2)

β/2
|a|β/2,s ≤ b0 + C3s|a|β/2,s.

Taking the sup over s ∈ [0, t] we find
|b|β/2,t ≤ b0 + C3t|a|β/2,t.(4.21)

Combining the inequalities (4.20) and (4.21) we find

|b|β/2,t ≤ b0 + C3te
(β/2+C1ε)t

(
a0 + C2εt|b|β/2,t

)
.(4.22)

We suppose that ε∗ is chosen so small that for all ε ∈ [0, ε∗], we have

εe(β/2+C1ε)tC2C3t
2 ≤ 1

2
.(4.23)

Then using the hypothesis b0 ≤ l2a0, and (4.23) in (4.22) we find

|b|β/2,t ≤ a0

[
l2 + C3te

(β/2+C1ε)t

1− εC2C3t2e(β/2+C1ε)t

]
=: a0θ(t, ε),(4.24)

where we have defined a new function θ(t, ε) to simplify notation. Furthermore, we
set t1 = 0, and t2 = t in the backward time estimate (4.15) to deduce that

a0 ≤ eC1εta(t) + C2ε

∫ t

0

eC1εsb(s)ds(4.25)

≤ eC1εt
(
a(t) + C2εt|b|β/2,t

)
.

Thus, combining (4.24) and (4.25), we have

|b|β/2,t ≤ θ(t, ε)a0 ≤ θ(t, ε)eC1εt
(
a(t) + C2εt|b|β/2,t

)
.(4.26)

We reduce ε∗ if necessary so that supt∈[0,T ] εC2tθ(t, ε)e
C1εt ≤ 1/2. Then we have

b(t) ≤ e−β/2t|b|β/2,t ≤ θ(t, ε)e−(β/2−C1ε)t

1− C2εtθ(t, ε)eC1εt
a(t).(4.27)
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Thus, the cone condition (i.e., b(t) ≤ L2a(t)) will be satisfied if we ensure that for all
t ∈ [0, T ] we have

θ̃(t, ε) :=
θ(t, ε)e−(β/2−C1ε)t

1− C2εtθ(t, ε)eC1εt
− L2 ≤ 0.(4.28)

The function θ̃(t, ε) is smooth in t and ε for 0 ≤ t ≤ T, 0 ≤ ε ≤ ε∗, since by the choice
of ε∗ the denominator is bounded away from zero. Notice that if we let t = 0 in (4.24)
we have θ(0, ε) = L2; hence θ̃(0, ε) = 0. If ε = 0, then the inequality (4.28) reduces to

θ̃(t, 0) = −L2(1− e−βt/2) + C3t ≤ 0.(4.29)

Thus we choose

L2 ≥ 2C3max
(
2/β, T (1− e−βT/2)−1

)
= 2C3T

32

31
(4.30)

(see 4.18). This choice ensures that θ̃(t, 0) is a decreasing function of t in the range
[0, T ] and the inequality (4.29) is an equality only at t = 0. But then to show that
(4.28) is true for small positive ε, it suffices to ascertain its validity near t = 0. The
choice of L in (4.30) ensures that the slope

dθ̃(t, 0)

dt
|t=0 ≤ −C3 < 0,

which implies that for sufficiently small ε∗ the inequality maxt∈[0,T ] θ̃(t) ≤ 0 is satis-
fied. In other words, b(t) ≤ L2a(t) for all t ∈ [0, T ].

Remark 4.6. To simplify some estimates later, we further suppose that

L2 = 8max(C3T,C9),(4.31)

where C9 is a constant that occurs in the proof of Lemma 5.1. This simplifies some
estimates in the proof of existence and smoothness of the slow manifoldMε.

A point about the proof that an expert may find strange is the use of direct
estimates on the flow as opposed to estimates from the linearization near the mani-
fold. The laser equations admit strong estimates which is why this approach works.
Typically, the best one can do is obtain a cone condition in a neighborhood of the
manifold. Another unusual feature is the use of a Lipschitz constant L that is not
small. In Fenichel’s work [11] the slope of the Lipschitz sections (i.e., L) is small. The
distinction is that we use a single coordinate chart forM0, so L is finite to account
for the nonzero slope ofM0. This is to avoid a global coordinate transformation that
would lead to vexing technical difficulties.

The next three lemmas pick out special cases of estimates in the moving cone
lemma that will be used in the proof that the graph transform is a contraction mapping
(see Proposition 4.11).

Lemma 4.3. Suppose that a0 = 0. Then there is ε∗ > 0 so that for all ε ∈ [0, ε∗],

b(T ) ≤ b0/16.

Proof. The inequality (4.20) with t = T , and a0 = 0, reduces to

|a|β/2,T ≤ C2εTe
(β/2+C1ε)T |b|β/2,T ,
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and inserting this in (4.21) we have

|b|β/2,T ≤ b0 + εC2C3T
2e(β/2+C1ε)T |b|β/2,T

≤ b0 +
1

2
|b|β/2,T

by the choice of ε∗ in Lemma 4.2 (see (4.23)). Thus |b|β/2,T ≤ 2b0. But then

b(T ) ≤ e−βT/2|b|β/2,T ≤ 2

32
b0 =

1

16
b0.

Lemma 4.4. Suppose b0 = 0. There is ε∗ > 0 such that for all ε ∈ [0, ε∗],

b(T ) ≤
(
3L

4

)2

a0.

Proof. A calculation similar to that above reveals that b(T ) ≤ 2C3Te
C1εTa0.

When ε = 0 this reduces to

b(T ) ≤ 2C3Ta0 ≤ L2

4
a0

by the choice of L2 in Remark 4.6. Thus, for sufficiently small ε∗ we obtain the
required estimate.

We conclude with a backward time estimate.
Lemma 4.5. Suppose a(T ) = 0. There is ε∗ > 0 such that for all ε ∈ [0, ε∗]

a0 ≤ 1

4L2
b(T ).

Proof. We use (4.15) with t1 = t and t2 = T to find

a(t) ≤ eC1ε(T−t)a(T ) + C2ε

∫ T

t

eC1ε(s−t)b(s)ds

= C2ε

∫ T

t

eC1ε(s−t)b(s)ds

by our hypothesis. We multiply by eβt/2 and take the sup over t ∈ [0, T ] to obtain

|a|β/2,T ≤ C2ε

β/2− C1ε
|b|β/2,T .

Similarly by (4.17), the backward time estimate for b(t) is

b(t) ≤ e3β̃(T−t)b(T ) + C4

∫ T

t

e3β̃(s−t)a(s)ds.

We multiply by eβt/2 and take the sup in t to obtain

|b|β/2,T ≤ e3β̃T
(
b(T ) +

C4e
−βT/2

3β̃ − β/2
|a|β/2,T

)

≤ e3β̃T
(
b(T ) +

C4e
−βT/2

3β̃ − β/2

C2ε

β/2− C1ε
|b|β/2,T

)
.
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Let ε∗ be so small that for all ε ∈ [0, ε∗],

ε
C4

3β̃ − β/2

C2

2β − C1ε
e(3β̃−β/2)T ≤ 1

2
.

Then |b|β/2,T ≤ 2e3β̃T b(T ), and hence

a0 ≤ |a|β/2,T ≤ ε
2C2e

3β̃T

β/2− C1ε
b(T ).

We further reduce ε∗ if necessary to obtain a0 ≤ b(T )/4L2 for all ε ∈ [0, ε∗].
4.5. The graph transform. Define the metric space

SL =
{
h : Π1(D)→ X2| Lip(h) ≤ L, sup

u∈Π1(D)

‖h(u)‖X2 ≤ 2R2

}

with the distance function

d(h1, h2) = sup
u∈Π1(D)

‖h1(u)− h2(u)‖X2 .

SL is complete in this metric. We show below that for any h ∈ SL, the image of
graph (h) under ϕt, t ∈ [0, T ], is the graph of a function in SL. Taking t = T , we
define the graph transform G : SL → SL by graph (G(h)) = ϕT (graph (h)). Most of
this subsection is devoted to showing that this definition is unambiguous.

Proposition 4.7 (uniqueness). Fix h ∈ SL and a point u ∈ Π1(D). There is at
most one preimage u0 ∈ Π1(D) so that Π1(ϕt(u0, h(u0))) = u.

Proof. Suppose that u1 �= u2 but Π1(ϕt(u1, h(u1)) − ϕt(u2, h(u2))) = 0. Since
Lip(h) ≤ L, the point (u2, h(u2)) lies in the cone KL(u1, h(u1)). By the mov-
ing cone lemma ϕt(u2, h(u2)) ∈ KL(ϕt(u1, h(u1))). But then Π1(ϕt(u1, h(u1)) −
ϕt(u2, h(u2))) �= 0.

To prove the existence of at least one preimage requires more effort. If Π1(D)
were finite-dimensional one could use topological arguments based on degree and
the Wazewski principle to prove existence (see, e.g., [3]). This approach would fail
here since the manifold to be constructed has both infinite dimension and infinite
codimension. Moreover, though we know that there is a solution for ε = 0, we cannot
use an implicit function theorem (e.g., as in Fenichel’s work [11]) to establish existence
for ε > 0 since the perturbation is not Lipschitz in ε. We resort to an explicit solution
of the modified equations (4.3)–(4.5) in backward time.

Let uT ∈ Π1(D) be fixed. We will show that there exists (u0, h(u0)) ∈ D such that
Π1(ϕT (u0, h(u0))) = uT . We will rewrite the modified differential equations (4.3)–
(4.5) as integral equations in a form different from the mild formulation (4.7)–(4.9).
The motivation for this will be clear in the consequent estimates.

Let S(t, s;uT ), t, s ∈ R, be the two-parameter family in L(X2,X2) defined as the
solution operator to the following linear nonautonomous differential equation:

 Re(v)t
Im(v)t
wt


 =


 −1 δ µRef1(t)

−δ −1 µImf1(t)
−µRef1(t) −µImf1(t) −γ‖




 Re(v)
Im(v)
w


 ,(4.32)

where

f1(t) = f(eε(T−t)∂xuT ),
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and f is defined in (4.2). S(t, s;uT ) is well defined since the right-hand side is a
bounded linear operator, and we have the a priori estimate

|v(t, x)|2 + |w(t, x)|2 ≤ e−2β(t−s)(|v(s, x)|2 + |w(s, x)|2),
which ensures the existence of global solutions. In fact, this a priori estimate proves
the following.

Lemma 4.6. ‖S(t1, t2;uT )‖ ≤ e−β(t1−t2) for each uT ∈ X1.
Any mild solution to (4.7)–(4.9) that passes through uT at time T must satisfy

the integral equations

u(t) = eε(T−t)∂xuT − ε

∫ T

t

eε(s−t)∂xg(u(s), v(s), w(s))ds,(4.33) (
v(t)
w(t)

)
= S(t, 0;uT )

(
v(0)
w(0)

)
(4.34)

+

∫ t

0

S(t, s;uT )

(
0

γ‖(λ+ 1)

)
ds

+µ

∫ t

0

S(t, s;uT )F (u(s))

(
v(s)
w(s)

)
ds,

where F (u(s)) is a skew-symmetric multiplication operator in L(X2,X2) whose only
nonzero terms are

F13 = −F31 = Re(f(u(s)))− f(eε(T−s)∂xuT ),(4.35)

F23 = −F32 = Im(f(u(s)))− f(eε(T−s)∂xuT )

(we split v into its real and imaginary parts). The virtue of rewriting the equations
in this form is that the nonlinear terms are now small. More precisely, by Lemma 4.1
and (4.33)–(4.34), the norm of F is bounded by

sup
s∈[0,T ]

‖F (u(s))‖ = sup
s∈[0,T ]

‖f(u(s))− f(eε(T−s)∂xuT )‖(4.36)

≤ 5 sup
s∈[0,T ]

‖u(s)− eε(T−s)∂xuT ‖ ≤ εC5T

for a constant C5 = sup ‖g(u, v, w)‖ = C5(µ, κ,Ri) .
Proposition 4.8 (existence). There is ε∗ > 0 such that for each ε ∈ [0, ε∗] there

exists u0 ∈ Π1(D) with Π1(ϕT (u0, h(u0))) = uT .
Proof. If a preimage exists it must lie in Π1(D) by Remark 4.2. To prove the

existence of such a preimage we use iteration on the integral equations (4.33) with
the additional condition (v, w)(0) = h(u(0)).

Let u0(t) = 0 and (v, w)0(t) = 0 for 0 ≤ t ≤ T . For n ≥ 0 we define the sequence
of iterates

un+1(t) = eε(T−t)∂xuT − ε

∫ T

t

eε(s−t)∂xg(un(s), vn(s), wn(s))ds,(4.37) (
vn+1(t)
wn+1(t)

)
= S(t, T ;uT )h(u

n+1(0))(4.38)

+

∫ t

0

S(t, s;uT )

(
0

γ‖(λ+ 1)

)
ds

+

∫ t

0

S(t, s;uT )F (u
n+1(s))

(
vn(s)
wn(s)

)
ds.
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Notice that we solve (4.37) before (4.38).
The sequence defined above satisfies some uniform bounds. First, it is clear that

‖un+1(t)− eε(T−t)∂xuT ‖0,T ≤ εT sup ‖g(u, v, w)‖ = εC5T.(4.39)

Thus, by Lemmas 4.1, 4.6, and (4.36), we have

‖(v, w)n+1(t)‖ ≤ eβ(T−t)‖h‖+ (1− e−βt)
β

(λ+ 1) + 5εC5T

∫ t

0

e−β(t−s)‖(v, w)n(s)‖ds.

Now ‖h‖ ≤ 2R2 since h ∈ SL, so reducing ε∗ further if necessary we have

‖(v, w)n+1‖0,T ≤ 1

2
‖(v, w)n‖0,T + (λ+ 1)

β
+ 2R2e

βT ,

where ‖ · ‖0,T = supt∈[0,T ] ‖ · ‖. This implies the uniform bound

sup
n≥0
‖(v, w)n‖0,T ≤ C6(β, µ, κ, λ,Ri, T ).(4.40)

Next, we note that by (4.37) and Lemma 4.1, the difference between consequent
iterates of u must satisfy

‖un+1 − un‖0,T ≤ εC7T (‖un − un−1‖0,T + ‖(v, w)n − (v, w)n−1‖0,T ).(4.41)

We will estimate each term in the difference between (v, w)n+1 and (v, w)n separately
(see (4.38)). The first term is controlled by the uniform Lipschitz constant L.

sup
t∈[0,T ]

‖S(t, T ;uT )(h(un+1(0))− h(un(0)))‖(4.42)

≤ sup
t∈[0,T ]

‖S(t, T ;uT )‖‖h(un+1(0))− h(un(0))‖

≤ sup
t∈[0,T ]

e−β(t−T )L‖un+1(0)− un(0)‖ ≤ eβTL‖un+1 − un‖0,T

≤ εC7Te
βTL(‖un − un−1‖0,T + ‖(v, w)n − (v, w)n−1‖0,T )

by Lemma 4.6 and inequality (4.41). The differences between the terms on the second
line of (4.38) cancel, and the differences between the integrands in the third line are
estimated as follows:∥∥∥∥F (un+1(s))

(
vn(s)
wn(s)

)
− F (un(s))

(
vn−1(s)
wn−1(s)

)∥∥∥∥
≤ ‖F (un)‖‖(v, w)n − (v, w)n−1‖+ ‖(v, w)n‖‖F (un+1)− F (un)‖
≤ εC5T‖(v, w)n(s)− (v, w)n−1(s)‖+ 5C6‖un+1(s)− un(s)‖.

In the last step we have used Lemma 4.1 and the uniform estimates (4.36) and (4.40).
These terms estimate the integrands. Take the sup over t ∈ [0, T ] and combine the
resulting inequality with (4.41) and (4.42) to conclude that the difference between
two iterates in (v, w) must satisfy

‖(v, w)n+1− (v, w)n‖0,T ≤ εC8T (‖un−un−1‖0,T +‖(v, w)n− (v, w)n−1‖0,T ).(4.43)

We choose ε∗ so small that max(C7, C8)ε∗T < 1/2. Then the sequence of iterates is
a contraction in the Banach space C([0, T ];X). The limit is a trajectory (u, v, w)(t)
with u(T ) = uT and (v, w)(0) = h(u(0)).
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Remark 4.9. A closer look reveals that we have not used the condition that
T is large anywhere in the proof. Thus we have in fact established the stronger
statement that for fixed uT and any t ∈ [0, T ], there is a preimage u0 so that
Π1(ϕt(u0, h(u0))) = uT . Since u0 is obtained from a contraction mapping, a slight
variant of this argument may be used to prove the existence and uniqueness simul-
taneously, providing another proof of Proposition 4.7 without invoking Lemma 4.2
(the moving cone lemma). However, the moving cone lemma is of independent inter-
est, and as the proof of Proposition 4.7 shows, it directly implies uniqueness of the
preimage.

In essence, the proof reduces to compensating for the unbounded perturbation
by viewing the equation in a rotating frame. However, despite the direct proof, the
proposition is not trivial. The perturbation is not small but the argument works since
the unbounded part of the perturbation generates a unitary group.

We are now in a position to conclude that the graph transform is well defined as
a map from SL into itself.

Corollary 4.10. G : SL → SL.
Proof. Proposition 4.7 and Proposition 4.8 prove that the image of a Lipschitz

graph in SL is a graph. That the image is also Lipschitz, with Lipschitz constant
L, follows from the moving cone lemma. Finally, since D is positively invariant, the
image must satisfy ‖G(h)‖ ≤ 2R2. Thus the graph transform is well defined.

Now we establish that the graph transform is a contraction mapping on SL.
Proposition 4.11. For ε ∈ [0, ε∗] the graph transform G : SL → SL is a

contraction.
Proof. Let hi ∈ SL, i = 1, 2. We will show that d(G(h1),G(h2)) ≤ d(h1, h2)/2.

Fix uT in Π1(D). Let (ui, hi(ui)) be the unique preimages of (uT ,G(hi)(uT )). The
distance

‖G(h1)(uT )− G(h2)(uT )‖
= ‖Π2(ϕT (u1, h1(u1))− ϕT (u2, h2(u2)))‖
≤ ‖Π2(ϕT (u1, h1(u1))− ϕT (u1, h2(u1)))‖(4.44)

+‖Π2(ϕT (u1, h2(u1))− ϕT (u2, h2(u1)))‖(4.45)

+‖Π2(ϕT (u2, h2(u1))− ϕT (u2, h2(u2)))‖.(4.46)

By Lemma 4.3, (4.44) ≤ ‖h1(u1)−h2(u1)‖/4. By Lemma 4.4, (4.45) ≤ 3L‖u1−u2‖/4.
And by Lemma 4.3, (4.46) ≤ ‖h2(u1)− h2(u2)‖/4 ≤ L/4‖u1 − u2‖. Thus,

‖G(h1)(uT )− G(h2)(uT )‖ ≤ 1

4
‖h1(u1)− h2(u1)‖+ L‖u1 − u2‖

≤ 1

4
d(h1, h2) + L‖u1 − u2‖.

Furthermore, by the backward time estimate in Lemma 4.5

‖u1 − u2‖ ≤ 1

2L
‖G(h1)(uT )− G(h2)(uT )‖

so that

‖G(h1)(uT )− G(h2)(uT )‖ ≤ 1

2
d(h1, h2).

Since uT was arbitrary, the lemma is proved.
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Corollary 4.12. There is a unique solution to G(hε) = hε in SL. The graph of
hε, denoted byMε, is invariant under ϕt.

Proof. We have established that ϕT (Mε) =Mε. If 0 < t < T , then ϕt(Mε) is
the graph of a Lipschitz map in SL. This follows from Remark 4.9 and the moving
cone lemma (notice that Lemma 4.2 is true for all t ∈ [0, T ]). But then ϕT+t(Mε) =
ϕt(Mε) so that ϕt(Mε) is also a fixed point of G. By uniqueness, it follows that
ϕt(Mε) = Mε. Since ϕt is a diffeomorphism, we must have ϕt(Mε) = Mε for all
t ∈ R.
Mε is a slow manifold, as it is given as a graph over the slow variable, u. It is clear

that all solutions within D0 are attracted exponentially fast onto the slow manifold.
Indeed, given any point in D0 that does not lie inMε, we may construct a graph in
SL that passes through this point. Then Proposition 4.11 shows that this graph is
attracted exponentially fast ontoMε. In particular, this means that the attractor A
is contained withinMε. Hence this construction partially answers the open question
in [9] on the existence of an inertial manifold in the Maxwell–Bloch equations in the
sense that we significantly simplify the geometry of the flow and prove the existence
of a smooth, normally hyperbolic invariant manifold attracting all initial conditions.
The answer is only partial since this manifold is infinite dimensional.

5. Smoothness of the invariant manifold. The smoothness of the slow man-
ifold, Mε, is established by differentiating the following functional equation that h
must satisfy:

h(Π1(ϕT (u, h(u)))) = Π2(ϕT (u, h(u))), u ∈ Π1(D).(5.1)

For brevity we let uT = Π1(ϕT (u, h(u))) so that (5.1) may be rewritten as

h(uT ) = Π2(ϕT (u, h(u))), u ∈ Π1(D).(5.2)

We differentiate (5.2) to obtain a nonlinear functional equation that the derivative of
h must satisfy. We prove the existence of a solution to this equation by a contraction
mapping argument.

5.1. Notation. We use the notation in [12] for differentiation. Let Xi,Y be
Banach spaces. If F : X → Y, then DF : X → L(X,Y). If F is a function of
several variables, say, F : X1 × · · · × Xn → Y, then DF = (D1F, . . . ,DnF ), where
DiF : X1 × · · · × Xn → L(Xi,Y). In the interest of brevity we denote

Pi = Di(Π1 ◦ ϕT ), Qi = Di(Π2 ◦ ϕT ), i = 1, 2.(5.3)

5.2. C1 smoothness. Differentiating (5.2) with respect to u we obtain

Dh(uT )DuT (u) = Q1(u, h(u)) +Q2(u, h(u))Dh(u).

Since uT = Π1 ◦ ϕT (u, h(u)), its derivative is
DuT (u) = P1(u, h(u)) + P2(u, h(u))Dh(u).

Thus, we obtain the formal expression

Dh(uT ) = [Q1 +Q2Dh(u)] [P1 + P2Dh(u)]
−1

(5.4)

for the derivative of h. (Here and henceforth we suppress the arguments of Pi, Qi
to simplify notation.) When ε = 0, the derivatives satisfy P1 = Id, P2 = 0, and
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‖Q2‖ ≤ e−βT . Furthermore, uT = u. Thus, in this limit, (5.4) reduces to Dh(u) =
Q1 + Q2Dh(u), which has a unique solution since ‖Q2‖ is small. This suggests that
we use iteration to solve (5.4) for ε > 0.

We now define the function space in which we wish to construct the derivative
Dh. Let

TL =
{
A : Π1(D)→ L(X1,X2)| sup

u∈Π1(D)

‖A(u)‖L(X1,X2) ≤ L

}

be the metric space of continuous maps with the distance function

d(A1, A2) = sup
u∈Π1(D)

‖A1(u)−A2(u)‖L(X1,X2).

TL is complete in this metric.
We also define a map F : TL → TL as

F(A)(uT ) = [Q1 +Q2A(u)] [P1 + P2A(u)]
−1

.(5.5)

We shall prove that F is a contraction and the unique fixed point F(A) = A is the
derivative of h. This will imply thatMε is at least of class C

1.
We will use the following lemmas to estimate the terms in (5.5).
Lemma 5.1. There is ε∗ > 0 so that for ε ∈ [0, ε∗]
(a) supu∈Π1(D) ‖P1 − e−εT∂x‖L(X1,X1) = O(ε),
(b) supu∈Π1(D) ‖P2‖L(X1,X2) = O(ε),
(c) supu∈Π1(D) ‖Q1‖L(X2,X1) ≤ L/4,
(d) supu∈Π1(D) ‖Q2‖L(X2,X2) ≤ 1/8.
Proof. The proof entails estimating the growth of derivatives using the equation

of variations. The arguments are direct but tedious so we will omit a few details. The
main point is that despite the singular perturbation, we can control the derivatives
with knowledge of the limit ε = 0 provided we account for the unbounded terms
properly (e.g., as in statement (a) of the lemma).

We start by redefining S(t, s;u0), t, s ∈ R, as the solution operator to the linear
nonautonomous differential equation (4.32) with

f1(t) = f(e−εt∂xu0).(5.6)

Notice that Lemma 4.6 remains valid with this definition of f1. The mild formulation is
the obvious analogue of (4.33)–(4.34) provided we redefine F (u) as the skew-symmetric
multiplication operator whose only nonzero terms are

F13 = −F31 = Re(f(u(s))− f(e−εs∂xu0)),(5.7)

F23 = −F32 = Im(f(u(s))− f(e−εs∂xu0)).

The estimate (4.36) shows that F (u(s)) is uniformly small on [0, T ]. Differentiating
(4.33) with respect to the initial point u0, we obtain linear integral equations that the
derivatives must satisfy.

Du0u(t) = e−εt∂x + ε

∫ t

0

e−ε(t−s)∂x (D1gDu0u(s) +D2gDu0v(s)) ds(5.8)

+ ε

∫ t

0

e−ε(t−s)∂xD3gDu0w(s)ds
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and(
Du0

v(t)
Du0

w(t)

)
= Du0S(t, 0;u0)

(
v0

w0

)

+

∫ t

0

Du0(S(t, s;u0))

((
0

λ+ 1

)
+ F (u(s))

(
v(s)
w(s)

))
ds

+

∫ t

0

S(t, s;u0)DF (u(s))Du0u(s)

(
v(s)
w(s)

)
ds

+

∫ t

0

S(t, s;u0)F (u(s))

(
Du0v(s)
Du0w(s)

)
ds.(5.9)

The derivative of S(t, 0;u0) is computed from its definition in (4.32). Since S(t, 0;u0)
is defined by the solution to a system of linear nonautonomous equations, its derivative
Du0S(t, 0;u0) is a linear map from X1 → L(X2,X2) defined for any u1 ∈ X1 by

Du0
S(t, 0;u0)u1 =

∫ t

0

S(t, s;u0)(Du0G(s, 0;u0)u1)S(s, 0;u0)ds,

where G(t, 0;u0) is the matrix defined on the right-hand side of (4.32) with f1(t) re-
defined as in (5.6). It follows from Lemma 4.1 and Lemma 4.6 that ‖Du0S(t, 0;u0)‖ ≤
5te−βt. Thus the “linear” part of Du0

(v(t), w(t)) is bounded for all u0 and for all
t ∈ [0, T ] by some constant C9. By the choice of L (see Remark 4.6) C9 ≤ L/8.
The nonlinear part in (5.9) (i.e., the terms with F and DF ) are O(ε) by Lemma 4.6
and the estimate (4.36). The nonlinear terms in (5.8) are also O(ε) since Dig is
uniformly bounded (see Lemma 4.1). Thus, one may prove that a solution to the
equation of variations (5.8) and (5.9) exists for sufficiently small ε∗ by a contraction
mapping argument as in the proof of Proposition 4.8. Then Gronwall estimates show
that supt∈[0,T ]max(‖Du0

u(t)‖, ‖Du0
(v(t), w(t))‖) ≤ C(T,Qi) for all (u0, v0, w0) ∈ D

so that for all ε ∈ [0, ε∗],
‖Du0u(T )− e−εT∂x‖L(X1,X1) ≤ εC(T,Ri).

This proves (a). Similarly, the deviation ofQ1 from its linear part is O(ε) and for small
ε we have (c). Estimates (b) and (d) are obtained from the equation of variations for
the derivative in (v0, w0). These are

D(v0,w0)u(t) = ε

∫ t

0

e−ε(t−s)∂x
[
D1gD(v0,w0)u(s) +D2gD(v0,w0)v(s)

]
ds

+ ε

∫ t

0

e−ε(t−s)∂xD3gD(v0,w0)w(s)ds,(
D(v0,w0)v(t)
D(v0,w0)w(t)

)
= S(t, 0;u0) +

∫ t

0

S(t, s;u0)DF (u(s))D(v0,w0)u(s)ds

+

∫ t

0

S(t, s;u0)F (u(s))

(
D(v0,w0)v(s)
D(v0,w0)w(s)

)
ds.

Again, the nonlinear terms are O(ε) so these equations can be solved by a contraction
mapping argument. Gronwall estimates show that ‖D(v0,w0)u(t)‖ and ‖D(v0,w0)(v(t),
w(t)) − S(t, 0;u0)‖ are O(ε) with constants that depend only on Ri and T . But
‖S(t, 0;u0)‖ is exponentially decaying by Lemma 4.6, and since T has been chosen so
large that e−βT/2 = 1/32, we may further reduce ε∗ to obtain (b) and (d).
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Lemma 5.2. There is ε∗ > 0 so that for each ε ∈ [0, ε∗] and A ∈ TL we have

sup
u∈Π1(D)

‖[P1 + P2A(u)]
−1‖L(X1,X1) ≤ 1 +O(ε) ≤ 2.

Proof. We fix u ∈ Π1(D) and write

[P1 + P2A]
−1
= [e−εT∂x − (e−εT∂x − P1 − P2A)]

−1

= eεT∂x [Id− eεT∂x(e−εT∂x − P1 − P2A)]
−1

.

This suggests that we write the inverse as a Neumann series. If A ∈ TL, then its norm
is bounded by L. Thus by Lemma 5.1,

‖e−εT∂x − P1 + P2A(u)‖ ≤ ‖e−εT∂x − P1‖+ L‖P2‖ ≤ Cε.(5.10)

Also note that eεT∂x is an isometry on X1. Thus, the Neumann series converges
for [P1 + P2A]

−1 for ε∗ sufficiently small, and the norm of the sum does not exceed
1 +O(ε), which for sufficiently small ε is less than 2.

Let A ∈ TL. Then we obtain

‖F(A)‖ ≤ (‖Q1‖+ L‖Q2‖)(1 +O(ε))

by the previous lemma. Furthermore, by Lemma 5.1, ‖Q1‖+‖Q2‖L ≤ L/2. Thus, for
ε∗ sufficiently small ‖F(A)‖ ≤ L, and hence F is well defined. The next proposition
shows that for sufficiently small ε∗, it is in fact a contraction.

Proposition 5.1. There is ε∗ > 0 such that for ε ∈ [0, ε∗] the mapping F :
TL → TL is a contraction.

Proof. We let A,B ∈ TL, fix u ∈ Π1(D), and let uT = Π1 ◦ ϕT (u, h(u)). Then

F(A)(uT )−F(B)(uT ) = Q2(A(u)−B(u))[P1 + P2A(u)]
−1(5.11)

+(Q1 +Q2B(u))
(
[P1 + P2A(u)]

−1 − [P1 + P2B(u)]
−1
)
.

Applying Lemmas 5.1 and 5.2 to the first term we have

‖Q2(A(u)−B(u))[P1 + P2A(u)]
−1‖ ≤ 2

8
‖A(u)−B(u)‖.(5.12)

We use the identity (M − A)−1 − (M − B)−1 = (M − A)−1(A − B)(M − B)−1 and
Lemma 5.2 to estimate the second term in (5.11)

(Q1 +Q2B(u))
(
[P1 + P2A(u)]

−1 − [P1 + P2B(u)]
−1
)

(5.13)

≤ 4(‖Q1‖+ L‖Q2‖)‖P2‖‖A(u)−B(u)‖ ≤ 2L‖P2‖‖A(u)−B(u)‖
≤ Cε‖A(u)−B(u)‖ ≤ 1

2
‖A(u)−B(u)‖

for sufficiently small ε∗. Thus, ‖F(A)(uT ) − F(B)(uT )‖ ≤ 3/4‖A(u) − B(u)‖. Since
u was arbitrary, this proves the lemma.

To complete the proof thatMε is C
1, we must show that the unique fixed point

of F is indeed the derivative Dh. This step is essentially the same as Proposition 7
in Fenichel’s paper [11], so the proof is omitted.
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5.3. Ck smoothness. Higher order smoothness will be proven using the follow-
ing bootstrapping argument of Fenichel [11]. The unique fixed point A = F(A) can
be realized as the limit of a sequence of iterates An = FnA0 with A0 = 0. For any
u ∈ Π1(D),

An+1(uT ) = [Q1 +Q2A
n(u)][P1 + P2A

n(u)]−1.(5.14)

Since h is C1, the maps Pi = P1(u, h(u)) and Qi are differentiable, so An+1 is differ-
entiable if An is. Thus, to show that the limit A is differentiable it suffices to show
that the sequence {DAn} converges in the space C(Π1(D), L2(X1,X2)).

We will show this with estimates similar to those of Proposition 5.1. From the
proof of Proposition 5.1 (in particular, (5.12) and (5.13) with An−1 = A and An =
B) we see that the principal term in the contraction estimate at the nth step is

‖(P1 + P2A
n−1)−1‖ (‖Q2‖+ ‖P2‖‖Q1 +Q2A

n‖‖(P1 + P2A
n)−1‖)(5.15)

≤ (1 + Cε)

(
1

8
+ Cε

)
:= α1

by Lemma 5.1 and Lemma 5.2. Higher order derivatives can be obtained in the same
way. Differentiating (5.14) we obtain

DAn+1(uT )DuT (u) = Q2DAn(u)[P1 + P2A
n(u)]−1(5.16)

−[Q1 +Q2A
n][P1 + P2A

n]−1P2DAn[P1 + P2A
n]−1 + lower order terms,

where the lower order terms do not involve derivatives in A. Thus, the principal term
in the contraction estimate is now(‖Q2‖+ ‖P2‖‖Q1 +Q2A

n‖‖(P1 + P2A
n)−1‖) ‖(P1 + P2A

n−1)−1‖2(5.17)

≤ (1 + Cε)2
(
1

8
+ Cε

)
:= α2.

For ε∗ sufficiently small, α2 < 1 holds for 0 ≤ ε ≤ ε∗. Let an = supu ‖DAn+1(uT )−
DAn(uT )‖. It follows from (5.16) and (5.17) that

an+1 ≤ α2an + rn,

where rn is a remainder term obtained from the differences in lower order terms. rn
diminishes to zero as n increases since An converges. Thus, for any η > 0 there exists
an N such that rn ≤ η for all n ≥ N . Hence,

aN+m ≤ αm2 aN +
η

1− α2
,

and thus lim supn→∞ an ≤ η/(1− α2). Since η was arbitrary, an → 0, and it follows
that the sequence {DAn} converges. Thus,Mε is of class C

2.
We now proceed inductively. To show thatMε is C

k assuming that it is Ck−1, it
is sufficient to show that the sequence {DkAn} converges. Each term in the sequence
is of the form

DkAn+1(uT )DuT (u) = Q2D
kAn(u)[P1 + P2A

n(u)]−k

−[Q1 +Q2A
n][P1 + P2A

n]−1P2D
kAn[P1 + P2A

n]−k + terms of order k − 1,
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and the principal term in the contraction estimate is bounded by

(1 + Cε)k
(
1

8
+ Cε

)
:= αk.

For ε∗(k) sufficiently small, αk < 1 for all ε ∈ [0, ε∗] and the sequence {DkAn} is
convergent. Thus, Mε is of class C

k. The manifold is not C∞ since it is clear that
ε∗(k) must decrease to zero as k increases arbitrarily. This completes the proof of the
Ck smoothness and the proof of Theorem 4.4.

6. Geometric singular perturbation theory.

6.1. Notation. In this section we need to distinguish carefully between the flow
for different values of ε. To emphasize this, we will use the superscript ε. For ex-
ample, ϕεt denotes the flow with a particular choice of ε, (u

ε(t), vε(t), wε(t)) denotes
a trajectory, and Aε denotes the attractor for ϕεt . We use the same notation for the
modified and unmodified flow, but the flow under consideration will be clear from the
context.

6.2. Reduced dynamics and the slaving principle. Theorem 4.4 provides a
rigorous decomposition of the flow and a justification of the “slaving principle.” First
consider the modified flow. SinceMε is invariant, any trajectory on it must satisfy

u(t) = e−εt∂xu(0) + ε

∫ t

0

e−ε(t−s)∂xg(u(s), hε(u(s)))ds,(6.1)

hεv(u(t)) = e−(1+iδ)thεv(u(0)) + µ

∫ t

0

e−(1+iδ)(t−s)f(u(s))hεw(u(s))ds,(6.2)

hεw(u(t)) = e−γ‖thεw(u(0)) + (λ+ 1)(1− e−γ‖t)(6.3)

−µ
∫ t

0

e−(t−s)γ‖ Re (f(u(s))∗hεv(u(s)))ds.

Thus, the slow dynamics decouples from the fast dynamics. This is only half the story:
we have established the existence of a reduced equation that is a functional differen-
tial equation, but we have not prescribed a formula to compute the reduced equation.
Theorem 4.4 proves the existence of a family of invariant manifolds {Mε}ε∈[0,ε∗]. In
Fenichel’s theory [12] these manifolds Mε fit together smoothly in ε and there is a
global center manifold given as a function h(ε, u) = hε(u). Thus we may expand
hε(u) = h(0, u)+D1h(0, u)ε+R(u, ε), where R = o(ε). In infinite dimensions the sit-
uation is considerably more delicate. The issue is, of course, the unbounded term ε∂x.
For flows that are close in the C1 topology, it usually follows from an implicit function
theorem, or the proof of the existence of the invariant manifold, that the unperturbed
and perturbed manifolds are close. In the presence of unbounded perturbations the
convergence of hε to h0 is expressed in the following theorem.

Theorem 6.1. ‖hε(u)− h0(u)‖ → 0 uniformly on compact sets.
Proof. The only information we have is that Mε is invariant under the flow

ϕεt . Thus the proof will rely on the closeness of ϕ
ε
t to ϕ0

t . We fix u ∈ Π1(D0) and let
u(0) = u. We will estimate the difference hε(u)−h0(u) by using the integral equations
(6.1)–(6.3). When ε = 0, (6.1)–(6.3) reduce to the algebraic equations u(t) ≡ u and

 1 δ −µRef(u)
−δ 1 −µImf(u)

µRef(u) µImf(u) γ‖




 Reh0

v(u)
Imh0

v(u)
h0
w(u)


 =


 0

0
γ‖(λ+ 1)


 ,(6.4)
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or, more briefly,

B(u)h0(u) = (0, 0, γ‖(λ+ 1))T ,(6.5)

where B(u) is the multiplication operator in (6.4). This is the expression that was
computed in (3.1). For every x ∈ S1, the matrix B(u(x)) is invertible since

det(B(u(x))) = γ‖(1 + δ2) + µ2|f(u)(x)|2 ≥ γ‖(1 + δ2)(6.6)

is uniformly bounded away from zero. Thus, B(u) is invertible and its inverse, B(u)
−1
,

is the multiplication operator in L(X2,X2) defined for every x ∈ S1 by the matrix

B(u(x))
−1
. From the algebraic formula for the inverse of a matrix, and the estimate

(6.6), we see that

sup
u∈Π1(D)

‖B(u)−1‖ ≤ CB(R1).(6.7)

Define the function Ψ : X→ X2 by

Ψ(u, v, w) = B(u)

(
v
w

)
−
(

0
γ‖(λ+ 1)

)
.(6.8)

Notice that Ψ(u, v, w) = 0 if and only if (v, w) = h0(u). Let K be a compact subset of
Π1(D). We will show that limε↓0 supu∈K ‖Ψ(u, hε(u))‖ = 0. This implies the theorem
since

hε(u)−h0(u) = B(u)−1B(u)hε(u)−B(u)−1(0, γ‖(λ+1))T = B(u)−1Ψ(u, hε(u)),
(6.9)
and hence from (6.7) we obtain

sup
u∈K
‖hε(u)− h0(u)‖ ≤ CB sup

u∈K
‖Ψ(u, hε(u))‖.

We will consider the components of Ψ separately. The first two components of Ψ
are (1+ iδ)hεv(u)−µf(u)hεw(u) (taking the real and imaginary components together).
We estimate this term using (6.2). We start with the initial condition (u, v, w)(0) =
(u, hε(u)) and then calculate that for any t > 0,

(1− e−(1+iδ)t) [−(1 + iδ)hεv(u) + µf(u)hεw(u)] = (1 + iδ)

[
hεv(u

ε(t))− hεv(u)(6.10)

−µ
∫ t

0

e−(1+iδ)(t−s) (f(uε(s))hεw(u
ε(s))− f(u)hεw(u)) ds

]

(since u is a constant, we can take µf(u)hεw(u) under the integral sign). Notice that

Lip(fhεw) ≤
(
sup
u
‖f(u)‖

)
Lip(hεw) +

(
sup
u
‖hεw(u)‖

)
Lip(f)

≤ 2R1L+ 2R2 · 5 := C10

by Lemma 4.1 and the definition of SL. Thus, we obtain from (6.10) that

‖(1 + iδ)hεv(u)− µf(u)hεw(u)‖

≤ |1 + iδ|
|1− e−(1+iδ)t|

[
L‖uε(t)− u‖+ µ

∫ t

0

C10e
−(t−s)‖uε(s)− u‖ds

]

≤ C11

[
‖uε(t)− u‖
|1− e−(1+iδ)t| +

1− e−t

|1− e−(1+iδ)t| sups∈[0,t]

‖uε(s)− u‖
]
.
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Notice that (1− e−t)/|1− e−(1+iδ)t| is uniformly bounded for all t > 0. And for t in
any fixed domain (0, T ] we have 1/|1− e−(1+iδ)t| ≤ C(T )/t. Thus we find that

‖(1 + iδ)hεv(u)− µf(u)hεw(u)‖ ≤ C

[
‖uε(t)− u‖

t
+ sup
s∈[0,t]

‖uε(s)− u‖
]
.(6.11)

A similar calculation shows that we obtain the same result for the second component
of Ψ. Thus, we find

‖Ψ(u, hε(u))‖ ≤ C

[
‖uε(t)− u‖

t
+ sup
s∈[0,t]

‖uε(s)− u‖
]
.(6.12)

Finally, we use (6.1) to estimate the difference uε(t) − u. The difference consists of
two parts, the deviation from the linear part of the flow e−εt∂xu and the deviation of
the linear flow from the nonlinear flow. Precisely,

‖uε(t)− u‖ ≤ ‖uε(t)− e−εt∂xu‖+ ‖e−εt∂xu− u‖ ≤ Cεt+ ‖e−εt∂xu− u‖.
Inserting this estimate in (6.12) we have

‖Ψ(u, hε(u))‖ ≤ C

[
‖e−εt∂xu− u‖

t
+ sup
s∈[0,t]

‖e−εt∂xu− u‖+ ε(1 + t)

]
.(6.13)

For fixed t and u, the right-hand side of (6.13) goes to zero as ε ↓ 0. Next suppose
that we fix t but consider u ranging over a compact subset K. Since functions in K
are equicontinuous, supu∈K ‖e−εt∂xu− u‖ → 0 as ε ↓ 0.

The estimate (6.13) highlights why the convergence of hε to h0 is not any better
than uniform convergence on compact subsets. Since t is a free parameter, the estimate
is best when we take the infimum with respect to t. Since the flow is continuous in t
we must have sups∈[0,t] ‖uε(s) − u‖ → 0 as t → 0. But the first term in (6.12) may

not have a limit. The reason is that limt↓0 ‖e−εt∂xu − u‖/t does not exist for most
functions (in the sense of category). If u is C1, then we find that

‖Ψ(u, hε(u))‖ ≤ C

(
‖Du‖∞ε+ sup

s∈[0,t]

‖Du‖∞εt+ ε(1 + t)

)
,

and since t is a free parameter, we take the infimum over t to find

‖Ψ(u, hε(u)) ≤ C(‖Du‖∞ + 1)ε.(6.14)

Another example of more rapid convergence is provided by taking K to be a bounded
subset of C0,α(S1;C), the space of Hölder continuous functions with modulus α ∈
(0, 1]. In this case we find that

sup
u∈K
‖e−εt∂xu− u‖ ≤ Hεαtα−1,

where H is the maximum Hölder seminorm of the functions in K. Then we take the
infimum in t on both sides of (6.13) to find that

sup
u∈K
‖hε(u)− h0(u)‖ ≤ Cεα.
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6.3. Formal asymptotic expansions. Equations (6.1)–(6.3) are also the start-
ing point for a formal asymptotic expansion. Theorem 6.1 shows that we can control
the remainder only if u(s) has some smoothness in x. However, a formal asymptotic
expansion may be obtained by using the invariance ofMε. Make the ansatz

hε(u) = h0(u) + εh1(u) + ε2h2(u) + · · · .(6.15)

Substituting this ansatz in (6.1)–(6.3) and matching the powers of ε we obtain after
some calculations that

hn(u) = cn(u)∂
n
xu+ dn(u, ∂xu, . . . , ∂

n−1
x u), n ≥ 1,(6.16)

where cn(u)(x) depends only on u(x). This expansion suggests that hε(u)(x) actually
depends on the germ of u at x. Thus, we expect hε(u) to have a nonlocal dependence
on u. The expansion also suggests that the reduced equation (6.17) is not hyper-
bolic because hn(u) includes higher order diffusive and dispersive terms. In fact, the
reduced equation cannot be hyperbolic for if it were, there would be no asymptotic
smoothing on the attractor. Similar questions arise in hyperbolic conservation laws
with relaxation. We refer especially to the article by Chen, Levermore, and Liu, sec-
tion 2 of which contains the same geometric description of formal reductions in the
context of conservation laws [5].

6.4. Regular dynamics. We can now revert to a description of the unmodified
Maxwell–Bloch equations in the slow (and natural) time scale. Changing the time
scale to τ = εt we have for all u(0) ∈ Π1(D0) and τ ≥ 0 ,

u(τ) = e−κτe−τ∂xu(0) +
κ

µ

∫ τ

0

e−κ(τ−s)e−(τ−s)∂xhεv(u(s))ds.(6.17)

We have used the positive invariance of Π1(D0) and the fact that g(u, v, w) reduces to
v within the domain D0. To make the comparison with the formal reduction precise,
we shall write (6.17) as

u(τ) = e−κτe−τ∂xu(0) +
κ

µ

∫ τ

0

e−κ(τ−s)e−(τ−s)∂xh0
v(u(s))ds(6.18)

+
κ

µ

∫ τ

0

e−κ(τ−s)e−(τ−s)∂x(hεv(u(s))− h0
v(u(s)))ds.

The attractor Aε is an invariant set contained in Mε. On the attractor, the
reduction is valid uniformly in time. Applying (6.14) to u ∈ Π1(Aε) we have∥∥∥∥u(τ)− e−κτe−τ∂xu(0)− κ

µ

∫ τ

0

e−κ(τ−s)e−(τ−s)∂xh0
v(u(s))

∥∥∥∥
≤ κ

µ

∫ τ

0

e−κ(τ−s)‖hε(u(s))− h0(u(s))‖ds ≤ Cε

(
sup
u∈Aε

‖Du‖∞ + 1

)

for all τ . Unfortunately, this isn’t enough as the estimates of section 4 in [9] show that
supu∈Aε

‖Du‖∞ = O(1/ε). Furthermore, based on numerical evidence we expect that
this estimate is sharp. In several parameter regimes the Lorenz ODEs have periodic
solutions with arbitrarily large period. These solutions in turn imply the existence of
traveling wave solutions to the Maxwell–Bloch equations with gradients of O(1/ε). In
fact, estimating supu∈Aε

‖∂nxu‖∞ we find that the series (6.16) diverges even on the
attractor.
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6.5. Change of stability under perturbation. The guiding philosophy of ge-
ometric singular perturbation for ODEs is that normally hyperbolic manifolds within
the formally reduced flow persist for the perturbed flow, provided the critical man-
ifold is normally hyperbolic. As an example of this, Fenichel proved a theorem of
Anosov on the persistence of periodic orbits for a singularly perturbed ODE [12]. A
simpler example is to consider hyperbolic fixed points. Let the reduced flow have
an exponentially attracting fixed point, and let the critical manifold be exponentially
attracting. Then Theorem 12.1 in [12] shows that the fixed point persists for ε > 0
and remains attracting.

Even this simple assertion is false for PDE; i.e., the unbounded perturbation may
change the stability type of a fixed point within the persisting slow manifold. For
simplicity suppose δ = 0 and consider only real (u, v, w). In this case the reduced
equation is a gradient dynamical system with a double well potential, and u = 1 is
a spatially homogenous equilibrium of the reduced equation. It is attracting since
it lies at the minimum of the well. A calculation reveals that the point (u, v, w) =
(1, h0(1)) = (1, µ, 1) is an equilibrium of the full equations for all ε > 0. Nevertheless,
it need not retain the stability type of the ε = 0 limit. Risken and Nummedal [25]
showed that the fixed point is unstable for large λ for all positive ε and the number
of linearly unstable modes diverges like 1/ε. Thus the divergence between the formal
limit and the full system is dramatic for small ε.

6.6. Conclusions. We have developed a geometric method of studying the sin-
gularly perturbed Maxwell–Bloch equations. The main merit of this method is that
it rigorously separates the dynamics of this problem into slow and fast evolution. The
geometric principles underlying the method are simple and thus it should be of use in
other problems. However, the Maxwell–Bloch equations have several simplifying fea-
tures and there are often many technical difficulties inherent in a rigorous analysis of
PDEs with multiple scales. Thus transporting these ideas to other PDEs will be a dif-
ficult (but rewarding) task. Moreover, we have shown that global invariant manifolds
with infinite dimension and codimension arise naturally in evolution equations with
two scales. One may rigorously find reduced equations for such systems, but these are
functional differential equations, and naive approximations to these equations seem
to fail. There are several subtle features in geometric singular perturbation theory
in infinite dimensions, and the Maxwell–Bloch equations illustrate some of these in a
setting with few technicalities.

There have been several recent developments in geometric singular perturbation
theory for PDE. We mention the work by Li et al. [21], Haller [17], and Zeng [29] on the
damped and driven nonlinear Schrödinger equation. The motivation and methods are
different there: in that case the ε = 0 limit is integrable, and a lot of effort is expended
in solving problems associated with nonhyperbolicity and weak hyperbolicity. We also
mention that Hale, Raugel, Sell, and coworkers have studied PDE in thin domains
(see the references in [24]).
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Abstract. We show that ridgelets, a system introduced in [E. J. Candes, Appl. Comput.
Harmon. Anal., 6 (1999), pp. 197–218], are optimal to represent smooth multivariate functions
that may exhibit linear singularities. For instance, let {u · x − b > 0} be an arbitrary hyperplane
and consider the singular function f(x) = 1{u·x−b>0}g(x), where g is compactly supported with
finite Sobolev L2 norm ‖g‖Hs , s > 0. The ridgelet coefficient sequence of such an object is as
sparse as if f were without singularity, allowing optimal partial reconstructions. For instance, the
n-term approximation obtained by keeping the terms corresponding to the n largest coefficients in
the ridgelet series achieves a rate of approximation of order n−s/d; the presence of the singularity
does not spoil the quality of the ridgelet approximation. This is unlike all systems currently in use,
especially Fourier or wavelet representations.

Key words. Sobolev spaces, Fourier transform, singularities, ridgelets, orthonormal ridgelets,
nonlinear approximation, sparsity

AMS subject classifications. 41A46, 42B99

PII. S003614109936364X

1. Introduction.

1.1. Ideal representations of Sobolev classes. It is well known that trigono-
metric series and wavelets are well adapted to represent functions taken from L2

Sobolev classes [1]. For a nonnegative integer s, the L2 Sobolev norm is

‖f‖2Hs = ‖f‖22 + ‖f (s)‖22,

where f (s) is the sth derivative of f ; and, more generally, the norm of f is defined by
means of the Fourier transform; let F be the classical Fourier transform,

(Ff)(ξ) = f̂(ξ) =

∫
f(x)e−ix·ξ dx;(1.1)

then,

‖f‖2Hs =

∫
|f̂(ξ)|2(1 + |ξ|2s) dξ

when s > 0 is not necessarily an integer. (Of course, when s is an integer, the two
definitions are equivalent thanks to the Plancherel formula; see [13], for example.)

Both wavelet and Fourier bases provide unconditional bases for these Sobolev
spaces Hs defined, say, on the torus. Abstractly, a basis (φi)i∈I is an unconditional
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basis for a functional class F if shrinking the coefficients preserves the norm of the
object: i.e., if we let

θi(f) = 〈f, φi〉

and consider

f̃ =
∑
i

θ′iφi, |θ′i| ≤ |θi|,

then

‖f̃‖F ≤ C ‖f‖F .

We quote Donoho [8]: “An orthogonal basis of L2 which is also an unconditional basis
of a functional space F is an optimal basis for compressing, estimating, and recovering
functions in F .”

For instance, suppose that f is a function defined on the circle T with bounded
Sobolev norm and let fn be the n-term trigonometric nonlinear approximation of
f obtained by keeping the terms corresponding to the n largest coefficients in the
expansion. Then,

‖f − fn‖2 ≤ C n−s‖f‖Hs(T ).

The same is true for nice periodic wavelets and essentially no orthogonal basis would
give a better rate of approximation: that is, for any orthobasis (φi)i∈I , let Qn(f) be
the best n-term approximation in that basis

Qn(f) = argmin ‖f − g‖2, g =

n∑
m=1

λmφim ;

then, letting F be the Sobolev ball F = {f, ‖f‖Hs(T ) ≤ 1}, there is a lower bound on
the error of approximation

sup
f∈F
‖f −Qn(f)‖2 ≥ C n−s.

Another instance of this property is that in any orthobasis (φi)i∈I the number of
terms greater than 1/n is greater than c · n2/(2s+1). In both Fourier and wavelet
bases, n2/(2s+1) is the order of the number of coefficients that exceed 1/n, and in
this sense we may say that these bases are the most “economical” for representing
elements from Hs(T ).

1.2. Singularities: The one-dimensional case. However, these nice proper-
ties are very fragile. For instance, it is well known that trigonometric series provide
poor reconstructions of discontinuous functions. On the interval [0, 1], let f be the
periodic function defined by f(t) = t − H(t − t0), where H(t) is the step function
1{t>0}. The best L2 n-term approximation of f by trigonometric series gives only an

L2 error of order O(n
−1/2). This is a general fact: if g is a nice function taken from the

Sobolev class Hs (with support contained in (0,1)), then the rate of approximation
of H(t − b)g(t) is no better than O(n−1/2). The discontinuity spoils the representa-
tion, and we need a lot of different terms to reconstruct the discontinuity with good
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accuracy. (This phenomenon is well known from engineers and is often referred to as
the Gibbs phenomenon or ringing effect.)

One of the reasons why wavelets are so attractive is that they are the best bases
for representing objects composed with singularities (see the discussion of Mallat’s
heuristics in [8]). As an example, our simple discontinuous object H(· − b)g(·) has a
rate of approximation in a nice wavelet basis of order O(n−s). Whereas the singularity
had a dramatic effect on the sparsity of Fourier coefficients, it does not affect the
sparsity of wavelet coefficients as the number of wavelet coefficients exceeding 1/n is
still of order n2/(2s+1). The singularity does not spoil the wavelet representation. This
miracle may explain the spread of wavelet methods in data compression, statistical
estimation, inverse problems, etc., as in practical applications the signals that are to
be recovered exhibit these kinds of discontinuities (see the survey paper [11]).

1.3. Singularities: The higher-dimensional case. Under a certain view-
point, however, the picture changes dramatically when the dimension is greater than
one. On [0, 1]d, suppose now that we want to represent the simple object

f(x) = H(u · x− t0)g(x), g ∈ Hs and supp g ⊂ [0, 1]d.(1.2)

The object f is singular on the hyperplane u · x = t0 (u is a unit vector) but may
be very smooth elsewhere. Then, the number of wavelet coefficients exceeding 1/n is

greater than n2(1−1/d), yielding L2 rates of approximation only of order O(n
− 1

2(d−1) ).
This lower bound holds even when g is as nice as we want, i.e., g ∈ C∞. Translated
into the framework of image compression, it says that both wavelet bases and Fourier
bases are severely inefficient at representing edges in images. Wavelets can deal with
point-like phenomena, but they cannot deal with line-like phenomena in dimension 2,
plane-like phenomena in dimension 3, etc.

In harmonic analysis, there has recently been much interest in finding new dic-
tionaries and ways of representing functions by linear combinations of elements of
those. Examples include wavelets, wavelet-packets, Gabor functions, brushlets, etc.
The purpose of this paper is to show that ridgelets, a system introduced by [4], are
as efficient for representing objects with discontinuities like (1.2) as wavelets are for
representing discontinuous functions in one dimension.

1.4. Achievements and overview. The ridgelet construction will briefly be
reviewed in section 2. In a nutshell, a ridgelet is a ridge function of the form

ψa,u,b(x) =
1

a1/2
ψ

(
u · x− b

a

)
, a > 0, u ∈ Sd−1, b ∈ R,(1.3)

where ψ is univariate and oscillatory. The fundamental result is that there is a discrete
family (ψan,un,bn) which is a frame for L2 spaces of compactly supported functions.
(We will simply refer to this family as ψn.) The frame property says that for any
element f ∈ L2[0, 1]

d there exist two constants A,B > 0 with the property

A ‖f‖2 ≤
∑
n

|〈f, ψn〉|2 ≤ B ‖f‖2.

A consequence of the previous display is the existence of a dual set of ridgelets (ψ̃n)
(the dual frame) and of the decomposition

f =
∑
n

〈f, ψ̃n〉ψn =
∑
n

〈f, ψn〉, ψ̃n(1.4)
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with equality holding in an L2 sense.
To measure the sparsity of an arbitrary sequence (θn), we will use the weak-�p

or Marcinkiewicz quasi norm, defined as follows: let |θ|(n) be the nth largest entry in
the sequence (|θn|); we set

|θ|w�p = sup
n>0

n1/p|θ|(n).(1.5)

Equipped with a nice ridgelet frame, the key result of our paper (section 4) is the
following: let us consider a template f such as in (1.2) and let α (αn = 〈f, ψn〉) denote
the ridgelet coefficient sequence of f . Then, the sequence α is sparse as if f were not
singular in the sense that

‖α‖w�p ≤ C ‖g‖Hs with 1/p = s/d+ 1/2,(1.6)

where the constant C does not depend on f ; or equivalently, the number of ridgelet
coefficients exceeding 1/n is bounded by C np ‖g‖Hs . (Throughout the paper, the
letter C will denote a positive constant whose value may differ at different occurrences,
even within a single formula.) There might be some ambiguity about the notation
‖g‖Hs since g is not uniquely determined by f . In this paper, we will implicitly
take the norm ‖g‖Hs as being the minimum norm of all those elements in Hs whose
restriction to {u · x > t0} coincide with f ; i.e.,

‖g‖Hs := inf{‖h‖Hs , f(x) = H(u · x− t0)h(x), supph ⊂ [0, 1]d}.

There is a direct consequence of this result. Consider the n-term fn ridgelet
approximation obtained by extracting from the exact series (1.4) the terms corre-
sponding to the n largest coefficients. Then,

‖f − fn‖ ≤ C n−s/d ‖g‖Hs ,(1.7)

where, again, the constant C is independent of f . The presence of the singularity
does not ruin the sparsity of the ridgelet series. This is unlike wavelet or Fourier anal-
ysis. Hence, we have a very concrete, constructive, and stable procedure—namely,
the thresholding of ridgelet coefficients—to obtain near-optimal nonlinear approxima-
tions. The author is not aware of any other system with similar features.

In dimension 2, Donoho introduced an orthonormal basis, closely related to the
ridgelet system, that he calls “orthonormal ridgelets.” Section 5 will show that both
results (1.6) and (1.7) continue to hold with orthonormal ridgelets in place of “pure”
ridgelets.

1.5. Methodology. The method that is used to prove (1.6) and (1.7) involves
the study of the Fourier transform along rays going through the origin (section 3).
Before we proceed further, (r, θ) will index the standard polar coordinates system and
throughout the paper we will abuse notation in writing f(r, θ) instead of (f ◦ C)(r, θ),
where C is the change of coordinates from polar to cartesian. In two dimensions, let
us now consider the singular function f defined by

f(x1, x2) = 1{x1>0} g(x1, x2)

with g in Hs, s ∈ N, and supp g ⊂ [0, 1]d. The argument relies on a bound that
is available on the integral over the “polar” segment {(r, θ), 2j ≤ r ≤ 2j+1} of the
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squared modulus of the Fourier transform. Indeed, there exists a constant C not
depending on f such that

(1.8)

∫
2j≤r≤2j+1

|f̂(r, θ)|2 dr

≤ C ε2j (θ)2
−j2−2js‖g‖2Hs + C 2−j min(1, 2−2js| sin θ|−2s)‖g‖2Hs

with
∑

j

∫ 2π

0
ε2j (θ) dθ ≤ 1. A d-dimensional version of (1.8) will be given in section 3.

The singularity 1{x1>0} causes the Fourier transform to decay very slowly in the
critical directions θ = 0, π. (This set of directions is sometimes referred to as the

wavefront.) Indeed, for θ = 0, say, |f̂(r, θ)| ∼ r−1 and, therefore, for this critical value

of θ,
∫
2j≤r≤2j+1 |f̂(r, θ)|2 dr ∼ 2−j , which is the content of (1.8). However, this effect

is really local and our estimate (1.8) pictures the decay of the Fourier transform as θ
moves away from the singular rays. The result is nonasymptotic since it describes the
situation at a finite distance 2j (j ≥ 0) from the origin. For instance, in dimension 2
the order of magnitude of the modulus of the Fourier transform at a point with polar
coordinates (2j , θ) is 2−j(s+1)| sin θ|−s. It is interesting to observe that the smoothness
of the object governs the size of the Fourier transform as θ approaches 0, π. Although
this phenomenon may not have been extensively studied in the literature, it perhaps
corresponds to some new kind of microlocal analysis and we believe that this is of
independent interest.

The localization of the Fourier transform near the wavefront is the key property
driving our main results (1.6) and (1.7). Extensions and limitations of these results
will be discussed in section 6.

2. Ridgelets. In this section, ĝ will denote the Fourier transform of g. In d
dimensions, the ridgelet construction starts with a univariate function ψ satisfying an
oscillatory condition, namely, ∫

|ψ̂(ξ)|2/|ξ|d dξ <∞.(2.1)

A ridgelet is a function of the form

1

a1/2
ψ

(
u · x− b

a

)
,(2.2)

where a and b are scalar parameters and u is a vector of unit length. In what follows,
we will suppose that ψ is normalized so that

∫ |ψ̂(ξ)|2|ξ|−ddξ = 1. Of course, a ridgelet
is a ridge function whose profile displays an oscillatory behavior (like a wavelet). A
ridgelet has a scale a, an orientation u, and a location parameter b. Ridgelets are
concentrated around hyperplanes: roughly speaking, the ridgelet (2.2) is supported
near the strip {x, |u · x− b| ≤ a}.

Remarkably, one can represent any function as a superposition of these ridgelets.
Define the ridgelet coefficients

Rf (a, u, b) =

∫
f(x) a−1/2ψ

(
u · x− b

a

)
dx;(2.3)

then, for any f ∈ L1 ∩ L2(R
d), we have

f(x) = (2π)−(d−1)

∫
Rf (a, u, b)a

−1/2ψ

(
u · x− b

a

)
dµ(a, u, b),(2.4)
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where dµ(a, u, b) = da/ad+1 du db (du being the uniform measure on the sphere).
Furthermore, this formula is stable as one has a Parseval relation

‖f‖22 = (2π)−(d−1)

∫
|Rf (a, u, b)|2dµ(a, u, b).(2.5)

Similar to the continuous transform, there is a discrete transform. Consider the
following discrete collection of ridgelets:

{ψj,�,k(x) = 2
j/2ψ(2juj,� · x− kb0), j ≥ j0, uj,� ∈ Σj , k ∈ Z}.(2.6)

The scale a and location parameter b are discretized dyadically, as in the theory of
wavelets. However, unlike wavelets, ridgelets are directional and here the interesting
aspect is the discretization of the directional variable u. This variable is sampled
at increasing resolution, so that at scale j the discretized set Σj is a net of nearly
equispaced points at a distance of order 2−j . A detailed exposition on the ridgelet
construction is given in [4]. In two dimensions, for instance, a ridgelet is of the form

{ 2j/2ψ(2j(x1 cos θj,� + x2 sin θj,� − 2πk2−j)) }(j≥j0,�,k),

where the directional parameter θj,� is sampled with increasing angular resolution at
increasingly fine scales, something like the following:

θj,� = 2π�2
−j .

The key result [4] is that the discrete collection (ψj,�,k) is a frame for square
integrable functions supported on the unit cube. There exist two constants A and B
such that for any f ∈ L2([0, 1]

d), we have

A ‖f‖2L2
≤
∑
j,�,k

|〈f, ψj,�,k〉|2 ≤ B ‖f‖2L2
.(2.7)

The previous equation says that the datum of the ridgelet transform at the points
(a, u, b) = (2j , uj,�, k2

−j)—with the parameter range as in (2.6)—suffices to recon-
struct the function perfectly. In this sense, this is analogous to the Shannon sampling
theorem for the reconstruction of bandlimited functions. Indeed, standard arguments
show that there exists a dual collection (ψ̃j,�,k) with the property

f =
∑
j,�,k

〈f, ψ̃j,�,k〉ψj,�,k =
∑
j,�,k

〈f, ψj,�,k〉ψ̃j,�,k,(2.8)

where the notation 〈·, ·〉 stands here and throughout the remainder of this paper for
the usual inner product of L2: 〈f, g〉 =

∫
f(x)g(x)dx.

At times, we will use the compact notation ψν (ν ∈ N ) for our ridgelet frames
and, therefore, we will keep in mind that the index runs ν through an enumeration of
the triples (j, �, k).

3. Localization of the Fourier transform. The purpose of this section is to
quantify the size of the Fourier transform of an object f , where f is given by

f(x) = H(x1) g(x),

where g is compactly supported and with finite Sobolev norm (recall H(t) = 1{t>0}).
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To formulate our statement in d dimensions, we introduce the spherical coordi-
nates defined by x1 = r cos θ1, x2 = r sin θ1 cos θ2, . . . , xd = r sin θ1 sin θ2 . . . sin θd−1,
0 ≤ θ1, . . . , θd−2 ≤ π, 0 ≤ θd−1 < 2π. In what follows, we will simply refer to
(θ2, . . . , θd−1) as ϕ, and dϕ will denote the element of the surface area on S

d−2, i.e.,
dϕ = sin θd−3

2 . . . sin θd−2dθ2 . . . dθd−1. With these notations, the uniform measure du
on the sphere may thus be rewritten as du = (sin θ1)

d−2 dθ1dϕ. From now on, we
will often refer to a unit vector u by means of its polar coordinates (θ, ϕ), θ ∈ [0, π],
ϕ ∈ Sd−2.

We now state our d-dimensional localization result about the modulus of the
Fourier transform.

Theorem 3.1. Let f be given by f(x) = H(x1) g(x) with g in H
s, s = 0, 1, 2, . . . ,

and supp g ⊂ [−1, 1]d, and put σ = s + (d − 2)/2. Then, there exists a universal
constant C such that for any j ≥ 0,

(3.1)

∫
2j≤r≤2j+1

∫
|f̂(r, θ, ϕ)|2 drdϕ

≤ C ε2j (θ)2
−j2−2jσ‖g‖2Hs + C 2−j min(1, 2−2jσ| sin θ|−2σ)‖g‖2Hs ,

where
∑

j |Sd−2| ∫ ε2j (θ)(sin θ)d−2dθ ≤ 1.
As we emphasized earlier, the Fourier transform decays very slowly in the direc-

tions θ = 0, π because of the singularity H. However, (3.1) is not a statement about

the decay of f̂ along the singular rays θ = 0, π; rather it is about the decay of the
Fourier transform as θ moves away from the critical directions θ = 0, π. Roughly
speaking, the order of magnitude of the modulus of the Fourier transform at a point
with polar coordinates (2j , θ) is 2−j(σ+1)| sin θ|−σ with σ = s+ (d− 2)/2.

Remark. The inequality involves a regular term (the first term of the right-hand
side of (3.1)) as if one were simply analyzing an object from Hs and a singular term
(the second one) essentially due to the discontinuity across the hyperplane x1 = 0.

Proof. We will prove the result by induction. The result is true for s = 0 since
letting Ij(θ) be the left-hand side of (3.1)

Ij(θ) ≡
∫

2j≤r≤2j+1

∫
|f̂(r, θ, ϕ)|2 drdϕ,

we have, by definition,

∑
j≥0

2j(d−1)

∫
Ij(θ)(sin θ)

d−2 dθ =
∑
j≥0

2j(d−1)

∫ 2j+1

2j

∫
|f̂(r, θ, ϕ)|2 drdθdϕ

≤
∑
j≥0

∫
2j≤|ξ|≤2j+1

|f̂(ξ)|2 dξ ≤ ‖f‖2L2
≤ ‖g‖2L2

.

Assume now that the result holds until n− 1 (n ∈ N), and take g ∈ Hn. For any
tempered distribution in R

d S, we have the well-known relationship

F{∂�S} = iξ�Ŝ,

where in the previous display i2 = −1, and ∂� is the partial derivative with respect to
the �th coordinate. We will simply apply this formula to the tempered distribution
f = H g. First, for any 1 ≤ � ≤ d, we have

∂�f = H ∂�g + g ∂�H.(3.2)
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We observe that the second term, g ∂�H, is nonzero only if � = 1 in which case it is
a distribution supported on x1 = 0, namely, g δ{x1=0}. Let h be the restriction of g
on x1 = 0. By the trace theorem [15] we know that h is in Hn−1/2(Rd−1) and, more
precisely,

‖h‖Hn−1/2 ≤ C ‖g‖Hn .

Let us now choose u = ξ/|ξ| and let ξ = (ξ1, ξ
′) so that ξ′ = π(ξ), where π is the

orthogonal projection onto ξ1 = 0. For this particular choice of u, we have

i|ξ|f̂(ξ) = u · F{∇f}(ξ) = u · F{H∇g}(ξ) + ξ1/|ξ| ĥ(π(ξ))(3.3)

since the Fourier transform of g δ{x1=0} is given by ĥ(π(ξ)) = (ĥ ◦ π)(ξ). The first
term of the right-hand side of (3.3) is effortlessly going through the induction step.
Indeed, we have

|u · F{H∇g}|2(ξ) ≤
d∑

i=1

|F{H ∂�g}|2(ξ);

it is clear that for any �, ∂�g ∈ Hn−1 and therefore the induction hypothesis implies
that

(3.4)

∫
2j≤r≤2j+1

∫
|u · F{H∇g}|2(r, θ, ϕ) drdϕ

≤ C 2−jε2j (θ)2
−2j(σ−1) + C 2−j min(1, 2−2j(σ−1)| sin θ|−2(σ−1)).

We split the analysis of the second term of the right-hand side of (3.3) into two
separate cases: namely, sin θ ≥ 2−j and sin θ < 2−j . In the former case, we have

∫ 2j+1

2j

∫
|(ĥ ◦ π)(r, θ, ϕ)|2 drdϕ =

∫ 2j+1

2j

∫
|ĥ(r sin θ, ϕ)|2 drdϕ

= | sin θ|−1

∫ 2j+1| sin θ|

2j | sin θ|

∫
|ĥ(ρ, ϕ)|2 dρdϕ

≤ 2−j(d−2)| sin θ|−(d−1)

∫
2j≤|ξ′|/| sin θ|≤2j+1

|ĥ(ξ′)|2 dξ′.

The degree of smoothness of h (h ∈ Hn−1/2) now allows us to bound the right-hand
side of the previous display; i.e.,

∞∑
j=−∞

|2j sin θ|2(n−1/2)

∫
2j | sin θ|≤|ξ′|≤2j+1| sin θ|

|ĥ(ξ′)|2 dξ′ ∼ ‖h‖2
Ḣn−1/2 ≤ C ‖g‖2Hn ,

which implies∫
2j | sin θ|≤|ξ′|≤2j+1| sin θ|

|ĥ(ξ′)|2 dξ′ ≤ C η2
j (θ) |2j sin θ|−2(n−1/2) ‖g‖2Hn

with
∑

j η
2
j (θ) ≤ 1.
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To summarize, we have∫
2j≤r≤2j+1

∫
|(ĥ ◦ π)(r, θ, ϕ)|2 drdϕ ≤ C 2−2j(σ−1/2)| sin θ|−2σ ‖g‖2Hs(3.5)

in any dimension d ≥ 2.
To finish the proof, we simply recall (3.3) which gives the inequality

|f̂(ξ)|2 = 2|ξ|−2
(
|u · F{H∇g}(ξ)|2 + |ĥ(π(ξ))|2

)
.

The polar integral of each term of the right-hand side of this inequality is bounded
via (3.4) and (3.5), respectively, yielding the desired conclusion. The case sin θ ≥ 2−j

is now fully proved.
We finally treat the case sin θ < 2−j . On one hand h is bounded in Hn−1/2 and

therefore in L2, since n ≥ 1. On the other hand, h is compactly supported and hence
sup
|ξ′|≤1

|ĥ(ξ′)| ≤ ‖h‖L1 ≤ C ‖h‖L2 ≤ C ‖g‖Hn .

In this case, we simply write∫
2j≤r≤2j+1

∫
|ĥ(r sin θ, ϕ)|2 drdϕ ≤ 2j |Sd−2| sup

2j | sin θ|≤|ξ′|≤2j+1| sin θ|
|ĥ(ξ′)|2

≤ C 2j‖g‖2Hn ,

and the result for sin θ < 2−j now follows from (3.3). The proof of the theorem is
complete.

4. Main result. In this section, we will suppose that we are given a ridgelet
frame satisfying the following mild assumptions.

1. ψ is R times differentiable and has vanishing moments through order D;
min(R,D) ≥ s+ (d− 1)/2.

2. ψ is of rapid decay; namely, for any γ > 0 and 0 ≤ r ≤ R, one can find a
constant C such that

|ψ(r)(t)| ≤ C · (1 + |t|)−γ .

The sequence of ridgelet coefficients of a given function f will be denoted by α:
αj,�,k = 〈f, ψj,�,k〉.

We state our main result.
Theorem 4.1. Let g ∈ Hs, s > 0, with supp g ⊂ [−1, 1]d and put f(x) =

H(u · x − b) g(x), where H is the step function H(t) = 1{t>0}. Then, the ridgelet
coefficient sequence α of f satisfies

‖α‖w�p∗ ≤ C ‖g‖Hs with 1/p∗ = s/d+ 1/2,

where d is the dimension of the space.
Preliminary remark. For any (j, �, k), we have the following basic inequality:

|αj,�,k| ≤ 2j/2(1 + |k|)−γ‖f‖2, |k| ≥ 2j+1,

because of the rapid decay of ψ. Indeed, we have

|ψj,�,k(x)| ≤ C (1 + 2j |uj,� · x− k2−j |)−γ ,
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and, therefore, it is not hard to check that for |k| ≥ 2j+1

sup
[−1,1]d

|ψj,�,k(x)| ≤ C 2j/2(1 + |k|)−γ .

Our claim is then a simple consequence of this last inequality. Thus, if ψ has a
sufficient decay, then the subsequence {(αj,�,k), k ≥ 2j+1} is in �p for any p > 0;
hence it is enough to restrict our attention to the set |k| ≤ 2j+1.

In order to prove the theorem, we will need a result which is a corollary of Theorem
3.1.

Corollary 4.2. Under the assumptions of Theorem 3.1, the ridgelet coefficient
sequence α of f may be decomposed as

αj,�,k = aj,�,k + bj,�,k,

where the sequences a and b enjoy the following properties.
1. The sequence a verifies∑

�,k

|aj,�,k|2 ≤ C ε2j2
−2js ‖g‖2Hs(4.1)

with
∑

j ε
2
j ≤ 1, and

2. the sequence b is localized both in angle and in location.
(i) Localization in angle. For 1 ≤ m < j, let Λj,m be the set of indices such

that

Λj,m := {�, 2−m ≤ | sin θj,�| ≤ 2−m+1}(4.2)

(for m = j, we will take Λj,m to be {�, | sin θj,�| ≤ 2−(j−1)}); then,∑
�∈Λj,m

∑
k

|bj,�,k|2 ≤ C 2−j 2−(j−m)(2s−1) ‖g‖2Hs .(4.3)

(ii) Localization in ridge location. For any n > 0, there is a constant C (inde-
pendent of f) such that

|bj,�,k| ≤ C 2j/2
(
1 +

∣∣|k| − |2j sin θj,�|∣∣)−n ‖g‖Hs .(4.4)

Not surprisingly, this decomposition involves a regular and a singular contribution
as well.

Proof of Corollary 4.2. Again, we prove the result by induction. For any com-
pactly supported element of L2, we have∑

j

∑
�,k

|αj,�,k|2 ≤ C ‖f‖2L2
≤ C ‖g‖2L2

,

which proves the claim in this case since one can simply take b ≡ 0.
Suppose now that the claim is true up to s− 1 ∈ N and take g in Hs. Recall that

the ridgelet ψj,�,k is given by 2
j/2ψ(2juj,� · x − k). The starting point is to express

the ridgelet coefficient αj,�,k as a line integral in the Fourier domain [4]

αj,�,k =

∫
R

f̂(λ, uj,�)2
−j/2ψ̂(2−jλ)e−ik2−jλ dλ,(4.5)
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where f̂(λ, u) = f̂(λu1, . . . , λud). In the previous equation, the range of λ is the real
line and not only the positive axis (polar coordinates). However, we can convert (λ, u)
to classical polar coordinates (r, θ, ϕ) via the obvious relationship (λ, u) = (−λ,−u).
The decomposition (3.3) then suggests rewriting αj,�,k as

αj,�,k = a
(0)
j,�,k + b

(0)
j,�,k,

where

a
(0)
j,�,k = 2

−j uj,� ·
∫

R

F{H∇g}(λ, uj,�)2−j/2 ψ̂(2
−jλ)

2−jλ
e−ik2−jλ dλ

and

b
(0)
j,�,k = 2

−j cos θj,�

∫
R

ĥ(λ sin θj,�, ϕj,�)
ψ̂(2−jλ)

2−jλ
e−ik2−jλ dλ.

Let Ψ be the primitive of ψ defined by Ψ(x) =
∫ x

−∞ ψ(t) dt. Then, Ψ satisfies
the conditions listed at the beginning of the section (with the obvious modification

min(R,D) ≥ s− 1 + (d− 1)/2) and Ψ̂(λ) = −iψ̂(λ)/λ. Therefore, we may apply the
induction hypothesis to the sequence a and obtain

a
(0)
j,�,k = 2

−ja
(1)
j,�,k + 2

−jb
(1)
j,�,k,

where a(1) and b(1), respectively, satisfy properties (4.1) and (4.3)–(4.4) with (s− 1)
in place of s. Now, define the sequences a and b by

aj,�,k = 2
−ja

(1)
j,�,k

and

bj,�,k = 2
−jb

(1)
j,�,k + b

(0)
j,�,k.

It is clear that aj,�,k and 2
−jb

(1)
j,�,k satisfy conditions (4.1) and (4.3)–(4.4), respectively.

Thus we need only to check that the sequence b(0) verifies (4.3) and (4.4). In the

original domain, b
(0)
j,�,k is given by

b
(0)
j,�,k = 〈g δ{x1=0},Ψj,�,k〉

and, therefore, with the the same notations as in section 3, i.e., h(x′) = g(0, x′),

|b(0)j,�,k| ≤ ‖h‖L1 sup
x∈ supp gδ{x1=0}

|Ψj,�,k(x)|.

First, it is easy to see that Ψj,�,k is bounded by C 2
j/2
(
1 +

∣∣|k| − |2j sin θj,�|∣∣)−n
on

the support of g δ{x1=0} and second, we have ‖h‖L1 ≤ C‖h‖L2 ≤ C‖g‖H1/2 which is
bounded since g ∈ Hs, s ≥ 1. This finishes the verification of (4.4). It remains to
check (4.3).

Sampling results. In a separate paper, we have established the following sampling
results: let αj,�,k be the ridgelet coefficients of a compactly supported distribution S;
first, ∑

k

|αj,�,k|2 ≤ C

∫
R

|Ŝ(λ, uj,�)|2|ψ̂(2−jλ)|2(1 + |2−jλ|2) dλ;(4.6)
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second, we recall that at scale j, the set of discrete angular variables {uj,�, � ∈ Λj}
consists of points approximately uniformly distributed on the sphere; for any subset
Λ′
j of Λj , we have

(4.7)
∑
�∈Λ′

j

∑
k

|αj,�,k|2

≤ C 2j(d−1)

∫
R

|ψ̂(2−jλ)|2(1 + |2−jλ|2d) dλ
∫

Σ′
j

∑
|α|≤d−1

|DαŜ(λ, u)|2 du,

where Σ′
j is the set of points on the sphere defined by

Σ′
j ≡

{
u ∈ Sd−1, inf

�∈Λ′
j

‖u− uj,�‖2 ≤ 2−j

}
.

Here α is a multi-index α = (α1, . . . , αd) and Dα stands for the classical partial
derivative with respect to the cartesian coordinate system DαS = ∂α1

1 . . . ∂αd

d . Thus,
(4.7) is a kind of uniform sampling inequality. In a nutshell, (4.7) holds because the
points {uj,�, � ∈ Λj} are quasi-uniformly distributed on the sphere (at a distance of
order 2−j); that is, for any point u ∈ Sd−1,

#{�, ‖uj,� − u‖2 ≤ δ} ≤ C 2j(d−1)δd−1.

We apply this result to the distribution S = g δ{x1=0}, that is, to the restriction
of f to the hyperplane {x1 = 0} (see section 3 for details). The Fourier transform of

S is the function Ŝ = ĥ ◦ π that we introduced in section 3. With Λj,m, 0 ≤ m < j,
as in (4.2), we have

inf
�∈Λj,m

‖u− uj,�‖2 ≤ 2−j ⇒ 2−m − 2−j ≤ sin θ ≤ 2−m+1 + 2−j

and we omit the proof of this simple inclusion. Therefore, in this context (4.7) gives

∑
�∈Λj,m

∑
k

|b(0)j,�,k|2 ≤ C 2j(d−1)

∫
2−m−2−j≤sin θ≤2−m+1+2−j

I(θ) (sin θ)d−2 dθ,(4.8)

where I(θ) is given by∫
Sd−2

∫
R

∑
|α|≤d−1

|DαŜ(λ, θ, ϕ)|2|ψ̂(2−jλ)|2(1 + |2−jλ|2d) dλdϕ.

Now, if ψ has r vanishing moments and is of regularity r, we have

sup
2
≤|λ|≤2
+1

|ψ̂(2−jλ)| ≤ C 2−|j−�|r.(4.9)

It is then easy to check that

I(θ) ≤ C 2−j2−2jσ| sin θ|−2σ ‖g‖2Hs .(4.10)

To see why this is true, we simply write

I(θ) ≤
∑
�

sup
2
≤|λ|≤2
+1

|ψ̂(2−jλ)|2(1 + |2−jλ|2d)I�(θ),
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where

I�(θ) =

∫
2
≤|λ|≤2
+1

∫ ∑
|α|≤d−1

|DαŜ(λ, θ, ϕ)|2 dλdϕ.

In the proof of Theorem 3.1 (3.5), we obtained∫
2
≤|λ|≤2
+1

∫
|Ŝ(λ, θ, ϕ)|2 dλdϕ ≤ C 2�2−2�σ| sin θ|−2σ‖g‖2Hs .(4.11)

Now, DαŜ is the Fourier transform of the distribution (−i)|α| xα S, which is the re-
striction of (−i)|α| xα g to the hyperplane {x1 = 0}. Because g is compactly supported,
we have that

‖xα g‖Hs ≤ C ‖g‖Hs

since the multiplication by a C∞
0 function is a bounded operation from Hs onto itself.

Therefore, inequality (4.11) applies to DαŜ, and we have the upper bound

I�(θ) ≤ C 2�2−2�σ| sin θ|−2σ‖g‖2Hs .

Inequality (4.10) comes from the previous inequality together with the size estimate
(4.9).

Combining (4.10) and (4.8) finally gives (recall 2σ = 2s+ d− 2)
∑

�∈Λj,m

∑
k

|b(0)j,�,k|2 ≤ C 2−2js ‖g‖2Hs

∫
2−m−2−j≤sin θ≤2−m+1+2−j

| sin θ|−2s dθ,

which, in turn, gives the desired conclusion∑
�∈Λj,m

∑
k

|b(0)j,�,k|2 ≤ C 2−m2−2(j−m)s ‖g‖2Hs .

The corollary is established.
Proof of Theorem 4.1. Let s be a positive integer. Following on Corollary 4.2, to

prove that α is in w�p∗ (1/p
∗ = s/d+ 1/2), it is sufficient to prove that both a and b

are in w�p∗ . The membership of a to w�p∗ follows from well-known arguments and is
straightforward.

The w�p∗ boundedness of the sequence (bj,�,k) will be deduced from Corollary
4.2. We identify two subsequences corresponding, respectively, to the indices |k| >
2j+1| sin θj,�| and |k| ≤ 2j+1| sin θj,�|; the interesting contribution concerns the latter
subsequence. We prove that

1. the subsequence {bj,�,k, |k| ≤ 2j+1| sin θj,�|} has a finite w�p∗ norm, and

2. the �p norm of the subsequence {bj,�,k, |k| > 2j+1| sin θj,�|} is bounded for
any p > 0.

We prove the first assertion. Letting N(ε) be the cardinality of those elements
whose absolute value exceeds ε, namely,

N(ε) = # ε {(j, �, k), |k| ≤ 2j+1| sin θj,�|, such that (s.t.) |bj,�,k| ≥ ε},
we want to show that

sup
ε>0

εN1/p∗
(ε) ≤ C ‖g‖Hs
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since the left-hand side is an equivalent definition of the weak-�p∗ norm (1.5).
Put

Nj,m(ε) = #{(�, k), � ∈ Λj,m, |k| ≤ 2j+1| sin θj,�|, s.t.|bj,�,k| ≥ ε}.
Corollary 4.2 posits the existence of a constant K such that |bj,�,k|2 ≤ K 2−j‖g‖2Hs

(4.3) and therefore, it is clear that Nj,m(ε) = 0 if 2
j ≥ K ε−2‖g‖2Hs . In what follows,

we will let η be defined by η = ε/‖g‖Hs . Regardless of the condition |bj,�,k| ≥ ε,
the cardinality of the index set {(�, k), � ∈ Λj,m, |k| ≤ 2j+1| sin θj,�|} is bounded by
C 2d(j−m). Further, the bound on the �2 norm of the bj,�,k’s (Corollary 4.2) gives

Nj,m(ε) ≤ C min(2(j−m)d, η−22−j2(j−m)(1−2s))

whenever 2j ≤ K η−2.
Let Nj(ε) be the number of coefficients whose absolute values exceed ε, i.e.,

Nj(ε) = #{(�, k), |k| ≤ 2j+1| sin θj,�|, |bj,�,k| ≥ ε}.
Then, a simple calculation gives

Nj(ε) =
∑
m

Nj,m(ε) ≤ C
∑
m

min(2(j−m)d, η−22−j2(j−m)(1−2s))

≤ C min(2jd, η−2d/α2−jd/α),

where α = d+ 2s− 1. To summarize, we have

Nj(ε) ≤ C



0 2j ≥ K η−2,
η−2d/α2−jd/α η−2/(1+α) ≤ 2j ≤ K η−2,
2jd 2j ≤ η−2/(1+α).

Summing over the scales yields

N(ε) =

∞∑
j=0

Nj(ε) ≤ C
∑

j:2j≤η−2/(1+α)

2jd + C
∑

j:η−2/(1+α)≤2j≤K η−2

η−2d/α2−jd/α

≤ C η−2d/(1+α) = C η−p∗
= C ε−p∗ ‖g‖p∗

Hs

with 1/p∗ = s/d+ 1/2. This finishes the proof of the first assertion.
We now turn to the second assertion. It clearly follows from (4.4) that for any

q > 0 we have ∑
k:|k|>2j+1| sin θj,
|

|bj,�,k|q ≤ C 2jq/2(2j | sin θj,�|)1−nq‖g‖qHs ,

since n may be chosen arbitrarily large and, in particular, greater than 1/q. Summing
over the �’s, � ∈ Λj,m gives∑

�∈Λj,m

∑
k:|k|>2j+1| sin θj,
|

|bj,�,k|q ≤ C 2jq/22(1−nq)(j−m)2(j−m)(d−1)‖g‖qHs .

Now, we must keep in mind that we have available a bound on the �2 norm (4.3); i.e.,∑
�∈Λj,m

∑
k:|k|>2j+1| sin θj,
|

|bj,�,k|2 ≤ C 2−j2−(j−m)(2s−1)‖g‖2Hs .
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The interpolation inequality will yield the �p boundedness. Recall that for any se-
quence an we have

‖a‖�p ≤ ‖a‖θ�q ‖a‖1−θ
�2

, 1/p = θ/q + (1− θ)/2.(4.12)

This interpolation inequality applied to our subsequence gives


 ∑

�∈Λj,m

∑
k:|k|>2j+1| sin θj,
|

|bj,�,k|p



1/p

≤ C
[
2j/22−(j−m)(n−d/q)

]θ [
2−j/22−(j−m)(s−1/2)

]1−θ

‖g‖Hs .

In the previous inequality, the value of n may be chosen arbitrarily large and, hence,
summing up the previous inequalities results in the upper bound∑

�

∑
k:|k|>2j+1| sin θj,
|

|bj,�,k|p ≤ C 2−jp(1/2−θ) ‖g‖pHs .(4.13)

This establishes the boundedness in �p for any p > 0. Indeed for p > 0, choose q small
enough so that θ < 1/2 (4.12), i.e., 1/q > 2/p+ 1/2, and apply (4.13). The theorem
is proved for s = 1, 2, . . . .

Interpolation theory allows us to extend the result to the half line s > 0. Indeed,
let T be the operator

T : g �→ (αν)

that maps g into the ridgelet coefficient sequence (αν) of f , f(x) = H(u · x− b)g(x),
with u and b fixed. We abuse notations—as it is understood that we are concerned
with elements supported on the unit cube—and let Hs be the Banach space defined
by

Hs := {g, g ∈ Hs and supp g ⊂ [0, 1]d}
equipped with the norm ‖ · ‖Hs . We proved that for any n ≥ 1, ‖T‖ is a bounded
operator from Hn to w�p, 1/p = n/d+ 1/2. In addition, T is bounded from L2 to �2
(where again we understand L2([0, 1]

d)). On one hand, it is well known that (L2, H
n)

is an interpolation couple [2] and that for any n > 0 and any 0 < θ < 1, we have

(L2, H
n)θ,2 = Hnθ;

see [14], for example. On the other, letting �2 be the space of real-valued sequences

�2 =


a,

∑
n≥1

|an|2 <∞

 ,

and similarly for w�p, p > 0, we have

(�2, w�p)θ,2 = �p∗,2, 1/p∗ = (1− θ)/2 + θ/p.

Here, �p,2, p > 0 is the Lorentz space of real sequences
∑

n≥1

|a|2(n)n
2/p−1




1/2

<∞,
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where we recall that |a|(n) is the nth largest entry in the sequence (|an|). The inter-
polation theorem [2] gives that

T : Hnθ → �p∗,2

is bounded and further that

‖T‖Hnθ→�p∗,2
≤ C ‖T‖1−θ

L2→�2
‖T‖θHn→w�p .

Hence, for any s > 0, pick n > s and put θ = s/n. We have

1

p∗
=
1

2

(
1− s

n

)
+
s

n

(
n

d
+
1

2

)
=
s

d
+
1

2
,

and, therefore, our analysis gives that T is bounded from Hs to �p∗,2. This completes
the proof of our theorem since for any sequence a and any p > 0, we have

‖a‖�p,2 ≤ ‖w�p‖.
Remark. We proved a slightly stronger result than that announced in our theorem

since for any s ≥ 0 the ridgelet coefficient sequence obeys
‖α‖�p,2 ≤ C ‖g‖Hs , 1/p = s/d+ 1/2.

4.1. Finite approximations. We now exploit Theorem 4.1 to derive nonlinear
approximation bounds. The compact notation (ψν)ν∈N introduced in section 2 will
be used to denote the frame elements.

Suppose that f is of the form

f(x) = g0(x) +H(u · x− b)g1(x),(4.14)

where

‖gi‖Hs ≤ C, i = 0, 1.

From the exact series

f =
∑
ν∈N

ανψ̃ν ,

extract the n-term approximation fn obtained by keeping the n terms corresponding
to the n largest coefficients. Then, we have the following result.

Corollary 4.3. With the previous assumptions, there exists a constant C (not
depending on f) such that

‖f − fn‖2 ≤ C n−s/d sup
i=0,1

‖gi‖Hs(Rd).(4.15)

As we will see below, the convergence rate of n-term ridgelet approximations is, in
some sense, optimal.

Theorem 4.1 gives that the coefficients (αν) of f are bounded in w�p∗ . Letting
|α|(n) be the nth largest entry in α (in absolute values), we have

f − fn =
∑
ν

αν1{|αν |≥|α|(n)}ψ̃ν .
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The lemma stated below then gives the desired conclusion, namely,

‖f − fn‖22 ≤ A−1
∑
m>n

|α|2(m) ≤ A−1 C n−2s/d‖α‖2w�p∗ ,

where A is the constant appearing on the left-hand side of (2.7).
Lemma 4.4. Let (aν)ν∈N be a sequence in �2 and let

f̃ =
∑
ν∈N

aνψ̃ν .

Then,

‖f̃‖22 ≤ A−1‖a‖2�2 .

Proof. We let F̃ be the synthesis operator defined by F̃ a =
∑
aνψ̃ν and let F be

the analysis operator Ff = (〈f, ψν〉)ν∈N . The property (2.7) gives

‖f̃‖2 = ‖F̃ a‖2 ≤ A−1‖F F̃a‖2�2 .

Now, it is easy to see that F F̃ is the orthogonal projector onto the range of F and has,
therefore, a norm (as an operator from �2 onto itself) bounded by 1. Consequently,
we have

‖f̃‖2 ≤ A−1‖F F̃a‖2�2 ≤ A−1‖a‖2�2 ,

which is what needed to be shown.

4.2. Optimality. In this section, we detail the sense in which Corollary 4.3 is
optimal. Consider a class of templates of the form (4.14): i.e., let F(C) be the class
defined by

F(C) = {f, f satisfies (4.14), ‖gi‖Hs ≤ C, and supp gi ⊂ [0, 1]d, i = 0, 1}.(4.16)

In the above definition, the singular hyperplane is not fixed; two elements from F(C)
may be singular along two different hyperplanes.

The class F(C) contains, of course, the Sobolev ball Hs(C) = {f, ‖f‖Hs ≤
C, and supp f ⊂ [0, 1]d}. In any orthobasis (φ)i∈I , there is a lower bound on the
convergence of the best n-term approximation Qn(f) in that basis,

sup
f∈Hs(C)

‖f −Qn(f)‖2 ≥ C n−s/2.

As a consequence, no orthobasis exists that provides better rates than those obtained
in Corollary 4.3. There is even a broader notion of optimality based on information
theoretic concepts such as the Kolmogorov ε-entropy or the minimum description
length (MDL) paradigm.

Let F be a compact set of functions in L2([0, 1]d). The Kolmogorov ε-entropy
N(ε,F) of the class F is the minimum number of bits that is required to specify any
element f from F within an accuracy of ε. In other words, let � be a fixed counting
number and let E� : F → {0, 1}� be a functional which assigns a bit string of length
� to each f ∈ F . Let D� : {0, 1}� → L2[0, 1]

d be a mapping which assigns to each bit
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string of length � a function. The coder-decoder pair (E�, D�) will be said to achieve
a distortion ≤ ε over F if

sup
f∈F
‖D�(E�(f))− f‖ ≤ ε.

The Kolmogorov ε-entropy (minimax description length) may then be defined as

L∗(ε,F) = min{� : ∃(E�, D�) achieving distortion ≤ ε over F}.

The minimum number of bits needed to reconstruct any f taken from our class
of templates F(C) (4.16) satisfies

N(ε,F(C)) ≥ N(ε,Hs) ≥ C ε2/s.

A strategy identical to that developed in [9, Theorem 2], however, gives a simple
way to exploit the sparsity of the ridgelet sequence to construct a coder-decoder pair
of length O(log(ε−1)ε2/s) that achieves a distortion of ε. The construction is based
on simple uniform quantization of the ridgelet coefficients αi, followed by simple run
length coding. Hence, we have available a very concrete way of obtaining near-optimal
(possibly within log-like factors) compression rates.

5. Orthonormal ridgelets. In dimension 2, Donoho [10] introduced a new or-
thonormal basis whose elements he called “orthonormal ridgelets.” We will not detail
why these elements relate to ridgelets. We quote from [7]: “Such a system can be de-
fined as follows: let (ψj,k(t) : j ∈ Z, k ∈ Z) be an orthonormal basis of Meyer wavelets
for L2(R) [12], and let (w0

i0,�
(θ), �= 0, . . . , 2i0−1; w1

i,�(θ), i ≥ i0, �= 0, . . . , 2
i−1)

be an orthonormal basis for L2[0, 2π) made of periodized Lemarié scaling functions
w0
i0,�

at level i0 and periodized Meyer wavelets w
1
i,� at levels i ≥ i0. (We suppose a

particular normalization of these functions.) Let ψ̂j,k(ω) denote the Fourier transform
of ψj,k(t), and define ridgelets ρλ(x), λ = (j, k; i, �, ε) as functions of x ∈ R

2 using the
frequency-domain definition

ρ̂λ(ξ) = |ξ|− 1
2 (ψ̂j,k(|ξ|)wε

i,�(θ) + ψ̂j,k(−|ξ|)wε
i,�(θ + π))/2 .(5.1)

Here the indices run as follows: j, k ∈ Z, � = 0, . . . , 2i−1 − 1; i ≥ i0, i ≥ j. Notice the
restrictions on the range of � and on i. Let λ denote the set of all such indices λ. It
turns out that (ρλ)λ∈Λ is a complete orthonormal system for L

2(R2).”
There is a close connection between “pure” and orthonormal ridgelets. Pure

ridgelets are supported on lines in the Fourier domain: that is, the frequency repre-
sentation of a pure ridgelet is given by (provided that the profile ψ is real-valued)

ψ̂j,�,k(ξ) = (ψ̂j,k(|ξ|)δ(θ − 2π2−j�) + ψ̂j,k(−|ξ|)δ(θ + π − 2π2−j�))/2(5.2)

using a formulation emphasizing the resemblance with (5.1). In the ridgelet con-
struction, the angular variable θ is uniformly sampled at each scale, the sampling
step being inversely proportional to the scale. In contrast, the sampling idea is re-
placed by the wavelet transform for orthonormal ridgelets. This is the reason why
orthonormal ridgelets can perfectly reconstruct objects from L2(R2) without support
constraints. It is interesting to note that the restriction on the range, namely, i ≥ j
in the definition (5.1), gives angular scaling functions at scales inversely proportional
to the sampling steps of pure ridgelets.
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Theorem 5.1. Let g ∈ Hs(R2), s > 0, with compact support and put f(x) =
H(u · x− b) g(x). Then the orthonormal ridgelet coefficient sequence α of f obeys

‖α‖w�p ≤ C ‖g‖Hs with 1/p = s/2 + 1/2

for some constant C not depending on f . It then follows that the truncated n-term
partial reconstruction fn achieves the error bound

‖f − fn‖2 ≤ C n−s/2‖g‖Hs .

Proof. The proof is an application of Theorem 3.1 and consists of minor modifi-
cations to the proof of Theorem 4.1. In the following, we outline the essential steps,
thus avoiding worthless repetition.

Begin with ε = 0 (i = j) and observe that

|〈f, ρλ〉| =
∣∣∣∣
∫
f̂(λ, θ) |λ|1/2(ψ̂j,k(|λ|)wε=0

j,� (θ) + ψ̂j,k(−|λ|)wε=0
j,� (θ + π)) dλdθ

∣∣∣∣ /2
≤ 2j/2

∫
|wε=0

j,� (θ)|J+(θ)dθ/2 + 2j/2
∫
|wε=0

j,� (θ + π)|J−(θ)dθ/2,(5.3)

where

J±(θ) =
∣∣∣∣
∫
f̂(λ, θ) |2−jλ|1/2ψ̂j,k(±|λ|)dλ

∣∣∣∣ .
The point of this paper has been precisely to bound quantities like J±(θ). For instance,
let Ij,� = {θ, |θ − 2π 2−j�| ≤ 2−j} and set

βj,�,k = 2
j

∫
Ij,


∣∣∣∣
∫
f̂(λ, θ)|2−jλ|1/2ψ̂j,k(|λ|)dλ

∣∣∣∣ .
Then, we proved that (dimension 2)

‖β‖w�p ≤ C ‖g‖Hs , 1/p = s/2 + 1/2.

Compare the previous inequality with (4.5) and Theorem 4.1. Second, the scaling
function is localized near the interval Ij,�; for any γ > 0, there is a constant C such
that

|wε=0
j,� (θ)| ≤ C 2j/2(1 + 2j |θ − 2π �2−j |)−γ .

Hence, a reasoning similar to the one developed for Theorem 4.1 gives

‖αε=0‖w�p ≤ C ‖g‖Hs , 1/p = s/2 + 1/2.(5.4)

The point is that the contributions associated with the orthonormal ridgelets
corresponding to parameter values i > j become negligible as i goes to infinity. This
is due to the compactness of the support of f . Letting D be ∂/∂θ, standard wavelet
calculations give

〈f, ρλ〉 = I+
n + I−n ,

I+
n =

∫
Dnf̂(λ, θ) |λ|1/2(ψ̂j,k(|λ|)D−nwε=1

i,� (θ) dθ,
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and similarly for I−n . Both terms are treated identically. Since

|D−nwε=1
i,� (θ)| ≤ C 2−i(n−1/2)(1 + 2i|θ − 2π �2−i|)−γ

we have

|I+
n | ≤ C 2−in2i/22j/2

∫
(1 + 2i|θ − 2π �2−i|)−γJ+

n (θ) dθ,

where now

J±
n (θ) =

∣∣∣∣
∫
(∂nθ f̂)(λ, θ) |2−jλ|1/2ψ̂j,k(±|λ|)dλ

∣∣∣∣ .
Observe now that

∂θf̂(λ, θ) = λ(− sin θ(∂1f̂)(λ, θ) + cos θ(∂2f̂)(λ, θ)),

and this formula may be iterated to obtain derivatives with respect to the angular
variable θ of higher orders.

We may then substitute polar derivatives with respect to θ by cartesian derivatives
and obtain (letting D be either ∂/∂x1 or ∂/∂x2)

|I+
n | ≤ C 2j2−(i−j)(n−1/2)

∫
(1 + 2i|θ − 2π �2−i|)−γ

∑
|α|≤n

J+
α (θ) dθ,

J+
α (θ) =

∣∣∣∣
∫
(Dαf̂)(λ, θ) |2−jλ||α|+1/2ψ̂j,k(|λ|)dλ

∣∣∣∣ .
We already argued in the proof of Corollary 4.2 that, because of the compactness of
the support of the distribution f , the estimates we obtained for f̂ are valid for the
derivatives Dαf̂ . Hence, we essentially have the same bound as in (5.3) but for an
exponentially decaying factor 2−(i−j)(n−1/2), where n might be chosen as large as we
want. It is then not too difficult to check that the sequence αε=1 satisfies

‖αε=1‖w�p ≤ C ‖g‖Hs , 1/p = s/2 + 1/2.

The w�p boundedness of the sequence α naturally follows from this last display
and (5.4).

6. Discussion. Unlike any known system, ridgelets allow optimal partial recon-
structions of L2 Sobolev functions with linear singularities. These good approxima-
tions are, moreover, simply obtained by thresholding the exact ridgelet series (1.4).

6.1. Ridgelets and functional classes. As we pointed out in the introduction,
wavelets are optimal to represent smooth functions with point-singularities. From a
functional viewpoint, we may say that wavelets provide unconditional bases for the
Besov spaces and the Triebel spaces [13] and, therefore, they provide near-optimal
approximations to elements taken from functional balls of such spaces. A natural
question would be, What are the functional spaces that are naturally associated with
ridgelets? The analysis that we presented already suggests an answer. It is certainly
possible to build new functional spaces whose typical elements resemble our mutilated



RIDGELETS AND MUTILATED FUNCTIONS 367

Sobolev objects. In this direction, we might be tempted to consider, for instance,
convex combinations of objects like (1.2); let

SH =
{
f =

∑
i

aifi,
∑
i

|ai| ≤ 1
}
,

where the fi’s are our templates, i.e., functions of the form

fi(x) = H(ui · x− bi)gi(x), ‖gi‖Hs ≤ 1, supp g ⊂ [0, 1]d.
Our functional class SH would then be meant to represent objects composed of sin-
gularities across hyperplanes: typical elements of this class are discontinuous across
these same hyperplanes and otherwise smooth. There may be an arbitrary number
of singularities which may be located in all orientations and positions. In the au-
thor’s unpublished thesis [3], it is then proved that ridgelets provide near-optimal
representations of objects of this kind, as expected.

This is, indeed, part of a larger picture. A new notion of smoothness may be in-
troduced leading to new functional classes that are naturally associated with ridgelets.
This new notion of smoothness is nonclassical; it is discussed in [3] and briefly exposed
in [7]. Full details will be provided in a separate paper.

6.2. Curved singularities. We would like to emphasize that this paper con-
sidered only linear singularities. Ridgelets are not able to efficiently represent smooth
functions with curved singularities. For instance, in dimension d, consider the indica-
tor function of the unit ball

f(x) = 1{|x|≤1},

and let α denote the ridgelet coefficient sequence of f . Then, [3] shows that

#{n, s.t. |αn| ≥ 1/n} ≥ C n2(1−1/d),(6.1)

yielding partial reconstructions converging only at the rate n− 1
2(d−1) . We quote from

[7]: “Unfortunately, the task that ridgelets must face is somewhat more difficult than
the task which wavelets must face, since zero-dimensional singularities are inherently
simpler objects than higher-dimensional singularities. In effect, zero-dimensional sin-
gularities are all the same—points—while a one-dimensional singularity—lying along
a one-dimensional set—can be curved or straight.” It is remarkable, however, that
both wavelet and ridgelets, two fundamentally different systems, achieve the same
degree of sparsity.

The method of localization enables us to obtain sharper approximation bounds
on objects with curved singularities. The localization idea is rather straightforward
and has been, for instance, previously deployed in the time frequency literature. We
outline this idea in dimension 2: first, partition the unit square into small squares, and
smoothly localize the function into smooth pieces supported on or near those squares;
then take the ridgelet transform on each piece. This is the basis of the so-called
monoscale ridgelet transform [5]. Again, partial reconstructions simply obtained by
keeping the largest coefficients are shown to provide good approximation bounds (of
higher order than wavelet or ridgelet approximations).

Further, [6] developed a new approach, namely, the curvelet transform that com-
bines ideas from ridgelet analysis and wavelet analysis. In two dimensions, the curvelet
transform provides optimal representations of smooth functions with twice differen-
tiable singularities, a fact whose roots are grounded on the results presented in this
paper.



368 EMMANUEL J. CANDES

Acknowledgments. I am especially grateful to David Donoho for many fruitful
discussions. I would also like to thank one referee for some very helpful comments on
the original version of the manuscript.

Some of the results were briefly described at the Royal Society meeting “Wavelets:
a key to intermittent information?” held in London in February 1999.

REFERENCES

[1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
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Abstract. We show that the algorithm considered by Ishii [GAKUTO Internat. Ser. Math.
Sci. Appl. 5, Gakkōtosho, Tokyo, 1995, pp. 111–127] and Ishii, Pires, and Souganidis [J. Math.
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boundary condition.
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1. Introduction. In 1992, Bence, Merryman, and Osher proposed an algorithm
for computing motion of a hypersurface by mean curvature (cf. [2]). It is described
as follows. For a given closed set C0 ⊂ RN , let u be a solution of the initial value
problem for the heat equation{

ut −∆u = 0 in (0,+∞)×RN ,
u(0, x) = χC0

(x) in RN ,
(1.1)

where χC0
is the characteristic function of C0. Fix a time step h > 0 and set

C1 =

{
x ∈ RN

∣∣∣∣ u(h, x) >=
1

2

}
.(1.2)

Next we solve (1.1) with C0 replacing C1 and define C2 as the set in (1.2) with u
replaced by the solution with the new initial data. Repeating this procedure, we
obtain a sequence {Ck}k∈N of closed subsets in RN . Then we set

Ch
t = Ck if kh <= t < (k + 1)h and k ∈ N ∪ {0}

for t >= 0. Letting h → 0, we obtain in the limit a flow {Mt}t>==0 of closed subsets in

RN with M0 = C0, whose boundary moves by ((n− 1)-times) mean curvature.
The convergence of this algorithm was proved by Evans [4] and Barles and

Georgelin [1]. Noticing that the solution of (1.1) is given by taking the convolution
with Gauss kernel and χC0 , Ishii [6] extended this algorithm to the case of general radi-
ally symmetric kernels. Ishii, Pires, and Souganidis [7] considered threshold dynamics
type approximation schemes, which are also an extension of the above algorithm.
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The main purpose of this paper is to show that the scheme introduced by [6]
and [7] can be applied to the motion by mean curvature with right-angle boundary
condition in a bounded domain. Our analysis is based on the level set approach as in
[4], [6], and [7].

This paper is organized in the following way. In section 2 we recall briefly the level
set approach to motion by mean curvature with right-angle boundary condition and
introduce our scheme. Also, we state our main result in section 2. Section 3 is devoted
to the estimates for the operator Gh. The key idea is to compare Gh with G̃h defined
in RN . However, our arguments are complicated because we need some estimates of
the integration of f√h(· −x) outside BN (x,

√
hR(
√
h)). Thus we divide section 3 into

two subsections. In section 3.1, we consider the case where the support of the kernel
function f is compact. Thanks to the compactness of suppf , the arguments become
easy and understandable. In section 3.2 we treat the noncompact case. We prove our
main result in section 4.

2. Preliminaries and the main result. First let us recall briefly the level set
approach to motion by mean curvature with right-angle boundary condition. See Sato
[8] and Giga and Sato [5] for the details.

Let Ω ⊂ RN be a bounded domain with C2 boundary ∂Ω and let g ∈ C(Ω). We
consider the initial-boundary value problem:




ut + F (Du,D2u) = 0 in (0,+∞)× Ω,
∂u

∂n
= 0 in (0,+∞)× ∂Ω,

u(0, x) = g(x) x ∈ Ω,

(2.1)

where F (p,X) = −tr{(I − p ⊗ p/|p|2)X} and n denotes the outer unit normal to
∂Ω. Problem (2.1) is the level set equation of the mean curvature flow with right-
angle boundary condition since each level set of (2.1) moves by its mean curvature
in Ω and it intersects ∂Ω perpendicularly, at least formally. The above equation
is degenerate parabolic and has singularities for Du = 0. In spite of the difficulties
coming from these facts, problem (2.1) has a unique viscosity solution in C([0, T )×Ω)
for any T > 0. Moreover, it has been shown that, for the viscosity solution u of (2.1),
the level set {x ∈ Ω | u(t, x) = c} is determined by the set {x ∈ Ω | g(x) = c}
and is independent of the choice of g. Also, it has been shown that if {Mt}0<

==
t<T

is a flow of a closed subset of Ω such that {∂Mt}0<==t<T is a smooth flow by mean
curvature satisfying ∂Mt ⊥ ∂Ω for all t ∈ [0, T ) and if u is a viscosity solution of
(2.1) with {x ∈ Ω | g(x) = c} = ∂M0 (resp., {x ∈ Ω | g(x) >= c} = M0), then
{x ∈ Ω | u(t, x) = c} = ∂Mt (resp., {x ∈ Ω | u(t, x) >= c} = Mt). Thus the family
{x ∈ Ω | u(t, x) = c}0<==t<T is often called a generalized motion by mean curvature
with right-angle boundary condition.

Now we formulate an approximation scheme for motion by mean curvature with
right-angle boundary condition, according to Ishii [6] and Ishii, Pires, and Souganidis
[7]. Let f be a real-valued function on RN . We make the following assumptions.

(A.1) f is nonnegative, measurable, and radially symmetric.
(A.2)

∫
RN f(x)(1 + |x|2)dx < +∞.

(A.3)
∫
RN−1 f(ξ, 0)(1 + |ξ|2)dξ < +∞.

(A.4) Let {R(ρ)}0<ρ<1 satisfy

R(ρ)→ +∞, ρR(ρ)2 → 0 (ρ→ 0).
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Then for any g(ξ) = 〈Aξ, ξ〉+ a (A ∈ SN−1, a ∈ R),

lim
ρ→0

sup
0<r<ρ

∣∣∣∣∣
∫
BN−1(0,R(ρ))

f(ξ, rg(ξ))g(ξ)dξ −
∫
RN−1

f(ξ, 0)g(ξ)dξ

∣∣∣∣∣ = 0.

We introduce the operator Gh : C(Ω)→ C(Ω) with h > 0 by

Ghg(x) = sup

{
λ ∈ R

∣∣∣∣
∫

Ω

f√h(y − x)χ{g>
==
λ}(y)dy >=

1

2

∫
Ω

f√h(y − x)dy

}

for g ∈ C(Ω). Here and in the sequel f√h(x) = h−N/2f(x/
√
h), {g >= λ} = {y ∈

Ω | g(y) >= λ}, and χA is the characteristic function of A ⊂ RN . It is easily seen that,
for any g1, g2, g ∈ C(Ω),

Ghg1 <= Ghg2 if g1 <= g2,(2.2)

Gh(g + c) = Ghg + c,Ghc = c for all c ∈ R,(2.3)

Gh(θ ◦ g) = θ ◦Ghg for any nondecreasing function θ ∈ C(R).(2.4)

It follows from (2.2)–(2.4) that the operator Gh is contractive and nonexpansive on
C(Ω).

Fix T > 0 and m ∈ N . Let h = T/m and let g ∈ C(Ω). Define um ∈ C([0, T )×Ω)
by

um(t, x) = Gt−lh ◦Gh ◦ · · · ◦Gh︸ ︷︷ ︸
l times

g(x)(2.5)

(lh <= t < (l + 1)h, l = 0, . . . ,m− 1, x ∈ Ω),

where G0 is the identity operator on C(Ω).
Set

cN =

∫ +∞
0

f(r)rNdr

2(N − 1)
∫ +∞
0

f(r)rN−2dr
.

Under the above situation, our main result is the following.
Theorem 2.1. Let g ∈ C(Ω). Let {um}m∈N be a sequence of functions defined

by (2.5). Then um → u locally uniformly on [0, T ) × Ω as m → +∞. Here u is a
unique viscosity solution of




ut + cNF (Du,D2u) = 0 in (0,+∞)× Ω,
∂u

∂n
= 0 in (0,+∞)× ∂Ω,

u(0, x) = g(x) x ∈ Ω.

(2.6)

Examples. Let R > 0 and f(r) = 1 for 0 <= r <= R and = 0 for r > R. Then
cN = R2/{2(N + 1)}. Let f(r) = exp(−r2/4). Then cN = 1.

In what follows we simply denote cNF by F and set BM (x, r) = {y ∈ RM | |x−y|
< r}.

3. Estimates for Gh. To show Theorem 2.1, the following estimates play a
crucial role. In what follows we always assume (A.1)–(A.4).
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Lemma 3.1. Let ϕ ∈ C2(Ω), z ∈ Ω, and ε > 0.
(1) Assume z ∈ Ω and Dϕ(z) �= 0. Then there exists a δ > 0 such that, for all

x ∈ BN (z, δ) and h ∈ (0, δ],

Ghϕ(x) <= ϕ(x) + (−F (Dϕ(z), D2ϕ(z)) + ε)h,(3.1)

Ghϕ(x) >= ϕ(x) + (−F (Dϕ(z), D2ϕ(z))− ε)h.(3.2)

(2) Assume z ∈ ∂Ω and (∂ϕ/∂n)(z) > 0. Then there exists a δ > 0 such that,
for all x ∈ BN (z, δ) ∩ Ω and h ∈ (0, δ], (3.1) holds.

(3) Assume z ∈ ∂Ω and (∂ϕ/∂n)(z) < 0. Then there exists a δ > 0 such that,
for all x ∈ BN (z, δ) ∩ Ω and h ∈ (0, δ], (3.2) holds.

Roughly speaking, we prove this lemma as follows. For any function g in RN ,
define G̃hg by

G̃hg(x) = sup

{
λ ∈ R

∣∣∣∣
∫
RN

f√h(y − x)χ{g>
==
λ}(y)dy >=

1

2

∫
RN

f√h(y − x)dy

}
.

Then we compare Ghϕ(x) with G̃hϕ(x) and use the following lemma.
Lemma 3.2 (see [6, Theorem 3.1], [7, Lemma 3.1]). Let ϕ ∈ C2(RN ), z ∈ RN ,

and ε > 0. Assume Dϕ(z) �= 0. Then there exists a δ > 0 such that, for all x ∈
BN (z, δ) and h ∈ (0, δ],

G̃hϕ(x) <= ϕ(x) + (−F (Dϕ(z), D2ϕ(z)) + ε)h,

G̃hϕ(x) >= ϕ(x) + (−F (Dϕ(z), D2ϕ(z))− ε)h.

As mentioned in the introduction, we divide our consideration into two subsec-
tions. In section 3.1, we consider the case where suppf is compact. In section 3.2, we
treat the noncompact case.

3.1. The case where suppf is compact. We prove Lemma 3.1 in the case
where suppf is compact. For simplicity, we assume suppf ⊂ BN (0, 1) and that there
exists a ρ ∈ (0, 1] such that

f(y) > 0 in {y ∈ BN (0, 1) | dist(y, ∂BN (0, 1)) <= ρ}.(3.3)

Let ϕ ∈ C2(Ω) and ε > 0. Assume z ∈ Ω and Dϕ(z) �= 0. Then there exists a δ > 0
such that, for all x ∈ BN (z, δ) ⊂ Ω and h ∈ (0, δ],

Ghϕ(x) = G̃hϕ(x).

Thus Lemma 3.2 yields Lemma 3.1, part (1). In the following we assume z ∈ ∂Ω and
(∂ϕ/∂n)(z) > 0 and prove Lemma 3.1, part (2). Lemma 3.1, part (3) can be proved
similarly.

Since ∂Ω is C2 and ϕ ∈ C2(Ω), there exists an r0 > 0 such that ϕ ∈ C2(BN (z, r0)),
and we can take a ψ ∈ C2(RN−1) for which

yN − zN = ψ(y′ − z′) for all y = (y′, yN ) ∈ BN (z, r0) ∩ ∂Ω,

D′ψ(0) = 0, yN − zN > ψ(y′ − z′) for all y ∈ BN (z, r0) ∩ Ω,

where D′ = (∂/∂x1, . . . , ∂/∂xN−1). Taking r0 smaller, if necessary, we observe

DNϕ(y) <= −γ, |D′ϕ(y)| <= K, |D′ψ(y′ − z′)| <= ε for all y ∈ BN (z, r0),(3.4)



AN APPROXIMATION SCHEME 373

where DN = ∂/∂xN and γ, K > 0, are independent of ε and r0.
Moreover, we prepare some lemmas.
Lemma 3.3. Let r > 0 and let a, b ∈ RN−1 and c ∈ R. Define

P+ = {y ∈ BN (0, r) | yN > 〈b, y′〉+ c, yN > 〈a, y′〉},
P− = {y ∈ BN (0, r) | yN > 〈b, y′〉+ c, yN < 〈a, y′〉}.

Assume that 〈a, b〉+ 1 �= 0.
(1) There exists a θ ∈ (0, 1) depending only and continuously on a and b such

that if

{y ∈ BN (0, r) | yN = 〈b, y′〉+ c, yN = 〈a, y′〉} �= ∅,
then

|c|√|b|2 + 1
<= θr.

(2) Let θ be the same as above. For each θ1 ∈ [θ, 1), if

|c|√|b|2 + 1
<= θ1r,

then ∫
P+

f√h(y)dy >=

∫
P−

f√h(y)dy +

∫
S−

f√h(y)dy,

where S− = {y ∈ BN (0, r) | 〈y, n〉 > θ1r} and n = (b,−1)/
√|b|2 + 1.

Remark 3.1. If we write n = (b,−1)/
√|b|2 + 1, then the equation yN = 〈b, y′〉+c

implies

〈n, y〉+
c√|b|2 + 1

= 0,

and thus the value −c/√|b|2 + 1 is the distance of the plane yN = 〈b, y′〉 + c from
the origin in the direction n, where n is the normal unit vector to the plane yN =
〈b, y′〉+ c.

Proof of Lemma 3.3. (1) Fix ξ = (ξ′, ξN ) ∈ {y ∈ BN (0, r) | yN = 〈a, y′〉, yN =
〈b, y′〉+ c}, and set

n =
(b,−1)√|b|2 + 1

, t = 〈ξ, n〉, v = ξ − tn.(3.5)

Since 〈ξ, (a,−1)〉 = 0, we get

0 = 〈(v + tn), (a,−1)〉 = 〈v, (a,−1)〉+ t
〈a, b〉+ 1√|b|2 + 1

.

It is seen by |v|2 + t2 = |ξ|2 <= r2 that

t2 =
|b|2 + 1

(〈a, b〉+ 1)2
〈v, (a,−1)〉2 <=

|b|2 + 1

(〈a, b〉+ 1)2
(r2 − t2)(|a|2 + 1)
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and therefore,

t2
(

1 +
(|b|2 + 1)(|a|2 + 1)

(〈a, b〉+ 1)2

)
<= r2 (|b|2 + 1)(|a|2 + 1)

(〈a, b〉+ 1)2
.

Setting

θ =

(
(|b|2 + 1)(|a|2 + 1)

(〈a, b〉+ 1)2 + (|b|2 + 1)(|a|2 + 1)

)1/2(
>=

1√
2

)
,

we have

0 < θ < 1, |t| <= θr.

Moreover, θ is a continuous function of a and b.
(2) For simplicity, set h = 1. Let θ1 ∈ [θ, 1) and assume

|c|√|b|2 + 1
<= θ1r.

Define S± ⊂ BN (0, r) by

S+ = {y ∈ BN (0, r) | 〈y, n〉 < −θ1r}, S− = {y ∈ BN (0, r) | 〈y, n〉 > θ1r}.

Then we have

LN (S+) = LN (S−) = αrN(3.6)

for some α > 0 depending only and continuously on θ1. Here LN (A) is the N -
dimensional Lebesgue measure of a set A ⊂ RN . From part (1), we see

{y ∈ BN (0, r) | yN = 〈a, y′〉, yN = 〈b, y′〉+ c} ∩ (S+ ∪ S−) = ∅.

Define n and t as in (3.5). By an orthogonal change of variables, we may assume
that n = (0,−1), so that b = 0 and t = −c.

Case 1. c >= 0 (cf. Figure 3.1).
Set

Q+ = {y ∈ BN (0, r) | yN > 〈a, y′〉, c < yN < θ1r},
Q− = {y ∈ BN (0, r) | yN < 〈a, y′〉, c < yN < θ1r},
R+
s = ∂BN (0, s) ∩Q+, R−

s = ∂BN (0, s) ∩Q−.

Then, by geometry it is easily observed that

S(R+
s ) >= S(R−

s ) for all s ∈ (c, θ1r),

where S(R±
s ) denotes the surface area of R±

s . Since f satisfies (A.1) and (A.2) and
S+ is congruent to S−, using the change of variables s = |y|, we can compute

∫
Q+

f(y)dy =

∫ θ1r

c

f(s)S(R+
s )ds >=

∫ θ1r

c

f(s)S(R−
s )ds =

∫
Q−

f(y)dy.
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Fig. 3.1. The case c>==0.
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Fig. 3.2. The case c < 0.

Thus we obtain∫
P+

f(y)dy =

(∫
Q+

+

∫
S+

)
f(y)dy

>=

(∫
Q−

+

∫
S−

)
f(y)dy =

(∫
P−

+

∫
S−

)
f(y)dy.

Case 2. c < 0 (cf. Figure 3.2).
Set

Q̃+ = {y ∈ BN (0, r) | yN > 〈a, y′〉,−θ1r < yN < c},
Q̃− = {y ∈ BN (0, r) | yN < 〈a, y′〉,−θ1r < yN < c}.

We easily see, as above, that∫
P+

f(y)dy =
1

2

∫
BN (0,1)

f(y)dy −
∫
Q̃+

f(y)dy

>=
1

2

∫
BN (0,1)

f(y)dy −
∫
Q̃−

f(y)dy.

Since ∫
P−

f(y)dy =
1

2

∫
BN (0,1)

f(y)dy −
∫
S−

f(y)dy −
∫
Q̃−

f(y)dy,

we get ∫
P+

f(y)dy >=

∫
P−

f(y)dy +

∫
S−

f(y)dy.

Let λ̃ = G̃hϕ(x). Since ϕ ∈ C2(BN (z, r0)), we can easily prove the following
lemma.
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Lemma 3.4. There exist an h1 ∈ (0, r0] and a C1 > 0 independent of x ∈
BN (z, r0) such that if 0 < h <= h1 and x ∈ BN (z, r0), then |λ̃− ϕ(x)| <= C1h.

To continue, fix C2 > 0 so that

max
BN−1(0,r0)

‖D′2ψ‖ <= C2, max
BN (0,r0)

‖D2ϕ‖ <= C2.

Lemma 3.5. There exist an h2 ∈ (0, r0] and a θ1 ∈ (0, 1) depending only on K,
γ, C1, and C2 such that if h ∈ (0, h2) and

ξ ∈ {y ∈ BN (x,
√
h) | ϕ(y) = λ̃, yN = ψ(y′)},

then |ξN − xN | <= θ1

√
h.

Proof. Using Lemma 3.4, we have

|ϕ(ξ)− ϕ(x)| = |λ̃− ϕ(x)| <= C1h (for all h ∈ (0, h1)).

Since

|ϕ(ξ)− ϕ(x)− 〈D′ϕ(x), ξ′ − x′〉 −DNϕ(x)(ξN − xN )| <= C2h, DNϕ(x) <= −γ,

we get

γ|ξN − xN | <= |ϕ(ξ)− ϕ(x)|+ |D′ϕ(x)||ξ′ − x′|+ C2h

<= C1h + K
√
h− |ξN − xN |2 + C2h.

Hence, we see that

γ2|ξN − xN |2 <= K2(h− |ξN − xN |2) + (C1 + C2)2h2 + 2(C1 + C2)h3/2.

Thus

|ξN − xN | <=
√

K2

K2 + γ2
h + (C1 + C2)2h2 + 2(C1 + C2)h3/2.

From this we complete the proof.
Lemma 3.6. There exists a C3 > 0 depending only on γ, C1, and C2 such that

if y ∈ BN (x,
√
h) satisfies ϕ(y) = λ̃, h ∈ (0, h1), and if a = D′ϕ(x)/DNϕ(x), then

|(yN − xN )− 〈a, y′ − x′〉| <= C3h.
Proof. Using Lemma 3.4, we observe that

C1h >= |ϕ(y)− ϕ(x)| = |〈D′ϕ(x), y′ − x′〉+ DNϕ(x)(yN − xN ) + O(h)|,

where |O(h)| <= C2h. Hence we have

|(yN − xN )− 〈a, y′ − x′〉| <= (C1 + C2)h/γ.

We are now in a position to prove Lemma 3.1, part (2). Set λ = Ghϕ(x) and
a ∧ b = min{a, b}.

Proof of Lemma 3.1, part (2). We show that there exists an h0 > 0 such that

λ <= λ̃ for all x ∈ BN (z, r0) ∩ Ω and h ∈ (0, h0). Then we use Lemma 3.2, part (2) to
obtain our desired result.
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Define

Q+ = {y ∈ BN (x,
√
h) | ϕ(y) < λ̃, yN > ψ(y′)},

Q− = {y ∈ BN (x,
√
h) | ϕ(y) > λ̃, yN > ψ(y′)},

Q̃+ = {y ∈ BN (x,
√
h) | ϕ(y) < λ̃}, Q̃− = {y ∈ BN (x,

√
h) | ϕ(y) > λ̃}.

Note that Q± = Q̃± ∩ Ω for small h > 0. Here and in what follows we denote
ψ(y′ − z′)− zN by ψ(y′) for simplicity. We observe∫

BN (x,
√
h)

f√h(y − x)χ{ϕ>
==
λ̃}(y)dy =

1

2

∫
BN (x,

√
h)

f√h(y − x)dy,

and thus ∫
Q̃+

f√h(y − x)dy =

∫
Q̃−

f√h(y − x)dy.(3.7)

Case 1. {y ∈ BN (x,
√
h) | ϕ(y) = λ̃, yN = ψ(y′)} �= ∅ (cf. Figure 3.3).

Let h0 <= h1 ∧ h2 and assume that h ∈ (0, h0). Fix ξ ∈ {y ∈ BN (x,
√
h) | ϕ(y) =

λ̃, yN = ψ(y′)}. For y′ ∈ BN−1(x′,
√
h),

ψ(y′) = ψ(ξ′) + 〈D′ψ(ξ′), y′ − ξ′〉+ O(h),

where |O(h)| <= C2h. Hence, if y ∈ BN (x,
√
h) satisfies yN = ψ(y′), then

|(yN − ξN )− 〈D′ψ(ξ′), y′ − ξ′〉| <= C2h.(3.8)

Set

a(x) =
D′ϕ(x)

DNϕ(x)
, b(ξ′) = D′ψ(ξ′), c(x; ξ) = ξN − xN − 〈b(ξ′), ξ′ − x′〉

for x ∈ BN (z, r0) and ξ ∈ {y ∈ BN (x,
√
h) | ϕ(y) = λ̃, yN = ψ(y′)}. We observe that

if h ∈ (0, h0), then

|〈a(x), b(ξ′)〉+ 1| >= 1− εK

γ
,

|c(x; ξ)|√|b(ξ′)|2 + 1
<= (θ1 + ε)

√
h,
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where θ1 is from Lemma 3.5. We have used |b(ξ′)| = |D′ψ(ξ′)| <= ε in (3.4). Letting
θ2 = (1 + θ1)/2 and ε0 = min{γ/K, θ2 − θ1}/2, for any ε ∈ (0, ε0), we get

|〈a(x), b(ξ′)〉+ 1| >=
1

2
,

|c(x; ξ)|√|b(ξ′)|2 + 1
<= θ2

√
h.

For any x ∈ BN (z, r0) and ξ ∈ {y ∈ BN (x,
√
h) | ϕ(y) = λ̃, yN = ψ(y′)}, put

a = a(x), b = b(ξ′), c = c(x; ξ), ñ =
(b,−1)√|b|2 + 1

.

In view of Lemma 3.3, part (2), we have∫
P+

f√h(y − x)dy >=

∫
P−

f√h(y − x)dy +

∫
S−

f√h(y − x)dy,

where

P+ = {y ∈ BN (x,
√
h) | yN > xN + 〈b, y′ − x′〉+ c, yN > xN + 〈a, y′ − x′〉},

P− = {y ∈ BN (x,
√
h) | yN > xN + 〈b, y′ − x′〉+ c, yN < xN + 〈a, y′ − x′〉},

S− = {y ∈ BN (x,
√
h) | 〈y − x, ñ〉 > θ1

√
h}

(cf. Figure 3.4). Note that the estimate of
∫
S− f√h(y − x)dy is independent of x ∈

BN (z, r0), ε ∈ (0, ε0), and h > 0 because of (3.3) and (3.6) with r =
√
h. We easily

see, by Lemma 3.6 and (3.8), that

{y ∈ BN (x,
√
h) | ϕ(y) = λ̃}

⊂ {y ∈ BN (x,
√
h) | |yN − xN − 〈a, y′ − x′〉| <= C3h} ≡ T1,

BN (x,
√
h) ∩ ∂Ω

⊂ {y ∈ BN (x,
√
h) | |yN − xN − 〈b, y′ − x′〉 − c| <= C2h} ≡ T2.

Moreover, we compute∫
Q+

f√h(y − x)dy =

∫
Q̃+∩Ω

f√h(y − x)dy >=

∫
P+

f√h(y − x)dy −
∫
T1

f√h(y − x)dy,∫
Q−

f√h(y − x)dy =

∫
Q̃−∩Ω

f√h(y − x)dy <=

∫
P−

f√h(y − x)dy +

∫
T2

f√h(y − x)dy,

and therefore we have∫
Q+

f√h(y−x)dy >=

∫
Q−

f√h(y−x)dy+

∫
S−

f√h(y−x)dy−
(∫

T1

+

∫
T2

)
f√h(y−x)dy.

By Lemma 3.6 we have LN (T1) <= C4h
(N+1)/2 for some C4 > 0. The smoothness of ∂Ω

yields LN (T2) <= C5h
(N+1)/2 for some C5 > 0. Changing the variables (y−x)/

√
h→ y,

we observe (∫
T1

+

∫
T2

)
f√h(y − x)dy =

(∫
T1(h,x)

+

∫
T2(h,x)

)
f(y)dy,

LN (T1(h, x)) <= C4

√
h, LN (T2(h, x)) <= C5

√
h,

(Ti(h, x) = {(y − x)/
√
h | y ∈ Ti}, i = 1, 2).
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Fig. 3.5. Case 2.

Hence, taking h0 > 0 smaller, if necessary, we obtain λ <= λ̃ for any x ∈ BN (z, r0) and
h ∈ (0, h0).

Case 2. {y ∈ BN (x,
√
h) | ϕ(y) = λ̃} ⊂ Ω (cf. Figure 3.5).

In this case we have

Q̃+ = Q+, Q− ⊂ Q̃−,

and hence we get λ <= λ̃ by (3.7).

Case 3. {y ∈ BN (x,
√
h) | ϕ(y) = λ̃} ⊂ Ωc.

In this case we have Q− = ∅, and hence λ <= λ̃ is trivial.
Therefore, we have completed the proof.
Remark 3.2. The assumptions we have actually used are only (A.1) and

∫
RN f(y)dy

< +∞ because we have assumed that suppf is compact. The other assumptions play
important roles in the next subsection.

3.2. The case where suppf is not compact. By (A.2) there exist a ρ1 > 0,
{R(ρ)}0<ρ<ρ1 and an ω ∈ C(R+;R+) such that

∫
BN (0,R(

√
h))c

f(y)dy <=
√
hω(R(

√
h)) (h ∈ (0, ρ1)),(3.9)

ω(R)→ 0 (R→ +∞), R(ρ)→ +∞, ρR(ρ)2 → 0 (ρ→ 0)

(cf. Ishii, Pires, and Souganidis [7]).
Moreover, (A.4) implies that, for each ε > 0, there exists an ρ2 = ρ2(ε) > 0 such

that for any g(ξ) = 〈Aξ, ξ〉+ a (A ∈ SN−1, a ∈ R),

sup
0<r<ρ2

∣∣∣∣∣
∫
BN−1(0,R(ρ2))

f(y′, rg(y′))g(y′)dy′ −
∫
RN−1

f(y′, 0)g(y′)dy′
∣∣∣∣∣ < ε.(3.10)



380 HITOSHI ISHII AND KATSUYUKI ISHII

For r > 0, define

S̃r
hϕ(x) =

∫
BN (x,

√
hr)

f√h(x− y)ϕ(y)dy,

G̃r
hϕ(x) = sup

{
λ ∈ R

∣∣∣∣∣ S̃r
hχ{ϕ>==λ}(x) >=

1

2

∫
BN (x,

√
hr)

f√h(y − x)dy

}
,

and let µ̃(r) = G̃r
hϕ(x).

Fix ϕ ∈ C2(Ω) and ε > 0. Assume z ∈ Ω and Dϕ(z) �= 0. Then there exists an
r1 > 0 such that ϕ ∈ C2(BN (z, r1)) and Dϕ �= 0 in BN (z, r1). We can easily verify∫

BN (x,
√
hr)

f√h(y − x)χ{ϕ>
==
µ̃(r)}(y)dy =

1

2

∫
BN (x,

√
hr)

f√h(y − x)dy(3.11)

for all r > 0 satisfying
√
hr < r1.

For any h ∈ (0, ρ1), set µ̃ = µ̃(R(
√
h)). As to the estimates for µ̃ and λ̃, we have

the following lemmas.
Lemma 3.7. There exist an h1 ∈ (0, r1] and a C1 > 0 independent of x ∈

BN (z, r1)∩Ω such that if x ∈ BN (z, r1) and h ∈ (0, h1), then |λ̃−ϕ(x)|, |µ̃−ϕ(x)| <=
C1h.

This lemma can be shown easily, so we omit the proof.
Lemma 3.8. There exist an ε1 > 0 and a C2 > 0 such that, for any ε ∈ (0, ε1),

there exists an h2 > 0 such that |λ̃− µ̃| <= C2εh for all h ∈ (0, h2).

Proof. It is easily seen by the change of variables (y − x)/
√
h → y, (3.11), and

(3.9) that

(3.12)∫
RN

f√h(y − x)χ{ϕ>
==µ̃−C2εh}(y)dy

=

∫
RN

f(y)χ{ϕ>==µ̃−C2εh}(x−
√
hy)dy

>=

∫
BN (0,

√
hR(

√
h))

f(y)χ{ϕ>
==µ̃}

(x−
√
hy)dy

+

∫
BN (0,

√
hR(

√
h))

f(y)χ{µ>ϕ>==µ̃−C2εh}(x−
√
hy)dy

=
1

2

∫
BN (0,

√
hR(

√
h))

f(y)dy +

∫
BN (0,

√
hR(

√
h))

f(y)χ{µ>ϕ>==µ̃−C2εh}(x−
√
hy)dy

>=
1

2

∫
RN

f(y)dy −
√
hω(R(

√
h))

+

∫
BN (0,

√
hR(

√
h))

f(y)χ{µ>ϕ>
==µ̃−C2εh}(x−

√
hy)dy

for all h ∈ (0, ρ1 ∧ ρ2).
We take a continuous family {U(x)}x∈BN (z,r1) ⊂ O(N) satisfying

U(x)

(
Dϕ(x)

|Dϕ(x)|
)

= eN for all x ∈ BN (z, r1).
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By the same calculations as in [7], we observe that there exists a δ1 > 0 such that
if

ϕ(x−
√
hU∗(x)y) >= µ̃ (resp., ϕ(x−

√
hU∗(x)y) <= µ̃),

then

yN <=

√
h

|Dϕ(z)|
(
ϕ(x)− µ̃

h
+ ε +

1

2
〈P ∗U(z)D2ϕ(z)PU∗(z)Py′, y′〉+ ε|y′|2

)
(

resp.,

yN >=

√
h

|Dϕ(z)|
(
ϕ(x)− µ̃

h
+ ε +

1

2
〈P ∗U(z)D2ϕ(z)PU∗(z)Py′, y′〉+ ε|y′|2

))

for
√
hy ∈ BN (0, δ1) and x ∈ BN (z, r1). Here P denotes the N × (N − 1) matrix,

whose (i, j)th entries are 1 if i = j and 0 if i �= j. A similar inequality to the one
above holds for ϕ(x−√hU∗(x)y) <= (>=)µ̃− C2εh. Here we take δ1 and r1 smaller, if
necessary.

For simplicity, set U(z) = I and |Dϕ(z)| = 1. Then we see∫
BN (0,R(

√
h))

f(y)χ{µ̃>ϕ>
==
µ̃−C2εh}(x−

√
hy)dy

>=

∫
BN−1(0,R(ρ2))

∫ √
h(ψ1(y

′)−ε(1+|y′|2)+C2ε)

√
h(ψ1(y′)+ε(1+|y′|2))

f(y′, yN )dyNdy′

≡ J,

where ψ1(y′) = 〈P ∗D2ϕ(z)Py′, y′〉/2.
By (3.10) we observe

J >= ε
√
h

(
−2− 2

∫
RN−1

f(y′, 0)|y′|2dy′ + (C2 − 2)

∫
RN−1

f(y′, 0)dy′
)
.

Thus, taking a C2 > 0 large and an h2 ∈ (0, ρ1 ∧ ρ2) small, we have∫
BN (0,R(

√
h))

f(y)χ{µ̃>ϕ>==µ̃−C2εh}(x−
√
hy)dy >= ε

√
h >=
√
hω(R(

√
h))

for all h ∈ (0, h2). Thus, from (3.12), we conclude λ̃ >= µ̃− C2εh. Since we can show

λ̃ <= µ̃+C2εh by a similar argument to the above, we have completed the proof.
Consider the case z ∈ Ω. Then there exists a δ2 > 0 such that

BN (z, δ2) ⊂⊂ Ω, Dϕ(x) �= 0 (for all x ∈ BN (z, δ2)).

Replacing ε1, h2 > 0 with smaller ones, if necessary, we see that |λ̃−µ̃|, |λ−µ̃| <= C2εh,

for all ε ∈ (0, ε1) and h ∈ (0, h2). Hence we have |λ−λ̃| <= 2C4εh, and using Lemma 3.2
and this, we can prove Lemma 3.1, part (1). Therefore, we assume z ∈ ∂Ω and
(∂ϕ/∂n)(z) > 0 and show Lemma 3.1, part (2). Lemma 3.1, part (3) can be proved
similarly. We use the same notations r0, ψ, D′, . . . , as those in the previous subsection.

It is easily seen that Lemma 3.3 holds. Moreover, we have the following lemmas
by similar arguments to the proofs of Lemmas 3.5 and 3.6. Let C3 > 0 satisfy
maxBN−1(0,r0) ‖D′2ψ‖ <= C3 and maxBN (0,r0) ‖D2ϕ‖ <= C3.
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Lemma 3.9. There exist an h3 > 0 and a θ1 ∈ (0, 1) depending only on γ, K,
C2, and C3 such that if h ∈ (0, h3) and

ξ ∈ {y ∈ BN (x,
√
hR(
√
h)) | ϕ(y) = µ̃, yN = ψ(y′)},

then |ξN − xN | <= θ1

√
hR(
√
h).

Lemma 3.10. There is a C4 > 0 depending only on γ, C1, and C3 such that
if µ̃ = G̃hϕ(x), y ∈ BN (x,

√
hR(
√
h)), satisfies ϕ(y) = µ̃, h ∈ (0, h1), and a =

D′ϕ(x)/DNϕ(x), then |(yN − xN )− 〈a, y′ − x′〉| <= C4hR(
√
h)2.

To estimate the integration of f√h(· − x) in Ωc, we need the following lemmas.
Lemma 3.11. There exists a C5 > 0 depending only on γ, C1, and C3 for which

sup
y∈BN (x,

√
hR(

√
h))∩{ϕ(y)=µ̃}

x∈BN (z,r0)

〈
Dϕ(x)

|Dϕ(x)| , y − x

〉
<= C5hR(

√
h)2 for all h ∈ (0, h1).

This lemma can be shown easily, so we omit the proof.
Lemma 3.12. Let 0 < s < r. Let a ∈ RN satisfy 〈a, eN 〉 < 0 and let b ∈ RN be

the projection of a to {y ∈ RN | 〈y, eN 〉 = 0}. Assume b �= 0. For α > 0, define

Q = {y ∈ BN (0, r) | 〈a, y〉 <= 0, |yN − s| <= α},
R = {y ∈ BN (0, r) ∩BN (0, s + α)c | 〈a, y〉 >= 0, 〈b, y〉 <= 0}.

Then there exists an α0 > 0 such that, for any α ∈ (0, α0),∫
Q

f(y)dy <=

∫
R

f(y)dy.

Proof. Take α0 > 0 so small that, for α ∈ (0, α0),

{y ∈ Q | 〈y, eN 〉 >= −α} = ∅, dist(0, Q ∪R) >=
1

2
s.

We introduce the polar coordinate system

y =
t√

1 + η2
(ξ, η) (t >= 0, η ∈ R, ξ ∈ SN−2).

Take ξ0 ∈ SN−2 and define η0 < 0 by 〈a, (ξ0, η0)〉 = 0. Let s1 ∈ (s + α, r) such that
s1η0√
1+η2

0

− s = α. Moreover, define η1, η2 < 0, (η0 < η2 < η1 < 0), by

tη1√
1 + η2

1

− s = α,
tη2√
1 + η2

2

− s = −α

for each t ∈ [s1, r]. By the choice of a and α0, we get supt∈[s1,r] |η1 − η2| <= C6α for
C6 > 0 independent of α ∈ (0, α0). Therefore,∫

Q

f(y)dy =

∫ r

s1

∫
SN−2

1

∫ η1

η2

f(t)tN−1 1

(1 + η2)N/2
dηdξdt(3.13)

<= C6α

∫ r

s1

∫
SN−2

1

f(t)tN−1dξdt,

where SN−2
1 = {y ∈ SN−2 | 〈a, y〉 <= 0}.
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On the other hand, it is easily observed that∫
R

f(y)dy =

∫ r

s+α

∫
SN−2

1

∫ η0

−∞
f(t)tN−1 1

(1 + η2)N/2
dηdξdt.

Thus, taking α0 > 0 smaller, if necessary, by (3.13) and this equality, we obtain our
desired result for all α ∈ (0, α0).

Lemma 3.13. Let 0 < s < r and let a, b ∈ RN , be the same as in the above
lemma. Define

Q̃ = {y ∈ BN (0, r) | 〈a, y〉 <= 0, yN <= −(s + α)},
R̃ = {y ∈ BN (0, r) | 〈a, y〉 >= 0, 〈b, y〉 >= 0, yN <= −(s + α)}.

Then ∫
Q̃

f(y)dy <=

∫
R̃

f(y)dy

for all α > 0.
Proof. Let Q̃t = ∂BN (0, t) ∩ Q̃ and R̃t = ∂BN (0, t) ∩ R̃. Then it is easily seen

that S(Q̃t) <= S(R̃t) for all t ∈ [s + α, r]. Here S(A) denotes the area for a surface
A ⊂ RN . Thus, changing the variables t = |y|, we have∫

Q̃

f(y)dy =

∫ r

s+α

f(t)S(Q̃t)dt <=

∫ r

s+α

f(t)S(R̃t)dt =

∫
R̃

f(y)dy.

We are now in a position to prove Lemma 3.1, part (2).
Proof of Lemma 3.1, part (2). It suffices to show that there exist a C > 0 and an

ε0 > 0 such that, for any ε ∈ (0, ε0), there exists an h0 > 0 such that

λ <= λ̃ + Cεh (for all x ∈ BN (z, r0) ∩ Ω, h ∈ (0, h0)).

Once we have the above inequality, by using Lemma 3.2 and this inequality, we obtain
our desired result.

Case 1. {y ∈ BN (x,
√
hR(
√
h)) | ϕ(y) = µ̃} ∩ ∂Ω �= ∅.

We may assume R(
√
h) >= R1 = R(ρ1/2) for all h ∈ (0, ρ2

1/4).

Subcase 1-1. dist(x, ∂Ω) <=
√
hR1.

Lemma 3.3 holds with r =
√
hR(
√
h). Let θ1 and S− be the same as in Lemma

3.3. By a similar argument in Case 1 in section 3.1, there exists an ε1 > 0 such that∫
S−

f√h(y − x)dy >=

∫
BN (x,

√
h1/2R1∩{〈y,n〉>==θ1R(ρ1/2)}

f(y)dy > 0

for all h ∈ (0, ρ2
1/4), x ∈ BN (z, r0), and ε ∈ (0, ε1). Thus we have∫

Ω

f√h(y − x)χ{ϕ>==µ̃}
(y)dy −

√
hω(R(

√
h)) +

∫
S−

f√h(y − x)dy

<=

∫
Ω∩BN (x,

√
hR(

√
h))

f√h(y − x)χ{ϕ>==µ̃}
(y)dy +

∫
S−

f√h(y − x)dy = ∗.

A similar argument in the previous subsection yields

∗ <=
∫

Ω∩BN (x,
√
hR(

√
h))

f√h(y − x)χ{ϕ<µ̃}(y)dy +

(∫
T1

+

∫
T2

)
f√h(y − x)dy

<=

∫
Ω

f√h(y − x)χ{ϕ<µ̃}(y)dy +

(∫
T1

+

∫
T2

)
f√h(y − x)dy,
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where T1 and T2 are defined by

T1 = {y ∈ BN (x,
√
hR(
√
h)) | |yN − xN − 〈a, y′ − x′〉| <= C3hR(

√
h)2},

T2 = {y ∈ BN (x,
√
hR(
√
h)) | |yN − xN − 〈b, y′ − x′〉 − c| <= C2hR(

√
h)2},(

a =
D′ϕ(x)

DNϕ(x)
, b = D′ψ(ξ′), c = ξN − xN − 〈b, ξ′ − x′〉

)
.

By similar calculations to the proof of Lemma 3.8, we get∫
T1

f√h(y − x)dy <= C6

√
hR(
√
h)2

for some C6 > 0. On the other hand, we easily see that∫
T2∩BN (x,

√
hR1)

fh(y − x)dy <= ω̃(h)

for some ω̃ ∈ C(R+;R+) with ω̃(0) = 0. Using a similar argument to the proof of
Lemma 3.12, we have∫

T2∩BN (x,
√
hR1)c

fh(y − x)dy <= C7

√
hR(
√
h)2

for some C7 > 0. Note that C6, C7 are independent of ε, h > 0, and x ∈ BN (z, r0)
and that ω̃ is independent of ε > 0 and x ∈ BN (z, r0). Therefore, we can take
h4 ∈ (0, ρ2

1/4) to satisfy

∫
S−

f√h(y − x)dy >=
√
hω(R(

√
h)) +

(∫
T1

+

∫
T2

)
f√h(y − x)dy

for all h ∈ (0, h4). Then we have λ <= µ̃ <= λ̃ + C2εh for all h ∈ (0, h4).

Subcase 1-2. dist(x, ∂Ω) >
√
hR1.

Lemma 3.11 yields that, for some h5 = h5(R1, γ) > 0,

{y ∈ Ωc | ϕ(y) <= µ̃} ⊂
{
y ∈ RN

∣∣∣∣
〈

Dϕ(x)

|Dϕ(x)| , y − x

〉
<= 1

}

for all x ∈ BN (z, r0) ∩ Ω and h ∈ (0, h5)). Then, for each x ∈ BN (z, r0) ∩ Ω, we can
choose a unit vector a = a(x,R1) ∈ RN such that

〈a, n(zx)〉 >=
1

2
inf

y∈BN (z,r0)∩Ω

〈
Dϕ(y)

|Dϕ(y)| , n(zy)

〉
,

{y ∈ Ωc | ϕ(y) <= µ̃} ⊂ {y ∈ RN | 〈a, y − x〉 <= 0},

where zx ∈ ∂Ω is a unique point satisfying dist(x, ∂Ω) = |x− zx|. On the other hand,
we observe that there exists an h6 > 0 such that

∂Ω ∩BN (x,
√
hR(
√
h)) ⊂ {y ∈ BN (x,

√
hR(
√
h))

| 〈a, y − x〉 <= 0, |yN − zx,N | <= C8hR(
√
h)2}
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for all h ∈ (0, h6), and C8 > 0 is independent of x ∈ BN (z, r0), ε, h > 0, and
x ∈ BN (z, r0). Define

Q = {y ∈ BN (x,
√
hR(
√
h)) | 〈a, y − x〉 <= 0, |yN − zx,N | <= C8hR(

√
h)2},

R = {y ∈ BN (x,
√
hR(
√
h)) ∩BN (x,dist(x, ∂Ω) + C8

√
hR(
√
h))c

| 〈a, y − x〉 >= 0, 〈b, y − x〉 <= 0},
Q̃ = {y ∈ BN (x,

√
hR(
√
h)) ∩BN (x,dist(x, ∂Ω) + C8

√
hR(
√
h))c

| 〈a, y − x〉 <= 0},
R̃ = {y ∈ BN (x,

√
hR(
√
h)) ∩BN (x,dist(x, ∂Ω) + C8

√
hR(
√
h))c

| 〈a, y − x〉 >= 0, 〈b, y − x〉 >= 0}.

Then applying Lemmas 3.12 and 3.13, we have, for some h7 > 0,∫
Ωc∩BN (x,

√
hR(

√
h))

f√h(y − x)χ{ϕ<µ̃}(y)dy <=

(∫
Q

+

∫
Q̃

)
f(y)dy

<=

(∫
R

+

∫
R̃

)
f(y)dy =

∫
Ωc∩BN (x,

√
hR(

√
h))

f√h(y − x)χ{ϕ>
==µ̃}

(y)dy

for all h ∈ (0, h7). Therefore, there exists a C9 > 0 independent of ε, h > 0, and
x ∈ BN (z, r0) such that∫

Ω

f√h(y − x)χ{ϕ>
==
µ̃+C9εh}(y)dy + ε

√
h−
√
hω(R(

√
h))

<=

∫
Ω∩BN (x,

√
hR(

√
h))

f√h(y − x)χ{ϕ>==µ̃}
(y)dy

=

∫
BN (x,

√
hR(

√
h))

f√h(y − x)χ{ϕ>
==µ̃}

(y)dy

−
∫

Ωc∩BN (x,
√
hR(

√
h))

f√h(y − x)χ{ϕ>
==
µ̃}(y)dy

<=

∫
BN (x,

√
hR(

√
h))

f√h(y − x)χ{ϕ<µ̃}(y)dy

−
∫

Ωc∩BN (x,
√
hR(

√
h))

f√h(y − x)χ{ϕ<µ̃}(y)dy

=

∫
Ω∩BN (x,

√
hR(

√
h))

f√h(y − x)χ{ϕ<µ̃}(y)dy

<

∫
Ω

f√h(y − x)χ{ϕ<µ̃+C9εh}(y)dy.

Hence taking ε2 > 0 small and 0 < h8 <= min{hi | i = 5, 6, 7}, we get λ <= µ̃ + C9εh <=
λ̃ + (C2 + C9)εh for all ε ∈ (0, ε2) and h ∈ (0, h8).

Case 2. {y ∈ BN (x,
√
hR(
√
h)) | ϕ(y) = µ̃} ∩ ∂Ω = ∅.

Subcase 2-1. {y ∈ BN (x,
√
hR(
√
h)) | ϕ(y) = µ̃} ⊂ Ωc.

It follows from Lemma 3.7 that for some C11 > 0 independent of ε, h > 0, and
x ∈ BN (z, r0),

dist(x, ∂Ω) <= C10h for all h ∈ (0, h1).(3.14)
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It is easily seen that∫
Ω

f√h(y − x)χ{ϕ>
==
µ̃}(y)dy <=

√
hω(R(

√
h)),∫

Ω∩BN (x,
√
hR(

√
h))

f√h(y − x)χ{ϕ<µ̃}(y)dy =

∫
Ω∩BN (x,

√
hR(

√
h))

f√h(y − x)dy.

By the smoothness of ∂Ω we can show that

∂Ω ∩BN (x,
√
hR(
√
h)) ⊂ {y ∈ BN (x,

√
hR(
√
h)) | |yN − zx,N | <= C11hR(

√
h)2},

where C11 > 0 is independent of ε, h > 0, and x ∈ BN (z, r0), and zx is a unique point
satisfying dist(x, ∂Ω) = |x − zx|. Thus it follows from (3.9), (3.14), and (A.4) that
there exists an h9 > 0 such that, for all h ∈ (0, h9), we observe∫

Ω∩BN (x,
√
hR(

√
h))

f√h(y − x)dy

>=
1

2

∫
BN (0,

√
hR(

√
h))

f(y)dy −
∫ C11

√
h(R(

√
h)+1)

−C11

√
h(R(

√
h)+1)

∫
BN−1(0,R(

√
h))

f(y′, yN )dy′dyN

>=
1

2

∫
RN

f(y)dy −
√
hω(R(

√
h))−

∫ C11

√
h(R(

√
h)+1)

−C11

√
h(R(

√
h)+1)

(∫
RN−1

f(y′, 0)dy′ + 1

)
dyN

>=
√
hω(R(

√
h)).

Therefore, we obtain λ <= µ̃ <= λ̃ + C2εh for all ε ∈ (0, ε1) and h ∈ (0, h1 ∧ h9).

Subcase 2-2. {y ∈ BN (x,
√
hR(
√
h)) | ϕ(y) = µ̃} ⊂ Ω and dist(x, ∂Ω) <=

√
hR1.

As in Subcase 1-1, we observe that there exist a C12 > 0 and an h10 > 0 such
that∫

Ω∩BN (x,
√
hR(

√
h))

f√h(y − x)χ{ϕ>==µ̃}
(y)dy <=

1

2

∫
BN (x,

√
hR(

√
h))

f√h(y − x)dy − C12

for all h ∈ (0, h10). It follows from this inequality that∫
Ω

f√h(y − x)χ{ϕ>==µ̃}
(y)dy <=

1

2

∫
BN (x,

√
hR(

√
h))

f√h(y − x)dy − C12 +
√
hω(R(

√
h))

<=

∫
Ω

f√h(y − x)χ{ϕ<µ̃}(y)dy

for any h ∈ (0, h10). Thus λ <= µ̃ <= λ̃ + C2εh.

Subcase 2-3. {y ∈ BN (x,
√
hR(
√
h)) | ϕ(y) = µ̃} ⊂ Ω and dist(x, ∂Ω) >

√
hR1.

Note that ∫
Ω∩BN (x,

√
hR(

√
h))

f√h(y − x)χ{ϕ>==µ̃}
(y)dy

<=

∫
Ω∩BN (x,

√
hR(

√
h))

f√h(y − x)χ{ϕ<µ̃}(y)dy.

Then computing as in Subcase 1-2, we have∫
Ω

f√h(y − x)χ{ϕ>==µ̃+C13εh}(y)dy

<=

∫
Ω

f√h(y − x)χ{ϕ<µ̃+C13εh}(y)dy +
√
hω(R(

√
h))− ε

√
h
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for some C13 > 0 independent of ε, h > 0, and x ∈ BN (z, r0). Taking h11 > 0 small,

we have λ <= µ̃ + C13εh <= λ̃ + (C2 + C13)εh for all h ∈ (0, h11).
Consequently, taking C > 0 large and ε0, h0 > 0, small enough, we complete the

proof.

4. Proof of Theorem 2.1. Before proving our main result, we prepare some
lemmas.

Lemma 4.1. Let ε > 0 and g ∈ C2(Ω). Assume ∂g/∂n > 0 (resp., ∂g/∂n < 0)
on ∂Ω. Then there exists a ω ∈ C(R+;R+), ω(0) = 0, such that

sup
x∈Ω,m∈N

(um(t, x)− g(x)) <= ω(t),

(
resp., inf

x∈Ω,m∈N
(um(t, x)− g(x)) >= −ω(t)

)

for all x ∈ Ω and t >= 0.
Proof. We may assume ∂g/∂n > 0 on ∂Ω because we can prove the result similarly

in the case ∂g/∂n < 0 on ∂Ω.
We prove that there exist a C > 0 and an h0 > 0 such that

Ghg(x) <= g(x) + Ch for all x ∈ Ω, h ∈ (0, h0).(4.1)

Once we have this inequality, we use it iteratively to obtain our desired result with
ω(t) = Ct. Fix z ∈ Ω.

Case 1. Dg(z) �= 0.
By using Lemma 3.1 with ε = 1, we see that there exists a δ1 > 0 such that

Ghg(x) <= g(x) + (−F (Dg(z), D2g(z)) + 1)h

for all x ∈ BN (z, δ1) ∩ Ω and h ∈ (0, δ1).
Case 2. Dg(z) = 0.
Note that z ∈ Ω because we assume ∂g/∂n > 0 on ∂Ω. Since g ∈ C2(Ω), we can

find a δ2 > 0 such that

|g(x)− g(z)| <=
1

2
‖D2g‖∞|x− z|2 for all x ∈ BN (z, δ2) ⊂ Ω.(4.2)

Moreover, taking C1 = 2‖g‖∞/δ2
2 + ‖D2g‖∞/2, we get

g(x) <= g(z) + C1|x− z|2 for all x ∈ Ω.

Thus we have

Ghg(x) <= g(z) + C1Gh(|x− z|2) for all x ∈ Ω.

By a similar argument in Ishii [6] and Ishii, Pires, and Souganidis [7], we obtain

Gh(|x− z|2) <= |x− z|2 + C2h for all x ∈ BN (z, δ3), h ∈ (0, δ3),

for some C2 > 0 and δ3 > 0. Hence, by (4.2) we get

Ghg(x) <= g(z) + C1(|x− z|2 + C2h)

<= g(x) +

(
C1 +

1

2
‖D2g‖∞

)
(|x− z|2 + C2h)

for all x ∈ BN (z, δ2 ∧ δ3), h ∈ (0, δ2 ∧ δ3).
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Consequently, for any z ∈ Ω, there exist C3, δ4 > 0 such that

Ghg(x) <= g(x) + C3h for all x ∈ BN (z, δ4), h ∈ (0, δ4).

Since Ω is compact, we have (4.1). Thus the proof is completed.
Define u(t, x) and u(t, x) by

u(t, x) = lim
ε→0

sup{um(s, y) | m >= 1/ε, y ∈ Ω, 0 <= s < T, |s− t|+ |y − x| <= ε},
u(t, x) = lim

ε→0
inf{um(s, y) | m >= 1/ε, y ∈ Ω, 0 <= s < T, |s− t|+ |y − x| <= ε}.

Lemma 4.2. Let g ∈ C(Ω). Then u(0, x) = u(0, x) = g(x) for all x ∈ Ω.
Proof. Take a sequence {gk} ⊂ C2(Ω) satisfying

‖gk − g‖C(Ω)
<=

1

k
,

∂gk
∂n

> 0 on ∂Ω.

Define um,k as (2.5) with g replacing gk. Then Lemma 4.1 implies that, for each
n ∈ N , there exists an ωk ∈ C(R+;R+), ωk(0) = 0, such that

um,k(t, y)− gn(y) <= ωk(t) for all y ∈ Ω, t >= 0.

Since Gh is nonexpansive and ‖gk − g‖C(Ω)
<= 1/k, we observe that

|um(t, y)− um,k(t, y)| <=
1

k
for all y ∈ Ω, t >= 0, k ∈ N .

Hence we get

um(t, y)− g(y) <= ωk(t) +
2

k
.

Fix x ∈ Ω. Letting m→ +∞, y → x, t→ 0, and then k → +∞, we have

u(0, x) <= g(x).

Since we can show u(0, x) >= g(x) by a similar argument and u(0, x) <= u(0, x), we
have the result.

Proof of Theorem 2.1. By using Lemma 3.1, we can show that, for any ϕ ∈ C2(Ω),
if x ∈ Ω and Dϕ(x) �= 0 or x ∈ ∂Ω and (∂ϕ/∂n)(x) > 0, then

lim∗
h→0

Ghϕ(x)− ϕ(x)

h
<= −F∗(Dϕ(x), D2ϕ(x)),(4.3)

and if x ∈ Ω and Dϕ(x) �= 0 or x ∈ ∂Ω and (∂ϕ/∂n)(x) < 0, then

lim∗
h→0

Ghϕ(x)− ϕ(x)

h
>= −F ∗(Dϕ(x), D2ϕ(x)),

where

lim∗
h→0

ψh(x) = lim
r→0

sup{ψh(y) | 0 < h < r, |y − x| < r},
lim∗
h→0

ψh(x) = − lim∗
h→0

(−ψh(x)).
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We prove u is a viscosity subsolution of (2.1). Fix ϕ ∈ C2((0, T )×Ω) and assume
u − ϕ takes its maximum at (t0, x0). If x0 ∈ ∂Ω and (∂ϕ/∂n)(t0, x0) <= 0, then we
have nothing to prove. Thus we assume x0 ∈ Ω or x0 ∈ ∂Ω and (∂ϕ/∂n)(t0, x0) > 0.
Then, by (4.3) and the same argument as in Ishii [6] or Ishii, Pires, and Souganidis
[7], we conclude that u is a viscosity subsolution of (2.1). It can be proved similarly
that u is a viscosity supersolution of (2.1). Therefore, Lemma 4.2 and the comparison
principle due to Giga and Sato [5] yield u = u in [0, T )×Ω. Hence, by the results in
Crandall, Ishii, and Lions [3, section 6], the proof is completed.
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Abstract. Oseen equations in the channel are considered. We give an explicit solution formula
in terms of the inverse heat operators and of projection operators. This solution formula is used for
the analysis of the behavior of the Oseen equations in the zero viscosity limit. We prove that the
solution of Oseen equations converges inW 1,2 to the solution of the linearized Euler equations outside
the boundary layer and to the solution of the linearized Prandtl equations inside the boundary layer.

Key words. Oseen equations, solution formula, zero viscosity limit, boundary layer, asymptotic
expansion
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1. Introduction. In this paper we shall be concerned with the zero viscosity
limit of the time dependent incompressible Oseen type equations in a two-dimensional
channel.

Oseen equations are a simplified mathematical model in treating incompressible
viscous fluids and their study should shed some light on the much more complicated
physical phenomena described by the nonlinear Navier–Stokes equations.

The system we shall be concerned with is the following:

(∂t − ν∆+ U∂x)u+∇p = f ,(1.1)

∇ · u = 0,(1.2)

γ−u = g−,(1.3)

γ+u = g+,(1.4)

u(t = 0) = u0.(1.5)

In the above equations u = (u(x, y, t), v(x, y, t)) is the unknown vector field, p
is the unknown pressure, x ∈ R denotes the tangential variable, −1 ≤ y ≤ 1 is the
normal variable, t ≥ 0 is the time, γ is the trace operator, i.e., γ−u = u(x,−1, t) and
γ+u = u(x, 1, t) , ν is the viscosity coefficient, and g−,g+, and u0 are the boundary
and the initial data, respectively.

Equation (1.1) is obtained by linearizing the Navier–Stokes equation around the
velocity flow (U, 0), where U is assumed to be constant. Equation (1.2) is the incom-
pressibility condition. Equations (1.3) and (1.4) are the boundary conditions, while
(1.5) is the initial condition.

The analysis of the zero viscosity limit of (1.1)–(1.5) (with homogeneous boundary
data g+ = g− = 0) was performed by Temam and Wang in [4], [5], and [6]. In [6]
the authors considered the more general case of the three-dimensional Navier–Stokes
equations linearized around the flow (U1(z), U2(z), 0). Without explicitly solving the
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equations and under the assumption of sufficient smoothness of the initial data, they
proved that the solution can be decomposed in the following form:

u = u0 + θ̃ε + ν1/4w with w ∈ L2
(
[0, T ];

(
W 1,2(Ω)

)3)
,

where u0 is the inviscid solution and θ̃ε is a corrector which takes into account
the mismatch of the boundary conditions between the inviscid part and the overall
solution.

In this paper we shall write the solution of (1.1)–(1.5) as the sum of an inviscid
part, two Prandtl parts, and an error term, i.e.,

u = uE + uP (−) + uP (+) + ν1/2w .(1.6)

In the above decomposition uE is the inviscid (Euler) part describing the flow
away from boundaries; uP (−) and uP (+) are the Prandtl parts describing the flow close
to the two boundaries and decaying exponentially away from the two boundaries. Our
main result is the following theorem.

Theorem 1.1 (informal statement). Let u be the solution of (1.1)–(1.6). If the
initial data u0 is in H4, and if the boundary data g± are sufficiently regular and are
such that the normal components are integrable (in the sense specified by Definition
2.3 below), then

ν1/4w ∈ L∞ ([0, T ] ;W 1,2
)

with norm independent of ν.
Therefore the main advantage with respect to the results of [6] is that here we

prove that the norm of the correction term is O(ν1/4) in L∞ ([0, T ];W 1,2
)
, while there

an analogous estimate is proved with a nondivergence-free boundary layer corrector.
We also allow nonzero boundary data.

We shall achieve this result through the explicit solution formula for the Oseen
equation. This explicit representation formula is, we believe, of independent interest.

The paper is organized as follows: in section 2 we shall introduce the functional
setting. In section 3 the convection-diffusion operators in the channel are defined
and we shall give some estimate in the appropriate function spaces. In section 4 we
shall solve the Oseen equations with boundary data, zero initial data, and zero source
term. The solution will be written in the form of an infinite series: the norm of the
generic term of the series will be shown to be exponentially decaying. Convergence
of the series will follow and the norm of the solution will be proved to be bounded
in terms of the norm of the boundary data. In section 5 the complete Oseen system
is solved introducing the projection operator onto the divergence-free function space
and estimates of the solution in terms of the data are given. In section 6 we shall
finally analyze the vanishing viscosity limit of the Oseen equations. The main results
of this paper are formally stated in Theorem 6.5 and Corollary 6.1.

2. The function spaces. In this section we define some function spaces we shall
be using throughout the paper. We introduce the notation Ω ≡ R × [−1, 1]. Here
and in the rest of the paper l ≥ 2.

Definition 2.1. H l(R) is the set of all functions f(x) such that

(i) dj

dxj f ∈ L2(R), where j ≤ l.
We shall denote the usual norm in H l(R) with |f |l.
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Definition 2.2. H ′l
T is the set of all functions f(x, t) such that

(i) ∂jt f(x, t) ∈ L∞([0, T ], H l−j(R)) and j ≤ l.

The norm of f ∈ H ′l
T is given by

|f |l,T =
∑

j1+j2≤l
sup

0≤t≤T
‖∂j1t ∂j2x f(·, t)‖L2(R) .

Definition 2.3. H ′l
T is the set of all functions f = (fτ , fN ) such that

(i) fτ ∈ H ′l
T ;

(ii) |ξ|−1fN ∈ H ′l+1
T .

The norm of f ∈H ′l
T is given by

f

l,T = |fτ |l,T + ||ξ|−1fN |l,T .

In the above definition ξ is the dual Fourier variable of x, and |ξ|−1 has to be
understood as a pseudodifferential operator. The space H ′l

T is the space to which all
boundary data we shall deal with in the rest of the paper will belong. The hypothesis
on the normal component is an integrability hypothesis.

Definition 2.4. H l is the set of all functions f(x, y) such that

(i) ∂ix∂
j
yf(x, y) ∈ L2(Ω) for i+ j ≤ l.

The norm of f is given by

|f |l =
∑
i+j≤l

‖∂ix∂jyf(·, ·)‖L2(Ω) .

Definition 2.5.

H lT is the set of all functions f(x, y, t) such that

• ∂jt f(x, y, t) ∈ L∞([0, T ], H l−j) for j ≤ l.

The norm of f ∈ H lT is given by

|f |l,T =
∑

j1+j2+j3≤l
sup

0≤t≤T
‖∂j1t ∂j2x ∂j3y f(·, ·, t)‖L2(Ω).

All the above spaces are the natural ambient spaces for the Euler equations. We
now introduce the ambient spaces for Prandtl equations. All the functions belonging
to these spaces depend on the normal scaled variable Y = y/ε. We require differen-
tiability with respect to this variable only up to the second order. We first introduce
the spaces Kl,µ(+) and Kl,µ(−). The functions in these spaces are defined in the half
plane Y ≤ 1/ε and Y ≥ −1/ε, respectively, and decay exponentially fast away from
Y = 1/ε and Y = −1/ε, respectively. In what follows µ > 0.

Definition 2.6. Kl,µ(±) is the set of all functions f±(x, Y ) defined for −∞ <
±Y ≤ 1/ε, and such that

(i) ∂j1x ∂
j2
Y f

±(x, Y ) ∈ L2(R), with j2 ≤ 2 and j1 + j2 ≤ l,

(ii) sup−∞<±Y≤ 1
ε
eµ(

1
ε∓Y )‖∂j1x ∂j2Y f±(·, Y )‖L2 < ∞, where j2 ≤ 2 and j1 + j2

≤ l.

The norm is given by

|f |l,µ(±) =
∑
j2≤2

∑
j1+j2≤l

sup
−∞<±Y≤ 1

ε

eµ(
1
ε∓Y )‖∂j1x ∂j2Y f±(·, Y )‖L2 .
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Definition 2.7. Kl,µ is the set of functions f(x, Y ), defined for −1/ε ≤ Y ≤
1/ε, such that

f = f+ + f−,

where f+ and f− are restrictions to −1/ε ≤ Y ≤ 1/ε of functions in Kl,µ(+) and
Kl,µ(−), respectively. The norm is given by

|f |l,µ=
∑
j2≤2

∑
j1+j2≤l

[
sup

0<Y≤ 1
ε

eµ(
1
ε−Y )‖∂j1x ∂j2Y f(·, Y )‖L2 + sup

− 1
ε<Y≤0

eµ(
1
ε+Y )‖∂j1x ∂j2Y f(·, Y )‖L2

]
.

We now introduce the dependence on time. We require differentiability with
respect to time only up to the first order: one time derivative is equivalent to two
space derivatives.

Definition 2.8.
K
l,µ(±)
T is the set of all functions f±(x, Y, t) such that
(i) f ∈ L∞([0, T ],Kl,µ(±)),
(ii) ∂t∂

j
xf ∈ L∞([0, T ],K0,µ(±)) with j ≤ l − 2.

The norm is given by

|f |l,µ,T (±) =
∑

0≤j2≤2

∑
j1≤l−2

sup
0≤t≤T

sup
−∞<±Y≤ 1

ε

eµ(
1
ε∓Y )‖∂j1x ∂j2Y f±(·, Y, t)‖L2

+
∑
j≤l−2

sup
0≤t≤T

sup
−∞<±Y≤ 1

ε

eµ(
1
ε∓Y )‖∂t∂jxf±(·, Y, t)‖L2 .

Definition 2.9. Kl,µT is the set of functions f(x, Y, t), defined for −1/ε ≤ Y ≤
1/ε, such that

f = f+ + f− ,

where f+ and f− are restrictions to −1/ε ≤ Y ≤ 1/ε of functions in K
l,µ(+)
T and

K
l,µ(−)
T , respectively. The norm is given by

|f |l,µ,T =
∑

0≤j2≤2

∑
j1≤l−2

sup
0≤t≤T

sup
0<Y≤ 1

ε

eµ(
1
ε−Y )‖∂j1x ∂j2Y f(·, Y, t)‖L2

+
∑
j≤l−2

sup
0≤t≤T

sup
0<Y≤ 1

ε

eµ(
1
ε−Y )‖∂t∂jxf(·, Y, t)‖L2

+
∑

0≤j2≤2

∑
j1≤l−2

sup
0≤t≤T

sup
− 1

ε<Y≤0

eµ(
1
ε+Y )‖∂j1x ∂j2Y f(·, Y, t)‖L2

+
∑
j≤l−2

sup
0≤t≤T

sup
− 1

ε<Y≤0

eµ(
1
ε+Y )‖∂t∂jxf(·, Y, t)‖L2 .

We now introduce the ambient spaces for the error equation. All functions be-
longing to the following spaces are functions L2 with respect to both tangential and
normal variables. Notice that, due to the presence in the error equation of the rapidly
varying terms arising from the Prandtl solution, the solution of the error equation will
have a fast dependence on y. Therefore, in the following spaces, all the derivatives of
order j with respect to y are weighted with εj ≡ νj/2.



394 MARIA CARMELA LOMBARDO AND MARCO SAMMARTINO

Definition 2.10. Ll is the set of all functions f(x, y) such that
(i) ∂j1x ε

j2∂j2y f ∈ L2(Ω) with j2 ≤ 2 and j1 + j2 ≤ l.

The norm of f ∈ Ll is given by

‖f‖l =
∑
j1≤l
‖∂j1x f‖L2(Ω) +

∑
0≤j2≤2

∑
j1≤l−2

‖∂j1x εj2∂j2y f‖L2(Ω) .

Definition 2.11. L′l
T is the set of all functions f(x, t) such that

(i) ∂t∂
j
xf ∈ L∞([0, T ], H l(R)) for j ≤ l − 2.

The norm of f ∈ L′l
T is given by

‖f‖l,T =
∑
j≤l−2

sup
0≤t≤T

‖∂t∂jxf(·, t)‖L2(Ω) .

Definition 2.12. LlT is the set of all functions f(x,y,t) such that
(i) f ∈ L∞([0, T ], Ll),
(ii) ∂t∂

j
xf ∈ L∞([0, T ], L0) with j ≤ l − 2.

The norm of f ∈ LlT is given by

‖f‖l,T =
∑

0≤j2≤2

∑
j1≤l−2

sup
0≤t≤T

‖∂j1x εj2∂j2y f(·, ·, t)‖L2(Ω)+
∑
j≤l−2

sup
0≤t≤T

‖∂t∂jxf(·, ·, t)‖L2(Ω) .

3. The convection-diffusion operators in the channel. In this section we
shall give an explicit representation of the convection-diffusion operators F0, F1, and
F2. These operators solve the convection-diffusion equation in the channel with initial
data, boundary data, and source term, respectively. Our explicit representation is
given in terms of the action on the Fourier transform in the tangential variable.
These operators will be used in the construction of the explicit solution of the Oseen
equations. In what follows ξ will always denote the dual Fourier variable of x:

f̂(ξ′) =
1

(2π)1/2

∫ +∞

−∞
dx f(x)e−iξ

′x .

In the rest of the paper we shall not distinguish between a function and its Fourier
transform.

The convection-diffusion equation in the channel writes as follows:

(∂t − ν∆+ U∂x)u = f ,(3.1)

γ+u = g+ ,(3.2)

γ−u = g− ,(3.3)

u|t=0 = u0 .(3.4)

The operator F0 solves the above equations with initial data and zero boundary data
and zero source term. If we now introduce the θ-function (see [8, Chapter V]),

θ(y, t) =
∞∑

n=−∞
k(y + 4n, t), −∞ < y <∞ ,

where

k(y, t) =
e−y

2/4νt

(4πνt)1/2
,
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one can easily see that the explicit expression of F0 is given by

F0u0 = e−[νξ2+iξU ]t

∫ +1

−1

dy′ [θ(y − y′, t)− θ(y + y′ + 2, t)]u0(ξ, y
′) .(3.5)

The operator F1 solves the convection-diffusion equations in the channel with
boundary data, zero initial data, and zero source term: If we introduce the ϕ-function
(see [8])

ϕ(y, t) =
+∞∑
n=−∞

h(y + 4n, t), −∞ < y <∞ ,

where

h(y, t) =
y

t

e−y
2/(4νt)

√
4πtν

,

one can easily verify that the operator F1 has the following expression:

F1(g
+, g−) =

∫ t
0

ds e−(νξ′
2
+iξ′U)(t−s)ϕ(y + 1, t− s)g−(ξ′, s)

+

∫ t
0

ds e−(νξ′
2
+iξ′U)(t−s)ϕ(1− y, t− s)g+(ξ′, s) .(3.6)

Finally, the operator F2 solves the convection-diffusion equations with source
term, zero initial data, and zero boundary data. One can give the following explicit
expression for F2:

F2f =

∫ t
0

dse−[νξ2+iξU ](t−s)
∫ +1

−1

dy′ [θ(y − y′, t− s)− θ(y + y′ + 2, t− s)] f(ξ, y′, s) .
(3.7)

We now give some estimates on the above operators. In the propositions below
c is a constant that does not depend on ν. The proofs of the proposition below are
standard and can be achieved using the explicit representation formulas (3.5), (3.6),
and (3.7) and the same arguments of [3], where the heat operators in the half plane
are considered.

Proposition 3.1. Let u0 ∈ Ll with γ±u0 = 0. Then F0u0 ∈ LlT and the
following estimate holds:

‖F0u0‖l,T ≤ c‖u0‖l .
Proposition 3.2. Let g+ ∈ L′l

T , g
− ∈ L′l

T satisfy the compatibility condition
g+(t = 0) = g−(t = 0) = 0. Then F1(g

+, g−) ∈ LlT and the following estimate holds:

‖F1(g
+, g−)‖l,T ≤ c[‖g+‖l,T + ‖g−‖l,T ] .

Proposition 3.3. Let g+ ∈ L′l
T , g

− ∈ L′l
T , and g+(t = 0) = g−(t = 0) = 0;

then F1(g
+, g−) ∈ Kl,µT and the following estimate holds:

|F1(g
+, g−)|l,µ,T ≤ c[‖g+‖l,T + ‖g−‖l,T ] .

Proposition 3.4. Let f ∈ LlT ; then F2f ∈ LlT and the following estimate holds:

‖F2f‖l,T ≤ c‖f‖l,T .
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The following estimate on the operator F2 says that, if the source term is of the
same order of the square root of ν, then one can use the heat kernel to increase the
regularity of the solution.

Proposition 3.5. Let f =
√
νh with h ∈ Ll−1

T ; then F2f ∈ LlT and the following
estimate holds:

‖F2f‖l,T ≤ c‖h‖l−1,T .

4. The Oseen equations with boundary data: The explicit solution. In
this section we shall derive the explicit solution of the Oseen equations in the channel
with boundary data, zero source term, and zero initial data, namely,

(∂t − ν∆+ U∂x)u+∇p = 0,(4.1)

∇ · u = 0,(4.2)

γ−u = g−,(4.3)

γ+u = g+,(4.4)

u|t=0 = 0 ,(4.5)

where g+ = (g+
τ , g

+
N ) and g

− = (g−τ , g
−
N ).

We shall express the solution of the above equations as a series. The nth (n
even) term of the series solves Oseen equations in the channel with the right (in the
sense that it cancels the boundary datum created at y = −1 by the (n − 1)th term)
boundary condition at y = −1. On the other hand, the nth term of the series creates
a boundary datum at y = +1, which will be canceled by the (n + 1)th term, which
therefore has the right boundary condition at y = +1. Of course the main concern will
be to show that this series is convergent. In fact we shall prove that, for a time Tα,
this series is geometric with parameter α < 1. Our representation for the solution of
(4.1)–(4.5) will therefore be valid only up to time Tα. Notice, however, that Tα →∞
when ν → 0.

The plan of the section is the following. First we introduce some pseudodifferential
operators: (1) the operators U± (that we call the Ukai operators) that are projection
operators, (2) the operator L solving Dirichlet problem in the strip, and (3) the
projection-convection-diffusion operators M+ and M−. All these operators are the
ingredients to construct, in section 4.4, the operatorsO− andO+. These are operators
that solve Oseen equations with the right boundary condition only at y = −1 and at
y = +1, respectively. Finally, through these operators, in section 4.5 we construct the
explicit solution formula.

4.1. The Ukai operators. Here we define the following operators which are a
modification of the operator U introduced in [7]:

U−f =

∫ y
−1

dy′e−|ξ|(y−y′)f(y′, ξ),(4.6)

U+f = −
∫ 1

y

dy′e|ξ|(y−y
′)f(y′, ξ).(4.7)

These operators solve the problems

(∂y + |ξ|)U−f = f,(4.8)

γ−U−f = 0 ,(4.9)
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and

(∂y − |ξ|)U+f = f,(4.10)

γ+U+f = 0 .(4.11)

The following proposition holds.
Proposition 4.1. Let f be of the form f = |ξ′|f̃ with f̃ ∈ H l+1

T . Then U+f ∈
H lT , U

−f ∈ H lT , and the following estimates hold:

‖U+f‖l,T ≤ c‖f̃‖l+1,T ,

‖U−f‖l,T ≤ c‖f̃‖l+1,T .

The proof of the above proposition is a straightforward modification of the proof
of a similar statement given in [1].

The following lemmas are crucial for our analysis.
Lemma 4.2. Suppose g+

τ ∈ H
′l
T with g+

τ |t=0 = 0. Then γ−U+F1(g
+
τ , 0) ∈ H ′l

T .
Moreover, there exists α < 1 and Tα > 0, independent of g+

τ , such that

‖γ−U+F1(g
+
τ , 0)‖l,Tα ≤ α‖g+

τ ‖l,T .

Lemma 4.3. Suppose g−τ ∈ H
′l
T with g−τ |t=0 = 0. Then γ−U−F1(0 , g

−
τ ) ∈ H ′l

T .
Moreover, there exists α < 1 and Tα > 0, independent of g−τ , such that

‖γ+U−F1(0, g
−
τ )‖l,Tα

≤ α‖g−τ ‖l,T .

The meaning of the estimate on the operator U+F1 given in Lemma 4.2 is the
following. Give to U+F1 a boundary datum which is different from zero only at
y = +1, and evaluate the norm of the trace at y = −1. Then, up to the (sufficiently
small) time Tα, one has that this norm is strictly less than the norm of the boundary
datum at y = +1. Lemma 4.3 admits a similar interpretation. It is natural to
expect that the time Tα up to which the estimates are valid grows to infinity when
the diffusivity goes to zero. This will show up clearly during the proof of the above
lemmas, which are given in the appendix.

4.2. The inverse elliptic operators. We introduce the following operator L =
(Lτ ,LN ):

LN (g+
N , g

−
N ) =

sinh [|ξ|(y + 1)]

sinh [2|ξ|] g+
N +

sinh [|ξ|(1− y)]
sinh [2|ξ|] g−N ,(4.12)

Lτ (g+
N , g

−
N ) =

cosh [|ξ|(y + 1)]

sinh [2|ξ|] N ′g+
N −

cosh [|ξ|(1− y)]
sinh [2|ξ|] N ′g−N ,(4.13)

where N ′ = iξ/|ξ|. This operator has the property of being divergence-free and
harmonic; moreover, one can easily see that it is the gradient of a scalar function.
Therefore, it solves Oseen equations. Finally, it has the property that its normal
component has g+

N and g−N as boundary conditions at y = +1 and y = −1, respectively.
We now give some estimates on this operator. In these estimates we shall always

suppose that the boundary data g±N are such that |ξ|−1gN ∈ H ′l+1
T . This hypothesis,

which we shall refer to as integrability of the normal influx (in fact it is related to
assuming that the total influx from the boundary is bounded), is necessary to handle
the fact that the operator L is singular when ξ → 0.
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The proposition below gives an estimate of L in the spaces LlT and H lT . The
estimate in the space LlT will be used in the next subsections in the construction of
the Oseen operator. The estimate in the space H lT will be used in section 6 in the
analysis of the Euler equations.

Proposition 4.4. Let g±N be such that |ξ|−1g±N ∈ H ′l+1
T . Then L(g+

N , g
−
N ) ∈

LlT
⋂
H lT . The following estimates hold:

‖L(g+
N , g

−
N )‖l,T ≤ c

[‖|ξ|−1g+
N‖l+1,T + ‖|ξ|−1g−N‖l+1,T

]
,

|L(g+
N , g

−
N )|l,T ≤ c

[‖|ξ|−1g+
N‖l+1,T + ‖|ξ|−1g−N‖l+1,T

]
.

The following lemmas will be useful in the estimates of the Oseen operator.

Lemma 4.5. Let g+
N be such that |ξ|−1g+

N ∈ H ′l+1
T . Then γ−Lτ (g+

N , 0) ∈ LlT , and
the following estimate holds:

‖γ−Lτ (g+
N , 0)‖l,T ≤

1

2
‖|ξ|−1g+

N‖l+1,T .

Lemma 4.6. Let g−N be such that |ξ|−1g−N ∈ H ′l+1
T . Then γ+Lτ (0, g−N ) ∈ LlT , and

the following estimate holds:

‖γ+Lτ (0, g−N )‖l,T ≤
1

2
‖|ξ|−1g−N‖l+1,T .

The meaning of Lemma 4.5 is the following. Give to the operator Lτ a boundary
datum which is nonzero only at y = +1. Then its trace at y = −1 is strictly less
(half) than the datum at y = +1. A similar interpretation can be given to Lemma
4.6. The proof of the above two lemmas is a straightforward consequence of the fact

that
∣∣∣ |ξ′|
sinh 2|ξ′|

∣∣∣ ≤ 1
2 .

4.3. The projection-convection-diffusion operator. Through the operators
we have introduced in the previous sections, we can define the operator M−. The
tangential and normal component are defined as follows:

M−
τ (g

−
τ , g

−
N ) = U−|ξ|F1

(
0, g−τ − γ−Lτ (0, g−N )

)
+ F1

(
0, g−τ − γ−Lτ (0, g−N )

)
,

M−
N (g

−
τ , g

−
N ) = U−|ξ|N ′F1

(
0, g−τ − γ−Lτ (0, g−N )

)
.

One can verify that the operatorM− is divergence-free, satisfies the Oseen equations,
and has zero normal boundary condition at y = −1:

(∂t − ν∆+ U∂x)M−(g−τ , g
−
N ) +∇p = 0,

∇ · M−(g−τ , g
−
N ) = 0,

γ−M−(g−τ , g
−
N ) =

(
g−τ − γ−Lτ (0, g−N ), 0

)
,

M−(g−τ , g
−
N )|t=0 = 0.

One can analogously define the operatorM+:

M+
τ (g

+
τ , g

+
N ) = U+|ξ|F1

(
g+
τ − γ+Lτ (g+

N , 0), 0
)
+ F1

(
g+
τ − γ+Lτ (g+

N , 0), 0
)
,

M+
N (g

+
τ , g

+
N ) = U+|ξ|N ′F1

(
g+
τ − γ+Lτ (g+

N , 0), 0
)
.
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It has the property of being divergence-free and of solving Oseen equations with zero
normal boundary condition at y = 1, namely,

(∂t − ν∆+ U∂x)M+(g+
τ , g

+
N ) +∇p = 0,

∇ · M+(g+
τ , g

+
N ) = 0,

γ+M+(g+
τ , g

+
N ) =

(
g+
τ − γ+Lτ (g+

N , 0), 0
)
,

M−(g+
τ , g

+
N )|t=0 = 0.

4.4. The half space Oseen operators. One can finally define the half space
Oseen operators O+ and O−. These operators solve the Oseen equations, are diver-
gence-free, and have the right boundary condition at y = +1 and y = −1, respectively.
Moreover, the trace of these operators, evaluated at y = −1 and y = +1, respectively,
has norm strictly less than the boundary datum. This property, expressed in Propo-
sitions 4.5 and 4.6 below, makes them suitable for the iterative procedure of the next
section.

The operator O+ is defined as

O+
N (g

+
τ , g

+
N ) = LN (g+

N , 0) +M+
N (g

+
τ , g

+
N ) ,

O+
τ (g

+
τ , g

+
N ) = Lτ (g+

N , 0) +M+
τ (g

+
τ , g

+
N ) .

The operator O− is defined as

O−
τ (g

−
τ , g

−
N ) = Lτ (0, g−N ) +M−

τ (g
−
τ , g

−
N ) ,

O−
N (g

−
τ , g

−
N ) = LN (0, g−N ) +M−

N (g
−
τ , g

−
N ) .

These operators have the property of solving the Oseen equations in the channel: O+

with the right boundary condition at y = +1; O− with the right boundary condition
at y = −1.

(∂t − ν∆+ U∂x)O±(g±τ , g
±
N ) +∇p = 0,

∇ · O±(g±τ , g
±
N ) = 0,

γ±O±(g±τ , g
±
N ) = (g±τ , g

±
N ),

O±(g−τ , g
−
N )|t=0 = 0 .

We now give some estimates on these operators. In the next section these esti-
mates will allow us to construct the solution of the Oseen equation in the channel. In
these estimates we shall always suppose that the normal component of the datum is
such that |ξ|−1gN ∈ H ′l+1

T , i.e., that g ∈H ′l
T .

Proposition 4.7. Let g+ ∈ H ′l
T with g+|t=0 = 0. Then O+(g+) ∈ LlT and the

following estimate holds:

‖O+(g+)‖l,T ≤ c
g+


l,T

.

Proposition 4.8. Let g− ∈H ′l
T with g−|t=0 = 0. Then O−(g−) ∈H l

T and the
following estimate holds:

‖O−(g−)‖l,T ≤ c
g−

l,T
.

The proof of these propositions can be easily achieved by using Propositions 4.4,
4.1, and 3.3.



400 MARIA CARMELA LOMBARDO AND MARCO SAMMARTINO

We now give the estimates on the trace of the operators O+ and O−. We shall also
prove that the trace at y = −1 (at y = +1, respectively) of O+ (of O−, respectively)
has the integrability property for the normal influx.

Proposition 4.9. Let g+ ∈ H ′l
T with g+|t=0 = 0. Then γ−O+ ∈ H ′l

T . More-
over, for any 0 < α < 1 there exists Tα > 0 such that

γ−O+(g+)

l,Tα
≤ α

g+

l,T

.(4.14)

Proposition 4.10. Let g− ∈ H ′l
T with g−|t=0 = 0. Then γ+O−(g−) ∈ H ′l

T .
Moreover, for any 0 < α < 1 there exists Tα > 0 such that

γ+O−(g−)

l,Tα
≤ α

g−
l,T

.(4.15)

The proof of Propositions 4.9 and 4.10 is given in the appendix.

4.5. The Oseen operator with boundary data. We now have to solve the
Oseen equations (4.1)–(4.5). We shall construct the solution as an infinite sum:

u =

∞∑
i=0

u(i) .(4.16)

Each term of the series solves the Oseen equations. The zeroth term u(0) has the
right boundary condition at y = −1:

u(0) = O−(g−) .(4.17)

As the boundary condition for the first term of the series we choose γ+u(1) = g+ −
γ+u(0). Therefore, one has the following expression for u(1):

u(1) = O+
(
g+ − γ+u(0)

)
.(4.18)

In fact this choice will fix the boundary condition at y = +1; on the other end it
generates a boundary datum at y = −1. We define the second term of the series u(2)

so that it cancels this boundary datum at y = −1:

u(2) = O−
(
−γ−u(1)

)
.(4.19)

Recursively we define the generic even and odd term of the series:

u(2m) = O−
(
−γ−u(2m−1)

)
, m > 1 ,(4.20)

u(2m+1) = O+
(
−γ+u(2m)

)
, m > 1 .(4.21)

To prove the convergence of the series we prove the following proposition.

Proposition 4.11. Let g± ∈ H ′l
T with g±|t=0 = 0. Then for any 0 < α < 1

there exists Tα > 0 such that for each u(i) the following estimate holds:

‖u(i)‖l,Tα ≤ cαi−2
(g+


l,T

+
g−

l,T

)
.(4.22)
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Proof. We prove the proposition when i = 2m. The proof is analogous when
i is odd:

u(2m) = O−(−γ−u(2m−1))

= O−(−γ−O+(−γ+u(2m−2)))

= · · ·
= O− (−γ−O+(−γ+O−(−γ−O+(· · · (−γ−O+︸ ︷︷ ︸

2m−2 times

(g+ − γ+O−g−)) . . .)))).

Hence, first using Proposition 4.8, then using Propositions 4.9 and 4.10, one has

‖u(2m)‖l,Tα = ‖O−(−γ−u(2m−1))‖l,Tα

≤ c
γ−u(2m−1)


l,Tα

= c
γ−O+(γ+u(2m−2))


l,Tα

≤ cα
γ+u(2m−2)


l,Tα

≤ · · ·
≤ cα2m−2

(g+

l,T

+
g−

l,T

)
.

Therefore the series (4.16) with u(i) given by (4.17)–(4.21) is convergent, and we
can define the operator Ob, solving Oseen equations with boundary data:

Ob(g−, g+) =

∞∑
i=0

u(i) .(4.23)

The following theorem is the main result of this section.
Theorem 4.12. Let g± = (g±τ , g

±
N ) such that g±

N ∈ H ′l
T and g±|t=0 = 0. Then

there exists Tα, independent of g±, such that the operator Ob, defined by (4.23) with
u(i) given by (4.17)–(4.21), represents the solutions of the Oseen equations (4.1)–(4.5).
Moreover, Ob(g−, g+) ∈ LlTα

and the following estimate holds:

‖Ob(g−, g+)‖l,Tα
≤ c
[g+


l,T

+
g−

l,T

]
.

5. The explicit solution of the Oseen equations. We now solve the Oseen
equations with source term, boundary data, and initial data (1.1)–(1.5). To accom-
plish this task first we introduce the projection operator onto the divergence-free part
of a vector function. We shall write this projection operator so that its normal compo-
nent evaluated at the boundary is identically zero. Then we shall use this projection
operator to project the convection-diffusion operator F0 and F2 to get the operators
Oi and Os. These operators solve the Oseen equation with initial datum and source
term, respectively. On the other hand, they generate wrong boundary data. Finally,
in the last subsection we shall use the operator Ob to cancel the wrong boundary data
and get the representation of the solution of (1.1)–(1.5).

5.1. The projection operator. We introduce the following projection opera-
tor:

P = 1−∇∆−1
N ∇ · .(5.1)

In the above expression with ∆−1
N we have denoted the operator that solves the Poisson

equation with Neumann boundary conditions. We give the explicit expression of this
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projection operator:

Pτ w = wτ +
N ′

sinh (2|ξ′|)
[
γ+wN cosh [|ξ′|(y + 1)]− γ−wN cosh [|ξ′|(y − 1)]

]
− |ξ′|
2 sinh (2|ξ′|)

{∫ y
−1

dy′ [cosh (|ξ′|(y − y′ − 2)) + cosh (|ξ′|(y + y′))]wτ (|ξ′|, y′)

−
∫ y
−1

dy′ [sinh (|ξ′|(y − y′ − 2))− sinh (|ξ′|(y + y′))]N ′wN (|ξ′|, y′)

+

∫ 1

y

dy′ [cosh (|ξ′|(y − y′ + 2)) + cosh (|ξ′|(y + y′))]wτ (|ξ′|, y′)

−
∫ 1

y

dy′ [sinh (|ξ′|(y − y′ + 2))− sinh (|ξ′|(y + y′))]N ′wN (|ξ′|, y′)
}
,

PNw =
1

sinh (2|ξ′|)
{
γ+wN sinh [|ξ′|(y + 1)]− γ−wN sinh [|ξ′|(y − 1)]

}
+

|ξ′|
2 sinh (2|ξ′|)

{∫ y
−1

dy′ [sinh (|ξ′|(y − y′ − 2)) + sinh (|ξ′|(y + y′))] N ′wτ

+

∫ y
−1

dy′ [cosh (|ξ′|(y − y′ − 2))− cosh (|ξ′|(y + y′))] wN

+

∫ 1

y

dy′ [sinh (|ξ′|(y − y′ + 2)) + sinh (|ξ′|(y + y′))] N ′wτ

+

∫ 1

y

dy′ [cosh (|ξ′|(y − y′ + 2))− cosh (|ξ′|(y + y′))] wN

}
.

It is not difficult to see that the following proposition holds.
Proposition 5.1. Let w ∈ LlT . Then Pw ∈ LlT and

‖Pw‖l,T ≤ c ‖w‖l,T .
It is important to notice that, if γ±wN = 0, then the normal component of the

projection operator evaluated at the boundary is identically zero:

if γ±wN = 0, then γ±PNw = 0 .(5.2)

5.2. The projected convection-diffusion operators. We can now introduce
the operators Oi and Os, defined as

Oi = PF0 , Os = PF2 .

Supposing that ∇ · u0 = 0, one therefore has that Oiu0 satisfies(
∂t − ∂Y Y − ε2∂xx

)Oiu0 +∇p = 0,

∇ · Oiu0 = 0,

Oiu0|t=0 = u0 .

On the other hand, Osw satisfies(
∂t − ∂Y Y − ε2∂xx

)Osw +∇p = w,

∇ · Osw = 0,

Osw|t=0 = 0 .
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The following estimates are a consequence of the properties of P , expressed in
Proposition 5.1, and of the properties of F0 and F2, expressed in Propositions 3.1
and 3.4.

Proposition 5.2. Let u0 ∈ Ll. Then Oiu0 ∈ LlT and

‖Oiu0‖l,T ≤ ‖u0‖l .
Proposition 5.3. Let w ∈ LlT . Then Osw ∈ LlT and

‖Osw‖l,T ≤ c ‖w‖l,T .
The normal components of the operators Oi and Os evaluated at the boundary

are zero (because of (5.2)). This readily gives the following estimates on the traces of
Oi and Os.

Proposition 5.4. Let u0 ∈ Ll. Then γ±Oiu0 ∈H ′l
T andγ±Oiu0


l,T
≤ c‖u0‖l .

Proposition 5.5. Let w ∈ LlT . Then γ±Osw ∈H ′l
T andγ±Oswl,T ≤ c‖w‖l,T .

5.3. The solution of the Oseen equations. We can finally introduce the
operator O that solves (1.1)–(1.5):

O(f ,u0, g
−, g+)

= Osf +Oiu0 +Ob(g+ − γ+Osf − γ+Oiu0, g
− − γ−Osf − γ−Oiu0) .(5.3)

Therefore, if one defines

u = O(f ,u0, g
+, g−) ,(5.4)

then one has that u solves the system (1.1)–(1.5).
Remark 5.1. The representation of the solution given by the operator O is valid

only up to the time Tα. In fact the series which defines the operator Ob converges
only up to the time Tα. On the other hand, given that Tα does not depend on the
boundary data, one can take the value of the solution at the time Tα as the initial
datum and solve the corresponding Oseen problem up to the time 2Tα. One can
therefore construct the solution up to the time T . Moreover, we also notice that the
time Tα = O(ν−1). Therefore, in the zero viscosity limit, the representation (5.4) is
valid for an arbitrarily long time. The following theorem holds.

Theorem 5.6. Suppose f ∈ LlT , u0 ∈ Ll, and g± ∈H ′l
T . Suppose the following

compatibility conditions are verified:

∇ · u0 = 0 ,(5.5)

and

g±|t=0 = γ±u0 .(5.6)

Then the solution of the Oseen equations (1.1)–(1.5) is represented, for a time Tα, by
(5.4). Moreover, the following estimate holds:

‖O(f ,u0, g
−, g+)‖l,T ≤ c

[
‖f‖l,T + ‖u0‖l +

g+

l,T

+
g−

l,T

]
.



404 MARIA CARMELA LOMBARDO AND MARCO SAMMARTINO

The proof of this theorem is a consequence of Propositions 5.2, 5.3, 5.4, and 5.5
and Theorem 4.12.

We finally give a proposition which will be useful in the solution of the error
equation, given in the next section. It says that if the forcing term in (1.1) is of the
same order of the square root of the viscosity, then one can use the heat kernel to
increase the regularity of the solution.

Proposition 5.7. Suppose f =
√
νh with h ∈ Ll−1

T , g± ∈ H ′l
T , and u0 ∈

L′l. Suppose that the compatibility conditions (5.5) and (5.6) are satisfied. Then
Os(f , g−, g+) ∈ LlT , and the following estimate holds:

‖O(f ,u0, g
+, g−)‖l,T ≤ c

[
‖h‖l−1,T + ‖u0‖l +

g+

l,T

+
g−

l,T

]
.

The proof of this proposition can be easily achieved using the analogous estimate
for the operator F2 given in Proposition 3.5, and the estimates for P , Os, Oi, and Ob,
given in Propositions 5.1, 5.2, 5.3, 5.4, and 5.5 and Theorem 4.12.

6. The asymptotic analysis. We are now ready to introduce the boundary
layer analysis for the Oseen equations (1.1)–(1.5). For simplicity we shall suppose
that the source term is not present. In a remark at the end of section 6.1 we shall
sketch the procedure that allows us to handle a source term.

We shall impose the initial condition u0 ∈ H l and show that the solution is the
sum of an inviscid (Euler) part, two boundary layers ( Prandtl) parts exponentially
decaying outside a region of size ε =

√
ν close to the two boundaries y = −1 and

y = +1, and a correction term.
We seek a solution of the form

u = uE + uP + εwτ ,(6.1)

v = vE + εvP + εwN ,(6.2)

p = pE + εpw ,(6.3)

where (uE , vE) represents the inviscid solution, (uP , εvP ) represents the Prandtl part
which describes the behavior of the fluid in the boundary layers close to y = ±1, and
(wτ , wN ) is the correction term. They solve the following equations.

1. The convective equations

(∂t + U∂x)u
E +∇pE = 0,(6.4)

∇ · uE = 0,(6.5)

γ−vE = g−N ,(6.6)

γ+vE = g+
N ,(6.7)

uE(t = 0) = u0 .(6.8)

2. The boundary layer equations

(∂t − ε2∆+ U∂x)u
P = 0,(6.9)

∂xu
P + ∂Y v

P = 0,(6.10)

γ−uP = g−τ − γ−uE ,(6.11)

γ+uP = g+
τ − γ+uE ,(6.12)

uP (t = 0) = 0 .(6.13)
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3. The correction equations

(∂t − ε2∆+ U∂x)w +∇pw = ε∆uE ,(6.14)

∇ ·w = 0,(6.15)

γ−w = (0, −γ−vP ),(6.16)

γ+w = (0, −γ+vP ),(6.17)

w(t = 0) = 0 .(6.18)

We require to hold the compatibility conditions between the boundary and the initial
data:

γ±v0 = g±N (x, t = 0),(6.19)

g±τ (t = 0) = −γ±u0.(6.20)

We require to hold the incompressibility condition for the initial data:

∇ · u0 = 0.(6.21)

Moreover, the incompressibility condition requires that∫ ∞

−∞
(g+
N − g−N ) dx = 0.

Notice the absence of the pressure term in (6.9)–(6.13). This is due to the introduction
of a boundary layer corrector which differs from the usual Prandtl velocity for the
value of the Euler velocity at the boundary. Namely, ũP = uP − γuE . Then, using
the Euler equation at the boundary, one gets (6.9). For more details, see [2].

We now solve the above equations.

6.1. The Euler equations. One can see that the solution of (6.4)–(6.8) is

vE = LN
(
g+
N − vE0 (x− Ut, 1), g−N − vE0 (x− Ut,−1)

)
+ v0(x− Ut, y),(6.22)

uE = Lτ
(
g+
N − vE0 (x− Ut, 1), g−N − vE0 (x− Ut,−1)

)
+ u0(x− Ut, y),(6.23)

where the operator L was introduced in section 4.2. We now give an estimate on the
above solution.

Proposition 6.1. Let g ∈ H ′l
T . Moreover, let u0 ∈ H l satisfy the compatibility

conditions (6.19) and (6.20) and the incompressibility condition (6.21). Then uE ∈
H lT and the following estimate holds:

|uE |l,T ≤ c(
g−

l,T
+
g+


l,T

+ |u0|l).

The proof is based on Proposition 4.4.
Remark 6.1. If a source term f is present in (6.4) one can solve the inviscid

equation using the integrated (with respect to time) projection operator onto the
divergence-free part.
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6.2. The Prandtl equations. Equations (6.9) and the boundary conditions
(6.11) and (6.12) and the initial condition (6.13) are convection-diffusion equations
with boundary data and zero initial datum and no source. We have already solved
these equations through the operator F1 introduced in section 3. The solution is,
therefore,

uP = F1(g
+
τ − γ+uE , g−τ − γ−uE) .(6.24)

The normal component can be found using the incompressibility condition (6.10):

vP =

∫ 0

Y

dY ′∂xuP .(6.25)

Therefore, we conclude with the following proposition.
Proposition 6.2. Let g± ∈ H ′l

T satisfy the compatibility conditions (6.19)–

(6.20) and the incompressibility condition (6.21). Then uP ∈ Kl,µT , vP ∈ Kl−1,µ
T , and

the following estimates hold:

|uP |l,µ,T ≤ c
(g−

l,T
+
g+


l,T

+ |u0|l
)
,

|vP |l−1,µ,T ≤ c
(g−

l,T
+
g+


l,T

+ |u0|l
)
.

6.3. The error equation. Let us now consider the correction term w satisfying
(6.14)–(6.18).

One can see that (6.14)–(6.18) are of the same form as (1.1)–(1.5), namely, they
are the Oseen equations with source term and boundary and initial data satisfying
the hypotheses of Proposition 5.7. In fact the source term in (6.14) is ε∆eiξUtu0,
which is of the form εh with h ∈ H l−2

T . Moreover, the boundary data −γ±vP are of
the form

−γ±vP = ∂xβ
± = −|ξ|N ′β±, where β± =

∫ ±1/ε

0

dY ′ uP (±) ∈ H ′l
T .

Therefore, γ±w ∈H ′l−1
T .

Hence the solution has the form given by (5.4) and we can give the estimate on
the error w.

Proposition 6.3. Let us suppose that g± ∈ H ′l
T and u0 ∈ H l, satisfying the

compatibility conditions (6.19)–(6.20) and the incompressibility condition (6.21). Then
the solution of (6.14)–(6.18) w ∈ Ll−1

T , and the following estimate hold:

‖w‖l−1,T ≤ c
[g+


l,T

+
g−

l,T
+ |u0|l

]
.

The above estimate is not enough to get the convergence of the solution of the
Oseen equations to uE+uP in a space where first derivatives are considered. A more
refined analysis of the structure of the error is needed.

6.4. The structure of the error. We divide the error in the following way:

w = wE +wBL + εe.(6.26)

The Eulerian part of the error wE satisfies convective equations, of the type
(6.4)–(6.8), with ε∆uE as source term and with prescribed normal boundary data
−γ±vP .
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The boundary layer part of the error wBL satisfies the boundary layer equations,
of the type (6.9)–(6.13), with prescribed tangential component −γ±wE .

Finally the overall correction e satisfies the correction equations, of the type
(6.14)–(6.18), with zero source term and with prescribed boundary data (0,−γ±wBLN ),
where with wBLN we have denoted the normal component of wBL.

One can therefore state the following proposition.
Proposition 6.4. Suppose the hypotheses of Proposition 6.3 hold true. Then

the correction w admits a decomposition of the form (6.26) with wE ∈ H l−1
T , wBLτ ∈

Kl−1,µ
T , wBLN ∈ Kl−2,µ

T , e ∈ Ll−2
T , and the following estimate holds:

|wE |l−1,T + |wBLτ |l−1,µ,T + |wBLN |l−2,µ,T +‖e‖l−2,T ≤ c
(g+


l,T

+
g−

l,T
+ |u0|l

)
.

(6.27)

6.5. The main results. We can summarize the results of this section in the
following theorem which is the main result of this paper.

Theorem 6.5. Let g± ∈ H ′l
T and u0 ∈ H l satisfy the compatibility conditions

(6.19)–(6.20) and the incompressibility condition (6.21). Then the solution of Oseen
equations (1.1)–(1.5) can be written in the form

u = uE + uP + εw ,(6.28)

where uE satisfies (6.4)–(6.8), uP satisfies (6.9)–(6.13), and w satisfies (6.14)–(6.18).

Moreover, uE ∈ H lT , u
P ∈ Kl,µT , vP ∈ Kl−1,µ

T , and w ∈ Ll−1
T . Moreover, the

correction can be decomposed as

w = wE +wBL + εe(6.29)

with wE ∈ H l−1
T , wBLτ ∈ Kl−1,µ

T , wBLN ∈ Kl−2,µ
T , and e ∈ Ll−2

T . The following
estimates hold:

|uE |l,T ≤ c
(g+


l,T

+
g−

l,T
+ |u0|l

)
,

|uP |l,µ,T ≤ c
(g+


l,T

+
g−

l,T
+ |u0|l

)
,

|vP |l−1,µ,T ≤ c
(g+


l,T

+
g−

l,T
+ |u0|l

)
,

|wE |l−1,T ≤ c
(g+


l,T

+
g−

l,T
+ |u0|l

)
,

|wBLτ |l−1,µ,T ≤ c
(g+


l,T

+
g−

l,T
+ |u0|l

)
,

|wBLN |l−2,µ,T ≤ c
(g+


l,T

+
g−

l,T
+ |u0|l

)
,

‖e‖l−2,T ≤ c
(g+


l,T

+
g−

l,T
+ |u0|l

)
.

From the above theorem the following estimate on the convergence of the Oseen
equation to uE + uP easily follows.

Corollary 6.1. Let u0 ∈ H4 and g± ∈ L∞([0, T ], H4) satisfy the compatibility
conditions (6.19)–(6.20) and the incompressibility condition (6.21). Moreover, sup-
pose that the inflows at the boundaries g±N are such that |ξ|−1g±N ∈ L∞ ([0, T ], L2

)
.

If u, uE, and uP denote the solutions of (1.1)–(1.5), (6.4)–(6.8), and (6.9)–(6.13),
respectively, then one has the following estimate:

‖u−(uE+uP )‖L∞([0,T ],H2) ≤ cε1/2
[‖u0‖H4 + ‖g+‖L∞([0,T ],H4) + ‖g−‖L∞([0,T ],H4)

]
.

(6.30)
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The factor ε1/2 comes from the fact that the correction w also has a boundary
layer structure, i.e., its derivative with respect to y is O(ε−1) in a region of size
O(ε1/2).

Remark 6.2. With minor formal modifications in the definitions of the function
spaces H l given in section 2, which allow l to be equal to 1, Corollary 6.1 could be
stated for initial data belonging to H3.

Appendix.

Proof of Lemma 4.2. Let us consider first the L2 norm.

sup
0≤t≤T

‖γ−U+F1(g
+
τ , 0)‖2L2(ξ′)

= sup
0≤t≤T

∥∥∥∥∥∥
∫ 1

−1

dy′e−|ξ′|(1+y′)
∫ t

0

ds e−[νξ′
2
+iξ′U ](t−s)

∞∑
n=−∞

y′ − 1− 4n

(t− s)
e−

(y′−1−4n)2

4ν(t−s)√
4πν(t− s)g

+
τ (ξ

′, s)

∥∥∥∥∥∥
2

L2(ξ′)

≤ sup
0≤t≤T

∥∥∥∥∥∥∥∥
∫ t

0

dsg+
τ

∞∑
n=0

e−|ξ′|(4n+2)

∫ 1

−1

dy′
y′ − 1− 4n

(t− s)
e
−
[

y′−1−4n√
4ν(t−s)

+
√
ν|ξ′|(t−s)1/2

]2
√
4πν(t− s)

∥∥∥∥∥∥∥∥

2

+ sup
0≤t≤T

∥∥∥∥∥∥∥∥
∫ t

0

ds g+
τ

−1∑
n=−∞

∫ 1

−1

dy′e|ξ
′|(−2y′+4n) y

′ − 1− 4n

(t− s)
e
−
[

y′−1−4n√
4ν(t−s)

−√
ν|ξ′|(t−s)1/2

]2
√
4πν(t− s)

∥∥∥∥∥∥∥∥

2

≤ sup
0≤t≤T

∥∥∥∥∥∥∥∥
∫ t

0

dsg+
τ

∞∑
n=0

e−|ξ′|(4n+2)

∫ 1

−1

dy′2
√
ν
d

dy′
e
−
[

y′−1−4n√
4ν(t−s)

+
√
ν|ξ′|(t−s)1/2

]2
√
4π(t− s)

∥∥∥∥∥∥∥∥

2

+ sup
0≤t≤T

∥∥∥∥∥∥∥∥
∫ t

0

dsg+
τ

∞∑
n=0

e−|ξ′|(4n+2)

∫ 1

−1

dy′ 2
√
ν|ξ′|e

−
[

y′−1−4n√
4ν(t−s)

+
√
ν|ξ′|(t−s)1/2

]2
√
4π(t− s)

∥∥∥∥∥∥∥∥

2

+ sup
0≤t≤T

∥∥∥∥∥∥∥∥
∫ t

0

dsg+
τ

−1∑
n=−∞

∫ 1

−1

dy′e|ξ
′|(−2y′+4n)2

√
ν
d

dy′
e
−
[

y′−1−4n√
4ν(t−s)

−√
ν|ξ′|(t−s)1/2

]2
√
4π(t− s)

∥∥∥∥∥∥∥∥

2

+ sup
0≤t≤T

∥∥∥∥∥∥∥∥
∫ t

0

dsg+
τ

−1∑
n=−∞

∫ 1

−1

dy′e|ξ
′|(−2y′+4n)2

√
ν|ξ′|e

−
[

y′−1−4n√
4ν(t−s)

−√
ν|ξ′|(t−s)1/2

]2
√
4π(t− s)

∥∥∥∥∥∥∥∥

2

= I1 + I2 + I3 + I4 .

We now consider the four terms separately. We begin from I1:

I1 = sup
0≤t≤T

∥∥∥∥∥
∫ t

0

ds g+
τ

√
ν

∞∑
n=0

e−|ξ′|(4n+2)
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×


e

−
[

4n√
4ν(t−s)

−√
ν|ξ′|(t−s)1/2

]2
√
π(t− s) − e

−
[

4n+2√
4ν(t−s)

−√
ν|ξ′|(t−s)1/2

]2
√
π(t− s)



∥∥∥∥∥∥∥∥

2

≤ sup
0≤t≤T

∥∥∥∥∥∥∥∥
∫ t

0

ds g+
τ 2
√
ν

∞∑
n=0

e−|ξ′|(4n+2) e
−
[

4n√
4ν(t−s)

−√
ν|ξ′|(t−s)1/2

]2
√
π(t− s)

∥∥∥∥∥∥∥∥

2

≤ sup
0≤t≤T

∥∥∥∥∥∥
∫ t

0

ds 2
√
ν e−ν|ξ

′2 |(t−s) e−2|ξ|g+
τ

∞∑
n=0

e−
(4n)2

4ν(t−s)√
π(t− s)

∥∥∥∥∥∥
2

≤ sup
0≤t≤T

∥∥∥∥∥
∫ t

0

ds4
√
ν

1√
π(t− s)g

+
τ

∥∥∥∥∥
2

≤ 16νT

π
sup

0≤t≤T
‖g+
τ ‖2.

The estimate of the terms with the derivatives with respect to x and t is the same.
Let us now pass to I2. Introducing the variable η = (y′ − 1 − 4n)/

√
4ν(t− s)+√

ν|ξ|(t− s)1/2, we get

I2

= sup
0≤t≤T

1

π

∥∥∥∥∥∥
∫ t

0

ds g+
τ (ξ

′, s) 4ν|ξ′|
∞∑
n=0

e−|ξ′|(4n+2)

∫ −4n√
4ν(t−s)

+
√
ν|ξ′|(t−s)1/2

−4n−2√
4ν(t−s)

+
√
ν|ξ′|(t−s)1/2

dη e−η
2

∥∥∥∥∥∥
2

≤ sup
0≤t≤T

∥∥∥∥∥∥
∫ t

0

ds g+
τ 8ν|ξ′|


e−2|ξ| 1

2
Tν|ξ|+

∑
n> 1

2Tν|ξ|
e−|ξ′|(4n+2)e

−
[

4n√
4ν(t−s)

−√
ν|ξ′|(t−s)1/2

]

∥∥∥∥∥∥

2

≤ (16ν4 T 4 + 4ν2T 2
)

sup
0≤t≤T

∥∥g+
τ (ξ

′, s)
∥∥2 .

The estimate of I3 is analogous to the estimate of I1, while the estimate of I4 is
analogous to the estimate of I2. From the above estimates it is apparent that, choosing
Tα small enough, one can make ‖γ−U+F1(g

+
τ , 0)‖l.Tα < α|g+

τ |l,T with α < 1.

Remark A.1. It is interesting to notice that, in the zero viscosity limit, the time
Tα up to which the above estimate is valid grows to infinity: Tα ∼ ν−1.

Proof of Proposition 4.9. The trace at y = −1 of the operator O+ is made of three
terms: (1) the trace γ− of Lτ (·, 0), which is estimated in Lemma 4.5; (2) the trace
γ− of U+F1(·, 0), which is estimated in Lemma 4.2; (3) the trace γ− of the operator
F1(·, 0), which can be estimated as follows:

sup
0≤t≤T

∥∥γ−F1(f
+
τ , 0)

∥∥2
L2(ξ′)

= sup
0≤t≤T

∥∥∥∥∥∥
∫ t

0

ds e−[νξ′
2
+iξ′U ](t−s)

∞∑
n=−∞

2 + 4n

ε(t− s)
e−

(2+4n)2

4ν(t−s)√
4π(t− s) g

+
τ (ξ

′, s)

∥∥∥∥∥∥
2

L2(ξ′)
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≤ 4

π
sup

0≤t≤T

∥∥∥∥∥∥
∫ t

0

ds e−νξ
′2 (t−s)

∞∑
n=0

1 + 2n

ε(t− s)
e−

(1+2n)2

ν(t−s)√
(t− s) g

+
τ (ξ

′, s)

∥∥∥∥∥∥
2

L2(ξ′)

≤ ν

π
sup

0≤t≤T

∥∥∥∥∥
∫ t

0

ds
e−νξ

′2 (t−s)

(t− s)1/2 g+
τ (ξ

′, s)
∫ ∞

0

dη η e−η
2

∥∥∥∥∥
2

L2(ξ′)

≤ ν T

π
sup

0≤t≤T

∥∥ g+
τ

∥∥2
L2(ξ′) .

As far as the term sup0≤t≤T ‖γ−U+|ξ′|F1(f
+
τ − γ+Lτ (f+

N , 0), 0)‖2L2(ξ′) is concerned,
the estimate is analogous to the one given in the proof of Lemma 4.2. The only

things one has to use are the fact that
√
ν(t− s)|ξ′|e−νξ′2(t−s) is bounded and the

regularizing property of the integration with respect to time of the factor 1√
t−s . The

estimate in (4.14) is thus achieved.
Proof of Proposition 4.10. The proof of Proposition 4.10 is analogous to the proof

of Proposition 4.9.

Acknowledgments. The authors thank Professor Giga and an anonymous ref-
eree for the useful comments that helped to improve the paper and the presentation
of the results.
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L1 STABILITY FOR SYSTEMS OF CONSERVATION LAWS WITH A
NONRESONANT MOVING SOURCE∗
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Abstract. In this paper, we study L1 stability for systems of conservation laws with a moving
source ut + f(u)x = g(x− ct, u). The source is assumed to be nonresonant in that its speed c is
different from the characteristic speeds of the system. We show that weak solutions are globally L1

stable. Based on the modified Glimm scheme, we construct a robust nonlinear functional H(t) =
H[u(·, t), v(·, t)] which is equivalent to the L1 distance of two solutions u, v and is nonincreasing
in time t. This functional H[u, v] consists of a linear part L[u, v] measuring the L1 distance, a
quadratic part Qd[u, v] measuring nonlinear couplings between waves of different characteristic fields,
a generalized entropy functional E[u, v] capturing the nonlinearity of characteristic fields, and a new
functional Qso[u, v] measuring the source effect on the L1 distance.

Key words. conservation laws, L1 stability, nonlinear functional

AMS subject classifications. 35L65, 35L45

PII. S0036141000373045

1. Introduction. The purpose of this paper is to establish the L1 stability of
the initial value problem for systems of hyperbolic conservation laws with a moving
source:

ut + f(u)x = g(x− ct, u), (x, t) ∈ R×R+,
(1.1)

u(x, 0) = u0(x), x ∈ R,

where u ∈ N ⊂ Rn, f : N → Rn, and g : R × N → Rn denote the conserved
quantities, the C2 flux function, and the source, respectively. This system is assumed
to be strictly hyperbolic. It is well known [15] that in general the system (1.1) does
not admit classical solutions even for smooth initial data because of the nonlinearity
of the flux function. Therefore, one needs to consider weak solutions.

Definition 1.1. A bounded measurable function u(x, t) is a weak solution of
(1.1) with given initial data u0(x) if and only if for φ ∈ C1

c (R×R+),∫ ∞

0

∫ ∞

−∞
[uφt + f(u)φx + g(x− ct, u)φ](x, t)dxdt+

∫ ∞

−∞
u0(x)φ(x, 0)dx = 0.

Several physical situations can be modeled as systems of hyperbolic conserva-
tion laws with a source such as a nozzle flow [7], [17], [19], [20], [21] and a moving
magnetic field for magneto-hydrodynamics (MHD) [12]. As a prototype for systems
of hyperbolic conservation laws with a source, we consider a quasi–one-dimensional
nozzle flow model:

∂ρ

∂t
+

∂(ρu)

∂x
= −A′(x)

A(x)
(ρu), (x, t) ∈ R×R+,

∂(ρu)

∂t
+

∂(ρu2 + P )

∂x
= −A′(x)

A(x)
(ρu2),

∗Received by the editors May 24, 2000; accepted for publication (in revised form) February 28,
2001; published electronically July 19, 2001.
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∂(ρE)

∂t
+

∂(ρuE + Pu)

∂x
= −A′(x)

A(x)
(ρuE + Pu),

P = P (e, ρ),

where A(x) is the cross sectional area of a nozzle, ρ the density, u the velocity, P

the pressure, e the internal energy, and E = e + u2

2 the total energy of a gas. The
existence theory of a global weak solution for the system (1.1) was first established in
[19] based on the modified Glimm scheme and the wave tracing method, and recently
the global existence of weak solutions for L∞ initial data was proved by using the
compensated compactness in [7]. The basic idea for the construction of approximate
solutions is to alternately use the Riemann solutions for a corresponding homogeneous
system (g(x, u) = 0) and solutions traveling with a speed c. So far, most stability
analyses for (1.1) have been carried out in bounded variation context [17], [19], [20],
[21]. On the other hand, L1 stability has been studied for scalar conservation laws
[13], [14], [25].

Recently, there was a breakthrough for L1 stability for systems of homogeneous
conservation laws. So far, there are two different approaches. Bressan’s approach
is based on comparison and homotopy of two infinitesimally close solutions [2], [3],
[4], [5]. In contrast, Liu and Yang’s approach uses a robust nonlinear functional [23],
[24]. In this paper, we adopt the latter approach which is based on the construction
of a robust nonlinear functional H[u, v] equivalent to the L1 distance of u and v and
nonincreasing in time. Without loss of generality, we may assume that the source has
speed c = 0, i.e.,

ut + f(u)x = g(x, u).

As shown in [19], the stability of the Glimm solutions for (1.1) is subject to the
following three essential mechanisms:

1. the genuine nonlinearity;
2. the nonresonance between hyperbolic waves and stationary waves;
3. the localization of the source in x, i.e., suppx{g(x, u)} is compact.

Because of the above three mechanisms, hyperbolic waves are subsonic or supersonic;
therefore, eventually, they will be away from the support of source. So they will be
stabilized as hyperbolic waves for homogeneous systems. For the resonance case,1 the
interaction between hyperbolic waves and stationary waves will be quite complicated.
In this case, the geometry of a nozzle is very important, as is shown for (1.1) with
respect to special data [17], [20] and for a scalar model with respect to general data
[21].

Based on the above three main mechanisms, we impose the following conditions
on (1.1).

Main assumptions.

1. The system (1.1) is strictly hyperbolic.
Let λi(u), (i ∈ {1, . . . , n}) be distinct real eigenvalues of f ′(u) and let ri(u) (li(u))
be corresponding right (left) eigenvectors of f ′(u), i.e.,

f ′(u)ri(u) = λi(u)ri(u), λ1(u) < · · · < λn(u),
li(u)f

′(u) = λi(u)li(u), li · rj = δij .

1One of the characteristic speeds is close to that of the source.
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2. The source is not resonant with the conservation laws, that is,
there exists j0 ∈ {1, . . . , n− 1} such that

λ1(u) < · · · < λj0(u) < 0 < λj0+1(u) < · · · < λn(u) for all u ∈ N .

3. Each characteristic field (λj(u), rj(u)) is either genuinely nonlinear (g.n.l.) or
linearly degenerate (l.d.g.) in the sense of [15]:

(λj(u), rj(u)) is g.n.l. ⇐⇒ ∇λj(u) · rj(u) = 0 for all u ∈ N ,

(λj(u), rj(u)) is l.d.g. ⇐⇒ ∇λj(u) · rj(u) ≡ 0.

4. The total variation of initial data u0(x) is sufficiently small,

T.Vx(u0(x)) ≤ T.V << 1,

for a positive constant T.V depending only on (1.1).
5. g(x, p) is piecewise differentiable in x and continuously differentiable in p, and

has compact support in x, and is sufficiently weak:

g(x, p) ≡ 0, x ∈ [0, 1] and g(x, p) = 0, x ∈ (0, 1),

G(x) ≡ sup
p∈N

{
|g(x, p)|+

∥∥∥∥∂g(x, p)∂p

∥∥∥∥
}
, G1 ≡ ‖G(·)‖L1(R),

G0 ≡ ‖G(·)‖L∞(R), G0 +G1 << 1.

For (1.1) without a smallness assumption on the source, local L1 stability in
time was studied in [9], and when the source g(x, u) depends only on u, under the
dissipation condition on the source, L1 stability was studied in [1]. The main theorem
of this paper is as follows.

Theorem 1.2. Let u(x, t) and v(x, t) be two weak solutions obtained by the
Glimm scheme corresponding to initial data u0 and v0, respectively. Then under the
main assumptions, we have

||u(·, t)− v(·, t)||L1(R) ≤ C||u0(·)− v0(·)||L1(R), t ≥ 0,

where C is a generic constant which is independent of t.
The paper is organized as follows. In section 2, we review the basic theory of

hyperbolic conservation laws and in section 3, we briefly discuss the simplified wave
patterns [24] on which a nonlinear functional will be explicitly defined. In section 4,
we study scalar conservation laws with a moving source. This section illustrates the
necessity of a new functional which takes care of a source effect on the L1 distance
and treats an entropy functional. In section 5, we construct a nonlinear functional
which contains a new functional measuring a source effect on the L1distance and by
using this functional, we prove L1 stability for Glimm solutions.

2. Preliminaries. In this section, we review some of the basics for systems of
hyperbolic conservation laws,

ut + f(u)x = 0, (x, t) ∈ R×R+,
(2.1)

u(x, 0) = u0(x), x ∈ R.

The Riemann problem for (2.1) is the initial value problem with simple jump initial
data

u(x, 0) =

{
ul, x < 0,
ur, x > 0.
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It is well known [15] that the Riemann solution is a function of x
t and consists of n+1

intermediate constant states {ul = u0, u1, u2, . . . , un = ur} which are connected by
shock waves, rarefaction waves, or contact discontinuities.

In the following, we define an ith rarefaction curve Ri(u0) and an ith shock curve
Hi(u0).

Ri(u0) ≡ the integral curve of a vector field ri · ∇u passing through u0,

Hi(u0) ≡ {u ∈ Rn : λi(u0, u)(u− u0) = f(u)− f(u0), for some scalar λi(u0, u)}.

For a l.d.g. characteristic field (λi(u), ri(u)), it is well known [15] that Hi(u0) =
Ri(u0). We parameterize these curves by the arc length ξ and we divide the ith shock
curve Hi(u0) and the ith rarefaction curve Ri(u0) as follows:

H+
i (u0) ≡ {u ∈ Hi(u0) : λi(u) > λ(u0, u) > λi(u0)},

H−
i (u0) ≡ {u ∈ Hi(u0) : λi(u) < λ(u0, u) < λi(u0)},

R+
i (u0) ≡ {u ∈ Ri(u0) : λi(u) > λi(u0)},

R−
i (u0) ≡ {u ∈ Ri(u0) : λi(u) < λi(u0)};

moreover, we define an ith wave curve as follows:

Wi(u0) ≡
{

H−
i (u0) ∪R+

i (u0) if ith characteristic field is g.n.l.,
Hi(u0) = Ri(u0) if ith characteristic field is l.d.g.

Then by the second order contact of the ith shock curve and the ith rarefaction curve
at u0, the ith wave curve Wi(u0) is a C2-curve [15].

Theorem 2.1 (see [15]). Suppose that (2.1) is strictly hyperbolic and each
characteristic field is g.n.l. or l.d.g. If ul and ur are sufficiently close, then the
Riemann problem for (2.1) has a unique solution in the class of elementary waves
(ui−1, ui), ui ∈Wi(ui−1), i = 1, 2, . . . , n, u0 = ul, un = ur.

For any i-wave αi = (ui−1, ui), a signed strength [αi] is defined as follows:

[αi] ≡ µi(ui)− µi(ui−1),

where µi is any nonsingular parameter along the ith wave curve Wi(u0) such that
a shock wave has negative signed strength, whereas a rarefaction wave has positive
signed strength. Approximate solutions for (1.1) are constructed by Riemann solu-
tions for the corresponding homogeneous system and local steady solutions of (1.1)
as building blocks [10], [18], [19]. For the details, we refer to [19].

Definition 2.2. Let {aj}∞0 be a sequence in (0, 1).

{aj}∞0 is equidistributed or (uniformly distributed) ⇐⇒ lim
N→∞

B(aj , N, I)

N
= |I|,

where B(aj , N, I) = |{j : aj ∈ I, 0 ≤ j ≤ N}|, for any subinterval I of (0, 1) and |I|
denotes the length of the interval.

Definition 2.3. Let αi and βj be two i, j waves, respectively, such that αi is
located to the left of βj.

αi and βj are approaching if and only if i > j or i = j and at least one of them
is a shock.

For later use, we state the approximate Rankine–Hugoniot condition for the ap-
proximate solutions.
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Theorem 2.4 (see [19]). Let (ul, ur) be a shock wave issued from (hr, ks) in
the construction of approximate solutions and let ul(x, t) and ur(x, t) be two steady
solutions with initial data ul and ur, respectively, along the

x−hr
t−ks = λ(ul, ur), ks <

t < (k + 1)s. Then

λ(ul, ur)(ur(x, t)− ul(x, t)) = f(ur(x, t))− f(ul(x, t)) +O(1)
(∫ x

hr

G(ξ)dξ

)
|ur − ul|.

3. Known results. In this section, we study simplified wave patterns which
will be used for the construction of a nonlinear functional H(t) in section 5. These
simplified wave patterns are a sort of generalization of those in [24], and we review
the modified Glimm functional in [19].

3.1. Simplified wave patterns. Unlike linear waves, nonlinear waves change
their strengths and speeds due to interactions and cancellations. The wave tracing is
a book-keeping scheme of subdividing elementary waves in the approximate solution
ur(x, t) so that the evolution of each subwave can be studied more definitely. After
partitioning the waves in the approximate solutions [18], [19], we replace ur(x, t) by
a simplified wave pattern ūr(x, t) consisting of nonlinear waves with deterministic
speeds in each small time zone. Let us set

time zone Λ(t1, t2) ≡ {(x, t) : −∞ < x <∞, t1 ≤ t < t2},
interaction measure Q(t1, t2) ≡

∑
∆mn∈Λ(t1,t2)

Q(∆mn),

cancellation measure C(t1, t2) ≡
∑

∆mn∈Λ(t1,t2)

C(∆mn),

where a local interaction measure Q(∆mn) and a cancellation measure C(∆mn) are
defined as follows. Let ∆mn be a diamond whose vertices are ((m−1)r+ajr, ns), (mr+
ajr, ns), (mr, (n+ 1

2 )s), and (mr, (n− 1
2 )s).

Q(∆mn) ≡
∑

(αi,βj):app

{|αi||βj | : αi and βj pass through ∆mn},

C(∆mn) ≡
∑

(αi,βj):app

{ |αi|+ |βi| − |αi + βj |
2

: αi and βi pass through ∆mn

}
,

where (αi, βj) : opp denotes the approaching pair (αi, βj) defined in Definition 2.3.
Without confusion, (ui−1, ui) denotes the i-wave or sometimes the difference of its
end states. For the details and the motivation for the wave partition and tracing, we
refer to [18], [19], [24]. The waves in ur(x, t), (x, t) ∈ Λ(t1, t2) consist of two different
types of past history, i.e., the primitive waves issued from t = t1 or waves which
are generated by nonlinear interactions. Moreover, the waves also have two different
futures (surviving in the future or cancelled in the future). Therefore, by refining
waves in the approximate solutions in each small time zone, we can make waves into
subwaves which will completely survive or be cancelled completely in the time zone
Λ(t1, t2) so that we can study the evolution of its subwaves definitely.

Let {aj}∞0 be an equidistributed sequence. Let ε be small and T be given; then
let us set N = 1

ε , and let us choose M such that

(N − 1)Ms < T ≤ NMs.
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Without loss of generality, we may assume that N and M are integers; then it is easy
to see that for a fixed N , as s→ 0+,

M →∞, Ms ≤ Tε

1− ε
, NMs ≤ T

1− ε
.

We divide the interval (0, 1) into N equal subintervals with length ε. Let {Ii}2N

1 be
the power set of such subintervals. Let us set

δ = sup
1≤p≤N,1≤i≤2N

{
B(am+(p−1)M ,M, Ii)

M
− |Ii|

}
,

where |Ii| denotes the Lebesgue measure of Ii. Then by the equidistributedness of
{aj},

lim
M→∞

δ = 0 for any ε.

We partition the elementary waves in an approximate solution ur(x, t) into subwaves
so that a rarefaction wave consists of rarefaction shocks whose maximal strength is ε
[6], [18], [19], [23], [24]. In what follows, let us set

Λp ≡ Λ((p− 1)Ms, pMs), p = 1, . . . , N.

Based on the partitioned approximate solutions, we define a simplified wave pat-
tern which consists of surviving nonlinear waves with fixed speeds in each small time
zone Λp. This simplified wave pattern is a generalization of that in [24]. In [24],
the simplified wave pattern consists of piecewise constant states, whereas our simpli-
fied wave pattern consists of piecewise stationary solutions. The construction of our
simplified wave patterns is reviewed below.

Since ur(x, t) is of bounded variation, for a given small number ε, we can find
E such that T.V {ur(x, t) : |x| > E} < ε. Next, we replace the ur(x, t) on x < −E
or x > E by the values limx→−∞ u(x, t) or limx→∞ u(x, t), respectively. Hence we
have a finite number of surviving waves on [−E,E]. Let us denote surviving i-waves
by v1

i , . . . , v
N
i . For each i-wave vki , the location of it which is randomly determined

by the sequence {aj} is now replaced by the line connecting its locations at time
t = (p − 1)Ms+ and t = pMs−. Let us denote its speed by λ∗(vki ). As with the
approximate solutions, the waves are connected to each other by stationary waves.
Then it is noted that no i-waves do not cross each other in Λp. With regard to the
secondary waves such as nonsurviving waves in ur(x, t) and generated waves from the
nonlinear interactions in Λp, we do not keep track of them inside Λp. This generates
an error in the L1-norm which vanishes eventually, but in the beginning of the next
time zone Λp+1, we consider those secondary waves. Therefore, the waves in the
simplified wave pattern ūr(x, t) move in a deterministic way, but their end states
evolve according to the stationary solution.

As a generalization of Theorem 5.3 in [24], we have the following theorem.
Theorem 3.1 (see [24]). There exists a simplified wave pattern ūr(x, t) consisting

of a finite number of nonlinear waves {ᾱ} in each time zone Λp and a large constant
E such that the following hold.

There exists a one-to-one correspondence α → ᾱ between the surviving waves in
|x| < E and K = {ᾱ} such that

1.
∑

α |α− ᾱ| = O(1){(Q0 +Q1 + C)(Λp) + ε},
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2.
∑

α |α||λ(α)− λ∗(ᾱ)| = O(1){(Q0 +Q1 + C)(Λp) + δ + ε},
3.
∑{|α| : α is a secondary wave } = O(1)(Q0 +Q1 + C)(Λp),

4. ūr(x, (p− 1)Ms)− ur(x, (p− 1)Ms) = 0 for |x| < E,
5.
∫
|x|>E |ūr(x, (p − 1)Ms) − ur(x, (p − 1)Ms)|dx +

∑{|α| : α ∈ ur(x, (p −
1)Ms), |x| > E} < (T.V +G1)ε.

3.2. The modified Glimm functional. Let ur(x, t) be a given approximate
Glimm solution [19]. For such ur(x, t), we define the modified Glimm functional
F (ur : t) as follows:

F (ur : t) = L(ur : t) +KQ(ur : t),

L(ur : t) =
∑
{|α(t)| : α is an elementary wave at time t},

Q(ur : t) = Q0(ur : t) +Q1(ur : t),

Q0(ur : t) =
∑
{|α(t)||β(t)| : α and β are approaching },

Q1(ur : t) =
∑

λ(α(t))>0

{
|α(t)|

∫ ∞

hr

G(x)dx : α is issued from (hr, ks)

}

+
∑

λ(α(t))<0

{
|α(t)|

∫ hr

−∞
G(x)dx : α is issued from (hr, ks)

}
,

where K is a large positive constant to be determined later.

Remark. The linear part L(ur : t) measures the strength of the waves at time t;
therefore, L(ur : t) is equivalent to the total variation of the approximate solution at
time t, and the quadratic part Q(ur : t) measures the potential interaction between
waves. Q0(ur : t) measures the potential interaction between hyperbolic waves, and
Q1(ur : t) measures the potential interaction between hyperbolic waves and stationary
waves.

Then by the local interaction estimates of waves [19], we have the following decay
estimates of the modified Glimm functional.

Lemma 3.2 (see [19]). Suppose that the total variation of initial data is suffi-
ciently small and G0 and G1 are small enough. Then

Q(ur : Λ(0, t)) ≤ 2(Q(ur : 0)−Q(ur : t)),

F (ur : t+)− F (ur : t−) ≤ −1
2
Q(ur : t),

F (ur : t) ≤ F (ur : 0) for t ≥ 0.

4. Scalar conservation laws with a source. In this section, in order to illus-
trate a functional which takes care of a source effect and an entropy functional in [22],
we consider the scalar nozzle flow model which was introduced in [21]. We study time
change of the L1 distance between two solutions and a generalized entropy functional
for scalar convex conservation laws with a source:

ut + f(u)x = g(x, u), (x, t) ∈ R×R+,
(4.1)

f ′(u) > 0, f ′′(u) > 0, suppx(g(x, u)) = [0, 1].

Unlike homogeneous scalar conservation laws, because of the source, the L1 distance
between two weak solutions may not be a contraction. Under the above assumptions
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of the source, we verify that in general, the L1 distance is not a contraction. More-
over, we show that the H(t) = ||u(·, t) − v(·, t)||L1(R) for the homogeneous case is
not applicable to a nonhomogeneous case (Theorem 4.3). Hereafter, we will use the
following notations:

ur(x, t) : the approximate solution by the modified Glimm scheme
with a space mesh size r,

ūr(x, t) : the simplified wave pattern corresponding to ur(x, t),
αij(t) : the jth i-wave at time t, x(α(t)) : the location of the wave α(t),
λ(α(t)) : the exact speed of α(t), ẋ(α(t)) : the approximate speed of α(t),
J(ūr) : the set of all waves in ūr, J(v̄r) : the set of all waves in v̄r,
J ≡ J(ūr) ∪ J(v̄r), q±(α) ≡ v(x(α)±, t)− u(x(α)±, t),
λ(q±(α)) ≡ the speed of (u(x(α)±, t), v(x(α)±, t)).

We will also use the abbreviated notations ūr(x) and v̄r(x) instead of ūr(x, t) and
v̄r(x, t), respectively. Let u(x, t) and v(x, t) be two solutions constructed by the mod-
ified Glimm scheme [19] corresponding to initial data u0(x) and v0(x), respectively,
such that

lim
r→0

ur(x, t) = u(x, t), lim
r→0

vr(x, t) = v(x, t) in L1
loc(R×R+),

and ‖u0(x)− v0(x)‖L1(R) <∞.

For a given noninteraction time t, let us denote the set of all waves by {αi}m1 such
that

−∞ < x(α1) < x(α2) < · · · < x(αm) <∞.

Then it is easy to see that

d

dt
|ūr(x)− v̄r(x)| = 0 on (x(αi), x(αi+1)), i = 1, . . . ,m− 1,(4.2a)

ūr(x) = v̄r(x) on (−∞, x(α1)) and (x(αm),∞).(4.2b)

On the other hand, we have

d

dt

∫ x(αi+1)

x(αi)

|ūr(x)− v̄r(x)|dx =

∫ x(αi+1)

x(αi)

d

dt
|ūr(x)− v̄r(x)|dx(4.3)

+ ẋ(αi+1)|ūr(x(αi+1)−)− v̄r(x(αi+1)−)| − ẋ(αi)|ūr(x(αi)+)− v̄r(x(αi)+)|
= ẋ(αi+1)|q−(αi+1)| − ẋ(αi)|q+(αi)| by (4.2a).
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It follows from (4.2b) and (4.4) that

d

dt
‖ūr(·, t)− v̄r(·, t)‖L1(R) =

m−1∑
i=1

d

dt

∫ x(αi+1)

x(αi)

|ūr(x)− v̄r(x)|dx

=

m∑
i=1

{ẋ(αi)(|q−(αi)| − |q+(αi)|)}

=

m∑
i=1

λ(αi)(|q−(αi)| − |q+(αi)|) +O(1)MsG0

m∑
i=1

|αi|

=

m−1∑
i=1

{λ(αi+1)|q−(αi+1)| − λ(αi)|q+(αi)|}+O(1)MsG0

m∑
1

|αi|

=

m−1∑
i=1

{(λ(αi+1)− λ(q−(αi+1)))|q−(αi+1)| − (λ(αi)− λ(q+(αi)))|q+(αi)|}

+

m−1∑
i=1

{λ(q−(αi+1))|q−(αi+1)| − λ(q+(αi))|q+(αi)|}+O(1)MsG0

m∑
1

|αi|

≡ I + II +O(1)MsG0

m∑
1

|αi|,

where

I ≡
m−1∑
i=1

{(λ(αi+1)− λ(q−(αi+1)))|q−(αi+1)| − (λ(αi)− λ(q+(αi)))|q+(αi)|},

II ≡
m−1∑
i=1

{λ(q−(αi+1))|q−(αi+1)| − λ(q+(αi))|q+(αi)|},

and we have used the fact that ẋ(αi)− λ(αi) = O(1)MsG0 and |q−(αi)| − |q+(αi)| ≤
|αi|. Let us recall that for scalar convex conservation laws, unlike for systems, nonlin-
ear interactions do not generate new waves. For simplicity, we assume that the initial
data is constant outside a bounded interval. Then at time t = 0, since there are only
a finite number of waves in ūr(x, 0) and v̄r(x, 0) and each wave has a positive speed,
there exists a finite time Tes such that

x(αi(t)) > 1 for all i = 1, . . . ,m and t ≥ Tes.

In the following two lemmas, we estimate I and II separately.

Lemma 4.1. The quantity I satisfies the following estimate:

I ≤ −C1

∑
{|q−(αi)||q+(αi)|}+ |O(1)|ε(T.V +G1),

where |O(1)| and C1 depend only on (4.1), ε is the upper bound of the strength of
rarefaction shocks in the simplified wave pattern, and the summation is over all waves
in J which cross the other solution.
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Proof. Since I is a finite sum, by rearrangement, we can rewrite I as follows:

I =

m∑
i=1

{(λ(αi)− λ(q−(αi)))|q−(αi)| − (λ(αi)− λ(q+(αi)))|q+(αi)|}

=

m∑
i=1

A(αi),

where A(αi) = (λ(αi)− λ(q−(αi)))|q−(αi)| − (λ(αi)− λ(q+(αi)))|q+(αi)|.
We consider a generic case (the locations of discontinuities in v̄r and ūr are not

coincident).
Case 1. αi = (v−, v+) ∈ J(v̄r), and assume that ūr is continuous at x = x(αi).

We claim that

A(αi) =




0, q−(αi)q+(αi) ≥ 0,
−|O(1)||q+(αi)||q−(αi)|, q−(αi) ≥ 0, q+(αi) ≤ 0,

|O(1)|ε|αi|, q−(αi) ≤ 0, q+(αi) ≥ 0.
(4.4)

By the Rankine–Hugoniot condition and definition of q±(αi),

λ(αi)[αi] + λ(q−(αi))q−(αi) = λ(q+(αi))q
+(αi).(4.5)

Subcase 1.1. q−(αi) ≥ 0, q+(αi) ≥ 0. We have

A(αi) = (λ(αi)− λ(q−(αi)))|q−(αi)| − (λ(αi)− λ(q+(αi)))|q+(αi)|
= λ(αi)(q

−(αi)− q+(αi))− λ(q−(αi))q−(αi) + λ(q+(αi))q
+(αi)

= −λ(αi)[αi]− λ(q−(αi))q−(αi) + λ(q+(αi))q
+(αi) = 0 by (4.5).

Subcase 1.2. q−(αi) ≤ 0, q+(αi) ≤ 0. By the same analysis as Subcase 1.1, we
have A(αi) = 0.

Subcase 1.3. q−(αi) ≥ 0, q+(αi) ≤ 0. By the convexity of the flux function, we
have

λ(αi)− λ(q−(αi)) = −|O(1)||q+(αi)|,
λ(αi)− λ(q+(αi)) = |O(1)||q−(αi)|,
A(αi) = (λ(αi)− λ(q−(αi)))|q−(αi)| − (λ(αi)− λ(q+(αi)))|q+(αi)|

= −|O(1)||q+(αi)||q−(αi)|.
Subcase 1.4. q−(αi) ≤ 0, q+(αi) ≥ 0. In this case, since the upper bound of a

rarefaction shock is ε, we have

max{|q+(αi)|, |q−(αi)|} ≤ |αi| < ε.

Again, by the convexity of the flux function, we have

λ(αi)− λ(q−(αi)) = |O(1)||q+(αi)|,
λ(αi)− λ(q+(αi)) = −|O(1)||q−(αi)|,
A(αi) ≤ |O(1)||q+(αi)||q−(αi)| ≤ |O(1)|ε|αi|.

Case 2. αi = (u−, u+) ∈ J(ūr), and v̄r is continuous at x = x(αi). We claim that

A(αi) =




0, q−(αi)q+(αi) ≥ 0,
|O(1)|ε|αi|, q−(αi) ≥ 0, q+(αi) ≤ 0,

−|O(1)||q+(αi)||q−(αi)|, q−(αi) ≤ 0, q+(αi) ≥ 0.
(4.6)
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By the Rankine–Hugoniot condition and definition of q±(αi),

λ(αi)[αi] + λ(q+(αi))q
+(αi) = λ(q−(αi))q−(αi).(4.7)

By the same analysis using (4.7) as in Case 1, we get (4.6). From (4.3) and (4.6), we
conclude that

I ≤ −C1

∑
{|q−(αi)||q+(αi)|}+ |O(1)|ε(T.V +G1),

where the summation is over all waves in J which cross the other solution.
Lemma 4.2. The quantity II satisfies the following estimate:

II ≤ χ[0,Tes](t)

∫ 1

0

G(x)|ūr(x)− v̄r(x)|dx,

where χ[0,Tes](t) is the characteristic function of the interval [0, Tes].
Proof. By the construction of a simplified wave pattern, if q(x0, t) = 0 for some

x0 ∈ ((x(αi), x(αi+1)), then q(x, t) = 0 on (x(αi), x(αi+1)). Therefore, we need to
consider only two cases:

either q+(αi) ≥ 0, q−(αi+1) ≥ 0, or q+(αi) ≤ 0, q−(αi+1) ≤ 0.

Let us set II(αi, αi+1) ≡ λ(q−(αi+1))|q−(αi+1)| − λ(q+(αi))|q+(αi)|.
Case 1. q+(αi) ≥ 0, q−(αi+1) ≥ 0.

II(αi, αi+1) = λ(q−(αi+1))q
−(αi+1)− λ(q+(αi))q

+(αi)(4.8)

= f(v̄r(x(αi+1)−))− f(ūr(x(αi+1)−))
− {f(v̄r(x(αi)−))− f(ūr(x(αi)))}

=

∫ x(αi+1)

x(αi)

{f(v̄r(x))x − f(ūr(x))x}dx

=

∫ x(αi+1)

x(αi)

{g(x, v̄r(x))− g(x, ūr(x))}dx.

Case 2. q+(αi) ≤ 0, q−(αi+1) ≤ 0. By the same calculation as Case 1, we have

II(αi, αi+1) =

∫ x(αi+1)

x(αi)

{g(x, ūr(x))− g(x, v̄r(x))}dx.(4.9)

For t ≥ Tes, since g(x, v̄r(x)) = g(x, ūr(x)) = 0 on (x(αi(t)), x(αi+1(t))), II(αi, αi+1) =
0. For t < Tes, |g(x, v̄r(x))− g(x, ūr(x))| ≤ G(x)|ūr(x)− v̄r(x)| on (x(αi), x(αi+1)).
Thus, in (4.8) and (4.9) we have

II ≤ χ[0,Tes](t)

∫ 1

0

G(x)|ūr(x)− v̄r(x)|dx.

This completes the proof.
By combining Lemmas 4.1 and 4.2, we have the following estimates on the L1

distance between two simplified wave patterns.
Theorem 4.3. There exists a positive constant C1 depending on (4.1) such that

d

dt
‖ūr(·, t)− v̄r(·, t)‖L1(R) ≤ −C1

∑
{|q−(αi)||q+(αi)|}+ |O(1)|ε(T.V +G1)
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+ χ[0,Tes](t)

∫ 1

0

G(x)|ūr(x)− v̄r(x)|dx

+ O(1)MsG0

m∑
1

|αi|,

where the summation is over all genuine shock waves in one of the solutions which
cross the other solution.

Remark 4.1. 1. For the two exact solutions u(x, t) and v(x, t), we have

d

dt
‖u(·, t)− v(·, t)‖L1(R) ≤ −C1

∑
{|q−(αi)||q+(αi)|}

+ χ[0,Tes](t)

∫ 1

0

G(x)|u(x)− v(x)|dx.

2. χ[0,Tes](t)
∫ 1

0
G(x)|ūr(x)− v̄r(x)|dx implies the source effect on the L1 distance.

In the following lemma, we estimate the time-variation of a shock strength.
Lemma 4.4. Let α(t) = (u−(t), u+(t)), (p− 1)Ms ≤ t < pMs be a discontinuity

in ūr(x, t). Then

d|α(t)|
dt

= O(1)G(x(α(t)))|α(t)|,

where O(1) depends only on the system (4.1).
Proof. Let γ(t) = (x(t), t) be the locus of α(t) in x − t plane. Then the curve

γ(t) is differentiable at a.e. t ∈ ((p − 1)Ms, pM). Since the shock has a constant
speed and strength in the region [0, 1]c by the construction, we consider only the case
x(t) ∈ [0, 1]. Let us set

u−(t) ≡ u(x(t)−, t), u+(t) ≡ u(x(t)+, t).

For definiteness, assume that u−((p−1)Ms) > u+((p−1)Ms); then u−(t) > u+(t), t ∈
((p− 1)Ms, pMs) and |α(t)| = u−(t)− u+(t). Since u−(t) and u+(t) are local steady
solutions of (4.1), we have

du−(t)
dt

=
∂u−(t)
∂x

ẋ(t) =
ẋ(t)

f ′(u−(t))
g(x(t), u−(t)),(4.10a)

du+(t)

dt
=

∂u+(t)

∂x
ẋ(t) =

ẋ(t)

f ′(u+(t))
g(x(t), u+(t)).(4.10b)

It follows from (4.10a)–(4.10b) that

d|α(t)|
dt

=
du−(t)
dx

− du+(t)

dx
=

ẋ(t)

f ′(u−(t))
g(x(t), u−(t))− ẋ(t)

f ′(u+(t))
g(x(t), u+(t))

= ẋ(t)
∂

∂p

(
g(x, p)

f ′(p)

)∣∣∣∣
(x(t),θ(t))

(u−(t)− u+(t)) = O(1)G(x(α))|α(t)|,

where θ(t) is between u−(t) and u+(t), and we have used the fact that ∂
∂p (

g(x,p)
f ′(p) ) =

O(1)G(x(α)), ẋ(t) = O(1). This completes the proof.
Next we define an entropy functional E[ūr, v̄r] to obtain the third order decay

estimate for two simplified wave patterns ūr and v̄r. This entropy functional will
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be used to capture the nonlinearity of a characteristic field. From now on, without
confusion we rewrite ūr, v̄r as u, v, respectively, and define

(u− v)+ ≡ max{u− v, 0}, (u− v)− ≡ max{−(u− v), 0}.
Let us set

E(α) ≡ |α| ·
{ ∫∞

x(α)
(u− v)+(x, t)dx+

∫ x(α)

−∞ (u− v)−(x, t)dx, α ∈ J(u),∫∞
x(α)

(v − u)+(x, t)dx+
∫ x(α)

−∞ (v − u)−(x, t)dx, α ∈ J(v),

E(t) ≡ E[u(·, t), v(·, t)] =
∑
α∈J

E(α).

In the following theorem, we study the time-variation of the entropy functional.
Theorem 4.5. Let u(x, t) and v(x, t) be two simplified wave patterns of (4.1)

whose total variations are bounded by O(1)(T.V + G1). Then the entropy functional
E(t) satisfies

d

dt
E(t) ≤ −C2

∑
α∈J
|α|max{q+(α)q−(α), 0}+O(1)

∑
α∈J

G(x(α))E(α)

+ χ[0,Tes](t)
∑

α∈J(v)

|α|
{∫ ∞

x(α)

G(x)(v − u)+(x, t)dx+

∫ x(α)

−∞
G(x)(v − u)−(x, t)dx

}

+ χ[0,Tes](t)
∑

α∈J(u)

|α|
{∫ ∞

x(α)

G(x)(u− v)+(x, t)dx+

∫ x(α)

−∞
G(x)(u− v)−(x, t)dx

}

+ O(1)(T.V +G1)
2ε+O(1)MsG0

m∑
1

|αi|, a.e. t ∈ ((p− 1)Ms, pMs),

where C2 is a positive constant depending only on (4.1).
Proof. Let us assume that α ∈ J(v), and u is continuous at x = x(α). Then by

the definition of E(α),

dE(α)

dt
=

d

dt

[
|α|
{∫ x(α)

−∞
(v − u)−(x, t)dx+

∫ ∞

x(α)

(v − u)+(x, t)dx

}]

= |α|
{

d

dt

∫ x(α)

−∞
(v − u)−(x, t)dx+

d

dt

∫ ∞

x(α)

(v − u)+(x, t)dx

}

+
d|α|
dt

{∫ x(α)

−∞
(v − u)−(x, t)dx+

∫ ∞

x(α)

(v − u)+(x, t)dx

}

≡ I(α) + II(α).

From Lemma 4.4, we have

II(α) = O(1)G(x(α))E(α).(4.11)

Let {xj(t)} be the partition of R such that

v(x, t) > u(x, t), x2i(t) < x < x2i+1(t),
v(x, t) < u(x, t), x2i−1(t) < x < x2i(t).

Then by the construction of simplified wave patterns, either u(x, t) or v(x, t) has a
discontinuity at x = xj(t). In the following, q±(xj(t)) denotes a wave (u(xj(t)±, t),
v(xj(t)±, t)) or a difference v(xj(t)±, t)− u(xj(t)±, t).
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By the same analysis as in [24], we get the following estimate:

d

dt

∑
α∈J(v)

E(α) ≤ −C2

∑
α∈J(v)

|α|max{q+(α)q−(α), 0}+O(1)(T.V +G1)
2ε

+ χ[0,Tes](t)
∑

α∈J(v)

|α|
{∫ ∞

x(α)

G(x)(v − u)+(x, t)dx+

∫ x(α)

−∞
G(x)(v − u)−(x, t)dx

}

+ O(1)MsG0

m∑
1

|αi|+O(1)
∑

α∈J(v)

G(x(α))E2(α).

Similar estimates hold for
∑

α∈J(u) E(α). Hence, we have

dE(t)

dt
≤ −C2

∑
α∈J
|α|max{q+(α)q−(α), 0}+O(1)(T.V +G1)

2ε

+ χ[0,Tes](t)
∑

α∈J(v)

|α|
{∫ ∞

x(α)

G(x)(v − u)+(x, t)dx+

∫ x(α)

−∞
G(x)(v − u)−(x, t)dx

}

+ χ[0,Tes](t)
∑

α∈J(u)

|α|
{∫ ∞

x(α)

G(x)(u− v)+(x, t)dx+

∫ x(α)

−∞
G(x)(u− v)−(x, t)dx

}

+ O(1)MsG0

m∑
1

|αi|+O(1)
∑

α∈J(v)

G(x(α))E2(α).

This completes the proof.

5. Systems of hyperbolic conservation laws with a moving source. In
this section, we construct a nonlinear functional which is equivalent to the L1 distance
between two Glimm solutions and nonincreasing in time. By using this nonlinear
functional, we establish the L1 stability of the Glimm solutions.

5.1. A nonlinear functional. We define a nonlinear functional H(t) which is
equivalent to the L1 distance and nonincreasing in time. Our analysis makes use of
the strict hyperbolicity and the genuine nonlinearity, the fact that the source has a
compact support in x, and the nonresonance condition of the system (1.1). Let us set

G ≡ {u(x, t) ∈ BV (R×R+) : u is a solution corresponding to initial data u0},
D ≡ {(u, v) ∈ G × G : u0 − v0 ∈ L1(R)}.
Let u(x, t) and v(x, t) be two weak solutions of (1.1) such that

lim
r→0

ur(x, t) = u(x, t), lim
r→0

vr(x, t) = v(x, t) in L1
loc(R×R+).

Let ūr(x, t) and v̄r(x, t) be the simplified wave patterns corresponding to ur(x, t) and
vr(x, t), respectively. For the time being, we will fix r and without confusion, we
rewrite ūr(x, t) and v̄r(x, t) as u(x, t) and v(x, t). For given (x, t) ∈ R×R+, we solve
the Riemann problem for the corresponding homogeneous conservation laws of (1.1)
with initial data (u(x, t), v(x, t)) by shock waves or rarefaction shocks, i.e.,

ω0(x, t) = u(x, t), ωn(x, t) = v(x, t), ωi(x, t) ∈ Hi(ωi−1(x, t)), i = 0, 1, . . . , n.

Moreover, if necessary, by a linear transformation of u = (u1, . . . , un), we may as-
sume that each coordinate function ui is strictly increasing along the ith wave curve
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Wi(u). Let us define qi(x, t), the strength of ith wave (ωi−1(x, t), ωi(x, t)), by the ith
component of ωi(x, t)− ωi−1(x, t), i.e.,

qi(x, t) ≡ (ωi(x, t)− ωi−1(x, t))
i, i = 1, . . . , n.

Since N ⊂ compact subset of Rn, it is easy to see that

1

C3
|u(x, t)− v(x, t)| ≤

n∑
1

|qi(x, t)| ≤ C3|u(x, t)− v(x, t)|,

where C3 is a large positive constant which is independent of t.
Let us consider i-wave αi ∈ J , and define the location of the i-wave αi and the

waves generated by the difference of u and v at both sides of the wave as follows:

x(αi) ≡ the location of i-wave αi,

q±j (α
i) ≡ qj(x(α

i)±, t), λ±
j (α

i) ≡ λj(ωj−1(x(α
i)±, t), ωj(x(αi)±, t)).

For j = i, we use abbreviated notations q±(αi), λ±(αi). The nonlinear functional
H(t) is the weighted linear combination of four component functionals: L(t) mea-
suring the L1 distance between two solutions u(x, t) and v(x, t), Qd(t) measuring
nonlinear couplings between waves of different characteristic families, E(t) capturing
the nonlinearity of the characteristic field due to the bifurcation of a shock curve and
a rarefaction curve, and Qso(t) measuring the source effect on the L1 distance.

In contrast with the Liu–Yang functional [24], our modified nonlinear functional
is defined to capture the effect of the source on the L1 distance. For this, we need to
consider the potential interaction between the imaginary wave 2 qi(x, t) and stationary
waves. Recall that the strength of the stationary waves is measured by the function
G(x). In order to fix the idea, let us consider an imaginary wave qj(x0, t), j > j0.
Since this wave has a positive speed, it will propagate to∞; in doing so, it will interact
with the stationary waves lying x ≥ x0. The same argument holds for qj(x0, t), j ≤ j0.
So potential interactions between imaginary waves located at x = x0 and stationary
waves are

∑
j≤j0

|qj(x0, t)|
∫ x(qj)

−∞
G(ξ)dξ +

∑
j≥j0+1

|qj(x0, t)|
∫ ∞

x(qj)

G(ξ)dξ.

Based on this observation, we define a nonlinear functional which contains a new
component functional Qso(t) in the following. First we define a nonlinear functional
for two simplified wave patterns u(x, t) and v(x, t).

L(t) ≡
n∑

j=1

Lj(t) ≡
n∑

j=1

∫ ∞

−∞
|qj(x, t)|dx,

Qd(t) ≡
∑
αi∈J

Qd(α
i(t)) ≡

∑
αi∈J

|αi(t)|


∑
j>i

∫ x(αi)

−∞
|qj(x, t)|dx+

∑
j<i

∫ ∞

x(αi)

|qj(x, t)|dx

 ,

E(t) ≡
∑
αi∈J

E(αi(t)) ≡
∑
αi∈J

|αi(t)| ·


∫ x(αi)

−∞ qi(x, t)+dx+
∫∞
x(αi)

qi(x, t)−dx, αi ∈ J(u),∫∞
x(αi)

qi(x, t)+dx+
∫ x(αi)

−∞ qi(x, t)−dx, αi ∈ J(v),

2These waves are not the real hyperbolic waves in weak solutions but virtual waves generated by
the difference between two weak solutions.



426 SEUNG-YEAL HA

Qso(t) ≡
∑
j≤j0

∫ ∞

−∞
|qj(x, t)|

(∫ x(qj)

−∞
G(ξ)dξ

)
dx+

∑
j≥j0+1

∫ ∞

−∞
|qj(x, t)|

(∫ ∞

x(qj)

G(ξ)dξ

)
dx,

H(t) ≡ [1 +K1F ((p− 1)Ms)]L(t) +K2[Qd(t) + E(t) +Qso(t)], t ∈ [(p− 1)Ms, pMs),
1 ≤ p ≤ N,

where K1 and K2 are positive constants to be determined later, and F (t) = F (u :
t) + F (v : t) is the modified Glimm functional which was introduced in section 3.

5.2. Basic estimates. In this subsection, we study basic estimates which are
necessary for the decay analysis of the nonlinear functional H(t). In the following,
the first three lemmas are direct consequences of the smoothness of the shock curves.
See [6] and [24].

Lemma 5.1. Let ū ∈ N and k ∈ {1, 2, . . . , n}. Let us define the states and wave
speeds as follows:

u = Hk(ξ)(ū), u′ = Hk(ξ
′)(u), u′′ = Hk(ξ + ξ′)(ū),

λ = λk(ū, u), λ′ = λk(u, u
′), λ′′ = λk(ū, u

′′).

Then we have

|(ξ + ξ′)λ′′ − (ξλ+ ξ′λ′)| = |(ξ + ξ′)(λ′′ − λ′)− ξ(λ− λ′)|
= O(1)|ξ||ξ′|(|ξ|+ |ξ′|).

Let us set

{ω+
0 , ω+

1 , . . . , ω+
n } : the resolution of a discontinuity (u(x(αi)+, t), v(x(αi) + 0, t)),

{ω−
0 , ω−

1 , . . . , ω−
n } : the resolution of a discontinuity (u(x(αi)−, t), v(x(αi)− 0, t)),

q±j (α
i) = (ω±

j − ω±
j−1)

j , j = 1, . . . , n.

Lemma 5.2. Suppose that ξj , ξ
′
j, and ξ′′j satisfy

Hn(ξn) ◦ · · · ◦H1(ξ1)(u) = Hn(ξ
′
n) ◦ · · · ◦H1(ξ

′
1) ◦Hn(ξ

′′
n) ◦ · · · ◦H1(ξ

′′
1 )(u).

Then, we get

n∑
i=1

|ξi − ξ′i − ξ′′i | = O(1)


∑
i

|ξ′i||ξ′′i |(|ξ′i|+ |ξ′′i |) +
∑
j>i

|ξ′′j ||ξ′i|

 .

If the values ξ′i and ξ are related by

Ri(ξ)(u
∗) = Hn(ξ

′
n) ◦ · · · ◦H1(ξ

′
1)(u

∗),

then we have

|ξ − ξi|+
∑
j =i

|ξ′j | = O(1)

|ξ||ξ′i|(|ξ|+ |ξ′i|) +

∑
j =i

|ξ′j ||ξ|

 .

Suppose αi = (v−, v+) ∈ J(v) is an i-wave in v and u is continuous at x = x(αi).
Recall Λp = {(x, t) : −∞ < x <∞, (p− 1)Ms ≤ t < pMs}, p ∈ {1, . . . , N}.



SYSTEMS OF CONSERVATION LAWS WITH A MOVING SOURCE 427

Let us set

e(Λp) ≡ (Q(Λp) + C(Λp) + δ + ε+MsG0),

Γs(α
i) ≡ |αi||q−(αi)|(|q−(αi)|+ |αi|) or |αi||q+(αi)|(|q+(αi)|+ |αi|),

Γd(α
i) ≡ |αi|

∑
j>i

|q−j (αi)| or |αi|
∑
j<i

|q+
j (α

i)|.

Then it is easy to see that

(Γs + Γd)(α
i) = O(1)

n∑
j=1

|αi||q−j (αi)| = O(1)
n∑

j=1

|αi||q+
j (α

i)|.

Remark. If αi = (u−, u+) ∈ J(u) and v is continuous at x = x(αi), then we have

Γs(α
i) ≡ |αi||q+(αi)|(|q+(αi)|+ |αi|) or |αi||q−(αi)|(|q−(αi)|+ |αi|),

Γd(α
i) ≡ |αi|

∑
j<i

|q+
j (α

i)| or |αi|
∑
j>i

|q−j (αi)|.

In the following, we study the variation of qj(x, t) across the wave.
Lemma 5.3. Let αi = (v−, v+) ∈ J(v) be an i-wave in the time zone Λp. Then

q+
j (α

i) =

{
q−(αi) + [αi] +O(1)(Γs + Γd)(α

i) +O(1)|αi|e(Λp), j = i,
q−j (α

i) +O(1)(Γs + Γd)(α
i) +O(1)|αi|e(Λp), j = i,

where [αi] = (v+ − v−)i.
Remark. If αi = (u−, u+) ∈ J(u), then the same estimates hold by a straightfor-

ward calculation.
In the following, we estimates the time-variation of a shock strength as given in

Lemma 4.4.
Lemma 5.4. Let αi(t) = (u−(t), u+(t)), t ∈ [(p − 1)Ms, pMs) be an i-wave

issued from (hr, (p− 1)Ms) in the simplified wave pattern u(x, t). Then

d|αi(t)|
dt

= O(1)G(x(αi))|αi(t)|,

where O(1) depends only on (1.1).
Proof. The same argument as in Lemma 4.4 holds for this case.
For a given noninteracting time t, let us denote J = {αi}m1 by the set of all waves

in u and v, and assume that

−∞ < x(α1) < · · · < 0 ≤ x(αk) < x(αk+1) < · · · < 1 ≤ x(αl) < · · · < x(αm) <∞.

Without loss of generality, we may assume that x(αk(t)) = 0 and x(αl(t)) = 1.
Lemma 5.5. For a given time t and j ∈ {1, 2, . . . , n},

qj(x, t) is differentiable a.e x ∈ R and
∂qj(x, t)

∂x
= O(1)G(x)

n∑
k=1

qk(x, t), a.e. x ∈ R.

Proof. By the construction of a simplified wave pattern, qj(x, t) is piecewise

differentiable in x and
∂qj(x,t)

∂x = 0 a.e x ∈ [0, 1]. Let x ∈ (x(αi), x(αi+1)), i ∈
{k, . . . , l − 1}. Since u(x, t) and v(x, t) are local steady solutions of (1.1),

ux = (f ′(u))−1g(x, u), vx = (f ′(v))−1g(x, v).
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Therefore, we have

v(y) = v(x) +

∫ y

x

(f ′(v))−1g(ξ, v)dξ, u(y) = u(x) +

∫ y

x

(f ′(u))−1g(ξ, u)dξ,

v(y)− u(y) = v(x)− u(x) +

∫ y

x

(f ′(v))−1g(ξ, v)− (f ′(u))−1g(ξ, u)dξ.(5.1)

Let us set h(ξ, p) = f ′(p))−1g(ξ, p). Then∫ y

x

{(f ′(v))−1g(ξ, v)− (f ′(u))−1g(ξ, u)}dξ =
∫ y

x

(h(ξ, v)− h(ξ, u))dξ

=

∫ y

x

{∫ 1

0

∂

∂s
h(ξ, u+ s(v − u))ds

}
dξ

=

∫ y

x

{∫ 1

0

n∑
i=1

∂h

∂pi
|(ξ,u+s(v−u)) · (vi − ui)ds

}
dξ

= O(1)
(∫ y

x

G(ξ)dξ

)
|v(x)− u(x)|,

where we have used that fact that ∂h
∂pi |(ξ,u+s(v−u)) = O(1)G(ξ) and

∑n
1 |vi(ξ, t) −

ui(ξ, t)| = O(1)|v(x, t)− u(x, t)|. Therefore, in (5.1), we have

v(y)− u(y) = v(x)− u(x) +O(1)
(∫ y

x

G(ξ)dξ

)
|v(x)− u(x)|.

This implies that

(v(x)− u(x))x = O(1)G(x)

n∑
k=1

|qk(x, t)|.

Since qi(x, t) = O(1)li(u(x)) · (v(x) − u(x)), by a direct calculation, we have the
following estimate:

∂qi(x, t)

∂x
= O(1)G(x)

n∑
k=1

|qk(x, t)|.

This completes the proof.
Lemma 5.6. For each j ∈ {1, . . . , n},
∑
αi∈J
{λ(q−j (αi))|q−j (αi)| − λ(q+

j (α
i))|q+

j (α
i)|} = O(1)

n∑
k=1

∫ 1

0

G(x)|qk(x, t)|dx.

Proof. By the construction, the simplified wave pattern is piecewise constant
outside an interval [0, 1]. Therefore,

λ(q−j (αi+1))|q−j (αi+1)| − λ(q+
j (αi))|q+

j (αi)| = 0, i ∈ {1, . . . , k − 1, l, . . . ,m− 1},

m−1∑
i=1

{λ(q−j (αi+1))|q−j (αi+1)| − λ(q+
j (αi))|q+

j (αi)|}
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=

k−1∑
1

{λ(q−j (αi+1))|q−j (αi+1)| − λ(q+
j (αi))|q+

j (αi)|}

+

l−1∑
k

{λ(q−j (αi+1))|q−j (αi+1)| − λ(q+
j (αi))|q+

j (αi)|}

+

m−1∑
l

{λ(q−j (αi+1))|q−j (αi+1)| − λ(q+
j (αi))|q+

j (αi)|}

=

l−1∑
k

{λ(q−j (αi+1))|q−j (αi+1)| − λ(q+
j (αi))|q+

j (αi)|}

=

l−1∑
k

II(αi, αi+1).

Let us consider

II(αi, αi+1) = λ(q−j (αi+1))|q−j (αi+1)| − λ(q+
j (αi))|q+

j (αi)|, i ∈ {k, . . . , l − 1}.

Case 1. q+
j (αi) ≥ 0, q−j (αi+1) ≥ 0.

II(αi, αi+1) = λ(q−j (αi+1))|q−j (αi+1)| − λ(q+
j (αi))|q+

j (αi)|(5.2)

= f j(ωj(x(αi+1)−, t))− f j(ωj−1(x(αi+1)−, t))
− {f j(ωj(x(αi)+, t))− f j(ωj−1(x(αi)+, t))}

=

∫ x(αi+1)

x(αi)

{f j(ωj(x, t))x − f j(ωj−1(x, t))x}dx

=

∫ x(αi+1)

x(αi)

{∇pf
j(θj(x, t)) · (ωj(x, t)− ωj−1(x, t))}xdx,

where θj(x, t) = (θ1
j (x, t), . . . , θ

n
j (x, t)) is on the line segment connecting ωj−1(x, t)

and ωj(x, t). By the chain rule, we have

{∇pf
j(θj(x, t)) · (ωj(x, t)− ωj−1(x, t))}x = (∇pf

j(θj(x, t)))x · (ωj(x, t)− ωj−1(x, t))
+ ∇pf

j(θj(x, t)) · (ωj(x, t)− ωj−1(x, t))x.

We claim the following:

(i) (∇pf
j(θj(x, t)))x = O(1)G(x),

(ii) (ωj(x, t)− ωj−1(x, t))x = O(1)G(x)

n∑
k=1

|qk(x, t)|.

(i) By the chain rule,

(∇pf
j(θj(x, t)))x =

(
n∑
l=1

∂2f j(θj(x, t))

∂pl∂p1
· θlj(x, t)x, . . . ,

n∑
l=1

∂2f j(θj(x, t))

∂pl∂pn
· θlj(x, t)x

)
.

Since ∇pf
j(θj(x, t)) = O(1), ∂2fj(θj(x,t))

∂pl∂ps
= O(1) and θlj(x, t)x = O(1)G(x), we have

(∇pf
j(θj(x, t)))x = O(1)G(x).
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(ii) By definition of qj(x, t), ωj(x, t) − ωj−1(x, t) = O(1)qj(x, t). Therefore, we
have

(ωj(x, t)− ωj−1(x, t))x = O(1)xqj(x, t) +O(1)qj(x, t)x.

Lemma 5.5 yields

(ωj(x, t)− ωj−1(x, t))x = O(1)G(x)

n∑
k=1

|qk(x, t)|.

From the above claim, in (5.2) we have

II(αi, αi+1) = O(1)
n∑

k=1

∫ x(αi+1)

x(αi)

G(x)|qk(x, t)|dx.

Case 2. q+
j (αi) ≤ 0, q−j (αi+1) ≤ 0. By the same analysis as Case 1, we have

II(αi, αi+1) = O(1)
n∑

k=1

∫ x(αi+1)

x(αi)

G(x)|qk(x, t)|dx.

Case 3. q+
j (αi) > 0, q−j (αi+1) < 0. Since qj(x, t) is continuous on [x(αi), x(αi+1)],

by the intermediate value theorem, qj(x0(t), t) = 0 for some x0(t) ∈ (x(αi), x(αi+1)).
Using this fact, one has

|q+
j (αi)| = |qj(x0)− q+

j (αi)| =
∣∣∣∣∣
∫ x0

x(αi)

qj(x, t)xdx

∣∣∣∣∣ = O(1)
n∑

k=1

∫ x0

x(αi)

G(x)|qk(x, t)|dx.

On the other hand,

|q−j (αi+1)| = |q−j (αi+1)− qj(x0)| =
∣∣∣∣∣
∫ x(αi+1)

x0

qj(x, t)xdx

∣∣∣∣∣
= O(1)

n∑
k=1

∫ x(αi+1)

x0

G(x)|qk(x, t)|dx.

Since |λ(q−j (αi+1))| = O(1), |λ(q+
j (αi))| = O(1),

II(αi, αi+1) = O(1)
n∑

k=1

∫ x(αi+1)

x(αi)

G(x)|qk(x, t)|dx.

Case 4. q+
j (αi) < 0, q−j (αi+1) > 0. By the same analysis as Case 3, we have

II(αi, αi+1) ≤ O(1)
n∑

k=1

∫ x(αi+1)

x(αi)

G(x)|qk(x, t)|dx.

This completes the proof.
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5.3. L1 stability and uniqueness. Recall that the open interval Ip = ((p −
1)Ms, pMs), p ∈ {1, . . . , N} is the union of two disjoint sets Ip = I1

p ∪ I2
p , where I

1
p is

the set of all countable interaction times such that H(t) is simply continuous, and I2
p

is the set of all differentiable points of H(t).
Lemma 5.7. The nonlinear functional H(t) is “almost decreasing” for the sim-

plified wave patterns in the sense that

H(pMs+) ≤ H((p− 1)Ms+) +O(1)e(Λp)Ms,

where O(1) depends only on (1.1) and e(Λp) = Q(Λp) + C(Λp) + (ε+ δ +MsG0).
Proof. We will study the time rate of a change for each component functional

separately. Set

Γ ≡ Γs + Γd + Γso, Γs ≡
∑
β

Γs(β),

Γd ≡
∑
β

Γd(β), Γso ≡
n∑
1

∫ 1

0

G(x)|qj(x, t)|dx.

In the following proof, we will use a similar analysis to that in Lemma 5.1 of [24].

Step 1. dL(t)
dt ≤ O(1)Γ +O(1)(T.V +G1)e(Λp), t ∈ I2

p . By definition of L(t),

dL(t)

dt
=

n∑
j=1

dLj(t)

dt
=

n∑
j=1

d

dt

∫ ∞

−∞
|qj(x, t)|dx.

Let j ∈ {1, 2, . . . , n}. Then it follows from Lemma 5.6 that∑
αi∈J
{λ(q−j (αi))|q−j (αi)| − λ(q+

j (α
i))|q+

j (α
i)|}(5.3)

=

m∑
i=1

{λ(q−j (αi))|q−j (αi)| − λ(q+
j (αi))|q+

j (αi)|}

= O(1)
n∑
l=1

∫ 1

0

G(x)|ql(x, t)|dx.

Let us consider d
dt

∫∞
−∞ |qj(x, t)|dx; then by a direct calculation, we have

d

dt

∫ ∞

−∞
|qj(x, t)|dx =

∑
αi∈J

ẋ(αi)(|q−j (αi)| − |q+
j (α

i)|)(5.4)

=
∑
αi∈J
{(ẋ(αi)− λ(q−j (α

i)))|q−j (αi)| − (ẋ(αi)− λ(q+
j (α

i)))|q+
j (α

i)|}

+
∑
αi∈J
{λ(q−j (αi))|q−j (αi)| − λ(q+

j (α
i))|q+

j (α
i)|}

=
∑
αi∈J

Ij(α
i) +O(1)

n∑
l=1

∫ 1

0

G(x)|ql(x, t)|dx by (5.3).

Let us set Ij(α
i) ≡ (ẋ(αi)− λ(q−j (α

i)))|q−j (αi)| − (ẋ(αi)− λ(q+
j (α

i)))|q+
j (α

i)|.
Then, it follows from [24] that

Ij(α
i) = O(1)(Γs(αi) + Γd(α

i)) +O(1)|αi|e(Λp).



432 SEUNG-YEAL HA

From (5.4), we get

d

dt

∫ ∞

−∞
|qj(x, t)|dx ≤ O(1)

∑
β∈J

(Γs + Γd)(β) +O(1)(T.V +G1)e(Λp)

+ O(1)
n∑
l=1

∫ 1

0

G(x)|qj(x, t)|dx.

Therefore, we have

dL(t)

dt
≤ O(1)Γ +O(1)(T.V +G1)e(Λp).

Step 2. dQd(t)
dt ≤ −λ0Γd +O(1)(T.V +G1)Γ +O(1) (∑αG(x(α))|α|)L(t)

+O(1)(T.V +G1)e(Λp). By definition of Qd(t),

dQd(α
i)

dt
= |αi|



∑
j>i

d

dt

∫ x(αi)

−∞
|qj(x, t)|dx+

∑
j<i

d

dt

∫ ∞

x(αi)

|qj(x, t)|dx

(5.5)

+
d|αi|
dt



∑
j>i

∫ x(αi)

−∞
|qj(x, t)|dx+

∑
j<i

∫ ∞

x(αi)

|qj(x, t)|dx



≤ |αi|


∑
j>i

d

dt

∫ x(αi)

−∞
|qj(x, t)|dx+

∑
j<i

d

dt

∫ ∞

x(αi)

|qj(x, t)|dx



+ O(1)G(x(αi))|αi|
∑
j =i

Lj(t).

By the strict hyperbolicity of (1.1), for some positive constant λ0,

λj(u)− λ(αi) > λ0, j > i,
λj(u)− λ(αi) < −λ0, j < i.

Then by the same calculation as in [24], from (5.5) we have the following estimate:

dQd(α
i)

dt
≤ −λ0Γd(α

i) +O(1)|αi|Γ +O(1)|αi|(T.V +G1)e(Λp)

+ O(1)G(x(α))|αi|
∑
j =i

Lj(t).

Hence, we have

dQd(t)

dt
≤ −λ0

∑
β∈J

Γd(β) +O(1)(T.V +G1)Γ +O(1)(T.V +G1)e(Λp)

+ O(1)
(∑

α

G(x(α))|α|
)
L(t).

Step 3. dE(t)
dt ≤ −C4Γs + O(1)(T.V + G1)Γ + O(1)(T.V + G1)e(Λp)

+O(1)(∑αG(x(α))|α|)L(t), where C4 is a positive constant depending only on (1.1).
By definition of E(t),

dE(t)

dt
=
∑
αi∈J

d

dt

[
|αi|

{∫ x(αi)

−∞
(qi(x, t))−dx+

∫ ∞

x(αi)

(qi(x, t))+dx

}]
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=
∑
αi∈J

dE(αi)

dt
.

Let us assume that αi ∈ J(v), and u is continuous at x = x(αi). The other case
(αi ∈ J(u)) is treated similarly.

dE(αi)

dt
=

d|αi|
dt

{∫ x(αi)

−∞
(qi(x, t))−dx+

∫ ∞

x(αi)

(qi(x, t))+dx

}

+ |αi|
{

d

dt

∫ x(αi)

−∞
(qi(x, t))−dx+

d

dt

∫ ∞

x(αi)

(qi(x, t))+dx

}

= O(1)G(x(αi))|αi|
{∫ x(αi)

−∞
(qi(x, t))−dx+

∫ ∞

x(αi)

(qi(x, t))+dx

}

+ |αi|
{

d

dt

∫ x(αi)

−∞
(qi(x, t))−dx+

d

dt

∫ ∞

x(αi)

(qi(x, t))+dx

}

≤ O(1)G(x(αi))|αi|Li(t)

+ |αi|
{

d

dt

∫ x(αi)

−∞
(qi(x, t))−dx+

d

dt

∫ ∞

x(αi)

(qi(x, t))+dx

}
,

where we have used the fact that d|αi|
dt = O(1)G(x(αi))|αi|. By the same analysis as

in Lemma 5.1 of [24], we have

dE(αi)

dt
≤ −C4|αi|(|q−(αi)|+ |αi|)|q−(αi)|+O(1)(|αi|Γ(αi) + |αi|e(Λp))

+ O(1)|αi|


∑
β∈J

Γ(β) + (T.V +G1)e(Λp) +

n∑
j=1

∫ 1

0

G(x)|qj(x, t)|dx



+ O(1)G(x(αi))|αi|Li(t).

Hence, we have

dE(t)

dt
≤ −C4Γs +O(1)(T.V +G1)Γ +O(1)

(∑
α

G(x(α))|α|
)
L(t)

+O(1)(T.V +G1)e(Λp),

where C4 is a positive constant depending only on (1.1).

Step 4. dQso(t)
dt ≤ −λ0Γso +O(1)G1{Γ + (T.V +G1)e(Λp)}.

By definition of Qso(t), we have

Qso(t) =
∑
j≤j0

∫ ∞

−∞
|qj(x, t)|

(∫ x(qj)

−∞
G(ξ)dξ

)
dx

+
∑

j≥j0+1

∫ ∞

−∞
|qj(x, t)|

(∫ ∞

x(qj)

G(ξ)dξ

)
dx

=
∑
j≤j0

Ij +
∑

j≥j0+1

IIj .
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For a given t, let us denote the locations of waves as follows:

−∞ < x(α1) < · · · < x(αk) = 0 < x(αk+1) < · · · < x(αl)
= 1 < x(αl+1) < · · · < x(αm) <∞.

For notational convenience, let us denote x(α0) ≡ −∞ and x(αm+1) ≡ ∞.
Case 1. j ≤ j0.

Since
∫ 0

−∞ G(ξ)dξ = 0,

Ij =

∫ ∞

−∞
|qj(x, t)|

(∫ x(qj)

−∞
G(ξ)dξ

)
dx

=

∫ x(αk+1)

x(αk)

|qj(x, t)|
(∫ x(qj)

−∞
G(ξ)dξ

)
dx+

∫ x(αk+2)

x(αk+1)

|qj(x, t)|
(∫ x(qj)

−∞
G(ξ)dξ

)
dx

+ · · ·+
∫ x(αl)

x(αl−1)

|qj(x, t)|
(∫ x(qj)

−∞
G(ξ)dξ

)
dx+G1

∫ x(αl+1)

x(αl)

|qj(x, t)|dx

+ · · ·+G1

∫ x(αm)

x(αm−1)

|qj(x, t)|dx.

Then by a direct calculation, we have

dIj
dt
≤

l−1∑
i=k

(∫ x(qj(αi))

−∞
G(ξ)dξ

)
ẋ(αi)(|q−j (αi)| − |q+

j (αi)|)

+G1

m∑
i=l

ẋ(αi)(|q−j (αi)| − |q+
j (αi)|) +

∫ 1

0

|qj(x, t)|ẋ(qj)G(x(qj))dx

≤ O(1)G1

{
m∑
i=k

(Γs + Γd)(αi) + Γso + (T.V +G1)e(Λp)

}
− λ0

∫ 1

0

G(x)|qj(x, t)|dx.

In the above calculation, we have used ẋ(qj) ≤ −λ0. Hence, we have

dI

dt
=
∑
j≤j0

dIj
dt
≤ j0O(1)G1

{
m∑
i=k

(Γs + Γd)(αi) + Γso + (T.V +G1)e(Λp)

}

− λ0

∑
j≤j0

∫ 1

0

G(x)|qj(x, t)|dx

≤ O(1)G1

{
m∑
i=k

(Γs + Γd)(αi) + Γso + (T.V +G1)e(Λp)

}

− λ0

∑
j≤j0

∫ 1

0

G(x)|qj(x, t)|dx.

Case 2. j ≥ j0 + 1. Since
∫∞
1

G(ξ)dξ = 0,

IIj =

∫ ∞

−∞
|qj(x, t)|

(∫ ∞

x(qj)

G(ξ)dξ

)
dx

= G1

∫ x(α2)

x(α1)

|qj(x, t)|dx+ · · ·+G1

∫ x(αk)

x(αk−1)

|qj(x, t)|dx
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+

∫ x(αk+1)

x(αk)

|qj(x, t)|
(∫ ∞

x(qj)

G(ξ)dξ

)
dx+ · · ·+

∫ x(αl)

x(αl−1)

|qj(x, t)|
(∫ ∞

x(qj)

G(ξ)dξ

)
dx.

Then by a direct calculation, we have

dIIj
dt

= G1

k−1∑
i=1

ẋ(αi)(|q−j (αi)| − |q+
j (αi)|)

+

l∑
k

(∫ ∞

x(αi)

G(ξ)dξ

)
ẋ(αi)(|q−j (αi)| − |q+

j (αi)|) +
∫ 1

0

|qj(x, t)|(−ẋ(qj))G(x(qj))dx

≤ O(1)G1

{
l∑

i=1

(Γs + Γd)(αi) + Γso + (T.V +G1)e(Λp)

}
− λ0

∫ 1

0

G(x)|qj(x, t)|dx.

In the above calculations, we have used the fact that ẋ(qj) ≥ λ0. Hence we have

dII

dt
≤

∑
j≥j0+1

dIIj
dt

= O(1)G1(n− j0)

l∑
1

{(Γs + Γd)(αi) + Γso

+ (T.V +G1)e(Λp)} − λ0

∑
j≥j0+1

∫ 1

0

G(x)|qj(x, t)|dx.

By combining Cases 1 and 2, we have

dQso(t)

dt
≤ O(1)G1{Γ + (T.V +G1)e(Λp)} − λ0Γso.

Step 5. Let us choose c̃ such that 0 < c̃ < min{λ0, C4}, where C4 is the positive
constant in Step 3. From definition of H(t) and Steps 1–4, for t ∈ I2

p , we have

dL(t)

dt
≤ O(1)Γ +O(1)(T.V +G1)e(Λp),

dQd(t)

dt
≤ −c̃Γd +O(1)(T.V +G1)Γ +O(1)

(∑
G(x(α))|α|

)
L(t)

+ O(1)(T.V +G1)e(Λp),
dE(t)

dt
≤ −c̃Γs +O(1)(T.V +G1)Γ +O(1)

(∑
G(x(α))|α|

)
L(t)

+ O(1)(T.V +G1)e(Λp),
dQso(t)

dt
≤ −c̃Γso +O(1)G1Γ +O(1)G1(T.V +G1)e(Λp),

dH(t)

dt
= (1 +K1F ((p− 1)Ms))

dL(t)

dt
+K2

(
dQd(t)

dt
+

dE(t)

dt
+

dQso(t)

dt

)
(5.6)≤ [O(1){1 +K1F ((p− 1)Ms)}+O(1)K2(T.V +G1) +O(1)K2G1 − c̃K2]Γ

+ [O(1)(T.V +G1)(1 +K1F ((p− 1)Ms)) +O(1)K2(T.V +G1)

+ O(1)K2G1(T.V +G1)]e(Λp) +O(1)K2

(∑
G(x(α))|α|

)
L(t).

Since L(t) is Lipschitz continuous on ((p− 1)Ms, pMs), we have

L(t) ≤ O(1)Ms+ L(pMs−).(5.7)
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By definition of H(t), there is a jump across the t = pMs, p ∈ {1, . . . , N}. Next, we
estimate the size of this jump.

H(pMs+)−H(pMs−) = [(1 +K1F (pMs))L(pMs+)
+ K2(Qd(pMs+) + E(pMs+) +Qso(pMs+))]
− [(1 +K1F ((p− 1)Ms)))L(pMs−) +K2(Qd(pMs−)
+ E(pMs−) +Qso(pMs−))] =

5∑
i=1

Ii,

where

I1 ≡ K1(F (pMs)− F ((p− 1)Ms))L(pMs−),
I2 ≡ (1 +K1F (pMs))(L(pMs+)− L(pMs−)),
I3 ≡ K2(Qd(pMs+)−Qd(pMs−)),
I4 ≡ K2(E(pMs+)− E(pMs−)),
I5 ≡ K2(Qso(pMs+)−Qso(pMs−)).

By Lemma 3.2

F (pMs)− F ((p− 1)Ms) ≤ −1
2
(Q(Λp) + C(Λp)) .

Therefore, we have

I1 ≤ −K1

2
(Q(Λp) + C(Λp))L(pMs−).(5.8)

On the other hand, the difference of a wave pattern at time t = pNs+ and t = pMs−
is due to interactions, cancellations, and errors by the scheme, so we have

L(pMs+)− L(pMs−) ≤ O(1)e(Λp)Ms.

Hence,

I2 ≤ O(1)(1 +K1F (pMs))e(Λp)Ms.(5.9)

By definition of Qd(t), I3 can be estimated by considering the following two terms: one
term is the product of change of the wave strengths and the L1 norm at t = pMs−,
and the other term is the product of change of the L1 norm times the wave strengths.
Therefore, we have

I3 ≤ C5K2(T.V +G1)e(Λp)Ms+ C5K2(Q(Λp) + C(Λp))L(pMs−).(5.10)

By the same argument as above, we have

I4 ≤ C5K2(T.V +G1)e(Λp)Ms+ C5K2(Q(Λp) + C(Λk))L(pMs−).(5.11)

Similarly, we have

Qso(pMs+)−Qso(pMs−) ≤ O(1)G1e(Λp)Ms,

i.e.,

I5 ≤ C5K2G1e(Λp)Ms.(5.12)
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Summing up all Ik’s (5.8)–(5.12), we have

H(pMs+)−H(pMs−) ≤
(
2C5K2 − K1

2

)
(Q(Λp) + C(Λp))L(pMs−)(5.13)

+ [O(1)(1 +K1F (pMs)) +O(1)K2(T.V +G1) +O(1)K2G1] e(Λp)Ms.

If we integrate (5.6) from (p− 1)Ms to pMs, then by using (5.7) we have

H(pMs−)−H((p− 1)Ms+) ≤ [O(1)(1 +K1F ((p− 1)Ms))(5.14)

+ O(1)K2(T.V +G1) +O(1)K2G1 − c̃K2]

∫
Γ(t)dt

+ [O(1)(T.V +G1)(1 +K1F ((p− 1)Ms)) +O(1)K2(T.V +G1)

+ O(1)K2G1(T.V +G1)]e(Λp)Ms+O(1)K2Q1(Λp)Ms

+ O(1)K2Q1(Λp)L(pMs−),
where the integral is over ((p− 1)Ms, pMs), and we have used the fact that∫ ∑

α

G(x(α))|α|dt = O(1)Q1(Λp).

From (5.13) and (5.14), we have

H(pMs+)−H((p− 1)Ms+) ≤ [O(1)(1 +K1F ((p− 1)Ms))

+ O(1)K2(T.V +G1) +O(1)K2G1 − c̃K2]

∫
Γ(t)dt

+ [O(1)(T.V +G1)(1 +K1F ((p− 1)Ms)) +O(1)K2(T.V +G1)
+ O(1)K2G1(T.V +G1) +O(1)(1 +K1F (pMs+))
+ O(1)K2G1 +O(1)K2]e(Λp)Ms

+

[
2C5K2 +O(1)K2 − K1

2

]
(Q(Λp) + C(Λp))L(pMs−).

Since F (t), G0, G1, and T.V are sufficiently small, we can choose positive constants
K1 and K2 so that

O(1)(1 +K1F ((p− 1)Ms)) +O(1)K2(T.V +G1) +O(1)K2G1 − c̃K2 < 0,

2C5K2 +O(1)K2 − K1

2
< 0.

Then for such K1 and K2, we have

H(pMs+) ≤ H((p− 1)Ms+) +O(1)e(Λp)Ms.

This completes the proof.
Using Lemma 5.7 successively, we obtain the following estimate.
Lemma 5.8. Let ūr(x, t) and v̄r(x, t) be two simplified wave patterns of (1.1)

corresponding to initial data u0(x) and v0(x), respectively. If u0(x)− v0(x) ∈ L1(R),
then we have

H(T ) ≤ H(0) +O(1)(Q(ΛT ) + C(ΛT ))Ms+O(1)(ε+ δ +MsG0)T.

Proof. Let ūr(x, t) and v̄r(x, t) be the simplified wave patterns and T = NMs.
By Lemma 5.7, we have

H(NMs+) ≤ H((N − 1)Ms+) +O(1)e(ΛN )Ms.
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If we use Lemma 5.7 successively in p, we obtain

H(T ) ≤ H(0) +O(1)(Q(ΛT ) + C(ΛT ))Ms+O(1)(ε+ δ +MsG0)T.

This completes the proof.
Let us define the nonlinear functional H(t) = H[u(·, t), v(·, t)] for two Glimm

solutions u(x, t) and v(x, t) by

H[u(·, t), v(·, t)] = lim
r,ε,δ→0

H[ūr(·, t), v̄r(·, t)],

where ūr(x, t) and v̄r(x, t) are the simplified wave patterns of u(x, t) and v(x, t),
respectively. Next, we establish L1 stability as a direct consequence of the above
lemma.

Theorem 5.9. Let u(x, t) and v(x, t) be two weak solutions corresponding to
initial data u0(x) and v0(x), respectively. If u0(x)− v0(x) ∈ L1(R), then we have

H(t) ≤ H(0),
‖u(·, t)− v(·, t)‖L1(R) ≤ C‖u0(·)− v0(·)‖L1(R) for t ≥ 0,

where C is independent of t.
Proof. (1) Let ūr(x, t) and v̄r(x, t) be two simplified wave patterns of (1.1) such

that

lim
r,ε,δ→0

ūr(x, t) = u(x, t), lim
r,ε,δ→0

v̄r(x, t) = v(x, t) in L1
loc(R×R+).

Since H[u(·, t), v(·, t)] = limr,ε,δ→0 H[ūr, v̄r], it follows from Lemma 5.8 that

H(t) ≤ H(0).

(2) Since H[u(·, t), v(·, t)] is equivalent to ‖u(·, t)− v(·, t)‖L1(R) (see section 5.1),
i.e.,

1

C3
‖u(·, t)− v(·, t)‖L1(R) ≤ H(t) ≤ 2C3‖u(·, t)− v(·, t)‖L1(R)

for some positive constant C3. Therefore, we have

‖u(·, t)− v(·, t)‖L1(R) ≤ C3H(t) ≤ C3H(0) ≤ 2C2
3‖u0(x)− v0(x)‖L1(R).

Let us set C = 2C2
3 ; then we have the desired result.

Remark. As an immediate consequence of Theorem 5.9, we have the uniqueness
of the Glimm solutions.
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A RESULT ON THE BLOW-UP RATE FOR THE ZAKHAROV
SYSTEM IN DIMENSION 3∗

VINCENT MASSELIN†
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Abstract. We consider a blow-up solution (u, n, v) of the Zakharov system in R
3:{

iut = −∆u+ nu,
nt = −∇ · v,
vt = −∇(n+ |u|2).

If T is the finite blow-up time, we show the following integral estimate for n:∫ T

0

(∫
R3

|n(x, t)|qdx
) γ

q

dt = +∞,

where ε ∈ ]0, 1
4
], q = 3

2(1−ε)
∈
]
3
2
, 2
]
, and γ > 1

ε
. In particular, this implies that, for a < 1,

sup
t∈[O,T )

(
(T − t)aε

(∫
R3

|n(x, t)|qdx
) 1

q

)
= +∞.

Key words. Zakharov system, blow-up
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1. Introduction. In this paper, we consider the three-dimensional (3D) Zakharov
system 


iut = −∆u + nu,
ntt = ∆n + ∆|u|2,
u(0) = u0, n(0) = n0, nt(0) = n1,

(1.1)

where u : [0, T )× R
3 → C, n : [0, T )× R

3 → R and u0, n0, n1 are initial data.
In fact, we consider the system (1.1) in the Hamiltonian case. That is, we assume

that there is a w0 : R
3 → R such that

nt(0) = n1 = −∆w0.

Then, for all t, there is a w(t) such that

nt(t) = −∆w(t) = −∇ · v(t),

where v(t) = ∇w(t). In this case, (1.1) can be written in the form


iut = −∆u + nu,
nt = −∇ · v,
vt = −∇(n + |u|2),
u(0) = u0, n(0) = n0, v(0) = v0.

(1.2)
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The Cauchy problem for (1.1) or (1.2) has been studied in several papers. In [7],
Ozawa and Tsutsumi proved that (1.1) is locally (in time) well-posed for initial data
(u0, n0, v0) ∈ H2 ×H1 ×H1. With a method introduced by Bourgain for nonlinear
dispersive equations, Bourgain and Colliander [1] and Ginibre, Tsutsumi, and Velo
[3] have improved this result. The last authors have proved that (1.1) is locally (in
time) well-posed for initial data (u0, n0, n1) ∈ Hk × H l × H l−1 provided l ≥ 0 and
2k − (l + 1) ≥ 0; the solution satisfies

(u, n, nt) ∈ C
(
[0, T ), Hk ×H l ×H l−1

)
.

Moreover, ∀t ∈ [0, T ), ∫
R3

|u(x, t)|2dx =

∫
R3

|u0(x)|2dx(1.3)

and, if k = 1,

H(t) = H(0),(1.4)

where

H(t) =

∫
R3

|∇u|2 + n|u|2 +
1

2
|v|2 +

1

2
n2 dx

is the Hamiltonian.
Here, we consider a blow-up solution of (1.2) in C([0, T ), H1), where H1 = H1 ×

L2 × L2: we assume that {
T < +∞,
lim
t→T
|(u, n, v)(t)|H1 = +∞.(1.5)

There is no general result for the existence of a blow-up solution but, in [6], Merle
proved the following blow-up theorem:

Assume that for all time, (u, n, v)(t) are radially symmetric functions. Moreover,
assume that H(0) < 0. Then, (u, n, v)(t) blows up. More precisely, we have the
following alternatives:

(i) (u, n, v)(t) blows up in finite time;
(ii) (u, n, v)(t) blows up in infinite time in H1: (u, n, v)(t) is defined for all t and

limt→+∞ |(u, n, v)(t)|H1
= +∞.

We will use the following notations. B is the ball {x ∈ R
3; |x| < 1}. For

p ∈ [1,+∞] and u a function of x or of (x, t), |u|p will be the Lp-norm in x on R
3.

We fix ε ∈ (0, 1
4 ], q = 3

2(1−ε) ∈
(

3
2 , 2
]

and p ∈ [4, 6) defined by the relation

2

p
+

1

q
= 1.(1.6)

In particular, if ε = 1
4 , q = 2 and p = 4. C will represent any constant which depends

on ε and |(u0, n0, v0)|H1 .
In this paper, we prove the following integral estimate on space and time for n.
Theorem 1.1. Let (u, n, v) ∈ C([0, T );H1) be a blow-up solution of the Zakharov

system (1.2). We assume that when T < ∞ that (u, n, v) blows up at time T . If
γ > 1

ε , then ∫ T

0

(∫
R3

|n(x, t)|qdx
) γ

q

dt = +∞.(1.7)



442 VINCENT MASSELIN

With this result, we can easily prove the following estimate.
Theorem 1.2. Let (u, n, v) ∈ C([0, T );H1) be a blow-up solution of the Zakharov

system (1.2). We assume that when T <∞ that (u, n, v) blows up at time T . If a < 1,
then

sup
t∈[0,T )

(
(T − t)aε|n(t)|q

)
= +∞.(1.8)

Assuming the radial symmetry for (u, n, v), we prove an estimate of n in Lq(B)
as follows.

Theorem 1.3. Let us assume that (u, n, v) ∈ C([0, T );H1) is a radially symmetric
solution of (1.2). We assume that when T < ∞ that (u, n, v) blows up at time T . If
a ∈ (0, 1

3 ), then

sup
t∈[0,T )

(
(T − t)

aε |n(t)|Lq(B)

)
= +∞.(1.9)

In [4], Landman et al. have worked out a numerical computation which suggests
there is solution of (1.2) which blows up with the profile



ũ(x, t) =
2

3(T − t)
P
( x√

3(T − t)
2
3

)
ei(T−t)− 1

3 ,

ñ(x, t) =
1

3(T − t)
4
3

N
( x√

3(T − t)
2
3

)
,

ṽ(x, t) =
2

3

1

(T − t)
5
3

w
( x√

3(T − t)
2
3

)x
r
,

(1.10)

where (P,N,w) are radially symmetric and the solution of the system


∆P = P + NP,
5w + 2rwr = −(P 2)r,
4w + 2rwr = −(r2N)r

(1.11)

with r = |x|. This system is equivalent to{
∆P = P + NP,
1
2 (2r2Nrr + 13rNr + 14N) = ∆P 2.

(1.12)

In [5], we prove that there exist infinitely many radial and C∞ solutions of (1.11), (1.12)
such that P is positive decreasing and satisfying limr→+∞ P (r) = 0. Moreover, for
such a solution

lim
r→+∞ 3r2N(r) = −2P 2(0) �= 0.

Then, when t tends to T , |ñ(t)|Lq(B) is equivalent to (T − t)−
4ε
3 |N |Lq(R3), and for all

γ > 3
4ε ∫ T

0

(∫
R3

|ñ(x, t)|qdx
) γ

q

dt = +∞.

Therefore, the result of Theorem 1.1 is not exactly optimal: we prove this for γ >
1
ε instead of γ > 3

4ε . Moreover, we don’t know if there exists c > 0 such that

|n(t)|Lq(B) ≥ c(T − t)
4
3 ε. We can prove only the following:

lim
t→T
|n(t)|Lq(B) = +∞.
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(See the end of the proof of Theorem 1.3.)
In the second part of this paper we prove the results. First, we recall some useful

results. Then, we use the conservation of the Hamiltonian, the dispersion effect of the
Schrödinger group eit∆, and a Gronwall lemma to prove the space-time estimate (see
Theorem 1.1). Finally, we prove Theorem 1.3.

2. Proofs of the theorems.

2.1. Some general results. First, let us state some inequalities with our nota-
tions, as follows.

Lemma 2.1.
• If φ ∈ H1(R3) is radially symmetric, then φ ∈ L∞(R3 \B) and

|φ|2L∞(R3\B) ≤ C|∇φ|2|φ|2.(2.1)

• If Ω is a domain in R
3 and φ ∈ H1(Ω), then φ ∈ Lp(Ω) and

|φ|Lp(Ω) ≤ C|∇φ|1−εL2(Ω)|φ|εL2(Ω),(2.2)

in particular, φ ∈ L4(Ω) and

|φ|L4(Ω) ≤ C|∇φ| 34L2(Ω)|φ|
1
4

L2(Ω.(2.3)

• Let S(t) = eit∆ and p′ = p
p−1 . There exists a constant C > 0 such that

∀φ ∈ Lp
′
(R3) and ∀t > 0,

|S(t)φ|p ≤ C

t1−ε
|φ|p′ .(2.4)

For a blow-up solution, we have the following limits, which are more precise than
(1.5).

Lemma 2.2. If (u, n, v) is a blow-up solution in H1 and T is the finite blow-up
time, then

lim
t→T
|u(t)|4 = +∞,(2.5)

lim
t→T
|∇u(t)|2 = +∞.(2.6)

Proof. If (2.5) is false, then there is a sequence (tk) and a constant c such that
lim tk = T and ∀ k

|u(tk)|4 ≤ c.

Then, according to the conservation of the Hamiltonian and Hölder inequalities,

1

2

∫
R3

n2(x, tk)dx ≤ H +

∣∣∣∣
∫

R3

n(x, tk)|u|2(x, tk)dx

∣∣∣∣
≤ H + |n(tk)|2|u(tk)|24.

Therefore, (|n(tk)|2) is bounded. Then, using again the conservation of H, we get∫
R3

|∇u(x, tk)|2dx +
1

2

∫
R3

n2(x, tk) + |v(x, tk)|2dx ≤ H + |n(tk)|2|u(tk)|24 ≤ C,
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which contradicts the blow-up assumption.
Now (2.6) comes from the inequality (2.3) and the conservation of the L2-norm.
We prove an integral inequality on |u(t)|p and |n(t)|q as follows.
Lemma 2.3. There exists a positive constant C such that ∀t ∈ [0, T ),

|u(t)|p ≤ C

(
1 +

∫ t

0

1

(t− s)1−ε
|n(s)|q|u(s)|pds

)
(2.7)

and, in particular,

|u(t)|4 ≤ C

(
1 +

∫ t

0

1

(t− s)
3
4

|n(s)|2|u(s)|4ds
)
.(2.8)

Proof. We write the equation iut = −∆u + nu on the integral form:

u(t) = S(t)u0 − i

∫ t

0

S(t− s)n(s)u(s)ds.

Then, according to the Minkowski inequality,

|u(t)|p ≤ |S(t)u0|p +

∫ t

0

|S(t− s)n(s)u(s)|pds.

On the one hand, by (2.4), we have

|S(t− s)n(s)u(s)|p ≤ c

(t− s)1−ε
|n(s)u(s)|p′ .

But, 1/p + 1/q = 1− 1/p = 1/p′, so according to the Hölder inequality,

|n(s)u(s)|p′ ≤ |n(s)|q|u(s)|p
and

|S(t− s)n(s)u(s)|p ≤ 1

(t− s)1−ε
|n(s)|q|u(s)|p.

On the other hand, according to (2.2),

|S(t)u0|p ≤ c|S(t)u0|ε2|∇(S(t)u0)|1−ε2

≤ c|u0|ε2|∇u0|1−ε2

and (2.7) comes. In the particular case ε = 1/4, p = 4, q = 2, we obtain (2.8).

2.2. Proof of the integral estimate. By contradiction, let us assume there
exists γ0 > 1

ε such that

∫ T

0

(∫
R3

|n(x, t)|qdx
) γ0

q

dt < +∞.(2.9)

By Lemma 2.3, we have

|u(t)|p ≤ C

(
1 +

∫ t

0

1

(t− s)1−ε
|n(s)|q|u(s)|pds

)
,
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where 1 − ε + 1
γ < 1 and |n(s)|q ∈ Lγ(0, T ). Therefore, a Gronwall lemma (see,

for example, [2, Lemma 8.1.1]) implies that there exists a constant c > 0 such that
∀ t ∈ [0, T ),

|u(t)|p ≤ C.(2.10)

Now we display two cases. At first, if ε = 1
4 , then p = 4 and (2.10) contradicts Lemma

2.2. Also, we have shown that ∀γ > 4,∫ T

0

(∫
R3

|n(x, t)|2dx
) γ

2

dt = +∞.(2.11)

Now we return to the general case. By the conservation of the Hamiltonian,

1

2
|n(t)|22 ≤ H +

∣∣∣∣
∫

R3

n(x, t)|u(x, t)|2dx
∣∣∣∣ .

But 1
q + 1

p/2 = 1, so, by the Hölder inequality,

1

2
|n(t)|22 ≤ H + |n(t)|q|u(t)|2p

≤ H + C|n(t)|q.
Therefore,

∫ T

0

(∫
R3

|n(x, t)|2dx
) 2γ0

2

dt < +∞

with 2γ0 > 2
ε ≥ 8. So this contradicts the previous case ε = 1

4 and concludes the
proof of the space-time estimate.

2.3. The radial case. We consider a ∈ (0, 1
3 ) and we assume that (u, n, v) is a

radially symmetric blow-up solution such that ∀ t, (u, n, v)(t) ∈ H1 × L2 × L2 and

|n(t)|Lq(B) ≤ c

(T − t)aε
.(2.12)

First, we show the following estimate of n(t) in L2:

|n(t)|2 ≤ C

(T − t)
3a
4

.(2.13)

According to the conservation of the Hamiltonian, we have∫
R3

|∇u(x, t)|2dx +
1

2

∫
R3

n(x, t)2dx ≤ H +

∣∣∣∣
∫
B

n(x, t)|u(x, t)|2dx
∣∣∣∣

+

∣∣∣∣∣
∫

R3\B
n(x, t)|u(x, t)|2dx

∣∣∣∣∣ ,
but 1

q + 1
p/2 = 1, so by the Hölder inequality, (2.2), and (2.12),

∣∣∣∣
∫
B

n(x, t)|u(x, t)|2dx
∣∣∣∣ ≤

(∫
B

|n(x, t)|qdx
) 1

q
(∫

B

|u(x, t)|pdx
) 2

p

≤ C
1

(T − t)aε
|∇u(t)|2(1−ε)2 .
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On the other hand,∣∣∣∣∣
∫

R3\B
n(x, t)|u(x, t)|2dx

∣∣∣∣∣ ≤ 1

2

∫
R3\B

n(x, t)2dx +
1

2

∫
R3\B

|u(x, t)|4dx

≤ 1

2

∫
R3\B

n(x, t)2dx +
1

2
|u(t)|2L∞(R3\B)|u(t)|22

≤ 1

2

∫
R3\B

n(x, t)2dx + C|∇u(t)|2

by the inequality (2.1). Then

(∫
R3

|∇u(x, t)|2dx
)ε
≤ H +

(∫
R3

|∇u(x, t)|2dx
)ε−1

+
c

(T − t)aε
.

However, by Lemma 2.2 (see (2.6)), lim
(∫ |∇u|2)ε−1

= 0, so∫
R3

|∇u(x, t)|2dx ≤ c

(T − t)
a
2
.

Then, by (2.3), we get

|u(t)|4 ≤ C

(T − t)
3a
8

.

By the conservation of the Hamiltonian,

1

2

∫
R3

n2(x, t)dx ≤ H + |n(t)|2|u(t)|24

and (2.13) follows. Then, for γ ∈]4, 4
3a [ (a < 1

3 ),

∫ T

0

|n(t)|γ2dt < +∞,

which contradicts Theorem 1.2 and concludes the proof. To show that |n(t)|Lq(B) →
+∞ as t→ T , we use the same method: if there exists tk → T such that |n(tk)|Lq(B) ≤
c, then we prove as above that

∫
R3 |∇u(x, tk)|2dx ≤ c.
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Abstract. We consider the univariate two-scale refinement equation ϕ(x) = ΣN
k=0ckϕ(2x− k),

where c0, . . . , cN are complex values and Σck = 2.
This paper analyzes the correlation between the existence of smooth compactly supported so-

lutions of this equation and the convergence of the corresponding cascade algorithm/subdivision
scheme. We introduce a criterion that expresses this correlation in terms of the mask of the equa-
tion. We show that the convergence of the subdivision scheme depends on values that the mask
takes at the points of its generalized cycles. This means in particular that the stability of shifts of
refinable function is not necessary for the convergence of the subdivision process. This also leads to
some results on the degree of convergence of subdivision processes and on factorizations of refinable
functions.

Key words. refinement equations, cascade algorithm, subdivision process, degree of conver-
gence, stability, cycles, tree

AMS subject classifications. 26C10, 39B32, 42A05, 42A38

PII. S0036141099356283

1. Introduction. Refinement equations have been studied by many authors in
great detail in connection with their role in the study of wavelets and of subdivi-
sion schemes in approximation theory and the design of curves and surfaces. In this
paper we study the correlation between the existence of smooth solutions of refine-
ment equations and the convergence of the corresponding subdivision schemes. We
restrict ourselves to univariate equations having compactly supported mask. We ob-
tain a criterion for the convergence of subdivision process under the condition that
the associated refinement equation has a smooth solution.

Throughout the paper we denote by T = R/2πZ the unit circle, by H the space of
entire functions on C, by Cl the space of l times continuously differentiable functions
on R, by C0 = C the space of continuous functions, by Cl0 the space of compactly
supported functions from Cl, and by C0 the space of compactly supported continuous
functions on R. A sequence {fk} converges to zero in Cl0 if it converges to zero in Cl
and the supports of fk, k ∈ N are uniformly bounded.

Consider a refinement equation

ϕ(x) =
N∑
k=0

ckϕ(2x− k),(1.1)

where ck ∈ C,
∑
k ck = 2. It is well known that a C0-solution of this equation (refinable

function), if it exists at all, is unique up to normalization, has its support on the
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http://www.siam.org/journals/sima/33-2/35628.html
†Department of Mechanics and Mathematics, Moscow State University, Vorobyovy Gory 3,
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segment [0, N ], and can be represented in the frequency domain by the formula

ϕ̂(ξ) = ϕ̂(0)

∞∏
r=1

m

(
ξ

2r

)
,(1.2)

where m(ξ) = 1
2

∑N
k=0 cke

−ikξ is the mask of (1.1) (as usually we denote f̂(ξ) =∫
f(x)e−iξxdx). For a given mask a(ξ) let us denote by [a] the corresponding refine-

ment equation. Let us also define the subspaces of the space C0 as

Ml = {f ∈ C0 | f̂(ξ)(1− e−iξ)−l−1 ∈ H}, l ≥ 0,(1.3)

and the subspaces of Cl0 as

Ll = {f ∈ Cl0 | f̂ (l) ∈Ml}, l ≥ 0.

In other words the Fourier transform of a function from M l has zeros of order ≥ l+1
at all the points 2πk, k ∈ Z. The Fourier transform of a function from Ll has zero at
the point ξ = 0 and has zeros of order ≥ l + 1 at all the points 2πk, k ∈ Z \ {0}.

Let us also denote L = L0 =M0. By Poisson summation formula we have

f ∈ L ⇔ f ∈ C0,
∑
k

f(x− k) ≡ 0.

The cascade algorithm for refinement equations was introduced in [D]. A single iter-
ation of that algorithm is fn = Tfn−1, where f0 is an initial function from C0 and
Tf(x) =

∑
k ckf(2x−k) is the subdivision operator associated to (1.1). This operator

is defined on the space C0 and has the form

T̂ f(ξ) = m(ξ/2)f̂(ξ/2)(1.4)

in the frequency domain. If fn converges in the space Cl to a function ϕ ∈ Cl0 (l ≥ 0),
then obviously it converges in Cl0 and ϕ is the solution of (1.1). Moreover, in that
case the function g = f0 − ϕ necessarily belongs to Ll (see [CDM], [Du1]). The
cascade algorithm converges in Cl if Tng → 0, n → ∞ for any g ∈ Ll. Properties of
the cascade algorithms have been studied by many authors in various contexts. This
algorithm gives a simple way for approximation of refinable functions. In particular,
this was put to good use in the study of wavelets [D],[DL1], [Du2]. On the other
hand, the convergence of the cascade algorithm is equivalent to the convergence of
the corresponding subdivision scheme (see [RS] for many references). For a given mask
m(ξ), we say that the subdivision process {m} converges in Cl if the corresponding
cascade algorithm or the corresponding subdivision scheme converges in that space.

It is clear that the convergence of the subdivision process in Cl implies that
the corresponding refinement equation has a Cl0-solution. In general, the converse is
not true. (See [DL2] and [CDM] for many examples. See also [CH], [W], [RS] for
general discussions of this aspect.) In this paper we analyze the correlation between
the existence of smooth solutions of refinement equations and the convergence of
the corresponding subdivision process. In other words, we study stability of the
subdivision operator at its fixed point. Let us first formulate several previously known
results on this problem.
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2. Preliminary results. Necessary conditions for the convergence of subdivi-
sion processes were first introduced in the work [DGL2].

If a subdivision process {m} converges in Cl, then its mask can be factored as

m(ξ) =

(
1 + e−iξ

2

)l+1

a(ξ)(2.1)

for some trigonometric polynomial a(ξ). In particular, the condition

m(ξ) =

(
1 + e−iξ

2

)
a(ξ)(2.2)

is necessary for the convergence of the subdivision process in C [DGL2].
For a given maskm denote by l(m) the maximal integer l such that condition (2.1)

is satisfied. So if a subdivision process {m} converges in Ck, then k ≤ l(m). Let us
remark that condition (2.1) is not necessary for the existence of Cl0-solutions of the
refinement equation [DL2], [P2].

Sufficient conditions for the convergence of the subdivision process in the space
C (i.e., in the case l = 0) were introduced in [CDM].

If a refinement equation [m] has a C0-solution and that solution is stable in the
space L∞(R) (i.e., its integer translates possess Riesz basis property in that space),
then the subdivision process {m} converges in C [CDM].

This condition is simplified by the criterion of stability of refinable functions
proved in [JW] and [Z] and introduced independently in [He1]. To formulate it we
need some notation. Let p(ξ) be a trigonometric polynomial. If for some α ∈ T we
have p(α/2) = p(π + α/2) = 0, then the pair {α/2, π + α/2} is a pair of symmetric
roots for p(ξ). In order to be defined, we set that for any α ∈ T the value α/2 ∈ T

has the corresponding real value from the half-interval [0, π). Further, a given set
b = {β1, . . . , βn} ⊂ T, where n ≥ 2, is called a cycle of the polynomial p(ξ) if
2βj = βj+1 for j = 1, . . . , n (we set βn+1 = β1) and p(βj + π) = 0 for all j = 1, . . . , n.
We consider only irreducible cycles, i.e., we suppose everywhere that all elements
of a cycle are different. Now let us remember the criterion of stability of refinable
functions.

The C0-solution of a refinement equation is stable in L∞ if and only if its mask
has neither symmetric roots nor cycles [JW], [Z], [He1].

Those two results can be summarized in the following theorem.
Theorem 2.1 (see [CDM],[JW],[Z],[He1]). Suppose a mask m satisfying (2.2)

has neither symmetric roots nor cycles; if the equation [m] has a C0-solution, then the
process {m} converges in C.

Remark 1. The statement of Theorem 2.1 can also be formulated in terms of
Cohen’s criterion (see [D]). Namely, it was shown in [V, Proposition 2.4] that a mask
satisfies Cohen’s criterion if and only if it has neither symmetric roots nor cycles.

3. Statement of the fundamental theorems. In this paper we give a criterion
of stability of subdivision operator at its fixed point (Theorem 3.1). We will see that
symmetric roots of mask do not influence the convergence of subdivision process
(Corollary 3). This means in particular that the stability of solutions is not necessary
for the convergence of the subdivision process. The convergence depends on values of
the mask at the points of cycles.

To formulate the criterion we need some further notation. Everywhere below we
consider trigonometric polynomials without positive powers, i.e., polynomials of the
form p(ξ) =

∑N
k=0 ake

−ikξ. As usual we set deg p = N (assuming aN �= 0).



THE STABILITY OF SUBDIVISION 451

To an arbitrary trigonometric polynomial p we associate a polynomial R[p] as
follows: suppose r(ξ) is the polynomial of smallest degree such that the function
p(ξ)r(ξ)
r(2ξ) is a polynomial without symmetric roots; then we set R[p](ξ) = p(ξ)r(ξ)

r(2ξ) . The

reader will have no difficulty in showing that the mapping p �→ R[p] is well defined.
For given p, the polynomial R[p] can by easily found algorithmically. If p has no
symmetric roots, then R[p] = p. If {α/2, π + α/2} is a pair of symmetric roots of
p, then we pass from p(ξ) to the polynomial pα(ξ) =

p(ξ)(1−ei(α−ξ))
1−ei(α−2ξ) . After several

steps we obtain a polynomial p̃(ξ) that has no symmetric roots. In general, there
exist several different ways to realize each step of this algorithm: if there exist several
pairs of symmetric roots, we can choose any of them to pass to the next polynomial.
Nevertheless, the result (i.e., the polynomial p̃(ξ)) does not depend on that choice and
coincides with the polynomial R[p]. The proof of this fact is left to the reader.

For any trigonometric polynomial p and any finite subset Y = {α1, . . . , αn} ⊂ T,
we denote ρp(Y ) = (

∏n
q=1 |p(αq)|)1/n. If the set Y is cyclic (i.e, αq+1 = 2αq, q =

1, . . . , n, where αn+1 = α1), then ρp(Y ) = ρR[p](Y ). (The proof is trivial.)
Now let us formulate the criterion of stability of subdivision process.
Theorem 3.1. Suppose a refinement equation [m] has a Cl0-solution l ≥ 0; then

the process {m} converges in Cl if and only if the mask m satisfies (2.1) and for any
cycle b of the polynomial R[m] we have ρm(b) < 2

−l.
The simplest corollary of this theorem is the following generalization of Theo-

rem 2.1 from the case l = 0 to an arbitrary integer factor l ≥ 0.
Corollary 1. Suppose a mask m satisfying (2.1) has neither symmetric roots

nor cycles; if the equation [m] has a Cl0-solution, then the process {m} converges in
Cl.

Another problem is to explore the degree of convergence of the subdivision pro-
cesses. For a given integer l ≥ 0, a mask m, and a function f ∈ Ll denote

νl(m, f) = − lim
n→∞

log2 ‖Tn[f (l)]‖C
n

,

where T is the subdivision operator associated to m. (We set log2 0 = −∞.) Also for
a subspace V ⊂ Ll we denote νl(m,V) = inff∈V νl(m, f). The value νl(m) = νl(m,Ll)
is the degree of convergence of the process {m} in the space Cl.

For any mask m we have νl(m) ≤ l + 1 (see [DL1]). Furthermore, it was shown
in [DL1] and [HC] that a process {m} converges in Cl if and only if νl(m) > l. In
particular, the inequality ν0(m) > 0 means that {m} converges in C. Let L be the
maximal integer such that {m} converges in CL. (If the process {m} does not converge
in C, then we set L = 0.) The values νl(m), l = 0, 1, . . . are connected as follows:

νl(m) = l + 1 for l < L; νl(m) = νL(m) for l ≥ L.(3.1)

The proof can be found in [DL2]. The value νL(m) is said to be the degree of
convergence of the process {m} and is denoted in what follows by ν(m). Thus, if
ν(m1) = ν(m2), then νl(m1) = νl(m2) for any l ≥ 0.

The degree of convergence of subdivision processes in various functional spaces
was studied in [CDM], [W], [Du1], [Du2], [R3], [RS]. The following theorem reduces
this problem (in the space Cl) from general refinement equations to the case of refine-
ment equations having stable solutions.

Theorem 3.2. For a given mask m satisfying (2.1) for some integer l ≥ 0 denote
m1(ξ) = R[m](ξ)/

∏q
k=1

∏
β∈bk

(1 + ei(β−ξ)), where {b1, . . . ,bq} is the set of cycles
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of the polynomial R[m] (counting with multiplicity). Then we have the following: the
equation [m] has a Cl0-solution if and only if [m1] does; furthermore,

νl(m) = min{νl(m1),− log2 ρm(b1), . . . ,− log2 ρm(bq)}.

Corollary 2. Under the conditions of Theorem 3.2 we have

νk(m) = min{νk(m1),− log2 ρm(b1), . . . ,− log2 ρm(bq)} for any k ≤ l.

Moreover, if l(m) = l(m1), then

ν(m) = min{ν(m1),− log2 ρm(b1), . . . ,− log2 ρm(bq)}.

Remark 2. Since the mask m1 has neither symmetric roots nor cycles, it follows
that the Cl0-solution of the equation [m1] is stable. Some previously known results on
subdivision processes deal with the stable case (see, for instance, [CDM]). Theorem 3.2
makes it possible to extend those results to the case of general refinement equations.

Corollary 3. For an arbitrary mask m satisfying (2.1) we have

νl(m) = νl(R[m]).

Moreover, in the case l(m) = l(R[m]) we have ν(m) = ν(R[m]).
To prove this, it is sufficient to apply Theorem 3.2 to the masks m and R[m] and

note that ρm(bi) = ρR[m](bi).
Thus symmetric roots of the mask do not have influence on the degree of conver-

gence of the subdivision process. So the sufficient conditions from Corollary 1 are not
necessary for the convergence.

Remark 3. It can easily be shown that l(m) ≤ l(R[m]) for any mask m. There
are masks such that l(m) < l(R[m]) and, moreover, ν(m) < ν(R[m]). That is why
the condition l(m) = l(R[m]) is essential in the statement of Corollary 3 (see [P2]).

Remark 4. (The degree of convergence in various subspaces of C0). Consider the
family of embedded subspaces {Ml} defined from (1.3). It was shown in [DL2],[Du1]
that f ∈ Ml whenever ν0(m, f) > l. So the subspaces {Ml} can be considered as
spaces of fast convergence of the subdivision processes. Moreover, if ν0(m,Ml) > l,
then the mask m satisfies (2.1) and hence all the subspaces Mk, k = 0, · · · , l, are
invariant with respect to the corresponding subdivision operator. So it is natural
to restrict a subdivision operator to suitable subspace Ml and consider the value
ν0(m,Ml) instead of νl(m) (see, for instance, [CDM], [Du1], [Du2]). Theorems 3.1
and 3.2 of this paper can be reformulated in those terms without any change.

Theorems 3.1 and 3.2 will be proved in the next section. Then, in section 5, we
introduce the notion of generalized cycles and establish a correlation between zeros
of mask m and cycles of the polynomial R[m]. As a corollary we shall formulate the
criterion of Theorem 3.1 in terms of zeros of the mask m (without the transfer to the
polynomial R[m]).

4. Proof of the main results. To prove Theorems 3.1 and 3.2 let us first
consider the case l = 0. The proof will be split into several lemmas and propositions.

For a finite family of real values ∆ = {δ1, . . . , δn} (that may coincide), let

C0{∆} = C0{δ1, . . . , δn} =
{
f ∈ C0 | f̂(ξ)/

n∏
q=1

(1− ei(δq−ξ)) ∈ H
}
.
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It is clear thatMl = C0{0, · · · , 0} (l+1 zeros). From the Poisson summation formula
it follows that for any f ∈ C0{∆} we have∑

k∈Z

eikδqf(x− k) = 0, q = 1, . . . , n.(4.1)

Let us also denote

L∆ = C0{0,∆} = C0{0, δ1, . . . , δn} and L∆[0, N ] = {f ∈ L∆ | supp f ∈ [0, N ]}.
For given δ ∈ R, consider the difference operator Sδ acting from the space C0{∆}

into the space C0{∆, δ} = C0{δ1, . . . , δn, δ} and defined by the formula Sδψ(x) =
ψ(x)− eiδψ(x− 1).

Lemma 4.1. For any δ ∈ R the operator Sδ is a homeomorphism of the spaces
C0{∆} and C0{∆, δ}.

Proof. For arbitrary ϕ ∈ C0{∆, δ} denote ψ(x) = S−1
δ ϕ(x) =

∑+∞
k=0 e

ikδϕ(x− k).
If suppϕ ⊂ [a, b] for some integers a, b, then by (4.1) we have suppψ ⊂ [a, b − 1].
Thus, ψ ∈ C0. It now follows that ψ ∈ C0{∆}. It remains to note that Sδψ = ϕ and
the operators Sδ and S−1

δ are obviously continuous.
The following proposition is the first step in the proof of Theorems 3.1 and 3.2.
Proposition 1. Suppose a mask m(ξ) satisfying (2.2) possesses a pair of sym-

metric roots α/2 and π + α/2. Let mα(ξ) =
m(ξ)(1−ei(α−ξ))

1−ei(α−2ξ) . Then the equation [m]

has a C0-solution if and only if [mα] does. Furthermore, ν0(m) = ν0(mα).
Proof. Let T and Tα be the subdivision operators associated to the masks m and

mα, respectively.
Consider the operator (Pψ) (x) =

∑N−2
k=0 pkψ(2x−k), where p0, . . . , pN−2 are the

coefficients of the polynomial

p(ξ) =

N−2∑
k=0

pke
−ikξ =

m(ξ)

1− ei(α−2ξ)
.

That is to say that in the frequency domain P̂ψ(ξ) = ψ̂(ξ/2)p(ξ/2). It is clear that
P is a continuous operator on C0. Furthermore, it preserves the subspace L. Indeed,
for any ψ ∈ L and n ∈ Z we have P̂ψ(2πn) = ψ̂(πn)p(πn) = 0. (If n is even, then

ψ̂(πn) = 0; if n is odd, then p(πn) = 0, since the mask m satisfies (2.2).) Now observe
that

PSα = Tα, SαP = T.(4.2)

To prove this we apply (1.4) and get, consequently,

P̂Sαψ(ξ) = p(ξ/2)(1− ei(α−ξ/2))ψ̂(ξ/2) = mα(ξ/2)ψ̂(ξ/2) = T̂αψ(ξ).

The equality SαP = T can be proved in the same way.
Let ψ ∈ C0 be a solution of the equation [mα]. Since T (Sαψ) = SαPSαψ =

SαTαψ = Sαψ, we see that the function Sαψ is a solution of the equation [m]. Con-
versely, if a function ϕ ∈ C0 satisfies Tϕ = ϕ, then by (4.2) we have ϕ ∈ C0{α}.
Hence, by Lemma 4.1, the function ψ = S−1

α ϕ is well defined and belongs to C0. Now,
arguing as above, we obtain Tαψ = ψ.

From (4.2) it follows that T k = SαT
k−1
α P for every k ≥ 1. Therefore, since P

and Sα are continuous and preserve the subspace L, we see that ν0(m) ≥ ν0(mα).
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Conversely, from the equality T kα = PT k−1Sα it follows that ν0(mα) ≥ ν0(m). Propo-
sition 1 is proved.

So using Proposition 1 we can consequently eliminate all symmetric roots and
pass from the refinement equation with mask m to one with mask R[m]. The next
step is to eliminate all cycles of the polynomial R[m]. In order to realize it we use the
matrix technique, which was successfully applied in the study of subdivision processes
[MP],[CDM], [DL1],[W],[E]. For a given refinement equation [m] consider the two
linear operators B0 and B1 acting on C

N and defined by N ×N matrices as follows:

(B0)ks = c2k−s−1, (B1)ks = c2k−s,(4.3)

where cj is the coefficient of (1.1) if j ∈ {0, 1, . . . , N}, and cj = 0 otherwise. As
usual, we denote by span (M) the linear span of a given set M in C

N , by A∗ the
conjugate operator for a given operator A, and by V ⊥ the orthogonal complement of
a subspace V in Euclidean space. Let us recall the notion of the joint spectral radius
of finite-dimensional linear operators:

ρ̂(A1, A2) = lim
n→∞ max

(d1,...,dn)∈{0,1}n
.‖Ad1 · · ·Adn‖1/n.

See [RoS], [BW], [CH], [LW], [P1] for more details about the joint spectral radius.
We need the following two lemmas. The first one is a direct corollary of results of

the works [DL2] and [CH]. The proof of the second one can be found in [HC] or [P1].
Lemma 4.2 (see [DL2], [CH]). Let ∆ be a finite family of real values such that

the space L∆ is invariant with respect to the subdivision operator T ; then

ν0(m,L∆) = − log2 ρ̂(B0|V , B1|V ),
where

V = span {(f(x), . . . , f(x+N − 1))T ∈ C
N | f ∈ L∆[0, N ], x ∈ [0, 1]}.

In particular,

ν0(m) = ρ̂(B0|W , B1|W ), where W =
{
(x1, · · · , xN )T ∈ C

N |
∑

xj = 0
}
.

Lemma 4.3 (see [HC], [P1]). Let A0 and A1 be linear operators acting on a
finite-dimensional Euclidean space E. Suppose E0 is a nontrivial common invariant
subspace of these operators; then

ρ̂(A0, A1) = max
{
ρ̂(A0|E0 , A1|E0), ρ̂(A

∗
0|E⊥

0
, A∗

1|E⊥
0
)
}
.

Now we are able to realize the second step of the proof of Theorems 3.1 and 3.2.
Proposition 2. Suppose a mask m(ξ) possesses a cycle b = {β1, . . . , βn}. De-

note by m̃(ξ) the polynomial m(ξ)/
∏n
k=1(1 + ei(βk−ξ)). Then the equation [m] has

a C0-solution if and only if [m̃] does. Furthermore, ν0(m) =min{ν0(m̃),− log2 ρm(b)}.
Proof. Consider the polynomial q(ξ) =

∏n
k=1(1− ei(βk−ξ)) and the corresponding

operator Q = Sβ1 ◦ · · · ◦ Sβn , which has the form Q̂ψ(ξ) = ψ̂(ξ)q(ξ) in the frequency
domain. It follows from Lemma 4.1 that Q maps the space C0 one-to-one into C0{b}
and Q−1 is well defined and continuous on C0{b}. Let T and T̃ be the subdivision
operators associated to the masks m and m̃, respectively. For an arbitrary function
f ∈ C0{b} we have

T̂ f(ξ)/q(ξ) = m(ξ/2)f̂(ξ/2)/q(ξ) = m̃(ξ/2)f̂(ξ/2)/q(ξ/2) ∈ H.
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Consequently, Tf is in C0{b} whenever f ∈ C0{b}. This yields that the operator
equality

T̃ = Q−1TQ(4.4)

holds on the space C0. If a function ψ ∈ C0 satisfies the equality T̃ψ = ψ, then ϕ = Qψ
satisfies Tϕ = ϕ. Conversely, assume that a function ϕ ∈ C0 satisfies Tϕ = ϕ. First
let us show that ϕ belongs to C0{b}. Using (1.2) we get

ϕ̂(ξ) = ϕ̂(0)
∞∏
r=1

m

(
ξ

2r

)
= ϕ̂(0)

∞∏
r=1

q(ξ/2r−1)

q(ξ/2r)
m̃

(
ξ

2r

)
=

q(ξ)ϕ̂(0)

q(0)

∞∏
r=1

m̃

(
ξ

2r

)
.

Since the function
∏∞
r=1 m̃(

ξ
2r ) is entire, it follows that ϕ ∈ C0{b}, whence the function

ψ = Q−1ϕ is well defined and obviously satisfies T̃ψ = ψ.
Now in order to prove the equality ν0(m) = min {ν0(m̃),− log2 ρm(b)} we are

going to use Lemmas 4.2 and 4.3. Let B0 and B1 be the linear operators acting
in C

N and defined from (4.3). For arbitrary t ∈ T let us denote the vector u(t) =
(1, eit, e2it, . . . , ei(N−1)t)T ∈ C

N . Further, define the following subspaces:

U = span {u(β1), . . . , u(βn)}, W = u(0)⊥ =
{
(x1, . . . , xN ) ∈ C

N |
∑

xk = 0
}
,

and

W̃ = {u(0), u(β1), . . . , u(βn)}⊥.

Finally, denote Ai = Bi|W , Ãi = Bi|W̃ , i = 0, 1.

From (4.4) it follows that the equality T k = QT̃ kQ−1 holds on the space Lb for
any k ≥ 1. This yields that ν0(m̃) = ν0(m,Lb). If we combine this with Lemma 4.2,
we get ν0(m̃) = − log2 ρ̂(Ã0, Ã1). Now it remains to prove the equality

ρ̂(A0, A1) = max{ρ̂(Ã0, Ã1), ρm(b)}.(4.5)

To do this observe the following property of operators B0 and B1:

(4.6)

B∗
0u(t) = m

(
t

2

)
u

(
t

2

)
+m

(
t

2
+ π

)
u

(
t

2
+ π

)
, t ∈ T,

B∗
1u(t) = e−

it
2 m

(
t

2

)
u

(
t

2

)
+ e−i(

t
2+π)m

(
t

2
+ π

)
u

(
t

2
+ π

)
, t ∈ T.

(This can be easily shown by a direct calculation; see also [P1] or [CD2].) Therefore,
for arbitrary βk ∈ b the following hold:

B∗
0u(βk) = m(βk−1)u(βk−1), B∗

1u(βk) = e−iβk−1m(βk−1)u(βk−1).

Therefore, for any βk ∈ b and any set of indices {d1, . . . , dn} ∈ {0, 1}n we have

B∗
d1 · · ·B∗

dnu(βk) = eiµ

(
n∏
j=1

m(βj)

)
u(βk),
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where µ ∈ T depends on β and d1, . . . , dn. Since the vectors {u(βk)}nk=1 form a basis
of the space U , it follows that the operator B∗

d1
· · ·B∗

dn
|U is expressed in that basis by

a diagonal matrix and moreover, the modulus of each diagonal entry of that matrix
is equal to |∏n

j=1 m(βj)| = (ρm(b))n. This implies immediately that
ρ̂(B∗

0 |U , B∗
1 |U ) = ρm(b).(4.7)

If we apply Lemma 4.3 to the space W , its subspace W̃ , and operators A0, A1

defined above, we obtain

ρ̂(A0, A1) = max
{
ρ̂(Ã0, Ã1), ρ̂(A

∗
0|H , A∗

1|H)
}
,

where H is the orthogonal complement of the subspace W̃ in the space W . Let us
finally note that A∗

i |H = PHB∗
i |UP−1

H , i = 0, 1, where PH is the operator of orthog-
onal projection from U to H. (Since the vectors u(0), u(β1), . . . , u(βn) are linearly
independent, it follows that P−1

H is well defined on the space H.) Combining this with
(4.7), we get

ρ̂(A∗
0|H , A∗

1|H) = ρ̂(B∗
0 |U , B∗

1 |U ) = ρm(b),

which completes the proof of Proposition 2.
Suppose we have a subdivision process {m0}; then we pass to the process {R[m0]}

and, using Proposition 2, consequently eliminate all cycles of the mask R[m0]. As a
result we obtain the mask m1 that has neither symmetric roots nor cycles. So we
prove the following statement, which is a weaker version of Theorem 3.2.

Proposition 3. For a given mask m0 satisfying (2.2) let us denote

m1(ξ) = R[m0](ξ)/

q∏
k=1

∏
β∈bk

(1 + ei(β−ξ)),

where {b1, . . . ,bq} is the set of cycles of the polynomial R[m0] (counting with multi-
plicity). Then we have the following: the equation [m0] has a C0-solution if and only
if [m1] does; furthermore,

ν0(m0) = min{ν0(m1),− log2 ρm0
(b1), . . . ,− log2 ρm0

(bq)}.

Thus Theorem 3.2 is proved for the case l = 0. Combining this with Theorem 2.1
we obtain Theorem 3.1 for the case l = 0.

Now it remains to realize the third step of the proof, i.e., to extend the statements
of Theorems 3.1 and 3.2 from the case l = 0 to the general integer factor l ≥ 0. To do
this we introduce Proposition 4, which gives a method of factorization of refinement
equations. Proposition 4 reduces the study of refinable functions and subdivision
processes from the space Cl to C.

Let us first remember the definition of the cardinal B-spline:

B0(x) = χ[0,1](x); Bk(x) = [χ[0,1] ∗ · · · ∗ χ[0,1]](x) (k convolutions).

For any k ≥ 0 the cardinal B-spline Bk is a solution of the refinement equation with
mask ( 1+e

−iξ

2 )k+1 (see, for instance, [Sc] or [DL2]).
Proposition 4. Suppose m and m0 are masks of refinement equations such that

m(ξ) = (1+e
−iξ

2 )lm0(ξ), l ≥ 1; then
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(a) the equation [m] has a Cl0-solution if and only if [m0] has a C0-solution. More-
over, ψ = S−l

0 ϕ(l) and ϕ = Bl−1 ∗ψ, where ϕ and ψ are solutions of [m] and
[m0], respectively; S0 is the difference operator: S0f(x) = f(x)− f(x− 1).

(b) The subdivision process {m} converges in Cl if and only if {m0} converges in
C. Moreover, ν(m) = ν(m0) + l.

Proof. It follows from Lemma 4.1 that the mapping Sl0 : C0 →Ml−1 is a home-
omorphism. Furthermore, for any k ≥ 0 the mapping Sl0 :Mk →Mk+l is a homeo-
morphism. Now observe that for any f ∈ C0 and g ∈Ml−1 we have

T0f = 2
lS−l

0 TSl0f, f ∈ C0,

T g = 2−lSl0T0S
−l
0 g, g ∈Ml−1,(4.8)

where T and T0 are the subdivision operators associated to the masks m and m0,
respectively. This immediately implies item (a). Further, from (4.8) it follows that
ν0(m,Mk+l) = ν0(m0,Mk) + l for any admissible k ≥ 0, i.e. whenever k ≤ l(m0).
Therefore, νk+l(m) = νk(m0)+l. Combining this with (3.1) we obtain item (b), which
completes the proof of Proposition 4.

Now to extend Theorems 3.1 and 3.2 from the case l = 0 it is sufficient to pass
from the mask m to m0 (applying Proposition 4) and note that ρm(b) = 2

−lρm0
(b)

for any cycle b. This concludes the proof of the main theorems.
Remark 5. The statement of item (a) of Proposition 4 generalizes the result

[E, Theorem 2.2], which was obtained for refinement equations satisfying Cohen’s
criterion (see Remark 1).

Remark 6. It follows from results of the work [P2] that the statement of item
(a) of Proposition 4 can be extended to general refinement equations, i.e., equations
without condition (2.1). Namely, the following hold.

If an equation [m] has a Cl0-solution ϕ(x), (l ≥ 1), then there exist dyadic rational
values γ1, . . . , γr (perhaps coinciding) such that ϕ = Bl−1 ∗ (Sγ1 ◦ · · · ◦ Sγrψ) (and
correspondingly ψ = S−l

0 ◦ S−1
γ1 ◦ · · · ◦ S−1

γr ϕ(l)), where ψ is the C0-solution of the
equation having the mask

m0(ξ) =
m(ξ)

[(1 + e−iξ)/2]l

r∏
k=1

1− ei(2πγk−ξ)

1− ei(2πγk−2ξ)
.

So the study of smooth refinable functions can be reduced to the study of contin-
uous refinable functions (see [P2] for more details; see also [R1] and [C] for similar
factorization theorems).

5. Generalized cycles. Theorems 3.1 and 3.2 are formulated in terms of cycles
of the polynomial R[m]. It is easy to see that in general the sets of cycles of the
polynomials m and R[m] are different. The question arises, How can cycles of R[m]
be characterized by roots of m? In other words, we are going to reformulate the
criterion of stability of subdivision operator in terms of zeros of its mask.

Let p(ξ) be a given trigonometric polynomial. (Let us remember that we consider
polynomials without positive powers.) Assume that p possesses a pair of symmetric

roots {α/2, π+α/2}. The transfer from p(ξ) to the polynomial pα(ξ) =
p(ξ)(1−ei(α−ξ))

1−ei(α−2ξ)

is said to be a transfer to the previous level. The inverse transfer from pα to p is a
transfer to the next level. So the polynomial R[p] is obtained from p by a sequence of
transfers to the previous level.
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To a given value α ∈ T we assign a binary tree denoted in what follows by Tα. To
every vertex of this tree we associate a value from T as follows: put α at the root, then
put α/2 and π + α/2 at the vertices of the first level. (The level of the vertex is the
distance from this vertex to the root. The root has level 0.) If a value γ is associated
to a vertex on the nth level, then the values γ/2 and π + γ/2 are associated to its
neighbors on the (n+1)st level. Thus there are the values α

2n +
2kπ
2n , k = 0, . . . , 2n−1

on the nth level of the tree Tα. A set of vertices A of the tree Tα is called a minimal
cut set if every infinite path (all the paths are without backtracking) starting at the
root includes exactly one element of A. For instance, the one-element set A = {root}
is a minimal cut set.

Definition 5.1. A set {β1, . . . , βn} ⊂ T is called a generalized cycle of the
polynomial p(ξ) if the following hold:

(a) this set is cyclic, i.e., βj+1 = 2βj for all j = 1, . . . , n (we set βn+1 = β1);
(b) for any j = 1, . . . , n, the tree Tβj+π possesses a minimal cut set that consists

of roots of the polynomial p.
Any (regular) cycle of p(ξ) is also a generalized cycle. Indeed, in this case each

minimal cut set Aj is the root of the corresponding tree Tβj+π. Now we establish a
correlation between generalized cycles of the polynomial p(ξ) and (regular) cycles of
R[p].

Proposition 5. (a) Every cycle of the polynomial R[p] is a generalized cycle of
p.

(b) Every generalized cycle b of the polynomial p such that ρp(b) �= 0 is a cycle
of R[p].

Proof. (a) Let b = {β1, . . . , βn} be a cycle of the polynomial R[p]. The polynomial
p is obtained from R[p] by a sequence of transfers to the next level. That sequence
takes the root of the tree Tβj+π to some minimal cut set Aj of this tree. Since βj + π
is a root of R[p], it follows that all elements of Aj are roots of p. So the set b is a
generalized cycle for p(ξ).

(b) Let b = {β1, . . . , βn} be a generalized cycle of the polynomial p(ξ). Applying
a suitable sequence of transfers to the previous level, we pass from the minimal cut
sets A1, . . . ,An to the roots β1 + π, . . . , βn + π of the corresponding trees. Then we
continue applying transfers to the previous level until we obtain the polynomial R[p].
If at some step we involve an element βj+π in this process, then the polynomial p1(ξ),
which is obtained from the polynomial p(ξ) by this step, has the pair of symmetric
roots {βj , βj + π}. This implies that ρp1(b) = 0, and hence ρp(b) = 0. Consider the
opposite case. If the elements β1 + π, . . . , βn + π are not involved, then each of them
is a root of R[p]. Therefore, b is a cycle of R[p]. This completes the proof.

Corollary 4. If a polynomial p(ξ) has no symmetric roots, then the set of its
generalized cycles coincides with the set of its (regular) cycles.

Corollary 5. The set of all generalized cycles of a polynomial p(ξ) is a union
of the following two sets: the first one is the set of all cycles of R[p]; the second one
consists of generalized cycles b such that ρp(b) = 0.

It follows from Propositions 2 and 4 that any cycle b such that ρm(b) = 0 does not
have influence on the convergence of the subdivision process {m}, i.e., ν(m) = ν(m̃)
in terms of Proposition 2. Hence the criterion of convergence for subdivision processes
can be formulated in terms of generalized cycles of mask. As a corollary we obtain
the following main result of this section.

Corollary 6. The statement of Theorem 3.1 remains true if the notion “a cycle
of the polynomial R[m]” is replaced by “a generalized cycle of the mask m.”
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Abstract. We consider a two-dimensional elastic wave scattering problem for an unbounded
surface represented as the graph of a C1,α function. The total displacement is assumed to vanish
on the surface. We present a new radiation condition, the upwards propagating radiation condition,
for such problems based on a similar condition recently introduced for acoustic scattering problems.
The relation between this radiation condition and more commonly used conditions is discussed.
Subsequently we prove uniqueness of solution to the scattering problem under this radiation condition
for a general class of incident fields, including plane and cylindrical waves.

Key words. elastic waves, scattering theory, rough surfaces, radiation condition, uniqueness
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1. Introduction. To date there appears to be little rigorous mathematical study
of scattering problems for time harmonic elastic waves involving infinite rough sur-
faces. This paper is a first contribution to close this gap by proposing a precisely for-
mulated radiation condition for a class of two-dimensional such problems and proving
uniqueness for a problem in this class under this radiation condition.

The propagation of time harmonic waves with circular frequency ω in an elastic
solid with Lamé constants µ, λ (µ > 0, λ+ µ ≥ 0), is governed by Hooke’s law

τjk = λ divu δjk + µ

(
∂uj
∂xk

+
∂uk
∂xj

)
, j, k = 1, 2, 3,(1)

and by the equations of motion

3∑
k=1

∂τjk
∂xk

+ ω2 uj = 0, j = 1, 2, 3.(2)

Here, the vector field u denotes the displacements and τ denotes the stress tensor.
Inserting the components of τ as given by (1) into the equations of motion (2) yields
the Navier equation

µ∆u+ (λ+ µ) grad divu+ ω2 u = 0.(3)

All waves are assumed to be traveling in a half-space bounded by a surface invariant
in the x3-direction, on which all displacements are assumed to vanish. Because of this
special geometry, the system of equations (3) separates into two parts, one describing
compressional and vertically polarized shear waves, and the other describing horizon-
tally polarised shear waves. Here we will consider only the first part; the scattering
problem is treated as a problem of plane strain. Thus the problem is two-dimensional
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and, assuming that the boundary is the graph of a function f , the domain under
consideration is Ω := {x ∈ R

2 : x2 > f(x1)}. We will assume throughout this paper
that f is bounded and that ∂Ω is Lyapunov.

This problem has many engineering applications, notably in seismology. In [10,
14, 15] the problem is considered in the case of a periodic traction-free surface and
various numerical and analytical methods for computing the solution are presented.
However, there appears to be no mathematically rigorous attempt to prove uniqueness
and existence of solution until the author’s recent work for the periodic case [1, 2].

In the case of acoustic waves, a lot of progress has been made lately in proving
uniqueness and existence for both incident plane waves and incident cylindrical waves
[4, 5, 6, 7, 8, 16]. The first step was to introduce a new radiation condition that will
ensure uniqueness of solution for a wide range of incident fields, notably plane waves
and cylindrical waves. In the present paper, these results will be generalized to the
elastic wave case.

In section 2, we begin by introducing some notations and stating some results from
linear elasticity theory used later in the paper. In section 3, we propose a new radiation
condition for elastic wave scattering, suggested by the upwards propagating radiation
condition (UPRC) for the Helmholtz equation [4], and we analyze its relation to
other radiation conditions. In particular, we show that the new radiation condition is
satisfied by solutions to the Navier equation satisfying Kupradze’s radiation condition
[13]. Finally, in section 4, a mathematical formulation of the scattering problem as a
boundary value problem is given and uniqueness of solution to this problem is proved.
Throughout the paper, reference will be made to some results on the regularity of
solutions to the Navier equation that have been collected in the appendix.

2. Preliminaries. We will start by introducing notations and making some def-
initions that will be helpful subsequently. For any set S ⊂ R

m (m ∈ N) denote by
BC(S) the set of bounded and continuous, complex valued functions on S, a Banach
space under the supremum norm ‖ · ‖∞;S . As an extension of the usual Hölder spaces
Ck,α(D̄) (k ∈ N ∪ {0}) for bounded domains D with norm ‖ · ‖k,α;D, for unbounded
domains S ⊂ R

m, we will introduce the sets

Vk,α(S) := {u : u ∈ Ck,α(D̄) for any domain D ⊂⊂ S}

and

Ck,α(S) :=
{
u ∈ Vk,α(S) : sup

D⊂⊂S
‖u‖k,α;D <∞

}
.

We also introduce a norm on Ck,α(S) by defining, for u ∈ Ck,α(S),

‖u‖k,α;S := sup
D⊂⊂S

‖u‖k,α;D,

and we remark that Ck,α(S) is a Banach space with this norm.
The domain Ω under consideration is

Ω := {x ∈ R
2 : x2 > f(x1)},

where we assume f ∈ C1,α(R) to be real-valued.
We further let S := ∂Ω and, for any A > 0, S(A) := {x ∈ S : |x1| < A}. The

normal n to S will always be assumed to be pointing out of Ω.
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For h ∈ R, define Uh := {x ∈ R
2 : x2 > h} and Th := {x ∈ R

2 : x2 = h}.
Furthermore, let Dh := Ω\Uh. We define Th(A) and Dh(A) analogously to S(A) and
finally introduce γ(h,A) := {x ∈ Ω : |x1| = A, x2 < h}. Throughout, the normals
on Th and those on Th(A) and γ(h,A) will be assumed to be pointing out of Dh and
Dh(A), as appropriate.

Throughout, all vectors and vector fields shall be denoted in bold print. For
y = (y1, y2)

� ∈ R
2 and h ∈ R, define

y′h := (y1, 2h− y2)
� and y⊥ := (y2,−y1)

�.

In addition to the usual differential operators grad · and div·, we will make use of

grad⊥ u :=

(
∂u

∂x2
,− ∂u

∂x1

)�
and div⊥ u :=

∂u1

∂x2
− ∂u2

∂x1
.

The differential operator in the Navier equation is abbreviated by ∆∗ defined as

∆∗ u := µ∆u+ (λ+ µ) grad divu.

The fundamental solution in free-field conditions to the Helmholtz equation ∆u +
k2u = 0 will also play a role; it is given by

Φ(x,y) :=
i

4
H

(1)
0 (k|x− y|), x,y ∈ R

2,

where H
(1)
0 denotes the Hankel function of order 0 and of the first kind.

The rest of this section will be devoted to stating some results from the linear
theory of elastic wave propagation. First, let us note that any solution u to the Navier
equation can be decomposed into uniquely identified compressional (or longitudinal)
and shear (or transversal) components as

u = up + us,

where

up := − 1
k2
p

grad divu and us := − 1
k2
s

grad⊥ div⊥ u,

and the wave numbers kp and ks satisfy

k2
p =

ω2

2µ+ λ
, k2

s =
ω2

µ
.(4)

We find that up (us) is a solution to the vector Helmholtz equation with k = kp
(k = ks).

Recalling Hooke’s law (1), we follow Kupradze [13] in introducing a generalised
stress tensor P = (πjk) by

πjk := λ̃ divu δjk + µ
∂uj
∂xk

+ µ̃
∂uk
∂xj

,

where λ̃, µ̃ are real numbers satisfying λ̃+ µ̃ = λ+ µ. Given a curve Λ ⊂ R
2 with a

normal n, the generalised stress vector on Λ is defined by

Pu := P n = (µ+ µ̃)
∂u

∂n
+ λ̃ndivu− µ̃n⊥ div⊥ u.
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Where it is important to distinguish between derivatives taken with respect to x and
y, the notations P(x)· and P(y)· will be used.

Similarly to Green’s identities, there hold the generalized Betti formulae as fol-
lows.

Lemma 2.1. Let B ⊆ R
2 be a domain in which the divergence theorem holds.

The normal on ∂B will be assumed to be pointing out of B. Then for vector fields
v ∈ C1(B̄) and w ∈ C2(B̄) the first generalized Betti formula holds:∫

B

v ·∆∗w dx =

∫
∂B

v ·Pw ds−
∫
B

Ea,b(v,w) dx,(5)

where the symmetric bilinear form Eµ̃,λ̃ is given by

Eµ̃,λ̃(v,w) := (2µ+ λ)

(
∂v1

∂x1

∂w1

∂x1
+

∂v2

∂x2

∂w2

∂x2

)
+ µ

(
∂v1

∂x2

∂w1

∂x2
+

∂v2

∂x1

∂w2

∂x1

)

+ λ̃

(
∂v1

∂x1

∂w2

∂x2
+

∂v2

∂x2

∂w1

∂x1

)
+ µ̃

(
∂v1

∂x2

∂w2

∂x1
+

∂v2

∂x1

∂w1

∂x2

)
.

For v, w ∈ C2(B̄), the third generalized Betti formula holds:∫
B

(v ·∆∗w −w ·∆∗ v) dx =
∫
∂B

(v ·Pw −w ·Pv) ds.(6)

Proof. The proof is as in Kupradze [13] for the three-dimensional case.
In the definition and analysis of the new radiation condition, we will make heavy

use of the elastic Green’s tensors for free-field conditions and for a half-space with
rigid boundary. The matrix of fundamental solutions for the Navier equation (3)
which is the Green’s tensor for free-field conditions is given by

Γ(x,y) :=
i

4µ
H

(1)
0 (ks|x− y|)

+
i

4ω2
∇x∇�

x

(
H

(1)
0 (ks|x− y|)−H

(1)
0 (kp|x− y|)

)
.(7)

The Green’s tensor for the half-space Uh with a rigid surface (i.e., the first boundary
value problem) is given by

ΓD,h(x,y) := Γ(x,y)− Γ(x,y′h) +U(x,y), x,y ∈ Uh, x �= y,(8)

where

U (x ,y)

= − i

2πω2

{ ∞∫
−∞

eiγp(x2+y2−2h) − ei(γp(x2−h)+γs(y2−h))

γpγs + t2

( −t2γs t3

tγpγs −t2γp
)
e−iX1t dt

−
∞∫

−∞

eiγs(x2+y2−2h) − ei(γs(x2−h)+γp(y2−h))

γpγs + t2

(
t2γs tγpγs
t3 t2γp

)
e−iX1t dt

}

and X1 := x1 − y1,

γp :=



√

k2
p − t2, k2

p ≥ t2,

i
√

t2 − k2
p, k2

p < t2,
γs :=

{ √
k2
s − t2, k2

s ≥ t2,

i
√

t2 − k2
s , k2

s < t2.
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The following theorem, which was essentially proved in [1], establishes the properties
of ΓD,h.

Theorem 2.2.
(i) For y ∈ Uh fixed, ΓD,h(·,y) − Γ(·,y) ∈ [C∞(Uh) ∩ C1(Uh)]

2×2 and its
columns are solutions to the Navier equation (3) in Uh \ {y}.

(ii) For y ∈ Uh, x ∈ ∂Uh, there holds ΓD,h(x,y) = 0.
(iii) Let x, y ∈ Uh, x �= y. Then

ΓD,h(x,y) = ΓD,h(y,x)
�.

(iv) For any ε > 0, the estimate

max
j,k=1,2

|ΓD,h,jk(x,y)| ≤ H(x2 − h, y2 − h)

|x1 − y1|3/2

holds for all x,y ∈ Uh, |x1 − y1| ≥ ε, where H ∈ C(R2).

(v) Let Γ
(p)
D,h := −k−2

p gradx divx ΓD,h denote the longitudinal and let Γ
(s)
D,h :=

ΓD,h−Γ(p)
D,h denote the transversal part of ΓD,h. Then, for x, y ∈ Uh, and r := |x−y|,

Γ
(p)
D,h(x,y) = O(r−1/2),

∂Γ
(p)
D,h

∂r
(x,y)− ikpΓ

(p)
D,h(x,y) = o(r−1/2),

Γ
(s)
D,h(x,y) = O(r−1/2),

∂Γ
(s)
D,h

∂r
(x,y)− iksΓ

(s)
D,h(x,y) = o(r−1/2)

uniformly in x and y as r →∞.
Proof. The proof follows from Theorems 2.1, 2.4, and 2.5 and Lemma 3.3 in

[1].

By applying P· to ΓD,h, the matrix functions Π(1)
D,h and Π

(2)
D,h, defined by

Π
(1)
D,h,jk(x,y) :=

(
P(x)(ΓD,h,·k(x,y))

)
j
,

Π
(2)
D,h,jk(x,y) :=

(
P(y)(ΓD,h,j·(x,y))�

)
k
,

j, k = 1, 2,

are obtained. For these matrices, similar results to those for ΓD,h hold as follows.
Theorem 2.3.
(i) For y ∈ Uh, the columns of Π

(2)
D,h(·,y) are solutions to the Navier equation

(3) in Uh \ {y}.
(ii) For x ∈ Uh, the rows of Π

(1)
D,h(x, ·) are solutions to the Navier equation (3)

in Uh \ {x}.
(iii) Theorem 2.2 (iv) and (v) hold with ΓD,h replaced by Π

(1)
D,h and Π

(2)
D,h, respec-

tively.
(iv) For x, y ∈ Uh, x �= y, there holds

Π
(2)
D,h(x,y) = Π

(1)
D,h(y,x)

�.

(v) Let B ⊂ Uh be a bounded domain in which the divergence theorem holds.
Then any solution u ∈ [C2(B)∩C1(B̄)]2 to the Navier equation (3) can be represented
as

u(x) =

∫
∂B

{
ΓD,h(x,y)Pu(y)−Π(2)

D,h(x,y)u(y)
}
ds(y)

for all x ∈ B.
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Proof. The proof follows from Theorems 3.1 and 3.4 in [1].
Remark 2.4. We also note that from a representation of Γ in terms of Hankel

functions of order 0 and 1 [12, formula (2.6)] together with Theorem 2.2 and the fact
that ΓD,h−Γ remains bounded for x, y ∈ Uh, we see that there exists some constant
C > 0 such that

max
j,k=1,2

|ΓD,h,jk(x,y)| ≤ C |1 + log |x− y| |(9)

for x, y ∈ Uh. As a consequence, together with an application of Theorem 2.2 (iv),
we have for h < inf f and h′ > sup f that

sup
x∈Dh′

∫
S

max
j,k=1,2

|ΓD,h,jk(x,y)|2 ds(y) <∞.

Remark 2.5. Similarly to (9), we also prove that Π
(2)
D,h(x,y) remains bounded for

|x−y| ≥ ε > 0. Thus, using Theorem 2.2 (iv) and Lemma A.1, we see for H ′ > H > h

and any derivative with respect to x, G, of Π(2)
D,h that

sup
x∈UH\UH′

∫
Th

max
j,k=1,2

|Gjk(x,y)| ds(y) <∞.

3. Radiation conditions for rough surface scattering. We will start this
section by reviewing the acoustic case. Consider the Helmholtz equation

∆u+ k2u = 0(10)

in some domain G ⊂ R
2 such that for some H ∈ R, UH ⊂ G.

The standard radiation condition employed in problems of scattering by bounded
obstacles for the Helmholtz equation was introduced by Sommerfeld as follows.

Definition 3.1. A solution u ∈ C2(UH) ∩ L∞(UH) to the Helmholtz equation
(10) in UH will be said to be radiating if

u(x) = O(r−1/2),
∂u

∂r
− iku = o(r−1/2),

uniformly in x/r as r := |x| → ∞.
Recently, a new radiation condition, the upward propagating radiation condition

(UPRC) was introduced and successfully employed in a wide range of problems of
scattering by unbounded rough surfaces and inhomogeneous layers [4, 6, 7, 8, 16] as
follows.

Definition 3.2. A solution u : G→ C to the Helmholtz equation (10) in G ⊂ R
2

is said to satisfy UPRC, if, for some H ∈ R and φ ∈ L∞(TH), UH ⊂ G and

u(x) = 2

∫
TH

∂Φ

∂y2
(x,y)φ(y) ds(y), x ∈ UH .

Let us now turn back to the elastic case. The radiation condition for the Navier
equation (3) corresponding to Sommerfeld’s radiation condition in the Helmholtz
equation case is Kupradze’s radiation condition, as given in the following definition.

Definition 3.3. A solution u ∈ [C3(UH) ∩ L∞(UH)
]2

to the Navier equation
(3) in Uh will be said to be radiating if

up = O(r−1/2),
∂up
∂r
− ikpup = o(r−1/2),

us = O(r−1/2),
∂us
∂r
− iksus = o(r−1/2),
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uniformly in x/r as r := |x| → ∞, i.e., if both compressional and shear components
of u are radiating solutions to the Helmholtz equation in UH .

The idea of the UPRC can be extended to the elastic case through the following
definition.

Definition 3.4. A solution u : G→ C
2 to the Navier equation (3) in G ⊂ R

2 is

said to satisfy the UPRC, if, for some H ∈ R and φ ∈ [L∞(TH)]
2
, UH ⊂ G and

u(x) =

∫
TH

Π
(2)
D,H(x,y)φ(y) ds(y), x ∈ UH .(11)

Remark 3.5. Note that from Theorem 2.3 (iii) it follows that for arbitrary φ ∈
[L∞(Th)]

2
the integral in (11) exists as an improper integral.

Remark 3.6. Apparently the definition of the UPRC depends on the choice of the
parameters λ̃ and µ̃ in the definition of the generalized stresses. However, Theorem
3.7 below shows that the definition and the density φ itself are in fact independent of
these numbers.

The following theorem characterizes the UPRC further and also establishes that
it is satisfied by any radiating solution (see also [6, Theorem 2.9]).

Theorem 3.7. Given a ∈ R and u : Ua → C
2, the following statements are

equivalent:

(i) u ∈ [C2(Ua)
]2
, u ∈ [L∞(Ua \ UH)]2 for all H > a, ∆∗ u+ ω2u = 0 in Ua,

and u satisfies the UPRC in Ua.

(ii) u ∈ [C2(Ua)
]2
, u ∈ [L∞(Ua \ UH)]2 for all H > a, ∆∗ u+ ω2u = 0 in Ua,

and for some H > a and φ1, φ2 ∈ L∞(TH),

u(x) = 2 grad

∫
TH

∂Φp
∂y2

(x,y)φ1(y) ds(y) + 2 grad
⊥
∫
TH

∂Φs
∂y2

(x,y)φ2(y) ds(y)

for all x ∈ UH , where Φp and Φs denote the fundamental solutions for the Helmholtz
equation with k replaced by kp and ks, respectively.

(iii) u ∈ [L∞(Ua \ UH)]2 for all H > a and there exists a sequence (un) of
radiating solutions such that un(x)→ u(x) uniformly on compact subsets of Ua and

sup
x∈UH\Uh′ ,n∈N

|un(x)| <∞(12)

for all H,h′ ∈ R satisfying h′ > H > a.
(iv) u satisfies (11) for H = a and some φ ∈ [L∞(Ta)]

2
.

(v) u ∈ [L∞(Ua \ UH)]2 for some H > a and u satisfies (11) for each H > a
with φ = u|TH

.

(vi) u ∈ [C2(Ua)
]2
, u ∈ [L∞(Ua \ UH)]2 for all H > a, ∆∗ u+ ω2u = 0 in Ua,

and for every H > a and radiating solution in Ua, w, such that the restrictions of w

and Pw to TH are in
[
L1(TH)

]2
, there holds∫

TH

(u ·Pw −w ·Pu) ds = 0.(13)

Proof. (i) ⇒ (ii): With H chosen so that (11) holds, we introduce the functions

Ψp,k(x,y) := − 1
k2
p
divxΠ

(2)
D,H,·k(x,y),

Ψs,k(x,y) := − 1
k2
s
div⊥x Π

(2)
D,H,·k(x,y),

k = 1, 2,
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and rewrite u(x) for x ∈ UH as

u(x) = up(x) + us(x)

= grad

∫
TH

2∑
k=1

Ψp,k(x,y)φk(y) ds(y)

+ grad⊥
∫
TH

2∑
k=1

Ψs,k(x,y)φk(y) ds(y).(14)

Limiting our attention to the first integral for the moment, we define

vN (x) =

∫
TH(N)

2∑
k=1

Ψp,k(x,y)φk(y) ds(y),

v(x) =

∫
TH

2∑
k=1

Ψp,k(x,y)φk(y) ds(y).

For H ′ > H, the vector fields vN are solutions to the Helmholtz equation ∆vN +
k2
pvN = 0 in UH′ . By Theorem 2.2 (v) and two applications of Lemma A.1, we
see that they are furthermore radiating in UH′ . By Theorem 2.2 (iv) together with
Lemma A.1, there also holds vN (x) → v(x) uniformly on compact subsets of UH′ .
For h′ > H ′, by Remark 2.5, we finally see that

sup
x∈UH′\Uh′ ,n∈N

|vN (x)| <∞.

So by Theorem 2.1 in [6], v satisfies the UPRC for the Helmholtz equation (see
Definition 3.2), which is the assertion. The argument for the second integral in (14)
is identical.

(ii) ⇒ (iii): Set Ψ1 := −1/k2
p divu and Ψ2 := −1/k2

s div
⊥ u. Then (ii) implies

that for all x ∈ UH there holds

Ψ1(x) = 2

∫
TH

∂Φp
∂y2

(x,y)φ1(y) ds(y),

Ψ2(x) = 2

∫
TH

∂Φs
∂y2

(x,y)φ2(y) ds(y).

From the equivalence of (i) and (ii) in Theorem 2.9 in [6], it follows that there exist

sequences (Ψ
(n)
j ) (j = 1, 2) of radiating solutions to the Helmholtz equation with

k = kp and k = ks, respectively, such that Ψ
(n)
j (x) → Ψj(x) uniformly on compact

subsets of Ua and

sup
x∈Ua\Uh,n∈N,j=1,2

|Ψ(n)
j (x)| <∞

for all h > a. Set

un(x) := grad Ψ
(n)
1 (x) + grad⊥ Ψ(n)

2 (x).

Lemma A.1 then implies (12) and that un(x) converges to u(x) uniformly on compact
subsets of Ua.
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(iii) ⇒ (vi): Suppose H > a and set D := UH ∩ BR(0) for some R > H, where
BR(0) denotes the open ball with center 0 and radius R. Further assume w to be
a radiating solution in Ua, such that the restrictions of w and Pw to TH are in[
L1(TH)

]2
. Then ∫

∂D

{un ·Pw −w ·Pun} ds = 0

follows from the third generalized Betti formula (6). Letting R → ∞ and using the
fact that w and un are radiating solutions to the Navier equation, we conclude that∫

TH

{un ·Pw −w ·Pun} ds = 0.

Taking the limit as n → ∞, recalling (12) and using Theorem 2.2 (iv) and Lemma
A.1, we see that (13) holds. The remaining assertion follows from Corollary A.2.

(vi) ⇒ (i),(v): It suffices to show that (11) holds for all H > a with φ = u|TH
.

Given H > a and x ∈ UH , choose h
′, A ∈ R, with h′ > x2 > H and A > |x1|. Set

B := {y ∈ UH \ Uh′ : |y1| < A}. Then, by Theorem 2.3 (v),

u(x) =

∫
∂B

{
ΓD,H(x,y)Pu(y)−Π(2)

D,H(x,y)u(y)
}
ds(y).

Letting A→∞ and recalling u ∈ [L∞(Ua \Uh′)]2 as well as Theorem 2.2 (ii) and (iv)
and Theorem 2.3 (iii), we obtain that

u(x) =

∫
Th′

{
ΓD,H(x,y)Pu(y)−Π(2)

D,H(x,y)u(y)
}
ds(y)

+

∫
TH

Π
(2)
D,H(x,y)u(y) ds(y).

By applying (13) with w equal to each of the rows of ΓD,H(x, ·) in turn, the integral
over Th′ is seen to vanish.

(v) ⇒ (iv): Introducing, for α ∈ R, the mapping

ηα(z) := (z1, z2 + α)�,

we have from (v) that

u(x) =

∫
Ta

Π
(2)
D,H(x, ηH−a(z))u(ηH−a(z)) ds(z), x ∈ UH .(15)

As u ∈ [L∞(Ua \ UH) ∩ C(Ua)]
2
for some H > a, the densities u(ηH−a(·)) are all

in some ball in [L∞(Ta)]2 for H close enough to a. Recalling that the unit ball in
[L∞(Ta)]2 is weak∗ sequentially compact, there thus exists a sequence (Hn) with
Hn → a and u(ηHn−a(·))→ φ ∈ [L∞(Ta)]2. Taking the limit as H → a, through this
sequence in (15) we now conclude that (11) holds for H = a with this φ.

(iv) ⇒ (iii): As (11) is satisfied with h = a, it follows from Theorem 2.3 (iii) that

|u(x)| ≤ ‖φ‖∞ g(x2), x ∈ Ua,(16)

where g ∈ C(R). Setting

un(x) :=

∫
Ta(n)

Π
(2)
D,a(x,y)φ(y) ds(y), x ∈ Ua,
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u ∈ [L∞(Ua \ Uh)]2 for all h > a and (12) follows from (16). That un(x) converges
to u(x) uniformly on compact subsets of Ua, and that un is radiating, is also easily
seen from Theorem 2.3 (iii).

Remark 3.8. In the case of a periodic boundary, one usually imposes a radiation
condition using the Rayleigh expansion [2, 10, 14, 15]. Assume f to be 2π-periodic.
Then u ∈ BC(Ω) is said to satisfy the Rayleigh expansion radiation condition (RERC)
if, for x2 > max f , it has an expansion of the form

u(x) =
∑
n∈Z

{
up,n

(
αn
βn

)
ei(αnx1+βnx2) + us,n

(
γn
−αn

)
ei(αnx1+γnx2)

}
,

where α ∈ R, α �= 0, up,n, us,n ∈ C (n ∈ Z), αn := α+ n,

βn :=




√
k2
p − α2

n, α2
n ≤ k2

p,

i
√

α2
n − k2

p, α2
n > k2

p,
γn :=

{ √
k2
s − α2

n, α2
n ≤ k2

s ,

i
√

α2
n − k2

s , α2
n > k2

s .

A field u satisfying the RERC is quasi-periodic with phase-shift α in Umax f ; that is,
for all x = (x1, x2)

� ∈ Umax f ,

u(x1 + 2π, x2) = e
iα2π u(x1, x2).

From Remark 2.14 in [6] and the equivalence of statements (i) and (ii) in Theorem
3.7, it follows that any bounded solution to the Navier equation u in Ω that satisfies
the UPRC in Ω and is quasi-periodic in Ω with phase-shift α also satisfies the RERC.
Conversely, by the same arguments, a bounded, quasi-periodic solution to the Navier
equation in Ω, satisfying the RERC, also satisfies the UPRC.

4. Uniqueness for the scattering problem with a rigid rough surface.
We will now address the goal of this paper, to prove uniqueness of solution to the
scattering problem for a rigid rough surface. Let uinc denote the incident field. We
require only that uinc is a solution to the Navier equation in some neighborhood of
S = ∂Ω and that g := uinc|S ∈ BC(S). The problem is then to find the scattered
field u so that the total field uinc + u vanishes on S. Mathematically, this scattering
problem will be formulated as the following boundary value problem.

Problem 4.1. Find a vector field u ∈ [C2(Ω) ∩ C(Ω) ∩H1
loc(Ω̄)]

2 that satisfies
1. the Navier equation ∆∗ u+ ω2u = 0 in Ω,
2. the Dirichlet boundary condition u = g on S for some vector field g ∈
[BC(S)]2,

3. the vertical growth rate condition

sup
x∈Ω

xβ2 |u(x)| <∞(17)

for some β ∈ R, and
4. the UPRC in Ω.

Remark 4.2. A solution of Problem 4.1 satisfies statement (i) of Theorem 3.7
with any a > sup f .

From Remark 3.8 we see that, in the case when f is periodic and the Dirichlet data
g is quasi-periodic, Problem 4.1 reduces to the diffraction grating problem considered
in [1, 2], if we assume additionally that the solution u is quasi-periodic. The diffraction
grating problem was shown in [1, 2] to be uniquely solvable. Thus we know that
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Problem 4.1 admits solutions, at least in the case when f is periodic and g is quasi-
periodic. We now show that Problem 4.1 has at most one solution in every case. This
result implies for the diffraction grating problem that the additional assumption on
the solution of being quasi-periodic can in fact be dropped.

In all of what follows, let h denote a real number with h < inf f . The first step
in the uniqueness proof will be the following representation theorem.

Theorem 4.3. Let u be a solution to Problem 4.1 with g ≡ 0. Then u ∈ [C1(Ω̄)]2,
its first derivatives are bounded in DH for any H > sup f , and

u(x) =

∫
S

ΓD,h(x,y)Pu(y) ds(y)

for all x ∈ Ω.
Proof. That u ∈ [C1(Ω̄)]2 and its first derivatives are bounded in DH , H >

sup f , is a consequence of Theorem A.3. For x ∈ Ω, choose h′, A ∈ R, with h′ >
max{x2, sup f} and A > |x1|. Then, by Theorem 2.3 (v), there holds

u(x) =

∫
∂Dh′ (A)

{
ΓD,h(x,y)Pu(y)−Π(2)

D,h(x,y)u(y)
}
ds(y).

By applying Lemma A.1, we see that the growth rate condition (17) for u also holds
for any first derivative of u. Letting A→∞ and recalling Theorems 2.2 (iv) and 2.3
(iii) then yields

u(x) =

∫
Th′

{
ΓD,h(x,y)Pu(y)−Π(2)

D,h(x,y)u(y)
}
ds(y)

+

∫
S

ΓD,h(x,y)Pu(y) ds(y).

The proof is now completed by recalling Remark 4.2 and the equivalence of (i) and
(vi) in Theorem 3.7, by which the integral over Th′ vanishes.

Let us now introduce some functionals that will be of importance in the following
arguments. Let h′ > sup f , A > 0, and u ∈ C1(Ω̄). We define

I(h′, A)[u] :=
∫
Th′ (A)

{
(2µ+ λ)

(∣∣∣∣∂u2

∂x2

∣∣∣∣
2

−
∣∣∣∣∂u1

∂x1

∣∣∣∣
2
)

+µ

(∣∣∣∣∂u1

∂x2

∣∣∣∣
2

−
∣∣∣∣∂u2

∂x1

∣∣∣∣
2
)
+ ω2|u|2

}
ds,

J1(h
′, A)[u] := 2Re

∫
γ(h′,A)

∂ū

∂x2
·Pu ds,

J2(h
′, A)[u] := Im

∫
γ(h′,A)

ū ·Pu ds,

K(h′, A)[u] := Im
∫
Th′ (A)

ū ·Pu ds.

Recall the assumptions on the direction of the normal vectors in section 2. The
following lemma is of fundamental importance.

Lemma 4.4. Suppose u satisfies statement (ii) in Theorem 3.7 with H > sup f
and some densities φj ∈ L2(TH) ∩ L∞(TH) (j = 1, 2). Then, for all h′ > H, there
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holds

I(h′,∞)[u] ≤ 2ksK(h′,∞)[u].

Proof. Choose H > sup f so that the representation for u in UH according to
statement (ii) of Theorem 3.7 holds. Then the argument presented for the derivation
of (29) in [4] yields

u(x) =
i

2π

∫ ∞

−∞
φ̃1(t)

(
t

γp

)
ei(tx1+γpx2) + φ̃2(t)

(
γs
−t
)
ei(tx1+γsx2) dt, x ∈ UH ,

where φ̃1(t) := e
−iγpH φ̂1(t), φ̃2(t) := e

−iγsH φ̂2(t), and φ̂j denotes the Fourier trans-
form of φj(y1, y2) with respect to y1 (j = 1, 2).

By an application of Parseval’s theorem we derive from this representation, for
any h′ > H, by long but straightforward calculations that

I(h′,∞)[u] = 2ω2

{∫ kp

−kp
|φ̃1|2γ2

p dt+

∫ ks

−ks
|φ̃2|2γ2

s dt

}
.

On the other hand, a similar calculation shows that

K(h′,∞)[u] = ω2

{∫ kp

−kp
|φ̃1|2γp dt+

∫ ks

−ks
|φ̃2|2γs dt

}
.

The assertion is now proven by noting kp ≥ γp on [−kp, kp], ks ≥ γs on [−ks, ks], and
ks > kp.

Another, simpler relation involving these functionals is stated in the following
lemma.

Lemma 4.5. Let u be a solution to Problem 4.1 with g ≡ 0. Further assume
h′ > max f and A > 0. Then

K(h′, A)[u] = −J2(h
′, A)[u].

Proof. For the proof apply the third generalized Betti formula (6) to u and ū in
Dh′(A).

Assume now that u is a solution to Problem 4.1 with g ≡ 0. As u and its
tangential derivatives vanish on S, Pu has the simple form

Pu = µ
∂u

∂n
+ (λ+ µ)ndivu on S.(18)

We thus conclude that

∫
S(A)

∂ū

∂x2
·Pu ds =

∫
S(A)

{
µn2

∣∣∣∣∂u∂n
∣∣∣∣
2

+ (λ+ µ)n2|divu|2
}

ds(19)

for any A > 0. For any h′ > sup f , by the first Betti formula (5) there also holds

∫
∂Dh′ (A)

∂ū

∂x2
·Pu ds =

∫
Dh′ (A)

Eµ̃,λ̃
(

∂ū

∂x2
,u

)
− ω2 ∂ū

∂x2
· u dx.
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By an integration by parts we thus conclude that

2Re

∫
∂Dh′ (A)

∂ū

∂x2
·Pu ds =

∫
Th′ (A)

Eµ̃,λ̃(ū,u)− ω2|u|2 ds

+

∫
S(A)

{
µn2

∣∣∣∣∂u∂n
∣∣∣∣
2

+ (λ+ µ)n2|divu|2
}

ds.(20)

Combining (19) and (20) now yields

∫
S(A)

{
µn2

∣∣∣∣∂u∂n
∣∣∣∣
2

+ (λ+ µ)n2|divu|2
}

ds

= Re

∫
Th′ (A)

{
Eµ̃,λ̃(ū,u)− 2

∂ū

∂x2
·Pu− ω2|u|2

}
ds− J1(h

′, A)[u].

It is also not difficult to see that

Re

∫
Th′

{
Eµ̃,λ̃(ū,u)− 2

∂ū

∂x2
·Pu− ω2|u|2

}
ds = −I(h′, A)[u],

so we finally conclude that

0 ≤ −
∫
S(A)

{
µn2

∣∣∣∣∂u∂n
∣∣∣∣
2

+ (λ+ µ)n2|divu|2
}

ds

= I(h′, A)[u] + J1(h
′, A)[u].(21)

The rest of the derivation of the uniqueness result is now a rather straightforward
adaptation of the method presented in [7] for the Helmholtz equation case. Let us
introduce the vector fields vA defined for A > 0 by

vA(x) :=

∫
S(A)

ΓD,h(x,y)Pu(y) ds(y).

Using the Cauchy–Schwartz inequality and Theorem 2.2 (iv), we find that vA|h′ ∈
[L2(Th′) ∩ BC(Th′)]2 for all h′ > sup f . As vA is a radiating solution to the Navier
equation for every A ∈ R, it is seen to satisfy statement (iii) of Theorem 3.7 and thus
also statement (ii) of that theorem. Thus, by Lemma 4.4,

I(h′,∞)[vA] ≤ 2ksK(h′,∞)[vA].(22)

Now set w(x1) := |Pu(x1, f(x1))| for x1 ∈ R. Then

∫ A

−A
|w(x1)|2 dx1 ≤

∫
S(A)

|Pu|2 ds ≤ (1 + ‖f ′‖2∞;R)
1/2

∫ A

−A
|w(x1)|2 dx1(23)

follows. Using Theorem 2.2 (iv) and Lemma A.1 we obtain the estimates

|ΓD,h(x,y)|,
∣∣∣∣ ∂

∂xj
ΓD,h(x,y)

∣∣∣∣ ≤ C(1 + |x1 − y1|)−3/2, j = 1, 2,
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for x ∈ Th′ , y ∈ S, where C is some positive constant depending only on h′ and h.
This yields the estimates

|vA(x)|,
∣∣∣∂vA

∂xj
(x)
∣∣∣ ≤ CWA(x1),

|u(x)− vA(x)| ≤ C (W∞(x1)−WA(x1)),∣∣∣ ∂u∂xj
(x)− ∂vA

∂xj
(x)
∣∣∣ ≤ C (W∞(x1)−WA(x1))

(24)

for x ∈ Th′ , j = 1, 2, with certain generic constants C, where

WA(x1) :=

∫ A

−A
(1 + |x1 − y1|)−3/2 w(y1) dy1, x1 ∈ R.

Recalling (18), we can estimate by (21)–(23) and Lemma 4.5 that

∫ A

−A
|w(x1)|2 dx1 ≤ −C

∫
S(A)

{
µn2

∣∣∣∣∂u∂n
∣∣∣∣
2

+ (λ+ µ)n2|divu|2
}

ds

≤ C

{
|I(h′, A)[u]− I(h′, A)[vA]|

+|I(h′, A)[vA]− I(h′,∞)[vA]|

+2ks

[
|K(h′,∞)[vA]−K(h′, A)[vA]|

+|K(h′, A)[vA]−K(h′, A)[u]|
]

+|J1(h
′, A)[u]|+ 2ks|J2(h

′, A)[u]|
}
.(25)

From (24) there now follows, with some positive constant C,

|I(h′, A)[vA]− I(h′,∞)[vA|,
|K(h′,∞)[vA]−K(h′, A)[vA]|

}
≤ C

∫
R\[−A,A]

W 2
A(x1) dx1

and

|I(h′, A)[u]− I(h′, A)[vA]|,
|K(h′, A)[vA]−K(h′, A)[u]|

}
≤ C

∫ A

−A
(W∞(x1)−WA(x1))W∞(x1) dx1,

so that we finally conclude, for some constant c > 0 and all A > 0,

∫ A

−A
|w(x1)|2 dx1 ≤ c

{∫
R\[−A,A]

W 2
A(x1) dx1

+

∫ A

−A
(W∞(x1)−WA(x1))W∞(x1) dx1

+|J1(h
′, A)[u]|+ |J2(h

′, A)[u]|
}
.(26)
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Since (26) holds and we also have from Theorem A.3 that w ∈ L∞(R), we can apply
Lemma A in [7] to obtain that w ∈ L2(R) and, noting (23), that for all A0 > 0,

(1 + ‖f ′‖2∞;R)
−1/2

∫
S

|Pu|2 ds ≤
∫ ∞

−∞
|w(x1)|2 dx1

≤ c sup
A>A0

{|J1(h
′, A)[u]|+ |J2(h

′, A)[u]}|.(27)

For x ∈ Dh′ with |x1| > 0, we now deduce by Theorem 2.2 (iv), Theorem 4.3, and
the Cauchy–Schwartz inequality that

|u(x)|2 ≤ 2
{∫

S\S(|x1|/2)
|ΓD,h(x,y)Pu(y)| ds(y)

}2

+ 2

{∫
S(|x1|/2)

|ΓD,h(x,y)Pu(y)| ds(y)
}2

≤ C1

∫
S\S(|x1|/2)

|Pu|2 ds+ C2

( |x1|
2

)−2

,

where

C1 = 16 sup
x∈Dh′

∫
S

max
j,k=1,2

|ΓD,h,jk(x,y)|2 ds(y) <∞

by Remark 2.4 and

C2 = 32 ‖H‖2C([0,h′−h]2) (1 + ‖f ′‖∞;R)
1/2 ‖Pu‖[L2(S)]2 .

Thus, u(x) → 0 as |x1| → ∞ (x ∈ Dh′), uniformly in x2. From Lemma A.1 and
Theorem A.3 it now follows that Jj(A)[u]→ 0 as A→∞ (j = 1, 2), and consequently,
by (27), that Pu = 0 on S. Recalling Theorem 4.3 once more, we conclude that u ≡ 0
in Ω. We have thus shown the following theorem.

Theorem 4.6. Let u and v be solutions of Problem 4.1 with the same Dirichlet
data g. Then u ≡ v in Ω.

Appendix. Regularity results. The following regularity results for solutions
to the Navier equation, which are special cases of general results for systems of second
order elliptic equations, are used in this paper.

Lemma A.1. Given a domain G ⊂ R
2, let u ∈ [L∞(G)]2 be a solution to the

Navier equation (3) in G in a distributional sense. Assume G′ ⊂⊂ G and set d :=
d(∂G′, ∂G). Then u ∈ [C1(G′)]2 and, for all x ∈ G′,

| grad uk(x)| ≤ C (1 + d−1) ‖u‖∞;G, k = 1, 2,

where C is only dependent on µ, λ, and ω.
Proof. The proof follows from application of estimates in Fichera [9] and Sobolev’s

imbedding theorem.
By applications of this result we immediately obtain the following corollary.
Corollary A.2. Given a domain G ⊂ R

2, let (vn) ⊂ [L∞(G)]2 be a sequence
of solutions to the Navier equation in G and, for some vector field v, suppose that



476 T. ARENS

vn(x) → v(x) uniformly on compact subsets of G. Then v ∈ [C2(G)]2 and is a
solution to the Navier equation in G.

The next result can be obtained in a manner very similar to that employed for
scalar elliptic equations (see, e.g., Gilbarg and Trudinger [11]). A detailed proof is
given in [3, Theorem 2.7].

Theorem A.3. Let u ∈ [C2(Ω) ∩ C(Ω̄) ∩H1
loc(Ω̄)]

2 be a solution to the Navier
equation in Ω, bounded in DH for some H > sup f , with u = 0 on S. Then u ∈
V1,α(Ω̄) and, for any H > sup f , u ∈ C1,α(DH) with

‖u‖1,α;DH
≤ C ‖u‖∞;DH

,(28)

where C is a constant dependent only on λ, µ, ω, H, and ‖f‖1,α;R.
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Abstract. Global smooth solutions to the initial value problem for systems of nonlinear wave
equations with multiple propagation speeds will be constructed in the case of small initial data and
nonlinearities satisfying the null condition.
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1. Introduction. This paper is concerned with the Cauchy problem for coupled
systems of quasi-linear wave equations in three space dimensions of the form

∂2
t u

k − c2k�uk = Cjk
αβ(∂u)∂α∂βu

j , k = 1, . . . ,m,

subject to suitably small initial conditions. We assume that the propagation speeds
are distinct, and we refer to this situation as the nonrelativistic case. Here, ∂u stands
for the full space-time gradient, and Cjk

αβ(ξ) = O(|ξ|) are smooth functions near

the origin in R
4m. We shall construct a unique global classical solution, provided

that the coefficients of the nonlinear terms satisfy the null condition, which permits
only certain special nonlinear self-interactions of the kth component of the solution
in the kth equation. This nonrelativistic system serves as a simplified model for
wave propagation problems with different speeds, such as nonlinear elasticity, charged
plasmas, and magneto-hydrodynamics.

The main difficulty in the nonrelativistic case is that the smaller symmetry group
of the linear operator weakens the form of the invariant Klainerman inequality; see
section 6. In order to obtain a viable L∞ − L2 estimate for solutions, we utilize an
additional set of weighted L2 estimates, as has been developed in [15], [19], [20]. The
advantage of this method is the total avoidance of direct estimation of the fundamental
solution for the linear problem as well as any type of asymptotic constructions. We
treat nondivergence form nonlinearities which may contain both spatial and temporal
derivatives.

In the three-dimensional (3D) relativistic (scalar) case, the null condition was first
identified and shown to lead to global existence of small solutions by Christodoulou [3]
and Klainerman [13]. Without it, small solutions remain smooth “almost globally”
[8], [9], [12], but as examples show, arbitrarily small initial conditions can develop
singularities in finite time [7], [18]. Small solutions always exist globally in higher
dimensions [11], [17], [12]. The two-dimensional (2D) relativistic case is rather more
complicated. The sharpest results are given in [1], [2], but other work appeared
previously in [4], [10].
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The case of nonrelativistic systems in 3D has also recently been considered by
Yokoyama [21]. Under the same null condition as described below, Yokoyama estab-
lishes the existence of global small solutions. However, instead of expressing the small-
ness condition for the initial data in terms of a neighborhood of the origin in a Sobolev
space, as we do here, Yokoyama considers only data of the form (u, ∂tu)|t=0 = ε(u0, u1)
for fixed C∞ functions with compact support. Another significant difference is that
Yokoyama obtains decay of solutions through direct L∞ − L∞ estimation of the fun-
damental solution for the linear wave equation. By avoiding such direct estimations,
our L∞ − L2 approach is much simpler. Moreover, our estimates are sharper insofar
as they do not require the logarithmic growth factors used in Proposition 3.1 in [21].

An early result for 3D nonrelativistic systems was obtained by Kovalyov [16] in
the semilinear case under a strong nonresonance condition that ruled out all nonlinear
self-interactions. The 2D case has been examined in [6] and [5] using an approach
similar to [21].

The statement of the main result is given in section 3 after a summary of some
standard notation. The rest of the paper presents the proof. To simplify the expo-
sition, we truncate the nonlinearity at the quadratic level, but this entails no loss
of generality since the higher-order terms do not affect the global behavior of small
solutions [12].

2. Notation. Points in R
4 will be denoted by X = (x0, x1, x2, x3) = (t, x).

Partial derivatives will be written as ∂k = ∂/∂xk, k = 0, . . . , 3, with the abbreviations
∂ = (∂0, ∂1, ∂2, ∂3) = (∂t,∇). The angular-momentum operators are defined as

Ω = (Ω1,Ω2,Ω3) = x ∧∇,

where ∧ denotes the usual vector cross product in R
3, and the scaling operator is

defined by

S = t∂t + r∂r = xα∂α.(2.1)

The collection of these seven vector fields will be labeled as

Γ = (Γ0, . . . ,Γ7) = (∂,Ω, S).

Instead of the usual multi-index notation, we will write a = (a1, . . . , aκ) for a sequence
of indices ai ∈ {0, . . . , 7} of length |a| = κ, and

Γa = Γaκ · · ·Γa1 .

Suppose that b and c are disjoint subsequences of a. Then we will say b + c = a if
|b|+ |c| = |a|, and b+ c < a if |b|+ |c| < |a|.

The d’Alembertian will be used to denote the operator

� = Diag(�1, . . . ,�m) with �k = ∂2
t − c2k�.

For convenience, we will assume that the speeds are distinct

c1 > · · · > cm > 0.

It is also possible to treat the case where some of the speeds are the same; see the
remark following the statement of Theorem 3.1. This operator acts on vector functions
u : R

4 → R
m. The standard energy is then defined as

E1(u(t)) =

m∑
k=1

∫
R3

[ |∂tuk(t, x)|2 + c2k |∇uk(t, x)|2 ] dx,
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and higher-order derivatives will be estimated through

Eκ(u(t)) =
∑

|a|≤κ−1

E1(Γ
au(t)), κ = 2, 3, . . . .(2.2a)

In order to describe the solution space, we introduce the time-independent vector
fields Λ = (Λ1, . . . ,Λ7) = (∇,Ω, r∂r). Define

Hκ
Λ(R

3) = {f ∈ L2(R3;Rm) : Λaf ∈ L2, |a| ≤ κ}
with the norm

‖f‖Hκ
Λ
=
∑
|a|≤κ

‖Λaf‖L2 .(2.2b)

Solutions will be constructed in the space Ḣκ
Γ(T ) obtained by closing the set

C∞([0, T );C∞
0 (R3,Rm)) in the norm sup0≤t<T E

1/2
κ (u(t)). Thus,

Ḣκ
Γ(T ) ⊂


u(t, x) : ∂u(t, ·) ∈

κ−1⋂
j=0

Cj([0, T );Hκ−1−j
Λ )


 .

By (6.1) it will follow that Ḣκ
Γ(T ) ⊂ Cκ−2([0, T )× R

3;Rm).
An important intermediate role will be played by the weighted norm

Xκ(u(t)) =
m∑
k=1

∑
|a|=2

∑
|b|≤κ−2

‖〈ckt− |x|〉∂aΓbuk(t)‖L2(R3),(2.2c)

where we use the notation 〈ρ〉 = (1 + |ρ|2)1/2.
3. Main result. Consider the initial value problem for a coupled nonlinear sys-

tem of the form

�u = N(u, u)(3.1)

in which the components of the quadratic nonlinearity depend on the form

Nk(u, v) = Cijk
αβγ∂αu

i∂β∂γv
j .(3.2a)

Summation is performed over repeated indices regardless of their position, up or down.
Greek indices range from 0 to 3 and Latin indices from 1 to m.

Existence of solutions depends on the energy method which requires the system
to be symmetric:

Cijk
αβγ = Cikj

αβγ = Cijk
αγβ .(3.2b)

The key assumption necessary for global existence is the following null condition
which says that the self-interaction of each wave family is nonresonant:

Ckkk
αβγXαXβXγ = 0 for all X ∈ Nk, k = 1, . . . ,m,(3.2c)

with the null cones

Nk = {X ∈ R
4 : x2

0 − c2k(x
2
1 + x2

2 + x2
3) = 0}.



480 THOMAS C. SIDERIS AND SHU-YI TU

Theorem 3.1. Assume that the nonlinear terms in (3.2a) satisfy the symmetry
and null conditions (3.2b), (3.2c). Then the initial value problem for (3.1) with initial
data

∂αu(0) ∈ Hκ−1
Λ (R3), κ ≥ 9,

satisfying

E
1/2
κ−2(u(0)) exp CE1/2

κ (u(0)) < ε,(3.3)

with ε sufficiently small, has a unique global solution u ∈ Ḣκ
Γ(T ) for every T > 0.

The solution satisfies the bounds

E
1/2
κ−2(u(t)) < 2ε and Eκ(u(t)) ≤ 4Eκ(u(0))〈t〉Cε.

Remark. We briefly discuss the case when some of the speeds are repeated.
Suppose that only  < m of the speeds c1 = ck1 > ck2 > · · · > ck� are distinct.
For p = 1, . . . ,  , let Ip = {k : 1 ≤ k ≤ m, ck = ckp}. The null condition is now
extended to be

Cijk
αβγXαXβXγ = 0 for all X ∈ Nkp , (i, j, k) ∈ I3

p , p = 1, . . . ,  .

The proof can easily be adjusted to handle this more general case.

4. Commutation and null forms. In preparation for the energy estimates, we
need to consider the commutation properties of the vector fields Γ with respect to the
nonlinear terms. It is necessary to verify that the null structure is preserved upon
differentiation.

Lemma 4.1. Let u be solution u of (3.1) in Ḣκ
Γ(T ). Assume that the null condition

(3.2c) holds for the nonlinearity in (3.2a). Then for |a| ≤ κ− 1,

�Γau =
∑

b+c+d=a

Nd(Γ
bu,Γcu)

in which each Nd is a quadratic nonlinearity of the form (3.2a) satisfying (3.2c).
Moreover, if b+ c = a, then Nd = N .

Proof. First we note the well-known facts that

[∂,�] = 0, [Ω,�] = 0, [S,�] = −2�.

Recalling the definition (3.2a), we set

[Γ, N ](u, v) = ΓN(u, v)−N(Γu, v)−N(u,Γv).

This is a quadratic nonlinearity of the form (3.2a). Thus, if [Γ, N ] is null for each Γ,
then the result follows by induction. In fact, if d = (d1, . . . , dk), then Nd is the k-fold
commutator Nd = [Γdk , [. . . , [Γd1 , N ]]].

A simple calculation shows that

[∂,N ](u, v) = 0 and [S,N ](u, v) = −3N(u, v).

Thus, these commutators are null if N is null.
We can express the angular momentum operators as Ωλ = ελµνxµ∂ν , λ = 1, 2, 3,

where ελµν is the tensor with value +1, −1 if λµν is an even, respectively, odd,
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permutation of 123, and with value 0 otherwise. Using this, we find that the kth
component of [Ωλ, N ] is

[Ωλ, N ]k(u, v) = C̃ijk
αβγ∂αu

j∂β∂γv
k

with

C̃ijk
αβγ = [Cijk

αβνελγν + Cijk
νβγελαν + Cijk

ανγελβν ].

To see that this commutator is also null, write

hk(X) = Ckkk
αβγXαXβXγ and h̃k(X) = C̃kkk

αβγXαXβXγ .

Then h̃k(X) = −Dhk(X)Y λ with Y λ
µ = ελµνXν . Now the null condition says that

hk(X) = 0 for X ∈ Nk. But since Y λ is tangent to Nk at X, we have h̃k(X) = 0 for
X ∈ Nk. This implies that [Ωλ, N ] is null.

5. Estimates for null forms. The utility of the null condition is captured in the
next lemma. The presence of the terms with the weight 〈ckt− r〉 in these inequalities
is explained by the absence of the Lorentz rotations in our list of vector fields Γ.

Lemma 5.1. Suppose that the nonlinear form N(u, v) defined in (3.2a) sat-
isfies the null condition (3.2c). Set c0 = min{ck/2 : k = 1, . . . ,m}. For u, v,
w ∈ C2([0, T ]× R

3;Rm), and r ≥ c0t, we have at any point X = (t, x)

|Ckkk
αβγ∂αu

k∂β∂γv
k|(5.1a)

≤ C

〈X〉
[
|Γuk||∂2vk|+ |∂uk||∂Γvk|+ 〈ckt− r〉|∂uk||∂2vk|

]
and

|Ckkk
αβγ∂αu

k∂βv
k∂γw

k|≤ C

〈X〉
[
|Γuk||∂vk||∂wk|+ |∂uk||Γvk||∂wk|(5.1b)

+ |∂uk||∂vk||Γwk|+ 〈ckt− r〉|∂uk||∂vk||∂wk|
]

in which 〈X〉 = (1 + |X|2)1/2.
Proof. Spatial derivatives have the decomposition

∇ =
x

r
∂r − x

r2
∧ Ω.

So if we introduce the two operators D±
k = 1

2 (∂t ± ck∂r) and the null vectors Y ±
k =

(1,±x/ckr) ∈ Nk, we obtain

(∂t,∇) = (Y −
k D−

k + Y +
k D+

k )−
(
0,

x

r2
∧ Ω

)
.(5.2)

On the other hand, if we write

D+
k =

ck
ckt+ r

S − ckt− r

ckt+ r
D−
k ,

the formula (5.2) can be transformed into

∂ = Y −
k D−

k −
ckt− r

ckt+ r
Y +
k D−

k +
ck

ckt+ r
Y +
k S −

(
0,

x

r2
∧ Ω

)
.
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Thus, we have

∂ ≡ Y −
k D−

k +R.(5.3a)

Now, we may assume that |X| ≥ 1, for otherwise the estimates are trivial. But then
it follows that 1/r and 1/(ckt + r) are bounded by C/〈X〉, and as a consequence we
have

|Ru| ≤ C〈X〉−1[|Γu|+ 〈ckt− r〉|∂u|].(5.3b)

Using (5.3a), we have

Ckkk
αβγ∂αu

k∂β∂γv
k = Ckkk

αβγ [Y
−
kαY

−
kβY

−
kγD

−
k uk(D−

k )
2vk +Rαu

k∂β∂γv
k(5.4)

+Y −
kαD

−
k ukRβ∂γv

k + Y −
kαD

−
k ukY −

kβD
−
k Rγv

k].

The first term in (5.4) vanishes since N obeys the null condition, and by (5.3b) the
remaining terms in (5.4) have the estimate (5.1a).

The proof of (5.1b) is similar.

6. Sobolev inequalities. The following Sobolev inequalities involve only the
angular momentum operators since we are in the nonrelativistic case. The weight
〈ct− r〉 compensates for this. We use the notation defined in (2.2a), (2.2b), (2.2c).

Lemma 6.1. Let u ∈ Ḣκ
Γ(T ) with Xκ(u(t)) <∞.

〈r〉1/2|Γau(t, x)| ≤ CE1/2
κ (u(t)), |a|+ 2 ≤ κ,(6.1)

〈r〉|∂Γau(t, x)| ≤ CE1/2
κ (u(t)), |a|+ 3 ≤ κ,(6.2)

〈r〉〈cit− r〉1/2|∂Γaui(t, x)| ≤ C
[
E1/2
κ (u(t)) + Xκ(u(t))

]
, |a|+ 3 ≤ κ,(6.3)

〈r〉〈cit− r〉|∂2Γaui(t, x)| ≤ CXκ(u(t)), |a|+ 4 ≤ κ.(6.4)

Proof. This result is essentially Proposition 3.3 in [20] (see also [14]).

7. Weighted decay estimates. The main extra step in the nonrelativistic case
is to control the weighted norm Xκ(u(t)). This will be accomplished in this section
by a type of bootstrap argument.

Lemma 7.1. Let u ∈ Ḣκ
Γ(T ). Then

Xκ(u(t)) ≤ C


E1/2

κ (u(t)) +
∑

|a|≤κ−2

‖(t+ r)�Γau(t)‖L2


 .(7.1)

Proof. Recall that the weighted norm involves derivatives in the form ∂2Γau. In
the case when ∂2 = ∇∂, the result was given in Lemma 3.1 of [15]. Otherwise, if
∂2 = ∂2

t , then the result is an immediate consequence of (2.10) in [15].
Now we assume that u solves the nonlinear PDE.
Lemma 7.2. Let u ∈ Ḣκ

Γ(T ) be a solution of (3.1). Define κ′ =
[
κ−1

2

]
+ 3. Then

for all |a| ≤ κ− 2,

‖(t+ r)�Γau(t)‖L2 ≤ C[Xκ′(u(t))E1/2
κ (u(t)) + Xκ(u(t))E1/2

κ′ (u(t))].(7.2)

Proof. By Lemma 4.1, we must estimate terms of the form

‖(t+ r)∂Γbui∂2Γcuj‖L2 ,
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but since (t+ r) ≤ C〈r〉〈cjt− r〉, we will consider

‖〈r〉〈cjt− r〉∂Γbui∂2Γcuj‖L2(7.3)

with b+ c ≤ a and |a| ≤ κ− 2.

Let m =
[
κ−1

2

]
= κ′ − 3. We separate two cases: either |b| ≤ m or |c| ≤ m − 1.

In the first case, (7.3) is estimated as follows using (6.2):

‖〈r〉∂Γbui‖L∞‖〈cjt− r〉∂2Γcuj‖L2 ≤ CE
1/2
κ′ (u(t))Xκ(u(t)).

Otherwise, we use (6.4) to estimate (7.3) by

‖∂Γbui‖L2‖〈r〉〈cjt− r〉∂2Γcuj‖L∞ ≤ CE1/2
κ (u(t))Xκ′(u(t)).

The next result gains control of the weighted norm by the energy. We distinguish
two different energies, the smaller of which must remain small. In the next section,
we will allow the larger energy to grow polynomially in time.

Lemma 7.3. Let u ∈ Ḣκ
Γ(T ), κ ≥ 8, be a solution of (3.1). Define µ = κ− 2, and

assume that

ε0 ≡ sup
0≤t<T

E1/2
µ (u(t))

is sufficiently small. Then for 0 ≤ t < T ,

Xµ(u(t)) ≤ CE1/2
µ (u(t))(7.4a)

and

Xκ(u(t)) ≤ CE1/2
κ (u(t)).(7.4b)

Proof. Let µ′ =
[
µ−1

2

]
+ 3, µ = κ − 2. Since µ ≥ 6, we have µ′ ≤ µ. Thus, by

Lemmas 7.1 and 7.2, we find using our assumption that

Xµ(u(t)) ≤ C[E1/2
µ (u(t)) + ε0Xµ(u(t))].

Thus, if ε0 is small enough, the bound (7.4a) results.

Again, since κ ≥ 8, we have κ′ =
[
κ−1

2

]
+ 3 ≤ µ = κ− 2. From Lemmas 7.1 and

7.2 we now have

Xκ(u(t)) ≤ C[E1/2
κ (u(t)) + Xµ(u(t))E1/2

κ (u(t)) + Xκ(u(t))E1/2
µ (u(t))].

If we apply (7.4a) and our assumption, then

Xκ(u(t)) ≤ C[E1/2
κ (u(t)) + ε0Xκ(u(t))],

from which (7.4b) follows.
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8. Energy estimates.

General energy method. In this section we shall complete the proof of Theo-
rem 3.1. Assume that u(t) ∈ Ḣκ

Γ(T ) is a local solution of the initial value problem for
(3.1). Our task will be to show that Eκ(u(t)) remains finite for all t ≥ 0. To do so,
we will derive a pair of coupled differential inequalities for (modifications of) Eκ(u(t))

and Eµ(u(t)) with µ = κ − 2. If (3.3) holds, then E
1/2
µ (u(0)) < ε. Suppose that T0

is the largest time such that E
1/2
µ (u(t)) < 2ε for 0 ≤ t < T0 with ε small enough so

that Lemma 7.3 is valid. All of the following computations will be valid on this time
interval.

Following the energy method, we have for any ν = 1, . . . , κ,

E′
ν(u(t)) =

∑
|a|≤ν−1

∫
〈�Γau(t), ∂tΓ

au(t)〉dx,

and from Lemma 4.1, this takes the form

E′
ν(u(t)) =

∑
|a|≤ν−1

∑
b+c+d=a

∫
〈Nd(Γ

bu,Γcu), ∂tΓ
au〉dx.(8.1)

Terms in (8.1) with b = 0, c = a, and |a| = ν − 1 are handled with the aid of the
symmetry condition (3.2b) which allows us to integrate by parts as follows. Recall
that from Lemma 4.1, Nd = N when b+ c = a.∫

〈N(u,Γau), ∂tΓ
au〉dx = Cijk

αβγ

∫
∂αu

i∂β∂γΓ
auj∂tΓ

aukdx

= Cijk
αβγ

∫
∂γ [∂αu

i∂βΓ
auj∂tΓ

auk]dx

− Cijk
αβγ

∫
∂α∂γu

i∂βΓ
auj∂tΓ

aukdx

− Cijk
αβγ

∫
∂αu

i∂βΓ
auj∂t∂γΓ

aukdx

= Cijk
αβ0∂t

∫
∂αu

i∂βΓ
auj∂tΓ

aukdx

− Cijk
αβγ

∫
∂α∂γu

i∂βΓ
auj∂tΓ

aukdx

− 1

2
Cijk
αβγ

∫
∂αu

i∂t[∂βΓ
auj∂γΓ

auk]dx

=
1

2
Cijk
αβγηγδ ∂t

∫
∂αu

i∂βΓ
auj∂δΓ

aukdx

− Cijk
αβγ

∫
∂α∂γu

i∂βΓ
auj∂tΓ

aukdx

+
1

2
Cijk
αβγ

∫
∂t∂αu

i∂βΓ
auj∂γΓ

aukdx,

using the symbol ηγδ = Diag[1,−1,−1,−1]. The first term above can be absorbed
into the energy as a lower order perturbation. Define

Ẽν(u(t)) = Eν(u(t))− 1

2

∑
|a|=ν−1

Cijk
αβγηγδ

∫
∂αu

i∂βΓ
auj∂δΓ

aukdx.
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The perturbation is bounded by C‖∂u‖L∞Eν(u(t)), but by (6.2), the maximum norm

‖∂u‖L∞ is controlled by E
1/2
3 (u(t)) ≤ E

1/2
µ (u(t)) < 2ε. Thus, for small solutions we

have

(1/2)Eν(u(t)) ≤ Ẽν(u(t)) ≤ 2Eν(u(t)).(8.2)

Returning to (8.1), we have derived the energy identity

Ẽ′
ν(u(t)) =

∑
|a|≤ν−1

∑
b+c+d=a
|a|�=ν−1

∫
〈Nd(Γ

bu,Γcu), ∂tΓ
au〉dx(8.3)

+
∑

|a|=ν−1

[ ∑
b+c=a
c �=a

∫
〈N(Γbu,Γcu), ∂tΓ

au〉dx.

− Cijk
αβγ

∫
∂α∂γu

i∂βΓ
auj∂tΓ

aukdx

+
1

2
Cijk
αβγ

∫
∂t∂αu

i∂βΓ
auj∂γΓ

aukdx

]
.

Higher energy. For the first series of estimates we take ν = κ in (8.3). We
immediately obtain

Ẽ′
κ(u(t)) ≤ C

∑
i,j,k

∑
|a|≤κ−1

∑
b+c≤a

|c|≤κ−2

‖∂Γbui∂2Γcuj‖L2‖∂Γauk‖L2 .(8.4)

In some cases, the indices i and j have been interchanged. In the sum on the right-
hand side of (8.4), we have either |b| ≤ κ′ or |c| ≤ κ′ − 1 with κ′ =

[
κ
2

]
. Note that

since κ ≥ 9, we have κ′ + 3 ≤ κ− 2 = µ. We will also use that 〈t〉 ≤ C〈r〉〈cjt− r〉.
In the first case, we estimate using (6.2) and (7.4b) as follows:

‖∂Γbui∂2Γcuj‖L2 ≤ C〈t〉−1‖〈r〉∂Γbui‖L∞‖〈cjt− r〉∂2Γcuj‖L2

≤ C〈t〉−1E
1/2
|b|+3(u(t))Xκ(u(t))

≤ C〈t〉−1E1/2
µ (u(t))E1/2

κ (u(t)).

In the second case, we use (6.4) and then (7.4a):

‖∂Γbui∂2Γcuj‖L2 ≤ C〈t〉−1‖∂Γbui‖L2‖〈r〉〈cjt− r〉∂2Γcuj‖L∞

≤ C〈t〉−1E1/2
κ (u(t))X|c|+4(u(t))

≤ C〈t〉−1E1/2
κ (u(t))Xµ(u(t))

≤ C〈t〉−1E1/2
κ (u(t))E1/2

µ (u(t)).

Going back to (8.4) and recalling (8.2), we have established the inequality

Ẽ′
κ(u(t))≤ C〈t〉−1E1/2

µ (u(t))Eκ(u(t))(8.5)

≤ C〈t〉−1Ẽ1/2
µ (u(t))Ẽκ(u(t)).
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Lower energy. The second series of energy estimates will exploit the null con-
dition. We return to (8.3) now with ν = µ = κ − 2. The resulting integrals on the
right-hand side of (8.3) will be subdivided into separate integrals over the regions
r ≤ c0t and r ≥ c0t. Recall that the constant c0 was defined in Lemma 5.1.

Inside the cones. On the region r ≤ c0t, we have that the right-hand side of
(8.3) is bounded above by∑

i,j,k

∑
|a|≤µ−1

∑
b+c≤a

|c|≤µ−2

‖∂Γbui∂2Γcuj∂Γauk‖L1(r≤c0t).

Since r ≤ c0t, we have that 〈cit− r〉 ≥ C〈t〉 for each i = 1, . . . ,m. Thus, using (6.3),
a typical term can be estimated by

C〈t〉−3/2‖〈cit− r〉1/2∂Γbui〈cjt− r〉∂2Γcuj∂Γauk‖L1(r≤c0t)
≤ C〈t〉−3/2‖〈cit− r〉1/2∂Γbui‖L∞‖〈cjt− r〉∂2Γcuj‖L2‖∂Γauk‖L2

≤ C〈t〉−3/2
[
E

1/2
|b|+3(u(t)) + X|b|+3(u(t))

]
X|c|+2(u(t))E

1/2
µ (u(t)).

In the preceding, we have |b| + 3 ≤ κ, |c| + 2 ≤ µ, and |a| + 1 ≤ µ. With the aid of
Lemma 7.3, we have achieved an upper bound of the form

C〈t〉−3/2Eµ(u(t))E
1/2
κ (u(t))

for the portion of the integrals over r ≤ c0t on the right of (8.3).

Away from the origin. It remains to estimate the right-hand side of (8.3) for
r ≥ c0t.

First, we consider the nonresonant terms, i.e., those for which (i, j, k) �= (k, k, k).
If i �= j and r ≥ c0t, then 〈t〉3/2 ≤ C〈r〉〈cit− r〉1/2〈cjt− r〉. Using (6.3) we have the
estimate

‖∂Γbui∂2Γcuj∂Γauk‖L1(r≥c0t)
≤ C〈t〉−3/2‖〈r〉〈cit− r〉1/2∂Γbui‖L∞‖〈cjt− r〉∂2Γcuj‖L2‖∂Γauk‖L2

≤ C〈t〉−3/2
[
E

1/2
|b|+3(u(t)) + X|b|+3(u(t))

]
X|c|+2(u(t))E

1/2
|a|+1(u(t))

≤ C〈t〉−3/2Eµ(u(t))E
1/2
κ (u(t)).

Otherwise, if j �= k, we pair the weight 〈r〉〈ckt − r〉1/2 with ∂Γauk in L∞ to get the
same upper bound.

We are left to consider the resonant terms in (8.3), i.e., (i, j, k) = (k, k, k), in the
region r ≥ c0t. It is here, finally, where the null condition enters. An application of
Lemma 5.1 yields the following upper bound for these terms:

C〈t〉−1
∑
k

∑
b+c=a

|c|≤µ−2

[
‖Γb+1uk∂2Γcuk∂Γauk‖L1(r≥c0t)

+‖∂Γbuk∂Γc+1uk∂Γauk‖L1(r≥c0t)

+‖〈ckt− r〉∂Γbuk∂2Γcuk∂Γauk‖L1(r≥c0t)
]
.

We still need to squeeze out an additional decay factor of 〈t〉−1/2.
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Since r ≥ c0t, we have 〈r〉 ≥ C〈t〉. Thus, we have using (6.1) that

‖Γb+1uk∂2Γcuk∂Γauk‖L1(r≥c0t)
≤ C〈t〉−1/2‖〈r〉1/2Γb+1uk‖L∞(r≥c0t)‖∂2Γcuk‖L2‖∂Γauk‖L2

≤ C〈t〉−1/2E
1/2
|b|+3(u(t))Eµ(u(t))

≤ C〈t〉−1/2E1/2
κ (u(t))Eµ(u(t)).

In a similar fashion, the second term is handled using (6.2):

‖∂Γbuk∂Γc+1uk∂Γauk‖L1(r≥c0t)
≤ C〈t〉−1‖∂Γbuk‖L2‖〈r〉∂Γc+1uk‖L∞(r≥c0t)‖∂Γauk‖L2

≤ C〈t〉−1E
1/2
|c|+3(u(t))Eµ(u(t))

≤ C〈t〉−1E1/2
κ (u(t))Eµ(u(t)).

The final set of terms are estimated using (6.2) again and (7.4a):

‖〈ckt−r〉∂Γbuk∂2Γcuk∂Γauk‖L1(r≥c0t)
≤ C〈t〉−1‖〈r〉∂Γbuk‖L∞(r≥c0t)‖〈ckt− r〉∂2Γcuk‖L2‖∂Γauk‖L2

≤ C〈t〉−1E
1/2
|b|+3(u(t))X|c|+2(u(t))E

1/2
µ (u(t))

≤ C〈t〉−1E1/2
κ (u(t))Eµ(u(t)).

Combining all the estimates in this subsection, we obtain, thanks to (8.2), the
following inequality for the lower energy:

Ẽ′
µ(u(t))≤ C〈t〉−3/2Eµ(u(t))E

1/2
κ (u(t))(8.6)

≤ C〈t〉−3/2Ẽµ(u(t))Ẽ
1/2
κ (u(t)).

Conclusion of the proof. By (8.2), we have that the modified energy satisfies

Ẽ
1/2
µ (u(t)) ≤ Cε for 0 ≤ t < T0. So from (8.5), we find that

Ẽκ(u(t)) ≤ Ẽκ(u(0))〈t〉Cε,

provided ε is small. Inserting this bound into (8.6) and using (8.2), we obtain

(1/2)Eµ(u(t))≤ Ẽµ(u(t)) ≤ Ẽµ(u(0)) expCIẼ1/2
κ (u(0))

≤ 2Eµ(u(0)) exp 2CIE1/2
κ (u(0)) < 2ε2

with I =
∫∞
0
〈s〉−3/2+Cεds. With this we see that E

1/2
µ (u(t)) remains strictly less than

2ε throughout the closed interval 0 ≤ t ≤ T0. This shows that Eµ(u(t)) is bounded
for all time, which completes the proof of Theorem 3.1.
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Abstract. We study the large time behavior of small solutions to the Cauchy problem for
the Vlasov–Poisson–Fokker–Planck equation, which is a degenerate parabolic equation with nonlocal
nonlinearity. We construct finite dimensional invariant manifolds in a neighborhood of the origin
in polynomially weighted Sobolev spaces, which enables us to compute systematically the long-time
asymptotics for small solutions. To construct invariant manifolds, we make use of the “similarity
variables” transformation as in C. E. Wayne’s work in 1997, where invariant manifolds for parabolic
equations in unbounded domains are constructed.

Key words. Vlasov–Poisson–Fokker–Planck equation, long-time asymptotics, invariant mani-
fold

AMS subject classifications. 35B40, 35M99, 35Q99
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1. Introduction. Many nonlinear parabolic partial differential equations of-
ten exhibit some scale-invariant structures in large time behavior of their solutions;
namely, their solutions asymptotically have some self-similar profiles in large times.
Based on this viewpoint, Bricmont, Kupiainen, and Lin [4] developed the renormal-
ization group method to study large time behavior of solutions of certain types of
nonlinear parabolic equations and derived the long-time asymptotics of solutions up
to the leading order.

On the other hand, for many dissipative systems, the large time behavior of solu-
tions is recognized to be controlled by a finite number of degrees of freedom. To study
this point, invariant manifold theory is a strong mathematical tool, and, actually, the
large time behavior of solutions is described by a system of a finite number of ordi-
nary differential equations when the dimension of the constructed invariant manifold
is finite. However, the application of the theory had been restricted to systems of
ordinary differential equations and some classes of partial differential equations on
bounded domains, where the spectra of linearized problems are discrete. In 1997,
Wayne [21] constructed invariant manifolds for the problem

∂tf −∆xf + F (f) = 0, f = f(x, t), x ∈ RN , t > 0,(1.1)

where F (f) = O(|f |p) as |f | → 0 for some p > 1. To construct the invariant manifold
for (1.1), Wayne used the change of variables to the so-called “similarity variables” and
showed the existence of finite dimensional invariant manifolds in some Sobolev spaces
with polynomial weights. As a result, for suitable F , asymptotic profiles of solutions
in large time were given, up to orders higher than that given in [4]. Wayne’s method
has been generalized in a few directions: to the study of the long-time behavior of
solutions around spatially periodic steady solutions of the Swift–Hohenberg equation
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[11]; to problems on cylindrical domains [22]; to higher-order dissipative systems
[10]. See also [15] for an approach in the Lp-framework. All of these problems have
linearized parts of essentially diffusive type or of the type (−∆x)

n.
The purpose of this paper is to carry out the same kind of analysis initiated

by Wayne [21] for a different type of problem to study the long-time asymptotics
of solutions to such problems. The problem discussed in this paper is the Cauchy
problem for the Vlasov–Poisson–Fokker–Planck equation (without friction term)

∂tf + u · ∇xf + E(f) · ∇uf −∆uf = 0, (x, u) ∈ RN ×RN , t > 0,

f |t=0 = f0.
(1.2)

Here N ≥ 2, f = f(x, u, t) is the unknown function, which describes the density of
particles with respect to position x ∈ RN and velocity u ∈ RN at time t; ∇x =
(∂x1 , . . . , ∂xN

), ∇u = (∂u1
, . . . , ∂uN

); ∆u is the Laplacian with respect to the variable
u: ∆u = ∂2

u1
+ · · · ∂2

uN
. E(f) is an integral operator defined by

E(f) = ω
x

|x|N ∗x
∫
RN

f(x, u, t) du, ω = +
1

σ2|SN−1| or −
1

σ2|SN−1| ,

where |SN−1| is the (N − 1) dimensional volume of the N dimensional unit sphere;
σ is a positive constant (called a diffusion constant); ∗x denotes the convolution with
respect to x. Thus the equation in (1.2) is a degenerate parabolic equation with
nonlocal nonlinearity.

We will construct finite dimensional invariant manifolds for (1.2) in some Sobolev
spaces with polynomial weights and give long-time asymptotics of small solutions to
(1.2). To state our main result we introduce function spaces

X�,m
r = {f(x, u) ∈ L2(RN ×RN ) : (1 + |x|2 + |u|2)r/2∂αx ∂βuf ∈ L2(RN ×RN ),

0 ≤ |α| ≤ �, 0 ≤ |β| ≤ m},

where �, m, and r are nonnegative integers. The norm of X�,m
r is defined by

‖f‖X�,m
r

=


∫ ∑

|α|≤�,|β|≤m

(1 + |x|2 + |u|2)r|∂αx ∂βuf(x, u)|2 dxdu



1/2

.

We now give the asymptotics of small solutions up to the order n.
Theorem 1.1. Let n be an integer satisfying 0 ≤ n ≤ 3N − 5, and let r be an

integer satisfying r ≥ n+ 3N + 1
2 . Also, let m be an integer satisfying m > N . Then

for any ε > 0, if ‖f0‖Xm,m
r

is sufficiently small, there exists a unique global solution
f(t) of (1.2) in C([0,∞);Xm,m

r ), and f(t) satisfies

lim
t→∞ t

n+1
2 −ε

∥∥t2Nf(t3/2x, t1/2u, t)− n∑
k=0

t−
k
2

∑
3|α|+|β|=k

Bα,βgα,β(x, u)‖L∞
x,u

= 0.

Here gα,β(x, u) = cα,β∂
α
x (∂x+∂u)

βe−3|x−u
2 |2− 1

4 |u|2 and cα,β = (− 1
3 )

|α| 1
α!β! (

√
3

2π )
N with

α and β being multi-indices; and Bα,β are constants determined by f0 and the non-
linearity. In particular, B0,0 =

∫
f0(x, u) dxdu.
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Remark 1.2. In Theorem 1.1 the range of n is restricted as 0 ≤ n ≤ 3N − 5.
One can, however, obtain the asymptotics of f up to any nonnegative n ∈ Z; in fact,
the full dynamics have been reduced to those of the system of ordinary differential
equations (2.6) below.

If n is beyond the range in Theorem 1.1, i.e., if n ≥ 3N − 4, then the effect of
the nonlinearity becomes somewhat stronger, and logarithmic terms appear in the
asymptotics. For example, if n = 3N − 4, then we have

t2Nf(t3/2x, t1/2u, t)

∼
n−1∑
k=0

∑
3|α|+|β|=k

(Bα,βt
− k

2 + B̃α,βt
−n

2 )gα,β(x, u)

+
∑

3|α|+|β|=n

(Bα,βt
−n

2 + B̃α,βt
−n

2 log t) gα,β(x, u)

+h(x, u, t) +O(t−
n+1

2 +ε), (n = 3N − 4),

where Bα,β and B̃α,β are some constants and h(x, u, t) = O(t−
n
2 ). (For example, when

N = 2, the constants B̃0,β (|β| = 2) are given by B̃0,β = − 3
8B0,0

2ω for β = (2, 0) and

(0, 2), B̃0,β = 0 for β = (1, 1).) As for the function h(x, u, t), see section 2.
The existence, uniqueness, and regularity of solutions to (1.2) have been widely

studied; see, e.g., [1, 2, 3, 5, 7, 8, 9, 17, 18, 19, 20] and references therein. Among these
works, this paper is closely related to those in [5, 9, 17]. The work [9] by Carrillo,
Soler, and Vázquez is the first one among the works for (1.2) to make use of the
scaling-invariant property of the fundamental solution of the linearized problem. It is
shown in [9] that under some conditions the long-time asymptotics of weak solutions
can be obtained up to the leading order when N ≥ 3. An existence of solutions
satisfying these conditions was shown in [8], and at least for initial data small enough
in some sense, such solutions exist. Carpio [5] then studied large time behavior of small
solutions when N = 3. In the analysis in [5] the fundamental solution of the linearized
problem of (1.2) was investigated in detail and the long-time asymptotics was obtained
up to the second order by using the rescaling technique. The result in [5] shows that
the effect of the nonlinearity appears in the second order term of the asymptotics
in a weak sense. Ono and Strauss [17] recently obtained sharp decay estimates for
the difference of the solution to (1.2) and the solution of the corresponding linearized
problem for any N ≥ 2 if the initial value is sufficiently small. Our results extend
these results to higher-order asymptotics and indicate the order in the asymptotics
where the effect of the nonlinearity becomes strong.

We prove Theorem 1.1 and Remark 1.2 by constructing finite dimensional invari-
ant manifolds as in [10, 11, 21, 22]. We change the variables into the “similarity”
variables:

t̃ = log (t+ 1), x̃ = x/(t+ 1)3/2, ũ = u/(t+ 1)1/2,

f(x, u, t) = (t+ 1)−2N f̃(x/(t+ 1)3/2, u/(t+ 1)1/2, log (t+ 1))

(cf. [9]). Then the equation for f̃ is written, after omitting tildes, as

∂tf − ( 32x− u) · ∇xf − 1
2u · ∇uf − 2Nf + e−( 3

2N−2)tE(f) · ∇uf −∆uf = 0,

f |t=0 = f0.

(1.3)
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In [10, 11, 21] (see also [15]), to construct invariant manifolds in polynomially
weighted spaces, the crucial step is, roughly speaking, to show that the linearized
semigroup T (t) in the similarity variables behaves as

(1.4)

{
PjT (t)f0 = eλktPjf0, k = 0, . . . , n,

‖QnT (t)f0‖ ≤ Ceλn+1t‖f0‖
in some spaces with polynomial weights. Here λk, k = 0, 1, . . . , n are the first n + 1
eigenvalues of the linearized operator with λn < · · · < λ0; Pk denotes the eigenpro-
jection associated with the eigenvalue λk; Qn = I −∑n

k=0 Pk; and λn+1 is a number
satisfying λn+1 < λn. The proof of (1.4) in [10, 11, 21] is done by a skillful decompo-
sition of the underlying domain RN and a use of the fact that the growth bound for
QnT (t) in an exponentially weighted space can be estimated by the spectral bound of
its generator. It is the same in [15]. The method in [10, 11, 21] also works in our case
since the spectrum of our T (t) in some exponentially weighted space consists only of
discrete eigenvalues. (See the remarks in the appendix.) However, in this paper we
will show (1.4) by directly analyzing the Fourier transform of our T (t) in polynomially
weighted spaces. The “similarity-variable” transformation plays an important role in
bringing out clearly the discrete nature of the spectrum of T (t), which can be seen
more easily through the Fourier transform of T (t). We derive a useful expression of
a spectral representation of T (t)f0 in terms of its Fourier transform. This expression
naturally leads us to the behavior of the semigroup as in (1.4) without analysis of
the linearized problem in the exponentially weighted space. The dissipative nature
of the problem works well in controlling various quantitative estimates. The method
is also applicable for the case (1.1). It is still unclear to the author what kind of
structures of asymptotic self-similarity and dissipativity are needed for the analysis
by the invariant manifold method on unbounded domains as initiated by Wayne [21].

The paper is organized as follows. In section 2 we reformulate the problem in
the similarity variables. The existence theorem (Theorem 2.1) of invariant manifolds
for (1.3) is then stated, and the proofs of Theorem 1.1 and Remark 1.2 are outlined.
Some comments on the case N = 1 are given in Remark 2.2. In section 3 we investi-
gate some spectral properties of the linearized operator and show the behavior of the
linearized semigroup as in (1.4). In section 4 we derive some estimates for the non-
linearity, which, together with (1.4), implies Theorem 2.1. The appendix is devoted
to a derivation of an integral formula of the linearized semigroup for (1.3).

2. Formulation of the problem in the similarity variables. In this section
we reformulate the problem in the similarity variables. We then present the existence
theorem of the invariant manifolds (Theorem 2.1), and the proofs of Theorem 1.1 and
Remark 1.2 are outlined.

Let us transform the problem into the one in the similarity variables. We change
the variables as

t̃ = log (t+ 1), x̃ = x/(t+ 1)3/2, ũ = u/(t+ 1)1/2,

f(x, u, t) = (t+ 1)−γ f̃(x/(t+ 1)3/2, u/(t+ 1)1/2, log (t+ 1)),

where γ = 1
2N + 2. The change of variables here is slightly different from the ones

written in the introduction. Since the nonlinearity in (1.2) is just quadratic, this
transformation is convenient, and the transformed problem becomes autonomous. In
fact, the nonlinearity is transformed as

E(f) ·∇uf(x, u, t) = (t+1)
−2γ+N

2 +1E(f̃) ·∇ũf̃(x/(t+1)
3/2, u/(t+1)1/2, log (t+ 1)),
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and the equation for f̃ is written, after omitting tildes, as

∂tf −
(
3

2
x− u

)
· ∇xf − 1

2
u · ∇uf − γf + E(f) · ∇uf −∆uf = 0,

f |t=0 = f0.
(2.1)

We write the problem (2.1) in the form

∂tf = Lf −N (f), f(0) = f0,

where Lf = ∆uf + (
3
2x− u) · ∇xf +

1
2u · ∇uf + γf and N (f) = E(f) · ∇uf .

We first consider the linear problem in the weighted space X�,m
r . As we will see

in section 3, the linearized operator has the following properties.
We are given a nonnegative integer n, and we fix this n hereafter. For this n we

take the weight large enough in such a way that r ≥ n + 3N + 1
2 . Then, as for the

spectrum σ(L) of L in X0,0
r , we have

σ(L) ⊂ {λk : k = 0, 1, . . . , n} ∪ {Reλ ≤ λn+1}
(
λj = −(2N − γ)− j

2

)
.

Here each of the λk (k = 0, 1, . . . , n) is a semisimple eigenvalue; the associated
eigenspace is spanned by functions gα,β ’s with α and β satisfying 3|α| + |β| = k,
where

gα,β(x, u) = cα,β∂
α
x (∂x + ∂u)

βe−µ(x,u), µ(x, u) = 3
∣∣∣x− u

2

∣∣∣2 + 1

4
|u|2,

cα,β =

(
−1
3

)|α|
1

α!β!

(√
3

2π

)N

.

The eigenprojection Pk associated with λk is given by

Pkf =
∑

3|α|+|β|=k

〈f, g∗α,β〉gα,β .

Here g∗α,β(x, u) = (∂x + 3∂u)
α(∂x + 2∂u)

βe−µ(x,u) denotes the adjoint eigenfunction,
and the pairing 〈·, ·〉 is defined by

〈f, g〉 =
∫

f(x, u)g(x, u)eµ(x,u) dxdu.

Note that 〈gα,β , g∗α̃,β̃〉 = 1 if (α, β) = (α̃, β̃), and 〈gα,β , g∗α̃,β̃〉 = 0 if (α, β) �= (α̃, β̃).

We denote by Pn =
∑n

k=0 Pk the projection onto the spectral subspace corresponding
to discrete eigenvalues {λk}nk=0, and we define Qn by Qn = I − Pn.

By Proposition 3.3 below, Pn is a bounded operator in X�,m
r since r ≥ n+3N+ 1

2
and X�,m

r is decomposed into the direct sum

X�,m
r = Yn ⊕ Z�,m

r,n , Yn ≡ PnX�,m
r , Z�,m

r,n ≡ QnX
�,m
r ,

and the solution T (t)f0 of the linear problem is decomposed as

T (t)f0 = ϕn(t) + ψ(t), ϕn(t) ∈ Yn, ψ(t) ∈ Z�,m
r,n ,

ϕn(t) =

n∑
k=0

eλktPkf0, ψ(t) = QnT (t)f0.
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As for the part ψ(t) = QnT (t)f0 on the subspace Z
�,m
r,n , the estimate

‖QnT (t)f0‖X�,m
r
≤ C(1 + t−

j
2 )eλn+1t‖f0‖X�,m−j

r
(2.2)

holds for � ≥ 0, m ≥ j, and j = 0, 1. Therefore, the large time behavior of solutions
of the linear problem is described, up to O(eλn+1t), by the behavior of solutions on
the finite dimensional invariant subspace Yn.

For the nonlinear problem we have the following theorem, from which the long-
time asymptotics given in Theorem 1.1 and Remark 1.2 are obtained.

Theorem 2.1. Let n ≥ 0 be an integer, and let r be an integer satisfying r ≥
n + 3N + 1

2 . Then for any fixed integers m ≥ 0, j ≥ 1, and � = [N2 − 1] + 1, there
exists a finite dimensional invariant manifold M for (2.1) in a neighborhood of the
origin of Xm+�,j

r , i.e., there exist Φ ∈ C1(Yn;Z
m+�,j
r,n ) and R > 0 such that Φ(0) = 0,

DΦ(0) = 0, and

M = {ϕn +Φ(ϕn);ϕn ∈ Yn, ‖ϕn‖Xm+�,j
r

≤ R},

where Yn = PnXm+�,j
r and Zm+�,j

r,n = QnX
m+�,j
r ; andM is invariant under semiflows

defined by (2.1). Furthermore, solutions near the origin stay in a neighborhood of the
origin for all times and approach to M at a rate O(e(λn+1+ε)t) as t → ∞. More
precisely, if ‖f0‖Xm+�,j

r
is sufficiently small, then there uniquely exists a solution f̄(t)

of (2.1) onM such that

‖f(t)− f̄(t)‖Xm+�,j
r

≤ Ce(λn+1+ε)t.(2.3)

Theorem 2.1 follows from Propositions 3.6 and 4.1 below by applying standard
arguments of invariant manifold theory in [6, 16].

We now outline how to obtain the long-time asymptotics given in Theorem 1.1
and Remark 1.2.

Our starting point is the estimate (2.3) in Theorem 2.1. We can rewrite the
estimate (2.3) in the form

‖ϕn(t)− ϕ̄n(t)‖Xm+�,j
r

≤ Ce(λn+1+ε)t(2.4)

and

‖ψ(t)− Φ(ϕ̄n(t))‖Xm+�,j
r

≤ Ce(λn+1+ε)t,(2.5)

where

f(t) = ϕn(t) + ψ(t), f̄(t) = ϕ̄n(t) + Φ(ϕ̄n(t)), ϕn(t), ϕ̄n(t) ∈ Yn, ψ(t) ∈ Zm+�,j
r,n .

From (2.4) and (2.5) we can see that to obtain the asymptotics of f(t) up toO(e(λn+1+ε)t),
it suffices to investigate the behavior of ϕ̄n(t), which is governed by a system of a finite
number of ordinary differential equations. Since ϕ̄n(t) can be written as

ϕ̄n(t) =
∑

3|α|+|β|≤n

ϕα,β(t)gα,β , ϕα,β ∈ R,

the problem is reduced to the analysis of the behavior of ϕα,β ’s.
We now derive a system of ordinary differential equations for ϕα,β ’s. Since f̄(t) =

ϕ̄n(t) + Φ(ϕ̄n(t)) is a solution of (2.1) onM, it satisfies

∂tf̄ = Lf̄ −N (f̄), f̄ = ϕ̄n +Φ(ϕ̄n).
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Taking the pairing 〈·, ·〉 of this identity with g∗α,β , we have

ϕ̇α,β = λkϕα,β +Hα,β(ϕ̄n), 3|α|+ |β| = k, 0 ≤ k ≤ n,(2.6)

where ϕ̇α,β =
d
dtϕα,β and Hα,β(ϕ̄n) = −〈N (ϕ̄n +Φ(ϕ̄n)), g

∗
α,β〉.

For α = β = 0, one can easily verify that H0,0(ϕ̄n) = 0. Hence

ϕ̇0,0 = λ0ϕ0,0, i.e., ϕ0,0(t) = eλ0tϕ0,0(0).

Recall that λ0 = −(2N − γ) = −( 32N − 2) < 0. For (α, β) �= (0, 0), we have, by the
variation of constants formula,

ϕα,β(t) = eλktϕα,β(0) + eλkt

∫ t

0

e−λksHα,β(ϕ̄n(s)) ds(2.7)

with k = 3|α|+ |β|, 1 ≤ k ≤ n. Since λk = λ0− k
2 , one can expect that ϕα,β(t) decays

strictly faster than ϕ0,0(t). Therefore, the slowest term in Hα,β(ϕ̄n(s)) behaves like
e2λ0s, since the lowest order terms of Hα,β(ϕ̄n) are quadratic in {ϕα,β}. As a result,
the integrand in (2.7) behaves like e(2λ0−λk)s.

Now let n ≤ 3N−5. This is just equivalent to |λn| < 2|λ0| (and to |λn+1| ≤ 2|λ0|).
It then follows that for 3|α|+ |β| = k, 0 ≤ k ≤ n,

ϕα,β(t) ∼ const. eλkt +O(e2λ0t),

where const. depends on ϕα,β(0) and Hα,β . We can also obtain

‖ψ(t)‖Xm+�,j
r

≤ Ce(λn+1+ε)t.

Therefore,

f̃(x, u, t̃) ∼
n∑

k=0

eλk t̃
∑

3|α|+|β|=k

Bα,βgα,β(x, u) +O(e(λn+1+ε)t̃).(2.8)

Here we write the solution of (2.1) and the time variable with tildes. Now, converting
(2.8) to the original function f and the original time scale t, we obtain the asymptotics
given in Theorem 1.1 for n ≤ 3N − 5 if we choose m and j as m+ l > N and j > N .
Note that this choice of m and j implies that Xm+�,j

r ⊂ L∞(dxdu) due to the Sobolev
embedding.

We next consider higher-order asymptotics. In higher-order cases, the estimates
(2.4), (2.5), and (2.6) for ϕα,β ’s, of course, take the same forms. Let n ≥ 3N − 4.
Then |λn| ≥ 2|λ0| and |λn+1| > 2|λ0|. Therefore, the integrand in (2.7) does not
decay as s → ∞ for some α and β, and the effect of the inhomogeneous term is no
longer weak. Also, one must take the effect of Φ(ϕ̄n(t)) into account, and thus the
form of the asymptotics becomes complicated.

For example, if n = 3N −4, then we have λn = 2λ0, and, therefore, the integrand
in (2.7) with 3|α|+ |β| = n is of O(1). It then follows that for 3|α|+ |β| = n,

ϕα,β(t) ∼ c1e
λnt + c2 te

λnt +O(eλn+1t),
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where c1 and c2 are some constants. One can also see that Φ(ϕ̄n(t)) = O(eλnt).
Combining these with (2.4) and (2.5) and converting to the original function f and
the original time scale t, we see that

t2Nf(t3/2x, t1/2u, t)

∼
n−1∑
k=0

∑
3|α|+|β|=k

(Bα,βt
− k

2 + B̃α,βt
−n

2 )gα,β(x, u)

+
∑

3|α|+|β|=n

(Bα,βt
−n

2 + B̃α,βt
−n

2 log t) gα,β(x, u)

+h(x, u, t) +O(t−
n+1

2 +ε) (n = 3N − 4),

where Bα,β and B̃α,β are some constants and h(x, u, t) = O(t−
n
2 ). This gives the

asymptotics presented in Remark 1.2 for n = 3N − 4. (A direct calculation, for

example, for N = 2 shows that the constants B̃0,β (|β| = 2) are given by B̃0,β =

− 3
8B0,0

2ω for β = (2, 0) and (0, 2) and B̃0,β = 0 for β = (1, 1).) For n ≥ 3N − 3, it is
possible to obtain the asymptotics in a similar manner as above, but the form of the
asymptotics becomes more complicated.

Remark 2.2. In the case whenN = 1, the nonlinearity is relevant [4, 10]. However,
as in [10], if

∫
f0 dxdu = 0, one may obtain something about the dynamics of small

solutions. But in this case the dynamics will strongly depend on the sign of ω (in
E(f)), and we do not consider this case here.

In the remaining part of this paper we will prove Theorem 2.1. The strategy of
the proof is similar to that in [10, 11, 21], and the theorem follows from Propositions
3.6 and 4.1 below by applying standard arguments of invariant manifold theory in
[6, 16].

3. Some spectral properties of the linearized operator. In this section we
deduce some spectral properties of the linearized operator, which is needed for the
construction of invariant manifolds. We first investigate the spectrum of the operator
A:

Af =

(
3

2
x− u

)
· ∇xf +

1

2
u · ∇uf + 2Nf +∆uf.

Note that the linearized operator L which appears in (2.1) is given by L = A− (2N −
γ)I.

Let n be a nonnegative integer. We fix this n hereafter and take an integer r
satisfying r ≥ n + 3N + 1

2 . We discuss the spectrum of A in X0,0
r . The Fourier

transform of Af is given by

Âf̂ ≡ Âf = −3
2
ξ · ∇ξ f̂ −

(
1

2
w − ξ

)
· ∇wf̂ − |w|2f̂ ,

where f̂(ξ, w) is the Fourier transform of f(x, u):

f̂(ξ, w) =

∫
e−ix·ξ−iu·wf(x, u) dxdu.

Consider now the eigenvalue problem λf̂ − Âf̂ = 0. Transforming the variables

w̃ = w + ξ, ξ̃ = ξ,

f̂(ξ, w) = ĝ(ξ, w + ξ) e−µ̂(ξ,w), µ̂(ξ, w) = |w + ξ
2 |2 + 1

12 |ξ|2,
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we reduce the problem to

λĝ +
3

2
ξ̃ · ∇ξ̃ ĝ +

1

2
w̃ · ∇w̃ĝ = 0.

On can easily verify that each σk = −k
2 (k = 0, 1, 2 · · · ) is an eigenvalue, and the

associated eigenfunctions are given by ξ̃αw̃β with multi-indices α and β satisfying
3|α| + |β| = k, and in the original variables, ξα(w + ξ)βe−µ̂(ξ,w). Therefore, taking
the inverse Fourier transform, we have the following.

Proposition 3.1. The spectrum σ(A) of A in X0,0
r contains a set of eigenvalues

{σk = −k
2 : k = 0, 1, 2, · · · }, and eigenfunctions associated with σk are given by gα,β

with multi-indices α and β satisfying 3|α|+ |β| = k.
We next consider the adjoint problem with respect to the pairing 〈·, ·〉. The

adjoint operator A∗ of A with respect to the pairing 〈·, ·〉 is given by

A∗ = −
(
3

2
x− u

)
· ∇x +

(
7

2
u− 6x

)
· ∇u + 2N +∆u.

As above, we have the following proposition.
Proposition 3.2. The spectrum σ(A∗) of A∗ in X0,0

r contains a set of eigenval-
ues {σk = −k

2 : k = 0, 1, 2, · · · }, and eigenfunctions associated with σk are given by
g∗α,β with multi-indices α and β satisfying 3|α|+ |β| = k.

Since the linearized operator L of (2.1) is written as L = A− (2N − γ)I, we see
that λk = σk − (2N − γ) (k = 0, 1, 2, · · · ) are eigenvalues of L. The projection Pn
onto the eigenspaces of the first n+ 1 eigenvalues of L is formally given by

Pnf =
n∑

k=0

Pkf =

n∑
k=0

∑
3|α|+|β|=k

〈f, g∗α,β〉gα,β .

As in [21], the following proposition shows that Pn is well defined in X0,0
r if r is

suitably large.
Proposition 3.3. If r ≥ n + 1

2 (2N + 1), then Pn is well defined as a bounded
operator in X0,0

r .
Proof. Let α and β satisfy 3|α| + |β| ≤ n. Since |g∗α,β(x, u)| ≤ C(1 + |x| +

|u|)ne−µ(x,u), we have

|〈f, g∗α,β〉| ≤ C

∫
(1 + |x|+ |u|)n|f | dxdu

= C

∫
(1 + |x|+ |u|)−(2N+1)/2(1 + |x|+ |u|)n+(2N+1)/2|f | dxdu

≤ C

(∫
(1 + |x|+ |u|)2n+(2N+1)|f |2 dxdu

)1/2

,

and the proposition follows.
We next give a useful representation of the Fourier transform of Pkf .
Lemma 3.4. Let k be a nonnegative integer, and let r be an integer satisfying

r ≥ k + 1
2 (2N + 1). Then

P̂kf(ξ, w) =
∑

3|α|+|β|=k

(3i)|α|(−i)|β|[(∂ξ − ∂w)
α∂βw(f̂ e

µ̂)]
∣∣∣
ξ=w=0

ĝα,β(ξ, w),

where µ̂ = µ̂(ξ, w) = |w + ξ
2 |2 + 1

12 |ξ|2.
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The lemma can be shown by a simple application of the induction argument on
α and β. So we omit the proof.

We next discuss the semigroup generated by A. As we will see in the appendix,
the Fourier transform of the semigroup S(t) generated by A takes the form

Ŝ(t)f0(ξ, w) = f̂(ξ, w, t) = f̂0(e
− 3

2 tξ, e−
1
2 tw + e−

1
2 ta(t)ξ)e−a(t)|w+

a(t)
2 ξ|2− a(t)3

12 |ξ|2 .

Taking the inverse Fourier transform then gives an integral formula of the semigroup
S(t)f0:

S(t)f0 =
(√

3
2π

)N
a(t)−2N

∫
e
− 3|x−e

− 3
2
t
y− a(t)

2
(u+e

− t
2 v)|2

a(t)3
− |u−e

− t
2 v|2

4a(t) f0(y, v)dydv,

where a(t) = 1− e−t. See the appendix for the derivation of the formula of S(t)f0.

Proposition 3.5. Let r be an integer satisfying r ≥ n+ 1
2 (2N + 1). Then

( ̂PkS(t)f)(ξ, w) = e−µ̂(ξ,w)
∑

3|α|+|β|=k

1
α!β!∂

α
ξ̃
∂βw̃F (0, 0)(e

− 3
2 tξ)α(e−

t
2 (w + ξ))β .

Here F (ξ̃, w̃) = eµ̃(ξ̃,w̃)f̂(ξ̃, w̃ − ξ̃) and µ̃(ξ̃, w̃) = |w̃ − ξ̃
2 |2 + 1

12 |ξ̃|2.
Proof. Since a(t) = 1− e−t, we have

a(t)

∣∣∣∣w + a(t)

2
ξ

∣∣∣∣
2

+
a(t)3

12
|ξ|2 = µ̂(ξ, w)− µ̃(e−

3
2 tξ, e−

1
2 t(w + ξ)),

and so

Ŝ(t)f = f̂(e−
3
2 tξ, e−

1
2 t(w + ξ)− e−

3
2 tξ)eµ̃(e−

3
2
tξ,e−

1
2
t(w+ξ))−µ̂(ξ,w).

Lemma 3.4 then applies to yield the desired formula since µ̃(ξ̃, w̃) = µ̂(ξ, w) and
∂w̃ = ∂w, ∂ξ̃ = ∂ξ − ∂w under the transformation ξ̃ = ξ and w̃ = w + ξ. This
completes the proof.

Since the semigroup T (t) generated by L = A − (2N − γ)I is written as T (t) =
e−(2N−γ)tS(t), Proposition 3.6 shows that T (t) behaves as in (1.4) in X0,0

r if r ≥
n+ 3N + 1

2 . In particular, for the spectrum σ(L) of L in X0,0
r , it holds that

σ(L) ⊂ {λk : k = 0, 1, . . . , n} ∪ {Reλ ≤ λn+1}

if r ≥ n + 3N + 1
2 ; each of λk (k = 0, 1, . . . , n) is a semisimple eigenvalue; and the

associated eigenspace is spanned by functions gα,β ’s with α and β satisfying 3|α|+|β| =
k.

Proposition 3.6. Let n be a nonnegative integer, and let r be an integer satis-
fying r ≥ n+ 3N + 1

2 . Then for any fixed integers � ≥ 0, m ≥ 0, and j = 0, 1,

‖QnT (t)f0‖X�,m+j
r

≤ C(1 + t−
j
2 )eλn+1t‖f0‖X�,m

r
.

Proof. Let r ≥ n + 3N + 1
2 . By the Plancherel theorem it suffices to estimate

‖∂αξ ∂βw(ξγ1wγ2 ̂QnS(t)f)‖L2 for any α, β, γ1, and γ2 with |α|+ |β| ≤ r.
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We first make some preliminary observations. As in Proposition 3.5, we set

F (ξ̃, w̃) = eµ̃(ξ̃,w̃)f̂(ξ̃, w̃ − ξ̃) and µ̃(ξ̃, w̃) = |w̃ − ξ̃
2 |2 + 1

12 |ξ̃|2. Then direct calcu-
lations give the bounds

|∂α
ξ̃
∂βw̃F (τc1ξ̃, τc2w̃)|
≤ C(1 + |ξ̃|+ |w̃|)|α|+|β|eµ̃(τc1ξ̃,τc2w̃)

×
∑
σ≤α,

η′≤β

∣∣∣(∂ξ − ∂w)
σ∂ηwf̂(τc1ξ̃, τ(c2w̃ − c1ξ̃))

∣∣∣(3.1)

uniformly in τ, c1, c2 ∈ [0, 1], and ξ̃, w̃ ∈ RN , and

µ̂(ξ, w)− µ̃(τe−
3
2 tξ, τe−

1
2 t(w + ξ)) ≥ 1

2
µ̂(ξ, w)(3.2)

for all τ ∈ [0, 1], ξ, w ∈ RN , and sufficiently large t, e.g., t ≥ log 36.
We next set

Fn(ξ̃, w̃, t) = F (c1ξ̃, c2w̃)−
∑

3|α|+|β|≤n

1

α!β!
∂α
ξ̃
∂βw̃F (0, 0)c

|α|
1 ξ̃αc

|β|
2 w̃β ,

where c1 = e−
3
2 t and c2 = e−

1
2 t.

Then if we set ξ̃ = ξ and w̃ = w + ξ, Proposition 3.5 implies that

̂(QnS(t)f)(ξ, w) = (Ŝ(t)f)(ξ, w)−
n∑

k=0

( ̂PkS(t)f)(ξ, w)

= e−µ̂(ξ̃,w̃−ξ̃)Fn(ξ̃, w̃, t),

and it suffices to estimate

(∂ξ − ∂w)
α′
∂β

′
w

[
ξγ1wγ2 ̂(QnS(t)f)(ξ, w)

]
= ∂α

′

ξ̃
∂β

′
w̃

[
ξ̃γ1w̃γ2e−µ̂(ξ̃,w̃−ξ̃)Fn(ξ̃, w̃, t)

]
=

∑
α̃≤α′, β̃≤β′

(
α′

α̃

)(
β′

β̃

)
∂α

′−α̃

ξ̃
∂β

′−β̃
w̃

[
ξ̃γ1w̃γ2e−µ̂(ξ̃,w̃−ξ̃)

]
∂α̃
ξ̃
∂β̃w̃Fn(ξ̃, w̃, t)

≡
∑

α̃≤α′, β̃≤β′

Iα′,β′,α̃,β̃,n

for all α′ and β′ with |α′|+ |β′| ≤ r.
In what follows we set ξ̃ = ξ and w̃ = w + ξ.

Applying Taylor’s theorem to ∂α̃
ξ̃
∂β̃w̃Fn(ξ̃, w̃, t), we see that for multi-indices α̃, β̃

with |α̃|+ |β̃| = j ≤ n,

∂α̃
ξ̃
∂β̃w̃Fn(ξ̃, w̃)

=
∑

|α|+|β|
=n−j+1

c
|α|+|α̃|
1 c

|β|+|β̃|
2

∫ 1

0

(n−j+1)(1−τ)n−j+1

α!β! ∂α
ξ̃
∂βw̃F (τc1ξ̃, τc2w̃) ξ̃

αw̃β dτ

+
∑

(α,β)∈Λα̃,β̃

1

α̃!β̃!
∂α
ξ̃
∂βw̃F (0, 0)c

|α|
1 ξ̃α−α̃c

|β|
2 w̃β−β̃

≡ G
(1)

α̃,β̃,n
(ξ̃, w̃, t) +G

(2)

α̃,β̃,n
(ξ̃, w̃, t),

(3.3)
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where Λα̃,β̃ = {(α, β) : α ≥ α̃, β ≥ β̃, |α| + |β| ≤ n, 3|α| + |β| ≥ n + 1}; ξ̃ = ξ,

w̃ = w + ξ, c1 = e−
3
2 t, and c2 = e−

1
2 t. For |α̃|+ |β̃| = j ≥ n+ 1, we have

∂α̃
ξ̃
∂β̃w̃Fn(ξ̃, w̃) = c

|α̃|
1 c

|β̃|
2 ∂α̃

ξ̃
∂β̃w̃F (c1ξ̃, c2w̃),(3.4)

where ξ̃ = ξ, w̃ = w + ξ, c1 = e−
3
2 t, and c2 = e−

1
2 t.

Since c
|α|
1 c

|β|
2 = e−( 3

2 |α|+ 1
2 |β|)t ≤ e−

n+1
2 t for 3|α| + |β| ≥ n + 1, we see from (3.1)

and (3.3) that for |α̃|+ |β̃| = j ≤ n,

|G(2)

α̃,β̃,n
(ξ̃, w̃, t)|

≤ Ce−
n+1

2 t(1 + |ξ|+ |w|)n−j sup
σ≤α̃, η≤β̃

sup
ξ,w

∣∣∣(∂ξ − ∂w)
σ∂ηwf̂(ξ, w)

∣∣∣
≤ Ce−

n+1
2 t(1 + |ξ|+ |w|)n−j

∫
(1 + |x− u|+ |u|)n|f | dxdu

≤ Ce−
n+1

2 t(1 + |ξ|+ |w|)n−j‖f‖X0,0

n+ 1
2
(2N+1)

.

(3.5)

We also see from (3.1) and (3.3) that for |α̃|+ |β̃| = j ≤ n,

|G(1)

α̃,β̃,n
(ξ̃, w̃, t)|

≤ C(1 + |ξ|+ |w|)2(n+1)

(∫ 1

0

eµ̃(τc1ξ̃,τc2w̃) dτ

)
×

∑
|α|+|β|

=n−j+1

e−{ 3
2 (|α|+|α̃|)+ 1

2 (|β|+|β̃|)}t sup
σ≤α, η≤β

ξ,w

∣∣∣(∂ξ − ∂w)
σ∂ηwf̂(ξ, w)

∣∣∣
≤ Ce−

n+1
2 t‖f‖X0,0

n+1+ 1
2
(2N+1)

(1 + |ξ|+ |w|)2(n+1)

∫ 1

0

eµ̃(τc1ξ̃,τc2w̃) dτ.

(3.6)

It then follows from (3.2), (3.5), and (3.6) that for |α̃|+ |β̃| = j ≤ n

|Iα′,β′,α̃,β̃,n| ≤ Ce−
n+1

2 t‖f‖X0,0
r
e−

1
4 µ̂(ξ,w),

provided that t ≥ log 36 since r ≥ n+3N + 1
2 > n+1+ 1

2 (2N +1). This implies that

for |α̃|+ |β̃| = j ≤ n

‖Iα′,β′,α̃,β̃,n‖L2 ≤ Ce−
n+1

2 t‖f‖X0,0
r
,

provided that t ≥ log 36.
For j = |α̃|+ |β̃| ≥ n+ 1, we apply (3.1), (3.2), and (3.4) to obtain

|Iα′,β′,α̃,β̃,n| ≤ Ce−( 3
2 |α̃|+ 1

2 |β̃|)te−
1
4 µ̂(ξ,w)

×
∑

|σ|+|η|≤j

∣∣∣(∂ξ − ∂w)
σ∂ηwf̂(e

− 3
2 tξ, e−

1
2 t(w + ξ)− e−

3
2 tξ)

∣∣∣
for t ≥ log 36. Thus we have, for t ≥ log 36 and j = |α̃|+ |β̃| ≥ n+ 1,

‖Iα′,β′,α̃,β̃,n‖L2 ≤ C




e−( 3
2 |α̃|+ 1

2 |β̃|)t‖f‖X0,0

j+ 1
2
(2N+1)

,

eNt−( 3
2 |α̃|+ 1

2 |β̃|)t‖f‖X0,0
j
.

(3.7)
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For n+ 2N + 1 ≤ j = |α̃|+ |β̃| ≤ r we apply the second inequality of (3.7) to obtain

‖Iα′,β′,α̃,β̃,n‖L2 ≤ Ce−
n+1

2 t‖f‖X0,0
r
,

since N − ( 32 |α̃|+ 1
2 |β̃|) ≤ −n+1

2 ; while for n+ 1 ≤ j = |α̃|+ |β̃| ≤ n+ 2N we apply
the first inequality of (3.7) to obtain

‖Iα′,β′,α̃,β̃,n‖L2 ≤ Ce−
n+1

2 t‖f‖X0,0
r
,

since j + 1
2 (2N + 1) ≤ n+ 3N + 1

2 ≤ r.

Now recall that T (t) = e−(2N−γ)tS(t). Then, for any nonnegative integers � and
m, we find from the above estimates that

‖QnT (t)f‖X�,m
r
≤ Ceλn+1t‖f‖X0,0

r

holds provided that t ≥ log 36.
For t ≤ log 36, it is easy to see that

‖T (t)f‖X�,m+j
r

≤ C(1 + t−
j
2 )‖f‖X�,m

r

for any nonnegative r, l, and m and j = 0, 1. Thus we have

‖QnT (t)f‖X�,m+j
r

≤ C(1 + t−
j
2 )‖f‖X�,m

r

for t ≤ log 36. This, together with the estimate for t ≥ log 36, yields the desired
result, and the proof is complete.

Remark 3.7. One can also obtain

‖T (t)f‖X�+1,m
r

≤ C(1 + t−3/2)‖f‖X�,m
r

for small t.

4. Estimates for the nonlinearity. Theorem 2.1 follows from Propositions
3.6 and 4.1 below as in [10, 21] by applying standard arguments of invariant manifold
theory in [6, 16]. So our remaining task is to prove the following.

Proposition 4.1. Let N ≥ 2. If r > N
2 , then the following estimate holds for

any fixed nonnegative m and k:

‖E(f) · ∇ug‖Xm+�,k
r

≤ C‖f‖Xm+�,k
r

‖g‖Xm+�,k+1
r

,

where � = [N2 − 1] + 1.
Proof. Here we prove the case m = k = 0 only. The extension to general m and

k is an easy task.
First, we observe that x

|x|N is homogeneous of degree 1−N . Therefore,

‖∂αxE(f)‖Lq(dx) ≤ C‖
∫

∂αx f(x, u) du‖Lp(dx)

with 1 < p < q <∞, 1
q =

1
p − 1

N [13, Cor. 5.15, pp. 137]. We thus obtain

‖∂αxE(f)‖Lq(dx) ≤ C

∫
‖∂αx f(x, u)‖Lp(dx) du

≤ Cε

(∫
(1 + |u|2)N+ε

2 ‖∂αx f(x, u)‖2Lp(dx) du

)1/2(4.1)

for any ε > 0, where p and q are the same as above.
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Second, we note that ‖f‖X�,0
r
is equivalent with ‖∑|α|≤� ∂

α
x (ρrf)‖L2(dxdu), where

ρr(x, u) = (1 + |x|2 + |u|2)r/2. Therefore, by the interpolation inequality,

‖∇j
xf‖L2(dx) ≤ C‖∇�

xf‖
j
�

L2(dx)‖f‖
1− j

�

L2(dx), 1 ≤ j ≤ �,

it suffices to show that

‖∂αx (ρrE(f) · ∇ug)‖L2(dxdu) ≤ C‖f‖X�,0
r
‖g‖X�,1

r

for |α| = � and 0.
For a multi-index β and r ≥ 0 we set g̃β,r(x, u) = |∂βx (ρr(x, u)∇ug(x, u))|. Then

‖∂αx (ρrE(f) · ∇ug)‖L2(dxdu) ≤ C
∑
β≤α

‖∂α−β
x E(f)g̃β,r‖L2(dxdu) ≡ C

∑
β≤α

Jα,β,r

and

Jα,β,r ≤ ‖∂α−β
x E(f)‖Lq(dx)

∥∥‖g̃β,r‖Ls(dx)

∥∥
L2(du)

(4.2)

with 2 ≤ q, s ≤ ∞ satisfying 1
q +

1
s =

1
2 .

We consider the case N = 3. Then � = [N2 − 1] + 1 = 1. We estimate each Jα,β,r.
For |α| = �(= 1) and |β| = 0 we take 1

q =
1
2 − 1

N and 1
s =

1
N in (4.2). Then by (4.1)

with p = 2 we have

‖∂αxE(f)‖Lq(dx) ≤ Cε‖∂αx f‖X0,0
1
2
(N+ε)

,

and by the Gagliardo–Nirenberg–Sobolev inequality (see, e.g., [14]), we see that

‖g̃β,r‖Ls(dx) ≤ C‖∇�
xg̃0,r‖δL2(dx)‖g̃0,r‖1−δ

L2(dx),

where 1
s = δ( 12 − �

N ) + (1 − δ) 12 and δ ∈ [0, 1]. It then follows that for |α| = �(= 1)
and |β| = 0

Jα,β,r ≤ Cε‖f‖X�,0
1
2
(N+ε)

‖g‖X�,1
r
.

We next estimate Jα,β,r with |β| = �(= 1). Note that in this case α = β. Taking
q = ∞ and s = 2 in (4.2) and using (4.1) and the Gagliardo–Nirenberg–Sobolev
inequality, we obtain

‖E(f)‖L∞(dx) ≤ C‖∇�
xE(f)‖δLq1 (dx)‖E(f)‖1−δ

Lq1 (dx) ≤ Cε‖f‖X�,0
1
2
(N+ε)

,

where 1
q1
= 1

2 − 1
N , 0 = δ( 1

q1
− �

N ) + (1− δ) 1
q1
, and δ ∈ [0, 1]. Whence, for |α| = |β| =

�(= 1),

Jα,β,r ≤ Cε‖f‖X�,0
1
2
(N+ε)

‖g‖X�,1
r
.

In the case when α = 0, we take q =∞ and s = 2 in (4.2). Then, similarly as above,
we see that

Jα,β,r ≤ Cε‖f‖X�,0
1
2
(N+ε)

‖g‖X0,1
r
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for α = β = 0. Combining the above estimates, we obtain the desired estimate for
N = 3.

We next consider the case when N = 2. In this case we also have � = [N2 −1]+1 =
1. We choose 1 < p̃ < 2 and set 1

q̃ =
1
p̃ − 1

2 . When |β| = �(= 1), we take q = ∞ and

s = 2 in (4.2). Then by (4.1) and the Gagliardo–Nirenberg–Sobolev inequality, we
see that

‖E(f)‖L∞(dx) ≤ C‖∇�
xE(f)‖δLq̃(dx)‖E(f)‖1−δ

Lq̃(dx)

≤

∑

|α|≤�

∫
(1 + |u|2) 1

2 (N+ε)‖∂αx f‖2Lp̃(dx) du




1/2

≤ Cε‖f‖X�,0
1
p̃

(N+ε)

,

where 0 = δ( 1q̃ − �
N ) + (1− δ) 1q̃ and δ ∈ [0, 1]. Therefore, for |α| = |β| = �(= 1),

Jα,β,r ≤ Cε‖f‖X�,0
1
p̃

(N+ε)

‖g‖X�,1
r
.

For α = β = 0 we obtain, in a similar manner,

Jα,β,r ≤ Cε‖f‖X�,0
1
p̃

(N+ε)

‖g‖X0,1
r
.

For |α| = �(= 1) and |β| = 0 we take q = q̃ and 1
s =

1
2 − 1

q̃ in (4.2). By (4.1) we have

‖∂αxE(f)‖Lq̃(dx) ≤ Cε‖∂αx f‖X0,0
1
p̃

(N+ε)

.

By the Gagliardo–Nirenberg–Sobolev inequality, we have

‖g̃β,r‖Ls(dx) ≤ C‖∇�
xg̃0,r‖δL2(dx)‖g̃0,r‖1−δ

L2(dx),

where 1
s =

1
2 − 1

q̃ ,
1
s = δ( 12 − �

N ) + (1 − δ) 12 , and δ ∈ [0, 1]. It then follows that for
|α| = �(= 1) and |β| = 0

Jα,β,r ≤ Cε‖f‖X�,0
1
p̃

(N+ε)

‖g‖X�,1
r
.

Combining the above estimates, we obtain

‖E(f) · ∇ug‖X�,0
r
≤ Cε,p̃‖f‖X�,0

1
p̃

(N+ε)

‖g‖X�,1
r
.

Now, for a given r > N
2 , choose p̃ and ε > 0 so that r > 1

p̃ (N + ε). Then we
obtain the desired estimate for the case when N = 2.

When N is odd and N ≥ 5, Jα,β,r is estimated as follows. If |α| = 0 or if |α| = �
and |β| = 0, �, then one can estimate Jα,β,r in the same way as in the case when
N = 3 since � = [N2 − 1] + 1. For |α| = � and 1 ≤ |β| ≤ � − 1, we can apply the
Gagliardo–Nirenberg–Sobolev inequality to obtain

‖∂α−β
x E(f)‖Lq(dx) ≤ C‖∇�

xE(f)‖δ1Lq1 (dx)‖E(f)‖1−δ1
Lq1 (dx)

and

‖g̃β,r‖Ls(dx) ≤ C‖∇�
xg̃0,r‖δ2L2(dx)‖g̃0,r‖1−δ2

L2(dx)
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for some 2 < q, q1, s <∞, �−|β|
� ≤ δ1 < 1, and |β|

� ≤ δ2 < 1 with

(4.3)




1

q
=

�− |β|
N

+ δ1

(
1

q1
− �

N

)
+ (1− δ1)

1

q1
,

1

q1
=
1

2
− 1

N
,

1

s
=
|β|
N
+ δ2

(
1

2
− �

N

)
+ (1− δ2)

1

2
,

1

s
=
1

2
− 1
q
.

In fact, this is possible since � = [N2 − 1] + 1. For example, take δ1 =
N− 3

2

N−1 in (4.3).
We then verify that 2 < q < ∞ and δ2 = δ1. Using (4.1), we can now obtain the
desired estimate.

When N is even and N ≥ 4, one can prove similarly to the case of odd N with a
slight modification as we did for N = 2. Set q1 and δ1 in (4.3) such as

1
q1
= 1

p̃ − 1
N

and δ1 =
1
p̃ − 1

2 +
N−1
N for 1 < p̃ < 2. If p̃ is sufficiently close to 2, then we find that

2 < q <∞ and �−|β|
� ≤ δ1 < 1. The desired estimate then follows in a similar manner

to the case when N = 2. This completes the proof.

Appendix. In the appendix we outline a derivation of an integral formula of
S(t)f0.

Consider the linear problem

(A.1)
∂tf −

(
3

2
x− u

)
· ∇xf − 1

2
u · ∇uf − 2Nf −∆uf = 0,

f |t=0 = f0.

Taking the Fourier transform of (A.1), we have

(A.2)
∂tf̂ +

3

2
ξ · ∇ξ f̂ +

(
1

2
w − ξ

)
· ∇wf̂ + |w|2f̂ = 0,

f̂ |t=0 = f̂0.

The problem (A.2) is reduced to the following two problems:

(A.3) ∂tf̂ +
3

2
ξ · ∇ξ f̂ +

(
1

2
w − ξ

)
· ∇wf̂ = 0, f̂ |t=0 = f̂0,

and

(A.4) ∂tf̂ +
3

2
ξ · ∇ξ f̂ +

(
1

2
w − ξ

)
· ∇wf̂ = −|w|2, f̂ |t=0 = 0.

Let f̂ (1)(ξ, w, t) and f̂ (2)(ξ, w, t) be solutions of (A.3) and (A.4), respectively. Then
the solution of (A.2) is given by

f̂(ξ, w, t) = f̂ (1)(ξ, w, t) ef̂
(2)(ξ,w,t).

Solutions of (A.3) and (A.4) can be obtained easily by the characteristics. Let
(Ξ(t),W (t)) be the solution of

d

dt

(
Ξ
W

)
=

( − 3
2 0
1 − 1

2

)(
Ξ
W

)
,

(
Ξ(0)
W (0)

)
=

(
ξ
w

)
,
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which are explicitly given as

Ξ(t) = e−
3
2 tξ, W (t) = e−

1
2 tw + (e−

1
2 t − e−

3
2 t)ξ.

Then solutions f̂ (1)(ξ, w, t) and f̂ (2)(ξ, w, t) take the forms

f̂ (1)(ξ, w, t) = f̂0(Ξ(t),W (t)) = f̂0(e
− 3

2 tξ, e−
1
2 tw + e−

1
2 ta(t)ξ)

and

f̂ (2)(ξ, w, t) = −
∫ t

0

|W (t− s)|2 ds = −a(t)
∣∣∣∣w + a(t)

2
ξ

∣∣∣∣
2

− a(t)3

12
|ξ|2,

where a(t) = 1− e−t. Hence the solution of (A.2) is

Ŝ(t)f0(ξ, w) = f̂(ξ, w, t) = f̂0(e
− 3

2 tξ, e−
1
2 tw + e−

1
2 ta(t)ξ)e−a(t)|w+

a(t)
2 ξ|2− a(t)3

12 |ξ|2 .

The inverse Fourier transform now gives an integral formula of the semigroup S(t)f0:

S(t)f0 =

(√
3

2π

)N

a(t)−2N

∫
e
− 3|x−e

− 3
2
t
y− a(t)

2
(u+e

− t
2 v)|2

a(t)3
− |u−e

− t
2 v|2

4a(t) f0(y, v)dydv,

where a(t) = 1− e−t.
Remarks. (i) One can see that the semigroup S(t) is compact for t > 0 in the

space X = L2(eµ(x,u)dxdu) with µ(x, u) = 3|x − u
2 |2 + |u|2

4 (which implies that the
spectrum of S(t) consists only of discrete eigenvalues). This can be shown as follows.
A straightforward calculation yields the identity

3

∣∣∣∣x− e−
3
2 ty − a(t)

2
(u+ e−

t
2 v)

∣∣∣∣
2

a(t)3
+
|u− e−

t
2 v|2

4a(t)
+
1

2
µ(y, v)− 1

2
µ(x, u)

=
ν1(a(t))

a(t)3

∣∣∣∣x− F1(t, a(t), y, u, v)

G1(a(t))

∣∣∣∣
2

+
ν2(a(t))

a(t)

∣∣∣∣u− F2(t, a(t), y, v)

G2(a(t))

∣∣∣∣
2

+a(t)ν3(a(t))|y − F3(t, a(t), v)|2 + a(t)3ν4(a(t))|v|2,

where νj(a) (j = 1, . . . , 4) are smooth in a with δ ≤ νj(a) ≤ M for some δ > 0 and
M > 0 uniformly in a ∈ [0, 1], Fj are polynomials in a whose coefficients are smooth
in t and linear in y, u, v, and Gj are polynomials in a with inf0≤a≤1 Gj(a) ≥ δ for
some δ > 0. Noting this identity and using the integral formula of S(t)f0 above, one
can see that

‖(1 +∇x +∇u)S(t)f0‖X ≤ Ceηt(1 + a(t)−3/2 + a(t)−1/2)‖f0‖X
for t > 0 with some constants η > 0 and C > 0. This inequality shows that S(t) is
compact for t > 0 in X, since the embedding

{f ∈ X : ∇xf, ∇uf ∈ X} ↪→ X

is compact [12, Proposition 1.1].
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(ii) Noting remark (i) and the fact that f̂(ξ, w) is analytic in ξ and w for f ∈ X,
one can deduce that the spectrum σ(A) of A in X consists only of discrete eigenval-
ues σk = −k

2 , k = 0, 1, 2, . . . , and the eigenspace associated with σk is spanned by
functions gα,β with 3|α|+ |β| = k. The corresponding assertion holds for the adjoint
A∗.

(iii) As for d
dtS(t), the inequality∥∥∥∥ ddtS(t)f0

∥∥∥∥
X

≤ Ct−2‖f0‖X

holds for small t > 0, and the behavior ‖ d
dtS(t)f0‖X = O(t−2) as t → 0 seems to be

optimal. Thus S(t) does not seem to be analytic in X.
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ON THE UNIQUENESS OF THE CONTINUATION
FOR A THERMOELASTICITY SYSTEM∗
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Abstract. We obtain new uniqueness of the continuation results for the thermoelasticity system
on the plane. The crucial ingredient of the proofs is the use of Carleman-type estimates with two
large parameters for basic second order partial differential operators with constant coefficients. We
derive these estimates by applying differential quadratic forms. The proposed technique can be of
value when studying similar questions for systems of partial differential equations of upper triangular
principal structure. The results can be applied to control theory and inverse problems.

Key words. uniqueness of the continuation, Carleman estimates, the equations of thermoelas-
ticity
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PII. S0036141000366509

We will consider the lateral Cauchy problem for a thermoelasticity system (1.1),
(1.2). This system describes combined elastic and thermal effects in plates and is
of current theoretical and applied interest. We observe that this system is strongly
coupled and has an “upper triangular” principal structure. Many important ques-
tions including the fundamental one about uniqueness of the continuation are open.
The system (1.1), (1.2) cannot be principally diagonalized like Maxwell’s or elasticity
systems in the recent work of Eller, Isakov, Nakamura, and Tataru [4] and Isakov [9].
In this paper we give sufficient conditions for uniqueness by combining new Carleman
estimates with additional large parameter λ for the Laplace, wave, and heat equations.
This additional parameter enables us to principally decouple the system. For wave
operators such estimates were first introduced and used for the elasticity system in
the paper of Isakov [7]. In section 3 of this paper we derive them with the same weight
function for the wave and Laplace equations, and in section 4 we derive them for the
heat operator. Finally, in section 5 we combine these estimates to obtain the main
uniqueness result. In case of constant (or more generally, analytic) coefficients one
can derive sharp uniqueness results from the Holmgren–John theorem, and we give
this short derivation in section 2. But when coefficients are of finite smoothness, this
argument cannot be applied as well as its recent generalization by Tataru [16] and the
subsequent work of Robbiano and Zuily [15]. The paper of Lebeau and Zuazua [13]
handles a thermoelasticity system in self-adjoint form (with variable principal part)
because it requires use of eigenfunctions expansions and of the geometrical optics
technique introduced by Bardos, Lebeau, and Rauch [3] with its restrictions of extra
regularity of coefficients and absence of diffractive points of the lateral boundary.

We expect that the idea of the additional parameter λ can be used for other sys-
tems with “triangular” principal structure. Observe that the concept of the principal
part depends on a particular equation or system. Some interesting cases are discussed
in the book of Hörmander [5] as well as in the papers of Isakov [8] and Nirenberg [14].
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Uniqueness of the continuation has immediate applications to inverse problems
(see Isakov [10]) and to optimal control theory. In particular, by using uniqueness of
the continuation, Avalos and Lasiecka [2] recently proved boundary stabilizability of
the system (1.1), (1.2). The results of Lagnese [12] about exact-approximate control-
lability are applicable only to the system (1.1), (1.2) with constant coefficients when
control is applied to the whole lateral boundary, and there is a good possibility that
the results of this paper and their extensions to variable coefficients will be missing
ingredients for proofs of controllability in a general situation, in particular from a part
of the lateral boundary.

We use the standard notation ∂k = ∂/∂xk, ∂t = ∂/∂t, D = −i∂. We let ∇ =
(∂1, . . . , ∂n), ∇x,t = (∇, ∂t). α and β are multi-indices of partial differentiations ∂α,
∂β . B(a; r) is the ball of radius r centered at a. ν denotes the exterior unit normal
to the boundary of a domain, C and δ denote constants depending only on operators
P , the domain Q, the weight function φ, and the parameter ε > 0. We will specify
dependence on all other parameters. ‖ ‖(k)(Q) is the norm in the Sobolev space Hk(Q).

1. Main results. We are interested in the system of two strongly coupled partial
differential equations

∂2
tw − γ∆∂2

tw +∆2w + b1∆v + B1w + B2v = 0 in Q = Ω× (0, T ),(1.1)

∂tv − b∆v + B3w + B4v = 0 in Q = Ω× (0, T ),(1.2)

where γ, b are positive constants, Ω is a domain in R
2,

Bkw = bk∂t∆w +
∑

bj,k∂j∆w +
∑

b2+j,k∂
2
t ∂jw +

∑
bk,α∂

αw, k = 1, 3,

and the sums in Bk are over j = 1, 2, |α| ≤ 2, with α0 = 0 for B4, Bkv =
∑

b4+j,k∂jv +
b7,kv, k = 2, 4. Here bk, bj,k are in L∞(Q). In particular, when B1 = B2 = 0,
B3 = b3∂t∆, B4v = b7,4v, we obtain the simplest thermoelasticity system for (scalar)
displacement w and temperature v. We are interested in the (lateral) Cauchy problem
for this system when in addition to the equations we prescribe the Cauchy data

∂jνw = wj , ∂kν v = vk, j = 0, . . . , 3, k = 0, 1 on S = Γ× (0, T ),(1.3)

where Γ ⊂ ∂Ω, Γ ∈ C1.
Let Q− be a domain in R

2 such that S = ∂Q− ∩ ∂Q, while Q− and Q do not
overlap. For any reasonable definition of a solution to the Cauchy problem (1.1)–(1.3),
uniqueness in Q0 ⊂ Q will follow from the following uniqueness of the continuation
principle: if (w, v) solves (1.1), (1.2) in Q− ∪ S ∪Q and is zero on Q−, then it is zero
on Q0. Observe that we generally cannot expect uniqueness in the whole Q due to
finite speed of propagation of the hyperbolic component w.

First we consider a simple but important case of (real) analytic bj , bj,k and show
that the Holmgren–John theorem implies uniqueness in any subdomain Q0 of Q
formed of its points that can be reached by noncharacteristic (with respect to the
operator −γ∂2

t +∆) deformations of Γ× (0, T ).
Theorem 1.1. Let Q∗ be a domain in R

3. Let the coefficients bj, bj,k be real
analytic in Q∗. Let S∗ be a C2-surface inside Q∗ which is time-like with respect to
the wave operator −γ∂2

t +∆ and which divides Q∗ into two subdomains Q− and Q+.
Let (w, v) be a (distribution) solution to the system (1.1), (1.2) in Q∗, which is zero
in Q+.

Then (w, v) is zero near S∗ in Q∗.
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According to trace theorems, the Cauchy data for solutions with less regular-
ity are in corresponding Sobolev spaces of negative order. Definition of the space
H(k−j−1/2)(S) and applicability of the trace theorem for normal derivatives ∂jν of

functions from H(k)(Ω) require Γ ∈ C |k−j|.
Corollary 1.2. Let Γ ∈ C2. A solution (w, v) ∈ C([0, T ]; H2(Ω) × L2(Ω)) to

the Cauchy problem (1.1)–(1.3) is uniquely determined at any point (x, t) ∈ Q such
that γ1/2d < t < T − γ1/2d, where d is the (Euclidean) distance in Q from x to Γ.

We will prove these results in section 2. Meanwhile we observe that in Theorem 1.1
we consider more general domains Q∗ than cylindrical Q and more general surfaces
S∗ than S. This generality is needed for noncharacteristic deformations to obtain
Corollary 1.2. A C1-surface in R

3 with the unit normal ν is called time-like with
respect to the wave operator −γ∂2

t +∆ if ν2
1 + ν2

2 > γν2
0 at any point of this surface.

d is the distance in Q, i.e., d = inf|γ| over all smooth curves γ ⊂ Q joining x and a
point of Γ; |γ| is the Euclidean length of γ.

When coefficients are not analytic, this argument does not work and we will
obtain uniqueness in a smaller (than in Corollary 1.2) domain Q0 by using Carleman
estimates. We let Qε be Q∩{−θ2(t−T/2)2+ |x−a|2−ρ > ε}, where ρ is a parameter
to be chosen later. We will give uniqueness results in two cases: (1) Γ = ∂Ω, and
(2) Ω ⊂ {−h < x2 < 0, |x1| < r}, Γ = ∂Ω ∩ {x2 < 0}. We will assume

Ω ⊂ B(0; θT/2), ρ = 0 in case (1),

4h(h + 2a2) < θ2T 2, ρ = a2
2 + r2, a = (0, a2) in case (2).

(1.4)

Let Qε = Q ∩ {−θ2(t − T/2)2 + |x − a|2 − ρ > ε}. Geometry of Qε (including
illustrating figures) and the conditions (1.4) are discussed in Isakov [10, section 3.4].

In particular, choosing θ < γ− 1
2 close to γ− 1

2 and T > diamΩ√
γ , one obtains a sharp

uniqueness domain in case (1). In case (2) the uniqueness domain Q0 is not optimal:
the maximal space domain Q0 ∩ {t = T/2} is never Ω × {T/2}, but it contains the

domain (Ω ∩ {x2 < − r2

2a2
})× {T/2}, and selecting large a2 and large T according to

(1.4) (for example, greater than 2
√

γa2), we can approximate Ω with any precision
by uniqueness domains.

Theorem 1.3. Let us assume that (1.4) is satisfied and that

γθ2 < 1.(1.5)

Let the coefficients bj, bj,k, bj,α ∈ L∞(Q).
Then any solution (w, v) to (1.1)–(1.3) with lower order derivatives ∂t∆w, ∂j∆w,

∂2
t ∂jw, ∂αw, |α| ≤ 2, ∂jv(j = 1, 2) in L2(Q) is unique in Q0.

In the case of time independent coefficients, one can reduce regularity assumptions
of Theorem 1.3 by using mollifying with respect to t and standard elliptic theory.

Corollary 1.4. In addition to the conditions of Theorem 1.3 let us assume that
the coefficients of (1.1), (1.2) do not depend on t and that the partial derivatives of
first order of the coefficients b1,k, b2,k, b5,k, b6,k are in L∞(Ω).

Then any solution (w, v) ∈ C([0, T ];H2(Ω)×L2(Ω)) to the Cauchy problem (1.1)–
(1.3) is unique in Q0.

We will prove these results in sections 2–5, where the following notation and
known results are used.

We let ζ = ξ + iτ∇t,xφ, τ > 0, ξ = (ξ0, ξ1, ξ2) ∈ R
3, and

φ = eλψ, ψ(x, t) = −θ2(t− T/2)2 + |x− a|2 − ρ.



512 VICTOR ISAKOV

We have the following simple equalities:

∂0φ = −λθ2(t− T/2)φ, ∂jφ = λ(x− a)jφ,

∂2
0φ = (λ2θ4(t− T/2)2 − λθ2)φ,

∂0∂jφ = −λ2θ2(t− T/2)(x− a)jφ, j = 1, 2,

∂1∂2φ = λ2(x− a)1(x− a)2φ, ∂2
jφ = (λ2(x− a)2j + λ)φ.

(1.6)

A differential quadratic from Gvv is the sum∑
gαβ(x, t)DαvDβv,

and its symbol is ∑
gαβ(x, t)ζαζβ .

In the next sections for a partial differential operator P (x, t;D) with the principal
symbol p(x, t; ζ) (which will be differently defined in sections 3 and 4), we will make
use of the differential quadratic forms

F(x, t;D,D, τ) = |P (x, t;D + iτ∇x,tφ(x, t))v|2 − |P (x, t;D − iτ∇x,tφ(x, t))v|2

and G, which are obtained from F by integrating by parts and have the principal
symbol

Gpr(x, t; ξ, ξ, τ) = 2τ
∑

∂j∂kφ∂p/∂ζj∂p/∂ζk − 2T ∑ ∂p/∂ζk∂kp

− 2T ∑ p(∂2p/∂xk∂ζk + iτ∂2p/∂ζj∂ζk∂j∂kφ),
(1.7)

where ∂p/∂ζj , ∂kp . . . are calculated at the point (x, t; ξ + iτ∇x,tφ(x, t)). For the
operators ∆ and ∂t−∆, the sums are over j, k = 1, 2, and for the wave operator they
are over j, k = 0, 1, 2. The form G has the following useful property:∫

Q

Gvv =

∫
Q

Fvv ≤
∫
Q

|P ( ;D + iτ∇φ)v|2(1.8)

for all functions v ∈ C∞
0 (Q). As one can see from formula (1.7) and the similar

formula for the symbol of G (where the principal symbol of P must be replaced by
the complete symbol of P and for the heat operator the sum is over j, k = 0, 1, 2),∣∣∣∣

∫
Q

(Gpr − G)vv
∣∣∣∣ ≤ Cλ

∑
‖(τλφ)1−|α|∂αv‖2(0)(Q),(1.9)

where the sum is over |α| ≤ 1 for the wave operator P with the additional condition
α0 = 0 for the Laplace and heat operators.

We will use the abbreviation σ = λτφ.

2. Proof of uniqueness in the analytic case. The proof of Theorem 1.1 is
a reduction of the system (1.1), (1.2) to a first order system to which one can apply
the Holmgren–John theorem.

Proof of Theorem 1.1. It suffices to show that a solution (w, v) is zero near any
point of S∗ which we can assume to be the origin. S∗ near the origin is the graph of a
C2-function on its tangent plane, and Q+ is the subgraph of this function. Replacing
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this function by its second order Taylor polynomial and subtracting the square of the
distance to the origin, we can assume that S∗ is analytic near the origin. Now one
can find an analytic substitution with nonzero Jacobian at the origin transforming
this surface into the surface {y2 = 0}.

Expressing ∆v from (1.2) and substituting into (1.1), we obtain a new system.
Since S∗ is time-like with respect to the wave operator, the new system in the new
variables y0, . . . , y2 will have the form

∂4
2W = A4W + A1V, ∂2

2V = A2V + A3W near the origin,(2.1)

where Aj are linear partial differential operators of order j with coefficients analytic
near the origin; moreover, A4 does not contain the partial differentiation ∂4

2 and A2

does not contain the partial differentiation ∂2
2 . The new vector functions W , V whose

components are all partial derivatives of the function W up to order 3 and all partial
derivatives of V up to order 1 satisfy the first order system of the Cauchy–Kowalevsky
type

∂2W = A(y;W , ∂0W , ∂1W ,V ), ∂2V = B(y;W , V , ∂0V , ∂1V )

near the origin. Here A, B are matrices analytically depending on y near the origin.
Indeed, if Wj = ∂k2∂αw, where k+ |α| = 3, k < 3, α2 = 0, then ∂α = ∂α(∗)∂l for some
l < 2 and ∂2Wj = ∂lWm, where Wm = ∂k+1

2 ∂α(∗)w. If Wj = α3
2w, then ∂2Wj can be

expressed from the first equation (2.1). Similarly, one obtains the equations for V.
Since W, V are zero on one side of S∗, by the Holmgren–John theorem [6], [11]

we conclude that they are zero near the origin.
The proof is complete.
Proof of Corollary 1.2. From the definition of the distance d it follows that there

is a finite collection of intervals I1, . . . , Im in Ω such that the starting point xl of Il
is inside Il−1, the starting point of I1 is on Γ, the terminal point of Im is x, and
their total length d∗ = d1 + · · ·+ dm satisfies the inequality γ1/2d∗ < t < T − γ1/2d∗.
We will use the “triangle lemma” 3.4.6 in [10] to propagate subsequently along these
intervals. As one can see from its proof in [10] for scalar hyperbolic equations this
lemma is valid for our system (1.1), (1.2) because in Theorem 1.1 we use time-like
surfaces for the scalar hyperbolic operator. In our situation, this lemma says that if
Tr is the triangle in the (x2, t)-plane with the vertices (0, 0), (−R, T0), (−R, T0), and
Trε is the ε-perturbation {|x1| < ε} × Tr of Tr with respect to x1 and γ1/2R < T0,
then a solution to the Cauchy problem (1.1)–(1.3) with Γ = ∂(Trε) ∩ {x2 = −R} is
uniquely determined in the whole Trε. Here ε is any positive number, so the triangle
can be arbitrarily “thin.”

We can choose ε so small that any ε-perturbation Pl of the rectangle Il × (0, T )
in the normal direction is still in Q. Using the triangle lemma for P1 (with the choice
of the x2-axis parallel to I1 and possible t-translations of triangles), we conclude that
(w, v) is uniquely determined near the interval {(x2, t) : γ1/2d1 < t < T − γ1/2d1}.
Propagating along P2 we conclude that (w, v) is unique near {(x3, t) : γ1/2(d1 +d2) <
t < T − γ1/2(d1 + d2)}. Repeating this step m times, we complete the proof.

3. Carleman-type estimates with additional parameter for Laplace,
wave, and plate operators.

Lemma 3.1. There is C such that

λ1/2‖σ3/2−|α|eτφ∂αu1‖(0)(Q) ≤ C‖eτφ∆u1‖(0)(Q)(3.1)
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for all u1 ∈ C∞
0 (Qε) provided |α| ≤ 1, α0 = 0, and τ > C(λ).

Proof. First we will derive Carleman estimates in Q(s) = Q ∩ {t = s} and then
integrate them with respect to s over (0, T ).

We consider p(ζ) = ζ · ζ and the corresponding form G. Let (x0, t0) ∈ Qε. We
will denote by φ0, G0, . . . functions and forms at the point (x0, t0).

For brevity we will drop the index 0 until (3.5). We will prove that

|ζ|4 ≤ C(λ−1σGpr + C|p(ζ)|2).(3.2)

Indeed, the equality p(ζ) = 0 and the relations (1.6) imply that

|ξ|2 = τ2|∇φ|2 = σ2|x− a|2, ξ · ∇φ = 0.(3.3)

According to (1.6), (1.7)

Gpr(ξ, ξ, τ) = 8τ
∑

λ2φ(x− a)j(x− a)kζjζk + 8λφ
∑ |ζk|2

≥ 8τλ2φ|(x− a) · ζ|2 ≥ 8τλ4φ3τ2|x− a|2 ≥ ε1λσ3,

where we kept only T ζ, and used (1.6) and the inequality |x − a| > 0 on Qε due to
the choice of the parameters s, a and to the definition of Qε. From (3.3) it follows
that |ζ| ≤ Cσ, so we have

CτφGpr(ξ, ξ, τ) ≥ |ζ|4.(3.4)

For continuity and homogeneity reasons, this inequality holds when |p(ζ)| ≤ δ|ζ|2
for some δ > 0 not depending on λ, τ .

Indeed, using the notation τ∗ = λτ(x−a)φ from (1.7) as in the above computation
we have

τφGpr(ξ, ξ, τ) ≥ 8
∑

τ∗
j τ

∗
k ζjζk − 4τ2φT (pi∆φ0)

= 8|τ∗ · ζ|2 − 4τ2λ2φ2T (pi(|x− a|2 + 2/λ)) ≥ 8|τ∗|4 − C|p| |τ∗|2,
where we have used the formulae (1.6) and dropped the real part of τ∗ · ζ. The
inequality |p| ≤ δ|ζ|2 implies that |ξ|2 − |τ∗|2 ≤ δ(|ξ|2 + |τ∗|2), or |ξ|2 ≤ (1 + δ)/(1−
δ)|τ∗|2, and hence |ζ|2 ≤ 2/(1−δ)|τ∗|2. Choosing δ small and summing up, we obtain
(3.4).

Consider the case δ|ζ|2 ≤ |p(ζ)|. The definition of G implies that in any event
τφG ≥ −C1|ζ|4. Using this inequality and choosing C > 2C1/δ, we complete the
proof of (3.2).

From (3.2) and from the property (1.9), we conclude that

∑∫
Q(s)

σ
4−2|α|
0 |∂αv|2 ≤ C

(
λ−1σ0

∫
Q(s)

G(x0, t0;D,D, τ)vv

+

∫
Q(s)

|P (D + iτ∇φ0)v|2
)(3.5)

provided v ∈ C∞
0 (Qε), |α| ≤ 2, α0 = 0, and τ > C. From the definition of G and φ it

follows that

(3.6)∣∣∣∣∣
∫
Q(s)

(G(x, t;D,D, τ)− G(x0, t0;D,D, τ))vv

∣∣∣∣∣ ≤ ω(δ, λ)
∑

(τφ)3−2|α|
∫
Q(s)

|∂αv|2,
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where the sum is over |α| ≤ 1, α0 = 0,

(3.7)∣∣∣∣∣
∫
Q(s)

|P (D + iτ∇φ0)v|2 − |P (D + iτ∇φ)|2
∣∣∣∣∣ ≤ ω(δ, λ)

∑
(τφ0)4−2|α|

∫
Q(s)

|∂αv|2,

where the sum is over |α| ≤ 2, α0 = 0, and ω(δ, λ) → 0 as δ → 0 when λ is fixed,
provided v ∈ C∞

0 (Qε ∩ B(x0, t0, δ)). Given λ > 1 we can use (3.6), (3.7) and choose
δ > 0 so small that differences between right sides of (3.5) with (x, t) and (x0, t0) are
absorbed by the left side. This yields

∑∫
Q(s)

σ
4−2|α|
0 |∂αv|2

≤ C

(
λ−1σ0

∫
Q(s)

G(x, t;D,D, τ)vv +

∫
Q(x)

|P (D + iτ∇φ)v|2
)

≤ Cλ−1σ0

∫
Q(s)

|P (D + iτ∇φ)v|2(3.8)

due to the property (1.8) of the form G. Dividing (3.8) by σ0 and using as above that
σ0 = σ(1 + ω(δ, λ)), we can replace σ0 in the left side by σ. Returning to u1 = eτφv,
we obtain the inequality

λ
∑∫

Q(s)

σ3−2|α|e2τφ|∂αu1|2 ≤ C

∫
Q(s)

e2τφ|∆u1|2

for all u1 ∈ C∞
0 (B(x0, t0; δ)) for some δ and λ > C, τ > C(λ). Here the sums are

over |α| ≤ 2, α0 = 0. Integrating with respect to s over (0, T ), we obtain (3.1) for
all u1 with small support. Using the partition of the unity over Qε, we complete the
proof.

Lemma 3.2. Assume that

γθ2 < 1.(3.9)

Then there is C such that

‖σ3/2−|α|eτφ∂αu2‖(0)(Q) ≤ C‖eτφ(−γ∂2
t +∆)u2‖(0)(Q)(3.10)

for all functions u2 ∈ C∞
0 (Qε), τ > C(λ), |α| ≤ 1.

Proof. We will adjust the method of the proof of Lemma 3.1 to the wave operator
with the symbol p(ζ̃) = γζ2

0 − ζ · ζ. We let ζ0 = ξ0 + iτ∂tφ, ζ̃ = (ζ0, ζ), X = (x, t) and
will use most of the notation of Lemma 3.1. In particular, we will fix any X0 ∈ Qε.

We claim that

|ζ0|2 + |ζ|2 ≤ C(σ−1
0 G0

pr(ξ̃, ξ̃, τ) + Cλ2|p(ζ̃)|2|ζ̃|−2).(3.11)

In the proof of (3.11), we will drop the index 0.

Let p(ζ̃) = 0. Using (1.6) we will have

γξ2
0 − |ξ|2 = σ(|x− a|2 − θ4(t− T/2)2),(3.12)
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and the formulas (1.6), (1.7) give

Gpr(ξ̃, ξ̃, τ) = 2τ(∂2
0φ4|ζ0|2 − 4

∑
∂0∂jφ(ζ0ζj + ζ0ζj) + 4

∑
∂j∂kφζjζk)

= 8σ(−γ2θ2|ζ0|2 + |ζ|2 + λ|γθ2(t− T/2)ζ0 + (x− a) · ζ|2).

To obtain (3.11) we will again use homogeneity and continuity arguments assum-

ing |ζ̃|2 = 1.
When τ = 0, we have ξ2

0 + |ξ|2 = 1, γξ2
0 = |ξ|2. So

−γ2θ2ξ2
0 + |ξ|2 = γ(1− γθ2)/(1 + γ) > C−1

according to assumption (3.9). Hence in this case

σ−1Gpr(ξ̃, ξ̃, τ) ≥ C−1|ζ̃|2.

As in Lemma 3.1, we generally have

σ−1Gpr ≥ 8(−γ2θ2|ζ0|2 + |ζ|2 + λ|γθ2(t− T/2)ζ0 + (x− a) · ζ|2)−Cλ|p(ζ̃)|.(3.13)

Let

|p(ζ̃)| < δλ−1|ζ̃|2.(3.14)

Then we have −δλ−1|ζ̃|2 < γξ2
0 − |ξ|2 − (γτ∗2

0 − |τ∗|2) < δλ−1|ζ̃|2.
Consider the case |τ̃∗|2 < δ|ζ̃|2. Using the above inequality we obtain γξ2

0 − ((γ+

1)δ + δλ−1)|ζ̃|2 < |ξ|2. Using the last inequality, (3.9) and (3.14), we will have

−γ2θ2|ζ0|2 + |ζ|2 ≥ γ(1− γθ2)ξ2
0 − ((2γ + 1)δ + δλ−1)|ζ̃|2

≥ C−1ξ2
0 − (Cδ + δλ−1)|ζ̃|2 > C−1|ζ̃|2 − (Cδ + δ0λ

−1)|ζ̃|2.

So for some small δ, (3.13) and (3.14) imply (3.11). From now on we will fix such δ.

When δ|ζ̃|2 ≤ |τ̃∗|2, then |ζ̃|2 ≤ Cσ2. Using that |ζ| ≥ |T ζ| and again using (1.6),
we obtain

|γθ2(t− T/2)ζ0 + (x− a) · ζ|2 ≥ | − γθ4λ(t− T/2)2τφ + τλ|x− a|2φ2|2
= σ2| − γθ4(t− T/2)2 + |x− a|2| > εσ2

due to the condition (3.9) and to the definition of Qε. Hence from (3.13) and (3.14),
we have

σ−1G0
pr ≥ −C|ζ̃|2 + λC−1|ζ̃|2 − Cδ|ζ̃|2,

which implies (3.11) when λ > C.

Now we will consider the remaining case |p(ζ̃)| ≥ δλ−1|ζ̃|2. Using (3.13), we
conclude that

σ−1G0
pr + C1λ

2|p(ζ̃)|2|ζ̃|−2 ≥ −C|ζ̃|2 + λ|p(ζ̃)|(C1λ|p(ζ̃)| |ζ̃|−2 − C)

≥ −C|ζ̃|2 + δ|ζ̃|2(C1δ − C),

and choosing C1 sufficiently large we complete the proof of (3.11).
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The inequality (3.11) for the principal symbol of the differential quadratic form
and the bound (1.9) as in the proof of Lemma 3.1 imply that

(3.15)

∑
|α|≤1

∫
Q

σ
2−2|α|
0 |∂αv|2 ≤ C

(
σ−1

0

∫
Q

G0
pr(D,D, τ)vv + λ2

∫
|p(ζ̃)|2|ζ̃0|−2|v̂(ξ̃)|2 dξ̃

)
.

As in Lemma 3.1, ∣∣∣∣
∫
Q

(G − G0)vv

∣∣∣∣ ≤ ω(δ, λ)
∑
|α|≤1

τ3−2|α|
∫
Q

|∂αv|2.

Letting

|||v|||k =

(∫
|ζ̃0|2k|v̂(ξ̃)|2 dξ̃

)1/2

and using that by Lemma 8.4.1 in [5] and Lemma 2.1 in [7]

|||P (D + iτ(∇x,tφ)0)v|||2−1

≤ 2|||P (D + iτ∇x,tφ)v|||2−1 + ω(δ, τ ;λ)
∑
|α|≤1

∫
Q

σ
2−2|α|
0 |∂αv|2

when v ∈ C∞
0 (B(X0; δ)), where ω → 0 as δ → 0, τ → 0, and λ is fixed. Choosing

δ small, absorbing the differences at X and X0 as in the proof of Lemma 3.1, and
observing that

λ2|||P (D + iτ∇x,tφ)v|||2−1 ≤ Cτ−2‖P (D + iτ∇x,tφ)v‖2(0),

we derive from (3.15)

∑
|α|≤1

∫
Q

σ
2−2|α|
0 |∂αv|2 ≤ C

(
σ−1

0

∫
Q

Gvv + Cτ−2

∫
Q

|P (D + iτ∇x,tφ)v|2
)

≤ C(σ−1
0 + τ−2)

∫
Q

|P (D + iτ∇x,tφ)v|2

due to the property (1.8) of the form G. Choosing τ > λ large we can achieve that
σ−1

0 > τ−2, and therefore we can drop the term with τ in front of the last integral.
Arguing as at the end of the proof of Lemma 3.1, we can replace σ0 by σ, return to
the function u2, and use partition of the unity to complete the proof.

A “substitution” of the estimate of Lemma 3.1 into the estimate of Lemma 3.2
gives the following lemma.

Lemma 3.3. Under the condition (3.9) there is C such that

(3.16)

‖σ3−|β|eτφ∂βw0‖(0)(Q) + ‖σ1/2eτφ∂2
t ∂

αw0‖(0)(Q) + ‖σ1/2eτφ∂t∆w0‖(0)(Q)

+ ‖σ1/2eτφ∂α∆w0‖(0)(Q) ≤ C‖eτφ(−γ∆∂2
t +∆2)w0‖(0)(Q)
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for all w0 ∈ C∞
0 (Qε) provided |β| ≤ 2, |α| = 1, α0 = 0, and τ > C(λ).

Proof. This lemma follows from Lemmas 3.1 and 3.2 by letting u1 = (−γ∂2
t +

∆)w0, u2 = ∆w0, and choosing large τ to eliminate terms resulting from commuting
multiplication by φ and the differential operators.

Indeed, letting u1 = (−γ∂2
t +∆)w0 in (3.1), we obtain

(3.17)

‖eτφ(−γ∂2
t +∆)∆w0‖(0)(Q)

≥ λ/C
∑

|α∗|≤1,α∗
0=0

‖σ3/2−|α∗|eτφ∂α
∗
(−γ∂2

t +∆)w0‖(0)(Q).

By Lemma 3.2 with u2 = σ3/2w0 we have∑
|α∗∗|≤1

‖σ3/2−|α∗∗|eτφ∂α
∗∗
(σ3/2w0)‖(0) ≤ C‖eτφ(−γ∂2

t +∆)(σ3/2w0)‖(0).(3.18)

By the Leibniz formula

∂j(σ
3/2w0) = τ3/2bjw0 + σ3/2∂jw0,

(−γ∂2
t +∆)(σ3/2w0) = σ3/2(−γ∂2

t +∆)w0 + τ3/2
∑
|β|≤1

bβ∂
βw0,

where b are bounded functions determined only by ψ and λ. Using the triangle
inequality, we obtain from (3.18) that∑

|α∗∗|≤1

‖σ3−|α∗∗|eτφ∂α
∗∗

w0‖(0) − τ2C(λ)‖eτφw0‖(0)

≤ C‖σ3/2eτφ(−γ∂2
t +∆)w0‖(0) + C(λ)τ3/2

∑
|β|≤1

‖eτφ∂βw0‖(0).

Choosing large τ will absorb the second terms of the left and right sides by the first
term in the left side.

Similarly we have∑
‖σ2−|α∗∗|eτφ∂α

∗+α∗∗
w0‖(0) ≤ C

∑
‖σ1/2eτφ(−γ∂2

t ∂
α∗

+∆∂α
∗
)w0‖(0),

where the sums are over |α∗| = 1, α∗
0 = 0, |α∗∗| ≤ 1, τ > C(λ).

The last two inequalities combined with (3.17) yield∑
|β|≤2

‖σ3−|β|eτφ∂βw0‖(0) ≤ C/λ‖eτφ(−γ∂2
t +∆)∆w0‖(0).

Indeed, when |β0| ≤ 1, it follows directly from these inequalities by letting β =
α∗+α∗∗. When β0 = 2, the partial derivative ∂βw0 = 1/γ(γ∂2

t −∆)w0+1/γ∆w0 can
be bounded from the right side of (3.17) (α∗ = 0) and the already obtained bounds
on space derivatives of second order.

To complete the proof we similarly use Lemma 3.2 with u2 = ∆w0 bounding the
last two terms of the left side in (3.16). Expressing as above ∂2

tw0 as the sum of
the wave operator and the Laplacian and utilizing again the right side of (3.17) with
|α∗| = 1 and previous bounds of ∆w0, we obtain (3.16).
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4. Carleman estimates for the heat equation. In this section we consider
p(ζ̃) = iζ0 + ζ · ζ and will accordingly modify the proof of Lemma 3.1.

Lemma 4.1. There is C such that

λ1/2‖σ3/2−|α|eτφ∂αu‖(0)(Q) ≤ C‖eτφ(∂t −∆)u‖(0)(Q)(4.1)

for all u ∈ C∞
0 (Qε), |α| ≤ 2, α0 = 0, provided τ > C(λ).

Proof. As in Lemma 3.1, we first fix X0 ∈ Qε and obtain local estimates on
functions supported near this point. As above, for a while we drop the index 0.

We claim that for some C

|ζ0|2 + |ζ|4 ≤ C(λ−1σGpr + C|p(ζ̃)|2).(4.2)

Indeed, the equality p(ζ̃) = 0 and the relations (1.6) imply that

σθ2(t− T/2) + |ξ|2 = σ2|x− a|2, ξ0 = 2σξ · (x− a)(4.3)

and

Gpr = 8σλ
∑

(x− a)j(x− a)jζjζk + 8λφ
∑
|ζk|2

≥ 8λσ|(x− a) · ζ|2 ≥ 8λσ3|x− a|2 ≥ 8C−1λσ3,
(4.4)

provided X ∈ Qε. We can assume that σ > C; then the first equality of (4.3) implies
that |ξ| ≤ Cσ, and using in addition the second equality of (4.3), we conclude that
|ξ0| ≤ Cσ2, so |ζ0| ≤ Cσ2. Now, from (4.4) it follows that

λ−1σGpr ≥ C−1(|ζ0|2 + |ζ|4).(4.5)

Modifying the homogeneity and continuity arguments from the proof of Lemma 3.1,
we conclude that (4.5) remains valid when |p(ζ̃)|2 ≤ δ(|ζ0|2 + |ζ|4) for some small
positive δ.

When δ(|ζ0|2 + |ζ|4) ≤ |p(ζ̃)|2, we can with no changes repeat the argument in
the elliptic case and complete the proof of (4.2).

From (4.2) and from the property (1.9) of differential quadratic forms, we obtain

(4.6)

σ
4−2|α|
0

∫
Q

|∂αv|2 +
∫
Q

|∂0v|2 ≤ C

(
λ−1σ0

∫
Q

G0vv +

∫
Q

|P (D + τi∇x,tφ0)v|2
)

provided τ > C, |α| ≤ 2, α0 = 0, v ∈ C∞
0 (Qε). As above, from the definition of G

and from the regularity assumptions on φ, it follows that

∣∣∣∣
∫
Q

(G − G0)vv

∣∣∣∣ ≤ ω(δ;λ)


∑

|α|≤1

τ3−2|α|
∫
Q

|∂αv|2

 ,

∣∣∣∣
∫
Q

∣∣∣∣P (D + iτ∇x,tφ)v|2 − |P (D + iτ∇x,tφ0)v|2| ≤ ω(δ;λ)
∑

|α|≤2,α0=0

τ4−2|α|
∫
Q

|∂αv|2

provided v ∈ C∞
0 (B(X0; δ)), where ω(δ;λ)→ 0 as δ → 0 and λ is fixed. Using these

inequalities, we can replace G0 and φ0 in (4.6) by G and φ and remove G as in the
elliptic case. Observe that in the parabolic case we handle all α with |α| ≤ 2, α0 = 0.
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Similarly, returning to v0 = eτφv and using partition of the unity we complete
the proof of Lemma 4.1.

Corollary 4.2. Under the conditions of Lemma 4.1, we have

λ1/2‖σ2−|α|eτφ∂αv0‖(0)(Q) ≤ C‖σ1/2eτφ(∂t −∆)v0‖(0)(Q)(4.7)

for all v0 ∈ C∞
0 (Qε), |α| ≤ 2, α0 = 0, provided τ > C(λ).

Proof. As in the proof of Lemma 3.3, letting in (4.1) v0 = σ1/2v∗ and using the
Leibnitz formula and the triangle inequality, we will have

λ1/2
∑
|α|≤2

‖σ2−|α|eτφ∂αv∗‖(0) − C(λ)
∑
|α|≤1

τ1−|α|‖eτφ∂αv∗||(0)

≤ C
(
‖σ1/2eτφ(∂t −∆)v∗‖(0) + C(λ)

∑
τ1/2‖eτφ∂αv∗‖(0)

)
.

Choosing τ > C(λ), we absorb the second sums in the left and right sides by the first
sum in the left side and complete the proof of Corollary 4.2.

5. Proofs of main results in the nonanalytic case. The Carleman-type es-
timates like (3.1), (3.10), (3.16), (4.1), and (4.7) are classical (and the only available)
tools to prove uniqueness in the Cauchy problem for corresponding partial differential
equations. Their introduction and use comes back to the pioneering work of T. Carle-
man of 1938. We refer to discussions of this method in Hörmander [5, sections 8.1–8.3]
and Isakov [10, section 3.2]. Below we will use the Carleman method. The introduc-
tion of large parameter τ in the weight function eτφ with φ decaying away from S
is the crucial idea of this method. It helps to neglect parts of the boundary where
no data are available. If we use Lemma 3.3 and Corollary 4.2 without the additional
large parameter λ (which were known), we arrive at the inequalities (5.2), (5.3), but
when bounding ∆v0 in the right side of (5.2) from (5.3) (|α| = 2), we will lose the
large parameter and will not be able to eliminate the terms with ∂t∆w in the right
side and therefore complete the proof.

Proof of Theorem 1.3. We will introduce a cut-off function χ ∈ C∞
0 (R3) such that

it is 1 on Q2ε and 0 on Q\Qε. Let w0 = χw, v0 = χv. By using the Leibniz formula,
we derive from (1.1), (1.2) that

(5.1)

−γ∆∂2
tw0 +∆2w0

= −∆v0 + L1(x, t;w, ∂tw,∇w,∇2w,∇∂tw, ∂2
tw,∇∂2

tw, ∂t∆w,∇∆w, v,∇v),

∂tv0 − b∆v0 = L2(x, t;w,∇w, ∂tw,∇∂tw,∆w,∇∆w0, ∂t∆w0,∇∂2
tw0, v,∇v),

where L1, L2 are linear functions of w, . . . ,∇v with the coefficients in L∞(Q).
Applying Lemma 3.3 and expressing the left side from the first equation through

its right side, we will have the Carleman-type estimates

(5.2)∑
(‖σ3−|β|eτφ∂βw0‖2(0)(Qε) + ‖σ1/2eτφ∇∂2

tw0‖2(0)(Qε) + ‖σ1/2eτφ∇x,t∆w0‖2(0)(Qε))

≤ C(‖eτφ∆v0‖2(0)(Qε) +
∑

(‖eτφ∂βw‖2(0)(Qε) + ‖eτφ∇x,t∆w‖2(0)(Qε)

+ ‖eτφ∇∂2
tw‖2(0)(Qε) + ‖eτφ∂αv‖2(0)(Qε)))
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when τ > C(λ), where the sums are over |β| ≤ 2, |α| = 1, α0 = 0. Similarly, from
Corollary 4.2

λ
∑ ‖σ2−|β∗|eτφ∂β

∗
v0‖2(0)(Qε) ≤ C

∑
(‖σ1/2eτφ∇x,t∆w‖2(0)(Qε)

+ ‖σ1/2eτφ∇∂2
tw‖2(0)(Qε) + ‖σ1/2eτφ∂βw‖2(0)(Qε) + ‖σ1/2eτφ∂αv‖2(0)(Qε))

(5.3)

for the same τ , α, β, and |β∗| ≤ 2, b∗0 = 0.
We will add (5.2) and (5.3) multiplied by λ−1/2 to obtain∑
(‖σ3−|β|eτφ∂βw0‖2(0)(Qε) + ‖σ 1

2 eτφ∇∂2
tw0‖2(0)(Qε) + ‖σ 1

2 eτφ∇x,t∆w0‖2(0)(Qε)

+ λ
1
2 ‖σ2−|β∗|eτφ∂β

∗
v0‖2(0)(Qε)) ≤ C(‖eτφ∆v0‖2(0)(Qε)

+
∑

(‖eτφ∂βw‖2(0)(Qε) + ‖eτφ∇x,t∆w‖2(0)(Qε) + ‖eτφ∇∂2
tw‖2(0)(Qε)

+ ‖eτφ∂αv‖2(0)(Qε)) + Cλ− 1
2

∑
(‖σ 1

2 eτφ∇x,t∆w‖2(0)(Qε) + ‖σ 1
2 eτφ∇∂2

tw‖2(0)(Qε)

+ ‖σ 1
2 eτφ∂βw‖2(0)(Qε) + ‖σ 1

2 eτφ∂αv‖2(0)(Qε)).

We will break Qε into Q2ε and its complement Qε\Q2ε and choose sufficiently large λ
to absorb the integral of ∆v0 in the right side by the last sum in the left side and to
absorb the integrals of σ

1
2∇x,t∆w, σ

1
2∇∂2

tw over Q2ε (where w0 = w, v0 = v) in the
right side by the corresponding integrals in the left side. Then we fix this λ, shrink
the integration domain in the left side to Q2ε, and choose sufficiently large τ to absorb
the integrals of the right side over Q2ε by the integrals in the left side to obtain

τ(‖eτφw‖2(0)(Q2ε) + ‖eτφ‖2(0)(Q2ε)) ≤ Cτ1/2
∑

(‖eτφ∂βw‖2(0)(Qε\Q2ε)

+ ‖eτφ∇∆w‖2(0)(Qε\Q2ε) + ‖eτφ∂t∆w‖2(0)(Qε\Q2ε) + ‖eτφ∂2
t ∂

αw‖2(0)(Qε\Q2ε)

+ ‖eτφ∂αv‖2(0)(Qε\Q2ε)).

Using that φ∗ = supφ over Qε\Q2ε is equal to inf φ over Q2ε, replacing φ by φ∗ in
both sides of the inequality, and dividing by τ1/2e2τφ∗

, we arrive at

τ1/2(‖w‖2(0)(Q2ε) + ‖v‖2(0)(Q2ε)) ≤ CM,

where M is the sum of L2(Q)-norms of all partial derivatives of w and v entering the
right side of the last inequality. Letting τ →∞, we conclude that w = v = 0 on Q2ε

for any ε > 0.
The proof is complete.
Proof of Corollary 1.4. Let ε > 0. The mollified functions wδ = χδ ∗ w, vδ ∗ v,

where * denotes convolution with respect to t and χδ is the standard mollifying
kernel [6, sections 1.2, 4.1–4.3], are well defined in Q ∩ {δ < t < T − δ} and solve
there the Cauchy problem (1.1)–(1.3) with zero Cauchy data on S. From well-known
properties of mollifiers and the assumptions on (w, v), we have (∂kt wδ, ∂

k
t vδ) ∈ C([0, T ];

H2(Ω) × L2(Ω)). We can find small δ and a domain Ω• with Ω• ⊂ Ω ∪ Γ so that
Qε/2 ⊂ (δ, T − δ) × Ω•. Transferring all terms of the equations (1.1), (1.2) except

∆2w and ∆v into their right sides and considering these equations as elliptic ones
on Ω• for fixed t ∈ (δ, T − δ) from interior-type Schauder estimates for equations in
variational form [1], we conclude that (wδ, vδ) ∈ C(δ, T − δ; H4(Ω

•) × H2(Ω
•)). In
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addition, all terms of these equations involving ∂t are in L2(Qε/2). By Theorem 1.3
we have (wδ, vδ) = 0 in Qε. Letting δ → 0, we obtain the same conclusion for w, v in
any Qε, which concludes the proof.

This method of the proof implies conditional Hölder-type stability estimates for
the Cauchy problem (1.1)–(1.3) (compare with [10, section 3.2]).

We think that it would be interesting to use the additional large parameter in
Carleman estimates for boundary value problems considered by Tataru in [17] and to
apply this method for a full (vector) system of thermoelasticity.
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Abstract. Asymptotic profiles are deduced for weak and strong solutions of the incompressible
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moment condition, the corresponding solution behaves like the first-order spatial derivatives of the
heat kernel. Higher-order asymptotics are also deduced in case the initial data admit vector potentials
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1. Introduction. We consider the Navier–Stokes system in R
n, n ≥ 2, which

will be treated in this paper in the form of the integral equation

u(t) = e−tAa−
∫ t

0

∇ · e−(t−s)AP (u⊗ u)(s)ds,(1.1)

and we discuss asymptotic properties of weak and strong solutions. Here, u =
(u1, . . . , un) is unknown velocity, a = (a1, . . . , an) is a given initial velocity, ∇ =
(∂1, . . . , ∂n) with ∂j = ∂/∂xj , A = −∆ is the Laplacian, {e−tA}t≥0 is the heat
semigroup, P = (Pjk) is the Fujita–Kato bounded projection [5] onto the spaces of
solenoidal vector fields, and

(∇ · e−tAP (u⊗ u))j =

n∑
k,�=1

∂�Et ∗ Pjk ∗ (u�uk),

where Et = (4πt)
−n

2 exp(− |x|2
4t ) is the heat kernel and ∗ is the convolution of distribu-

tions over R
n. In this paper we always assume that the initial data a are solenoidal,

i.e., ∇ · a = 0, and satisfy ∫
(1 + |y|)|a(y)|dy <∞.(1.2)
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Here, and in what follows, integration will be performed on R
n unless otherwise

specified. The assumption (1.2) implies a ∈ L1 ; so the condition ∇ · a = 0 ensures
(see [7, 8]) ∫

a(y)dy = 0.(1.3)

Most literature on the nonstationary Navier–Stokes system deals with solutions as
curves in some Lp-like function spaces and only a few results are available concerning
the space-time asymptotic behavior of the solutions. The weak solutions are treated
as curves in the space L2 and the existence for all t > 0 is established for all initial
data in L2, although its uniqueness still remains open when n ≥ 3. As for the strong
solutions, it is known (see [5, 8]) that a unique strong solution u(t) exists for all t > 0
in general Lq-spaces, satisfying

‖u(t)‖q ≤ Ct−
1
2−n

2 (1− 1
q ), ‖∇u(t)‖q ≤ Ct−1−n

2 (1− 1
q ) (1 ≤ q ≤ ∞, t > 0),

(1.4)

if a is in Ln ∩ L1, is small in Ln, and satisfies (1.2). Hereafter, ‖ · ‖r denotes the
Lr-norm. On the other hand, the second author proved in [9] that given γ with
1 ≤ γ ≤ n + 1, problem (1.1) admits, under suitable assumptions on a, a unique
strong solution u such that

|u(x, t)| ≤ C(1 + |x|)−α(1 + t)−(γ−α)/2 for all α with 0 ≤ α ≤ γ,(1.5)

and improved a similar result of Takahashi [17]. Inspired by [9], we deduce in this
paper another kind of space-time asymptotic profile of u for weak and strong solutions.
To be more precise, we first show that if a satisfies (1.2), the weak and strong solutions
given by the standard method admit, as t → ∞, an asymptotic expansion of the
first order in terms of the spatial derivatives of Gaussian-like functions. As for the
strong solutions, our result improves that of Carpio [1] which deduces the first-order
asymptotics of two kinds, one in R

3 and the other in R
2. Our proof shows that one

and the same result holds in all space dimensions n ≥ 2. Moreover, contrary to [1],
our argument requires neither the theory of Hardy spaces nor the Calderón–Zygmund
kernels but utilizes only Taylor’s formula for smooth functions and elementary results
on the Fourier transform.

We next consider the strong solutions satisfying (1.5) in R
n, n ≥ 2, and the weak

solutions in R
3 and R

4. We show that these solutions admit a higher-order asymptotic
expansion in terms of the space-time derivatives of Gaussian-like functions if the initial
data satisfy appropriate moment conditions. We prove this result with the aid of (an
improvement of) the estimates for L2-moments of solutions as given in [3, 14].

In section 2 we state our main results after some preliminaries. In particular, we
prove there that the kernel function of the operator ∇ · e−tAP belongs to L1 ∩ L∞

together with its derivatives and behaves like the first-order derivative of the heat
kernel. Due to this nice property of the kernel function, we can avoid the use of
Hardy spaces and Calderón–Zygmund kernels.

In section 3 we deduce the asymptotics for the linear term e−tAa and in section 4
we prove the first-order asymptotics for weak and strong solutions whose initial data
satisfy (1.2). The weak solutions treated in this paper are those satisfying the energy
inequality

‖u(t)‖22 + 2
∫ t

0

‖∇u‖22ds ≤ ‖a‖22 for all t ≥ 0(1.6)
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and the decay estimate

‖u(t)‖2 ≤ C(1 + t)−
n+2

4 .(1.7)

It is now well known (see [4, appendix] and [18]) that such weak solutions exist in all
space dimensions n ≥ 2 whenever a ∈ L2, ∇ · a = 0, and a satisfies (1.2). We shall
deduce the first-order asymptotics for such weak solutions by slightly modifying the
argument given for strong solutions.

In section 5 we deduce higher-order asymptotics for strong solutions satisfying
(1.5) with γ = n+ 1 and for weak solutions whose initial data satisfy (1.2) and some
additional moment conditions. It should be noticed here that our strong solutions
admit the asymptotic expansion up to (and including) order n, the space dimension,
while our weak solutions admit the same expansion only up to (and including) order
n− 1. This is because of the difference between the L2-moment estimates which are
satisfied by our strong or weak solutions (see (2.7) and (2.8) below). We also note
that the moment estimate (2.8) for weak solutions is proved only when n = 3, 4, so
our higher-order asymptotic result for weak solutions deals only with this case.

In section 6 we examine the solutions in R
2 which decay exponentially in time and

are rapidly decreasing in the spatial direction, and we give a slightly refined version
of a result of Schonbek [12] (see also [15]). The result shows that our asymptotic
results are by no means optimal. We refer the reader to [10, 11, 12, 13, 15] for the
problem of the optimality of decay rates of solutions in connection with the classes of
corresponding initial data.

In deducing the higher-order expansion for strong solutions, we have treated in
this paper only those solutions which satisfy (1.5) with γ = n + 1. It would be an
interesting problem to find space-time asymptotic profiles in the case 1 ≤ γ < n+ 1.
We also note that nothing is known about the space-time behavior for weak solutions
if we drop assumption (1.2) on initial data.

Finally we note that our first-order asymptotic result is extended to weak and
strong solutions of the Navier–Stokes system in the half-space R

n
+. The result clarifies

a difference of the behavior between the Navier–Stokes flows in R
n and R

n
+ which is

caused by the presence of the boundary of R
n
+. The details are given in [2].

2. Preliminaries and the results. We first recall that the Fujita–Kato pro-
jection P onto the solenoidal fields has the kernel function P (x) = (Pjk(x))

n
j,k=1 with

the Fourier transform

P̂jk(ξ) ≡
∫

e−ix·ξPjk(x)dx = δjk +
iξjiξk
|ξ|2


i =

√−1, x · ξ =
n∑
j=1

xjξj


 .

Therefore, ∂�e
−tAP = F� = (F�,jk)

n
j,k=1 with

F̂�,jk(ξ, t) = iξ�e
−t|ξ|2

(
δjk +

iξjiξk
|ξ|2

)
≡ F̂ 1

�,jk(ξ, t) + F̂ 2
�,jk(ξ, t).

Thus, denoting the heat kernel by

Et(x) = (4πt)
−n

2 exp(− |x|2
4t ),

we easily see that F 1
�,jk(x, t) = (∂�Et)(x)δjk, and so, writing ∂βx = ∂β1

1 · · · ∂βn
n for any

multi-index β = (β1, . . . , βn) of nonnegative integers,

‖∂pt ∂βxF 1
�,jk(·, t)‖q ≤ Cqt

− 1+|β|+2p
2 −n

2 (1− 1
q ) (1 ≤ q ≤ ∞).
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To evaluate F 2
�,jk, we invoke the relation |ξ|−2 =

∫∞
0

e−s|ξ|
2

ds and get

F̂ 2
�,jk(ξ, t) = iξ�iξjiξk

∫ ∞

t

e−s|ξ|
2

ds so that F 2
�,jk(x, t) =

∫ ∞

t

∂�∂j∂kEs(x)ds.

From this we easily obtain

‖∂pt ∂βxF 2
�,jk(·, t)‖q ≤ Cqt

− 1+|β|+2p
2 −n

2 (1− 1
q ) (1 ≤ q ≤ ∞).

Combining this with the estimate for F 1
�,jk gives

‖∂pt ∂βxF�,jk(·, t)‖q ≤ Cqt
− 1+|β|+2p

2 −n
2 (1− 1

q ) (1 ≤ q ≤ ∞).(2.1)

In this paper we employ the summation convention for repeated indices. Our
results are then stated as follows.

Theorem 2.1.
(i) Let a ∈ Ln ∩ L1 be solenoidal and satisfy (1.2). Let u = (u1, . . . , un) be the

corresponding strong solution of (1.1) which exists for all t ≥ 0 if a is small in Ln.
Then for 1 ≤ q ≤ ∞ and j = 1, . . . , n, we have

lim
t→∞ t

1
2+n

2 (1− 1
q )

∥∥∥∥uj(t) + (∂kEt)(·)
∫

ykaj(y)dy

+F�,jk(·, t)
∫ ∞

0

∫
(u�uk)(y, s)dyds

∥∥∥∥
q

= 0.
(2.2)

(ii) For every a ∈ L2 which is solenoidal and satisfies (1.2), there exists a weak
solution u which admits the expansion (2.2) with 1 ≤ q ≤ 2. The result below concerns
higher-order asymptotics of weak and strong solutions.

Theorem 2.2.
(iii) Let a satisfy the assumption of Theorem 2.1(i) and the following additional

conditions:∫
|y|m|a(y)|dy <∞, |a(y)| ≤ c0(1 + |y|)−n−1,

aj =

n∑
k=1

∂kbjk, |bjk(y)| ≤ c0(1 + |y|)−n, bjk ∈ L1,
(2.3)

for some integer m such that 1 ≤ m ≤ n. If c0 > 0 and the norms ‖bjk‖1 are small,
there exists a global strong solution u which satisfies (1.5) with γ = n+1. Furthermore,
for 1 ≤ q ≤ ∞ and j = 1, . . . , n, we have

lim
t→∞ t

m
2 +n

2 (1− 1
q )

∥∥∥∥∥∥uj(t)−
∑

1≤|α|≤m

(−1)|α|
α!

(∂αxEt)(·)
∫

yαaj(y)dy

+
∑

|β|+2p≤m−1

(−1)|β|+p
p!β!

(∂pt ∂
β
xF�,jk)(·, t)

×
∫ ∞

0

∫
spyβ(u�uk)(y, s)dyds

∥∥∥∥
q

= 0.

(2.4)
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(iv) Let n = 3, 4, and suppose that∫
(1 + |y|)n−1|a(y)|dy <∞,

∫
(1 + |y|)n|a(y)|2dy <∞.(2.5)

Then there exists a weak solution u satisfying (2.4) for 1 ≤ q ≤ 2 and 1 ≤ m ≤ n−1.
Remarks.
(i) Notice that (1.4) implies

‖u(s)‖22 ≤ C(1 + s)−1−n
2 ,(2.6)

so the last integral in (2.2) is finite. On the other hand, (1.2) and (1.3) together imply

‖e−tAa‖22 ≤ C(1 + t)−1−n
2 .

So a result of Wiegner [18] ensures the existence of a weak solution u satisfying (2.6).
(ii) Theorem 2.1 improves an asymptotic result of Carpio [1] in the following sense.

First, the result of [1] ignores the vanishing of the average (1.3) and so contains the
trivial term Et(x)

∫
a(y)dy ≡ 0. Second, [1] deals only with the case discussed in

assertion (i) of Theorem 2.1, and the results given there are incomplete in the two-
dimensional case.

(iii) The existence of a strong solution treated in Theorem 2.2(iii) is proved in [9],
and convergence of the integrals in the second sum of (2.4) is ensured by the estimate∫

|y|m|u(y, s)|2dy ≤ C(1 + s)−
n−m

2 −1 (0 ≤ m ≤ n+ 1).(2.7)

This estimate will be proved in section 5.
(iv) The proofs of Theorems 2.1 and 2.2 will be carried out in almost the same

way for weak and strong solutions. They differ only in estimating the nonlinear
convolution integral of (1.1) in a neighborhood of s = t. The restriction m ≤ n − 1
in Theorem 2.2(iv) arises from the fact that for weak solutions we know only the
estimate ∫

|y|m|u(y, s)|2dy ≤ C(1 + s)−(1+n
2 )(1−m

n ) (0 ≤ m ≤ n, n = 3, 4),(2.8)

which is weaker than (2.7). This estimate is due to [3, 14], and a detailed proof will
be given in the appendix for the reader’s convenience. Since (2.8) seems to be valid
for general weak solutions only when n = 3, 4, Theorem 2.2(iv) would be valid only
for n = 3, 4. This point will be discussed at the end of section 5.

It should be emphasized here that Theorems 2.1 and 2.2 are by no means optimal.
Indeed, the following result is known.

Theorem 2.3. If n = 2, a solution u exists satisfying

‖u(t)‖q ≤ Cqe
−γqt and |u(x, t)| ≤ Cme−γt(1 + |x|)−m

for all 1 ≤ q ≤ ∞ and m = 0, 1, 2, . . . , with some positive constants Cq, Cm, γ, γq,
and γm.

This result is proved in [12] for 2 ≤ q ≤ ∞ and n = 2, and it is extended
in [15] to the case when n is even. Our Theorem 2.3 covers the case 1 ≤ q < 2 and
contains a pointwise decay result. We give a detailed proof in section 6 for the reader’s
convenience.
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In [11, 12, 13] Schonbek and in [15] Schonbek, Schonbek, and Süli discuss the
problem of finding lower bounds of rates of decay in time for weak solutions to the
Navier–Stokes system which do not belong to the class of solutions as described in
Theorem 2.3. We note that Theorem 2.1(ii) can be applied to characterizing weak

solutions satisfying the lower bound estimate ‖u(t)‖2 ≥ ct−
n+2

4 for large t > 0. The
details are given in [10].

3. Asymptotics for the linear term. This section proves the following theo-
rem.

Theorem 3.1. Suppose a is solenoidal and satisfies∫
(1 + |y|)m|a(y)|dy <∞(3.1)

for an integer m ≥ 1. Then for 1 ≤ q ≤ ∞,

lim
t→∞ t

m
2 +n

2 (1− 1
q )

∥∥∥∥∥∥e−tAa−
∑

1≤|α|≤m

(−1)|α|
α!

(∂αxEt)(·)
∫

yαa(y)dy

∥∥∥∥∥∥
q

= 0.(3.2)

Proof. Recall that (see [7, 8]) since a is solenoidal and integrable, it satisfies (1.3).
Thus, applying Taylor’s formula gives

(e−tAa)(x) ≡
∫

Et(x− y)a(y)dy =

∫
[Et(x− y)− Et(x)]a(y)dy

=
∑

1≤|α|≤m−1

(−1)|α|
α!

(∂αxEt)(x)

∫
yαa(y)dy +

∫
Rm(x, y)a(y)dy,

where

Rm(x, y) =
1

(m− 1)!
∫ 1

0

(1− θ)m−1

(
d

dθ

)m
Et(x− yθ)dθ

=
∑

|α|=m

(−1)|α|
α!

(∂αxEt)(x)y
α

+
(−1)m
(m− 1)!

∫ 1

0

(1− θ)m−1
∑

|α|=m

m!

α!
[(∂αxEt)(x− yθ)− (∂αxEt)(x)]yαdθ.

Therefore, via the change of variables xt−
1
2 → x we obtain∥∥∥∥∥∥e−tAa−

∑
1≤|α|≤m

(−1)|α|
α!

(∂αxEt)(·)
∫

yαa(y)dy

∥∥∥∥∥∥
q

≤ Cmt−
m
2 −n

2 (1− 1
q )
∑

|α|=m

∫ 1

0

∫
ϕt(y, θ)|y|m|a(y)|dydθ,

where

ϕt(y, θ) =
∑

|α|=m
‖(∂αxE1)(· − yθt−

1
2 )− (∂αxE1)(·)‖q.
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This function is bounded in t, θ, and y, and we have

lim
t→∞ϕt(y, θ) = 0 for fixed y and θ.(3.3)

Since |y|m|a(y)| is integrable on R
n by (3.1), the dominated convergence theorem

yields

lim
t→∞

∫ 1

0

∫
ϕt(y, θ)|y|m|a(y)|dydθ = 0.

This implies (3.2) and so the proof of Theorem 3.1 is complete.
Remark. Convergence (3.3) is valid for q =∞ since the function ∂αxE1 is bounded

and uniformly continuous on R
n.

4. Proof of Theorem 2.1. Let

w(t) = (w1(t), . . . , wn(t)) = −
∫ t

0

∇ · e−(t−s)AP (u⊗ u)(s)ds

= −
(∫ t

0

F�,jk(t− s) ∗ (u�uk)(s)ds
)n
j=1

.

(4.1)

Due to Theorem 3.1, it suffices to prove the following theorem.
Theorem 4.1.
(i) Under the assumption of Theorem 2.1(i), we have

lim
t→∞ t

1
2+n

2 (1− 1
q )

∥∥∥∥wj(t) + F�,jk(·, t)
∫ ∞

0

∫
(u�uk)(y, s)dyds

∥∥∥∥
q

= 0(4.2)

for all 1 ≤ q ≤ ∞ and j = 1, . . . , n.
(ii) Under the assumption of Theorem 2.1(ii), the weak solution u satisfies (4.2)

for all 1 ≤ q ≤ 2 and j = 1, . . . , n.
Proof. We write (4.1) as

wj(t) = −
(∫ t/2

0

+

∫ t

t/2

)
F�,jk(t− s) ∗ (u�uk)(s)dyds ≡ J1 + J2.

Direct calculation gives

wj(t) + F�,jk(x, t)

∫ ∞

0

∫
(u�uk)dyds

= F�,jk(x, t)

∫ ∞

t/2

∫
(u�uk)dyds

−
∫ t/2

0

∫
[F�,jk(x− y, t− s)− F�,jk(x, t− s)](u�uk)dyds

+

∫ t/2

0

∫ ∫ 1

0

s(∂tF�,jk)(x, t− sτ)(u�uk)dydsdτ + J2

≡ J11 + J12 + J13 + J2.

We see from (2.1) and (2.6) that

t
1
2+n

2 (1− 1
q )‖J11‖q ≤ Cq

∫ ∞

t/2

‖u(s)‖22ds ≤ Ct−
n
2 → 0 as t→∞(4.3)
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for all 1 ≤ q ≤ ∞. Similarly, applying (2.1) and (2.6) gives

‖J13‖q ≤ Cq

∫ 1

0

∫ t/2

0

s(t− sτ)−
3
2−n

2 (1− 1
q )‖u(s)‖22dsdτ

≤ Cqt
− 3

2−n
2 (1− 1

q )

∫ t/2

0

s‖u(s)‖22ds ≤ Cqt
− 3

2−n
2 (1− 1

q )

∫ t

0

(1 + s)−
n
2 ds

so that, for all 1 ≤ q ≤ ∞,

t
1
2+n

2 (1− 1
q )‖J13‖q ≤ Ct−1

∫ t

0

(1 + s)−
n
2 ds→ 0 as t→∞.(4.4)

Next, we write F�,jk(x, t) = t−
1+n

2 K(xt−
1
2 ) in terms of a smooth, bounded, inte-

grable, and uniformly continuous function K. Applying Minkowski’s inequality for
the integral yields, after a change of variables,

‖J12‖q ≤ Cq

∫ t/2

0

∫
(t− s)−

1
2−n

2 (1− 1
q )‖K(· − y(t− s)−

1
2 )−K(·)‖q|u(y, s)|2dyds

≤ Cqt
− 1

2−n
2 (1− 1

q )

∫ t/2

0

∫
‖K(· − y(t− s)−

1
2 )−K(·)‖q|u(y, s)|2dyds.

Therefore,

t
1
2+n

2 (1− 1
q )‖J12‖q ≤ Cq

∫ t/2

0

∫
ϕt(y, s)|u(y, s)|2dyds = Cq

∫ t/2

0

ψt(s)ds,

where ϕt(y, s) = ‖K(· − y(t− s)−
1
2 )−K(·)‖q and ψt(s) =

∫
ϕt(y, s)|u(y, s)|2dy. Note

that ϕt(y, s) ≤ Cq, that ϕt(y, s)→ 0 as t→∞ for fixed y and s, and that |u(y, s)|2dy
is a finite measure on R

n for fixed s. The bounded convergence theorem now implies
ψt(s)→ 0 as t→∞ for each fixed s. However, ψt(s) ≤ Cq‖u(s)‖22, and the right-hand
side is bounded and integrable over [0,∞) due to (2.6). Applying again the bounded
convergence theorem gives

lim
t→∞

∫ M

0

ψt(s)ds = 0 for any fixed M > 0.(4.5)

Now, given ε > 0, choose M > 0 so that
∫∞
M
‖u(s)‖22ds < ε. Then for t > 2M , we

have ∫ t/2

0

ψt(s)ds ≤
∫ M

0

ψt(s)ds+ Cq

∫ ∞

M

‖u(s)‖22ds ≤
∫ M

0

ψt(s)ds+ Cqε.

This, together with (4.5), gives limt→∞
∫ t/2
0

ψt(s)ds = 0 ; and we have deduced

lim
t→∞ t

1
2+n

2 (1− 1
q )‖J12‖q = 0 for all 1 ≤ q ≤ ∞.(4.6)

Observe that we have so far invoked only (2.6) for estimating u, so (4.3), (4.4), and
(4.6) hold for both of the weak and strong solutions.
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We next estimate J2. It is here where we have to deal with weak and strong
solutions separately. Consider first the strong solutions. By (1.4) we get

‖J2‖q ≤
∫ t

t/2

‖F�,jk(·, t− s)‖1‖u(s)‖22qds

≤ Cq

∫ t

t/2

(t− s)−
1
2 (1 + s)−1−(n− n

2q )ds ≤ Cq(1 + t)−
1
2−(n− n

2q )

for all 1 ≤ q ≤ ∞, and so
t
n
2 +n

2 (1− 1
q )‖J2‖q ≤ Cq(1 + t)−

1
2 → 0 as t→∞.(4.7)

This completes the proof of Theorem 4.1(i).
Next consider the weak solutions. We first show that

lim
t→∞ t

n
2 ‖J2‖1 = 0.(4.8)

We apply (2.1) and (2.6) to get

‖J2‖1 ≤
∫ t

t/2

‖F (t− s)‖1‖u(s)‖22ds ≤ C

∫ t

t/2

(t− s)−
1
2 s−1−n

2 ds ≤ Ct−
n+1

2 ,

so that t
n
2 ‖J2‖1 ≤ Ct−

1
2 → 0 as t→∞, which proves (4.8). Second, we show that

lim
t→∞ t

n
2 +n

4 ‖J2‖2 = 0.(4.9)

The argument below is due to [4] (see also [11, 18]). Let

v(t) = −
∫ t

τ

F (t− s) ∗ (u⊗ u)(s)ds = u(t)− e−(t−τ)Au(τ)

with 0 < τ < t, and assume that v is smooth. (This situation is realized if we replace
u by approximate solutions uN as given in [4, 11].) Then v solves the initial value
problem

∂tv +Av = −P (u · ∇u) (t > τ), v(τ) = 0.

Multiplying the above equation by 2v and integrating by parts gives, since (u·∇v, v) =
0,

∂t‖v‖22 + 2‖A1/2v‖22 = −2(u · ∇u, v) = 2(u · ∇v, u) = 2(u · ∇v, u0),

where u0(t) = e−(t−τ)Au(τ). By the standard Lp-Lq estimates for e−tA and (2.6), we
get

‖u0(t)‖∞ ≤ C(t− τ)−
n
4 ‖u(τ)‖2 ≤ C(t− τ)−

n
4 τ−n

4 − 1
2 .

Since ‖∇v‖2 = ‖A1/2v‖2 and ‖u‖2 ≤ ‖a‖2, we have
2|(u · ∇v, u0)| ≤ C‖u‖2‖∇v‖2‖u0‖∞ = C‖A1/2v‖2‖u‖2‖u0‖∞

≤ C‖A1/2v‖2(t− τ)−
n+1

2 τ−n
4 − 1

2

≤ ‖A1/2v‖22 + C(t− τ)−n−1τ−n
2 −1,
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which implies

∂t‖v‖22 + ‖A1/2v‖22 ≤ C(t− τ)−n−1τ−n
2 −1.

Let {Eλ}λ≥0 be the spectral measure associated with the positive self-adjoint operator
A. Applying ‖A1/2v‖22 ≥ .(‖v‖22 − ‖E�v‖22) yields

∂t‖v‖22 + .‖v‖22 ≤ .‖E�v‖22 + C(t− τ)−n−1τ−n
2 −1.

However, we know that (see [4, 11, 18])

‖E�v‖22 ≤ C.
n+2

2

(∫ t

τ

‖u‖22ds
)2

and so

∂t‖v‖22 + .‖v‖22 ≤ C.
n+4

2

(∫ t

τ

‖u‖22ds
)2

+ C(t− τ)−n−1τ−n
2 −1.

Here we put . = m(t− τ)−1, m > 0 ; then we multiply both sides by (t− τ)m to get

∂t((t− τ)m‖v‖22) ≤ C(t− τ)m−n
2 −2

(∫ t

τ

‖u‖22ds
)2

+ C(t− τ)m−n−1τ−n
2 −1.

Choosing m so that m > n/2 + 2 and m > n+ 1, we obtain

‖v(t)‖22 ≤ C(t− τ)−m
∫ t

τ

(s− τ)m−n
2 −2

(∫ s

τ

‖u‖22dσ
)2

ds+ C(t− τ)−nτ−n
2 −1

≤ C(t− τ)−2−n
2

∫ t

τ

(∫ s

τ

‖u‖22dσ
)2

ds+ C(t− τ)−nτ−1−n
2 .

Inserting τ = t/2 yields v(t) = J2, and so

tn+n
2 ‖J2‖22 ≤ Ctn−1

(∫ ∞

t/2

‖u‖22ds
)2

+ Ct−1 ≤ Ct−1 → 0 as t→∞.

This proves (4.9). Interpolating between (4.8) and (4.9) now gives

lim
t→∞ t

n
2 +n

2 (1− 1
q )‖J2‖q = 0 for all 1 ≤ q ≤ 2.(4.10)

This completes the proof of Theorem 4.1(ii).

5. Proof of Theorem 2.2. This section proves Theorem 2.2. Recall that, as
shown in [9], our strong solutions satisfy pointwise estimate (1.5) with γ = n+1, i.e.,

|u(x, t)| ≤ Cα(1 + |x|)α−n−1(1 + t)−α/2 for all 0 ≤ α ≤ n+ 1.(5.1)

Choosing α = n+ 1 and then α = 1, we get

‖u(t)‖∞ ≤ C(1 + t)−
1+n

2 , ‖u(t)‖1,w ≤ C(1 + t)−
1
2 ,(5.2)
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where ‖ · ‖1,w is the quasi norm of the weak L1-space (see [16]). Hence, we get (2.6),
i.e.,

‖u(t)‖2 ≤ C‖u(t)‖1/2∞ ‖u(t)‖1/21,w ≤ C(1 + t)−
n+2

4 .

Using (1.2), (1.3), (2.1), and (2.6), we can estimate (1.1) to get ‖u(t)‖1 ≤ C(1+ t)−
1
2 .

Combining this with the first estimate of (5.2), we conclude that

‖u(t)‖q ≤ C(1 + t)−
1
2−n

2 (1− 1
q ) for all 1 ≤ q ≤ ∞.(5.3)

We also invoke estimate (2.7) for our strong solutions, i.e.,∫
|y|m|u(y, s)|2dy ≤ Cm(1 + s)−1−n−m

2 for all 0 ≤ m ≤ n+ 1.(5.4)

This is deduced as follows. Note that (5.1) implies |y|n+1|u(y, s)| ≤ C, and so∫
|y|n+1|u(y, s)|2dy ≤ C

∫
|u(y, s)|dy ≤ C(1 + s)−

1
2 .

Combining this with (5.3) gives, via Hölder’s inequality,

∫
|y|m|u(y, s)|2dy ≤

(∫
|y|n+1|u|2dy

) m
n+1

(∫
|u|2dy

)1− m
n+1

≤ Cm(1 + s)−1−n−m
2 .

On the other hand, under the assumptions of Theorem 2.2(iv), we know (see [3, 14])
the existence of a weak solution u satisfying the energy inequality and (2.8), i.e.,∫

|y|m|u(y, s)|2dy ≤ C(1 + s)−(1+n
2 )(1−m

n ) for all 0 ≤ m ≤ n.(5.5)

The proof of (5.5) will be given in the appendix.
Now define the function w(t) by (4.1). Since we have Theorem 3.1, in order to

prove Theorem 2.2 we need only show the following.
Theorem 5.1.
(i) Under the asumption of Theorem 2.2(iii), we have∥∥∥∥∥∥wj(t) +

∑
|β|+2p≤m−1

(−1)|β|+p
p!β!

(∂βx∂
p
t F�,jk)(·, t)

∫ ∞

0

∫
spyβ(u�uk)dyds

∥∥∥∥∥∥
q

= o(t
m
2 +n

2 (1− 1
q )) as t→∞

(5.6)

for all 1 ≤ q ≤ ∞ and all integers m such that 1 ≤ m ≤ n.
(ii) Under the assumption of Theorem 2.2(iv), the function w satisfies (5.6) for

all 1 ≤ q ≤ 2 and all integers m such that 1 ≤ m ≤ n− 1.
To prove Theorem 5.1, we again invoke the notation

wj(t) = −
(∫ t/2

0

+

∫ t

t/2

)
F�,jk(t− s) ∗ (u�uk)(s)ds ≡ J1 + J2.

The integral J2 is already estimated in section 4, and we know that (4.7) holds for
strong solutions and (4.10) for weak solutions. It thus suffices to find the desired
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expansion for J1. As in section 4, J1 is estimated in the same way for both weak and
strong solutions.

We begin by noticing the following version of Taylor’s formula.
Lemma 5.2. Let F denote any of the functions F�,jk and let m ≥ 1 be an arbitrary

integer. Then,

F (x− y, t− s) =
∑

|β|+2p≤m−1

(−y)β(−s)p
p!β!

(∂βx∂
p
t F )(x, t) + Sm.

Here, denoting Nm = [(m− 1)/2], the greatest integer in (m− 1)/2,

Sm =
∑

|β|+2p=m−1,|β|≥2

|β|
∫ 1

0

(1− θ)|β|−1 (−y)β(−s)p
p!β!

×[(∂βx∂pt F )(x− yθ, t)− (∂βx∂pt F )(x, t)]dθ

+
(−s)Nm

Nm!
[(∂Nm

t F )(x− y, t)− (∂Nm
t F )(x, t)]

+
(−s)Nm+1

Nm!

∫ 1

0

(1− τ)Nm(∂Nm+1
t F )(x− y, t− sτ)dτ

if m is odd, and

Sm =
∑

|β|+2p=m−1

|β|
∫ 1

0

(1− θ)|β|−1 (−y)β(−s)p
p!β!

×[(∂βx∂pt F )(x− yθ, t)− (∂βx∂pt F )(x, t)]dθ

+
(−s)Nm+1

Nm!

∫ 1

0

(1− τ)Nm(∂Nm+1
t F )(x− y, t− sτ)dτ

if m is even.
The proof of Lemma 5.2 is straightforward, and so it is omitted here.
Proof of Theorem 5.1. We apply Lemma 5.2 to get

J1 +
∑

|β|+2p≤m−1

(−1)|β|+p
p!β!

(∂pt ∂
β
xF�,jk)(x, t)

∫ ∞

0

∫
spyβ(u�uk)(y, s)dyds

=
∑

|β|+2p≤m−1

(−1)|β|+p
p!β!

(∂pt ∂
β
xF�,jk)(x, t)

∫ ∞

t/2

∫
spyβ(u�uk)(y, s)dyds

−
∫ t/2

0

∫
Sm�,jk(x, y, t, s)(u�uk)(y, s)dyds

≡ J11 + J12.

Suppose u is a strong solution and recall (2.1) and (2.7), i.e., that

‖(∂pt ∂βxF�,jk)(·, t)‖q ≤ Cqt
− 1+|β|+2p

2 −n
2 (1− 1

q ),∫
sp|y||β||u(y, s)|2dy ≤ C(1 + s)−

n−(|β|+2p)
2 −1.
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If |β| + 2p ≤ m − 1, each term of J11 behaves in Lq like t−
n+1

2 −n
2 (1− 1

q ) as t → ∞ ;
hence

t
m
2 +n

2 (1− 1
q )‖J11‖q ≤ Ct−

n−m+1
2 ≤ Ct−

1
2 → 0 as t→∞

for 1 ≤ q ≤ ∞ and 1 ≤ m ≤ n. So we need only estimate J12, using the concrete
expression of functions Sm�,jk as given in Lemma 5.2. Let Sm2 be the last term in the
definition of Sm which involves the integral in τ , and write

Sm = Sm1 + Sm2 .

Since 0 ≤ s ≤ t/2, straightforward estimation shows that

‖(∂Nm+1
t F )(· − y, t− sτ)‖q ≤ ct−

3
2−Nm−n

2 (1− 1
q ) =




ct−1−m
2 −n

2 (1− 1
q ) (m : odd),

ct−
1
2−m

2 −n
2 (1− 1

q ) (m : even),

and ∫ t/2

0

sNm+1‖u(s)‖22ds ≤ c

∫ t/2

0

sNm+1(1 + s)−1−n
2 ds

≤




c

∫ t/2

0

(1 + s)−
n−m+1

2 ds (m : odd),

c

∫ t/2

0

(1 + s)−1−n−m
2 ds (m : even).

Therefore, the contribution from Sm2 is estimated as

≤ Ct−
m
2 −n

2 (1− 1
q ) × t−1

∫ t

0

(1 + s)−
1
2 ds = o(t−

m
2 −n

2 (1− 1
q )) if m is odd,

and

≤ Ct−
m
2 −n

2 (1− 1
q ) × t−

1
2

∫ t

0

(1 + s)−1ds = o(t−
m
2 −n

2 (1− 1
q )) if m is even.

To estimate the contribution from Sm1 , we write

(∂βx∂
p
t F )(x, t) = t−

1+n+|β|+2p
2 K(xt−

1
2 ),

and, when m is odd,

(∂Nm
t F )(x, t) = t−

m+n
2 K(xt−

1
2 )

in terms of some functions K which are smooth, bounded, integrable, and uniformly
continuous on R

n. We easily see that

‖(∂βx∂pt F )(· − yθ, t)− (∂βx∂pt F )(·, t)‖q ≤ Ct−
m
2 −n

2 (1− 1
q )‖K(· − yt−

1
2 θ)−K(·)‖q

when |β|+ 2p = m− 1, and

‖(∂Nm
t F )(· − y, t)− (∂Nm

t F )(·, t)‖q ≤ Ct−
m
2 −n

2 (1− 1
q )‖K(· − yt−

1
2 )−K(·)‖q.
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Using these estimates as well as (2.7), we can proceed in exactly the same way as in

section 4 to conclude that the contribution from Sm1 is o(t−
m
2 −n

2 (1− 1
q )). We have thus

deduced

lim
t→∞ t

m
2 +n

2 (1− 1
q )‖J1‖q = 0(5.7)

for 1 ≤ m ≤ n and 1 ≤ q ≤ ∞ when u is a strong solution.

When u is a weak solution, we can estimate J11 and J12 in the same way as above,
using (2.8) instead of (2.7), and conclude that (5.7) holds for 1 ≤ m ≤ n − 1 and
1 ≤ q ≤ ∞. This completes the proof of Theorem 5.1.

Remarks.

(i) In this section we could treat higher-order expansions of weak solutions only
in space dimensions n = 3, 4 because the moment estimate (2.8) is known only in
this case. It should be noticed that in Theorem 2.1(ii), we could treat weak solutions
in general space dimensions n ≥ 2 because we then needed (2.8) only with m = 0
which is valid in all space dimensions. As will be seen from the argument in the
appendix, it seems impossible to deduce (2.8) for m ≥ 1 when n ≥ 5. Indeed, the
desired boundedness is first deduced for approximate solutions and then for the weak
solutions by passing to the limit. However, if the boundedness were true for the
approximate solutions on R

n, n ≥ 5, we could then deduce the precompactness of
the approximate solutions in L2(0, T : L2) for any fixed T > 0. This precompactness
readily implies that the weak solutions obtained by passing to the limit satisfy the
so-called strong energy inequality of Leray [6]:

‖u(t)‖22 + 2
∫ t

s

‖∇u‖22dτ ≤ ‖u(s)‖22 for s = 0, a.e. s > 0, and all t ≥ s.

However, the existence of weak solutions satisfying this inequality remains open when
n ≥ 5 and seems in general not to be valid, as is remarked in [5].

(ii) From the argument in this section, we see that if our weak solutions should
satisfy the moment estimate (2.7) under suitable conditions on the initial data a,
then we could deduce the asymptotic expansion (2.4) with 1 ≤ q ≤ 2 and 1 ≤ m ≤ n
also for the weak solutions. Indeed, we needed moment estimates, which are different
between the cases of weak and strong solutions, only in dealing with the integral J1,
and our estimates for J2 (given in section 4) are independent of the moment estimates.

6. Proof of Theorem 2.3. In this section we prove Theorem 2.3. The case
2 ≤ q ≤ ∞ is treated in [12, 15] by an elementary method. Our main purpose is
to extend the result to the case 1 ≤ q < 2 by employing the Hardy space theory.
Consider the solution ω of the linear heat equation

∂tω = ∆ω, ω(0) = ω0,

where ω0(y) = ω0(|y|) ∈ S(R2), ω̂0 ∈ C∞
c (R

2), and ω̂0 ≡ 0 in a neighborhood of
ξ = 0. Note that ω̂0 is also radial, and so both ω0 and ω̂0 can be chosen as real-
valued functions. Thus, ω̂(ξ, t) = e−t|ξ|

2

ω̂0(ξ) is radial, and so ω(x, t) is also radial.
Moreover, ω(t) ∈ S(R2) and

∫
xαω(x, t)dx =

∫
yαω0(y)dy = 0 for all multi-indices α.
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This implies that ω(t) belongs to the Hardy space Hp for all 0 < p <∞ and all t ≥ 0
([16, p. 128]), and

‖ω(t)‖Hq ≤ Ct−( 1
p− 1

q )‖ω0‖Hp whenever 0 < p ≤ q <∞.(6.1)

See [7] for a proof of (6.1). Consider now

u(x, t) = (u1(x, t), u2(x, t)) =
1

2π

∫
(−x2 + y2, x1 − y1)

|x− y|2 ω(y, t)dy,

where x = (x1, x2) and y = (y1, y2). Then

∇× u ≡ ∂1u2 − ∂2u1 = ω and u · ∇ω = 0,

so ∂tω −∆ω + u · ∇ω = 0, and therefore,

∇× (∂tu−∆u+ u · ∇u) = 0.

Thus, there exists a scalar function p such that

∂tu−∆u+ u · ∇u+∇p = 0.

Since ∇ · u = 0, it follows that u solves the Navier–Stokes system. Applying the
Fourier transform gives

û(ξ, t) =
(−iξ2, iξ1)
|ξ|2 ω̂(ξ, t) =

(−iξ2, iξ1)
|ξ|2 e−t|ξ|

2

ω̂0(ξ).

This shows that for each fixed t, the function û(ξ, t) is in C∞
c (R

2) and vanishes in a
fixed neighborhood of ξ = 0 independent of t. The Hausdorff–Young inequality for
the Fourier transform shows that if 2 ≤ q ≤ ∞, then

‖u(t)‖q ≤ Cq‖û(t)‖q′ ≤ Cq

(∫
e−q

′t|ξ|2 |ω̂0(ξ)|q′dξ
)1−1/q

≤ Cqe
−γqt,

with 1/q′ = 1− 1/q, since ω̂0 ≡ 0 in a neighborhood of ξ = 0. We thus conclude that

‖u(t)‖q ≤ Cqe
−γqt for all 2 ≤ q ≤ ∞.(6.2)

We next write û in the form û(ξ, t) = |ξ|−1(−iξ2|ξ|−1, iξ1|ξ|−1)ω̂(ξ, t) so that

u = (−∆)−1/2(−R2, R1)ω,

where Rj are the Riesz transforms. Since Rj are bounded in Hardy spaces, it follows
by the Hardy–Littlewood–Sobolev inequality in Hardy spaces [16, p. 136] and (6.1)
that ‖u(t)‖H6/7 ≤ C‖ω(t)‖H3/5 ≤ C‖ω0‖H3/5 , and therefore

‖u(t)‖1 ≤ C‖u(t)‖H1 ≤ C‖u(t)‖1/42 ‖u(t)‖3/4H6/7 ≤ C1e
−γ1t.

This, together with (6.2), implies

‖u(t)‖q ≤ Cqe
−γt for all 1 ≤ q ≤ ∞(6.3)
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with another constant γ > 0 independent of q. To see the behavior with respect to
the space variables, we fix a function M = (M1,M2) so that M̂ ∈ C∞

c (R
2), M̂ ≡ 0,

in a neighborhood of ξ = 0, and

M̂(ξ) =
(−iξ2, iξ1)
|ξ|2 in a neighborhood of supp ω̂0.

Since û(ξ, t) = M̂(ξ)e−t|ξ|
2

ω̂0(ξ), the relation

xβu(x, t) = (2π)−2

∫
eix·ξ(i∂ξ)β [M̂(ξ)e−t|ξ|

2

ω̂0(ξ)]dξ

and the fact that ω̂0 ≡ 0 in a neighborhood of ξ = 0 together imply

|xβu(x, t)| ≤ Cβ
∑
η≤β

∫
e−t|ξ|

2 |∂ηξ ω̂0(ξ)|dξ ≤ Cβe
−γt∑

η≤β

∫
|∂ηξ ω̂0(ξ)|dξ ≤ Cβe

−γt

for all multi-indices β. Hence

|u(x, t)| ≤ Cme−γt(1 + |x|)−m for all integers m ≥ 0.(6.4)

By (6.3) and (6.4) the proof of Theorem 2.3 is complete.

Appendix. On boundedness of L2-moments of weak solutions. We shall
prove the following, which was employed in the proof of Theorem 2.2(iv).

Proposition A.1. Let n = 3 or 4 and suppose that∫
(1 + |x|)|a(x)|dx <∞,

∫
(1 + |x|)n|a(x)|2dx <∞.

Then the corresponding weak solution u obtained via the methods of [3, 4] satisfies∫
|x|n|u(x, t)|2dx ≤ C for all t ≥ 0.

Consequently,∫
|x|m|u(x, t)|2dx ≤ C(1 + t)−(1+n

2 )(1−m
n ) (m = 0, 1, . . . , n).(A.1)

The above result is due to [3, 14]. We here give a detailed proof, modifying slightly
the argument of [3], since [3] and [14] are not yet published.

Proof of Proposition A.1. Note that (see [18]) (A.1) is known for m = 0. The
Navier–Stokes system is

(NS)
∂tu−∆u+ u · ∇u+∇p = 0,

∇ · u = 0.
Assuming, as we may (see [4]), that u is smooth, we multiply (NS) by 2|x|u and
integrate by parts to get

∂t

∫
|x||u|2dx+ 2

∫
|x||∇u|2dx = −2

∫
∇u · x

|x|udx− 2
∫

u · ∇u|x|udx

+2

∫
p

x

|x|udx.
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Direct calculation gives∫
u · ∇u|x|udx = −

∫
u|x|u · ∇udx−

∫
uu · x

|x|udx

so that ∫
u · ∇u|x|udx = −1

2

∫
uu · x

|x|udx.

Therefore,

∣∣∣∣
∫

u · ∇u|x|udx
∣∣∣∣ ≤ 12‖u‖33 ≤




C‖u‖3/22 ‖∇u‖3/22 (n = 3),

C‖u‖2‖∇u‖22 (n = 4).
(A.2)

Furthermore, since

p = RjRk(ujuk)(A.3)

with R = (R1, . . . , Rn) the Riesz transforms (see [16]), applying the Lp-boundedness
of singular integrals [16] gives

‖p‖2 ≤ C‖u‖24 ≤



C‖u‖1/22 ‖∇u‖3/22 (n = 3),

C‖∇u‖22 (n = 4).

It follows that

∣∣∣∣
∫

p
x

|x|udx
∣∣∣∣ ≤ ‖p‖2‖u‖2 ≤




C‖u‖3/22 ‖∇u‖3/22 (n = 3),

C‖u‖2‖∇u‖22 (n = 4).
(A.4)

Finally, ∣∣∣∣
∫

u
x

|x|∇udx

∣∣∣∣ ≤ ‖u‖2‖∇u‖2 ≤ C(‖u‖22 + ‖∇u‖22).

Since ‖u‖3/22 ‖∇u‖3/22 ≤ C(‖u‖62+ ‖∇u‖22) ≤ C(‖u‖22+ ‖∇u‖22), we see from (A.2) and
(A.4) that

∂t

∫
|x||u|2dx+

∫
|x||∇u|2dx ≤ C(‖u‖22 + ‖∇u‖22)

and the right-hand side is integrable in t ∈ [0,∞) by (1.6) and (1.7). Hence we get∫
|x||u(x, t)|2dx ≤ C.(A.5)

We next multiply (NS) by 2|x|2|u| and integrate by parts to get

∂t

∫
|x|2|u|2dx+ 2

∫
|x|2|∇u|2dx = −4

∫
∇u · x · udx− 2

∫
u · ∇u|x|2udx

+4

∫
px · udx.
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We have ∣∣∣∣
∫
∇u · x · udx

∣∣∣∣ ≤
(∫
|x|2|∇u|2dx

)1/2(∫
|u|2dx

)1/2

≤ ε

∫
|x|2|∇u|2dx+ Cε

∫
|u|2dx

for all ε > 0. Furthermore,∫
u · ∇u|x|2udx = −

∫
uu · x · udx

and so∣∣∣∣
∫

u · ∇u|x|2udx
∣∣∣∣ ≤

∫
|x||u|3dx ≤

(∫
|x|2|u|2dx

)1/2

‖u‖24

≤




C

(∫
|x|2|u|2dx

)1/2

(‖u‖22 + ‖∇u‖22) (n = 3),

C

(∫
|x|2|u|2dx

)1/2

‖∇u‖22 (n = 4).

Similarly,∣∣∣∣
∫

px · udx
∣∣∣∣ ≤ ‖p‖2

(∫
|x|2|u|2dx

)1/2

≤ C‖u‖24
(∫
|x|2|u|2dx

)1/2

≤




C

(∫
|x|2|u|2dx

)1/2

(‖u‖22 + ‖∇u‖22) (n = 3),

C

(∫
|x|2|u|2dx

)1/2

‖∇u‖22 (n = 4).

We thus obtain

∂t

∫
|x|2|u|2dx+

∫
|x|2|∇u|2dx ≤ C‖u‖22 + C(‖u‖22 + ‖∇u‖22)

+C(‖u‖22 + ‖∇u‖22)
∫
|x|2|u|2dx.

Since ‖u‖22 + ‖∇u‖22 is integrable in t ∈ [0,∞) by (1.6) and (1.7), we get∫
|x|2|u(x, t)|2dx ≤ C(A.6)

by Gronwall’s lemma. Consequently,∫
|x||u(x, t)|2dx ≤ C(1 + t)−

1
2−n

4 .(A.7)

We next multiply (NS) by 2|x|3u and integrate by parts to get

∂t

∫
|x|3|u|2dx+ 2

∫
|x|3|∇u|2dx = −6

∫
∇u|x|x · udx

−2
∫

u · ∇u|x|3udx+ 6
∫

p|x|x · udx.
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We easily see that∣∣∣∣
∫
∇u|x|x · udx

∣∣∣∣ ≤
(∫
|x|3|∇u|2dx

)1/2(∫
|x||u|2dx

)1/2

≤ ε

∫
|x|3|∇u|2dx+ Cε

∫
|x||u|2dx

for all ε > 0. Furthermore,

2

∫
u · ∇u|x|3udx = −3

∫
uu · |x|x · udx

and so by (A.6),∣∣∣∣
∫

u · ∇u|x|3udx
∣∣∣∣ ≤

(∫
|x|2|u|2dx

)1/2(∫
|x|2|u|4dx

)1/2

≤ C

(∫
|x|2|u|4dx

)1/2

.

Similarly, from ∫
|x|2|p|2dx ≤ C

∫
|x|2|u|4dx,

which shows the boundedness of operators Rj in weighted Lq-spaces [16, p. 218], we
see by (A.6) that∣∣∣∣
∫

p|x|x · udx
∣∣∣∣ ≤

(∫
|x|2|p|2dx

)1/2(∫
|x|2|u|2dx

)1/2

≤ C

(∫
|x|2|u|4dx

)1/2

.

When n = 3,

‖|x|uu‖2 ≤ ‖|x|u‖24/5‖u‖24/7 ≤ ‖u‖24/7‖|x|3/2u‖2/36 ‖u‖1/324/7

≤ C‖u‖4/324/7‖∇(|x|3/2u)‖2/32

≤ C‖u‖4/324/7(‖|x|1/2u‖2 + ‖|x|3/2∇u‖2)2/3

≤ C‖u‖1/22 ‖∇u‖5/62 (‖|x|1/2u‖2 + ‖|x|3/2∇u‖2)2/3

≤ C‖u‖1/22 ‖∇u‖5/62 ‖|x|1/2u‖2/32 + C‖u‖1/22 ‖∇u‖5/62 ‖|x|3/2∇u‖2/32

≤ ε‖|x|3/2∇u‖22 + Cε(‖|x|1/2u‖22 + ‖u‖22 + ‖∇u‖22)
for all ε > 0. When n = 4, we get

‖|x|uu‖2 ≤ ‖|x|3/2u‖2/34 ‖u‖4/34 ≤ C‖∇(|x|3/2u)‖2/32 ‖∇u‖4/32

≤ C(‖|x|1/2u‖2/32 + ‖|x|3/2∇u‖2/32 )‖∇u‖4/32

≤ Cε(‖∇u‖22 + ‖|x|1/2u‖22) + ε‖|x|3/2∇u‖22
for all ε > 0. Therefore,

∂t

∫
|x|3|u|2dx+

∫
|x|3|∇u|2dx ≤ C(‖|x|1/2u‖22 + ‖u‖22 + ‖∇u‖22).
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By (1.6), (1.7), and (A.7) the right-hand side is integrable in t ∈ [0,∞), and we obtain∫
|x|3|u(x, t)|2dx ≤ C.(A.8)

Consequently,∫
|x|j |u(x, t)|2dx ≤ C(1 + t)−(1+n

2 )(1− j
3 ) (j = 0, 1, 2, 3, n = 3, 4).(A.9)

Assume finally that n = 4, multiply (NS) by 2|x|4u, and integrate by parts to get

∂t

∫
|x|4|u|2dx+ 2

∫
|x|4|∇u|2dx = −8

∫
∇u|x|2 · x · udx− 2

∫
u · ∇u|x|4udx

+8

∫
p|x|2x · udx.

We have ∣∣∣∣
∫
∇u|x|2 · x · udx

∣∣∣∣ ≤
(∫
|x|4|∇u|2dx

)1/2(∫
|x|2|u|2dx

)1/2

≤ ε

∫
|x|4|∇u|2dx+ Cε

∫
|x|2|u|2dx

for all ε > 0. Furthermore,

2

∫
u · ∇u|x|4udx = −4

∫
uu|x|2x · udx

so that by (A.8)∣∣∣∣
∫

u · ∇u|x|4udx
∣∣∣∣ ≤ C

(∫
|x|3|u|4dx

)1/2(∫
|x|3|u|2dx

)1/2

≤ C

(∫
|x|3|u|4dx

)1/2

.

Similarly, from ∫
|x|3|p|2dx ≤ C

∫
|x|3|u|4dx,

it follows by (A.8) that∣∣∣∣
∫

p|x|2x · udx
∣∣∣∣ ≤ C

(∫
|x|3|u|4dx

)1/2(∫
|x|3|u|2dx

)1/2

≤ C

(∫
|x|3|u|4dx

)1/2

.

However, (∫
|x|3|u|4dx

)1/2

≤ ‖|x|2u‖3/44 ‖u‖5/44 ≤ C‖∇(|x|2u)‖3/42 ‖∇u‖5/42

≤ C(‖|x|u‖3/42 + ‖|x|2∇u‖3/42 )‖∇u‖5/42

≤ ε‖|x|2∇u‖22 + Cε(‖∇u‖22 + ‖|x|u‖22)
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for all ε > 0. We thus have

∂t

∫
|x|4|u|2dx+

∫
|x|4|∇u|2dx ≤ C(‖|x|u‖22 + ‖∇u‖22).(A.10)

Since ‖|x|u‖22 ≤ C(1 + t)−1 by (A.9), it follows from (A.10) that∫
|x|4|u(x, t)|2dx ≤ C log(1 + t).

However, this implies

‖|x|u‖22 ≤
(∫
|u(x, t)|2dx

)1/2(∫
|x|4|u(x, t)|2dx

)1/2

≤ C(1 + t)−3/2[log(1 + t)]1/2,

and the right-hand side is integrable in t ∈ [0,∞). So we conclude from (A.10) that∫
|x|4|u(x, t)|2dx ≤ C (n = 4).

This completes the proof of Proposition A.1.
Remarks.
(i) The above argument also shows that∫ ∞

0

∫
|x|n|∇u|2dxdt <∞ (n = 3, 4).

(ii) We have omitted discussing the finiteness of L2-moments. Actually, this is
verified first for approximate solutions and the desired boundedness result is then
deduced for weak solutions by passing to the limit. The details are described in
[3, 14].

(iii) It is impossible to apply the argument of this section to estimating the mo-
ments

∫ |x|n+k|u|2dx, k ≥ 1. The main reason is that the pressure p is represented in
(A.3) in terms of singular integrals Rj , and one cannot apply in the present situation
the weighted Lq-estimates, which were crucial in the above argument, in such a way
that the resulting terms are estimated in the Sobolev space H1 = W 1,2. To avoid
this difficulty, we need some additional integrability conditions on weak solutions ;
however, conditions of this kind imply that the solutions must be strong solutions.
For the details, we refer the reader to [3, 14].

Acknowledgment. We are grateful to the referee for carefully reading the
manuscript and sending us valuable comments on the presentation and suggestions
on improvements.

REFERENCES

[1] A. Carpio, Large-time behavior in incompressible Navier–Stokes equations, SIAM J. Math.
Anal., 27 (1996), pp. 449–475.

[2] Y. Fujigaki and T. Miyakawa, Asymptotic profiles of nonstationary incompressible Navier–
Stokes flows in the half-space, Methods Appl. Anal., to appear.

[3] C. He and Z. Xin, On the Decay Properties of Solutions to the Nonstationary Navier–Stokes
Equations in R3, preprint, The Institute of Mathematical Sciences, The Chinese University
of Hong Kong, Hong Kong, 1999.



544 YOSHIKO FUJIGAKI AND TETSURO MIYAKAWA

[4] R. Kajikiya and T. Miyakawa, On L2 decay of weak solutions of the Navier–Stokes equations
in Rn, Math. Z., 192 (1986), pp. 135–148.

[5] T. Kato, Strong Lp-solutions of the Navier–Stokes equation in Rm, with applications to weak
solutions, Math. Z., 187 (1984), pp. 471–480.

[6] J. Leray, Sur le mouvement d’un liquide visqueux emplissant l’éspace, Acta Math., 63 (1934),
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1. Introduction. We consider the following variational problem:

inf

{
‖Dv‖pLp(Ω) −

∫
Ω

fvdx
∣∣∣ v ∈W 1,p

0 (Ω)

}
,(1.1)

where p > 1, Ω ⊂ Rn is a bounded domain with smooth boundary ∂Ω for simplic-
ity, f : Ω → R is a given (smooth) function, Du denotes the gradient of u (i.e.,
(ux1

, . . . , uxn)), and ‖Du‖pLp(Ω) =
∫
Ω
|Du|pdx. Here and later, for ξ = (ξ1, . . . , ξn) ∈

Rn, we denote |ξ| by the Euclidean norm of ξ; |ξ|2 =∑k∈I ξ
2
k, where I = {1, 2, . . . , n}.

It is well known that the minimizer up ∈W 1,p
0 (Ω) of the variational problem (1.1)

is a weak solution (in the distribution sense) of

−
∑
k∈I

p
(|Du|p−2uxk

)
xk
= f in Ω.

In order to deal with a perfect plastic torsion model, it is important to study the
limit function of up, as p → ∞, when f ≡ 1. In fact, in this case, Kawohl in [12]
showed that

lim
p→∞up(x) = dist(x, ∂Ω) uniformly in Ω.

We also refer to Bhattacharya, DiBenedetto, and Manfredi [3].
On the other hand, initiated by Aronsson’s works [1] and [2], for a given (Lipschitz

continuous) function g : Ω → R, Jensen in [9] characterized the limit function u :=
limp→∞ up, where up is a minimizer of the variational problem

inf
{
‖Dv‖pLp(Ω)

∣∣∣ v − g ∈W 1,p
0 (Ω)

}
,
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as a unique viscosity solution of{ −�∞u = 0 in Ω,
u = g on ∂Ω,

(1.2)

where

�∞u =
∑
k,l∈I

uxk
uxl

uxkxl
.

In fact, to show the uniqueness of viscosity solutions of (1.2), Jensen introduced vari-
ational problems (1.1) with f = ±εp−1 (for ε > 0) but under the Dirichlet condition
u = g on ∂Ω. Following his argument, we can verify that û := limp→∞ ûp ∈ C(Ω),
where ûp is a minimizer of (1.1) when f ≡ 1, is a (unique) viscosity solution of{

min{|Du| − 1,−�∞u} = 0 in Ω,
u = 0 on ∂Ω.

We refer to [3], [5], [6], [10], [11], and [15] for related topics on the L∞-Laplace
equation (1.2).

In this paper, we are interested in the following questions.
(i) If we take other equivalent norms in (1.1) to ‖·‖Lp(Ω), which PDEs are expected

to be solved by û := limp→∞ ûp?
(ii) Under which condition can we characterize û as a unique (viscosity) solution

of the expected PDE?
Let us consider two typical examples.
Example 1.1. If we use the equivalent norm

‖Dv‖1,p :=
(∑
k∈I
‖vxk
‖pLp(Ω)

) 1
p

in (1.1), then we easily verify that the unique minimizer up is a weak solution of

−p
∑
k∈I

(|uxk
|p−2uxk

)
xk
= −p(p− 1)

∑
k∈I
|uxk
|p−2uxkxk

= f in Ω.(1.3)

In the case when minΩ f > 0 in (1.3), we will observe that u := limp→∞ up is a
viscosity solution of

min


maxj∈I

|uxj | − 1,−
∑

k∈Î[Du(x)]

u2
xk

uxkxk


 = 0 in Ω,(1.4)

where for ξ = (ξ1, . . . , ξn) ∈ Rn we set

Î[ξ] =

{
k ∈ I

∣∣∣∣ maxj∈I
|ξj | = |ξk|

}
.

We notice that the PDE (1.4) has serious discontinuity with respect to Du-
variables.
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We note that if we suppose that maxΩ f < 0, then the limit function satisfies the
following PDE:

max


1−maxj∈I

|uxj |,−
∑

k∈Î[Du(x)]

u2
xk

uxkxk


 = 0 in Ω.

Example 1.2. Next, if we use the equivalent norm

‖Dv‖∞,p :=

(
max
k∈I
‖vxk
‖pLp(Ω)

) 1
p

in (1.1), then it turns out that the minimizer up of (1.1) satisfies

max
k∈I

∫
Ω

(
p|uxk

|p−2uxk
φxk
− fφ
)
dx ≥ 0 ∀φ ∈W 1,p

0 (Ω).

Hence it holds that

min
k∈I

∫
Ω

(
p|uxk

|p−2uxk
φxk
− fφ
)
dx ≤ 0 ∀φ ∈W 1,p

0,+(Ω)(1.5)

and

max
k∈I

∫
Ω

(
p|uxk

|p−1uxk
φxk
− fφ
)
dx ≥ 0 ∀φ ∈W 1,p

0,+(Ω),(1.6)

where W 1,p
0,+(Ω) = {φ ∈W 1,p

0 (Ω) | φ ≥ 0 in Ω}. Thus, if up is smooth enough, then it
holds that

min
k∈I

{
−p (|uxk

|p−2uxk

)
xk

}
= min

k∈I
{−p(p− 1)|uxk

|p−2uxkxk

} ≤ f(1.7)

and

max
k∈I

{
−p (|uxk

|p−2uxk

)
xk

}
= max

k∈I
{−p(p− 1)|uxk

|p−2uxkxk

} ≥ f.(1.8)

Therefore, we may call up a weak subsolution of (1.7) (resp., a weak supersolution of
(1.8)) if up satisfies (1.5) (resp., (1.6)).

Let us consider the case when minΩ f > 0 as in Example 1.1.
We will observe that u := limp→∞ up is, respectively, a viscosity subsolution and

a viscosity supersolution of

min

{
max
j∈I
|uxj | − 1, F−(Du,D2u)

}
≤ 0 in Ω(1.9)

and

min

{
max
j∈I
|uxj | − 1, F+(Du,D2u)

}
≥ 0 in Ω,(1.10)

where, for (q,X) ∈ Rn × Sn,

F−(q,X) =



min
k∈I

(−q2
kXkk), provided Î[q] = I,

min
k∈Î[q]

(−q2
kXkk) ∧ 0 otherwise
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and

F+(q,X) =



max
k∈I

(−q2
kXkk), provided Î[q] = I,

max
k∈Î[q]

(−q2
kXkk) ∨ 0 otherwise.

Here Sn denotes the set of n × n symmetric matrices equipped with the standard
order.

We remark that if u ∈ C2(Ω) satisfies Î[Du(x)] �= I for all x ∈ Ω, then it is a
viscosity subsolution of (1.9). Thus we cannot expect the comparison principle for
viscosity subsolutions of (1.9) and viscosity supersolutions of (1.10) in general.

We note that in the case when minΩ f < 0, the corresponding limit function
satisfies the following inequalities in the viscosity sense:

max

{
1−max

j∈I
|uxj |, F−(Du,D2u)

}
≤ 0

and

max

{
1−max

j∈I
|uxj |, F+(Du,D2u)

}
≥ 0.

This paper is organized as follows. In section 2, we recall the definition of viscosity
solutions for second-order degenerate elliptic PDEs and its equivalent definitions.
We also show that minimizers of variational problems are viscosity solutions of the
associated Euler–Lagrange equations.

We verify that the limit function (as p → ∞) of minimizers of our variational
problems is indeed a viscosity solution of the corresponding limit PDE in section 3.
This verification result immediately gives the existence of viscosity solutions of the
limit PDE.

In section 4, we show a comparison result between a viscosity subsolution u and
a viscosity supersolution v of the limit PDE, assuming that u or −v is “locally” con-
vex. This comparison principle yields a uniqueness result for locally concave viscosity
solutions.

Section 5 is devoted to the existence of concave viscosity solutions when the
domain Ω is convex.

In the final section, we study some typical examples.

2. Preliminaries.

2.1. Notations. We shall briefly recall the definition of viscosity solutions of
fully nonlinear second-order (degenerate elliptic) PDEs:

F (Du,D2u) = 0 in Ω,(2.1)

where F : Rn × Sn → R is given. Although we could deal with more general PDEs
(e.g., PDEs having x and u(x) variables), we restrict our attention here to the above
PDEs for the sake of simplicity.

We denote by F ∗ and F∗, respectively, the upper and lower semicontinuous en-
velopes of F ; for (q,X) ∈ Rn × Sn,

F ∗(q,X) = lim
ε→0

sup{F (q′, X ′) | |q′ − q|+ |X ′ −X| < ε},

and F∗(q,X) = −(−F )∗(q,X).
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Definition. We call u ∈ C(Ω) a viscosity subsolution (resp., supersolution) of
(2.1) if

F∗(Dφ(x), D2φ(x)) ≤ 0 (
resp., F ∗(Dφ(x), D2φ(x)) ≥ 0)

whenever u− φ attains its maximum (resp., minimum) at x ∈ Ω for φ ∈ C2(Ω).
We call u ∈ C(Ω) a viscosity solution of (2.1) if it is a viscosity subsolution and

a viscosity supersolution of (2.1).
Remark. In the above definition, we can change “maximum (resp., minimum)”

to “strict maximum (resp., strict minimum).” We refer to [4] for the general theory
of viscosity solutions of fully nonlinear second-order degenerate elliptic PDEs.

Since we will use a definition equivalent to the one above, we prepare some no-
tation. For a function u : Ω → R and x ∈ Ω, we define semijets J2,±u(x) in the
following manner:

J2,+u(x) =


 (q,X) ∈ Rn × Sn

∣∣∣∣∣∣
u(y) ≤ u(x) + 〈q, y − x〉

+〈X(y − x), y − x〉/2
+o(|y − x|2) as y ∈ Ω→ x


 ,

and J2,−u(x) = −J2,+(−u)(x).
For x ∈ Ω, we denote by J

2,±
u(x) the following sets:{

(q,X) ∈ Rn × Sn

∣∣∣∣∣ ∃x
m ∈ Ω and ∃(qm, Xm) ∈ J2,±u(xm) such that
lim
m→∞(x

m, u(xm), qm, Xm) = (x, u(x), q,X)

}
.

Proposition 2.1 (see [4]). A function u ∈ C(Ω) is a viscosity subsolution (resp.,
supersolution) of (2.1) if and only if

F∗(q,X) ≤ 0 ∀x ∈ Ω and ∀(q,X) ∈ J
2,+

u(x)(
resp., F ∗(q,X) ≥ 0 ∀x ∈ Ω and ∀(q,X) ∈ J

2,−
u(x)
)
.

When u is a viscosity subsolution (resp., supersolution) of (2.1), we will often call
u a viscosity solution of F (Du,D2u) ≤ 0 (resp., F (Du,D2u) ≥ 0).

In what follows, we shall omit the term “viscosity” since we discuss only viscosity
solutions.

For later convenience, we introduce some terminology: First, we denote by Br(x)
the standard open ball in Rn with radius r > 0 and center x ∈ Rn; Br(x) = {y ∈
Rn | |x− y| < r}. We will write Br for Br(0).

Definition. We call a function u : Ω → R locally convex (resp., locally concave)
if for each x ∈ Ω, there is r > 0 such that u is convex (resp., concave) in Br(x) ⊂ Ω.

We remark that if Ω is a convex domain in Rn, then the local convexity is equiv-
alent to the convexity. However, this equivalence does not hold for general domains.
In general, even if u : Ω → R is locally convex in a nonconvex domain, we cannot
extend u to the convex-hull of Ω by a convex function.

In section 4, we will use the following basic lemma.

Lemma 2.2. Assume that u : Ω → R is locally convex. If (q,X) ∈ J
2,+

u(x) for
x ∈ Ω, then we have X ≥ 0.

Proof. It suffices to show that if (q,X) ∈ J2,+u(x) for x ∈ Ω, then X ≥ 0.
Fix any (q,X) ∈ J2,+u(x) for x ∈ Ω.
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Since for any ξ ∈ Rn with |ξ| = 1 and small t > 0, the definition yields

u(x± tξ) ≤ u(x)± t〈q, ξ〉+ t2

2
〈Xξ, ξ〉+ o(t2),

the local convexity implies that

0 ≤ t2〈Xξ, ξ〉+ o(t2).

2.2. Verification for fixed p > n. In this subsection, we fix p > n.
In order to treat the examples in section 1 at the same time, throughout this

paper we shall consider the norm ‖ · ‖ of a function h = (h1, . . . , hn) ∈ Lp(Ω;Rn); for
fixed sets Ij ⊂ I (j = 1, 2, 3),

‖h‖ :=
(
‖P1[h]‖pLp(Ω) +

∑
k∈I2
‖hk‖pLp(Ω) +maxk∈I3

‖hk‖pLp(Ω)

) 1
p

.

Here P1[h] =
∑
k∈I1 hkek, where ek is the standard kth unit vector.

We shall suppose that

(A1) I1 ∪ I2 ∪ I3 = I := {1, 2, . . . , n}.
Although there are (infinitely) many other equivalent norms, we have decided to

choose the above one in this paper since it contains three typical seminorms.
We consider the variational problem

inf

{
‖Dv‖p −

∫
Ω

fvdx
∣∣∣ v ∈W 1,p

0 (Ω)

}
.(2.2)

It is well known that if we suppose that f ∈ C(Ω), for instance, then under (A1), there
is a (unique) minimizer up ∈ W 1,p

0 (Ω) of this variational problem since this norm is
equivalent to the standard one, which is ‖ · ‖W 1,p(Ω).

We introduce continuous functions F±
p : Rn × Sn → R for p > 1, which arise in

the Euler–Lagrange equation associated with the variational problem (2.2):

F−
p (q,X) = −p|P1[q]|p−4

∑
k,l∈I1

(
δklq

2
k + (p− 2)qkql

)
Xkl

+ p(p− 1)
(
−
∑
k∈I2
|qk|p−2Xkk + min

k∈I3

(−|qk|p−2Xkk

))

and

F+
p (q,X) = −p|P1[q]|p−4

∑
k,l∈I1

(
δklq

2
k + (p− 2)qkql

)
Xkl

+ p(p− 1)
(
−
∑
k∈I2
|qk|p−2Xkk +max

k∈I3

(−|qk|p−2Xkk

))
.

Proposition 2.3. Assume that (A1) holds. Then, for any f ∈ C(Ω), the mini-
mizer up of the above variational problem (2.2) is, respectively, a sub- and a superso-
lution of

F−
p (Du,D2u)− f ≤ 0(2.3)
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and

F+
p (Du,D2u)− f ≥ 0.(2.4)

Remarks. (1) If I2 = I3 = ∅, then F−
p = F+

p becomes the standard p-Laplace
operator;

F±
p (q,X) = −p

∑
k,l∈I

(
δkl|q|p−2 + (p− 2)|q|p−4qkql

)
Xkl.

(2) If I1 = I3 = ∅, then F−
p = F+

p becomes the PDE part of (1.3) in Example 1.1.
(3) If I1 = I2 = ∅, then we have that F±

p are the PDE parts of (1.7) and (1.8) in
Example 1.2.

Proof. We shall show only the assertion for subsolutions since the proof for su-
persolutions can be done in a symmetric way.

Suppose that there is φ ∈ C2(Ω) such that up(x̂) = φ(x̂) for some x̂ ∈ Ω, up(x) <
φ(x) for x ∈ Ω \ {x̂}, and

F−
p (Dφ(x̂), D2φ(x̂)) ≥ f(x̂) + 2θ for some θ > 0.

Then we will get a contradiction.
We may suppose that x̂ = 0 ∈ Ω. Let us simply write u for the minimizer up.
Choosing smaller θ > 0 if necessary, we can find small r > t > 0 such that Br ⊂ Ω,

F−
p (Dφ(x), D2φ(x)) ≥ f(x) + θ in Br,

min
Bt

(u− φ) ≥ −θ and max
∂Br

(u− φ) ≤ −3θ.

Hence, for any ψ ∈W 1,p
0,+(Br), by integration by parts, we have∑

k∈I1

∫
Br

|P1[Dφ]|p−2φxk
ψxk

dx+
∑
k∈I2

∫
Br

|φxk
|p−2φxk

ψxk
dx

+ min
k∈I3

∫
Br

|φxk
|p−2φxk

ψxk
dx ≥ 1

p

∫
Br

(f + θ)ψdx.

(2.5)

On the other hand, since u is a minimizer of (2.2), for any ψ ∈W 1,p
0,+(Ω), we have∑

k∈I1

∫
Ω

|P1[Du]|p−2uxk
ψxk

dx+
∑
k∈I2

∫
Ω

|uxk
|p−2uxk

ψxk
dx

+ min
k∈I3

∫
Ω

|uxk
|p−2uxk

ψxk
dx ≤ 1

p

∫
Ω

fψdx.

(2.6)

Setting

ψ(x) =

{
(u(x)− φ(x) + 2θ)+ for x ∈ Br,
0 for x ∈ Ω \Br,

if I3 �= ∅, by (2.5) and (2.6) we can find j0 ∈ I3 such that

−θ2

∫
Bt

dx ≥
∑
k∈I1

∫
Br

(|P1[Du]|p−2uxk
− |P1[Dφ]|p−2

)
ψxk

dx

+
∑
k∈I2

∫
Br

(|uxk
|p−2uxk

− |φxk
|p−2φxk

)
ψxk

dx

+

∫
Br

(|uxj0
|p−2uxj0

− |φxj0
|p−2φxj0

)
ψxj0

dx,
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which is a contradiction.
In the case when I3 = ∅, we need only to delete the third term above.

3. Verification. In this section, we seek the PDEs which, as p → ∞, the limit
of minimizers of (2.2) satisfies in the viscosity sense when f is positive. In fact, the
“limit” PDEs will be derived from (2.3) and (2.4).

3.1. The limit PDEs. We introduce some notation: for q = (q1, . . . , qn) ∈ Rn,
we set

q0 = |P1[q]| and G(q) = max{|qj | | j ∈ {0} ∪ I2 ∪ I3}.
Moreover, we set

I[q] = {k ∈ {0} ∪ I2 ∪ I3 | G(q) = |qk|},
I1[q] =

{
I1, provided G(q) = q0,
∅, provided G(q) > q0,

and

Ik[q] = {j ∈ Ik | G(q) = |qj |} for k = 2, 3.

For J ⊂ I3, we set

F−
J (q,X) =



0, provided J = ∅,
min
k∈I3

(−q2
kXkk), provided J = I3,

min
k∈J

(−q2
kXkk) ∧ 0 otherwise

and

F+
J (q,X) =



0, provided J = ∅,
max
k∈I3

(−q2
kXkk), provided J = I3,

max
k∈J

(−q2
kXkk) ∨ 0 otherwise.

Using this notation, we define (possibly discontinuous) functions F±
∞ : Rn×Sn →

R in the following way: for (q,X) ∈ Rn × Sn, we set

F±
∞(q,X) = −

∑
k,l∈I1[q]

qkqlXkl −
∑

k∈I2[q]
q2
kXkk + F±

I3[q]
(q,X).

Here and later, whenever Ik[q] = ∅ for k ∈ {1, 2}, we regard the terms containing
Ik[q] as zero.

Theorem 3.1. Assume that (A1) holds. Assume also that f ∈ C(Ω) satisfies

min
x∈Ω

f(x) > 0.

Let up ∈ W 1,p
0 (Ω) be the minimizer of the variational problem (2.2). Then there

exists a subsequence upi such that upi converges to a u ∈ W 1,∞(Ω) uniformly in Ω.
Moreover, we see that u = 0 on ∂Ω and u is a solution of{

min{G(Du)− 1, F−
∞(Du,D2u)} ≤ 0 in Ω,

min{G(Du)− 1, F+
∞(Du,D2u)} ≥ 0 in Ω.
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Before giving a proof of Theorem 3.1, we present representation formulas of (F+
∞)

∗

and (F−
∞)∗, which will be proved after the proof of Theorem 3.1.

Lemma 3.2. (F+
∞)

∗(q,X) and (F−
∞)∗(q,X) are, respectively, represented by

max


−
∑
k,l∈I1

1JqkqlXkl −
∑

k∈I2∩J
q2
kXkk + F+

I3∩J(q,X)

∣∣∣∣∣∣ ∅ �= J ⊂ I[q]




and

min


−
∑
k,l∈I1

1JqkqlXkl −
∑

k∈I2∩J
q2
kXkk + F−

I3∩J(q,X)

∣∣∣∣∣∣ ∅ �= J ⊂ I[q]


 ,

where

1J =

{
1, provided 0 ∈ J,
0 otherwise.

In our proof of Theorem 3.1, we will use the following proposition.
Proposition 3.3. (1) Assume that (F+

∞)
∗(q,X) ≤ −θ for θ > 0. Then we have

the following properties:

(i) If G(q) = q0, then −
∑
k,l∈I1

qkqlXkl ≤ −θ

2
.

(ii) −q2
kXkk ≤ −θ for k ∈ I2[q] ∪ I3[q].

(2) Assume that (F−
∞)∗(q,X) ≥ θ for θ > 0. Then we have the following proper-

ties:

(i′) If G(q) = q0, then −
∑
k,l∈I1

qkqlXkl ≥ θ

2
.

(ii′) −q2
kXkk ≥ θ for k ∈ I2[q] ∪ I3[q].

The proof of Proposition 3.3 will also be given in the end this section.
Proof of Theorem 3.1. First, we note that we may suppose that I1 consists of at

least two integers if it is not empty. In fact, if I1 has only one element, we can follow
the argument below replacing I1 and I2, respectively, by ∅ and I1 ∪ I2. Moreover, we
may suppose that I1 �= ∅, I2 �= ∅, and I3 �= ∅ since the argument below becomes easier
if some of them are empty.

By Proposition 2.3, for p > n, we verify that up is a solution of{
F−
p (Du,D2u)− f ≤ 0 in Ω,

F+
p (Du,D2u)− f ≥ 0 in Ω.

Moreover, since 0 ∈ W 1,p
0 (Ω), we find a constant C > 0 independent of p > n such

that

‖Dup‖Lp(Ω) ≤ C‖Dup‖ ≤ C‖up‖
1
p

L1(Ω).

Since ‖up‖L1(Ω) ≤ |Ω|(p−1)/p‖up‖Lp(Ω) by the Hölder inequality, the Poincaré inequal-
ity (e.g., [7, p. 164]) implies that

‖Dup‖Lp(Ω) ≤ C
p

p−1 |Ω| 1p+ 1
n(p−1) |B1|

−1
n(p−1) .
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Thus, by the Poincaré inequality again, there is a constant C ′ > 0 independent of
p > n such that

‖up‖W 1,p(Ω) ≤ C ′.

Hence, by the Hölder inequality again, we can find a constant C0 > 0 such that

‖up‖W 1,p̂(Ω) ≤ C0 ∀p ≥ p̂ > n.

Therefore, the Sobolev imbedding implies that there exists u ∈ ∩p>1W
1,p(Ω) such that

up converges to u uniformly in Ω by taking a subsequence {pi} such that limi→∞ pi =
∞.

Moreover, from the above inequality, we have u ∈W 1,∞(Ω).
We shall first verify that u is a supersolution of

min{G(Du)− 1, F+
∞(Du,D2u)} ≥ 0 in Ω.

Suppose that, for φ ∈ C2(Ω), u(x̂) = φ(x̂) for x̂ ∈ Ω, u(x) > φ(x) for x ∈ Ω \ {x̂},
and

lim
ε→0

sup
{
min{G(q′)− 1, F+

∞(q
′, X ′)} | |q′ − q|+ |X ′ −X| < ε

} ≤ −θ(3.1)

for some θ > 0, where q = Dφ(x̂) and X = D2φ(x̂). We will get a contradiction.
In view of the uniform convergence of up to u, we may choose xp ∈ Ω such that

up − φ attains its minimum at xp and that xp → x̂ as p → ∞. Let us simply write
(qp, Xp) for (Dφ(xp), D2φ(xp)).

Consider the case when

G(q) < 1.

We may suppose that there is α ∈ (0, 1) such that
G(qp) < 1− α for large p > 2 ∨ n.

By Proposition 2.3, we see that

f(xp)

p(p− 2) ≤ −|q
p
0 |p−4

∑
k,l∈I1

(
δkl

p− 2(q
p
k)

2 + qpkq
p
l

)
Xp
kl

− p− 1
p− 2

∑
k∈I2
|qpk|p−2Xp

kk +
p− 1
p− 2 maxk∈I3

(−|qpk|p−2Xp
kk)(3.2)

=: A1 +A2 +A3.

From (3.2), we see that G(qp) > 0. Thus, dividing (3.2) by G(qp)p−4, we observe
that the left-hand side of the resulting inequality tends to ∞, as p → ∞, while the
right-hand side of it is finite.

Thus we may suppose that

G(q) ≥ 1.
Hence, by (3.1), we may suppose that

(F+
∞)

∗(q,X) ≤ −θ.(3.3)
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Now we shall estimate Âk := Ak/G(q
p)p−4 (k = 1, 2, 3) from above.

We point out here that

lim
p→∞

( |qpk|
G(qp)

)p−4

= 0 for k ∈ {0} ∪ I2 ∪ I3, provided G(q) > |qk|.(3.4)

Taking a subsequence of {qp}p>n if necessary, we may suppose that there is a
nonempty set Î ⊂ {0} ∪ I2 ∪ I3 such that Î = I[qp] for all p > n. We note that
Î ⊂ I[q] since G is continuous.

Estimate for Â1. We first remark that for large p > 2 ∨ n,

∑
k∈I1

∣∣∣∣ qp0
G(qp)

∣∣∣∣
p−4 |qpk|2|Xkk|

p− 2 ≤ O(p−1).(3.5)

In the case when 0 ∈ Î, by (i) of Proposition 3.3, (3.5) implies that for large p > n,

Â1 ≤ −
∑
k,l∈I1

qpkq
p
l X

p
kl +O(p−1) = −

∑
k,l∈I1

qkqlXkl +O(p−1) ≤ −θ

3
.

In the case when 0 /∈ Î and G(q) = q0, since −
∑
k,l∈I1 q

p
kq
p
l X

p
kl < 0 by (i) of Proposi-

tion 3.3, (3.4) yields that for large p > n,

Â1 ≤ O(p−1).

Also, if G(q) > q0, (3.4) yields the same inequality as above.
Therefore, we may suppose that

Â1 ≤

 −

θ

3
, provided 0 ∈ Î ,

O(p−1), provided 0 /∈ Î .
(3.6)

Estimate for Â2. We set

p− 2
p− 1 Â2 = −

∑
k∈I2[q]

( |qpk|
G(qp)

)p−4

(qpk)
2Xp

kk −
∑

k∈I2\I2[q]

( |qpk|
G(qp)

)p−4

(qpk)
2Xp

kk

=: C1 + C2.

In the case when I2[q] = ∅ (resp., I2 \ I2[q] �= ∅), the above equality holds by taking
C1 = 0 (resp., C2 = 0).

We note that −(qpk)2Xp
kk < 0 for k ∈ I2[q] and large p > n by (ii) of Proposi-

tion 3.3.
If there is k ∈ Î ∩ I2, then we have

C1 ≤ −
∑

k∈Î∩I2
q2
kXkk +O(p−1) ≤ −θ

2
.

In the case when Î ∩ I2 = ∅ and I2[q] �= ∅, since −(qpk)2Xp
kk < 0 for k ∈ I2[q], we see

that for large p > n, C1 ≤ 0.
On the other hand, if I2 \ I2[q] �= ∅, then (3.4) yields that

C2 ≤ O(p−1).
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Hence, if Î ∩ I2[q] �= ∅ for large p > n, we have

Â2 ≤ p− 2
p− 1

(
−θ

2
+O(p−1)

)
≤ −θ

3
.

Therefore, we may suppose that

Â2 ≤

 −

θ

3
, provided Î ∩ I2 �= ∅,

O(p−1), provided Î ∩ I2 = ∅.
(3.7)

Estimate for Â3. If I3[q] = ∅, we see that Â3 ≤ O(p−1) for large p > n.
Hence by (ii) of Proposition 3.3, we see that for large p > n,

Â3 ≤

 −

θ

3
, provided Î ∩ I3 = I3,

O(p−1), provided Î ∩ I3 �= I3.
(3.8)

Let us get a contradiction to (3.3).
First, suppose that 0 ∈ Î. Using the estimates (3.6), (3.7), and (3.8) in (3.2), we

have

0 <
f(xp)

p(p− 1)G(qp)p−4
≤ −θ

3
+O(p−1),

which is a contradiction for large p > n.
Next, suppose that 0 /∈ Î and Î ∩ I2 �= ∅. Then, using (3.6), (3.7), and (3.8) in

(3.2) again, we get the same contradiction as above.
Finally, if we suppose that 0 /∈ Î and Î ∩ I2 = ∅, then ∅ �= Î ⊂ I3.
Hence, using (3.6), (3.7), and (3.8) in (3.2), we have

0 ≤ F+

Î
(qp, Xp) +O(p−1).

Thus, sending p→∞ in the above, by Lemma 3.2 we get

0 ≤ F+

Î
(q,X) ≤ (F+

∞)
∗(q,X),

which is a contradiction to (3.3).
Next, we shall verify that u is a subsolution of

min{G(Du)− 1, F−
∞(Du,D2u)} ≤ 0 in Ω.

Suppose that, for φ ∈ C2(Ω), u(x̂) = φ(x̂) for x̂ ∈ Ω, u(x) < φ(x) for x ∈ Ω \ {x̂},
and

lim
ε→0

inf
{
min{G(q′)− 1, F−

∞(q
′, X ′)} | |q′ − q|+ |X ′ −X| < ε

} ≥ θ(3.9)

for some θ > 0, where q = Dφ(x̂) and X = D2φ(x̂). We will get a contradiction
again.

As before, we may choose xp ∈ Ω such that up − φ attains its maximum at xp

and limp→∞ xp = x̂. By Proposition 2.3, we see that

f(xp)

p(p− 2) ≥ −|q
p
0 |p−4

∑
k,l∈I1

(
δkl

p− 2(q
p
k)

2 + qpkq
p
l

)
Xp
kl

− p− 1
p− 2

(∑
k∈I2

(qpk)
p−2Xp

kk − min
k∈I3

(−(qpk)p−2Xp
kk)

)
(3.10)

=: A1 +A2 +A3,
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where (qp, Xp) = (Dφ(xp), D2φ(xp)).
In view of (3.10), we see that G(qp) > 1 for large p > n since G(q) > 1. Moreover,

we have

(F−
∞)∗(q,X) ≥ θ.(3.11)

Following the argument for supersolutions with (2) of Proposition 3.3, we can
estimate Âk := Ak/G(q

p)p−4 from below in the following manner:

Â1 ≥



θ

3
, provided 0 ∈ Î ,

O(p−1), provided 0 /∈ Î ,

Â2 ≥



θ

3
, provided Î ∩ I2 �= ∅,

O(p−1), provided Î ∩ I2 = ∅,

and

Â3 ≥



θ

3
, provided Î ∩ I3 = I3,

O(p−1), provided Î ∩ I3 �= I3.

Here we use the same nonempty set Î ⊂ I[q] as before.
If 0 ∈ Î or if 0 /∈ Î and Î ∩ I2 �= ∅, then, using these estimates in (3.10), we have

f(xp)

p(p− 2)G(qp)p−4
≥ θ

3
+O(p−1),

which is a contradiction for large p > n since G(qp) > 1.
On the other hand, in the case when 0 /∈ Î and Î ∩ I2 = ∅, we see that ∅ �= Î ⊂ I3.

Thus, since 0 ≥ F−
Î
(qp, Xp) +O(p−1), Lemma 3.2 yields that

0 ≥ F−
Î
(q,X) ≥ (F−

∞)∗(q,X),

which contradicts (3.11).

3.2. Proof of Lemma 3.2 and Proposition 3.3.
Proof of Lemma 3.2. We give only a proof of the representation formula for (F+

∞)
∗

since we can show the other assertion similarly.
We may suppose that G(q) > 0 since the assertion is trivial if G(q) = 0; q = 0 by

(A1).
For (q,X) ∈ Rn × Sn, we fix any nonempty set J ⊂ I[q]. We shall see that

(F+
∞)

∗(q,X) ≥ −
∑
k,l∈I1

1JqkqlXkl −
∑

k∈I2∩J
q2
kXkk + F+

I3∩J(q,X).

Case 1: 0 ∈ J . First, we shall consider the case when I1 ∩ (I2[q] ∪ I3[q]) �= ∅.
In this case, we note that there is k ∈ I1 such that {k} = I1 ∩ (I2[q] ∪ I3[q]) and

qj = 0 for j ∈ I1 \ {k}. Thus, taking qε = (qε1, . . . , q
ε
n), where

qεj =

{
qj , provided j ∈ I1 ∪ (J ∩ I),
qj − εsgn(qj) otherwise,
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we have

lim
ε↓0

F+
∞(q

ε, X) = −
∑
k,l∈I1

qkqlXkl −
∑

j∈I2∩J
q2
jXjj + F+

I3∩J(q,X).(3.12)

Even when I1 ∩ (I2[q] ∪ I3[q]) = ∅, using the same qε as above, we get (3.12).
Case 2: 0 /∈ J . Let qε = (qε1, . . . , q

ε
n) be given by

qεk =

{
qk − εsgn(qk), provided k ∈ I \ J,
qk, provided k ∈ J.

Noting that I[qε] = J for small ε > 0, we have

lim
ε↓0

F+
∞(q

ε, X) = −
∑

k∈I2∩J
q2
kXkk + F+

I3∩J(q,X).

In order to show the opposite inequality, we choose (qm, Xm) ∈ Rn × Sn so that

lim
m→∞(q

m, Xm) = (q,X) and lim
m→∞F+

∞(q
m, Xm) = (F+

∞)
∗(q,X).

By taking a subsequence if necessary, we may suppose that there is a nonempty
set J ⊂ {0} ∪ I2 ∪ I3 such that J = I[qp] for all p > n. Hence we have

(F+
∞)

∗(q,X) = lim
m→∞F+

∞(q
m, Xm)

= −
∑
k,l∈I1

1JqkqlXkl −
∑

k∈I2∩J
q2
kXkk + F+

I3∩J(q,X).

Next, using Lemma 3.2, we shall prove Proposition 3.3.
Proof of Proposition 3.3. We give only a proof for assertions of (1) since those for

(2) can be proved similarly.
We introduce the notation: for k ∈ I, ε > 0, and q = (q1, . . . , qn) ∈ Rn, we set

qk,εj =

{
qk for j = k,
qj − εsgn(qj) otherwise.

Proof of (i). Assume that 0 ∈ I[q]. As noted in the proof of Lemma 3.2, we see
that if I1 ∩ Ij [q] �= ∅ for j = 2 or 3, then qj = 0 for j ∈ I1 \ {k}. Moreover, I1 ∩ Ij [q]
consists of a single point. Thus we remark that if I1 ∩ Ij [q] = {k} for j = 2 or 3, then

−
∑
j,l∈I1

qjqlXjl = −q2
kXkk.

Thus we easily see that

−θ ≥ lim
ε↓0

F+
∞(q

k,ε, X) ≥




−2
∑
k,l∈I1

qkqlXkl, provided I1 ∩ I2[q] �= ∅,

−
∑
k,l∈I1

qkqlXkl, provided I1 ∩ I2[q] = ∅

and I1 ∩ I3[q] �= ∅.
In the remaining case (i.e., I1 ∩ Ij [q] = ∅ for j = 2, 3), we have

−θ ≥ lim
ε↓0

F+
∞(q

0,ε, X) = −
∑
k,l∈I1

qkqlXkl,
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where q0,ε = (q0,ε
1 , . . . , q0,ε

n ) is given by

q0,ε
k =

{
qk, provided k ∈ I1,
qk − εsgn(qk), provided k ∈ I \ I1.

Proof of (ii). If there is k ∈ I3[q] \ I2[q], then as before, we have
−θ ≥ lim

ε→0
F+
∞(q

k,ε, X) = (−q2
kXkk) ∨ 0 ≥ 0.

Thus we may suppose that I3[q] \ I2[q] = ∅.
Choose k ∈ I2[q]. Then, as before, we have

−θ ≥ lim
ε→0

F+
∞(q

k,ε, X) ≥ −q2
kXkk.

4. Comparison principle. When we try to establish the comparison principle,
we immediately meet some difficulties.

First, F±
∞ contains serious discontinuity with respect to Du-variables. Moreover,

if I3 �= ∅, then F+
∞ does not coincide with F−

∞. Thus, to our knowledge, we cannot
apply the standard argument in the theory of viscosity solutions to show that the
comparison principle holds for sub- and supersolutions of the limit PDEs.

Therefore, we will impose the local convexity of subsolutions or the local concavity
of supersolutions for our comparison result below. In the next section, we will present
a sufficient condition for the existence of (locally) concave solutions.

As explained in Example 1.2, if I3 = I and I1 = I2 = ∅, then we cannot expect
that the comparison principle holds in general.

To avoid this difficulty, we suppose that

(A2) I3 ⊂ I2.

We note that (A1) is not necessary for the comparison result below, but we have to
suppose that

(A3) I1 ∪ I2 �= ∅.
Theorem 4.1. Assume that (A2) and (A3) hold. Let u and v ∈ C(Ω) be,

respectively, a subsolution and a supersolution of

min{G(Du)− 1, F−
∞(Du,D2u)} ≤ 0 in Ω

and

min{G(Dv)− 1, F+
∞(Dv,D2v)} ≥ 0 in Ω.

If we assume that either u or −v is locally convex, then we have
max

Ω
(u− v) ≤ max

∂Ω
(u− v).

Remark. In our proof, we modify Jensen’s argument in [9] for the case when
I2 ∪ I3 = ∅ since the limit PDEs are possibly discontinuous.

We give two approximations for sub- and supersolutions in Lemma 4.2. The
approximations in Lemma 4.2 were obtained in [9], but our lemma contains more
precise information.
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To demonstrate Theorem 4.1, we will use the approximation of supersolutions
and a property from Lemma 4.2. However, we can prove our comparison result more
easily using both approximations with no use of the precise information. See the
remark after the proof.

Lemma 4.2. Under the assumptions in Theorem 4.1, for any ε > 0, there are
functions ū and v̄ ∈ C(Ω) and a constant τ > 0 satisfying the following properties:

(i) maxΩ(|u− ū|+ |v − v̄|) < ε.
(ii) ū and v̄ are, respectively, a subsolution and a supersolution of

min{G(Dū)− 1, F−
∞(Dū,D2ū)}+ τ ≤ 0(4.1)

and

min{G(Dv̄)− 1, F+
∞(Dv̄,D2v̄)} − τ ≥ 0.(4.2)

(iii) If u (resp., v) is convex (resp., concave), then so is ū (resp., v̄).
(iv) For any x ∈ Ω, there are constants αk, βk ≥ τ (k = 1, 2) such that for any

(q,X) ∈ J
2,+

ū(x) (resp., (q,X) ∈ J
2,−

v̄(x)), there is (q̄, X̄) ∈ J
2,+

u(x)

(resp., (q̄, X̄) ∈ J
2,−

v(x)) satisfying the following property:

q̄ = α1q and X̄ = α1X − β1q ⊗ q (resp., q̄ = α2q and X̄ = α2X + β2q ⊗ q).

Proof of Theorem 4.1. Suppose that there is θ > 0 such that

max
Ω
(u− v)−max

∂Ω
(u− v) ≥ 2θ.

In view of Lemma 4.2, we choose a supersolution v̄ ∈ C(Ω) (for small ε > 0) of
(4.2) with a positive constant τ > 0. Thus we may suppose that

max
Ω
(u− v̄)−max

∂Ω
(u− v̄) ≥ θ.(4.3)

We set Φ(x, y) = u(x) − v̄(y) − α|x − y|2/2. Because of (4.3), by the standard
argument (see [4], for instance), we may find (xα, yα) ∈ Ω× Ω such that

max
Ω×Ω

Φ = Φ(xα, yα) and lim
α→∞(x

α, yα) = (z, z),

where z ∈ Ω satisfies maxΩ(u− v̄) = (u− v̄)(z).
In view of Theorem 3.2 in [4], for instance, we find Xα and Y α ∈ Sn such that(

Xα 0
0 −Y α

)
≤ 3α

(
I −I
−I I

)
,(4.4)

(α(xα − yα), Xα) ∈ J
2,+

u(xα) and (α(xα − yα), Y α) ∈ J
2,−

v̄(yα).

We note that (4.4) implies

Xα ≤ Y α.(4.5)

Hence, setting qα = α(xα − yα), we have

lim
ε→0

sup
{
min{G(q)− 1, F+

∞(q, Y )} | |q − qα|+ |Y − Y α| < ε
} ≥ τ(4.6)
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and

lim
ε→0

inf
{
min{G(q)− 1, F−

∞(q,X)} | |q − qα|+ |X −Xα| < ε
} ≤ 0.(4.7)

In view of (4.6), we find a sequence (qm, Y m) ∈ Rn × Sn such that limm→∞(qm,
Y m) = (qα, Y α) and that

lim
m→∞min{G(q

m)− 1, F+
∞(q

m, Y m)} ≥ τ.(4.8)

Since G is continuous, we have

G(qα)− 1 ≥ τ.(4.9)

Let us first consider the case when u is locally convex.
Lemma 2.2, together with (4.5), yields that Y α ≥ 0 since u is locally convex.

Hence, if G(qm) = qm0 (≥ 1) for m ≥ 1, then we have

lim
m→∞F+

∞(q
m, Y m) ≤ − lim

m→∞

∑
k,l∈I1

qmk qml Y m
kl ≤ 0,

which contradicts (4.8).
Thus we may suppose that G(qm) > qm0 for all m ≥ 1. In this case, due to (A3),

we find k ∈ I2 such that G(q
m) = |qmk | ≥ 1. Hence we have
lim
m→∞F+

∞(q
m, Y m) ≤ 0,

which contradicts (4.8) again.
Next, let us suppose that v is locally concave.

In view of (iv) in Lemma 4.2, we find (q̄, Ȳ ) ∈ J
2,−

v(yα) such that q̄ = α2q
α and

Ȳ = α2Y
α + β2q

α ⊗ qα for some α2, β2 ≥ τ.

Hence, since G(qα) ≥ 1, by Lemma 2.2, we find σ > 0 such that

〈Xαqα, qα〉 ≤ 〈Y αqα, qα〉 ≤ −σ.(4.10)

Now we choose (q̂m, Xm) ∈ Rn × Sn such that limm→∞(q̂m, Xm) = (qα, Xα)
and that

lim
m→∞min{G(q̂

m)− 1, F−
∞(q̂

m, Xm)} ≤ 0.(4.11)

We note that (4.10) implies

〈Xmq̂m, q̂m〉 ≤ −σ

2
.(4.12)

Since we may suppose G(q̂m)− 1 > 0 by (4.9), (4.11) yields that

lim
m→∞F−

∞(q̂
m, Xm) ≤ 0.

However, as before, by (A2), this implies a contradiction to (4.12).
Remark. If we also approximate u by ū by Lemma 4.2, then (4.7) becomes

(4.7′) lim
ε→0

inf{min{G(q)− 1, F−
∞(q,X)} | |q − qα|+ |X −Xα| < ε} ≤ −τ.
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Then, in the case when v is locally concave, we directly get a contradiction from (4.7′)
with no use of (iv) of Lemma 4.2.

Since in the proof of Theorem 4.1 we need only to suppose that v is a supersolu-
tion of

G(Du)− 1 ≥ 0 in Ω,

we have the following corollary, which will be useful to show that up converges to the
corresponding distance function from ∂Ω in a typical example.

Corollary 4.3. Assume that (A2) and (A3) hold. Let u and v ∈ C(Ω) be,
respectively, a subsolution and a supersolution of

min{G(Du)− 1, F−
∞(Du,D2u)} ≤ 0 in Ω

and

G(Dv)− 1 ≥ 0 in Ω.

If we assume that v is locally concave, then we have

max
Ω
(u− v) ≤ max

∂Ω
(u− v).

Remark. If u is a subsolution of G(Du) − 1 ≤ 0 in the above, then we do not
need to suppose that u (or −v) is locally convex to show the assertion. See the proof
of the comparison principle for the eikonal equation in [8].

Proof of Lemma 4.2. Set C0 := maxΩ(|u| + |v|) + 1. We shall first construct ū.
We set w = u + δu2, where δ := min{1/(4C0), ε/C

2
0}. We note that −3/(16δ) ≤ w.

We notice that w is convex if u is convex. Thus, because we will take ū = ρw for
some ρ > 0, we verify that (iii) holds.

Suppose that for φ ∈ C2(Ω), w(x̂) = φ(x̂) for x̂ ∈ Ω, and w ≤ φ in Ω. We may
suppose that −3/(16δ) ≤ φ.

Choose ψ ∈ C2(Ω) such that |ψ| ≤ C0, φ = ψ + δψ2, and u − ψ attains its
maximum at x0. Hence we can find (qm, Xm) ∈ Rn × Sn such that

lim
m→∞(q

m, Xm) = (Dψ(x̂), D2ψ(x̂))

and

min{G(qm)− 1, F−
∞(q

m, Xm)} ≤ 1

m
.

We note that

Dψ =
Dφ

1 + 2δψ
and D2ψ =

D2φ

1 + 2δψ
− 2δDφ⊗Dφ

(1 + 2δψ)3
.

If there is a subsequence of {qm} (denoted by the same symbol) such that

G(qm)− 1 ≤ 1

m
,

then we have

G(Dφ(x̂)) ≤ 1

1 + 2δψ(x̂)
≤ 1

1− δC0
.(4.13)
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On the other hand, if there is no such a subsequence of {qm}, then we may sup-
pose that

G(qm) ≥ 1,
and, moreover,

−
∑

k,l∈I1[qm]

qmk qml Xm
kl −

∑
k∈I2[qm]

(qmk )
2Xm

kk + f−
I3[qm](q

m, Xm) ≤ 1

m
.

Setting α = 1 + 2δψ(x̂) ∈ [1/2, 2], q̂m = αqm, and X̂m = αXm + 2δα−2q̂m ⊗ q̂m, we
have

8

m
≥ −

∑
k,l∈I1[q̂m]

q̂mk q̂ml

(
X̂m
kl − 2δα−2q̂mk q̂ml

)

−
∑

k∈I2[q̂m]

(q̂mk )
2
(
X̂m
kk − 2δα−2(q̂mk )

2
)
+ f−

I3[qm](q
m, Xm).

Hence, in the case when G(q̂m) = q̂m0 , we can choose a constant τ̂ > 0 such that for
any m ≥ 1,

−τ̂ + 8

m
≥ −

∑
k,l∈I1

q̂mk q̂ml X̂m
kl −

∑
k∈I2[q̂m]

(q̂mk )
2X̂m

kk + f−
I3[q̂m](q̂

m, X̂m)

= F−
∞(q̂

m, X̂m).

If G(q̂m) > q̂m0 , then, noting (A2), we find k ∈ I2 such that G(q̂
m) = |q̂mk |. Thus

we can find a constant τ̂ > 0 satisfying the above inequality. (Notice that the first
term does not exist in this case.)

Finally, in view of (4.13), taking ū = ρw, where ρ = 1 − 2δC0, we verify easily
that ū is a subsolution of

min

{
G(Dū)− 1 + δC0

1− 2δC0
, F−

∞(Dū,D2ū) + τ̂(1− 2δC0)
3

}
≤ 0 in Ω.

Therefore, taking τ := min{δC0/(1− 2δC0), τ̂(1− 2δC0)
3}, we verify that (4.1) holds

for ū.
In order to check (iv), we let (q,X) ∈ J

2,+
ū(x) for x ∈ Ω. Choose (qm, Xm) ∈

J2,+ū(xm) so that limm→∞(xm, u(xm), qm, Xm) = (x, u(x), q,X). For each m ≥
1, we can choose φm ∈ C2(Ω) such that ū ≤ φm in Ω, ū(xm) = φm(xm), and
(Dφm(xm), D2φ(xm)) = (qm, Xm).

We can select ψm ∈ C2(Ω) such that φm = ρψm(1 + δψm), u ≤ ψm in Ω,
u(xm) = ψm(xm), and (Dψm(xm), D2ψ(xm)) ∈ J2,+u(xm). Hence we have

q̂m := Dψm(xm) =
qm

ρ(1 + 2δψ(xm))

and

Xm := D2ψm(xm) =
Xm

ρ(1 + 2δψm(xm))
− 2δqm ⊗ qm

ρ(1 + 2δψm(xm))3
.

By taking (q̄, X̄) = limm→∞(q̂m, X̂m) with α1 = ρ−1(1 + 2δu(x))−1 and β1 =
2δρ−1(1 + 2δu(x))−3, we get (iv) for smaller τ > 0 if necessary.

To construct v̄, at the first stage in the above, we use the transformation ŵ =
v − δv2. We can follow the argument for ū. We also refer to [9].
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5. Existence of concave solutions. In the case when I3 �= ∅, we do not know
nice approximate PDEs, which implies the “power concavity” of solutions. Therefore,
in this section, we suppose that

(A4) I3 = ∅.

We also suppose that

(A5) Ω is convex.

Theorem 5.1 (cf. Theorem 2 in [16]). Assume that (A1), (A4), and (A5) hold.
Let u ∈W 1,p

0 (Ω) be the (unique) minimizer of

inf

{
‖Dv‖p −

∫
Ω

vdx
∣∣∣ v ∈W 1,p

0 (Ω)

}
.

Then u
p−1
p is concave for p > n.

Remark. For the conclusion in Theorem 5.1, we do not have to suppose p > n.
However, for the existence of concave solutions of the limit PDEs, we need only the
power concavity for large p > 1.

Since (up)(p−1)/p converges limp→∞ up uniformly in Ω, where up is the unique
minimizer of the above variational problem, Theorem 5.1 yields the following.

Corollary 5.2. Assume that (A1), (A4), and (A5) hold. Then there exists a
unique concave solution u ∈W 1,∞(Ω), which satisfies that u = 0 on ∂Ω of{

min{G(Du)− 1, F−
∞(Du,D2u)} ≤ 0 in Ω,

min{G(Du)− 1, F+
∞(Du,D2u)} ≥ 0 in Ω.

Since our proof is a modification of that by Sakaguchi in [16], we give only a
sketch of proof.

Sketch of proof of Theorem 5.1. For ε > 0, we shall consider the following regu-
larized variational problem:

inf

{∫
Ω

gpε (v,Dv)dx−
∫

Ω

vdx
∣∣∣ v ∈W 1,p

0 (Ω)

}
,(5.1)

where

gpε (r, p) =
(
ε|r| 2p + |P1[p]|2

) p
2

+
∑
k∈I2

(
ε|r| 2p + |pk|2

) p
2

.

It is easy to see that a (unique) minimizer uε ∈W 1,p
0 (Ω) of (5.1) exists. Moreover,

by the standard argument (see [16] for example), we see that{
(i) uε → u in W 1,p(Ω) as ε→ 0,
(ii) uε ≥ 0 in Ω,(5.2)

where u ∈ W 1,p
0 (Ω) is the unique minimizer of the variational problem (5.1) with

ε = 0.
According to the weak Harnack inequality in [17], we see that

u > 0 in Ω.(5.3)
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Hence (5.3) and the uniform convergence of uε to u imply that for any δ > 0, there
are ε(δ), τ(δ) > 0 such that

uε ≥ τ(δ) in Ωδ for ε ∈ (0, ε(δ)),(5.4)

where

Ωδ = {x ∈ Ω | dist(x, ∂Ω) > δ}.
We may suppose that Ωδ is strictly convex and ∂Ωδ is smooth.

From now on, for simplicity, we shall write u for uε. Also, we writeD1u for P1[Du].
It is obvious that u is a weak solution (in the distribution sense) of

−
∑
k∈I1

[(
εu

2
p + |D1u|2

) p−2
p

uxk

]
xk

−
∑
k∈I2

[(
εu

2
p + |uxk

|2
) p−2

2

uxk

]
xk

= Gε(u,Du),

where

Gε(u,Du) =
1

p
− ε

p
u

2−p
p

{(
εu

2
p + |D1u|2

) p−2
p

+
∑
k∈I2

(
εu

2
p + |uxk

|2
) p−2

p

}
.

We remark that u ∈ C∞(Ωδ) (see [16] for example). Thus, setting v = u
p−1
p , we

observe that v is a classical solution of

−
∑
k∈I1

A(|D1v|)xk
−
∑
k∈I2

A(vxk
)xk

= Ĝε(v,Dv),(5.5)

where for r ∈ R,

A(r) =

(
ε+

(
p

p− 1
)2

r2

) p−2
2

,

and for (r, q) ∈ R×Rn,

Ĝε(r, q) =
p− 1
vp2

{
1 +

( |P1[q]|2
p− 1 − ε

)
A(|P1[q]|) +

∑
k∈I2

(
q2
k

p− 1 − ε

)
A(qk)

}
.

We note that the left-hand side of (5.5) can be written in the following way:

−
∑
k,l∈I

aklε (Dv)vxkxl
,

where (aklε (q)) is positive semidefinite.
In order to apply the concave maximum principle by Kennington in [13] to (5.5),

we first remark that the right-hand side of (5.5) is positive in Ωδ for small ε > 0.
Setting w(x, y; t) = (1 − t)v(x) + (1 − t)v(y) − v((1 − t)x + ty) for x, y ∈ Ω and

t ∈ (0, 1), we also remark that Korevaar’s Lemma 2.1 in [14] yields that w does not
attain its positive maximum on ∂(Ωδ × Ωδ) × [0, 1]. Therefore, Theorem 3.1 in [13]
implies that w ≤ 0 in Ωδ × Ωδ × [0, 1].

Since (uε)
(p−1)/p is concave in Ωδ for small ε > 0, so is u(p−1)/p in Ωδ. Therefore,

u(p−1)/p is concave in the whole domain Ω.
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6. Some remarks and examples.

6.1. Convergence to a distance function. In this subsection, for simplicity,
we shall consider only the case when

(A6) I2 = I and I1 = I3 = ∅.

In contrast with the result in [12] and [3], we show that the minimizer up of the
variational problem (2.2) converges to the following distance function from ∂Ω:

d1(x, ∂Ω) = inf

{∑
k∈I
|xk − yk| | y ∈ ∂Ω

}
.

We first give a remark which was informed by Ishii.
Proposition 6.1. We see that d1(·, ∂Ω) is a supersolution of

G(Du)− 1 = 0 in Ω.(6.1)

Proof. Due to the well-known fact in the theory of viscosity solutions, it is enough
to show that for each y = (y1, . . . , yn) ∈ ∂Ω,

h(x) :=
∑
k∈I
|xk − yk|

is a supersolution of (6.1).
For any x0 ∈ Ω, we let p ∈ Rn satisfy that (p,X) ∈ J2,−u(x0) for some X ∈ Sn.

We may suppose that x0 = 0. We notice that y �= 0. Thus we have

u(x) ≥ u(0) + 〈p, x〉+ o(|x|).

Hence it is easy to see that

|pk| ≤ 1 provided yk = 0 and |pk| = 1 provided yk �= 0.

Therefore, we verify that G(p) = 1.
Next we prepare the following lemma.
Lemma 6.2. Assume that (A5) holds. Then d1(·, ∂Ω) is concave in Ω.
Proof. Fix xj = (xj1, . . . , x

j
n) ∈ Ω for j = 1, 2. Since Qj := {y ∈ Rn | ∑k∈I |xjk −

yk| ≤ d1(x
j , ∂Ω)} for j = 1, 2 are in Ω, by (A5), we see that for t ∈ [0, 1],

tQ1 + (1− t)Q2 = {tx+ (1− t)y ∈ Rn | x ∈ Q1, y ∈ Q2} ⊂ Ω.

Therefore, in view of a simple observation, we see that

d1(tx
1 + (1− t)x2, ∂Ω) ≥ td1(x

1, ∂Ω) + (1− t)d1(x
2, ∂Ω).

We shall show that d1(·, ∂Ω) is indeed a solution of (6.1) when Ω is convex.
Proposition 6.3. Assume that (A5) holds. Then d1(·, ∂Ω) is a solution of (6.1).
Proof. In view of Proposition 6.1, it is sufficient to show that d1 is a subsolution

of (6.1).
For any x0 ∈ Ω, we fix p ∈ Rn such that (p,X) ∈ J2,+d1(x

0, ∂Ω) for some
X ∈ Sn. We may suppose x0 = 0.
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We shall show that G(p) ≤ 1. To this end, we consider the function φ(x) =
−∑k∈I |xk|+ d1(0, ∂Ω) for x ∈ Ω.

We claim that φ is a subsolution of G(Dφ) − 1 ≤ 0 in Ω. Indeed, for any x ∈ Ω
and p̂ ∈ Rn such that (p̂, X̂) ∈ J2,+φ(x) for some X̂ ∈ Sn, as in the proof of
Proposition 6.2, we easily see that

|p̂k| ≤ 1, provided xk = 0, and |p̂k| = 1, provided xk �= 0.

Thus, noting that φ ≤ 0 on ∂Ω, by Corollary 4.3 together with Proposition 6.1
and Lemma 6.2, we see that φ ≤ d1 in Ω. Therefore, we have

φ(x) ≤ d1(x, ∂Ω) ≤ d1(0, ∂Ω) + 〈p, x〉+ 〈Xx, x〉
2

+ o(|x|2)
= φ(0) + 〈p, x〉+ 〈Xx, x〉

2
+ o(|x|2).

Hence we have (p,X) ∈ J2,+φ(0), which concludes the proof.

Finally, combining Proposition 6.3 with Corollary 4.3, we obtain the following.

Corollary 6.4. Assume that (A5) and (A6) hold. Assume also that

min
x∈Ω

f(x) > 0.

Let up be the minimizer of (2.2).

Then we have

lim
p→∞up(x) = d1(x, ∂Ω) uniformly in x ∈ Ω.

Proof. In view of Theorems 4.1 and 5.1, we may choose a subsequence upi so that
u := limi→∞ upi is a concave solution of

min


G(Du)− 1,−

∑
k∈I[Du]

u2
xk

uxkxk


 = 0 in Ω.

Hence Proposition 6.3 and Theorem 4.1 yield that d1 ≤ u in Ω.

In view of Lemma 6.2 and Proposition 6.3, we see that d1 is a concave supersolu-
tion of G(Du) − 1 ≥ 0 in Ω. Thus Corollary 4.3 and Theorem 5.1 yield that u ≤ d1

in Ω.

6.2. Examples. We consider three typical domains in R2; I = {1, 2}. For each
domain, we deal with three cases:


min


|Du| − 1,−

∑
k,l∈I

uxk
uxl

uxkxl


 = 0 in Ω,

u = 0 on ∂Ω,

(6.2)



min


maxj∈I

|uxj | − 1,−
∑

k∈I[Du(x)]

(uxk
)2uxkxk


 = 0 in Ω,

u = 0 on ∂Ω,

(6.3)
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and 


min
{
max
j∈I
|uxj | − 1, F+

I[Du](Du,D2u)
}
≥ 0 in Ω,

min
{
max
j∈I
|uxj
| − 1, F+

I[Du](Du,D2u)
}
≤ 0 in Ω,

u = 0 on ∂Ω.

(6.4)

Here we use the notation F±
J for J ⊂ I from section 3.

We notice that (6.2), (6.3), and (6.4), respectively, correspond to the cases when
I2 = I3 = ∅, I1 = I3 = ∅, and I1 = I2 = ∅.

According to [12] and [3], we know that

lim
p→∞up(x) = d(x, ∂Ω) uniformly in Ω,

where up is the minimizer of the variational problem (2.2) for I2 = I3 = ∅.
Also, by Corollary 6.4, we see that

lim
p→∞up(x) = d1(x, ∂Ω) uniformly in Ω,

where up is the minimizer of the variational problem (2.2) for I1 = I3 = ∅.
In Examples 6.1–6.3 below, although d1(·, ∂Ω) is a solution of (6.4), it does not

imply that the corresponding up converges to d1(·, ∂Ω) because we do not know the
uniqueness of (concave) solutions of (6.4).

Example 6.1. Let us consider Ω = {x = (x1, x2) ∈ R2 | |xk| < 1 for k ∈ I}.
Then we easily see that the following function is a solution of (6.2), (6.3), and

(6.4):

u(x1, x2) =

{
1− |x1| for |x2| ≤ |x1|,
1− |x2| otherwise.

Notice that u(x) = d(x, ∂Ω) = d1(x, ∂Ω).
We note that u is the unique solution of (6.2) and that it is the unique concave

solution of (6.3).
Example 6.2. We next deal with Ω = {(x1, x2) ∈ R2 | |x1|+ |x2| < 1}.
It is easy to see that the distance function d(·, ∂Ω) is given by

d1(x, ∂Ω) = 1− |x1| − |x2| for x = (x1, x2) ∈ Ω
and that it is the unique concave solution of (6.3).

Also, we see that the distance function d(x, ∂Ω) = d1(x, ∂Ω)/
√
2 is the unique

solution of (6.2).
Example 6.3. We shall treat Ω = B1. It is immediately seen that the unique

solution of (6.2) is given by the distance function

d(x, ∂Ω) = 1− |x| for x ∈ Ω.
By an elementary calculation, we can show that the distance function d1(·, ∂Ω)

is given by

d1(x, ∂Ω) =

{ √
1− x2

2 − |x1| for |x2| ≤ |x1|,√
1− x2

1 − |x2| otherwise.



NONLINEAR PDES DERIVED FROM VARIATIONAL PROBLEMS 569

Hence, by Corollary 6.4, we see that d1(·, ∂Ω) is the unique concave solution of (6.3).
We note that for r ∈ (0, 1), the level set Ω(r) := {x ∈ R2 | d1(x, ∂Ω) > r} strictly

contains Br. More precisely, we have

Ω(r) =

4⋂
k=1

B1(x̂
k),

where

x̂1 = (r − 1, 0), x̂2 = (0, r − 1), x̂3 = (1− r, 0), and x̂4 = (0, 1− r).

Acknowledgments. The authors thank Professor H. Ishii for his suggestions on
the first draft.
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A MATHEMATICAL MODEL OF THE SPREAD OF FELINE
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Abstract. We are concerned with a system of partial differential equations modeling the spread
of feline leukemia virus (FeLV) through highly heterogeneous habitats or spatial domains. Our
differential equations may feature discontinuities in the coefficients of divergence from differential
operators and discontinuities in the coupling terms. Global well posedness, long term behavior,
approximation, and homogenization results are provided.

Key words. compartmental or diffractive diffusion, mass action, proportionate mixing, spatial
heterogeneity, homogenization
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1. Introduction. We shall be concerned with the development and analysis of
diffusive models describing the spread of feline leukemia virus (FeLV) through the
domestic cat population, Felis catus. The domestic cat population provides excellent
examples or test cases for validating epidemic models and calibrating the effects of
various factors such as spatial structure and social organization on the dynamics of
the transmission of disease; see Courchamp et al. [3] and Fromont et al. [11], [12].

FeLV is an oncogenic and immunosuppressive retrovirus of the domestic cat pop-
ulation which can have a severe impact on population growth via direct mortality and
the reduction of female fertility. An excellent review of the disease is given by Hardy
[14]. Although its transmission mode may be epigenic (vertical from mother to feo-
tus during pregnancy) (see Hoover [16]), most pregnancies abort or the newborns die
quickly [16]. Consequently, we shall assume no vertical transmission. The horizontal
transmission from cat to cat results from pathogens contained mainly in the saliva
and occurs from biting, grooming, copulating, and sharing of food sources.

The clinical course of FeLV begins with a latent period lasting on average from
three weeks to four months. Although the virus is present, this phase of the disease
is asymptomatic, and because their viremia is low the cats are minimally infectious
[14]. The latent phase of the disease ends with two possible outcomes. Approximately
two thirds of the infected cats cease viral replication and become immune to subse-
quent infection. These cats are considered to be clinically recovered and appear to
maintain immunity for the rest of their lives. We should, however, point out that
the issue of permanent immunity is somewhat problematic and open to discussion.
About one third of the infected cats become persistently viremic and develop prolif-
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erative and immunosupressive disorders which lead to death within a few weeks to
several years.

Neglecting spatial considerations for the moment, we shall assume that the feline
population, in the absence of infection, satisfies a basic logistic growth described by
the ordinary differential equation

ṗ = (b−m)p− kp2,(1.1)

where the linear term accounts for the natural growth rate, b the birth rate and m
the death rate, and the quadratic term accounts for the damping of growth due to
resource limitations of the habitat or environment. Our basic FeLV circulation model
subdivides the population into three distinct groups: susceptibles or individuals who
are not infected but are capable of being infected will be denoted by u; the infective
class consisting of individuals who are infected and are capable of transmitting the
disease will be denoted by v; and finally, we use the variable w to denote the recovered
or immune class which is made up of individuals who have been exposed to the disease
but who at the conclusion of the period of recovery have gained complete immunity
as a consequence of their exposure.

The following coupled system of ordinary differential equations will describe the
epidemiology described heretofore:

du/dt = −f(u, v, w) + b(u+ w)− (m+ kp)u,
dv/dt = πf(u, v, w)− αv − (m+ kp)v,
dw/dt = (1− π)f(u, v, w)− (m+ kp)w,

(1.2)

with initial conditions u(0) = u0 > 0, v(0) = v0 > 0, w(0) = w0 > 0. We set
the total population p = u + v + w. Here some remarks are clearly in order. The
linear term b(u + w) represents the birth process into the susceptible class. Our
model system assumes there are no births from the infective class. This represents an
approximation of the underlying biological reality. We also postulate that individuals
born from the recovered or immune class are born into the susceptible class and do
not have immunity. This is also consistent with what actually happens: kittens born
to immune females are initially passively protected by maternal antibodies but shortly
become susceptible [16]. We have also collapsed the exposed class and assumed direct
passage from the susceptible class to either the fully infected and infectious class or to
the recovered and immune class. In all three classes we assume the logistic damping of
(1.1). We account for disease-induced mortality with the term αv in the fully infected
class. Last, π is the proportion of infected cats becoming infective.

The remaining term to be discussed is the incidence f(u, v, w), and the rationale
for the proper definition of the incidence term is an ongoing subject of discussion in
the literature; see Busenberg and Cooke [2] and Diekmann et al. [4]. Two different
incidence terms are commonly proposed: mass action and proportionate mixing. In
the case of FeLV, field studies indicate that each of the two models can be appropri-
ate depending on the nature of the habitat [12]: proportionate mixing appears most
appropriate for rural to semiurban environments with large host population densities,
and mass action is most appropriate for rural environments with smaller host popula-
tion densities. We can also discuss the effects of vaccination against FeLV. However,
this shall be taken up in future work treating more complete models; see also Lubkin
et al. [21] and Fromont et al. [11], [12].

2. Spatially heterogeneous models. In this section we wish to include the
spatial distribution of our populations and, in particular, account for the effects of
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spatial heterogeneity. We consider a bounded two dimensional habitat or spatial
domain Ω ⊂ R

2. Because we shall not be interested in special quantitative effects
contributed by boundary irregularity, we shall assume that ∂Ω is smooth with Ω lying
locally on one side of ∂Ω. Our state variables u, v, w no longer represent populations
but rather population densities u(x, t), v(x, t), w(x, t) for the susceptible, infected and
infectious, and the immune/recovered populations, respectively. The time dependent
populations u(t), v(t), w(t) may be computed by integration over the habitat, i.e.,

u(t) =

∫
Ω

u(x, t)dx,

v(t) =

∫
Ω

v(x, t)dx,

w(t) =

∫
Ω

w(x, t)dx.

t > 0,(2.1)

We shall account for the assumption that our populations remain confined to Ω for
all time by the imposition of standard no flux boundary conditions.

The heterogeneity of the habitat will be reflected by our designation of open
subregions {Ω1, . . . ,ΩK} ⊂ Ω having the properties that

Ωl ⊂ Ω for l = 1, . . . ,K,

Ωl ∩ Ωk = ∅ if l �= k,
(2.2)

and the same smoothness properties as Ω. For convenience we let

Ω∗ =
K⋃
l=1

Ωl

and

Ω0 = Ω− Ω∗
.

For the purpose at hand we can consider Ω1, . . . ,ΩK to be urban areas of habitat Ω
with large cat population densities and the ambient region Ω0 to be the rural part of
Ω with smaller cat population densities.

The feline population will be assumed to disperse via a diffusive mechanism. How-
ever, we shall assume a sharp transition between each Ωl and the ambient region. We
model this with a compartmental or diffractive operator on Ω. A diffusion advection
operator,

∂u/∂t = div(d(x)∇u− uc(x)),
is said to be compartmental or diffractive if the following conditions hold: there exist
positive numbers d, d such that

0 < d ≤ d(x) ≤ d for x ∈ Ω,(2.3)

and

d(x) =

{
dl(x) for x ∈ Ωl, l = 1 to K,
d0(x) for x ∈ Ω0,

(2.4)
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with dl( ) ∈ C(Ωl) for l = 1 to K and d0( ) ∈ C(Ω0). We allow for discontinuity of
d( ) across the interface of Ωl with Ω0. We shall assume that the transport vector
field c( ) is continuous on Ω, and we impose compatibility conditions on the interface
of Ωl with Ω0, namely, that


[u]∂Ωl

= 0,

[d ∂u/∂ηl]∂Ωl
= 0,

l = 1 to K,(2.5)

where [ρ]∂Ωl
denotes the saltus of the function ρ on ∂Ωl and ηl is a unit normal

vector to ∂Ωl. We point out that if u represents a concentration density, (2.5) insures
continuity of the state variable u and the flux d ∂u/∂ηl−uc ·ηl across the interface of
Ωl with Ω0. However, a discontinuity of d( ) across ∂Ωl will force a jump discontinuity
of the normal derivative ∂u/∂ηl on ∂Ωl. Thus we cannot expect the smoothness from
compartmental diffusive operators that we expect from normal diffusion processes.
Finally, we impose boundary conditions on ∂Ω; in our case we shall have homogeneous
Neumann boundary conditions

d(x)∂u/∂η − uc(x) · η = 0 on ∂Ω.(2.6)

We point out that compartmental or diffractive diffusion operators arose in nuclear
reactor engineering, and they have been studied both in Russia and the United States
by Ladyzhenskaya, Rivkind, and Ural’ceva [19], Seftel [25], and Stewart [27], [28],
[29]. Recently they were the subject of a throughgoing study in Horton [17]; see also
Fitzgibbon and Morgan [6] and Fitzgibbon, Hollis, and Morgan [7].

We shall also want to consider reaction diffusion equations (as well as systems)
with compartmental diffusion. A compartmental reaction diffusion model has the
form

∂u/∂t− div(d(x)∇u− uc(x)) = g(x, u)(2.7)

for x ∈ Ω∗⋃Ω0 and t > 0, where we assume that the piecewise continuity conditions
on d( ), the continuity conditions on c( ), the compatibility conditions on ∂Ωl, and
the exterior homogeneous Neumann condition on ∂Ω are satisfied. We assume that
g ∈ C1(Ωi×R+) for each i, and there exists L ∈ L∞(Ω) such that L can be extended
to a continuous function on each of Ω0,Ω1, . . . ,ΩK and

| g(x, u)− g(x, v) |≤ L(x) | u− v |, u, v ∈ R, x ∈ Ω.

A strong solution to the initial value problem with u( , 0) = u0 ∈ C(Ω) is a continuous
mapping u( , t) from [0,∞) to Lp(Ω) having the properties that u ∈W 2,1

p (X×(τ,∞))
for every open set Q with Q ⊂ Ω∗⋃Ω0 for every τ > 0, and such that u satisfies
the differential equation, the boundary and compatibility are continuous almost ev-
erywhere (a.e.) on Ω and ∂Ω. A classical solution is one with u( , t) as a continuous
mapping of [0,∞) to C(Ω) with u( , ) ∈ C2,1(Ωl × (0,∞)) for l = 0, 1, 2, . . . ,K such
that the compatibility conditions (2.5) on ∂Ωl, the exterior boundary condition (2.6),
and the differential equation are satisfied.

It is known that the infinitesimal generator Ap of an analytic semigroup {Tp(t) |
t ≥ 0} on Lp can be associated with div(d(x)∇u−uc(x)) (and the given compatability
conditions and boundary conditions), and it can also be shown that this differential
operator can be used to obtain the infinitesimal generator A of an analytic semigroup
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{T (t) | t ≥ 0} on C(Ω); c.f. [17], [29]. Moreover, strong Lp solutions exist and are
represented by

u(t) = Tp(t)u(0) +

∫ t

0

Tp(t− s)g(·, u(s))ds, u(0) ∈ Lp(Ω),(2.8)

and classical solutions are given by

u(t) = T (t)u(0) +

∫ t

0

T (t− s)g(·, u(s))ds, u(0) ∈ C(Ω).(2.9)

The regularity theory for parabolic equations with discontinuous coefficients will
insure that strong Lp(Ω) solutions are regularized to classical solutions on C(Ω) (see
[19]). If for each x ∈ Ω the forcing term g(x, ) is only locally Lipschitz continuous in the
state variable, then we are guaranteed local classical solutions on maximal intervals
[0, T0), and the key to extending these solutions will be finding continuous functions
M(t) on [0,∞) which bound the L∞(Ω) norm of the state variable u(t). These results
immediately extend to systems of reaction diffusion equations with compartmental
diffusion.

We let χ(x) be the characteristic function of Ω∗ and assume σ(x) is a bounded
strictly positive function which is piecewise continuous on Ω0,Ω1, . . . ,ΩK . We obtain
a heterogeneous incidence term by specifying

f(x, u, v, w) = χ(x)σ(x)
uv

u+ v + w
+ (1− χ(x))σ(x)uv.(2.10)

A moment’s reflection will convince the reader that for fixed x ∈ Ω, f(x, , , ) can
be made to be continuous on R

3
+ by defining f(x, 0, 0, 0) = 0 and that f( , , , ) is

piecewise continuous on Ω × R
3
+. Moreover, when x ∈ Ω∗ we have a proportionate

mixing term, and when x ∈ Ω0 we have mass action.
We assume that our population disperses via a compartmental diffusion system

of partial differential equations of the form

(2.11)

∂u/∂t = div(d(1)(x)∇u− uc(1)(x))− f(x, u, v, w) + b(x)(u+ w)− (m(x) + k(x)p)u,
∂v/∂t = div(d(2)(x)∇v − vc(2)(x)) + πf(x, u, v, w)− α(x)v − (m(x) + k(x)p)v,
∂w/∂t = div(d(3)(x)∇w − wc(3)(x)) + (1− π)f(x, u, v, w)− (m(x) + k(x)p)w,
where p = u+ u+ w. We impose standard no flux boundary conditions on ∂Ω,

d(1)(x)∂u/∂η − uc1(x) · η = 0,
d(2)(x)∂v/∂η − vc2(x) · η = 0,
d(3)(x)∂w/∂η − wc3(x) · η = 0,

x ∈ ∂Ω, t > 0,(2.12)

and we impose compatibility conditions on the interface of Ωl (l = 1, . . . ,K) with Ω0,

[u]∂Ωl
= [v]∂Ωl

= [w]∂Ωl
= 0,(2.13)

and

[d(1)∂u/∂ηl]∂Ωl
= [d(2)∂v/∂ηl]∂Ωl

= [d(3)∂w/∂ηl]∂Ωl
= 0.(2.14)

The initial data is assumed to be continuous and nonnegative on Ω:

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x).(2.15)
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Throughout what follows we shall assume that the diffusitivities d(i)(x), i = 1, 2, 3,
satisfy the conditions outlined at the beginning of the section and that the transport
vector fields c(i)(x), i = 1, 2, 3, are continuous on Ω. The spatially dependent birth
rate b(x), death ratem(x), logistic coefficient k(x), and disease-induced mortality rate
α(x) should all be continuous and strictly positive on Ω. The proportion π of infected
cats becoming infective is constant, 0 < π < 1 (see [11] and [21]).

In what follows we shall need to make use of b0, b1, k0, k1 such that{
0 < b0 < b(x) ≤ b1 <∞
0 < k0 ≤ k(x) ≤ k1 <∞ for x ∈ Ω,(2.16)

and the following estimates.
Lemma 1. If u(x, t), v(x, t), w(x, t) are nonnegative classical solutions to (2.11)–

(2.15) on Ω× [0, T1) and p(x, t) = u(x, t) + v(x, t) + z(x, t), then

‖ p( , t) ‖1,Ω≤ max(‖ p0 ‖1,Ω, (b1/k0) | Ω |) = C1;(2.17)

if T1 =∞, then

lim
t→∞ sup ‖ p( , t) ‖1,Ω≤ (b1/k0)| Ω |.(2.18)

Moreover, if τ, τ∗ are such that (τ, τ + τ∗) ⊂ [0, T1), then there exists a constant
Cτ,τ∗ = Cτ,τ∗(b1, k0, ‖ p0 ‖1,Ω) so that for Q(τ, τ + τ∗) = Ω× (τ, τ + τ∗) we have

‖ p( , ) ‖2,Q(τ,τ+τ∗)≤ Cτ,τ∗ .(2.19)

If τ is sufficiently large, then Cτ,τ∗ can be chosen independent of ‖ p0 ‖1,Ω.
Proof. The first two estimates (2.17) and (2.18) are essentially the substance of

Proposition 2 in Fitzgibbbon and Langlais [5]. To obtain the third estimate we add
the components of our system to obtain

d

dt

∫
Ω

p(x, t)dx ≤ b1
∫

Ω

p(x, t)dx− k0
∫

Ω

p2(x, t)dx.(2.20)

Applying the Hölder inequality and then Young’s inequality to the first term on the
right-hand side of (2.20), we obtain

d

dt

∫
Ω

p(x, t)dx ≤ b̃− k̃
∫

Ω

p2(x, t)dx(2.21)

for appropriately chosen b̃ and k̃, from which the desired result follows.
We now turn our attention to the global well posedness and uniform boundedness

of solutions to (2.11)–(2.15). We remark that if the functions di and ci are in C
1(Ω),

then these results can be obtained by application of the intermediate sum argument
of Morgan [10], [22], [23]. However, the estimates obtained in this manner require
control of the modulus of continuity of the coefficients of the differential operators,
and for what follows we shall need estimates which are independent of the modulus of
continuity of the coefficients. Toward this end, we have the following two theorems.

Theorem 1. If the initial data (u0, v0, w0) is nonnegative and continuous on Ω,
then (2.11)–(2.15) have globally defined unique classical solutions u(x, t), v(x, t), w(x, t)
on Q(0,∞) = Ω× (0,+∞) which are nonnegative.
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Proof. In light of the previous discussion concerning local well posedness, we shall
be content with establishing a priori L∞(Ω) estimates on the state variables u, v, w.
We refer the reader to Horton [17] for a careful development of the local theory.
Because the vector field defined by the epidemiological kinetics and written as

F (x, u, v, w) =


−f(x, u, v, w) + b(x)(u+ w)− (m(x) + k(x)p)u,πf(x, u, v, w)− α(x)v − (m(x) + k(x)p)v,
(1− π)f(x, u, v, w)− (m(x) + k(x)p)w


(2.22)

does not point out R
3
+ on the coordinate hyperplane, R

3
+ may be shown to be an

invariant rectangle by the maximum principle arguments in [26]. To extend our local
results globally we follow standard parabolic methodology and construct anM(t) ≥ 0
which is continuous on R+ so that

max{‖ u( , t) ‖∞,Ω, ‖ v( , t) ‖∞,Ω, ‖ w( , t) ‖∞,Ω} ≤M(t)(2.23)

on the maximal interval of existence [0, Tmax). These time dependent a priori L∞
bounds will guarantee that Tmax =∞. We shall use energy-type arguments to boot-
strap the estimates of Lemma 1 to sufficiently high Lp estimates. We will use these
estimates to obtain Lp estimates of the coupling terms of (2.11). This will allow us
to apply the regularity theorem of parabolic equations with discontinuous coefficients
to obtain the desired function M(t).

We begin with the first equation of (2.11). If we multiply by u and integrate on
Ω, we obtain

1

2

d

dt

∫
Ω

u2(x, t)dx+

∫
Ω

d(1)(x)|∇u|2(x, t)dx+
∫

Ω

k(x)u3(x, t)dx(2.24)

≤
∫

Ω

b(x)u2(x, t)dx+

∫
Ω

b(x)w(x, t)u(x, t)dx+

∫
Ω

u(x, t)c(1)(x) · ∇u(x, t)dx

≤ b1
[∫

Ω

u2(x, t)dx+

[∫
Ω

w2(x, t)dx

] 1
2
[∫

Ω

u2(x, t)dx

] 1
2

]

+ ‖ c(1) ‖∞,Ω

[(∫
Ω

u2(x, t)dx

) 1
2
(∫

Ω

|∇u|2(x, t)dx
) 1

2

]
.

We recall that Lemma 1 guarantees space time cylinder estimates in L2. Integration
and Young’s inequality yield

u( , t) ∈ L2(Ω)
u ∈ L3(Q(0, T ))
|∇u| ∈ L2(Q(0, T ))

for T < Tmax,(2.25)

and the existence of functions C2, C3 ∈ C(R+) so that

‖ u( , t) ‖2,Ω≤ C2(t) for t < Tmax,
‖ u ‖3,Q(0,T )≤ C3(T ) for [0, T ] ⊂ [0, Tmax),
‖ |∇u| ‖2,Q(τ,T )≤ C3(T ) for [τ, T ] ⊂ [0, Tmax).

(2.26)
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We now multiply the first equation of (2.11) by u2 and integrate on Ω to obtain

1

3

d

dt

∫
Ω

u3(x, t)dx+ 2

∫
Ω

d(1)(x)u(x, t) | ∇u |2 (x, t) +
∫

Ω

k(x)u4(x, t)dx(2.27)

=

∫
Ω

b(x)u3(x, t)dx+

∫
Ω

b(x)w(x, t)u2(x, t)dx+ 2

∫
Ω

u2(x, t)c(1)(x).∇u(x, t)dx

≤ b1
[∫

Ω

u3(x, t)dx+

(∫
Ω

w2(x, t)

) 1
2
(∫

Ω

u4(x, t)

)1/2
]

+2 ‖ c(1) ‖∞,Ω

[(∫
Ω

u4(x, t)

)1/2(∫
Ω

| ∇u |2 (x, t)dx
)1/2

]
.

From this we may obtain

u( , t) ∈ L3(Ω) for t ∈ [0, Tmax),
u ∈ L4(Q(0, T )) for T ∈ [0, Tmax),

(2.28)

and C4, C5 ∈ C(R+) so that

‖ u( , t) ‖3,Ω≤ C4(t) for t ∈ [0, Tmax)
‖ u ‖4,Q(0,T )≤ C5(T ) for T ∈ [0, Tmax)

,(2.29)

We now consider the second equation of (2.11): multiply by v to obtain

1

2

d

dt

∫
Ω

v2(x, t)dx+

∫
Ω

d(2)(x) | ∇v |2 (x, t)dx+ k0
∫

Ω

v3(x, t)dx(2.30)

≤ π ‖ σ ‖∞,Ω

[∫
Ω

v2(x, t)dx+

∫
Ω

u(x, t)v2(x, t)dx

]

+ ‖ c(2) ‖∞,Ω

[∫
Ω

v2(x, t)dx

]1/2 [∫
Ω

| ∇v |2 (x, t)dx
]1/2

,

and integrate and apply Young’s inequality to obtain d0 > 0, k̃ > 0, c̃ > 0 so that

1

2

∫
Ω

v2(x, t)dx+ d0

∫ t

0

∫
Ω

| ∇v |2 (x, t)dxdt+ k̃
∫ t

0

∫
v3(x, t)dxdt(2.31)

≤ π ‖ σ ‖∞,Ω

[∫ t

0

∫
Ω

v2(x, t)dxdt+

∫ t

0

∫
Ω

u3(x, t)dxdt

]

+c̃

∫ t

0

∫
Ω

v2(x, t)dxdt+
1

2

∫
Ω

v20(x)dx.
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We thereby obtain time dependent estimates for ‖v( , t)‖2,Ω, ‖v‖3,Q(0,T ), and
‖|∇v|‖2,Q(0,T ) in the same manner as these estimates were obtained for u. Estimates
for ‖v( , t)‖3,Ω and ‖v‖4,Q(0,T ) can be obtained by multiplying the second equation of
(2.11) by v2. We now multiply the third equation of (2.11) by w and use the estimates
already obtained to produce estimates for w(, t) in L3(Ω) and | ∇w | in L2(Q(0, T )).
With these estimates in hand one proceeds to multiplying the third equation of (2.11)
by w2 to obtain estimates for w( , t) in L4(Ω) and w in L4(Q(0, T )).

We can now return to the first and second equations of (2.11) and multiplying by
u4 and v4, respectively, to produce estimates on u( , t) in L5(Ω) and u in L6(Q(0, T ))
and on v( , t) in L5(Ω) and v ∈ L6(Q(0, T )). We now have the requisite bound
on u, v, w to ensure that each of three components of F (x, u, v, w) is bounded in
L3(Q(0, T )). This allows us to apply the powerful regularity theory for parabolic
equations with discontinuous coefficients in Ladyzhenskaya, Solonnikov, and Ural’ceva
[20] to guarantee the existence of our desired M(t) and complete our argument since
Ω ⊂ R

2.
We point out that the discontinuity in the diffusitivities d(i)(x) prevented us from

applying standard regularity theorems for reaction diffusion systems.
We find that we can also obtain uniform L∞(Ω) estimates.
Theorem 2. If u0, v0, w0 ∈ C(Ω) are nonnegative and u(x, t), v(x, t), and w(x, t)

are globally defined solutions to (2.11)–(2.15), then there exists a positive constant
M0 =M0(u0, v0, w0) (independent of t) so that

max
t>0
{‖ u( , t) ‖∞,Ω, ‖ v( , t) ‖∞,Ω, ‖ w( , t) ‖∞,Ω} ≤M0.

Proof. If we examine the arguments of the previous global existence results and
Lemma 1, we may observe that these arguments can be adapted to produce estimates
for u, v, w in L2(Q(τ, τ + τ

∗)) for any (τ, τ + τ∗) ⊂ [0,∞) and that if τ is chosen
sufficiently large, then these estimates can be chosen independent of the initial data.
More specifically, we can find a uniform constant C(2, τ∗) so that

max{‖ u ‖2,Q(τ,τ+τ∗), ‖ v ‖2,Q(τ,τ+τ∗), ‖ w ‖2,Q(τ,τ+τ∗)} ≤ C(2, τ∗).
Moreover, these estimates can be bootstrapped to uniform space time cylinder esti-
mates for u, v ∈ L6(Q(τ, τ+τ

∗)) and w ∈ L3(Q(τ, τ+τ
∗)), i.e., we will have constants

C(6, τ∗) and C(3, τ∗) so that

max{‖ u ‖6,Q(τ,τ+τ∗), ‖ v ‖6,Q(τ,τ+τ∗)} ≤ C(6, τ∗)(2.32)

and

‖ w ‖3,Q(τ,τ+τ∗)≤ C(3, τ∗).(2.33)

We can now use (2.10) and (2.22) to find a uniform constant K(3, τ∗) so that each
component

‖ Fi( , u, v, w) ‖3,Q(τ,τ+τ∗)≤ K(3, τ∗) for i = 1 to 3.

The regularity results of [20] for parabolic equations of the form

∂z/∂t = div(d(x)∇z + za(x)) + f(x, t)
having discontinuous coefficients in Ω ⊂ R

2 are dependent upon the L3 space time
cylinder norm of f and the L∞(Ω) norm of the initial data as well as the time height
of space time cylinder.
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We shall solve initial value problems on short time intervals and avoid the dif-
ficulty of needing to use the L∞(Ω) norm of initial values using the legerdomain of
constructing an auxiliary function which agrees with our unknowns on intervals but
cuts off the initial value. To be more precise, we let ϕ(t) be a continuously differen-
tiable nonnegative function defined on R having the properties that

ϕ(s) = 0 for s ≤ 0,
ϕ(s) = 1 for s > 1,
ϕ′(s) ≥ 0 for s ∈ (0, 1).

(2.34)

We shall confine our attention to the first equation. We define

ρ(x, t) = ϕ(t− τ)u(x, t)
and observe that if τ ≥ 0, then the function ρ(x, t) = u(x, t) for t ∈ [τ + 1, τ + 2] and
that ρ(x, τ) = 0. If we differentiate ρ with respect to t, we obtain

∂ρ/∂t = ϕ′(t− τ)u+ div(d(1)(x)∇ρ− ρc(1)(x)) + ϕ(t− τ)F1(x, u, v, w)

= div(d(1)(x)∇ρ− ρc(1)(x)) + g(x, t)
with

d(1)(x)∂ρ/∂η − ρc(1) · η = 0, x ∈ ∂Ω, t ≥ 0,
and

ρ(x, τ) = 0.

Moreover, we clearly have uniform estimates for u, v ∈ L6(Q(τ, τ + 2)) and w ∈
L3(Q(τ, τ + 2)). These yield L∞(Q(τ, τ + 2)) estimates for ρ(x, t) and hence uniform
L∞(Q(τ + 1, τ + 2)) estimates for u(x, t). Hence, since

‖ u ‖∞,Q(0,∞)≤ max
[‖ u ‖∞,Q(0,1), ‖ u ‖∞,Q(1,∞)

]
,

we have a uniform sup norm bound for u. Identical arguments work for v and w.

3. Long term behavior. Given the high degree of spatial heterogeneity of these
systems, we cannot expect to obtain explicit statements describing the long term
asymptotic behavior of solutions. Nevertheless, some results along these lines are
possible. We begin by obtaining a priori gradient estimates.

Lemma 2. If u, v, w are classical nonnegative solutions to (2.11)–(2.15), then
there exist a q (2 < q <∞) and a constant C∗(q) so that for t ∈ (ε,∞)

max
t>ε
{‖ |∇u|(, t) ‖q,Ω, ‖ |∇v|(, t) ‖q,Ω, ‖ |∇w|(, t) ‖q,Ω} ≤ C∗(q).(3.1)

Proof. We return to (2.11) and use the uniform a priori estimates on the L∞ norms
of the state variables u, v, w together with the uniform cylinder estimates for p(x, t)
in L2(Q(τ, τ + τ

∗)) to obtain uniform estimates for the nonlinear terms Fi(x, u, v, w)
in L2(Q(τ, τ + τ

∗)). The application of Meyer’s lemma for parabolic equations with
discontinuous coefficients (see Bensoussan, Lions, and Papanicolaou [1]) will guarantee
the existence of a q (2 < q <∞) so that |∇u|, |∇v|, and |∇w| are uniformly bounded
in W 1

q (Q(τ, τ + τ
∗). Hence there exists a Cq(τ∗) so that

max{‖ |∇u| ‖q,Q(τ,τ+τ∗), ‖ |∇v| ‖q,Q(τ,τ+τ∗), ‖ |∇w| ‖q,Q(τ,τ+τ∗)} ≤ Cq(τ∗).(3.2)
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We now differentiate our equations with respect to t. Setting θ = ∂u/∂t, ϕ = ∂v/∂t,
and ψ = ∂w/∂t, we obtain

(3.3)

∂θ/∂t = div(d(1)∇θ − θc(1))− χσ(1/p)(vθ + uϕ) + χσ(uv/p2)(θ + ϕ+ ψ)
−(1− χ)σ(vθ + uϕ) + b(θ + ψ)− (m+ kp)θ − k(θ + ϕ+ ϕ)u,

∂ϕ/∂t = div(d(2)∇ϕ− ϕc(2)) + πχσ(1/p)(vθ + uϕ)− πχσ(uv/p2)(θ + ϕ+ ψ)
+π(1− χ)σ(vθ + uϕ)− (m+ kp)ϕ− k(θ + ϕ+ ψ)v − αϕ,

∂ψ/∂t = div(d(3)∇ψ − ψc(3)) + (1− π)χσ(1/p)(vθ + uϕ)
−(1− π)χσ(uv/p2)(θ + ϕ+ ψ)) + (1− π)(1− χ)σ(vθ + uϕ)
−(m+ kp)ψ − k(θ + ϕ+ ψ)v.

For notational convenience we let Lj(ρ) = div(d(j)∇ρ−ρc(j)). If we multiply the first
equation of (2.11) through by ∂u/∂t, we obtain

(∂u/∂t)2 = L1(u)∂u/∂t+ F1(, u, v, w)∂u/∂t,

implying

(∂u/∂t)2 ≤ L1(u)∂u/∂t+K/δ + δ

(
∂u

∂t

)2

(3.4)

for any δ > 0 and appropriately chosen K > 0. Integration of this inequality and use
of routine calculations will produce a uniform constant C(τ∗) so that for τ > ε

‖ θ ‖2,Q(τ,τ+τ∗)≤ C(τ∗).
Analogous arguments produce uniform L2(Q(τ, τ + τ

∗)) estimates for ϕ and ψ. We
now return to (3.3) and observe that θ, ϕ, ψ satisfy

∂θ/∂t = L1(θ) + g1(x, t),
∂ϕ/∂t = L2(ϕ) + g2(x, t),
∂ψ/∂t = L3(ψ) + g3(x, t),

(3.5)

with gi(, ) uniformly bounded in L2(Q(τ, τ + τ
∗)). We may again apply Meyer’s

lemma [1] to observe that ϕ, θ, ψ are uniformly bounded in W 1
q (Q(τ, τ + τ

∗)) for some
2 < q <∞. Therefore, there exists a constant Cq(τ∗) so that

max{‖ |∇θ| ‖q,Q(τ,τ+τ∗), ‖ |∇ϕ| ‖q,Q(τ,τ+τ∗), ‖ |∇ψ| ‖q,Q(τ,τ+τ∗)} ≤ Cq(τ∗).(3.6)

We now take the minimum of the two q’s for (3.2) and (3.6) and obtain uniform
estimates for | ∇u |, | ∇∂u/∂t |, | ∇v |, | ∇∂v/∂t |, | ∇w |, | ∇∂w/∂t | in Lq(Q(τ, τ + τ∗))
for some q > 2.

It is now a simple matter to construct a priori bounds for |∇u|(t), |∇v|(t), and
|∇w|(t) in Lq(Ω). To see this, define

g(t) =

∫
Ω

|∇u(x, t)|qdx.

Then the estimates above imply g ∈W 1
q (τ, τ +1) for every τ > 0. Therefore, from the

Sobolev imbedding theorem g is bounded. The same arguments can be applied to v
and w.
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Each of the differential operators ∂/∂t − Li( ), i = 1 to 3, can be used to define
an analytic semigroup {T ip(t)/t ≥ 0} with infinitesimal generator Aip. Although the
semigroup {T ip(t)/t ≥ 0} does not make initial data infinitely smooth, we do have the
property that T ip(t) : Lp(Ω)→ D(Ap) for t > 0. Since our unknowns u, v, and w are
bounded, the mappings Fi(, ) defining the epidemiological kinetics can be shown to
be Lipschitz in Lp(Ω), and we can realize solutions to our systems as strong Lp(Ω)
solutions to

du/dt−A1
pu = F1(·, v, v, w),

dv/dt−A2
pv = F2(·, u, v, w),

dw/dt−A3
pw = F3(·, u, v, w),

(3.7)

which have a variation of parameters representation:

u(t) = T 1
p (t)u0 +

∫ t

0

T 1
p (t− s)F1(·, u(s), v(s), w(s))ds,

v(t) = T 2
p (t)w0 +

∫ t

0

T 2
p (t− s)F2(·, u(x), v(s), w(s))ds,

w(t) = T 3
p (t)w0 +

∫ t

0

T 3
p (t− s)F3(·, u(s), v(s), w(s))ds.

(3.8)

We can use standard semigroup theory to guarantee the local existence of nonnegative
strong solutions for (3.7) if our initial data (u0, v0, w0) lies in the positive cone of
any Lp(Ω). We can use the regularity of the theory of parabolic equations with
discontinuous coefficients [19] to argue that these local strong solutions are classical
solutions which can be extended globally by use of a priori estimates.

Moreover, we can define a semidynamical system on the positive cone of any
(Lp(Ω))

+ by defining

Up(t)[u0, v0, w0]
T = [u( , t), v( , t), w( , t)]T ,

where u( , t), v( , t), w( , t) are solutions to (3.7) and

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x).

We recall that a compact subset A is said to be a global attractor for a semidynamical
system U(t) defined on the positive cone X+ of a Banach space X if A is forward
invariant under the action of U(t) and if for all z0 ∈ X+ we have

lim
t→∞ δ(U(t)z0,A) = 0,

where δ( , ) is the Hausdorff metric on compact subsets of X.
We have the following result.
Theorem 3. If (u0, v0, w0) ∈ (L2(Ω))

3
+ and u( , t), v( , t), w( , t) are the corre-

sponding solutions to (2.11)–(2.15), then the trajectories Θ = {u( , t), v( , t), w( , t) |
t ≥ 0} are precompact in L2(Ω), and each triple of initial data (u0, v0, w0) ∈ (L2(Ω))

3
+

has a compact connected forward invariant ω-limit set ω(u0, v0, w0). Moreover, the
semidynamical system defined as U(t)(u0, v0, w0)

T = (u(, t), v(, t), w(, t)) has a global
attractor A in (L2(Ω))

3
+.

Proof. The existence of the ω-limit set is an immediate consequence of the fact
that the trajectory Θ is contained in a bounded subset of (W 1

q (Ω))
3, q > 2, which is
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compactly embedded in (L2(Ω))
3. Here we are applying standard results from the

theory of semidynamical systems in functions spaces (see Hale [13]); the existence
of a global attractor follows from compactness and the fact that eventually solution
trajectories are uniformly bounded in L∞(Ω) (see Fitzgibbon, Langlais, and Morgan
[8]).

4. Approximations. It is possible to approximate the compartmental model
(2.11)–(2.15) by a sequence of traditional reaction diffusion models of the form

∂un/∂t = div(d
(1)
n (x)∇un − unc(1)n (x)) + Fn1 (x, un, vn, wn),

∂vn/∂t = div(d
(2)
n (x)∇vn − vnc(2)n (x)) + Fn2 (x, un, vn, wn),

∂wn/∂t = div(d
(3)
n (x)∇wn − wnc(3)n (x)) + Fn3 (x, un, vn, wn),

x ∈ Ω, t > 0,(4.1)

with homogeneous Neumann boundary conditions

d
(1)
n ∂un/∂η − unc(1)n · η = 0,
d
(2)
n ∂vn/∂η − vnc(2)n · η = 0,
d
(3)
n ∂wn/∂η − wnc(3)n · η = 0,

x ∈ ∂Ω, t > 0,(4.2)

and initial conditions (nonnegative and continuous on Ω)

un(x, 0) = u0(x), vn(x, 0) = v0(x), wn(x, 0) = w0(x), x ∈ Ω.(4.3)

The diffusitivities d
(i)
n (x) are assumed to be continuous on Ω with

0 < d ≤ d(i)n (x) ≤ d for i = 1 to 3, x ∈ Ω, n ∈ Z
+,

and we assume that advection fields c
(i)
n (x) are continuous on Ω. The kinetic terms

have the form

Fn(x, u, v, w) =


 −fn(x, u, v, w) + b(x)(u+ w)− (m(x) + k(x)p)u,πfn(x, u, v, w)− α(x)v − (m(x) + k(x)p)v,
(1− π)fn(x, u, v, w)− (m(x) + k(x)p)w


(4.4)

with incidence term

fn(x, u, v, w) = χn(x)σn(x)uv/(u+ v + w) + (1− χn(x))σn(x)uv,(4.5)

where χn( ) and σn( ) belong to C(Ω), σn( ) being strictly positive and 0 ≤ χn( ) ≤ 1
on Ω.

We shall assume the following:

(A1) The approximating terms d
(i)
n ( ), χn( ), and σn( ) are uniformly bounded

in L∞(Ω);

(A2) lim
n→∞ d

(i)
n (x) = d

(i)(x) for a.e. x ∈ Ω, i = 1 to 3,
lim
n→∞ c

(i)
n = c(i) in C(Ω), i = 1 to 3,

lim
n→∞σn(x) = σ(x) for a.e. x ∈ Ω,
lim
n→∞χn(x) = χ(x) for a.e. x ∈ Ω.
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The elliptic operators div(d
(i)
n (x)∇z−zc(i)n (x)) can be used to specify infinitesimal

generators Ain of analytic semigroups {T in(t) | t ≥ 0} in the spaces Lp(Ω) (p > 1) and
C(Ω). Here we shall with some abuse of notation suppress the particular function
space dependence of the generators and semigroups. Solutions to (4.1)–(4.3) may be
represented as

un(·, t) = T 1
n(t)u0 +

∫ t

0

T 1
n(t− s)F 1

n(·, un(, s), vn(, s), wn(, s))ds,

vn(·, t) = T 2
n(t)v0 +

∫ t

0

T 2
n(t− s)F 2

n(·, un(, s), vn(, s), wn(, s))ds,

wn(·, t) = T 3
n(t)w0 +

∫ t

0

T 3
n(t− s)F 3

n(·, un(, s), vn(, s), wn(, s))ds.

(4.6)

We have pointed out that solutions to (2.11)–(2.15) can be represented by the
Duhamel formulae

u(·, t) = T 1(t)u0 +

∫ t

0

T 1(t− s)F 1(·, u(, s), v(, s), w(, s))ds,

v(·, t) = T 2(t)v0 +

∫ t

0

T 2(t− s)F 2(·, u(, s), v(, s), w(, s))ds,

w(·, t) = T 3(t)w0 +

∫ t

0

T 3(t− s)F 3(·, u(, s), v(, s), w(, s))ds.

(4.7)

We have the following approximation theorem.
Theorem 4. If the approximation conditions (A1) and (A2) hold and the solu-

tions to (4.1)–(4.3) are given by un(x, t), vn(x, t), and wn(x, t) and the solution to the
compartmental system is given by u(x, t), v(x, t), w(x, t), then on any interval [0, T ]

lim
n→∞ ‖ un(·, t)− u(·, t) ‖2,Ω= 0,
lim
n→∞ ‖ vn(·, t)− v(·, t) ‖2,Ω= 0,
lim
n→∞ ‖ wn(·, t)− w(·, t) ‖2,Ω= 0 for t ∈ [0, T ].

Proof. We shall establish subsequence convergence which will show that any se-
quence has a subsequence converging to a solution of (2.11)–(2.15). However, unique-
ness of the limit guarantees that the subsequential convergence is in fact convergence.
If we return to estimates producing Lemma 1, we see that our estimates guarantee a
priori L∞(Ω) bounds and L2(Ω) gradient bounds which depend only upon the size of
the diffusion coefficients and the initial data, and the bounds for the birth rate and
logistic coefficients.

Therefore, we can obtain uniform bounds for ‖ |∇un|(, t) ‖2,Ω, ‖ |∇vn|(, t) ‖2,Ω,
and ‖ |∇wn|(, t) ‖2,Ω, and hence for each t ∈ [0, T ] the solutions lie in a bounded
subset of H1(Ω). Because H1(Ω) is compactly embedded in L2(Ω), a standard appli-
cation of the Arzela–Ascoli lemma will guarantee the convergence of a subsequence
un′(, t), vn′(, t), wn′(, t) in L2(Ω) to a limiting function (u

∗( , t), v∗( , t), w∗( , t)). This
subsequence has a subsequence (un′′( , t), vn′′( , t), wn′′( , t)) which converges point-
wise a.e. to (u∗( , t), v∗( , t), w∗( , t)). Standard semigroup approximation theory (see
Pazy [24]) will insure the strong convergence of T 1

n(t), T
2
n(t), and T

3
n(t) to T

1(t), T 2(t),
and T 3(t).
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Moreover, we have pointwise a.e. convergence of F in(x, un(x, t), vn(x, t), wn(x, t))
to the corresponding F i(x, u∗(x, t), v∗(x, t), w∗(x, t)), and we can apply the Lebesgue
convergence theorem to ensure convergence of (un′′ , vn′′ , wn′′) to a solution of (4.7).
The regularity theory of analytic semigroups guarantees that a solution to (4.7) is
indeed a solution to (2.11)–(2.15). Because these solutions are unique, our proof is
complete.

5. Complex habitats with repeated microstructure. A different approx-
imation is realized by averaging the effects of the complex local structure over the
whole domain; by virtue of this approximation endeavor we obtain a global picture
of the dynamics. More precisely, many habitats consist of more or less repeatedly
interspersed fragmented subpatches. Here we shall attempt to isolate a subpatch
Ω# of Ω and consider the fragmentation of Ω as being produced by a periodic re-
production of Ω#. Although the scale of the microstructure of Ω# may be small in
comparison with the scale of Ω, this microstructure can have a profound effect upon
the global dynamics. Theoretically this situation can be described by the methods
presented heretofore. However, from a practical computational point of view, the mi-
crostructure of the domain may be far too fine to track, and it becomes reasonable to
implement homogenization techniques which average the effects of the local structure
and predict the overall dynamics.

We commence with a mathematical formulation. We introduce a basic cell

Ω̂ =
2∏
j=1

[0, Y 0
j ] ⊂ R

2.(5.1)

A function ϕ( ) : R
2 → R is said to be Ω̂ periodic if it admits a period Y 0

j in the

direction yj , j = 1, 2. We let d(1)(y), d(2)(y), d(3)(y), χ(y), σ(y), α(y), b(y),m(y), k(y)

be functions satisfying the conditions of section 2 on Ω̂ with corresponding subre-
gions Ω̂0, Ω̂1, . . . , Ω̂K . We extend d

(1)( ), d(2)( ), d(3)( ), χ( ), σ( ), α( ), b( ),m( ), k( )
periodically to R

2 with the distinguished subregions being reproduced as well. We
define

d
(i)
ε (x) = d(i)(x/ε),

c
(i)
ε (x) = c

(i)(x/ε) for i = 1 to 3, x ∈ Ω,(5.2)

and

χε(x) = χ(x/ε), σε(x) = σ(x/ε),
bε(x) = b(x/ε), mε(x) = m(x/ε), kε(x) = k(x/ε),
αε(x) = α(x/ε), fε(x, u, v, w) = f(x/ε, u, v, w).

(5.3)

In the same manner we get corresponding subregions Ω0,ε,Ω1,ε, . . . ,ΩK,ε.

For small ε we consider the system of partial differential equations

(5.4)

∂uε/∂t = div(d
(1)
ε ∇uε − uεc(1)ε )− fε(uε, vε, wε) + bε(uε + wε)− (mε + kεpε)uε,

∂vε/∂t = div(d
(2)
ε ∇vε − vεc(2)ε ) + πfε(uε, vε, wε)− αεvε − (mε + kεpε)vε,

∂wε/∂t = div(d
(3)
ε ∇wε − wεc(3)ε ) + (1− π)fε(uε, vε, wε)− (mε + kεpε)wε
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with no flux boundary conditions

d
(1)
ε ∂uε/∂η − uεc(1)ε · η = 0,
d
(2)
ε ∂vε/∂η − vεc(2)ε · η = 0,
d
(3)
ε ∂wε/∂η − wεc(3)ε · η = 0,

x ∈ ∂Ω,(5.5)

and compatibility conditions

[uε]∂Ωl,ε
= [vε]∂Ωl,ε

= [wε]∂Ωl,ε
= 0, l = 1, . . . ,K,(5.6)

[d(1)ε ∂uε/∂η]∂Ωl,ε
= [d(2)ε ∂vε/∂η]∂Ωl,ε

= [d(3)ε ∂wε/∂η]∂Ωl,ε
= 0

with ∂Ωl,ε the interface between Ωl,ε and Ω0,ε, l = 1, . . . ,K.
We have initial conditions

uε(x, 0) = u0(x), vε(x, 0) = v0(x), wε(x, 0) = w0(x) for x ∈ Ω.(5.7)

A simple prototype of this scenario has been considered in Fitzgibbon, Langlais,
and Morgan [9] and Heiser, Langlais, and Pontier [15]. We are guaranteed the exis-
tence of solutions to (5.4)–(5.7) by our existing theory, and our present concern shall
be the behavior as ε ↓ 0. A partial answer to this question is given by the following
result.

Theorem 5. For each ε > 0 and T > 0 there exists a globally defined unique
classical solution triple to (5.4)–(5.7), uε(x, t), vε(x, t), wε(x, t). There exist positive

definite symmetric constant matrices D
(j)
h and constant vector fields c

(j)
h depending

solely on d(j), c(j),Ω, and Ω̂ for j = 1 to 3, constants

σ =
1

| Ω̂ |

∫
Ω̂

σ(y)dy, χ� =
1

σ

1

| Ω̂ |

∫
Ω̂

χ(y)σ(y)dy,

b =
1

| Ω̂ |

∫
Ω̂

b(y)dy, m =
1

| Ω̂ |

∫
Ω̂

m(y)dy, k =
1

| Ω̂ |

∫
Ω̂

k(y)dy,

and a function

f(u, v, w) = χ�σ
uv

u+ v + w
+ (1− χ�)σuv

such that, as ε→ 0, uε( , t), vε( , t), wε( , t) converges strongly in L2(0, T ) to the clas-
sical solution u( , t), v( , t), w( , t) of the homogenized system

∂u/∂t = div(D
(1)
h ∇u− uc(1)h )− f(u, v, w) + b(u+ w)− (m+ kp)u,

∂v/∂t = div(D
(2)
h ∇v − vc(2)h ) + πf(u, v, w)− αv − (m+ kp)v,

∂w/∂t = div(D
(3)
h ∇w − wc(3)h ) + (1− π)f(u, v, w)− (m+ kp)w,

(5.8)

with no flux boundary conditions

2∑
i,j=1

D
(1)
h,ij

∂u

∂xi
cos(η, xj)− uc(1)h · η = 0,

2∑
i,j=1

D
(2)
h,ij

∂v

∂xi
cos(η, xj)− vc(2)h · η = 0,

2∑
i,j=1

D
(3)
h,ij

∂w

∂xi
cos(η, xj)− wc(3)h · η = 0,

x ∈ ∂Ω, t > 0,(5.9)
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and initial conditions

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x) for x ∈ Ω.

Proof. This result is obtained via applications of standard techniques developed
in, e.g., Bensoussan, Lions, and Papanicolaou [1] and Jikov, Kozlov, and Oleinik [18].
We point out that standard arguments will yield the existence and uniqueness of
solutions of the homogenized problem (c.f. Theorem 1).

The crucial step lies in using the result in Theorem 2 stating that

max
t>0
{‖ uε(, t) ‖∞,Ω, ‖ vε(, t) ‖∞,Ω, ‖ wε(, t) ‖∞,Ω} ≤M0,

M0 being a constant independent of ε for 0 < ε ≤ 1. Then it follows from integration
by parts that for any fixed T > 0 the solution triples (uε, vε, wε) are bounded in
the Sobolev space of order one H1(Ω × (0, T )), independently of ε for 0 < ε ≤
1. A compactness argument yields that they lie in a relatively compact subset of
L2(Ω× (0, T )). Hence there exists a sequence (uε′ , vε′ , wε′) converging to some limit
(u, v, w) strongly in L2(Ω× (0, T )) and weakly in H1(Ω× (0, T )) as ε′ → 0.

Next it is well known that for any function ϕ( ) : R2 → R and Ω̂ periodic

ϕε( )⇀M(ϕ) =
1

| Ω̂ |

∫
Ω̂

ϕ(y)dy, as ε→ 0,

in a weak-star L∞(Ω) sense, i.e., for any ψ ∈ L1(Ω)∫
Ω

ϕε(x)ψ(x)dx→M(ϕ)

∫
Ω

ψ(x)dx, as ε→ 0.

From these two facts the convergence as ε′ → 0 of the kinetics on the right-hand sides
of (5.4) toward the corresponding kinetics of (5.8) follows, weakly in L2(Ω × (0, T ))
and strongly in the dual space [H1(Ω× (0, T ))]′.

The goal of homogenization techniques is to handle the behavior of such quantities

as −div(d(1)ε ∇uε−uεc(1)ε ) when ε→ 0. Then one can show that there exist a positive

definite symmetric matrix D
(1)
h and a vector c

(1)
h depending solely on d(1), c(1),Ω, and

Ω̂ such that upon extracting further subsequences

d
(1)
ε′′ ∇uε′′ − uε′′c(1)ε′′ ⇀ D

(1)
h ∇u− uc(1)h

weakly in L2(Ω× (0, T )) as ε”→ 0; see [1] and [18]. Identical arguments work for the
equations for vε and wε.

At this point the convergence of a suitable subsequence of (uε, vε, wε)0<ε≤1 to-
ward a solution of (5.8) is established. A uniqueness argument ensures that this
subsequential convergence is indeed convergence.

Homogenized operators. We point out that computation of the homogenized dif-
fusion operators is complicated. However, an algorithm using asymptotic expansions
appears in [1] and [18].

In the one dimensional case some simplifications occur, and one has

D
(j)
h =

[
M
(
1

d(j)

)]−1

and c
(j)
h = D

(j)
h

[
M
(
c(j)

d(j)

)]
, j = 1 · · · 3.
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In the two dimensional case one must first compute a set of auxiliary functions, namely,

χ
(j)
l and ξ(j), Ω̂ periodic members of H1(Ω̂) and solutions of

− div(d(j)(y)∇χ(j)
l ) =

∂d(j)(y)

∂yl
,

− div(d(j)(y)∇ξ(j)) = − div(c(j)), j = 1 · · · 3, l = 1, 2.

These nine functions are uniquely defined up to a constant; note that ξ(j) is a constant

when div(c(j)) = 0. The entries of the three matrices D
(j)
h are

D
(j)
h,il =



M(d(j)) +M

(
d(j)

∂χ
(j)
i

∂yi

)
for l = i,

M
(
d(j)

∂χ
(j)
l

∂yi

)
for l �= i,

for j = 1 to 3; hence these matrices may not be diagonal. The entries of the three

constant vectors c
(j)
h are

c
(j)
h,i =M(c

(j)
i )−M

(
d(j)

∂ξ(j)

∂yi

)
, i = 1, 2, j = 1 · · · 3.

Note that c
(j)
h =M(c(j)) when div(c(j)) = 0.

6. Concluding consideration. We feel that the notions of compartmental dif-
fusion and homogenization are important for the spatial spread of infectious disease
within complex highly spatially heterogeneous habitats. Heretofore, standard Fickian
diffusion has been used to describe the space time evolution or progation within ho-
mogeneous habitats supporting spatially distributed habitats. Indeed, one can incor-
porate heterogeneity in diffusion and transport terms; however, one expects diffusion
smoothing to regularize these effects. We also feel that diffractive or compartmen-
tal diffusion offers many other interesting applications within the reaction diffusion
context.
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IN THE 1D CASE∗
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Abstract. A free boundary problem due to Nishiura and Ohnishi is solved in one space di-
mension. That problem was derived, during their study of phase separation phenomena in diblock
copolymers, as an asymptotic limit of pattern-forming PDEs generalizing that of Cahn and Hilliard.
The free boundary problem in one dimension reduces to a linear system of ODEs for the lengths of
the intervals between interfaces. This system also arises in a completely different context as the spa-
tial discretization of a simple heat equation in a medium with periodic properties. (The medium is
homogeneous in an important special case.) The initial-value problem for this system is completely
solved, and global stability results for stationary solutions (in which the interfaces are regularly
spaced) are obtained. Nucleation phenomena are briefly discussed.

Key words. discrete heat equation, free boundary problem, diblock copolymers, global stability
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1. Introduction. Pattern-forming phenomena in block copolymer melts have
been the subject of a number of field-theoretic models and analyses. Equilibrium
models based on a free energy functional were given by Leibler [4], Ohta and Kawasaki
[7], and Kawasaki, Ohta, and Kohrogui [3]. Bahiana and Oono [1] suggested a phe-
nomenological cell dynamical system leading to an evolutionary PDE for the com-
position u(x, t) of the melt as a function of space and time. In [5], a similar PDE
was proposed by Nishiura and Ohnishi as a gradient (steepest descent) flow for a
free energy functional Eε[u], generalizing that of Ginzburg and Landau, of the type
appearing in [7, 3]. This PDE was investigated in [5, 6].

In [5] the authors also derived formally a limit free boundary problem (FBP) as a
parameter ε in the equation approaches zero. This limiting process was investigated
rigorously by Henry [2] for radial solutions in three dimensions. The local and global
minimizers of Eε and of related functionals in one space dimension were considered
by Ren and Wei [9, 10] and by Ohnishi et al. [8]. In [9], the local minimizers for
small ε were found to be close, in the L2 sense, to piecewise constant functions whose
intervals of constancy alternated in length. Among them, the global minimizers were
specified. In [8, 10], the global minimizers of a rescaled free energy functional were
characterized.

In this paper we concentrate on the evolution the FBP and show that in one
dimension it reduces to a linear homogeneous system of ODEs of a particularly sim-
ple type. The variables in this system are the interval lengths between the discrete
interfaces. The system is the same as that which arises as spatial discretization of
a heat equation. The role of the space variable in the heat equation is taken, in
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the context of the FBP, by the index ordering the positions of the intervals. Thus
although the FBP is in general difficult and nonlinear, in one dimension it reduces in
a remarkable way to a linear spatially discrete heat equation. This suggests that the
FBP provides a very efficient way to “uniformize” a given set {xn} of interfaces. This
point is discussed at the end of section 3.

The conversion of the FBP to a system of ODEs is given in section 3 after back-
ground considerations in section 2. The same problem for a finite interval can be
reformulated as a periodic problem on the whole line. The problem on the whole
real line with an infinite number of interfaces, periodic or not, is solved explicitly in
section 4. In the periodic (i.e., finite interval) case the solution simplifies somewhat;
this is shown in section 4.7. Since we wish the interval lengths to be positive, it is
important to know whether any can collapse to zero, and it is shown in section 5 that
collapsing is not possible.

All stationary solutions are found in section 6, where it is also shown how to
construct certain other similarity solutions. Of special interest is a one-parameter
family of stationary solutions with positive bounded interval lengths for each given
average value ū of the concentration variable. These solutions are those which were
identified in [9] as approximating the local minimizers of the free energy when ε is
small. The stability of stationary solutions is addressed in sections 7 (for the whole
line) and 8 (for a bounded interval). In the latter case, unrestricted global stability is
proved, and in the former it is shown that a wide class of initial data (not necessarily
small) generate solutions converging to stationary solutions.

A kind of nucleation procedure (outside the context of the given FBP) is described
in section 9, and a discussion related to various kinds of energy is given in section 10.
The paper ends with some further remarks in section 11.

2. The FBP. The PDE model consists of the following equations for functions
u = uε(x, t), v = vε(x, t), w = wε(x, t):

ut = ∆w,(1)

w = −
(
ε∆u− 1

ε
f(u)− v

)
,(2)

−∆v = u− ū.(3)

These equations are to hold in a bounded domain Ω, and Neumann boundary condi-
tions for v, u, and w are prescribed on ∂Ω. The quantity ū is the average value of
u; it can be seen by integrating (1) to be independent of time. Finally, the function
f(u) = F ′(u), where typically F (u) = 1

2 (1 − u2)2, although with little change it can
be taken to be any C1 function with minima of 0 assumed only at u = ±1. The actual
system studied in [5, 6, 8, 10] was like (1)–(3), but with (2) replaced by

w = −(ε̂2∆u− f(u)− σv),(4)

σ = O(1). This system can be reduced to (1)–(3) by rescaling space, time, v, and w
and by defining ε = ε̂2/3.

As mentioned before, there is an FBP obtained in [5] as an asymptotic approxima-
tion to (1)–(3) in some sense for small ε. It takes the following form in two dimensions;
these equations extend immediately to any other dimension.
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FBP. Given a curve Γ0 separating the planar domain Ω into two parts Ω±
0 , find

Γ(t), w(x, t), and v(x, t) for t ≥ 0, with Γ(t) separating the plane into domains Ω±(t)
satisfying

∆w = 0 in Ω±(t),(5)

∂w

∂n
= 0 on ∂Ω,(6)

V = −1

2

[
∂w

∂n

]
on Γ(t),(7)

K =
3

2
(w − v) on Γ(t),(8)

−∆v = u− ū in Ω,(9)

∂v

∂n
= 0 on ∂Ω,(10)

u = ±1 in Ω±(t),(11)

and initial condition Γ(0) = Γ0, where V is the normal velocity of Γ, K is its curvature
(counted positive if the center of curvature lies on the Ω+ side), and ū is the average
value of u over Ω.

The directional derivative in (7) is in the direction toward Ω+, V is considered
to be positive if motion is in that same direction, and the jump indicated there is the
derivative on the positive (Ω+) side minus that on the Ω− side.

The rigorous connection between (1)–(3) and (5)–(11) was studied by Henry [2]
in the case of radial solutions in three dimensions. Among other things, beginning
with a sequence of energy-bounded solutions of (1)–(3) corresponding to a sequence
of values of ε approaching 0, Henry showed that a subsequence converges to a weak
solution of the FBP. This weak solution satisfies (8) at any point where there is a
spatial jump in the limit function u between −1 and 1.

3. The one-dimensional (1D) case. In one dimension the left side of (8) van-
ishes, and the problem is invariant under the scaling x→γx, t→t, w→γ2w, v→γ2v, u→u
for arbitrary γ. This implies that any stationary spatial solution of the FBP (pat-
tern) filling the whole line can be expanded or contracted at will, and it will still be a
stationary solution with the same stability properties. This appears to contradict the
selection of a preferred spacing on the basis of energy minimization, as in [9] and in
[8], but does not because the FBP does not allow the creation or deletion of interfaces,
so that the spacing is usually predetermined from the initial data. See sections 8 and
11 for more on this issue.

Now let Ω be the interval (0, L), and let Γ(t) consist of N distinct ordered moving
points {xn(t)}, n = 1, 2, . . . , N contained in Ω.

Let νn = 1 if u jumps from −1 to +1 as xn is traversed from left to right (so that
(xn, xn+1) ∈ Ω+), and let νn = −1 if the jump is from +1 to −1. Note that νn is the
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value of u in (xn, xn+1); since u = ±1 in alternate intervals, −νn is the value of u in
(xn−1, xn).

Let space derivatives be denoted by “ ′ ” and time derivatives by “ ˙ ”. We also
use the notation

vn = v(xn), pn = v′(xn).

The equations corresponding to (5)–(10) are

w′(x) = const on (xn, xn+1) for each n = 1, . . . , N − 1,(12)

w′(x) = 0 on (0, x1) and (xN , L),(13)

−2νnẋn = w′(xn + 0)− w′(xn − 0), n = 1, . . . , N,(14)

w(xn) = v(xn) for all n = 1, . . . , N,(15)

v′′ = ū− u,(16)

v′(0) = v′(L) = 0.(17)

Note that in (14), ẋn represents νn times the velocity V in (7), ∂
∂n = νn

d
dx , and[

∂w
∂n

]
= νn

[
∂w
∂n |xn+0 − ∂w

∂n |xn−0

]
= w′(xn + 0)− w′(xn − 0).

It will be convenient to extend this problem by reflection to the entire real line.
Namely, we extend the functions u, v, w to be 2L-periodic functions which are even
with respect to the points x = 0 and L.

In this periodic extension, each of the original points xn (which we shall call
interfacial points) has a counterpart −xn (in fact, many counterparts, by periodicity).
The point x = 0 is not interfacial because u = −ν1 on the entire interval (−x1, x1).
A similar statement holds at x = L.

We must check whether the extended functions (u, v, w) continue to satisfy the
above equations. It is immediate that w′ = const (12) in each of the new intervals
between interfacial points. As for (14), we note that in going from xn to −xn, we must
replace νn by −νn, V by −V , and ∂

∂n by − ∂
∂n . Making these replacements changes

(14) into

−2(−νn)(−ẋn) = −[w′(−xn − 0)− w′(−xn + 0)],

which is still seen to be the form that (7) takes at the interfacial point −xn. Therefore,
(7) continues to be satisfied by the extended functions. Finally, (15) and (16) are still
valid.

Thus each solution of the problem on (0, L) gives rise to a 2L-periodic solution
on the whole line, even with respect to 0 and L. Conversely, any such solution on
the whole line, when restricted to (0, L), is a solution of the finite interval problem;
in fact, the evenness implies the boundary conditions (13) and (17). Thus the two
problems are equivalent.

In view of this, we shall usually confine our attention in the following to problems
on the whole line. In fact we no longer necessarily assume periodicity. The interfacial
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points {xn} will have indices n ranging over all positive and negative integers: −∞ <
n <∞.

Integrating (16), we have, for all n,

v′(x) = pn + (ū− νn)(x− xn), x ∈ [xn, xn+1],(18)

v(x) = vn + pn(x− xn) +
1

2
(ū− νn)(x− xn)

2.(19)

We now denote the interval lengths by ξn = xn+1 − xn. From (18) and (19),

v(xn+1)− v(xn)

ξn
= pn +

1

2
(ū− νn)ξn,(20)

pn+1 − pn = (ū− νn)ξn.(21)

And from (12) and (15),

w′(x) =
v(xn+1)− v(xn)

ξn
, x ∈ (xn, xn+1).(22)

Hence from (22), (20), and (14),

−2νnẋn = pn − pn−1 +
1

2
[(ū− νn)ξn − (ū− νn−1)ξn−1] .(23)

Substituting (21) into (23) and multiplying by νn/2, we find

−ẋn =
1

4
[(νnū− 1)ξn + (νnū+ 1)ξn−1],(24)

and hence

ξ̇n =
1

4
[(νnū+ 1)ξn+1 + 2(νnū− 1)ξn + (νnū+ 1)ξn−1] .(25)

Our main effort will be devoted to solving the initial-value problem associated
with (25). After the solution is found, it is straightforward to obtain x0(t) by solving
(from (24))

ẋ0 = −1

4
[(ν0ū− 1)ξ0 + (ν0ū+ 1)ξ−1] ,(26)

and hence

xn(t) = x0(t) +

n−1∑
0

ξj(t)(27)

for all n > 0, a similar representation holding for n < 0.
The evolution (25) is especially revealing in the case when ū = 0, for then it is a

space-discretization of the ordinary heat equation

ξ̇n =
1

4
[ξn+1 − 2ξn + ξn−1] ,(28)
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in which the index n plays the role of space, and ξn plays the role of temperature at
location n.

In the general case when ū 
= 0, the coefficients on the right side of (25) depend
on n, which in a sense represents the discretization of a heat equation for an inhomo-
geneous medium, the diffusivity being a function of the grid point which alternates
between one positive value and another.

If one thinks of the heat equation Ut = Uxx as being an efficient way to evolve
an initial function U(x, 0) of x toward a constant function equal to the spatial aver-
age of U(x, 0) (and it is, in the sense of being a steepest-descent rule for decreasing∫
Ux(x, t)

2dx), then (28) is the analogous efficient way to evolve a sequence of interfa-
cial points {xn(0)} to a configuration in which they are equally spaced, so that the ξn
are independent of n. A similar interpretation can be given to the case when ū 
= 0.
The outcome of this evolution process is studied carefully in sections 7 and 8.

Returning to problems on a finite interval [0, L] with N interfaces, we note that
the even extension to the whole line described above generates a solution of (25),
defined for all n, such that ξn is periodic in n of period 2N . In fact each interval
length ξn = xn+1 − xn for n = 1, 2, . . . , N − 1 has by reflection its counterpart
(−xn)− (−xn+1) (the length of a subinterval of [−L, 0]), which we may rename ξ−n.
In addition, there is the interval −x1, x1 (whose length we rename ξ0) spanning the
origin, and the interval length ξN spanning the point x = L. This makes a total of
2N subintervals covering a basic period interval (−xN−1, 2L − xN−1) of length 2L.
The periodic extension simply involves translating the basic period interval, with its
2N subintervals, periodically to cover the whole line.

In section 4.7 we prove the existence, given initial data ξn(0) which are 2N -
periodic in n, of a solution which remains 2N -periodic as time evolves. This, together
with the uniqueness of solutions of the general initial-value problem, implies that
periodic initial data always generate periodic solutions.

4. General solution. The purpose of this section is to provide an explicit so-
lution of the initial-value problem for (25).

The number ū in (25) was originally introduced in (3) as the spatial average of
u in a bounded domain. However, the system (25) has meaning independently of the
significance of ū, and we consider its solution for arbitrary ū ∈ (−1, 1). It will be seen
in (68) that stationary solutions are such that ū is indeed the average of u, and for
solutions on a finite interval, we see in section 8 that the evolution leads to a final
state with this same property.

For definiteness, we take

νn = (−1)n

throughout the rest of the paper, so that u = 1 on (xn, xn+1) for n even.

4.1. Formal solution in the case ū = 0. This case is straightforward and
involves solving (28) by Fourier transform. We first derive the solution in a formal
manner; the justification, along with that of section 4.2, will follow in section 4.5.

We represent

ξn(t) =
1

2π

∫ π

−π
α̃(k, t)einkdk,(29)
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the inverse transform being

α̃(k, t) =

∞∑
n=−∞

ξn(t)e
−ikn.(30)

The system (28) becomes

∂α̃

∂t
=

1

2
(cos k − 1)α̃,(31)

whose solution is

α̃(k, t) = Ã(k) exp

[
−1

2
(1− cos k)t

]
,(32)

and the spectral function Ã(k) can be obtained from the initial data {ξn(0)}. We
therefore have

ξn(t) =
1

2π

∫ π

−π
Ã(k) exp

[
−1

2
(1− cos k)t

]
einkdk.(33)

Conditions under which these equations, and those given below, have meaning in
the distribution sense will be given in section 4.5.

4.2. Formal solution in the case ū �= 0. We split the numbers ξn into two
sets, corresponding to even and odd n, and then rescale, so defining

ζn = (1− ū)ξ2n, ηn = (1 + ū)ξ2n+1.(34)

From (25) we have

1

1− ū
ζ̇n = ξ̇2n =

1

4
[(ū+ 1)ξ2n+1 − 2(1− ū)ξ2n + (1 + ū)ξ2n−1]

=
1

4
(ηn − 2ζn + ηn−1).(35)

Similarly,

1

1 + ū
η̇n =

1

4
(ζn+1 − 2ηn + ζn).(36)

Again, the system (35), (36) may be solved by Fourier transform. We represent

ζn(t) =
1

2π

∫ π

−π
α(k, t)einkdk, ηn(t) =

1

2π

∫ π

−π
β(k, t)einkdk,(37)

the inverse transforms being

α(k, t) =

∞∑
n=−∞

ζn(t)e
−ikn, β(k, t) =

∞∑
n=−∞

ηn(t)e
−ikn.(38)
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The system (35), (36) becomes

1

1− ū
α̇ =

1

4

[
β(1 + e−ik)− 2α

]
,

1

1 + ū
β̇ =

1

4

[
α(1 + eik)− 2β

]
.(39)

The general solution of this linear system is

α(k, t) = A(k)eσ+(k)t + λ−(k)B(k)eσ−(k)t,

β(k, t) = λ+(k)A(k)e
σ+(k)t +B(k)eσ−(k)t(40)

for arbitrary A, B, which will be allowed to be distributions (see section 4.4 below),
where

σ±(k) =
1

2

[
−1±

√
ū2 + (1− ū2) cos2 (k/2)

]
,(41)

λ±(k) =
2(2σ± + 1∓ ū)

(1∓ ū)(1 + e∓ik)
.(42)

It is seen, since ū 
= 0, that the σ± and λ± are real, C∞ is periodic in k with
period 2π, and for −π < k ≤ π,

σ−(k) ≤ −1

2
, σ+(k) < 0 when k 
= 0, σ+(0) = 0.(43)

For small k, we have

σ+(k) ∼ − 1

16
(1− ū2)k2.(44)

Note that the numerator and denominator in (42) both vanish when k→±π, but the
ratio remains bounded.

In all, we have

ζn(t) =
1

2π

∫ π

−π

[
A(k)eσ+(k)t + λ−(k)B(k)eσ−(k)t

]
einkdk,(45)

ηn(t) =
1

2π

∫ π

−π

[
λ+(k)A(k)e

σ+(k)t +B(k)eσ−(k)t
]
einkdk.(46)

The distributions A and B can be found from initial values ξn(0) by setting t = 0
in (40), (37) and inverting. Specifically,

A(k) = (1− λ−(k)λ+(k))
−1
∑
n

[ζn(0)− λ−(k)ηn(0)] e−ikn,(47)

B(k) = (1− λ−(k)λ+(k))
−1
∑
n

[ηn(0)− λ+(k)ζn(0)] e
−ikn.(48)
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4.3. Real solutions. If we should wish to consider all complex-valued solutions
of (35) and (36), A(k) and B(k) are arbitrary. However, our motivation dictates that
the solution be real and positive. Of course, the real and imaginary parts of any
complex solution of (35), (36) are also solutions, so we shall be justified in studying
complex ones. Apart from that, it may be of interest to characterize those distribu-
tions A and B which generate real solutions.

We shall show that ζn and ηn are real for all n if and only if

A(−k) = A(k), B(−k) = B(k)(49)

for all k. Taking the complex conjugate of (45), we obtain

ζn(t) =
1

2π

∫ π

−π

[
A(k)e−inkeσ+(k)t + λ−(k)B(k)e−inkeσ−(k)t

]
dk.(50)

By transforming the integration variable k→− k, noting that σ±(−k) = σ±(k) and
λ±(−k) = λ±(k), we obtain

ζn(t) =
1

2π

∫ π

−π

[
A(−k)einkeσ+(k)t + λ−(k)B(−k)einkeσ−(k)t

]
dk.

The condition that ζn must be real is that ζn(t) = ζn(t). Comparing this last repre-
sentation to (45), we see that the condition reduces to (49). The same analysis can
be applied to show that the reality of the ηn is also equivalent to (49).

By the use of (49), we have the representation

ζn(t) =
1

π

∫ π

0

Re
[
eink

(
A(k)eσ+(k)t + λ−(k)B(k)eσ−(k)t

)]
dk,(51)

ηn(t) =
1

π

∫ π

0

Im
[
eink

(
λ+(k)A(k)e

σ+(k)t +B(k)eσ−(k)t
)]

dk.(52)

This time the distributions A and B, defined only for k ∈ [0, π], need only satisfy (49)
when k = 0; otherwise, they are arbitrary.

4.4. Periodic distributions. We shall show (Theorem 1) that if the initial
values ξn(0) satisfy a growth condition with respect to n, then the above formal
analysis is justified, i.e., a global solution of the initial-value problem exists in the
form (45)–(48).

But first, we briefly review the Fourier transform theory for distributions.
We define a 2π-periodic distribution α to be a linear functional on the space of

C∞ 2π-periodic functions (test functions) φ(k), its value being denoted by 〈α, φ〉,
which is continuous in the sense that if {φj} is a sequence of test functions such that
for each m = 0, 1, . . .

lim
j→∞

(
d

dk

)m
φj(k) =

(
d

dk

)m
φ(k)

uniformly in k, then

lim
j→∞

〈α, φj〉 = 〈α, φ〉.

When α(k) is an integrable function, we use the convention that 〈α, φ〉 = 1
2π

∫ π
−π α(k)

φ(k) dk.
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Thus the right side of (45) is to be interpreted as

〈A, exp [σ+(k)t+ ink]〉+ 〈B, λ−(k) exp [σ−(k)t+ ink]〉
if A and B are distributions. The right side of (46) is interpreted similarly.

The continuity of distributions implies that if φ(k, t) is a test function for each t

such that for all m, ∂
mφ
∂km is continuously differentiable in t, then

d

dt
〈A, φ(·, t)〉 =

〈
A,

∂φ

∂t
(·, t)

〉
.(53)

In fact, we just express the t-derivatives as limits of difference quotients.
It is this property (53) that ensures, for any distributions A and B, that the

functions ζn(t), ηn(t) given by (45), (46) satisfy (35), (36). We just differentiate (45),
(46) and use (39), (40).

4.5. Justification.
Theorem 1. Assume that for some p > 0, C > 0 the initial data satisfy |ξn(0)| ≤

C(1+ |n|p) for all n. Then (47), (48) define distributions A, B, and (45), (46) provide
the solution of the initial-value problem for (35), (36) for all t ≥ 0.

Proof. We have just seen that if A and B are any distributions, then (45), (46)
provide a solution of (35), (36). It remains only to show (i) that the distributions A
and B can be obtained in terms of the initial conditions by the expressions (47), (48)
provided the right sides of those equations really are distributions, and (ii) that the
right sides are distributions provided that the initial data satisfy the growth condition.
The first task (i) is simply a consequence of the inversion formula. Therefore, we recall
the proof of that formula, which takes this form: If we set en(k) = eink and, for any
given distribution α, set αn = 〈α, en〉, then α can be reconstituted as

α =
∑
n

αnen.(54)

The meaning of (54) is simply that for every test function φ,

〈α, φ〉 =
∑
n

αn〈en, φ〉.(55)

The proof of this follows from the standard inversion formula for smooth functions:
Let φ be any test function. If we set φn = 〈en, φ〉, then

φ(k) =
∑
n

φnen(k),(56)

and the convergence is uniform. Applying the distribution α to (56) with use of the
continuity property of α, we get precisely (55), which completes the proof of (i).

Finally, we show (ii) that the stated growth condition implies that the right sides
of (47) and (48) are distributions. We do this for (47), as the argument for (48) is the
same. First, the growth condition on the ξn(0) implies

|ζn(0)|+ |ηn(0)| ≤ C(1 + |n|2p).(57)

(Here C is a generic constant.) Now let φ be any test function, and let Rn be the nth
term on the right of (47). We have the estimate

|〈Rn, φ〉| ≤ C(1 + |n|2p)|〈φ, en〉|.(58)
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But |〈en, φ〉| decays as |n|→∞ faster than any negative power of |n|, by virtue of the
infinite differentiability of φ (integrate by parts any number of times). Therefore,
using (58), we see that the series [1 − λ−(k)λ+(k)]

−1
∑

[ζn(0)− λ−(k)ηn(0)]〈en, φ〉
corresponding to the right side of (47) converges uniformly in k. We call the limit
〈A, φ〉. We omit the proof that this linear functional is continuous in the right sense,
so that it defines a distribution A.

4.6. Monochromatic solutions. By way of example, consider the case when
the initial data are

ξn(0) = eiγn(59)

for some real number γ, which (since eiγn is 2π-periodic in γ) we may and shall confine
to the interval 0 ≤ γ < 2π. Then

ζn(0) = (1− ū)ei2γn, ηn(0) = (1 + ū)eiγei2γn.(60)

We can then find A and B from (47), (48) and the solution from (45), (46). How-
ever, we take a more direct approach, supposing that the solution, in its dependence
on n, remains monochromatic, proportional to ei2γn. Thus in the spectral represen-
tation (45), (46), only the value k = 2γ appears. (It of course may happen that 2γ
lies outside the range of integration [−π, π] in (45), (46). However, σ±, A, B, and λ±
are all 2π-periodic functions of k, so we really mean the value of k (mod 2π) which
does lie in [−π, π].) The distributions A and B will be delta-functions.

Prompted by these considerations, we propose to find a solution in the form

ζn(t) = a+(γ) exp (σ+(2γ)t+ 2inγ) + λ−(2γ)a−(γ) exp (σ−(2γ)t+ 2inγ),(61)

ηn(t) = λ+(2γ)a+(γ) exp (σ+(2γ)t+ 2inγ) + a−(γ) exp (σ−(2γ)t+ 2inγ)(62)

for some constants a±(γ). We set t = 0 and replace the left sides of (61), (62) by the
right sides of (60). The resulting equations can be solved for a+ and a−:

a+(γ) = [1− λ+(2γ)λ−(2γ)]−1[(1− ū)− λ−(2γ)(1 + ū)eiγ ],
a−(γ) = [1− λ+(2γ)λ−(2γ)]−1[(1 + ū))eiγ − λ+(2γ)(1− ū)].

(63)

It is now straightforward to verify that (61), (62) is indeed the desired solution.

4.7. The solution for a finite interval. It was shown in section 3 that the
problem with N interfacial points on a finite interval is equivalent to a problem on
the whole real line, with the solution ξn required to be periodic in n of period 2N .

First of all, we represent the 2N -periodic initial data ξn(0) in the form

ξn(0) =

2N−1∑
m=0

cme
i 2π
2Nmn.(64)

These are 2N equations (n = 0, . . . , 2N − 1) for the 2N unknowns cm. They can be

solved by forming the combination
∑2N−1
n=0 ξn(0)e

−i 2π
2N nm and observing the relation

2N−1∑
n=0

ei
2π
2N np =

{
2N, p = 0,
0, p = 1, 2, . . . , 2N − 1.

(65)
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We find that (64) holds with

cm =
1

2N

2N−1∑
n=0

ξn(0)e
−i 2π

2N nm.(66)

From (64) and the linearity property, we conclude that the solution ξn(t) is a
linear combination of monochromatic solutions as in (61), (62), (63) with γ = 2πm

2N =
πm
N ≡ γm, m = 0, . . . , 2N − 1, and coefficients cm (66).

5. Positivity of the ξn. Suppose ξn(0) > 0 for all n. We show that it is
impossible for a finite number of these interval lengths to vanish at some finite positive
t = T > 0, the surrounding ones remaining positive. Specifically, given some finite
nonempty sequence S = {n : n1 ≤ n ≤ n2} (the simplest case is when n1 = n2), we
say that this set collapses at time T > 0 if (i) limt↑T ξn(t) = 0 and ξn(t) > 0 for t <
T close to T for n ∈ S, and (ii) ξn(t) > 0 for t ≤ T close to T for n = n1−1 or n2+1.

Theorem 2. If ξn(t) satisfy (25), no finite sequence collapses at any finite time.
Proof. If S collapses at time T , then for t < T close to T , ξn2

is arbitrarily small,
but ξn2+1 is bounded away from zero. Therefore, it follows from (25) with n = n2

that ξ̇n2 > 0, contradicting its approach to 0.
This leads to the following global existence result.
Corollary 1. Any positive initial data satisfying the hypotheses of Theorem 1

give rise to a global positive solution of (25) or (35), (36).

6. Stationary and similarity solutions. First, we exhibit the stationary so-
lutions on the whole line. From (35), (36) with the left side set equal to 0, we derive
the result that ζn+1 − ζn ≡ α and ηn+1 − ηn ≡ β are independent of n. Therefore,
ζn = ζ0 + nα, ηn = η0 + nβ. But, again using (35), we find α = β and η0 = ζ0 − α

2 ,
so that

ζn = ζ0 + nα, ηn = ζ0 +

(
n− 1

2

)
α.(67)

This provides a two-parameter family of solutions, the parameters being α and ζ0.
But since we want solutions which are positive for each n, we should select α = 0.

In the case when α = 0, we obtain constant solutions

(1− ū)ξ2n = ζn = ηn = (1 + ū)ξ2n+1 ≡ ζ0 for all n.

For these constant solutions, the interval lengths alternate between ζ0
1−ū and ζ0

1+ū . The
“average” value of u can then be verified to be

ξ2n − ξ2n+1

ξ2n + ξ2n+1
=

1
1−ū − 1

1+ū
1

1−ū + 1
1+ū

= ū.(68)

It may be checked that these stationary solutions correspond to the choice

A(k) = 2πζ0δ(k), B(k) = 0(69)

in (45), (46). The stationary solutions shown above, which grow linearly in n and
which we had to reject, correspond to A(k) being an imaginary constant times δ′(k)
and B(k) = 0. Positive solutions which grow quadratically in n may also be con-
structed; they are not stationary, but rather they grow linearly in t. For them, the
function A(k) is a constant times δ′′(k). This process may be continued to obtain
similarity solutions corresponding to any derivative of δ(k).
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7. Stability for problems on the whole line. Given a stationary solution
{ξ0
n} (or any other solution, for that matter), we now endeavor to characterize initial

data ξn(0) such that the resulting evolution ξn(t) will converge to {ξ0
n} as t→∞.

After that, we consider conditions under which the corresponding result holds for the
interface locations xn(t).

Since our basic problem (25) is linear and homogeneous, it suffices to find solutions
which decay to 0 as t→∞; those solutions (which could now be negative) will then
be considered as perturbations of the basic solution {ξ0

n}, and the only additional
restriction we might wish to impose is that the basic solution plus the perturbation
be real and positive initially (hence at all later times).

We give two characterizations of decaying solutions.
Theorem 3. Let ξn(0)→0 as |n|→∞. Then

max
n
|ξn(t)|→0 as t→∞.(70)

Remark. Part of the proof is a simple comparison argument for the system (35),
(36), which is quasi-monotone. More detailed results based on monotonicity argu-
ments can be derived.

Theorem 4. Assume the spectral pair A(k), B(k), obtained from the initial data
by (47), (48), satisfies any one of the following, or is a linear combination of pairs,
each satisfying one of the following. Then limt→∞ ξn(t) = 0 uniformly in n. In case
1, the convergence is exponential; in the second case, it may be algebraic of order
t(α−1)/2.

1. A(k) = c1δ(k− k0) and B(k) = c2δ(k− k1) for some constants ci and ki with
k0 
= 0.

2. |A(k)|+ |B(k)| ≤ c|k|−α for some constants c and α < 1.
Remark. In case 2, Theorem 3 applies, because it can be shown that the initial

values decay as |n|→∞. Theorem 4 gives the rate of decay.
We prove Theorem 4 first and then Theorem 3.
Proof of Theorem 4. In the first case, we get from (45) that ζn(t) =

c1
2π e

σ+(k0)teink0

+ c2λ−(k1)
2π eσ−(k1)teink1 , and the conclusion follows for the ζn because, by hypothesis,

σ+(k0) and σ−(k1) are negative. The same argument works for the ηn as well.
This result shows that for time decay it is not necessary for the initial values of

the ξn to approach 0 as |n|→∞; examples are the monochromatic solutions in section
4.6 with γ 
= 0.

In the second case, we again use (45), and (44) as well, to obtain for some c, β > 0

|ζn(t)| < c

∫ ∞

−∞
|k|−αe−βk2tdk

= [setting κ = k
√
t] c

∫ ∞

−∞
t(α−1)/2|κ|−αe−βκ2

dκ = ct(α−1)/2,(71)

and the conclusion again follows.
Lemma 1. Let ξn(0)→0 as |n|→∞. Then for all t ≥ 0, X(t) ≡ maxnmax [|ζn(t)|,

|ηn(t)|] ≤ X(0).
Proof. Defining

zn =

{
(1− ū)ξn,

(1 + ū)ξn,

n even,

n odd,
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we represent X(t) = maxn |zn(t)| and write (35), (36) (or (25)) in the form

4

1− (−1)nū żn = zn+1 − 2zn + zn−1.(72)

For any ε > 0, let yn = zn − εn2 − 2εt, so that from (72)

4

1− (−1)nū ẏn = yn+1 − 2yn + yn−1 + 2ε− 8ε

1− (−1)nū .(73)

We have yn(0) ≤ X(0) for all n and (since the zn are bounded) yn(t) < 0 for large
n. If yn(t

∗) > X(0) for some n, t∗ > 0, maxn,t∈[0,t∗] yn(t) is achieved at some
n = n1, t = t1, where ẏn1

(t1) ≥ 0, yn1+1(t1)−2yn1(t1)+yn1−1(t1) ≤ 0. Substituting
these inequalities into (73), we obtain that the left side is ≥ 0 and the right side is
≤ −2ε < 0. This contradiction implies that yn(t) ≤ X(0) for all n, t.

Since this is true for every choice of ε > 0, we conclude that zn(t) ≤ X(0).
Similarly, we get that zn(t) ≥ −X(0), so that X(t) ≤ X(0).

Lemma 2. If ξn(0) = 0 for |n| large enough, then ξn(t)→0 as t→∞, uniformly
in n.

Proof. In (47) and (48) there are only a finite number of terms in the summations
on the right. Therefore, A(k) and B(k) are bounded functions of k, and the second
hypothesis of Theorem 4 holds with α = 0.

Proof of Theorem 3. Given any ε > 0, let N(ε) be such that |ξn(0)| < ε for
|n| > N(ε). Write ξn(t) = ξ1

n(t) + ξ2
n(t), where ξ1

n(t) is the evolution starting from

ξ1
n(0) =

{
ξn(0),

0,

|n| ≤ N(ε),

|n| > N(ε).

By Lemma 2, ξ1
n(t)→0 as t→∞, so let T (ε) be such that |ξ1

n(t)| < ε for t > T (ε),
for all n. Since |ξ2

n(0)| < ε, we have from Lemma 1 that |ξ2
n(t)| < ε for all n and t.

Therefore, |ξn(t)| < 2ε for t > T (ε) and all n. This establishes the convergence.
Theorem 5. Assume condition 2 of Theorem 4 holds with α < 0. Then for each

m, the limit limt→∞ xm(t) = xm(∞) exists. The limit is a stationary configuration.
Proof. We may use (26), (34), (37), (40), (44) to obtain an integral representation

of ẋ0(t) in terms of A and B. For the convergence of x0(t) to a limit, it suffices that∫∞
1
|ẋ0(t)| dt <∞.

Proceeding as in the proof of Theorem 4 leads to the estimate |ẋ0(t)| ≤ ct
α
2 −1.

This is integrable as required if α < 0.

8. Global stability in the case of a finite interval. We showed in section
4.7 that in this case, the evolution reduces to that of a finite linear combination
of monochromatic evolutions. So we briefly return to the question of the decay of
monochromatic solutions considered in section 4.6. We give the argument only for
the more difficult case ū 
= 0.

In view of (43), it is seen from (61), (62) that every monochromatic solution
decays exponentially to zero unless σ+(2γ) = 0, i.e., γ = 0 or π. The rate is eσ+(2γ)t.
We now consider these two exceptional cases in more detail, beginning with the case
γ = 0. We calculate from (41), (42)

σ+(0) = 0, σ−(0) = −1, λ+(0) = 1, λ−(0) = −1− ū

1 + ū
.(74)
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Thus from (63)

a+ = 1− ū2, a− = ū(1 + ū),(75)

and by (61), (62)

ζn(t) = (1− ū2)− 1−ū
1+ūe

−t,
ηn(t) = (1− ū2) + ū(1 + ū)e−t.

(76)

In the limit as t→∞, therefore, ζn and ηn approach the limit 1− ū2 exponentially,
independently of n; hence

ξ2n(∞) = 1 + ū, ξ2n+1(∞) = 1− ū,(77)

so that the limiting sizes of the intervals alternate between 1 + ū and 1 − ū. It is
easily verified (section 6) that the average value of u in this configuration is ū. (Note
again that we have not assumed that the initial data for this solution have this value
for their average; the number ū is, for the purpose of the above calculations, just a
parameter in the differential equations.)

Finally, consider the last case, γ = π. We have σ+(2π) = 0. By periodicity, the
values of the σ’s and λ’s are the same as in (74), but the factor eiγ in (63) is now
−1. It follows that a+ = 0 and a− = −(1 + ū). Because a+ = 0, this monochromatic
solution decays to 0 exponentially.

Therefore, the only one which does not is the one with γ = 0.
Therefore, in the linear combination of monochromatic solutions giving the solu-

tion of the problem on a finite interval, arising from the representation (64) of the
initial data, all terms decay to zero except the one with m = 0. That case was
analyzed in (76) above. We conclude that if (64) holds, then

ξ2n(∞) = c0(1 + ū), ξ2n+1(∞) = c0(1− ū).(78)

Finally, by (66), c0 = 1
2N

∑2N−1
n=0 ξn(0) =

L
N ≡ ξ̄, where L is the length of the finite

interval we are considering and ξ̄ is the initial (and also final) average of the ξn.
In short, we have found that, irrespective of the initial values of the N intervals

making up the basic x-interval of length L, the lengths of the intervals evolve to
become semiuniform, i.e., the even ones all have the same length ξ̄(1 + ū), and the
odd ones as well, with lengths ξ̄(1− ū). Those two lengths are such that the average
value of u is ū, and the total length is L. This final stationary solution is therefore
globally stable.

Theorem 6. Given any finite N and any initial data (64), the solution of the
initial-value problem on a finite interval satisfies

ξ2n(∞) = ξ̄(1 + ū), ξ2n+1(∞) = ξ̄(1− ū).

In view of the exponential convergence of the ξ’s and the proof of Theorem 5, we
also have convergence of the interfaces xn(t), although not necessarily to the locations
of the original unperturbed locations; generally there will be a shift.

9. Nucleation. Nucleation in this context is the opposite of collapsing (see sec-
tion 5). It involves inserting two (or more) new spurious interfaces enclosing a spurious
interval of 0 length which then grows. Given a solution {xn(t)}, an arbitrary time
t∗ > 0, and an arbitrary point x∗ in the interior of one of the intervals (say, (x0, x1)
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for definiteness) at time t∗, one may consider a new initial-value problem for inter-
val lengths ξ∗n(t) starting at t∗ with initial values of ξ∗n(t

∗) obtained as follows. Set
ξ∗0(t

∗) = 0; this corresponds to beginning with an interval of 0 length located at the
point x∗. Also set ξ∗1(t

∗) = x1 − x∗ and ξ∗−1(t
∗) = x∗ − x0, and require the remaining

ξ∗n(t
∗) to match with some ξm(t∗) for the appropriate m, depending on n.
An argument similar to that in the proof of Theorem 2 shows that at the initial

time, the derivative ξ̇∗0(t
∗) > 0, so that the “ghost interval” ξ∗0 immediately develops

positive length, making it a real interval. The new initial-value problem then has a
global positive solution.

In an easy generalization of this procedure, one can think of the point x∗ as
representing a collection of any positive odd number of ghost intervals; then again,
they all immediately become intervals of positive length. Finally, any interface located
at position x∗ at time t∗ can be considered to be an interface abutting an even number
of ghost interfaces on one side, which again move apart to generate an even number
of new intervals.

10. Energy considerations. We consider the FBP on a finite interval (0, L)
with N interfacial points and with ū denoting the average value of u constant in time.

For any ε > 0, the energy

Eε[u] =
1

L

∫ L

0

(
ε

2
|u′|2 + 1

ε
F (u) +

1

2
(v′)2

)
dx(79)

is a Lyapunov functional [5] for the original model problem (1)–(3). (Recall that v is
given in terms of u by (3).)

The local minima of (79) were considered by Ren and Wei [9]; they showed that
they are approximated by the local minima of the Gamma-limit functional

E0[N, ξ] =
µN

L
+ E∗[N, ξ],(80)

where µ =
∫ 1

−1

√
2F (u)du, ξ = (ξ1, . . . , ξN ), and

E∗[N, ξ] =
1

L

∫ L

0

1

2
(v′(x))2dx.(81)

The domain of (79) consists of L2 functions u(x) on (0, L) with prescribed average
ū; the value of the functional may be +∞. The reduced energy (81) can also be
interpreted as a functional of functions u, but we write it as depending on N and
the ξn. It is calculated as follows. Let ξn be given. Setting p0 = 0, one calculates in
succession the numbers pn from (21) and then the function v′(x) from (18). The fact
that ū is the average of u guarantees that v′ = 0 at x = 0, L. This function is then
used in the definition (81).

It can also be shown that in our 1D scenario, E∗[N, ξ] is a Lyapunov functional
for the FBP (12)–(17). Since the first part of (80) depends only on N and N doesn’t
change, E0[N, ξ] is also a Lyapunov functional.

If one allows N to be variable, then the global minimum of E0[N, ξ] is attained
when N = Nm, a value which depends only on L and can be calculated, and when
the numbers ξn, n = 0, . . . , Nm form a stationary solution (section 6).

Calculations show (see e.g. [9]) that Nm is an integer differing from(
1

24µ

)1/3

L(82)
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by no more than unity.

The spacing which minimizes this energy is then approximately (24µ)
1/3

, which
is independent of L.

However, this global minimum has little relevance for the 1D dynamical FBP
because N remains constant. The artificial nucleation process described in section 9
allows for only an increase, not a decrease, in N . It is likely that when ε� 1, layered
solutions of the original PDEs (1)–(3) follow the evolving solution of the FBP, so that
the global minimum will not be very important for their evolution either.

There remains the question as to whether solutions of the original problem that
begin without layers will naturally develop layers with the preferred spacing. In this
connection it is important to look at the dominant modes arising from initial data
which are a small perturbation of the constant solution u ≡ ū, according to the
evolution (1)–(3). It turns out that the dominant modes have wavelength of the order
O(ε), rather than O(1), which is characteristic of the optimal spacing.

11. Discussion. The energy-conserving, mass-preserving (if u is interpreted as
a scaled mass density) pattern-forming system of PDEs (1)–(3) proposed by Bahiana
and Oono and by Nishiura and Ohnishi has, as the latter authors showed, a formal
limiting FBP, and this connection was justified in a weak sense for radial solutions by
Henry. In the 1D case, this latter problem is shown to reduce to a discretized heat
equation. These equations have an explicit solution. In fact, we have the representa-
tion (45)–(48) (or (33) if ū = 0) for the solution in terms of its initial data.

Generally, it is shown that stationary configurations (in which the intervals where
u = 1 all have the same length, and the same is true where u = −1) have a large basin
of stability. When, for example, the initial data ξn(0) approach a stationary solution
as |n|→∞, the evolution approaches that same configuration uniformly in n as t→∞.

The system (35), (36), being quasi-monotone, enjoys a maximum principle, which
we have in effect used in Lemma 1. It can be used to prove other properties of the
solutions not considered here, such as comparison principles.

By the nature of the FBP, interfaces in one dimension are neither created nor
destroyed. (However, an artificial nucleation process was described in section 9.)
Therefore, when the domain is a finite interval, stability is of course within the class
of evolutions with a given number of interfaces. Ren and Wei [9] considered, for
the original problem (ε > 0) in one dimension, the question of which configurations
minimize the energy Eε (79). Here the minimization is over all functions, so in a
sense the number of interfaces (which appear as transition layers in this case) can
be varied. They obtained an “optimal” spacing of the order O(1) with the spacing
given in accordance with (82). In [8, 10], the same analysis was done for a free
energy corresponding to the alternative evolution (1), (4), (3). Similar results were
obtained, but their optimal spacing was O(ε̂1/3) (as ε̂→0). If we invoke the scaling
procedure connecting their energy functional with ours, their spacing of order O(ε̂1/3)
corresponds to our spacing of O(1) as ε→0.

The role of global (as opposed to local) minimizers is much more important for
problems in higher dimensions than in one dimension, because in one dimension there
is no mechanism for changing the number of interfaces once that number has been
established by the initial data. Therefore, there is no mechanism for adjusting the
spacing to achieve energy optimality.
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Abstract. We study the effect of viscosity on the large time behavior of the viscous Burgers
equation by using a transformed version of Burgers (in self-similar variables) that captures efficiently
the mechanism of transition to the asymptotic states and allows us to estimate the time of evolution
from an N-wave to the final stage of a diffusion wave. Then we construct certain special solutions of
diffusive N-waves with unequal masses. Finally, using a set of similarity variables and a variant of the
Cole–Hopf transformation, we obtain an integrated Fokker–Planck equation. The latter is solvable
and provides an explicit solution of the viscous Burgers equation in a series of Hermite polynomials.
This format captures the long-time–small-viscosity interplay, as the diffusion wave and the diffusive
N-waves correspond, respectively, to the first two terms in the Hermite polynomial expansion.
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1. Introduction. The Cauchy problem for the viscous Burgers equation

ut + uux = µuxx, x ∈ R , µ, t > 0,

u(x, 0) = u0(x), x ∈ R,(1.1)

has, since the pioneering work of Hopf [7], served as a paradigm for the development
of the theory of shock waves (see [4] and references therein).

In the limit as the viscosity µ → 0, the solution uµ of (1.1) converges to the
entropy weak solution u of the inviscid Burgers

ut + uux = 0, x ∈ R , t > 0,

u(x, 0) = u0(x), x ∈ R,(1.2)

satisfying the Oleinik condition [16]

u(x+, t) ≤ u(x−, t) .

The asymptotic behavior of (1.2) is an N-wave, whose positive and negative masses
are determined by the positive and negative invariants

p0 = − inf
x

∫ x

−∞
u0dy , q0 = sup

x

∫ ∞

x

u0dy ,

where − p0 + q0 =M0 =

∫
R

u0(x)dx,

(1.3)
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of the initial data [7, 12]. On the other hand, the large time behavior of uµ for fixed
µ is characterized by the well-known diffusion wave of mass M0 (see [7]). Therefore,
the reversal of order in the successive limit passages t→∞, µ→ 0 leads to different
results; in other words, the long-time response of the viscous Burgers equation exhibits
sensitive dependence on the viscosity.

The objective of the present article is to provide a quantitative understanding of
the long-time–small-viscosity interplay for the Burgers equation. To place the problem
in context, the reader is referred to the numerical runs of section 4 for the evolution of
solutions to (1.1), when the viscosity µ� 1. These indicate that at an initial stage uµ

evolves from the initial state u0 into a saw-tooth profile; at a second stage, the waves
interact eventually producing an approximate N-wave; this last structure persists for
a very long time, but eventually the smallest of the positive and negative masses is
consumed, and thereafter uµ looks like the final asymptotic state of a diffusion wave.

The Burgers equation is invariant under the group of scaling transformations
x → cx, t → c2t, u → u/c, and under time and space translations, t → t + a and
x→ x+ b. This property suggests a transformation to similarity variables,

s = ln(t) , ξ = x/
√
t , w(ξ, s) =

√
t u(x, t) ,(1.4)

which puts (1.1) in the form

ws +

(
1

2
w2 − 1

2
ξw

)
ξ

= µwξξ, ξ , s ∈ R, µ > 0 .(1.5)

The diffusion waves (see (2.6)) are the steady states of (1.5) and determine its large
time behavior (see [7] and sections 2 and 3). In the limit µ → 0, solutions of (1.5)
satisfy the (self-similar variant of the) inviscid Burgers equation

ws +

(
1

2
w2 − 1

2
ξw

)
ξ

= 0,(1.6)

subject to the Oleinik entropy condition

w(ξ+, s) ≤ w(ξ−, s).(1.7)

The admissible steady states of (1.6)–(1.7) are the two parameter family

Np,q(ξ) =

{
ξ, −

√
2p < ξ <

√
2q,

0, otherwise,

with p, q positive constants. They are precisely the self-similar form of the N-waves,
and p, q measure, respectively, the negative and positive mass of the N-wave.

The similarity forms (1.5) and (1.6)–(1.7) provide a convenient formulation for
performing long-time numerical runs as well as a framework for a qualitative explana-
tion of the various regimes of the problem. In the first stage the solution evolves from
u0 to a saw-tooth profile via the usual compression-attenuation mechanism of hyper-
bolic equations. In the next stage the waves interact and produce an approximate
N-wave. In both of these stages the effect of diffusion lies only in selecting admissible
discontinuities, and the evolution is essentially governed by the convection equation
(1.6)–(1.7). The N-waves are steady states for (1.6), but, due to the presence of
small diffusion, they are only approximate solutions for (1.5). This discrepancy drives
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the evolution in the last stage from an approximate N-wave to the steady state of
(1.5), a diffusion wave. This stage is a very slow transition and a manifestation of
metastability driven by the small diffusion.

A number of techniques have been developed for treating asymptotic behavior
problems for nonlinear convection (see, e.g., [2, 3, 13]) or convection-diffusion equa-
tions (see, e.g., [5, 6, 14]). Here we exploit the similarity structure based on the
invariances of the Burgers equation. This perspective is initiated in Hopf [7] and is
developed in Tartar [20], Liu–Pierre [13] (for convection equations), and Escobedo–
Vazques–Zuazua [5, 6] (for various multidimensional convection-diffusion equations
with power laws). The aim is to pursue quantitative explanations of the various
regimes; the simplicity of the equation allows us to obtain a complete picture, includ-
ing the interesting regime of small-viscosity long-time interaction.

We begin, in sections 2–3, with a review of some of the standard hyperbolic theory
of L1-contraction and Oleinik inequality for the self-similar Burgers (1.5). We show
how to use a special Lyapunov function to establish the asymptotic in time profile
(for µ fixed) of a diffusion wave (see Theorem 3.3). The results in sections 2–3 can be
established with different methods, but we draw attention to the fact that the study
of (1.5) provides optimal convergence results with little effort. They also set the stage
for section 4, where we provide explanations and predictions for the numerical runs
based on heuristic arguments and theoretical results.

In the last two sections we turn our attention to the issue of metastability. In
section 5, we generalize a construction of Whitham [21] and provide a special solution
corresponding to a diffusive N-wave with unequal positive and negative masses. This
solution reads

up,q(x, t+ 1) =

√
µ

t+ 1
vp,q

(
x√

4µ(t+ 1)
, t

)
,

where vp,q(ξ, t) =

B√
π
e−ξ2

+ 2A 1√
t+1

ξe−ξ2

1− B√
π

∫ ξ

−∞ e−ζ2dζ +A 1√
t+1

e−ξ2
,

(1.8)

where B = 1 − e(p−q)/2µ and A = ep/2µ + O(B) are constants determined via the
positive and negative masses p, q of the initial data. The solution up,q converges to
an N-wave as µ → 0, which suggests the terminology diffusive N-wave for up,q. It
captures, in an explicit manner, the slow transition from an approximate N-wave to
the final stage of a diffusion wave.

Motivated by the format of (1.8), we use in section 6 appropriate similarity vari-
ables and a variant of the Cole–Hopf transformation to transform the Burgers equation
into an integrated version of a Fokker–Planck equation. Unlike the Laplace opera-
tor on the real line, the present operator (6.7) has a discrete spectrum. The process
yields an explicit formula for the solution of the Burgers equations in terms of Hermite
polynomials:

u(x, t) =

√
µ

t+ 1
v

(
x√

4µ(t+ 1)
, t

)
,

where v(ξ, t) = −∂ξψ
∞
M +

∑∞
n=0an(t+ 1)

−n+1
2 ∂ξ

(
Hn(ξ)e

−ξ2)
ψ∞
M +

∑∞
n=0an(t+ 1)

−n+1
2 Hn(ξ)e−ξ2

,

(1.9)

where ψ∞
M is the potential of a diffusion wave of mass M (see (6.16)), Hn are the

Hermite polynomials, and the Fourier–Hermite coefficients an are computed explicitly
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from the data (see (6.18)). The asymptotic profile of the diffusion wave corresponds

to keeping only the first term in the expansion, −∂ξψ
∞
M

ψ∞
M
, while the diffusive N-wave

(1.8) corresponds to keeping the first two terms in the expansion and describes the
first order correction of the general solution beyond the diffusion wave.

2. Self-similar Burgers—preliminaries. Some of the basic properties of the
viscous Burgers equations are directly linked to the self-similar Burgers equation

ws +

(
1

2
w2 − 1

2
ξw

)
ξ

= µwξξ.(2.1a)

This problem is obtained from (1.1) in two different ways. If the similarity transfor-
mation (1.4) is used, then one obtains (2.1a) set in the interval (ξ, s) ∈ R × R, and
the initial data are projected back to −∞. Alternatively, and due to the invariance
t→ t+ 1, one may use the transformation

s = ln(t+ 1) , ξ = x/
√
t+ 1 , w(ξ, s) =

√
t+ 1u(x, t)

and obtain the initial value problem consisting of (2.1a) set on (ξ, s) ∈ R×R
+ subject

to data

w(ξ, 0) = w0(ξ).(2.1b)

In either case the total mass remains invariant under the transformation, and the
initial mass is preserved: ∫

R

w(ξ, s)dξ =M0 <∞.

Let wµ be the solution of (2.1). In the limit µ → 0, wµ → w a.e., where w is a
weak solution of the initial value problem

ws +

(
1

2
w2 − 1

2
ξw

)
ξ

= 0,

w(ξ, 0) = w0(ξ),

(2.2)

that satisfies the Oleinik (entropy) condition

w(ξ+, s) ≤ w(ξ−, s).(2.3)

2.1. Steady states. The admissible steady states of (2.2) are given by the two
parameter family

Np,q(ξ) =

{
ξ, −

√
2p < ξ <

√
2q,

0, otherwise,
(2.4)

parametrized by the positive constants p and q measuring, respectively, the mass of
the negative and positive parts of the steady state. These solutions are precisely the
N-waves, when viewed on the self-similar coordinates, and are denoted by Np,q. If the
total mass M is prescribed, there is a one parameter family Np,p+M corresponding to
the mass M .
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The equilibria of (2.1a) (for µ > 0) satisfy the equation(
1

2
G2 − 1

2
ξG
)′
= µG′′(2.5)

and are computed by the formula

GM (ξ) =
√
µ (1− e−M/2µ) e−ξ2/4µ

1− (1− e−M/2µ) 1√
π

∫ ξ/
√

4µ

−∞ e−ζ2dζ
, M ∈ R.(2.6)

The denominator in (2.6) does not vanish, and the total mass of GM is computed by

∫ ∞

−∞
GMdξ = −2µ

∫ ∞

−∞
∂ξ ln

(
1− (1− e−M/2µ)

1√
π

∫ ξ/
√

4µ

−∞
e−ζ2

dζ

)
dξ =M.(2.7)

The steady states of the viscous problem are thus determined by the total mass M
and correspond to the well-known diffusion waves in self-similar coordinates. We
summarize some of their properties below.

Lemma 2.1. Let GM be a diffusion wave given by (2.6). Then
(i) G0(ξ) = 0 and

∫∞
−∞ GMdξ =M ;

(ii) GM (ξ) > GM ′(ξ) for M > M ′;
(iii) for any bounded function f(ξ) with a compact support, there exists M > 0

such that G−M (ξ) ≤ f(ξ) ≤ GM (ξ);
(iv) GM → N0,M as µ→ 0 for M > 0 and GM → N|M |,0 as µ→ 0 for M < 0.

2.2. Oleinik inequality. We present a quick derivation of some well-known
properties viewed from the perspective of (2.1a). Recall that (2.1a) arises from the
transformation (1.4) and is set on R × R. The derived estimates are independent of
µ and s. We begin with the analogue of the Oleinik estimate [16].

Lemma 2.2. The solution w(ξ, s) of (2.1a) satisfies

wξ(ξ, s) ≤ 1, s, ξ ∈ R.(2.8)

Proof. The quantity z = wξ satisfies

zs +

(
w − 1

2
ξ

)
zξ + z(z − 1) = µzξξ.(2.9)

If z has an interior maximum, then the value at the maximum is between 0 and 1.
Since

wξ(ξ, ln t) = tux(
√
tξ, t) ,(2.10)

for smooth data u0 we have lims→−∞ wξ(ξ, s) = 0, and (2.8) follows. If the data are
not smooth, they may be approximated by smooth data in a standard way, and we
conclude (2.8) by a density argument.

Consider the functions

W (ξ, s) =W−(ξ, s) =
∫ ξ

−∞
w(ζ, s)dζ,

W+(ξ, s) =

∫ ∞

ξ

w(ζ, s)dζ =M0 −W (ξ, s)

(2.11)
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and the quantities

p(s) = − inf
ξ
W (ξ, s) ,

q(s) = sup
ξ

W+(ξ, s) =M0 + p(s) .
(2.12)

p(s) and q(s) are time-invariants for solutions of the inviscid problem [12], but for
the viscous problem they do not remain constant anymore. W satisfies a viscous
Hamilton–Jacobi equation

Ws +
1

2
(Wξ − ξ)Wξ = µWξξ.(2.13)

As a simple implication of the maximum principle and Lemma 2.2, we have the
following lemma.

Lemma 2.3. Let w(ξ, s;µ) be the solution of (2.1a), let W be its integral given
by (2.11), and let A = − infW (ξ, 0) and B = supW (ξ, 0) ≥ 0. Then W and w are
uniformly bounded by

−A ≤W (ξ, s) ≤ B,(2.14)

|w(ξ, s)| ≤
√
2(A+B).(2.15)

Proof. The estimate (2.14) follows from the maximum principle. To show (2.15),
suppose that w(ξ1, s) >

√
2(A+B) for some s, ξ1. Let ξ0 < ξ1 be such that w(ξ0) = 0

and w(ξ, s) > 0 on (ξ0, ξ1). (If w > 0 on (−∞, ξ1), we take ξ0 = −∞.) Since wξ ≤ 1,
we have

∫ ξ1
ξ0

w(ξ, s)dξ > A+B and

W (ξ1, s) =W (ξ0, s) +

∫ ξ1

ξ0

w(ξ, s)dξ > B,

thus violating (2.15). If it is assumed that w(ξ1, s) < −√2(A+B), then similar
arguments lead to a contradiction.

2.3. L1-contraction theory. From now on, consider the initial value problem
(2.1) consisting of (2.1a) and (2.1b) and set (ξ, s) ∈ R×R

+. For data w0 ∈ L∞∩L1 this
problem has a unique smooth solution. Let w1, w2 be two solutions; their difference
v = w1 − w2 satisfies the linear parabolic equation

vs +
1

2
((w1 + w2 − ξ)v)ξ = µvξξ,

v(ξ, 0) = w1(ξ, 0)− w2(ξ, 0).

(2.16)

The integral

V (ξ, s) =

∫ ξ

−∞
v(ζ, s)dζ =

∫ ξ

−∞
w1(ζ, s)− w2(ζ, s)dζ

satisfies

Vs +
1

2
(w1 + w2 − ξ)Vξ − µVξξ = 0.(2.17)
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Let v+ = max{v, 0} = (v + |v|)/2.
Theorem 2.4. Let w1, w2 be classical solutions of (2.1) with initial data w1(ξ, 0)

and w2(ξ, 0). Then∫ ∞

−∞
|w1(ξ, s)− w2(ξ, s)|dξ ≤

∫ ∞

−∞
|w1(ξ, 0)− w2(ξ, 0)|dξ,(2.18)

∫ ∞

−∞
(w1(ξ, s)− w2(ξ, s))

±dξ ≤
∫ ∞

−∞
(w1(ξ, 0)− w2(ξ, 0))

±dξ.(2.19)

Furthermore, the quantity ∫ ∞

−∞
(w1(ξ, s)− w2(ξ, s))

±dξ(2.20)

decreases strictly in s, unless either w1(ξ, s) ≤ w2(ξ, s) or w2(ξ, s) ≤ w1(ξ, s) for all
ξ ∈ R.

Proof. The first part is a direct consequence of the standard contraction theory
for convection-diffusion equations; see [8, 18]. We present a proof of the second part,
which is based on a detailed analysis of a linear equation

vs + (a(ξ, s)v)ξ = µvξξ,(2.21)

with a(ξ, s) continuously differentiable and |aξ| ≤M .

Step 1. Let v+ = max{v, 0} = v+|v|
2 . Then ∂ξv

+ = vξχ{v>0}, ∂sv+ = vsχ{v>0},
and v+ ∈W 1,∞(R× R

+). Also set

V +(ξ, s) =

∫ ξ

−∞
v+(ζ, s)dζ =

∫ ξ

−∞
(w1 − w2)

+(ζ, s)dζ,(2.22)

which (due to the integrability of v and vs) enjoys the regularityW 2,∞ in ξ andW 1,∞

in s. We show in this step that v+ and V + satisfy

(v+)s + (a(ξ, s)v
+)ξ ≤ µ(v+)ξξ,(2.23)

(V +)s + a(ξ, s)(V +)ξ ≤ µ(V +)ξξ(2.24)

in the sense of distributions.
To see that, consider the functions

ψn(v) =




0, v ≤ 0,
nv, 0 ≤ v ≤ 1/n,
1, v ≥ 1/n,

Ψn(v) =

∫ v

−∞
ψn(τ)dτ =




0, v ≤ 0,
nv2

2
, 0 ≤ v ≤ 1/n,

v − 1

2n
, v ≥ 1/n.

Then Ψn(v) satisfies

(Ψn(v))s + (aΨn(v))ξ + aξ(vψn(v)−Ψn(v)) = µ(Ψn(v))ξξ − µψ′
n(v)v

2
ξ

≤ µ(Ψn(v))ξξ.
(2.25)
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Using the properties

Ψn(v)→ v+, 0 ≤ Ψn(v) ≤ v+,(2.26)

vψn(v)−Ψn(v)→ 0 , |vψn(v)−Ψn(v)| ≤ 1

2
v+,(2.27)

we pass to the limit n→∞ in (2.25) and obtain (2.23).
Next we consider the integrated version of (2.25),

∂s

∫ ξ

−∞
Ψn(v)dζ + aΨn(v) +

∫ ξ

−∞
aξ(vψn(v)−Ψn(v))dζ

= µ∂ξΨn(v)− µ

∫ ξ

−∞
ψ′
n(v)v

2
ξdζ ≤ µ∂ξΨn(v),

(2.28)

and use the properties (2.25), |aξ| ≤M , and∫ ξ

−∞
Ψn(v)dζ →

∫ ξ

−∞
v+dζ ,

∫ ξ

−∞
Ψn(v)dζ ≤ V +

∣∣∣∣
∫ ξ

−∞
aξ(vψn(v)−Ψn(v))dζ

∣∣∣∣ ≤ M

2

∫ ξ

−∞
v+dζ

to pass to the limit n→∞ and derive (2.24).
Step 2. From (2.23) we derive the inequality

d

ds

∫
ϕ(ξ)v+(ξ, s)dξ −

∫ (
av+ − µ(v+)ξ

)
(ξ, s)ϕξ(ξ)dξ ≤ 0(2.29)

for any positive test function ϕ ∈ C∞
c (R). In turn, this yields that

∫
v+(ξ, s)dξ is

decreasing in s. Since
∫
v(ξ, s)dξ is a conserved quantity, this implies (2.18) and

(2.19).
We may obtain a more detailed variant of (2.19) as follows. Fix s > 0 and consider

a decomposition of the open set {ξ : v(ξ, s) > 0} = ∪k(αk, βk) into countably many
subintervals such that v(·, s) > 0, and C1 on (αk, βk), vξ(αk, s) ≥ 0, and vξ(βk, s) ≤ 0.
Consider a test function ϕn such that

ϕn(ξ) =




0, ξ ≤ αk or ξ ≥ βk,

1, αk +
1

n
≤ ξ ≤ βk − 1

n
,

linear, αk < ξ < αk +
1

n
or βk − 1

n
< ξ < βk.

We apply (2.29) for this test function and pass to the limit n→∞ to obtain

d

ds

∫ βk

αk

v+(ξ, s)dξ ≤ µ
(
vξ(βk, s)− vξ(αk, s)

) ≤ 0 ,
k = 1, 2, . . . ; that is, the area under any component of v+ is decreasing in size.

Step 3. The second part of the theorem, which is a stronger version of the first
part, is obtained from the strong maximum principle. Consider V +(ξ, s) in (2.22),
fix s̄ > 0, and suppose there exists ξ0 < ξ1 such that v(ξ0, s̄) > 0 and v(ξ1, s̄) < 0.
Consider a restriction of V + defined by

Z+(ξ, s) =

∫ ξ

−∞
v+(ζ, s)χ(−∞,ξ1)(ζ) dζ =

{
V +(ξ, s) if ξ < ξ1,

V +(ξ1, s) if ξ > ξ1,
|s− s̄| < δ,
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where

χ(−∞,ξ1) =

{
1, ξ ∈ (−∞, ξ1),

0, ξ /∈ (−∞, ξ1).

We can take δ > 0 so small that Z+ has the same regularity as V + and compute

∂sZ
++a∂ξZ

+ − µ∂2
ξZ

+

=
(
∂sV

+ + a∂ξV
+ − µ∂2

ξV
+
)
χ(−∞,ξ1) − µv+(ξ1, s)δ(ξ − ξ1)

+ ∂sV
+(ξ1, s)χ(−∞,ξ1) = I1 + I2 + I3 ≤ 0,

(2.30)

where the last inequality follows from (2.24) and the properties v+(ξ1, s) = 0 (hence
I2 = 0) and (from step 2)

d

ds

∫ ξ1

−∞
v+(ζ, s)dζ =

d

ds
V +(ξ1, s) ≤ 0.

Therefore, Z+ satisfies the parabolic inequality (2.30) in the interval 0 < s− s̄ < δ.
If Z+(ξ1, s) is strictly decreasing at s̄, then (2.20) follows. On the other hand,

if Z+(ξ1, s) remains constant in the small time interval, then Z+(·, s) has a strictly
positive maximum at the interior point ξ = ξ1 for a time interval 0 < s− s̄ < δ which
contradicts the strong maximum principle (see, e.g., [11]).

Remark 2.5 (the lap-number). For semilinear parabolic equations there exists
a literature concerning the number of zeroes of a solution, sometimes called the lap-
number (see, e.g., Matano [15] and Angenent [1]). Such results hinge on analysis of
the linear equation

ut = uxx + q(x, t)u, x ∈ R , t > 0 ,(2.31)

when q(x, t) ∈ L∞ and for solutions satisfying the bound |u(x, t)| ≤ AeBx2

. It is
shown in [1] that the number of zeroes

Zt = {x ∈ R : u(x, t) = 0}

becomes immediately (at time t = 0+) a discrete set, and thereafter the number of
zeroes is decreasing in time. The basis of the last result is the property that if u(x, t)
and ux(x, t) vanish simultaneously at (x0, t0) (i.e., u has a multiple zero at (x0, t0)),
then, roughly speaking, u(·, t) has more zeroes for t < t0 than for t > t0 (see Angenent
[1, Theorem B] for the precise statement).

These results apply to various semilinear parabolic equations that can (through
transformations of variables) be put in the form (2.31) [1]. They also apply to quasi-
linear equations when linear variants of them can be put into this framework. In
particular, the viscous Burgers equation shares this property (along solutions that
the wave speed u(x, t) and its first derivatives are uniformly bounded). Finally, the
same property is transferred to solutions w(ξ, s) of (2.1) through the similarity trans-
formations.

3. Evolution of the viscous problem. Here we study the long-time conver-
gence of solutions to a diffusion wave.
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3.1. Convergence to a diffusion wave. Consider the difference w(ξ, s) −
GM (ξ), and note that the L1-contraction implies∫ ∞

−∞
(w(ξ, s)− GM (ξ))±dξ ≤

∫ ∞

−∞
(w(ξ, 0)− GM (ξ))±dξ.(3.1)

First, we prove a technical lemma, indicating that if the solution stabilizes, then the
mass of the solution stabilizes.

Lemma 3.1. Let w be the solution of (2.1) emanating from initial data w0 ∈
L1 ∩ L∞. If along a time sequence {sk} we have w(ξ, sk)→ w̄(ξ) a.e. ξ as sk →∞,
then

lim
sk→∞

∫ ∞

−∞
w(ζ, sk)dζ =

∫ ∞

−∞
lim

sk→∞w(ζ, sk)dζ .(3.2)

Proof. Assume first that the data satisfy

G−M (ξ) ≤ w0(ξ) ≤ GM (ξ).
Then from the comparison estimate (2.19)

G−M (ξ) ≤ w(ξ, s) ≤ GM (ξ)
and the dominated convergence theorem implies the desired result.

Now let w0 ∈ L1 ∩ L∞. For ε > 0 choose M > 0 so that∫ ∞

−∞
(w0(ζ)− GM (ζ))+ + (w0(ζ)− G−M (ζ))

−dζ < ε.(3.3)

Let

wM (ξ, s) =



GM (ξ) if w > GM ,

w(ξ, s) if G−M < w < GM ,

G−M (ξ) if w < G−M ,

(3.4)

and define w̄M (ξ) in a similar fashion using the limit function w̄(ξ) in the place of
w(ξ, s). Observe that wM (ζ, sk)→ w̄M (ζ) and that∣∣∣∣∣

∫ ∞

−∞

(
w(ζ, sk)− wM (ζ, sk)

)
dζ

∣∣∣∣
=

∣∣∣∣
∫
w>GM

(
w(ζ, sk)− GM (ζ)

)
dζ +

∫
w<G−M

(
w(ζ, sk)− G−M (ζ)

)
dζ

∣∣∣∣ ≤ 2ε
from (2.19), (3.1), and (3.3). Now

∫
R
wM (·, sk)dζ →

∫
R
w̄Mdζ, and we conclude by

(3.3) ∣∣∣∣ limsk→∞

∫ ∞

−∞
w(ζ, sk)dζ −

∫ ∞

−∞
w̄(ζ)dζ

∣∣∣∣ ≤ 4ε,
which gives (3.2).

In the following theorem we show that the solution of (2.1) converges to a diffusion
wave preserving the initial total mass.
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Theorem 3.2 (convergence in time). Let w be the solution to the Cauchy problem
(2.1) with µ > 0 and w0 ∈ L1 ∩ L∞, ∂ξw0 ∈ L2, and total mass

∫
w0(ξ)dξ = M0.

Then

w(ξ, s)→ GM0
(ξ) as s→∞,(3.5)

a.e. and in L1(R), where GM0
is the diffusion wave given by (2.6).

Proof. Consider the quantity Φ = e−
1
2µW motivated by the Cole–Hopf transfor-

mation. Then Φ satisfies

Φs − 1
2
ξΦξ = µΦξξ.(3.6)

We differentiate (3.6) with respect to s and multiply by Φs. After rearranging the
terms, we obtain

∂sΦ
2
s −

1

2
∂ξ
(
ξΦ2

s

)
+
1

2
Φ2

s + 2µΦ
2
ξs = µ∂ξξΦ

2
s.

Therefore, the quantity

g(s) =

∫
R

Φ2
s(ξ, s)dξ =

∫
R

1

4µ2
e−

1
µWW 2

s dξ

satisfies the differential inequality dg
ds +

1
2g ≤ 0. We conclude that∫

R

e−
1
µWW 2

s dξ ≤
(∫

R

e−
1
µW (ξ,0)W 2

s (ξ, 0) dξ

)
e−

s
2

and, from (2.14) and (2.13), that∫
R

W 2
s (ξ, s) dξ ≤ O(1)e−

s
2 ,(3.7)

where O(1) depends on µ and the H1-norm of the data w0. (The last dependence
may be relaxed by using the regularizing effect of (2.1), but we will not pursue the
details here.)

From (2.8) and (2.15), the function (w(ξ, s)−ξ) is decreasing and for any [a, b] ⊂ R

we have

TVξ∈[a,b]w(·, s) ≤ sup
ξ

w0 − inf
ξ
w0 + 2(b− a).

From Helly’s theorem and a diagonal argument we can extract a subsequence sn →∞
and a function w̄ of locally bounded variation so that

w(ξ, sn)→ w̄(ξ) as sn →∞.(3.8)

Let θ(ξ) be a C∞-function with compact support. From (2.13) we obtain∫
R

Ws(·, s)θdξ +
∫

R

1

2

(
w2 − ξw

)
θdξ +

∫
R

µwθξdξ = 0.

We use (3.7), (3.8), and Lemma 3.1 to pass to the limit along sn and deduce that w̄
satisfies

1

2
w̄2 − 1

2
ξw̄ = µw̄ξ,∫

R

w̄dξ =

∫
R

w0dξ =M0 .
(3.9)

Therefore, w̄ = GM0 , and, as the limit is uniquely determined by (3.9), we conclude
that the family w(ξ, s)→ GM0(ξ) as s→∞.
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3.2. Convergence to a diffusion wave via the invariance principle. Next
we provide a proof of the time-convergence to a diffusion wave from the viewpoint
of the LaSalle invariance principle, in the spirit of [3, 6]. Recall that the solution
operator of the viscous Burgers defines a contraction semigroup in L1(R) defined by
T (s)w0 = w(·, s), where w0 ∈ L1(R) ∩ L∞(R) is the initial datum.

Theorem 3.3 (convergence in time). Let w be the solution to the Cauchy problem
(2.1) with µ > 0 and w0 ∈ L1 ∩ L∞ with total mass

∫
w0(ξ)dξ =M0. Then

w(ξ, s)→ GM0
(ξ) as s→∞,(3.10)

pointwise and in Lp(R), 1 ≤ p <∞, where GM0
is the diffusion wave given by (2.6).

Proof. Consider the ω-limit set

ω(w0) =

{
ψ ∈ L1(R) : ψ = lim

k→∞
T (sk)w0 for a subsequence sk

}
.(3.11)

From (3.8) we have a convergent subsequence T (sk)w0 = w(·, sk) and thus ω(w0) is not
empty. Moreover, T is positively invariant; that is, if ψ ∈ ω(w0), then T (s)ψ ∈ ω(w0).
This follows from the semigroup property and the observation

T (s)ψ = lim
k→∞

T (s)T (sk)w0 = lim
k→∞

T (s+ sk)w0.(3.12)

Consider the distance functional V : L1(R)→ R defined by

V (χ) = ||χ− GM0 ||L1 ,(3.13)

which is continuous in L1(R). The diffusion wave GM0 is a special solution of (2.1).
Due to the contraction theory (2.18), V satisfies

V (T (s)w0) = ||w(·, s)− GM0
||L1 ≤ ||w0 − GM0

||L1 = V (w0)(3.14)

for any s > 0, w0 ∈ L1(R). Since V (T (s)w0) is decreasing in time, it converges
V (T (s)w0)→ c to a limit c ≥ 0. From the continuity of V , we obtain

V (T (s)ψ) = V

(
lim
k→∞

T (s+ sk)w0

)
= lim

k→∞
V (T (s+ sk)w0) = c(3.15)

for any ψ ∈ ω(w0) and s ≥ 0.
We shall assume there is ψ ∈ ω(w0) such that ψ �= GM0 and establish a contra-

diction. For such a ψ we have V (ψ) = c > 0, T (s)ψ ∈ ω(w0), and V (T (s)ψ) = c from
(3.15). Since ∫

ψ(ξ)− GM0(ξ)dξ = 0 ,

there exist ξ0, ξ1 such that GM0(ξ0) > ψ(ξ0) and GM0(ξ1) < ψ(ξ1). Theorem 2.4
then implies that V (T (s)ψ) < V (ψ) = c, which contradicts (3.15). So the nonempty
ω-limit set should be ω(w0) = {GM0}.

4. Diffusion driven interfaces and metastability. The asymptotic behavior
of the inviscid Burgers equation is an N-wave [12]. By contrast, solutions of the viscous
Burgers equation approach diffusion waves asymptotically in time. That indicates a
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sensitive dependence of the long-time asymptotics for the viscous Burgers equation
on the viscosity that we begin analyzing from this section.

Numerical computations for solutions of the viscous Burgers equation were per-
formed using the self-similar version (1.5). This framework has two advantages: first,
the solution does not spread in time (thus a smaller computational domain is needed),
and second, the time variable s = ln(t) allows us to compute for long times. The re-
sults are presented in Figure 1 for a viscosity µ = 0.01 (see section 4.3 for information
on the numerical scheme). It is seen that initially wµ evolves from “oscillatory” initial
data w0 into a saw-tooth profile. This transition occurs relatively quickly (s ∼ 0.5)
and is driven by the usual compression-attenuation mechanism of hyperbolic equa-
tions. At the next stage the waves interact and eventually produce an approximate
N-wave. This takes a longer time (s ∼ 2), and this stage is also governed by the
convection mechanism mainly (see section 4.3). Once the latter stage is reached, it
appears as if there is no dynamical change. A more careful look, though, shows that
the negative and positive masses of the solution decrease slowly until eventually the
smaller one disappears. This evolution occurs at a far slower time scale. In Figure
1 the negative mass disappears at s ∼ 100, which, considering that the original time
variable is t = es, is an exceptionally long time.

We next analyze the role of diffusion at the intermediate stage driven by wave
interactions and then transition from an N-wave to a diffusion wave (for small s ∼ 0.5
and large s > 2 for the numerical run of Figure 1). Then, in sections 5 and 6, we
provide a quantitative description of the metastable stage of the evolution.

4.1. Wave interactions. We provide a heuristic analysis valid for solutions
emanating from data that at time s = 0 intersect the axis at finitely many points

{ξ ∈ R : w(ξ, s) = 0} = {g1(s) < g2(s) < · · · < gn(s)}, s = 0,(4.1)

and the intersections occur transversally

wξ(gi(s), s) �= 0, i = 1, 2, . . . , n, s = 0.(4.2)

For notational convenience, let g0(s) = −∞ and gn+1(s) = +∞. (This is the generic
form of solutions that appears in numerical runs after the initial stage (s ∼ 0.5 in
Figure 1); we refer to Figure 2 for such a profile.) Our goal is to track the mechanism
of motion of the intersection points.

The points of intersection gi satisfy w(gi(0), 0) = 0. Using the implicit function
theorem, the curves gi(s) are each defined on a maximal interval s ∈ [0, Si) and move
with the speed

g′i(s) = −
ws(gi(s), s)

wξ(gi(s), s)
.(4.3)

On the interval [0, Si) we have wξ(gi(s), s) > 0, but at the maximal time Si it is
wξ(gi(Si), Si) = 0. Typically, at such times two of the curves will come together and
disappear.

Consider the functions

pi(s) = −
∫ gi(s)

−∞
w(ζ, s)dζ = −W (gi(s), s),(4.4)

where −pi(s) measures the total mass of w(·, s) to the left of gi(s). Here we define
pi(s) with a negative sign since it should represent the invariance variable p0 in (1.3)
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Fig. 1. Numerical solution of transformed Burgers (2.1): This numerical solution is generated
by the Godunov scheme with discretized viscosity and ∆ξ = 0.01,∆s = 0.001, µ = 0.01.

or p(s) in (2.12). Using (2.13) and the fact that w(gi(s), s) = 0, we obtain

−p′i(s) =Wξ(gi(s), s)g
′
i(s) +Ws(gi(s), s) = µwξ(gi(s), s),(4.5)

which pinpoints the effect of the diffusion on the mass change across a zero curve
ξ = gi(s).

The remainder of our analysis is heuristic in nature. In numerical runs, after
an initial transient stage, the usual compression-attenuation mechanism of Burgers
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Fig. 2. A profile of the solution at s = 0.5.

produces solutions that consist entirely of shocks and rarefactions. We will operate
under this condition, analyzing solutions whose time sections (s = constant) consist
entirely of shocks and rarefactions and look like that in Figure 2.

The area between two zero curves gi(s) < gi+1(s) (see Figure 2) is given by
A(s) = −(pi+1(s)− pi(s)) and changes in time at a rate

A′(s) = −p′i+1(s) + p′i(s) = µwξ(gi+1(s), s)− µwξ(gi(s), s) < 0.(4.6)

The positive slope at gi(s) represents an approximate rarefaction and may be esti-
mated using the Oleinik estimate, by 0 < wξ(gi(s), s) ≤ 1. Hence the change of mass
across the zero curve ξ = gi(s) satisfies

−p′i(s) = µwξ(gi(s), s) ≤ µ(4.7)

and is controlled by the diffusion. On the other hand, the negative slope at gi+1(s)
will correspond (for µ small) to a shock profile, and the lower bound for wξ is of order
O(1/µ). Hence the mass change across the zero curve ξ = gi+1(s), representing a
shock, is of order O(1). This points out the distinct roles of shock and rarefaction
profiles: When w is increasing near a zero point, the mass change across the point
is controlled by the diffusion and tends to zero as µ → 0. By contrast, near a shock
profile the mass change is fast and independent of µ. The above estimations remain
valid until near the time that two of the curves gi merge and the enclosed area A(s)
vanishes.

4.2. Transition from N-wave to diffusion wave. Consider now a solution
that emanates from N-wave like data: w(ξ, 0) < 0 for ξ < ξ0 and w(ξ, 0) > 0 for
ξ > ξ0 with wξ(ξ0, 0) �= 0. We consider the zero-curve ξ = g(s) emanating from the
point g(0) = ξ0 and satisfying w(g(s), s) = 0. From the implicit function theorem,
the curve g(s) is defined on a maximal interval [0, S), S > 0. As noted in Remark
2.5, the number of zeroes is nonincreasing, and for N-wave-like data, as above, it
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cannot happen that w and wξ vanish at the same point (ξ̄, s̄). This implies that
either S = ∞ or (if S is finite) g(s) → ±∞ as s → S. In either case the solution
retains its N-wave-like form in the interval [0, S).

The infimum p(s) of (2.12) is given by

p(s) = −
∫ g(s)

−∞
w(ζ, s)dζ.(4.8)

From (4.7) we see that

p(s) ≥ p(0)− µs for 0 < s < S.(4.9)

We next show that S ≥ 1
µ min{p(0), q(0)}, which provides an estimate of the

transition-time to a diffusion wave. For simplicity, we assume q(0) > p(0) and show
that S ≥ p(0)/µ. Indeed, if S < p(0)/µ, then from (4.9) we see that p(s) > 0, which
implies that the mass of the negative part of the solution is still present at the time S.
This contradicts the definition of S. The same argument can be made for the positive
part of the solution, and we conclude that

p(s) > p(0)− µs,

q(s) > q(0)− µs,
s <

1

µ
min(p(0), q(0)),(4.10)

where p(s), q(s) are the invariant variables defined in (2.12).

4.3. Comparison of the inviscid and viscous problems. We compare the
evolution between the inviscid and the viscous problem for initial data consisting of
two separated N-waves

w0(x) =




x+ 10, −12 < x < −8,
x, −√2 < x <

√
6,

0, otherwise;

(4.11)

see Figure 3. The method of characteristics gives the exact solution of the inviscid
problem: In the original variables (x, t) the solution starts to spread out, and then
two inside shocks interact until a single N-wave emerges. In terms of the self-similar
variables (ξ, s), one N-wave moves into the origin without changing shape until it
collides with the other N-wave, and the interaction results in a new N-wave. The
exact solution of the inviscid problem with initial data (4.11) is obtained by tracking
the characteristics and is displayed in Figure 3 with solid lines.

The viscous problem (2.1) is solved numerically by the following scheme: Consider
a uniform space ξj+1/2 = (j+1/2)∆ξ and time sn = n∆s mesh, where j ∈ Z, n ∈ Z

+.
The approximation of a cell-average Un

j ,

Un
j ∼

1

∆ξ

∫ ξj+1/2

ξj−1/2

w(ξ, sn)dξ ,

is generated by a three-step explicit method,

Un+1
j = Un

j −
∆s

∆ξ
(F (Un

j , U
n
j+1)− F (Un

j−1, U
n
j )) + µ

∆s

(∆ξ)2
D(Un

j−1, U
n
j , U

n
j+1),

(4.12)
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Fig. 3. Comparison of the inviscid and viscous problems: Solid lines are exact solutions of
inviscid problem (2.2), and diamond dots are numerical solutions of viscous problem (2.1) using the
Godunov scheme with ∆ξ = 0.01,∆s = 0.0005, µ = 0.02. Solutions are plotted at every other 4 mesh
points.

where the numerical flux F is an approximation of

F (Un
j , U

n
j+1) ∼

1

∆s

∫ sn+1

sn

1

2
(w2 − ξj+1/2w)ds,(4.13)
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and the diffusion term is discretized by

D(Un
j−1, U

n
j , U

n
j+1) = Un

j−1 − 2Un
j + Un

j+1.(4.14)

Since the flux of the self-similar Burgers (2.1) depends on the space variable, the
solution of the Riemann problem increases exponentially along the characteristics
w(ξ(s), s) = w(ξ(0), 0)es/2. The characteristics are not straight lines, and schemes
using Riemann solver, like the Godunov scheme (see [10]), should take that into
account. Here we consider a numerical flux

F (Un
j , U

n
j+1) =




I(Un
j+1, ξ̄) if λ(Un

j , ξ̄) + λ(Un
j+1, ξ̄) ≤ 0, λ(Un

j+1, ξ̄) ≤ 0,
I(Un

j , ξ̄) if λ(Un
j , ξ̄) + λ(Un

j+1, ξ̄) > 0, λ(Un
j , ξ̄) > 0,

−3ξ̄2/8 if λ(Un
j , ξ̄) < 0, λ(Un

j+1, ξ̄) > 0,

(4.15)

where ξ̄ = ξj+1/2 and λ is the wave speed

λ(U, ξ) = U − ξ/2.(4.16)

I(U, ξ) is an approximation of the line integral of (4.13) for a shock wave which is
given by

I(U, ξ) =
1

2
U2(e∆s − 1)− ξU(e∆s/2 − 1),(4.17)

and we can easily check that the rarefaction wave centered at ξ̄ has constant value
w = −3ξ̄2/8 along the vertical line ξ = ξ̄.

In the computation of Figure 3 the mesh size is ∆ξ = 0.01, the time step is
∆s = 0.0005, and the viscosity µ = 0.02. The numerical solution is displayed with
diamond dots. The first column indicates that the solution of the viscous problem with
small viscosity is close to the solution of the inviscid problem, until the solution reaches
the state of single N-wave (which is a steady state for the inviscid problem (1.6)). This
stage of the evolution is dominated by convection. Subsequently, the diffusion becomes
dominant, and the solution evolves slowly until it reaches the asymptotic state of a
diffusion wave (a steady state for (1.5)).

Remark 4.1 (monitoring the viscosity of a numerical scheme). Numerical schemes
for inviscid problems introduce numerical viscosity. A classical example is the first
order Lax–Friedrich scheme for the linear equation ut +Aux = 0, which is actually a
second order scheme for ut +Aux = εuxx with a numerical viscosity

ε =

(
1− (∆t)2

(∆x)2
A2

)
(∆x)2

2∆t
.(4.18)

For nonlinear equations it is hard to have such an explicit control of the numerical
viscosity. For that reason we opted to use a scheme based on the parabolic equation,
using Godunov for the convection term and a discretization for the diffusion term.

Nevertheless, it is possible that the numerical viscosity ε can be different from the
purported one µ. Under the assumption that numerical viscosity is the only factor that
causes the area change of numerically approximate N-waves (an assumption clearly
valid at the level of the differential equation), we can measure the numerical viscosity,
using the formula (4.7), by measuring the area change and the slope at the zero point.
Consider, for example, the initial data

w0(ξ) =

{
x, −2 < x < 2,

0, otherwise.
(4.19)
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Table 1
Numerical viscosity of (4.12): Initial data (4.19), µ = 0.05, ∆ξ = 0.01, ∆s = 0.000667.

sn − 1 < s < sn max(Un) P (sn) =
∑

j<0 U
n
j P (sn) − P (sn-1) ∆P/w̄ξ ∼ ε

5 < s < 6 1.578890 -1.686368 0.050618 0.050003
10 < s < 11 1.425409 -1.433271 0.050620 0.050003
20 < s < 21 1.068703 -0.927091 0.050614 0.050003
35 < s < 36 0.303368 -0.186434 0.043840 0.050083
37 < s < 38 0.189594 -0.110107 0.035890 0.050087
39 < s < 40 0.100160 -0.055559 0.024223 0.049915
41 < s < 42 0.045148 -0.024340 0.012980 0.049550
43 < s < 44 0.018336 -0.009749 0.005776 0.049215
45 < s < 46 0.007074 -0.003739 0.002319 0.049029
55 < s < 56 0.000052 -0.000027 0.000017 0.048896
70 < s < 71 3.135604e-08 -1.651307e-08 1.054758e-08 0.048895
90 < s < 91 1.812541e-12 -9.858833e-13 5.406505e-13 0.048895

As the area of the negative part is
∫ 0

−∞ w(ζ, s)dζ, we consider P (sn) =
∑

j<0∆ξUn
j .

From (4.7) it is natural to define the numerical viscosity as

ε(sn) =
P (sn)− P (sn−1)

∆s w̄ξ
,(4.20)

where the slope at the zero point is approximated by w̄ξ =
Un

1 −Un
−1

2∆ξ . In Table 1 we

present the measured numerical viscosity for the scheme (4.12) with initial data (4.19)
and viscosity µ = 0.05. It is seen that the numerical viscosity represents the purported
viscosity very well, ε ∼ µ, but as the solution decreases (in the second part of the
table), the viscosity also decreases slightly. In the last part the solution is almost
zero, and the numerical viscosity remains constant at the value around ε ∼ 0.049.

5. Diffusive N-waves. The Cole–Hopf transformation implies that u(x, t) is a
solution of (1.1) if and only if

ϕ(x, t) = e−
1
2µ

∫ x
−∞ u(x,t)dx(5.1)

solves the heat equation

ϕt = µϕxx.(5.2)

Note that (5.1) implies

ϕ(−∞, t) = 1, u = −2µϕx

ϕ
,

∫ b

a

u(x, t)dx = −2µ ln(ϕ(b, t)/ϕ(a, t))(5.3)

and allows us to compute the mass of u. Whitham [21] uses the transformation to
produce a special solution of a diffusive N-wave with equal positive and negative
mass. In this section we give an extension to this construction and compute a special
solution of a diffusive N-wave with possibly unequal positive and negative masses.
This solution characterizes the transition from a diffusive N-wave to a diffusion wave,
observed during the late-time response of Burgers.

We consider the special potential

ϕp,q(x, t) = 1 +A

√
t0
t
e−x2/4µt −B

1√
π

∫ x√
4µt

−∞
e−ζ2

dζ(5.4)
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and the corresponding solution of Burgers

up,q(x, t) = −2µ (ϕp,q)x
ϕp,q

=

x
tA
√

t0
t e

−x2/4µt +
√

µ
t

B√
π
e−x2/4µt

1 +A
√

t0
t e

−x2/4µt −B 1√
π

∫ x√
4µt

−∞ e−ζ2dζ
.(5.5)

Recall that the positive and negative mass of the solution u are computed by

p(t) = − inf
x

∫ x

−∞
up,q(y, t)dy, q(t) = sup

x

∫ ∞

x

up,q(y, t)dy .(5.6)

p(t), q(t) are not invariant for the viscous Burgers, but the total mass (q(t) − p(t))
is. The constants A > 0 and B in (5.4) will be determined so that the positive and
negative masses at a given time t0 are prescribed positive constants p and q, that is,
p(t0) = p and q(t0) = q.

This takes a lengthy computation that we outline below. To fit the total mass
M =

∫
up,q(y, t)dy = q − p, we use (5.3) and obtain∫ ∞

−∞
up,q(y, t)dy = −2µ ln(1−B) = q − p .

Hence B = 1 − e(p−q)/2µ. Note that B > 0 for p < q and B < 0 for q < p; in either
case 1−B > 0.

Clearly, u < 0 for x < x0(t) = −t√µB/
√
t0πA, and u > 0 for x > x0(t). The

negative mass is computed from (5.3):

p(t) = − inf
x

∫ x

−∞
up,q(y, t)dy = 2µ ln

ϕ(x0(t), t)

ϕ(−∞, t)

= 2µ ln

(
1 +A

√
t0
t
e
− t

t0
( B√

4πA
)2 − B√

π

∫ −
√

t
t0

B√
4πA

−∞
e−ζ2

dζ

)
.

(5.7)

The requirement p(t0) = p gives the equation

Ae
−( B√

4πA
)2
= ep/2µ − 1 + B√

π

∫ − B√
4πA

−∞
e−ζ2

dζ.(5.8)

We give an approximate solution of (5.8). Note that A > ep/2µ − 1 + cB for some
0 < c < 1, which in turn gives the estimates

A = O(e
p
2µ ) ,

B

A
= O(e−

p
2µ + e−

q
2µ ) , as µ→ 0.

Now we can rewrite (5.8) and use Taylor expansion to obtain

ep/2µ − 1 = A

(
e−ρ2 − 2ρ

∫ −ρ

−∞
e−ζ2

dζ

) ∣∣∣ρ= B√
4πA

= A
(
1−√πρ+O(ρ2)

)∣∣∣
ρ= B√

4πA

= A

(
1− 1

2

B

A
+O

(
(
B

A
)2
))

.

We conclude that

B = 1− e(p−q)/2µ , A = ep/2µ − 1 +B

[
1

2
+O(e−

p
2µ + e−

q
2µ )

]
(5.9)



THE BURGERS EQUATION 627

and that A = ep/2µ +O(B) as µ→ 0.
Next we consider the behavior of up,q as the viscosity µ→ 0. We write this up,q

in the form

up,q(x, t) =

x
t +

B
A

√
µ

πt0

1 +
√

t
t0

e
x2
4µt

A

(
1−B 1√

π

∫ x/
√

4µt

−∞ e−y2dy
) .

It is clear that

x

t
+

B

A

√
µ

πt0
→ 0 ,

1

A
e

x2

4µt

(
1−B

1√
π

∫ x/
√

4µt

−∞
e−y2

dy

)
∼




1

A
e

x2

4µt , x < 0,

1−B

A
e

x2

4µt , x > 0,

∼



e
1

4µt (x2−2pt) , x < 0,

e
1

4µt (x2−2qt) , x > 0,

and, as a result,

up,q(x, t) ∼




0, x < −
√
2pt,

x/t, −
√
2pt < x <

√
2qt,

0, x >
√
2qt,

(5.10)

as µ→ 0. This validates the terminology diffusive N-wave for up,q.
The long-time behavior of up,q(x, t) is also easily computed. A simple inspection

shows that as t→∞

ϕp,q(x, t) ∼ 1− B√
4πµt

∫ x

−∞
e−y2/4µtdy ,

within leading order, and that up,q has the structure of a diffusion wave of mass M .
If M > 0, the area of the negative part of the solution diminishes as t→∞. The

time at which most of the negative area has almost disappeared can be estimated as
follows: First, (5.7) is written in the form

ep(t)/2µ = 1 +A

√
t0
t
e−

t
t0

B2

4πA2 − B√
π

∫ −
√

t
t0

B√
4πA

−∞
e−ζ2

dζ.(5.11)

We substitute t = t0A
2/B2 and obtain

ep(t)/2µ = 1 + |B|e− 1
4π − B√

π

∫ − sign(B)√
4π

−∞
e−ζ2

dζ.(5.12)

If q > p, then B ∼ 1, and we get

ep(t)/2µ ∼ 1 + e−
1
4π − 1√

π

∫ − 1√
4π

−∞
e−ζ2

dζ ∼ 1.579
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so that

p(t0A
2/B2) ∼ 2µ ln(1.579) ∼ 0.913µ.

On the other hand, if M < 0 (equivalently, p > q), it is the area of the positive
part of the solution that diminishes. The critical time is now estimated as follows:
For p > q and µ� 1, we have B ∼ −e(p−q)/2µ < 0. Dividing both sides of (5.12) by
|B|, we obtain

ep(t)/2µ/|B| = 1/|B|+ e−
1
4π +

1√
π

∫ 1√
4π

−∞
e−ζ2

dζ.

In turn,

eq(t)/2µ = e(p(t)−(p−q))/2µ ∼ e−
1
4π +

1√
π

∫ 1√
4π

−∞
e−ζ2

dζ ∼ 1.579,

and

q(t0A
2/B2) ∼ 0.913µ.

Remark 5.1. Because of the invariance of Burgers under translations t → t + a,
the functions ϕp,q(x, t + 1) and up,q(x, t + 1) are also special solutions associated to
diffusive N-waves. The latter can be expressed (for t0 = 1) in the form

ϕp,q(x, t+ 1) = ψp,q

(
x√

4µ(t+ 1)
, t

)
,

up,q(x, t+ 1) =

√
µ

t+ 1
vp,q

(
x√

4µ(t+ 1)
, t

)
,

(5.13)

where

ψp,q(ξ, t) = 1− B√
π

∫ ξ

−∞
e−ζ2

dζ +A
1√
t+ 1

e−ξ2

,

vp,q(ξ, t) =

B√
π
e−ξ2

+ 2A 1√
t+1

ξe−ξ2

1− B√
π

∫ ξ

−∞ e−ζ2dζ +A 1√
t+1

e−ξ2
.

(5.14)

The form (5.13) of the diffusive N-waves motivates an explicit solution for the Cauchy
problem of the viscous Burgers equation, which is carried out in section 6. A survey
of this solution and comparison with vp,q indicates that while the diffusion wave is
the t → ∞ asymptotic profile for the viscous Burgers, the diffusive N-wave up,q

gives a more accurate description of the behavior in the large time regime, which
encompasses the very long-time behavior and the leading order correction and is valid
for a substantially longer time interval.

6. An explicit solution of the viscous Burgers equation. The objective
of this section is to derive an explicit solution of the Cauchy problem for the viscous
Burgers equation

ut + uux = µuxx, x ∈ R, µ, t > 0,

u(x, 0) = u0(x), x ∈ R.
(6.1)
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Our approach hinges on the invariance properties of the viscous Burgers equation,
a self-similar variant of the Cole–Hopf transformation, and the exact solvability of
a Fokker–Planck-type of equation. It yields an explicit solution of (6.1) in terms of
Hermite polynomials.

Step 1. First, we apply to (6.1) the change of variables

u(x, t) =

√
µ

t+ 1
v

(
x√

4µ(t+ 1)
, t

)
.(6.2)

Then the function v(ξ, t) of the similarity variable ξ = x√
4µ(t+1)

satisfies the Cauchy

problem

(t+ 1)vt +

(
− 1

2ξv +
1
4v

2

)
ξ

= 1
4vξξ, ξ ∈ R, t > 0,

v(ξ, 0) = v0(ξ), ξ ∈ R,

(6.3)

with initial data

v0(ξ) =
1√
µ
u0(
√
4µξ) .(6.4)

The transformation is motivated by the invariance properties of the viscous Burgers
equation and the form of the special solutions termed diffusive N-waves in section 5.
Despite their similarity, the transformation (1.4) used in sections 2–4 differs in the
dependence on viscosity and should not be confused with (6.2). In problem (6.3) the
sole dependence on viscosity is through the initial data.

Step 2. We apply to (6.3) a variant of the Cole–Hopf transformation. Let

V (ξ, t) =

∫ ξ

−∞
v(ζ, t) dζ ,

and introduce ψ(ξ, t) so that

V = − lnψ, v = −ψξ

ψ
.(6.5)

A calculation shows that V satisfies

(t+ 1)Vt − 1
2
ξVξ +

1

4
V 2
ξ =

1

4
Vξξ,(6.6)

and ψ satisfies the initial value problem

4(t+ 1)ψt = ψξξ + 2ξψξ, ξ ∈ R , t > 0,(6.7)

with data

ψ(ξ, 0) = ψ̄(ξ) := e−V0(ξ),

where V0(ξ) =

∫ ξ

−∞
v0(ζ)dζ =

1

2µ

∫ √
4µξ

−∞
u0(y)dy

=
M

2µ
− 1

2µ

∫ ∞

√
4µξ

u0(y)dy.

(6.8)
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Step 3. Next we solve the initial value problem consisting of (6.7) with initial
data

ψ(ξ, 0) = ψ0(ξ) , with e
ξ2

2 ψ0 ∈ L2(R)(6.9)

via separation of variables. This leads to the issue of finding the eigenvalues and
eigenfunctions of the boundary value problem

g′′ + 2ξg′ = λg , −∞ < ξ <∞.(6.10)

The problem (6.10) turns out to have a discrete spectrum, associated with the Hermite
polynomials.

The Hermite polynomials (see Szegö [19, Chapter V]) are the solutions y = Hn(ξ),
n = 0, 1, 2, . . . , of the boundary value problem

y′′ − 2ξy′ + 2ny = 0 , −∞ < ξ <∞.

Hn are polynomials of degree n and are generated from the relation

Hn(ξ) = (−1)neξ2 dn

dξn
(
e−ξ2)

.

The first few of them are H0 = 1, H1 = 2ξ, H2 = 4ξ2 − 2, and so on. They satisfy
the orthogonality conditions∫ ∞

−∞
Hm(ξ)Hn(ξ) e

−ξ2

dξ = 2n n!
√
π δnm ,

and the system {Hn(ξ)e
− ξ2

2 }∞n=0 is a complete orthogonal system in L2(R).
Using these properties, it can be seen that the eigenvalues and eigenfunctions of

(6.10) are λn = −2(n + 1) and gn(ξ) = e−ξ2

Hn(ξ), n = 0, 1, 2, . . . . Moreover, the
solution of (6.7)–(6.9) is given in the form of a series

ψ(ξ, t) =
∞∑

n=0

an(t+ 1)
−n+1

2 Hn(ξ)e
−ξ2

,(6.11)

where an are determined by

ψ0(ξ) e
ξ2

2 =

∞∑
n=0

anHn(ξ)e
− ξ2

2 .

For ψ0e
ξ2

2 ∈ L2(R) this problem is solvable, and the Fourier–Hermite coefficients are
determined by the formula

an =
1

2n n!
√
π

∫ ∞

−∞
ψ0(ξ)Hn(ξ)dξ .(6.12)

Remark 6.1. The Hermite polynomials also appear in the eigenfunctions of the
eigenvalue problem (sometimes called Hermite functions)

z′′ + (2n+ 1− ξ2)z = 0 , zn(ξ) = Hn(ξ)e
− ξ2

2 , n = 0, 1, 2, . . . ,
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which is associated with the problem of the harmonic oscillator in quantum mechanics.
The eigenfunctions of the problem at hand are different from the ones above. The
operator in (6.10) can be thought of as the integrated version of a Fokker–Planck-type
operator.

Now consider the problem (6.7) with initial data

ψ(ξ, 0) = ψ̄(ξ) , ψ̄(ξ)→ a as ξ → −∞, ψ̄(ξ)→ b as ξ →∞.(6.13)

The steady states ψ∞(ξ) of (6.7)–(6.13) solve

ψ∞
ξξ + 2ξψ

∞
ξ = 0 , ψ∞(−∞) = a , ψ∞(∞) = b ,

and are given by

ψ∞(ξ) = a+
b− a√

π

∫ ξ

−∞
e−ζ2

dζ .(6.14)

By superposition, it is possible to solve (6.7) with initial data

ψ̄(ξ) = ψ∞(ξ) + ψ0(ξ) , where ψ0e
ξ2

2 ∈ L2(R).

Its solution is given in the form

ψ(ξ, t) = ψ∞(ξ) +
∞∑

n=0

an(t+ 1)
−n+1

2 Hn(ξ)e
−ξ2

,(6.15)

where the Fourier coefficients an are computed from (6.12).

Step 4. Returning now to Burgers, we assume that u0(x) = O(e−x2

) as |x| → ∞.
Then v0(ξ) = O(e−ξ2

) as |ξ| → ∞. (The orders will, in general, depend on the
viscosity.) The initial data ψ̄ are given in (6.8) and satisfy ψ̄(−∞) = 1 and ψ̄(∞) =
e−

M
2µ . We define the associated diffusion wave

ψ∞
M = 1− 1− e−

M
2µ√

π

∫ ξ

−∞
e−ζ2

dζ

= e−
M
2µ +

1− e−
M
2µ√

π

∫ ∞

ξ

e−ζ2

dζ.

(6.16)

Consider

ψ0 = ψ̄ − ψ∞
M = e−V0 − ψ∞

M ,

and note that ψ0 can be expressed as

ψ0(ξ) = e−
∫ ξ
−∞ v0dζ − 1 + 1− e−

M
2µ√

π

∫ ξ

−∞
e−ζ2

dζ

= e−
M
2µ+

∫∞
ξ

v0dζ − e−
M
2µ − 1− e−

M
2µ√

π

∫ ∞

ξ

e−ζ2

dζ.

Using the inequalities |ex − 1| ≤ 2x for |x| � 1 and the decay v0(ξ) = O(e−ξ2

) as

|ξ| → ∞, we see that ψ0(ξ) = O(e−ξ2

) as |ξ| → ∞. We apply the results of the
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previous section and see that ψ is given by (6.15). As a result, the solution of (6.1) is
given by the formula

u(x, t) =

√
µ

t+ 1
v

(
x√

4µ(t+ 1)
, t

)
,

where v(ξ, t) = −
∂ξψ

∞
M +

∞∑
n=0

an(t+ 1)
−n+1

2 ∂ξ
(
Hn(ξ)e

−ξ2)

ψ∞
M +

∞∑
n=0

an(t+ 1)
−n+1

2 Hn(ξ)e
−ξ2

.

(6.17)

ψ∞
M is given in (6.16), and the coefficients an are computed by

an =
1

2n n!
√
π

∫ ∞

−∞

(
e−V0 − ψ∞

M

)
Hndξ .(6.18)

In view of the form of the Hermite polynomials, the coefficients an may also be
expressed in terms of moments of the function ψ0 = e−V0 − ψ∞

M .
An inspection of (6.17) shows that as t→∞

v ∼ −∂ξψ
∞
M

ψ∞
M

,

which is the asymptotic profile of a diffusion wave of mass M . The next order ap-
proximation is (recall that H0 = 1)

v(ξ, t) ∼ −∂ξψ
∞
M − 2a0(t+ 1)

− 1
2 ξe−ξ2

ψ∞
M + a0(t+ 1)−

1
2 e−ξ2

,

which is that of a diffusive N-wave (compare with (5.14)). The coefficient a0 is com-
puted by the formula

a0 =
1√
π

∫ ∞

−∞
e−V0 − ψ∞

M dξ .
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Zürich, Birkhäuser-Verlag, Basel, 1990.

[11] G. Lieberman, Second Order Parabolic Differential Equations, World Scientific, River Edge,
NJ, 1996.

[12] T.-P. Liu, Invariants and asymptotic behavior of solutions of a conservation law, Proc. Amer.
Math. Soc., 71 (1978), pp. 227–231.

[13] T.-P. Liu and M. Pierre, Source-solutions and asymptotic behavior in conservation laws, J.
Differential Equations, 51 (1984), pp. 419–441.

[14] T.-P. Liu, A. Matsumura, and K. Nishihara, Behaviors of solutions for the Burgers equation
with boundary corresponding to rarefaction waves, SIAM J. Math. Anal., 29 (1998), pp.
293–308.

[15] H. Matano, Nonincrease of the lap number of a solution for a one-dimensional semi-linear
parabolic equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 29 (1982), pp. 401–441.

[16] O. Oleinik, Discontinuous solutions of nonlinear differential equations, Uspekhi Mat. Nauk
(N.S.), 12 (1957), pp. 3–73 (in Russian).

[17] O. Oleinik, Discontinuous solutions of nonlinear differential equations, Amer. Math. Soc.
Transl. (2), 26 (1963), pp. 95–172.

[18] D. H. Sattinger, On the total variation of solutions of parabolic equations, Math. Ann., 183
(1969), pp. 78–92.
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Abstract. The bounded variation assumption is the starting point of many methods in image
analysis and processing. However, one common drawback of these methods is their inability to handle
textures and small structures properly. Here we precisely show why natural images are incompletely
represented by BV functions. Through an experimental study of the distribution of bilevels of natural
images, we show that their total variation blows up to infinity with the increasing of resolution. To
reach these conclusions, we compute bounds on the total variation, and we model convolution and
sampling under quite general assumptions.
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1. Introduction. This paper addresses the question of whether natural images
may be represented as functions of bounded variation. The question is of relevance
because of the wide use of the space BV in image modeling. Roughly speaking,
the space BV is the space of functions whose weak derivative is a measure with
finite total variation and is a straightforward space for images since it contains char-
acteristic functions of simple sets, thus enabling the representation of edges. The
BV assumption is the starting point of different approaches in image restoration
[Rud87], [ROF92], [CW98], [Mal99a], image segmentation [Amb89], image deconvo-
lution [RO94], [KMR99], optical flow computation [ADK99], or image compression.
These methods have proven very efficient, especially in dealing with one-dimensional
discontinuity in images. However, one common drawback is their inability to han-
dle textures properly. In particular, restoration or deconvolution in BV leads to the
smoothing out of textures, and segmentation procedures in BV fail to isolate textured
areas. A recent paper [Nik00] yields mathematical proofs of the stair-casing effect,
according to which BV minimization tends to create constant patches in images, thus
eliminating textural effects.

In this paper, we show that this phenomenon can be explained by the fact that
natural images are not of bounded variation. Our approach combines an experimental
program we performed on the distribution of homogeneous and connected regions in
images, the sections, and a theoretical result bounding from below the BV norm of
two-dimensional functions according to the distribution of their sections. We formalize
the link between experiments on discrete images and the mathematical results by using
a simple model of convolution and sampling for the formation of numerical images.
We point out here that another method to estimate the BV norm of images relies
on the study of wavelet coefficients. In order to study locally the (ir)regularity of
a signal, one may investigate the decay of wavelet coefficients at a certain location
(see [Mey93], [Mal99b] for an introduction to wavelet decompositions). More recently,
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Fig. 1. Airport, 510 × 343 image, with some of its sections for k = 10. Top right sections are
of size between 10 and 20 pixels; bottom left between 40 and 50 pixels; bottom right between 80 and
90 pixels. Different gray levels correspond to sections from different k-bilevels.

the link between the global decay of wavelet coefficients and the BV norm has been
studied so that, in some cases, this decay permits us to decide whether or not a
function belongs to the space BV ; see [CDPX99], [Oru98]. We shall compare our
method and the wavelet method to decide whether an image is in BV or not. As we
shall see, the geometric measurements we perform seem more accurate and permit us
to show that natural images are not of bounded variation.

The paper is organized as follows: in section 2, we recall our results about the
power law distribution of sections’ area and perimeter. In section 3, we recall basic
definitions and properties related to the spaceBV of functions with bounded variation.
In section 4, we establish a link between the distribution of section size and the BV
norm of functions of R

2; in section 5, we show that by combining the experimental
results of section 2 and the theoretical results of section 4, we can conclude that
natural images are not of bounded variation. Eventually, in section 6, we compare
our conclusions with recent results on the decay of wavelet coefficients.

2. The distribution of bilevels in natural images. In previous papers (see
[AGM99], [Gou00]), we explored the statistics of homogeneous and connected regions
of natural images. The most remarkable fact is that the distributions of their area and
perimeter are very well approximated by a power law. More precisely, we consider a
digital image I, whose gray levels are between 0 and N . For an integer k, we call a
k-bilevel of I any of the binary images defined by

Il(i, j) =

{
1 if I(i, j) ∈ [(l − 1)Nk , l

N
k

)
,

0 otherwise

for l varying from 1 to k. We then define a section to be a connected component of a
set {(i, j)/Il(i, j) = 1} for some l. For each integer a, we define f(a) to be the number
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Fig. 2. Function f (section area distribution) for the airport image, Figure 1, in log-log coor-
dinates.

Table 1
Average results for the distribution of area of sections on 100 images from the van Hateren

database. We denote by 〈α〉 and 〈E〉 the mean values of α and E respectively, std α is the standard
deviation of α; min(α) and max(α) are the minimum and maximum values for α.

k 〈α〉 std α max α min α 〈E〉 max E
16 1.85 0.19 2.20 1.39 0.37 0.49
14 1.83 0.19 2.18 1.36 0.37 0.54
12 1.83 0.19 2.15 1.37 0.37 0.54
10 1.81 0.18 2.12 1.27 0.37 0.50
8 1.80 0.17 2.26 1.32 0.38 0.59

of sections with area a (in pixels). Our experiments show that

f(a) ≈ C

aα
,(2.1)

where C and α are image dependent constants. Moreover, in most images, α is close
to 2.

We will not recall here all the experimental results, and we refer to the previously
mentioned papers for more details, but we will give some examples. For each image,
we fit a straight line with slope α to the function f in log-log coordinate, minimizing
the least squares distance. We also compute the least squares error E. In Figure 1,
we display a digital image and some of its sections, and in Figure 2 we display the
corresponding fit for f . Similar graphics are obtained for all considered digital images
(either from a digital camera, scanned images, or calibrated images). In Table 1, we
display results averaged over 100 calibrated images from a database collected by van
Hateren, freely available at http://hlab.phys.rug.nl/imlib/; see [vHvdS98]. The most
noticeable fact here is the proximity of α to 2, and the fact that for all images and
some value of k, α is larger than 1.5, a fact that will be proven relevant in what follows
for estimating the BV norm of images.
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Table 2
Average results for the distribution of perimeter of sections on 100 images from the van Hateren

database. Notations are the same as for Table 1.

k 〈β〉 std β max β min β 〈E〉 max E
16 2.35 0.28 2.57 2.04 0.36 0.42
14 2.42 0.29 2.60 2.10 0.29 0.35
12 2.38 0.33 2.63 1.99 0.42 0.51
10 2.46 0.15 2.62 2.10 0.31 0.39
8 2.36 0.14 2.49 2.04 0.37 0.41

In [AGM99], [Gou00], we also studied the distribution of the perimeters of sec-
tions, which are also distributed according to a power law with an exponent β usually
between 2 and 3. In Table 2, we display results similar to those in Table 1 for the val-
ues of β (still computed by minimizing the least squares error in log-log coordinates)
on the previously mentioned images database.

Are small sections due to noise or microtextures? In Figure 1, we have
shown some of the small sections from which the size statistics are estimated. We
do that for the following purpose: it might be objected to the observed size laws
that their small scale behavior is due to the caption device and not to the underlying
“natural” image. Thus it is very relevant to look at the sections and decide whether
they are due to digitization noise, to some microtexture, or to the inherent geometric
structure of the image. In Figure 1, we can check that most small sections arise on
contrasted parts of the image (the so called “edges”) and that their shape coincides
with those edges. We can also rule out a Gibbs phenomenon: it multiplies the edge
contribution to the bounded variation norm by a fixed constant factor. We have
shown only one example, but we have chosen a kind of example for which the BV
model should be very likely, since the whole scene is a geometric human-made scene
with as little texture as possible. All other images we have checked confirm this
interpretation: small sections correspond to objects or pieces of objects, or pieces of
contours. They are not at all uniformly distributed over the image, as would happen
with noise.

3. Functions of bounded variation and sets of finite perimeter. In this
section, we recall some basic facts about functions of bounded variation. Let I be a
bounded function defined on a domain (e.g., rectangular) Ω ⊂ R

2. I is in BV (Ω), the
space of functions with bounded variations, if

||I||BV def
=

∫
Ω

|DI| < +∞,

where the gradient DI is to be understood in a weak sense (see [Zie89]):∫
Ω

|DI| = sup

{∫
Ω

Idivφ | φ ∈ C1
c (Ω), |φ| < 1

}
,

where C1
c (Ω) is the space of continuously differentiable functions with compact sup-

port, defined from Ω to R
2. Actually the usual BV norm is defined as the sum

of
∫ |DI|, the total variation, and the L1 norm,

∫ |I|. We consider only the total
variation (which is not a norm), and write it ||.||BV .

We will be interested in a more geometric characterization of BV (Ω). For λ ∈ R,
define the level set of I with level λ by

χλI = {x, I(x) ≥ λ}.
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Now (see [EG92]) recall that a set E ∈ Ω is of finite perimeter per(E) if

per(E)
def
= ||11E ||BV ≤ +∞,

where 11E is the characteristic function of the set E. This definition generalizes
the usual definition of the boundary length, in the sense that both definitions are
equivalent in the case of a set with piecewise regular boundary. If a function has
bounded variation, then, for almost every λ ∈ R, χλI is a set with finite perimeter
and (coarea formula (see [EG92])),

||I||BV =

∫
R

per(χλI)dλ.(3.1)

Conversely, if per(χλI) is finite (for almost all λ) and the preceding integral is finite,
then I has bounded variation. We also recall that, by the classical isoperimetric
inequality, we have for every set O with finite perimeter,

per(O) ≥ 2π
1
2 ν(O)

1
2 ,(3.2)

where ν(O) denotes the Lebesgue measure of O.
The BV space is a very straightforward space for images. First, if images are

neither continuous nor strictly differentiable, it seems reasonable to assume them to be
in a space where they are weakly differentiable. Moreover, the occlusion phenomenon
is responsible for one-dimensional discontinuities which prevent the weak derivatives
of images from being integrable, thus forcing images out of any Sobolev space. Such
a simple image as a white disk on a black background belongs to the space BV ,
which is the natural space to perform calculus of variations on functions whose one-
dimensional discontinuities have finite length (see [Amb89]). Now, a first way for an
image not to be in this space is to have level lines with infinite length. For instance,
the characteristic functions of two-dimensional sets with fractal boundaries will not
be of bounded variation. There is also another way for a function not to be in BV .
Each of its level lines may be of finite perimeter, while the sum of these level lines’
perimeters is infinite. As we will see in the next two sections, this is what happens
for natural images, in which, in a precise sense, small objects are too numerous for
the function to be of bounded variation.

4. A lower bound for the BV norm. In the following, we shall consider
sections of the image. We always assume that the image I satisfies 0 ≤ I(x) ≤ C. We
first fix two parameters γ, λ, with 0 ≤ λ ≤ γ. For any n ∈ N, we consider the bilevel
sets of I

{x, λ+ (n− 1)γ ≤ I(x) < λ+ nγ} = χλ+(n−1)γI \ χλ+nγI.

We call the (γ, λ)-section of I any set which is a connected component of a bilevel
set χλ+(n−1)γI \χλ+nγI for some n. We denote each one of the components by Sγ,λ,i
for i ∈ J(γ, λ), a set of indices. Notice that the (γ, λ)-sections are disjoint, and their
union is the image domain Ω,

⋃
i∈J(γ,λ)

Sγ,λ,i = Ω.(4.1)
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There are several ways to define the connected components of a set with finite
perimeter, since such a set is defined up to a set with zero Lebesgue measure. One
can prove [ACMM99] that a definition of connected components for a set with finite
perimeter permits the following statements. (Recall that ν is the two-dimensional
Lebesgue measure and per is the perimeter.)

Definition 4.1. Let X be a set with finite perimeter in R
2. We say that X

is not decomposable if we cannot write it as X = Y ∪ Z with ν(Y ) > 0, ν(Z) > 0,
ν(X) = ν(Y ) + ν(Z), and per(X) = per(Y ) + per(Z).

Theorem 4.2. Each set of finite perimeter X admits a unique decomposition

X = ∪nXn,

where the union is finite or countable, and such that
(i) each Xn is not decomposable,
(ii) for each n, ν(Xn) > 0,
(iii) per(X) =

∑
n per(Xn).

This definition matches the usual requirements of connectivity, in particular, if
for x ∈ X, cc(x,X) is the component relative to X that contains x, X ⊂ Y implies
cc(x,X) ⊂ cc(x, Y ).

We need this definition because (iii) will enable us to use the distribution of
sections, as experimentally observed in section 2, to bound the BV norm of images
from below. We denote by J(n) ⊂ J(γ, λ) the set of indices of sections which are
connected components of χλ+(n−1)γI \ χλ+nγI. Note that by classical results on BV
functions, for each γ, χλ+(n−1)γI \χλ+nγI has finite perimeter for almost every λ. As
an obvious consequence of Proposition 4.2, we have the following corollary.

Corollary 4.3. Let I belong to BV . Then for almost every λ,

per(χλ+(n−1)γI \ χλ+nγI) =
∑
i∈J(n)

per(Sλ,γ,i).

In order to estimate the BV norm of I, we shall need the following lemma.
Lemma 4.4. If B ⊂ A are two sets with finite perimeter, then

per(A \B) ≤ per(A) + per(B).

Proof. Recall that per(A) = ||11A||BV . Then by the subadditivity of the BV norm,
we deduce from

11A\B = 11A − 11B

that

per(A \B) ≤ per(A) + per(B).

In the following theorem, we analyze the statistics of sizes of sections as follows.
We fix γ, that is, the overall contrast of considered sections, and for each 0 ≤ λ ≤ γ,
we count all sections Sγ,λ,i which have an area between s1 and s2 with 0 < s1 < s2.
That is, we consider the integer

Card{i, s1 ≤ ν(Sγ,λ,i) < s2}.
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Note that this number is bounded since Ω is bounded and the sections are disjoint.
We average this number over all λ’s in [0, γ] to obtain the function

f(γ, s1, s2) =

∫ γ

0

Card{i, s1 ≤ |Sγ,λ,i| < s2}dλ.

Remark. To be able to define f , we made the assumption that

Card{i, s1 ≤ ν(Sγ,λ,i) < s2} is a measurable function of λ.(4.2)

We will suppose that for some γ > 0, this average number has a density f(γ, s)
with respect to s. That is,

∀s > 0 lim
s1↑s,s2↓s

f(γ, s1, s2)

s1 − s2
= f(γ, s).(4.3)

Then we have the following bound for the BV norm of I.
Theorem 4.5. Let I be in BV (Ω). Assume that there exists some γ > 0 such that

(4.2) and (4.3) hold (i.e., the average number of sections with area s, for 0 ≤ λ ≤ γ,
has a density f(γ, s)); then

||I||BV ≥ π
1
2

∫ ν(Ω)

0

s
1
2 f(γ, s)ds.(4.4)

Proof. Applying Corollary 4.3 and Lemma 4.4,

||I||BV =

∫
R

per{x, I(x) ≥ λ}dλ

=
1

2

(∫
R

per{x, I(x) ≥ λ}dλ+

∫
R

per{x, I(x) ≥ λ− γ}dλ
)

≥ 1

2

∫
R

per(χλ−γI \ χλI)dλ

=
1

2

∑
n∈Z

∫ (n+1)γ

nγ

per(χλ−γI \ χλI)dλ

=
1

2

∫ γ

0

∑
n∈Z

per(χλ+(n−1)γI \ χλ+nγI)dλ

=
1

2

∫ γ

0

∑
i∈J(γ,λ)

per(Sγ,λ,i)dλ.

By the isoperimetric inequality (3.2), we therefore obtain

||I||BV ≥ π
1
2

∫ γ

0

∑
i∈J(γ,λ)

ν(Sγ,λ,i)
1
2 dλ.

Then, for any n ∈ N
∗

||I||BV ≥ π
1
2

n−1∑
k=1

(
ν(Ω)

n
k

) 1
2

f

(
γ,

ν(Ω)

n
k,

ν(Ω)

n
(k + 1)

)
.(4.5)
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We introduce the functions

fn =

n−1∑
k=1

(
ν(Ω)

n
k

) 1
2

f

(
γ,

ν(Ω)

n
k,

ν(Ω)

n
(k + 1)

)
n

ν(Ω)
11[ ν(Ω)

n k,
ν(Ω)
n (k+1)).

We have

||I||BV ≥ π
1
2

∫ ν(Ω)

0

fn(s)ds

and

∀s0 > 0 fn(s0) −→
n→+∞ (s0)

1
2 γf(γ, s0),

thanks to hypothesis (4.3). Therefore, by Fatou’s lemma,

||I||BV ≥ π
1
2

∫ ν(Ω)

0

s
1
2 f(γ, s)ds.

We can repeat the preceding analysis by assuming now that

g(γ, p1, p2) =

∫ γ

0

Card{i, p1 ≤ per(Sγ,λ,i) ≤ p2}dλ

has an average density g(γ, p) with respect to p (once more assuming the cardinal we
integrate is measurable). That is,

lim
p1↑p,p2↓p

g(γ, p1, p2)

p2 − p1
= g(γ, p).(4.6)

Then we have the analogue of Theorem 4.5 for the perimeters of sections.
Theorem 4.6. Let I be in BV (Ω). Assume that there exists some γ > 0 such

that (4.6) holds, i.e., the average number of sections with perimeter s, for 0 ≤ λ ≤ γ,
has a density g(γ, p). Then

||I||BV ≥ 1

2

∫ +∞

0

pg(γ, p)dp.(4.7)

Proof. In the same way as before (without using the isoperimetric inequality) and
fixing some pm > 0,

||I||BV ≥ 1

2

∫ γ

0

∑
i∈J(γ,λ)

per(Sγ,λ,i)dλ

≥ 1

2

n−1∑
k=1

(pm
n
k
)
g
(
γ,

pm
n
k,

pm
n

(k + 1)
)
.

As before, this implies

||I||BV ≥ 1

2

∫ +∞

0

pg(γ, p)dp.
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5. Application: Natural images are not of bounded variation.

5.1. The continuous framework. In this section, we draw the consequences
of Theorems 4.5 and 4.6 for the images analyzed in section 2 by assuming that the
observed distribution of sections approximates the distribution in continuous images.
According to our experimental results, we suppose that the considered images satisfy

f(γ, s) =
C

sα
,(5.1)

g(γ, p) =
C

pβ
(5.2)

for some constants α > 0, β > 0, where f is the density for the area distribution of the
sections, and g is the density for the perimeters. This law has been experimentally
checked for several values of γ = 256

k (the grey level width of the sections) and k
ranging from 8 to 20; see section 2 and [Gou00]. We also checked that the value of
α was almost unchanged when the bilevels were not defined from gray level 0, but
from some gray level less than 256

k (that is, in the continuous model for different
values of λ), and that when averaging the experimental density function over integer
values of λ between 0 and γ = 256

k , f and g still are power laws with the same
exponent. Thus hypotheses (5.1) and (5.2) are valid. We emphasized here that the
shapes and locations of small sections indicate that these are not due to noise, but to
small structures and objects clearly present in the image, particularly, pieces of edges;
see Figure 1. Moreover, Gaussian white noise leads to quite different statistics; see
[Gou00].

Then, by Theorem 4.5, we have

||I||BV ≥ c

∫ ν(Ω)

0

Cs
1
2

sα
ds

and, in the same way,

||I||BV ≥ c

∫ +∞

0

Cp

pβ
dp.

Thus, if we admit that (5.1) and (5.2) indeed hold for natural images when s→ 0, as
is indicated by the experiments recalled in section 2, we obtain that the considered
images are not in BV if α > 3

2 or β > 2, since the corresponding integrals are not
finite. These values of α and β have been checked for all images of the database
studied in section 2, for some value of k, except for some (3 out of 100) blurred
images. The assumption that formulae (5.1) and (5.2) hold for small scales, below the
scale of pixelization, is a strong one, but the experiment of section 2 indicates that the
distribution is the same at all scales. Moreover, the next section will analyze the effect
of pixelisation on the BV norm. Of course, there exists a cut-off scale in images, but
the lower bounds we found for the BV norm indicate that the contribution of small
scales to the value of this norm is unexpectedly large compared to the contribution of
larger scales. As mentioned in the introduction, this should be related to the problem
of the erasing of textures by variational methods minimizing the total variation of
images. Indeed, the BV norm gives a large weight to small-scale textures that are
known to disappear in the process of restoration (deblurring or denoising, for instance)
by such variational methods; see [ROF92], [Mal99a].
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5.2. Convolution and sampling. In this section, we draw the same conclusions
as in the previous one about the BV norm of natural images, with a more rigorous
interpretation of our experimental results. We give a practical application of the
method of Theorem 4.5 in a case where its hypotheses are satisfied. We assume
that discrete images, on which we performed the analysis of section 2, are obtained
from continuous ones through convolution and sampling. We first show that when
we compute the BV norm of a function after convolution with a rescaled smoothing
kernel (under some regularity conditions) and sampling, we underestimate the actual
value of the BV norm of the initial function. We write G for a two-dimensional
function and C for the square whose lower left corner is (0,0) and whose upper right
corner (1,1); n is an integer, and for a real number x, [x]n = [nx]/n, [nx] is the integer
part of nx.

Lemma 5.1. Let I be a function in BV (C), let Gn(x, y) = G(nx, ny), define

Ic = I ∗Gn,
and for (x, y) ∈ C

In(x, y) = Ic

(
[x]n +

1

2n
, [y]n +

1

2n

)
.

Assume that there exist some functions a and b such that

∀x, y ∈ C |G(x, y)| ≤ a(x)b(y),(5.3)

and assume there exists a constant K such that

sup
x,y

∑
i,j

a(x+ i)b(y + j) ≤ K.(5.4)

Then

||In||BV (C) ≤
√
2K||I||BV (C).

Proof. For i, j integer in [0, n), define

Ii,j = Ic

(
i

n
+

1

2n
,
j

n
+

1

2n

)
.

We have

||In||BV =
∑
i,j

(|Ii,j − Ii−1,j |+ |Ii,j − Ii,j−1|) .

Now, for all i, j,

|Ii,j − Ii−1,j | =
∣∣∣∣
∫ (

I

(
i+ 1

n
− x,

j

n
− y

)
− I

(
i

n
− x,

j

n
− y

))
G(nx, ny)

∣∣∣∣
=

∣∣∣∣
∫ ∫ 1

0

∂

∂x
I

(
i+ t

n
− x,

j

n
− y

)
G(nx, ny)

∣∣∣∣
≤
∫ ∫ 1

0

∣∣∣∣ ∂∂xI
(
i+ t

n
− x,

j

n
− y

)∣∣∣∣ a(nx)b(ny)
≤
∫ ∫ 1

0

∣∣∣∣ ∂∂xI
(
t

n
− x,−y

)∣∣∣∣ a(nx+ i)b(ny + j)
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so that

∑
i,j

|Ii+1,j − Ii,j | ≤ sup
x,y

∑
i,j

a(x+ i)b(y + j)

∫ ∣∣∣∣ ∂∂xI
∣∣∣∣ ,

and thus

||In||BV ≤ K

∫ ∣∣∣∣ ∂∂xI
∣∣∣∣+
∣∣∣∣ ∂∂y I

∣∣∣∣ ≤ √2K||I||BV ,
the last inequality resulting from |u|+ |v| ≤ √2(u2 + v2)1/2.

This theorem enables us to reformulate the fact that natural images do not belong
to BV in a slightly different way. Suppose that the continuous image I is represented
by the discrete function In of the previous theorem. Assume, moreover, that the
distribution of the area of the discrete connected components of bilevels for In is
fn,γ(k) for values of k from 1 to n2. Then reasoning as in Theorem 4.5 leads to the
following theorem.

Theorem 5.2. Let I be a function in BV (C) and In a sampling of I, defined
as in Lemma 5.1, the kernel G satisfying hypotheses (5.3) and (5.4). Then there is a
constant C such that

||I||BV ≥ C

n2∑
k=1

(
1

n2
k

) 1
2

fn(γ, k),(5.5)

where fn(γ, k) is the number of connected components of In of area k for values of k
from 1 to n2.

Proof. Since In is a step function, all measurability conditions of Theorem 4.5
are satisfied, and we obtain formula (4.5), which yields

||In||BV ≥ C

n2∑
k=1

(
1

n2
k

) 1
2

fn(γ, k).

By Lemma 5.1, we obtain formula (5.5).
We now come to the consequences of our experiments.
Corollary 5.3. If for all n there is a constant Cn such that

fn(γ, k) ≥ Cn(
1
n2 k
)α(5.6)

with α < 2, then

||In||BV ≥ C

n2∑
k=1

1

n2

(
k

n2

) 1
2−α

.(5.7)

Proof. We have (computing the area of the unit square)

n2∑
k=1

fn(γ, k)
k

n2
= 1
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Fig. 3. Ordered wavelet coefficients (modulus against the rank in log-log coordinates) and least
squares fit for four images.

so that

Cn

n2∑
k=1

1

n2

(
k

n2

)1−α
≥ 1

n2
.

Now if α < 2, the preceding Riemann sum converges, and

Cn ≥ (2− α)

n2
.

Eventually, replacing expression (5.6) into formula (5.5) yields the result.
Now the same conclusions as before hold, since the right side of formula (5.7)

tends to infinity as soon as α > 1.5. We have thus proved that if the distribution
of the (discrete) sections of the (piecewise constant) function which is obtained by
convolving I with a rescaled filter and sampling at n2 points follows formula (5.6)
with 1.5 < α < 2, then I is not of bounded variation.

Remark. The assumptions of Corollary 5.3 correspond exactly to our numerical
experiments on natural images. Notice that we observed a variation of the constant
Cn, and that the preceding proof shows that the blow-up result for the BV norm of
images is independent of this variation.

6. Wavelets and the space BV . As mentioned in the introduction, recent
results concerning the link between the global decay of wavelet coefficients and the
total variation of images permit us to address the main question of this paper in a
wavelet framework. Let (ck) be the wavelet coefficients of the image I, ordered in a
nonincreasing sequence. We say that the ck’s are in l1 if

∑ |ck| < +∞, and that they
are in weak-l1 if there exists a constant C such that ck ≤ C

k . Obviously, l1 is included
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Fig. 4. Lena, baobab, and baboon images, on which we study the decay of wavelet coefficients
as shown in Figure 3.

in weak-l1. It is well known that if the ck are in l1, then I is in a Besov space included
in BV . In the other direction, Cohen, DeVore, Petrushev, and Xu [CDPX99] recently
proved that if I is in BV , then the ck’s are in weak-l1 for the Haar wavelets. Cohen,
Meyer, and Oru then generalized the result to any compactly supported wavelet basis;
see [Oru98].

Thus it is possible to decide whether an image belongs to BV or not by looking
at its wavelet coefficients decay, except if they decrease as C

k , which happens to be
the case quite often. We present in Figure 3 the ordered coefficients for four images:
the well-known Lena image, a part of a baobab image, a baboon image (Figure 4),
and a Gaussian white noise. We used Daubechies’s wavelets (using filters of length
8 provided by Wavelab), and found very similar results with Haar’s wavelets. As
we see, there is a fairly linear part in those graphs but only for intermediate scales.
Assuming the small scales’ behavior is perturbed by sampling and that the decay
observed for most of the coefficients is characteristic of what happens at small scales,
we may use the preceding results. We fitted a line to those values according to a least
squares error so that an image should be in BV when the slope of this line is (strictly)
greater than 1, and out of BV if the slope is (strictly) smaller than 1. In the case of
the baobab and baboon images (Figure 4), we, respectively, found slopes of 0.76 and
0.45, and values of α (the exponent of the power law distribution of sections area),
respectively, equal to 1.9 and 2.38 (for k = 16) so that both methods agree: those
images are not in BV . For the well-known image of Lena, our approach gives an α
of 1.9 (for k = 16), which suggests that Lena is clearly out of BV , whereas from the
wavelet approach, a slope of .95 indicates the image is not BV . Now this result is
close to the uncertainty zone. Of course, the decay of the coefficients for the noise
image is very slow (0.16) so that this image is not in BV , whereas the distribution
of the area of sections does not follow a power law (but an exponential distribution).
Note that in all four cases, the inference of the distribution at small scales is less clear
than in the morphological approach of the previous sections.

To understand the nature of the uncertainty when the slope is 1, it is worth
noticing that the wavelet coefficients produced by the characteristic function of a
simple shape already decrease as 1

k so that the simple presence of edges in the image
implies this type of decay. In a sense, the wavelet coefficients look at the smoothness
of the edges of the image, whereas, by investigating the sections’ size distribution,
we investigate the number and the cumulated length of those sections. Thus, as we
mentioned already, it is not surprising that we get more precise estimates of the image
oscillations at small scales and can therefore decide, for instance, that Lena is not BV
while the wavelet coefficient analysis is ambiguous [Mal99b].
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Fig. 5. Simple plot of the BV norm as a function of the scale for the image of the airport. The
BV norm is directly computed on the image which is successively downsampled. Abscissa equals a
half means the image has been subsampled by a factor of 2.

Clearly, our proposed procedure and the wavelet experiments imply that the scale
behavior of the image needs some sophisticated statistics to be correctly extrapolated
at fine scales. Thus it is necessary to point out that less sophisticated statistics can
yield uninterpretable results on images for which the formerly mentioned methods
yield clearcut answers. By one of the referee’s suggestions, we performed the following
experiment (Figure 5). We simulated a zoom backward at six dyadic scales of a
natural image and computed the resulting BV norm. In several images where the
section statistics are conclusive, we get no clear scaling behavior, as can be seen in
Figure 5. Actually, even if the dots in the recently mentioned experiment had been
aligned, we could not have made any strong statement. The number of obtainable
samples is simply too small.

7. Conclusion. Combining experimental results about the distribution of sec-
tions in natural images and a result about the total variation of functions of R

2, we
have shown that natural images are not of bounded variation. This conclusion re-
lies on the assumption that the observed images are obtained from continuous ones
through fairly arbitrary convolution and sampling. This shows precisely that even
if they are well-adapted to the large scale geometric structures of images, modeling
them as functions with bounded variation does not account for the intricate nature
of their small details.
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Abstract. We prove that the one-dimensional Schrödinger equation with derivative in the
nonlinear term is globally well-posed in Hs for s > 2/3, for small L2 data. The result follows from
an application of the “I-method.” This method allows us to define a modification of the energy norm
H1 that is “almost conserved” and can be used to perform an iteration argument. We also remark
that the same argument can be used to prove that any quintic nonlinear defocusing Schrödinger
equation on the line is globally well-posed for large data in Hs, for s > 2/3.

Key words. Schrödinger equations, global well-posedness
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1. Introduction. We consider the derivative nonlinear Schrödinger initial value
problem (IVP) {

i∂tu + ∂2
xu = iλ∂x(|u|2u),

u(x, 0) = u0(x), x ∈ R, t ∈ R,
(1)

where λ ∈ R. The equation in (1) is a model for the propagation of circularly polarized
Alfvén waves in magnetized plasma with a constant magnetic field [18, 19, 23].

It is natural to impose the smallness condition

‖u0‖L2 <

√
2π

λ
(2)

on the initial data, as this will force the energy to be positive via the sharp Gagliardo–
Nirenberg inequality. Note that the L2 norm is conserved by the evolution.

Well-posedness for the Cauchy problem (1) has been studied by many authors [10,
11, 12, 20, 21, 22, 26, 27]. The best local well-posedness result is due to Takaoka [22],
who used a gauge transformation and the Fourier restriction method is used to obtain
local well-posedness in Hs, s ≥ 1/2. In [24], Takaoka showed that this result is sharp
in the sense that the data map fails to be C3 or uniformly C0 for s < 1/2 (cf. Bourgain
[4] and Biagioni–Linares [1]).
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In [20], global well-posedness is obtained for (1) in H1, assuming the smallness
condition (2). The argument there is based on two gauge transformations performed
in order to remove the derivative in the nonlinear term. This was improved by
Takaoka [24], who proved global well-posedness in Hs for s > 32

33 , assuming (2).
The method of proof is based on the idea of Bourgain [3, 5] of estimating separately
the evolution of low frequencies and of high frequencies of the initial data.

In this paper we improve the global well-posedness result further.
Theorem 1.1. The Cauchy problem (1) is globally well-posed in Hs for s > 2/3,

assuming the smallness condition (2).
The proof of Theorem 1.1 is based on the “I-method” used by the authors in other

nonlinear Cauchy problems in [15, 7, 8, 9] (see also [14]). The basic idea is as follows.
After a rescaling, we define a new energy EN (u)(t) for the solution u that depends on
a parameter N � 1. We prove a local well-posed result in the norm associated to EN

on intervals of length ∼ 1, and finally we perform an iteration on the time intervals.
The reason why this iteration can be globally extended is that the increment of the
energy EN (u)(t) over each time interval is very small. In other words, the argument
is successful because the energy EN (u)(t) is almost conserved.

After the proof of Theorem 1.1 is completed, we will briefly remark that, using
the same techniques, one can also show that the one-dimensional defocusing quintic
nonlinear Schrödinger is globally well-posed for initial data in Hs, s > 2/3. The
details of the proof of this fact will appear in a different paper.

The restriction s > 2/3 is probably not sharp and might be improvable either
by more sophisticated multilinear estimates and better estimates on the symbols M4,
M6, M8 which appear in our argument, or by using the “correction term” strategy
of [8]. In fact, one may reasonably conjecture that one could extend the global well-
posedness result to match the local result at s > 1/2. We will not pursue these
matters here.

2. Notation. To prove Theorem 1.1, we may assume 2/3 < s < 1, since for
s ≥ 1 the result is contained in [20, 24]. Henceforth 2/3 < s < 1 shall be fixed. Also,
by rescaling u, we may assume λ = 1.

We use C to denote various constants depending on s; if C depends on other
quantities as well, this will be indicated by explicit subscripting, e.g., C‖u0‖2

will
depend on both s and ‖u0‖2. We use A � B to denote an estimate of the form
A ≤ CB. We use a+ and a− to denote expressions of the form a+ ε and a− ε, where
0 < ε	 1 depends only on s.

We use ‖f‖p to denote the Lp(R) norm and Lq
tL

r
x to denote the mixed norm

‖f‖Lq
tL

r
x

:=

(∫
‖f(t)‖qr dt

)1/q

with the usual modifications when q =∞.
We define the spatial Fourier transform of f(x) by

f̂(ξ) :=

∫
R

e−ixξf(x) dx

and the spacetime Fourier transform u(t, x) by

ũ(τ, ξ) :=

∫
R

∫
R

e−i(xξ+tτ)u(t, x) dtdx.
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Note that the derivative ∂x is conjugated to multiplication by iξ by the Fourier trans-
form.

We shall also define Dx to be the Fourier multiplier with symbol 〈ξ〉 := 1 + |ξ|.
We can then define the Sobolev norms Hs by

‖f‖Hs := ‖Ds
xf‖2 = ‖〈ξ〉sf̂‖L2

ξ
.

We also define the spaces Xs,b(R× R) (first introduced in [2]) on R× R by

‖u‖Xs,b(R×R) := ‖〈ξ〉s〈τ − |ξ|2〉bû(ξ, τ)‖L2
τL

2
ξ
.

We often use ‖u‖s,b to abbreviate ‖u‖Xs,b(R×R). For any time interval I, we define

the restricted spaces Xs,b(I × R) by

‖u‖Xs,b(I×R) := inf{‖U‖s,b : U |I×R = u}.
We shall take advantage of the Strichartz estimates

‖u‖L6
tL

6
x

� ‖u‖0,1/2+(3)

and

‖u‖L∞
t L2

x
� ‖u‖0,1/2+(4)

(see, e.g., [2]). From (4) and Sobolev embedding we observe

‖u‖L∞
t L∞

x
� ‖u‖1/2+,1/2+.(5)

In our arguments we shall be using the trivial embedding

‖u‖s1,b1 � ‖u‖s2,b2 whenever s1 ≤ s2, b1 ≤ b2

so frequently that we will not mention this embedding explicitly.
We now give some useful notation for multilinear expressions. If n ≥ 2 is an even

integer, we define a (spatial) multiplier of order n to be any function Mn(ξ1, . . . , ξn)
on the hyperplane

Γn := {(ξ1, . . . , ξn) ∈ R
n : ξ1 + · · ·+ ξn = 0},

which we endow with the standard measure δ(ξ1 + · · · + ξn), where δ is the Dirac
delta.

If Mn is a multiplier of order n and f1, . . . , fn are functions on R, we define the
quantity Λn(Mn; f1, . . . , fn) by

Λn(Mn; f1, . . . , fn) :=

∫
Γn

Mn(ξ1, . . . , ξn)

n∏
j=1

f̂j(ξj).

We adopt the notation

Λn(Mn; f) := Λn(Mn; f, f̄ , f, f̄ , . . . , f, f̄).

Observe that Λn(Mn; f) is invariant under permutations of the even ξj indices or of
the odd ξj indices.
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If Mn is a multiplier of order n, 1 ≤ j ≤ n is an index, and k ≥ 1 is an even
integer, we define the elongation Xk

j (Mn) of Mn to be the multiplier of order n + k
given by

Xk
j (Mn)(ξ1, . . . , ξn+k) := Mn(ξ1, . . . , ξj−1, ξj + · · ·+ ξj+k, ξj+k+1, . . . , ξn+k).

In other words, Xk
j is the multiplier obtained by replacing ξj by ξj + · · · + ξj+k and

advancing all the indices after ξj accordingly.
We shall often write ξij for ξi + ξj , ξijk for ξi + ξj + ξk, etc. We also write ξi−j

for ξi − ξj , ξij−klm for ξij − ξklm, etc.

3. The Gauge transformation and the conservation laws. In this section
we apply the gauge transform used in [20] in order to improve the derivative nonlin-
earity.

Definition 3.1. We define the nonlinear map G : L2(R)→ L2(R) by

Gf(x) := e
−i
∫ x

−∞ |f(y)|2dy
f(x).

The inverse transform G−1f is then given by

G−1f(x) := e
i
∫ x

−∞ |f(y)|2dy
f(x).

This transform is well behaved on Hs.
Lemma 3.2. The map G is a bicontinuous map from Hs to Hs.
A similar statement holds for 0 ≤ s ≤ 1/2, but we shall not need it here.
Proof. We shall just prove the continuity of G, as the continuity of G−1 is proven

similarly.
Define Lip to be the space of functions with norm

‖f‖Lip := ‖f‖∞ + ‖f ′‖L∞ .

Since s > 1/2, we see from Sobolev embedding that the nonlinear map f �→ e
−i
∫ x

−∞ |f(y)|2dy

continuously maps Hs to Lip. It therefore suffices to show the product estimate

‖fg‖Hs � ‖f‖Hs‖g‖Lip.
But this estimate follows immediately from the Leibniz rule and Hölder when s = 0
or s = 1, and the intermediate cases then follow by interpolation.

Set w0 := Gu0 and w(t) := Gu(t) for all times t. A straightforward calculation
shows that the IVP (1) can be transformed to{

i∂tw + ∂2
xw = −iw2∂xw̄ − 1

2 |w|4w,
w(x, 0) = w0(x), x ∈ R, t ∈ R.

(6)

Also, the smallness condition (2) becomes

‖w0‖L2 <
√

2π.(7)

By Lemma 3.2 we thus see that global well-posedness of (1) in Hs is equivalent to that
of (6). From [20, 22, 24], we know that both Cauchy problems are locally well-posed
in Hs and globally well-posed in H1, assuming (7). By standard limiting arguments,
we thus see that Theorem 1.1 will follow if we can show the following.
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Proposition 3.3. Let w be a global H1 solution to (6) obeying (7). Then for
any T > 0 we have

sup
0≤t≤T

‖w(t)‖Hs � C‖w0‖Hs ,‖w0‖2,T ,

where the right-hand side does not depend on the H1 norm of w.
Just by looking at the equation in (6) it is not easy to understand why this should

be better than the equation in (1). In fact, we still see a derivative, and, moreover,
a quintic nonlinearity has been introduced. But it was made clear in [20, 13, 22]
how a derivative of the complex conjugate of the solution w can be handled while a
derivative of w cannot. Also, the quintic term is not going to introduce any extra
trouble.

Let n ≥ 2 be an even integer, and let Mn be a multiplier of order n. From (6) we
have

∂tw = iwxx − ww̄xw +
i

2
ww̄ww̄w

and

∂tw̄ = −iwxx − w̄wxw̄ − i

2
w̄ww̄ww̄.

Taking the Fourier transform of these identities, we obtain the useful differentiation
law

∂tΛn(Mn;w(t)) = iΛn


Mn

n∑
j=1

(−1)jξ2
j ;w(t)




− iΛn+2


 n∑

j=1

X2
j (Mn)ξj+1;w(t)




+
i

2
Λn+4


 n∑

j=1

(−1)j−1X4
j (Mn);w(t)




(8)

for any even integer n ≥ 2 and any multiplier Mn of order n.
We now turn to the conservation laws that the solution w of (6) enjoys. What

follows in this section was originally described by Ozawa in [20]; however, we have
redone the computations in our own notation, as this will prove useful later.

Definition 3.4. If f ∈ H1(R), we define the energy E(f) by

E(f) :=

∫
∂xf∂xf dx− 1

2
Im

∫
fff∂xf dx.

By Plancherel, we may write E(f) using the Λ notation as

E(f) = −Λ2(ξ1ξ2; f)− 1

2
ImΛ4(iξ4; f).

Expanding the second term using Im(z) = (z − z̄)/2i and using symmetry, we may
rewrite this as

E(f) = −Λ2(ξ1ξ2; f) +
1

8
Λ4(ξ13−24; f).(9)
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Lemma 3.5 (see [20]). If w is an H1 solution to (6) for times t ∈ [0, T ], then we
have

‖w(t)‖2 = ‖w0‖2
and

E(w(t)) = E(w0)

for all t ∈ [0, T ].
Proof. These conservation laws are proven in [20]; however, we give a proof based

on the identity (8), as the proof here will be needed later on.
We of course have

‖w(t)‖22 = Λ2(1;w(t)).

In the rest of this proof we shall drop the w(t) from the Λ notation. Differentiating
the previous equation and applying (8), we obtain

∂t‖w(t)‖22 = −iΛ2(ξ2
1 − ξ2

2)− iΛ4(ξ2 + ξ3) +
i

2
Λ6(1− 1 + 1− 1 + 1− 1).

The first term vanishes since ξ12 = 0. The second term can be symmetrized to
− i

2Λ4(ξ1234), which vanishes. The third term clearly vanishes. This proves the L2

conservation.
Now we prove energy conservation. From (9) we have

∂tE(t) = −∂tΛ2(ξ1ξ2) +
1

8
∂tΛ4(ξ13−24),(10)

and from (8) we have

∂tΛ2(ξ1ξ2) = −iΛ2(ξ1ξ2(ξ2
1−ξ2

2))−iΛ4(ξ123ξ4ξ2 +ξ1ξ234ξ3)+
i

2
Λ6(ξ12345ξ6−ξ1ξ23456).

The Λ2 term vanishes since ξ12 = 0. To simplify the Λ4 term we write ξ123 = −ξ4
and ξ234 = −ξ1 and then symmetrize. To simplify the Λ6 term we write ξ12345 = −ξ6
and ξ23456 = −ξ1 and then symmetrize to obtain

∂tΛ2(ξ1ξ2) =
i

2
Λ4(ξ2

1ξ3 + ξ2
2ξ4 + ξ2

3ξ1 + ξ2
4ξ2) +

i

6
Λ6(ξ2

1 − ξ2
2 + ξ2

3 − ξ2
4 + ξ2

5 − ξ2
6).

We may simplify the Λ4 term further, using the identity

ξ2
1ξ3 + ξ2

2ξ4 + ξ2
3ξ1 + ξ2

4ξ2 = ξ1ξ3ξ13 + ξ2ξ4ξ24

= ξ13(ξ1ξ3 − ξ2ξ4)

= ξ13(−ξ1ξ124 − ξ2ξ4)

= −ξ13(ξ1 + ξ2)(ξ1 + ξ4)

= −ξ12ξ13ξ14
to obtain

∂tΛ2(ξ1ξ2) = − i

2
Λ4(ξ12ξ13ξ14) +

i

6
Λ6(ξ2

1 − ξ2
2 + ξ2

3 − ξ2
4 + ξ2

5 − ξ2
6).(11)
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We now consider the second component of the energy. From (8) we have

∂tΛ4(ξ13−24) = iΛ4(ξ13−24(ξ2
1 − ξ2

2 + ξ2
3 − ξ2

4))

− iΛ6(ξ1235−46ξ2 + ξ15−2346ξ3 + ξ1345−26ξ4 + ξ13−2456ξ5)

+
i

2
Λ8(ξ123457−68 − ξ17−234568 + ξ134567−28 − ξ13−245678).

The Λ8 term symmetrizes to iΛ8(ξ12345678), which vanishes. The Λ6 term can be
rewritten as

2iΛ6(ξ46ξ2 − ξ15ξ3 + ξ26ξ4 − ξ13ξ5),

which we rewrite as

2iΛ6(ξ246ξ2 − ξ135ξ3 + ξ246ξ4 − ξ135ξ5)− 2iΛ6(ξ2
2 − ξ2

3 + ξ2
4 − ξ2

5).

The first term symmetrizes to 4i
3 Λ6(ξ2

246 − ξ2
135), which vanishes. The second term

symmetrizes to

4i

3
Λ6(ξ2

1 − ξ2
2 + ξ2

3 − ξ2
4 + ξ2

5 − ξ2
6).

Finally, consider the Λ4 term. We may factorize

ξ13−24(ξ2
1 − ξ2

2 + ξ2
3 − ξ2

4) = ξ13−24(ξ1−2ξ12 + ξ3−4ξ34).

Since ξ12 = ξ−34 and ξ13 = −ξ24, we may simplify this as

2ξ13ξ12(ξ1−2 − ξ3−4) = 4ξ12ξ13ξ14.

Combining all these identities, we thus have

1

8
∂tΛ4(ξ13−24) = −1

2
iΛ4(ξ12ξ13ξ14)− i

6
Λ6(ξ2

1 − ξ2
2 + ξ2

3 − ξ2
4 + ξ2

5 − ξ2
6).

Combining this with (11) and (10), we obtain

∂tE(w(t)) = 0,

and the claim follows.
Heuristically, the energy E(w(t)) has the same strength as ‖w(t)‖2H1 . We can

make this precise as follows.
Lemma 3.6. Let f be an H1 function on R such that ‖f‖2 <

√
2π. Then we have

‖∂xf‖2 ≤ C‖f‖2
E(f)1/2,(12)

where C‖f‖2
depends only on ‖f‖2.

Proof. Define the function

g(x) := exp

(
i
3

4

∫ x

−∞
|f(y)|2 dy

)
f(x).

A routine computation shows that

‖g‖2 = ‖f‖2 <
√

2π
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and

E(f) = ‖∂xg‖22 −
1

16
‖g‖66.

From the sharp Gagliardo–Nirenberg inequality [28]

‖g‖66 ≤
4

π2
‖g‖42‖∂xg‖22,(13)

we therefore have

‖∂xg‖2 � C‖f‖2
E(f)1/2.

From the definition of g we have

f(x) = exp

(
−i3

4

∫ x

−∞
|g(y)|2 dy

)
g(x),

and so we have

‖∂xf‖2 � ‖∂xg‖2 + ‖g3‖2.

By another application of (13) we thus obtain (12).

4. The almost conserved energy norm. It remains to prove Proposition 3.3.
Fix w, T . We also let N � 1 be a large parameter depending on T , ‖w0‖2, and
‖w0‖Hs which we shall choose later.

Because we do not want to use the H1 norm of w, we cannot directly use the
energy E(w(t)) defined above. So we are looking for a substitute notion of “energy”
that can be defined for a less regular solution and that has a very slow increment in
time. In the frequency space let us consider an even C∞ monotone multiplier m(ξ)
taking values in [0, 1] such that

m(ξ) :=

{
1 if |ξ| < N,(

|ξ|
N

)s−1

if |ξ| > 2N.
(14)

We define the multiplier operator I : Hs −→ H1 such that Îw(ξ) := m(ξ)ŵ(ξ). This
operator is smoothing of order 1− s; indeed, we have

‖u‖s0,b0 � ‖Iu‖s0+1−s,b0 � N1−s‖u‖s0,b0(15)

for any s0, b0 ∈ R.
Our substitute energy will be defined by

EN (w) := E(Iw).

Note that this energy makes sense even if w is in only Hs.
In general the energy EN (w(t)) is not conserved in time, but we will show that

the increment is very small in terms of N . This will be accomplished in three stages.
First, in Proposition 4.1 below, we write the increment of EN (w(t)) as a multilinear
expression in w. Then, in Lemma 6.1, we estimate these multilinear expressions in
terms of the norm ‖Iw‖1,1/2+, gaining a power of N−1+ in the process. Finally, in
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Theorem 5.1 (and Lemma 3.6), we control the norm ‖Iw‖1,1/2+ back in terms of
EN (w(t)).

Proposition 4.1. Let w be an H1 global solution to (6). Then for any T ∈ R

and δ > 0 we have

EN (w(T + δ))−EN (w(T )) =

∫ T+δ

T

[Λ4(M4;w(t)) + Λ6(M6;w(t)) + Λ8(M8;w(t))] dt,

where the multipliers M4, M6, M8 are given by

M4 := C1m1m2m3m4ξ12ξ13ξ14 + C2(m2
1ξ

2
1ξ3 + m2

2ξ
2
2ξ4 + m2

3ξ
2
3ξ1 + m2

4ξ
2
4ξ2),

M6 := C3

6∑
j=1

(−1)j−1m2
jξ

2
j + C4

∑
{a,c,e}={1,3,5},{b,d,f}={2,4,6}

mambmcmdefξacξe

− mabcmdmemfξdfξb,

M8 := C5

∑
{a,c,e,g}={1,3,5,7};{b,d,f,h}={2,4,6,8}

mambmcmdefghξac−bdefgh

− mabcdemfmgmhξabcdeg−fh,

where C1, . . . , C5 are absolute constants and we adopt the abbreviations mi for m(ξi),
mij for m(ξij), etc. Furthermore, if |ξj | 	 N for all j, then the multipliers M4, M6,
M8 all vanish.

Proof. From (9) we have

EN (w(t)) = −Λ2(m1ξ1m2ξ2;w(t)) +
1

8
Λ4(ξ13−24m1m2m3m4;w(t)).

Henceforth we omit the w(t) from the Λ notation. By (8) we have

∂tΛ2(m1ξ1m2ξ2) = −iΛ2(m1ξ1m2ξ2(ξ2
1 − ξ2

2))

− iΛ4(m123ξ123m4ξ4ξ2 + m1ξ1m234ξ234ξ3)

+
i

2
Λ6(m12345ξ12345m6ξ6 −m1ξ1m23456ξ23456).

The Λ2 term vanishes since ξ12 = 0. To simplify the Λ4 term, we use ξ123 = −ξ4 and
ξ234 = −ξ1 and then symmetrize to obtain the second term of M4. To simplify the
Λ6 term, we use ξ12345 = −ξ6 and ξ23456 = −ξ1 and then symmetrize to get the first
term of M6.

In a similar vein, we have

∂tΛ4(ξ13−24m1m2m3m4) = −iΛ4(ξ13−24m1m2m3m4(ξ2
1 − ξ2

2 + ξ2
3 − ξ2

4))

− iΛ6(ξ1235−46m123m4m5m6ξ2 + ξ15−2346m1m234m5m6ξ3

+ ξ1345−26m1m2m345m6ξ4 + ξ13−2456m1m2m3m456ξ5)

+
i

2
Λ8(ξ123457−68m12345m6m7m8 − ξ17−234568m1m23456m7m8

+ ξ134567−28m1m2m34567m8 − ξ13−245678m1m2m3m45678).

The Λ4 term is of the form of the first term of M4 by the argument used to prove
(11). To simplify the Λ6 term, we use ξ1235−46 = −2ξ46 and similarly for the other
four terms and then symmetrize to obtain the second term of M6. Finally, if we



658 COLLIANDER, KEEL, STAFFILANI, TAKAOKA, AND TAO

symmetrize the Λ8 term, we obtain M8. The first part of the proposition then follows
from the fundamental theorem of calculus applied to the function t −→ EN (w(t)).

If all the frequencies are 	 N , then all the mi, mij , etc. terms are equal to 1.
In this case our calculations are identical to those in Lemma 3.5, and so our symbols
M4, M6, M8 will vanish by the computations given in that lemma.

5. Local estimates. In Lemma 6.1 we shall estimate the expression in Propo-
sition 4.1. It turns out that one cannot estimate this expression effectively just by
using spatial norms such as ‖Iw‖H1 (as is done for some simple equations in [5]), but
one must use spacetime norms such as ‖Iw‖1,1/2+. The purpose of this section is to
obtain the required control on these spacetime norms.

Theorem 5.1. Let w be an H1 global solution to (6), and let T ∈ R be such that

‖Iw(T )‖H1 ≤ C0

for some C0 > 0. Then we have

‖Iw‖X1,1/2+([T,T+δ]×R) � 1

for some δ > 0 depending on C0.
We now prove Theorem 5.1. We shall be able to exploit the estimates in [22]. By

standard iteration arguments (see, e.g., [2, 16, 17, 22, 24, 25]) it suffices to prove the
following lemma.

Lemma 5.2. We have

‖I(w1∂xw2w3)‖X1,b−1(R×R) �
3∏

i=1

‖Iwi‖X1,1/2+(R×R),(16)

‖I(w1w2w3w4w5)‖X1,b−1(R×R) �
5∏

i=1

‖Iwi‖X1,1/2+(R×R)(17)

for all Schwarz functions wi and some b > 1/2 (in fact, we may take any 1/2 < b <
5/8).

Proof. By Plancherel and duality it suffices to show∣∣∣∣∣∣
∫
∗

m(ξ4)〈ξ4〉〈τ4 + ξ2
4〉b−1ξ2∏3

j=1 m(ξj)〈ξj〉〈τj − (−1)j−1ξ2
j 〉1/2+

4∏
j=1

Fj(τj , ξj)

∣∣∣∣∣∣ �
4∏

j=1

‖Fj‖L2
τj

L2
ξj

and ∣∣∣∣∣∣
∫
∗∗

m(ξ6)〈ξ6〉〈τ6 + ξ2
6〉b−1∏5

j=1 m(ξj)〈ξj〉〈τj − (−1)j−1ξ2
j 〉1/2+

6∏
j=1

Fj(τj , ξj)

∣∣∣∣∣∣ �
6∏

j=1

‖Fj‖L2
τj

L2
ξj

for all functions F1, . . . , F6, where
∫
∗,
∫
∗∗ denote integration over the measure δ(τ1 +

· · ·+ τ4)δ(ξ1 + · · ·+ ξ4) and δ(τ1 + · · ·+ τ6)δ(ξ1 + · · ·+ ξ6), respectively.
We may assume that the Fj are all real and nonnegative. We now observe the

pointwise estimate

m(ξn)〈ξn〉1−s∏n−1
j=1 m(ξj)〈ξj〉1−s

� 1
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for n = 4, 6 and all ξ1, . . . , ξn such that ξ1 + · · ·+ξn = 0. To see this, we use symmetry
to assume that |ξ1| ≥ · · · ≥ |ξn−1| so that |ξn| � |ξ1|. Since m(ξ)〈ξ〉1−s is essentially
increasing in |ξ|, we thus see that

m(ξn)〈ξn〉1−s∏n−1
j=1 m(ξj)〈ξj〉1−s

� 1∏n−1
j=2 m(ξj)〈ξj〉1−s

.

Since m(ξ)〈ξ〉1−s � 1 for all ξ, the claim follows.
Because of this estimate, we need only to show the estimates∣∣∣∣∣∣

∫
∗

〈ξ4〉s〈τ4 + ξ2
4〉b−1ξ2∏3

j=1〈ξj〉s〈τj − (−1)j−1ξ2
j 〉1/2+

4∏
j=1

Fj(τj , ξj)

∣∣∣∣∣∣ �
4∏

j=1

‖Fj‖L2
τj

L2
ξj

(18)

and ∣∣∣∣∣∣
∫
∗∗

〈ξ6〉s〈τ6 + ξ2
6〉b−1∏5

j=1〈ξj〉s〈τj − (−1)j−1ξ2
j 〉1/2+

6∏
j=1

Fj(τj , ξj)

∣∣∣∣∣∣ �
6∏

j=1

‖Fj‖L2
τj

L2
ξj

.(19)

The estimate (18) is equivalent to the first estimate of Lemma 3.1 in [24] after undoing
the duality and Plancherel, so it suffices to prove (19). By undoing the duality we
can write this as

‖w1w2w3w4w5‖s,b−1 �
5∏

j=1

‖wj‖s,1/2+.

We may assume that the Fourier transforms w̃j are all real and nonnegative. By using

|ξ1 + ξ2 + ξ3 + ξ4 + ξ5|s �
∑5

i=1 |ξi|s, it suffices to prove estimates of the form

‖(Ds
xw1)w2w3w4w5‖0,b−1 �

5∏
j=1

‖wj‖s,1/2+

in addition to similar estimates when Ds
x falls on one of the other functions. We shall

prove only the displayed estimate, as the others are similar. We may estimate the
X0,b−1 norm by the L2

tL
2
x norm. But then the claim follows from three applications

of (3), two applications of (5), and Hölder (ensuring that the term with the Ds
x is

estimated using (3)).

6. Proof of Proposition 3.3. We can now prove Proposition 3.3, which as
remarked before will give Theorem 1.1. Let T , w be as in the proposition. Our
constants may depend on ‖w0‖2 and ‖w0‖Hs .

We start by rescaling the solution w. Let µ > 0 be chosen later. We observe that
w is a solution for the IVP (6) if and only if

wµ(t, x) =
1

µ1/2
w

(
t

µ2
,
x

µ

)

is a solution for the IVP (6) with initial data wµ
0 = µ−1/2w(µ−1x). From Plancherel’s

theorem and a simple computation we see that

‖I∂xwµ
0 ‖2 � N1−s

µs
‖w0‖Hs ,
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while

‖Iwµ
0 ‖2 ≤ ‖wµ

0 ‖2 = ‖w0‖2 <
√

2π.

We now choose µ := N
1−s
s . From the previous we see that ‖Iwµ

0 ‖H1 � 1, so from
Sobolev embedding (or Gagliardo–Nirenberg) we obtain

E(Iwµ
0 ) ≤ C1

for some constant C1 > 0.
Now suppose inductively that we have a time T such that

E(Iwµ(T )) ≤ C1 + C2N
−1+T,

where C2 > 0 is a constant depending on C1 to be chosen later. If T 	 N1−, we then
have E(Iwµ(T )) ≤ 2C1, which implies from Lemma 3.6 that

‖Iwµ(T )‖H1 ≤ C3,

where C3 depends on C1. By Theorem 5.1 we thus have

‖Iwµ‖X1,1/2+([T,T+δ]×R) ≤ C4,

where C4, δ depend on C3.
In the next four sections we shall prove the following key estimate.
Lemma 6.1. For any Schwartz function w, we have∣∣∣∣∣

∫ T+δ

T

Λn(Mn;w(t)) dt

∣∣∣∣∣ � N−1+‖Iw‖nX1,1/2+([T,T+δ]×R)(20)

for n = 4, 6, 8, where M4, M6, M8 are as defined in Proposition 4.1.
Assuming this estimate for the moment, we see from the previous and Proposition

4.1 that

E(Iwµ(T + δ)) ≤ E(Iwµ(T )) + C5N
−1+,

where C5 depends on δ and C4. This allows us to close the induction hypothesis by
setting C2 := C5. As a consequence, we have thus shown that1

‖Iwµ(T )‖H1 � 1

for all T 	 N1−. From the definition of I this implies that

‖wµ(T )‖Hs � CN

for all T 	 N1−. Undoing the scaling, this implies that

‖w(T )‖Hs � CN,µ

for all T 	 N1−/µ2. However, if s > 2/3, then N1−/µ2 = N
3s−2−

s goes to infinity as
N →∞, and Proposition 3.3 follows.

Remark 6.2. An examination of the above argument shows also that the Hs

norm of w (and of u) grows at most polynomially in time; however, the order of the
growth obtained by this argument goes to infinity as s→ 2/3.

1Strictly speaking, we have shown this only for T being an integer multiple of δ; however, this
can be easily remedied, e.g., by using the fact that the X1,1/2+ norm controls the L∞

t H1
x norm on

[T, T + δ] × R.
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7. Proof of Lemma 6.1: Preliminaries. To prove Lemma 6.1 we shall treat
the cases n = 4, n = 6, and n = 8 separately. The idea will be first to obtain some
good estimates on Mn in terms of m(ξi) and 〈ξi〉 and then to bound the resulting
multilinear expression using standard tools such as the Strichartz estimates (3), (5),
the trivial estimate

‖u‖L2
tL

2
x

� ‖u‖0,0,(21)

and Hölder’s inequality. In addition to the above linear estimates, we shall also take
advantage of the following bilinear improvement to Strichartz’s estimate in the case
of differing frequencies (cf. [3, 21]).

Lemma 7.1. For any Schwartz functions u, v with Fourier support in |ξ| ∼ R,
|ξ| 	 R, respectively, we have that

‖uv‖L2
tL

2
x

= ‖uv̄‖L2
tL

2
x

� R−1/2‖u‖0,1/2+‖v‖0,1/2+.

Proof. This is an improved Strichartz estimate of the type considered in [3]. In
fact, the desired estimate is contained in Theorem 2 of [21]. We present the short
proof for the sake of completeness.

It is enough to show that if u and v are solutions of the free Schrödinger equation,
that is, u = eit∂

2
xφ and v = eit∂

2
xψ, then

‖D1/2
x (uv)‖L2 � ‖φ‖L2‖ψ‖L2 ,(22)

where Dx is the operator such that D̂xf(ξ) = 〈ξ〉f̂(ξ). If we use duality and the
change of variable ξ1 + ξ2 = s and |ξ1|2 + |ξ2|2 = r, the left-hand side of (22) becomes

sup
‖F‖L2≤1

∫
R1/2F (ξ1 + ξ2, |ξ1|2 + |ξ2|2)φ̂(ξ1)ψ̂(ξ2)dξ1dξ2

�
∫

R1/2F (s, r)
H(s, r)

R
dsdr,

where H(s, r) denotes the product of φ̂ and ψ̂ in the new variables. Notice that
the change of variables introduced above has a Jacobian of size R. Now if we use
Cauchy–Schwarz and if we change the variables back to ξ1 and ξ2, then we obtain
(22).

In one of our subcases, we shall also take advantage of a trick (originally due to
Bourgain [2]) of splitting the symbol |ξ1|2 − · · ·+ |ξn|2 as a sum of τj ∓ |ξj |2.

Our estimates are not the best possible, and it is likely that one can improve the
N−1+ gain in our estimates, probably to N−3/2+. However, this will fall short of the
N−2+ gain needed to push the global well-posedness down to match the local well-
posedness theory at s > 1/2. However, one can recover this by adding higher-order
correction terms to the energy EN (w(t)), as in [8]. If one does this, one will end up
estimating the Λ6 and Λ8 expressions rather than Λ4. This will be beneficial because
such expressions will have fewer derivatives in their symbol and can therefore enjoy
better decay in N . The details of this argument will appear in a later paper.

We set out some notation. Let n = 4, 6, or 8, and let ξ1, . . . , ξn be frequencies
such that ξ1 + · · ·+ ξn = 0. Define Ni := |ξi| and Nij := |ξij |. We adopt the notation
that

1 ≤ soprano, alto, tenor, baritone ≤ n
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are the distinct indices such that

Nsoprano ≥ Nalto ≥ Ntenor ≥ Nbaritone

are the highest, second highest, third highest, and fourth highest values of the fre-
quencies N1, . . . , Nn, respectively. (If there is a tie in frequencies, we break the tie
arbitrarily.)

Since ξ1 + · · · + ξn = 0, we must have Nsoprano ∼ Nalto. Also, from Proposition
4.1 we see that Mn vanishes unless Nsoprano � N .

8. Proof of Lemma 6.1 when n = 4. We now estimate the Λ4 expression.
We begin by estimating the multiplier M4.

Lemma 8.1. Let ξ1, ξ2, ξ3, ξ4 be such that ξ1234 = 0.

• If Ntenor ∼ Nsoprano, then

|M4(ξ1, ξ2, ξ3, ξ4)| � N−1(N/Nsoprano)1/10〈ξ12ξ14〉1/2
4∏

j=1

〈ξj〉m(ξj).(23)

• If Ntenor 	 Nsoprano, then

|M4(ξ1, ξ2, ξ3, ξ4)| � N−1(N/Nsoprano)1/10Nsoprano

4∏
j=1

〈ξj〉m(ξj).(24)

Proof. Fix ξ1, . . . , ξ4. If Nsoprano 	 N , then M4 vanishes by the second part of
Proposition 4.1, and so we will assume that Nsoprano � N .

We split M4 = C1M
′
4 + C2M

′′
4 , where

M ′
4 := m1m2m3m4ξ12ξ13ξ14

and

M ′′
4 := m2

1ξ
2
1ξ3 + m2

2ξ
2
2ξ4 + m2

3ξ
2
3ξ1 + m2

4ξ
2
4ξ2.

In the Nsoprano � N case we will not need to exploit cancellation between M ′
4 and

M ′′
4 (although such cancellation certainly exists) and shall estimate them separately.

Let us first prove (23). We begin with estimating M ′
4. We have

|M ′
4| = N12N13N14m(N1)m(N2)m(N3)m(N4)

� N12N14Nsopranom(Nsoprano)3

� 〈N12N14〉1/2N2
sopranom(Nsoprano)3

� 〈N12N14〉1/2 1

N
(N/Nsoprano)1/10〈Nsoprano〉3m(Nsoprano)3

∼ N−1(N/Nsoprano)1/10〈N12N14〉1/2〈Nsoprano〉m(Nsoprano)〈Nalto〉m(Nalto)〈Ntenor〉m(Ntenor)

� N−1(N/Nsoprano)1/10〈N12N14〉1/2
4∏

j=1

〈Nj〉m(Nj),

as desired.

It remains to estimate M ′′
4 . We divide it into two cases: Nbaritone ∼ Nsoprano and

Nbaritone 	 Nsoprano.
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Case 1. Nbaritone ∼ Nsoprano.

In this case all the frequencies are comparable to each other. By symmetry we
may assume that N12 ≤ N14, in which case it suffices to show

|M ′′
4 | � N−1(N/N1)1/10N12N

4
1m(N1)4.

We can rewrite M ′′
4 = f(0)− f(h), where

f(h) := m(ξ1 − h)2(ξ1 − h)2(ξ3 + h) + m(ξ3 + h)2(ξ3 + h)2(ξ1 − h)

and h := ξ1 + ξ2. A routine calculation shows that

|f ′(x)| � m(N1)2N2
1

for all x = O(N1), so by the mean value theorem and the assumption N1 � N we
have

|M ′′
4 | = |f(0)− f(h)| � N12m(N1)2N2

1 � N−1(N/N1)1/10N12N
4
1m(N1)4,

as desired (in fact, we gain an additional power of N).

Case 2. Nbaritone 	 Nsoprano.

By symmetry we may assume that baritone = 4, and thus N1 ∼ N2 ∼ N3 � N4.
In this case N14 ∼ N1, N12 = N34 ∼ N1, and 〈N4〉m(N4) � 1, so it suffices to show

|M ′′
4 | � N−1(N/N1)1/10N4

1m(N1)3.

But we may crudely estimate the left-hand side by

|M ′′
4 | � m(N1)2N3

1 + m(N4)2N2
4N1 � m(N1)2N3

1 ,

which suffices since N1 � N . This proves (23).

Now we show (24). Observe that

N12N13N14 � N2
sopranoNtenor,

and hence

|M ′
4| � N2

sopranoNtenorm(Nsoprano)m(Nalto)m(Ntenor)m(Nbaritone)

�
4∏

j=1

〈Nj〉m(Nj)

� N−1+N1−
soprano

4∏
j=1

〈Nj〉m(Nj).

Thus it remains only to estimate M ′′
4 . Since 〈Nbaritone〉m(Nbaritone) and

m(Ntenor)N−1(N/Nsoprano)1/10Nsoprano are both � 1, it suffices to show

|M ′′
4 | � m(Nsoprano)2N2

sopranoNtenor.
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By symmetry we may reduce to one of two cases.
Case 1. N3 = Ntenor and N4 = Nbaritone.
We crudely estimate

|M ′′
4 (ξ1, ξ2, ξ3, ξ4)| � m(N1)2N2

1N3 + m(N2)2N2
2N4

+ m(N3)2N2
3N1 + m(N4)2N2

4N2 � m(N1)2N2
1N3,

as desired.
Case 2. N2 = Ntenor and N4 = Nbaritone.
In this case we estimate

|M ′′
4 | � |m2

1ξ
2
1ξ3 + m2

3ξ
2
3ξ1|+ m(N2)2N2

2N4 + m(N4)2N2
4N2

= N1N3|m(ξ1)2ξ1 −m(ξ1 + ξ2 + ξ4)2(ξ1 + ξ2 + ξ4)|+ O(m(N1)2N2
1N2).

The function m(ξ1 + h)2(ξ1 + h) has a derivative of O(m(N1)2) whenever |h| 	 N1;
thus by the mean value theorem we have

|M ′
4(ξ1, ξ2, ξ3, ξ4)| � N1N3N24m(N1)2 + O(m(N1)2N2

1N2) � m(N1)2N2
1N2,

as desired.
We now prove (20) in the n = 4 case. It suffices to show that∫ T+δ

T

Λ4(M4;w1(t), w2(t), w3(t), w4(t)) dt � N−1+
4∏

j=1

‖Iwj‖1,1/2+

for all Schwartz functions w1, . . . , w4 on R×R. Since M4 vanishes for Nsoprano 	 N ,
it suffices by dyadic decomposition to show that∫ T+δ

T

Λ4(M4χNsoprano∼2k ;w1(t), w2(t), w3(t), w4(t)) dt

� N−1+2(0+)k(N/2k)1/10
4∏

j=1

‖Iwj‖1,1/2+

for all integers k for which 2k � N . (The exact choice of the cutoff χNsoprano∼2k is
not important as we shall soon be taking absolute values everywhere anyway.)

Fix k. Without loss of generality we may assume that the Fourier transforms w̃j

are real and nonnegative. We divide the Λ4 integral into the regions Ntenor ∼ Nsoprano

and Ntenor 	 Nsoprano.
Case 1. Ntenor ∼ Nsoprano.
We first perform some manipulations to eliminate the cutoff χ[T,T+δ](t). Write

χ[T,T+δ](t) = a(t) + b(t), where a(t) is χ[T,T+δ](t) convolved with a smooth approxi-

mation to the identity of width 2−100k, and b(t) = χ[T,T+δ](t)− a(t).

Let us first consider the contribution of b(t). We crudely estimate M4 = O(210k)
and estimate this contribution by

210k

∫ ∫
|b(t)||w1(t, x)||w2(t, x)||w3(t, x)||w4(t, x)| dxdt.

By Hölder, three applications of (3), one application of (4), and four applications of
(15), we can bound this by

210k‖b‖2
4∏

j=1

‖Iwj‖1,1/2+.

Since ‖b‖2 � 2−50k, the claim then follows.
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Now consider the contribution of a(t). We use the following lemma.
Lemma 8.2. We have

‖a(t)w1‖1,1/2+ � 2(0+)k‖w1‖1,1/2+.

Proof. By applying Plancherel, restricting to a single frequency ξ, and then
undoing Plancherel, we see that it suffices to show that

‖a(t)f‖
H

1/2+
t

� 2(0+)k‖f‖
H

1/2+
t

for all functions f . However, this follows from the routine calculation

‖a(t)‖
H

1/2+
t

� 2(0+)k

and the fact that H
1/2+
t is closed under multiplication.

It therefore suffices to show∣∣∣∣
∫

Λ4(M4χNtenor∼Nsoprano∼2k ;w1(t), w2(t), w3(t), w4(t)) dt

∣∣∣∣
� N−1(N/2k)1/10

4∏
j=1

‖Iwj‖1,1/2+.

Without loss of generality we may assume that the Fourier transforms w̃j are real and
nonnegative. By Plancherel and (23) we estimate the left-hand side by

N−1(N/2k)1/10
∣∣∣∣
∫
∗
〈ξ12ξ14〉1/2ĨDxw1(τ1, ξ1) ˜IDxw2(τ2, ξ2)ĨDxw3(τ3, ξ3) ˜IDxw4(τ4, ξ4)

∣∣∣∣ .
From the identity (cf. Bourgain [2] and Kenig–Ponce–Vega [17])

4∑
j=1

(τj − (−1)j−1ξ2
j ) = −ξ2

1 + ξ2
2 − ξ2

3 + ξ2
4

= ξ12ξ2−1 + ξ34ξ4−3

= ξ12(ξ2−1 − ξ4−3)

= −2ξ12ξ14

we see that

〈ξ12ξ14〉 � 〈τj − (−1)j−1ξ2
j 〉

for some j = 1, 2, 3, 4. We shall assume j = 1; the argument for other values of j is
similar. We can then use duality and Plancherel to estimate the previous by

N−1(N/2k)1/10‖Iw1‖1,1/2+‖IDxw2IDxw3IDxw4‖L2
tL

2
x
.

However, this is acceptable by Hölder and three applications of (3).
Case 2. Ntenor 	 Nsoprano.
We shall assume that soprano = 1 and alto = 2; the reader may verify that the

other cases follow by the same argument. We may then restrict w1, w2 to have Fourier
support in |ξ| ∼ 2k and w3, w4 to have Fourier support in the region |ξ| 	 2k.

By (24) we have

|M4| � N−1(N/2k)1/102k
4∏

j=1

〈ξi〉m(ξi).

The claim then follows from Hölder and two applications of Proposition 7.1.
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9. Proof of Lemma 6.1 when n = 6. We begin with the analogue of Lemma
8.1.

Lemma 9.1. Let ξ1, . . . , ξ6 be such that ξ123456 = 0.
• If Ntenor ∼ Nsoprano, then

|M6(ξ1, ξ2, ξ3, ξ4, ξ5, ξ6)|(25)

� N−1〈ξsoprano〉m(ξsoprano)〈ξalto〉m(ξalto)〈ξtenor〉m(ξtenor).

• If Ntenor 	 Nsoprano, then

|M6(ξ1, ξ2, ξ3, ξ4, ξ5, ξ6)| � N−1+〈Nsoprano〉1−〈ξsoprano〉m(ξsoprano)〈ξalto〉m(ξalto).

(26)

One can improve these estimates by exploiting further cancellation in the expres-
sion M6, but we shall not need to do so because of the good smoothing properties of
(6).

Proof. Since ξ123456 = 0, we have Nalto ∼ Nsoprano. We may also assume that
Nsoprano � N since M6 vanishes otherwise.

We have the very crude estimate

|M6| � N2
soprano.

If Ntenor ∼ Nsoprano, we then have

|M6| � N2
soprano � N−1m(Nsoprano)Nsopranom(Nalto)Naltom(Ntenor)Ntenor

(using the hypothesis s > 2/3), and (25) follows.
Now suppose that Ntenor 	 Nsoprano. Then

|M6| � N2
soprano � N−1+〈Nsoprano〉1−m(Nsoprano)Nsopranom(Nalto)Nalto

(since s > 1/2), and (26) follows.
We now prove (20) for n = 6. As in the previous section, it suffices to show

∫ T+δ

T

Λ6(M6;w1(t), w2(t), w3(t), w4(t), w5(t), w6(t)) dxdt � N−1+
6∏

j=1

‖Iwj‖1,1/2−

for all Schwartz functions w1, . . . , w6 on R × R. Without loss of generality we may
assume that the Fourier transforms w̃i of wi are real and nonnegative.

We again divide the analysis into the cases Ntenor ∼ Nsoprano and Ntenor 	
Nsoprano.

Case 1. Ntenor ∼ Nsoprano.
By (25) and symmetry it suffices to show

∫ T+δ

T

∫ 3∏
j=1

|DxIwj |
6∏

j=4

|wj | dxdt �
6∏

j=1

‖Iwj‖1,1/2+.

However, this follows from Hölder, six applications of (3) first, and three applications
of (15) later.
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Case 2. Ntenor 	 Nsoprano.
We shall assume that soprano = 1 and alto = 2; the reader may verify that the

other cases follow by the same argument.
First suppose that Nsoprano ∼ 2k for some integer k. Then w1, w2 have Fourier

support on |ξ| ∼ 2k, while w3, w4, w5, w6 have Fourier support on |ξ| 	 2k.
We apply (26) and bound the contribution of this case by

N−1+2(1−)k

∫ T+δ

T

∫ 2∏
j=1

|DxIwj |
6∏

j=3

|wj | dxdt,

which we bound using Hölder by

N−1+2(1−)k‖(DxIw1)w3‖L2
tL

2
x
‖(DxIw2)w4‖L2

tL
2
x
‖w5‖L∞

t L∞
x
‖w6‖L∞

t L∞
x
.

By Lemma 7.1, (5), and (15) we can bound this by

N−1+2(0−)k
6∏

j=1

‖Iwj‖1,1/2+.

The claim then follows by summing in k.

10. Proof of Lemma 6.1 when n = 8. We begin with the analogue of
Lemma 8.1.

Lemma 10.1. For any ξ1, . . . , ξ6 with ξ123456 = 0, we have

|M8(ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7, ξ8)| � N−1〈ξsoprano〉m(ξsoprano)〈ξalto〉m(ξalto).(27)

Proof. As usual, we may assume that Nsoprano ∼ Nalto � N . We crudely estimate

|M8| � Nsoprano � N−1Nsopranom(Nsoprano)Naltom(Nalto),

and the claim follows.
To prove (20) for n = 8 it suffices to show

∫ T+δ

T

Λ8(M8;w1(t), . . . , w8(t)) dt � N−1
8∏

j=1

‖Iwj‖1,1/2+

for all Schwartz functions w1, . . . , w8 on R × R. Without loss of generality, we may
assume that the Fourier transforms w̃i of wi are real and nonnegative. By Lemma
10.1 and symmetry it thus suffices to show

∫ T+δ

T

∫
|DxIw1||DxIw2|

8∏
j=3

|wj | dxdt � N−1
8∏

j=1

‖Iwj‖1,1/2+.

However, this follows from Hölder, six applications of (3), and two applications of (5)
and (15).

Remark 10.2. As was shown in section 3, the gauge transform in Definition 3.1
introduces a quintic term in the IVP (6). Then one can ask if the same arguments we
proposed above can be used in order to study the global well-posedness of the quintic
nonlinear Schrödinger IVP{

i∂tv + ∂2
xv + λ|v|4v = 0,

v(x, 0) = v0(x), x ∈ R, t ∈ R,
(28)
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where λ ∈ R. In this case we define the energy

H(f) :=

∫
|∂xf(x)|2 dx− λ

6

∫
|f |2 dx.

By Plancherel, we may write H(f) using the Λ notation as

H(f) = Λ2(ξ1ξ2; f)− λ

6
Λ6(1; f).

As in Lemma 3.5, one can prove that the energy H(v(t)) of the solution v for (28) is
constant. Now let us define the new energy

HN (v) = H(Iv) = Λ2(ξ1ξ2m1m2; v)− λ

6
Λ6

(
6∏

i=1

mi; v

)

just like we did in section 4. Then, by the analogue of (8), ∂tHN (v(t)) will involve
terms of type Λ2,Λ6, and Λ10. Using the same ideas presented in the proof of Lemma
6.1, we can also estimate in the appropriate way the term involving Λ10. If in (28) we
assume that λ < 0 (defocusing) or that the L2 norm of the initial data is small (so
that the Gagliardo–Niremberg inequality can be applied), then the energy H(v)(t)
stays positive for all times, and global well-posedness in Hs for s > 2/3 will follow.
We will present the details of the proof in a future paper. It has to be said here that
global results for “small data” are already available for (28) through more standard
arguments [6].
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Abstract. This paper is concerned with the scattering of time-harmonic acoustic waves by inho-
mogeneous media. We study the problem to recover the refractive index from far field measurements
and from near field mesurements. We establish logarithmic stability estimates for these problems
using a priori information with respect to Sobolev norms and a priori information about the support
of the inhomogeneity. Our results improve previous estimates due to Stefanov by giving an explicit
exponent in the logarithmic estimate, by using the L2-norm for far field patterns, and by dropping
the assumption that the refractive indices are close together. These improvements make it possible
to prove convergence rates for iterative regularization methods.
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1. Introduction. The scattering of time-harmonic acoustic waves in an inho-
mogeneous medium with refractive index n is described by the differential equation

∆u + k2nu = 0.(1.1)

Here the real part of the complex valued function u describes the space-dependent part
of a velocity potential, and k > 0 is the wave number. We assume that the refractive
index n is a complex valued function in R

3 satisfying Im(n(x)) ≥ 0 for all x ∈ R
3 and

supp (1 − n) ⊂ B1. (For R > 0 we use the notation BR := {x ∈ R
3 : |x| < R}.) We

will also assume throughout that 1−n belongs to the Sobolev space Hs(R3) for some
fixed s > 3/2. Due to Sobolev’s imbedding theorem, this implies that n is uniformly
Hölder continuous in R

3 with Hölder exponent s − 3/2. Since by rescaling we can
always obtain that supp(1− n) ⊂ B1, this is not a severe restriction.

The following problem will be referred to as the direct scattering problem: Given
an incident wave ui ∈ C2(B1) satisfying the Helmholtz equation ∆ui +k2ui = 0 in B1

and k and n as above, find a scattered wave us ∈ C2(R3) satisfying the differential
equation

∆us + k2nus = k2(1− n)ui in R
3(1.2a)

and the Sommerfeld radiation condition

lim
|x|→∞

|x|
(
∂us

∂r
(x)− ikus(x)

)
= 0(1.2b)
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uniformly for all directions x̂ = (1/r)x, where r := |x|. The right-hand side of (1.2a)
is defined to be zero outside of B1. It can be shown that this problem has a unique
solution (cf. [3, Chapter 8]). Note that the total field u := ui + us satisfies (1.1).

To formulate our first inverse problem, let us introduce point sources ui(x) =
Φ(x, y), located at y ∈ R

3, |y| > 1, as incident fields. Here

Φ(x, y) :=
1

4π

eik|x−y|

|x− y| , x, y ∈ R
3, x �= y,

denotes the fundamental solution to the Helmholtz equation. The corresponding
scattered fields us satisfying (1.2a) and (1.2b) for ui(x) = Φ(x, y) are denoted by
ws
n(x, y). The total field wn(x, y) := Φ(x, y) + ws

n(x, y) is the Green function for our
scattering problem. It is actually defined for all x, y ∈ R

3, x �= y, but we shall need it
only for points |y| > 1. We consider the inverse problem to determine the refractive
index n from a knowledge of its corresponding Green function wn on ∂BR×∂BR with
some R > 1. This means we are probing the medium using point sources located on
∂BR and measure the scattered waves on ∂BR in order to recover the inhomogeneity.
We will show the following logarithmic stability estimate.

Theorem 1.1. Let Cn > 0 and R > 1 be given constants. Then, there exists a
positive constant C (depending only on s, k, R, and Cn) such that for all refractive
indices n, ñ satisfying ‖1 − n‖Hs , ‖1 − ñ‖Hs ≤ Cn, supp(1 − n), supp(1 − ñ) ⊂ B1,
the estimates

‖n− ñ‖L2(B1) ≤ C
[− ln− (‖ws

n − ws
ñ‖L2(∂BR×∂BR)

)]− s
s+3(1.3)

and

‖n− ñ‖∞ ≤ C
[− ln− (‖ws

n − ws
ñ‖L2(∂BR×∂BR)

)]− 2s−3
2s+3(1.4)

hold true. Here ln−(t) := ln(t) for t ≤ exp(−1), and ln−(t) := −1 else.
This theorem implies that if one uses point sources located on ∂BR to probe the

medium and if one measures the scattered waves on ∂BR, then the refractive index
depends continuously on these data under the a priori assumptions ‖1 − n‖Hs ≤
Cn and supp(1 − n) ⊂ B1. The logarithmic estimates (1.3) and (1.4) reflect the
exponentially ill-posed nature of the problem. Let us point out that Theorem 1.1
also implies a global uniqueness result for the inverse scattering problem to determine
the refractive index from measurements of the scattered fields on ∂BR using point
sources located on ∂BR. Namely, two refractive indices from Hs having the same
Green function on ∂BR × ∂BR must be identical.

Another interesting inverse problem results from using far field data instead of
near field data. A solution v to the Helmholtz equation in an exterior domain satis-
fying (1.2b) is known to obey

v(x) =
eik|x|

|x|
(
v∞
(

x

|x|
)

+ O

(
1

|x|
))

(cf. [3, Section 2.2]). The function v∞ : S2 → C, S2 := {x ∈ R
3 : |x| = 1} is

called the far field pattern of v. In this context we will consider plane incident waves
ui(x) = ui(x, d) = exp(ikx ·d), d ∈ S2. The corresponding scattered fields are denoted
by us

n(·, d), and their far field patterns are denoted by u∞
n (·, d). Probing the medium

with plane incident waves from all directions and measuring the corresponding far
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field patterns lead to the problem to recover n from a knowledge of u∞
n on S2 × S2.

We will prove the following result.
Theorem 1.2. Let Cn > 0 and 0 < ε < s

s+3 be given constants. Then there exists
a positive constant C (depending only on s, ε, k, and Cn) such that for all refractive
indices n, ñ satisfying ‖1−n‖Hs , ‖1− ñ‖Hs ≤ Cn, and supp(1−n), supp(1− ñ) ⊂ B1,
the estimate

‖n− ñ‖L2(B1) ≤ C
[− ln− (‖u∞

n − u∞
ñ ‖L2(S2×S2)

)]− s
s+3+ε

(1.5)

holds true.
Moreover, for 0 < ε < 2s−3

2s+3 the maximum norm of n− ñ can be estimated by

‖n− ñ‖∞ ≤ C
[− ln− (‖u∞

n − u∞
ñ ‖L2(S2×S2)

)]− 2s−3
2s+3 +ε

.(1.6)

The main idea for the proof of Theorem 1.1 goes back to Alessandrini [1], who ex-
amined the continuous dependence of the conductivity on its corresponding Dirichlet-
to-Neumann map. In [17] Stefanov applied this idea to potential scattering problems
and proved that the potential depends continuously on the corresponding Dirichlet-
to-Neumann map. Both articles employ a lemma about holomorphic functions in
several variables which prevents the exponent in the inequalities from being known
explicitly. In order to obtain the explicit exponents −s/(s+3) and −(2s−3)/(2s+3),
we present a modified and simpler proof. Moreover, contrary to Stefanov, who estab-
lishes his result only for refractive indices n and ñ sufficiently close to each other, we
shall need only the assumption that the Hs norms of 1−n and 1− ñ are bounded by a
constant Cn. Stefanov’s paper [17] also contains a stability estimate involving far field
data. However, instead of the L2 norm, a very strong norm involving exponentially
increasing weights for the Fourier coefficients of the far field patterns is used. Since
no estimate on the measurement error with respect to this norm will be available in
practice, Stefanov’s result is primarily of theoretical interest.

Let us point out that the function [− ln t]−1 is converging very slowly to 0 as
t → 0. The power 0 < p < 1 in the function [− ln t]−p is even deteriorating the
convergence. However, since it is possible to prove convergence rates for iterative
regularization methods which are based on stability estimates and since our numerical
example indicates that the convergence of an iterative regularization method is not
much faster than predicted by our estimate, we have strong evidence that our stability
estimate cannot be significantly improved.

We also want to emphasize that assuming high regularity for n, i.e., using the
a priori information 1 − n ∈ Hs

0(B1) with a very large s, will improve the estimate
somewhat but not very much.

In the next section we briefly collect the necessary results for the Green function.
The following two sections are dedicated to the proofs of the two main theorems. In the
final section of this paper we show how Theorem 1.2 can be used to obtain convergence
rates for iterative regularization methods, and we present numerical computations
comparing the actual speed of convergence to our estimates.

2. The Green function. In this section we want to briefly review the properties
of the Green function that we shall use in what follows for our stability estimates.

Let us first introduce the Lippmann–Schwinger equation, which is an equivalent
formulation of (1.2a), (1.2b) as an integral equation of the second kind:

u(x) + k2

∫
B1

Φ(x, y) (1− n(y))u(y) dy = ui(x), x ∈ B1.(2.1)
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If u ∈ C(B1) is a solution to (2.1), then

us(x) := −k2

∫
B1

Φ(x, y) (1− n(y))u(y) dy, x ∈ R
3,(2.2)

is the solution to (1.2a), (1.2b), and vice versa (cf. [3, Section 8.2]). Using the incident
waves ui(x) = Φ(x, y), we find that ws

n is infinitely smooth for |x|, |y| > 1, x �= y.
From (2.2) and the asymptotic behavior of Φ(x, y) we obtain

u∞(x̂) = − k2

4π

∫
B1

e−ikx̂·y (1− n(y))u(y) dy, x̂ ∈ S2.

Hence the far field u∞ is C∞ on S2 × S2.
For a fixed radius R > 1 let us introduce the single layer potential having the

Green function wn(x, y) = Φ(x, y) + ws
n(x, y) as kernel, that is, the function

u(x) :=

∫
∂BR

wn(x, y)ϕ(y) ds(y), x ∈ R
3.(2.3)

Here we assume that the density ϕ is a continuous function on ∂BR. For convenience
we also introduce the operator Sn which maps ϕ to u|∂BR

, i.e.,

(Snϕ)(x) :=

∫
∂BR

wn(x, y)ϕ(y) ds(y), x ∈ ∂BR.(2.4)

Lemma 2.1. Suppose 1 < R. Then
(a) The Green function satisfies wn(x, y) = wn(y, x). In particular, the operator

Sn is symmetric:
∫
∂BR

g (Snf) ds =
∫
∂BR

(Sng)f ds for all f , g ∈ C(∂BR).

(b) The mapping 1 − n �→ wn|∂BR×∂BR
, regarded as a mapping from Hs

0(B1) to
L2(∂BR × ∂BR), is completely continuous. In particular, bounded sets are
mapped into bounded sets.

Proof. The symmetry of ws
n and then of the Green function wn can be shown with

the help of Green’s theorem (cf. [16, Section 8, Chapter 1.2.2 and Section 3, Chapter
1.2.3]). This immediately implies the symmetry of Sn by interchanging the order of
integration.

For part (b) we observe that the embedding Hs
0(B1) → Hs′

0 (B1) with s > s′ >
3/2 is a compact linear mapping. Since the mapping Hs′

0 (B1) → L2(∂BR × ∂BR),
1 − n �→ wn|∂BR×∂BR

is continuous, the composition is completely continuous and
maps bounded sets into bounded sets.

The next lemma states that the single layer potential having as kernel the Green
function wn is the unique solution to a certain transmission problem.

Lemma 2.2. For f ∈ C(∂BR) the function

u(x) :=

∫
∂BR

wn(x, y) f(y) ds(y), x ∈ R
3,(2.5)

is the unique solution to the boundary value problem

∆u + k2nu = 0 in R
3 \ ∂BR,(2.6a)

∂u−
∂ν
− ∂u+

∂ν
= f on ∂BR,(2.6b)

lim
r→∞ r

(
∂u

∂r
− iku

)
= 0(2.6c)
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in C(R3) ∩ C2(R3\∂BR). Here, ν denotes the unit normal vector on ∂BR directed
into the exterior of BR.

Proof. In order to prove that the boundary value problem (2.6) has at most one
solution, we assume that u is a solution of (2.6) with f = 0. Then we can follow the
first part of the reasoning for the uniqueness proof of (1.2a), (1.2b) [3, Theorem 8.7],

and we obtain u = 0 in the exterior of BR, whence u = ∂u−
∂ν = 0 on ∂BR. Now

Green’s representation formula (cf. [3, Theorem 2.1]),

u(x) =

∫
∂BR

{
∂u

∂ν
(y) Φ(x, y)− u(y)

∂Φ(x, y)

∂ν(y)
(x, y)

}
ds(y)

−
∫
BR

(∆u(y) + k2u(y)) Φ(x, y) dy, x ∈ BR,

together with the differential equation (2.6a), implies that u is a solution of the ho-
mogeneous Lippmann–Schwinger equation. Thus we also have u = 0 in BR.

Since u defined as in (2.5) is a superposition of the solutions wn(·, y) to ∆xwn +
k2nwn = 0, u itself also satisfies this differential equation in R

3 \ ∂BR. Moreover, u
is a radiating solution. Finally, we can conclude from the regularity properties of the
single layer potential with kernel Φ (cf. [3, Section 3.1]) that u as defined in (2.5)
satisfies the boundary conditions. Hence it is the solution of (2.6).

Our final lemma of this section states a series representation of ws
n and of u∞

n in
terms of spherical harmonics. For convenience we want to use the notation

M := {(l1,m1, l2,m2) ∈ N0 × Z× N0 × Z : |m1| ≤ l1 and |m2| ≤ l2},

and Y m
l , l = 0, 1, 2, . . . , −l ≤ m ≤ l, are a basis of the spherical harmonics. h

(1)
l

denotes the spherical Hankel of the first kind and of order l (cf., e.g., [3, Section 2.4]).
Lemma 2.3.
(a) For |x|, |y| > 1 the scattered part of the Green function can be represented as

ws
n(x, y) = − k2

4π

∑
(l1,m1,l2,m2)∈M

il1−l2 αl1,m1,l2,m2
h

(1)
l1

(k|x|)h(1)
l2

(k|y|)

× Y m1

l1

(
x

|x|
)

Y m2

l2

(
y

|y|
)

with suitable constants αl1,m1,l2,m2
. The series converges absolutely and uni-

formly on compact subsets of R
3 \B1 and can be differentiated termwise.

(b) The far field u∞
n (x̂, d) has the expansion

u∞
n (x̂, d) =

∑
(l1,m1,l2,m2)∈M

αl1,m1,l2,m2 Y m1

l1
(x̂)Y m2

l2
(d),

where the coefficients αl1,m1,l2,m2 are the same as in part (a).
For a proof we refer to Stefanov [17, Proposition 2.2].

3. Estimating the refractive index with the help of near field data
(proof of Theorem 1.1). The main idea for the stability estimate is to estimate the
Fourier coefficients in the Fourier expansion of n− ñ with the help of special solutions
to (1.1) which depend in a particular way on a complex parameter vector ζ ∈ C

3. We
call these solutions geometrical optics solutions.
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Lemma 3.1. Suppose k > 0, 1 < R′, a positive constant Cn, and a refractive index
n with ‖1 − n‖Hs ≤ Cn are given. Then there are constants M1,M2 > 0, depending
only on s, k, R′, and Cn with the following property. For all ζ ∈ C

3 satisfying

| Im(ζ)| ≥M1 and ζ · ζ = k2

there exists a function v(· , ζ) ∈ C2(BR′) such that

U(x, ζ) := eiζ·x(1 + v(x, ζ)), x ∈ BR′ ,(3.1)

is a solution to ∆u + k2nu = 0 in BR′ , and the estimate

‖v(· , ζ)‖L2(BR′ ) ≤
M2

| Im(ζ)|(3.2)

holds.
These solutions have a long history and were employed by different authors dealing

with inverse scattering problems. We refer the reader to [15] for a brief overview. A
proof of the above lemma for the equation ∆u+ qu = 0 can be found in [18]. For our
case we refer the reader to Lemma 5 in [6].

We have

n(x)− ñ(x) =
∑
γ∈Z3

̂(n− ñ)(γ)
1

(2π)3/2
exp(iγ · x), x ∈ B1,(3.3)

where f̂(γ) denotes the Fourier coefficients of a function f ∈ L2((−π, π)3) with respect
to the orthonormal bases (2π)−3/2 exp(iγ · x), x ∈ (−π, π)3, γ ∈ Z

3. We first bound
the sum (3.3) over those multi-indices γ whose norm is larger than a given constant
ρ ≥ 2. It is immediately seen that

∑
|γ|>ρ

| ̂(n− ñ)(γ)|2 ≤ 1

(1 + ρ2)s

∑
|γ|>ρ

(1 + γ · γ)s| ̂(n− ñ)(γ)|2

≤ c2

ρ2s
(3.4)

because the second factor can be bounded with the help of ‖1 − n‖Hs ≤ Cn, ‖1 −
ñ‖Hs ≤ Cn. For the estimate of ‖n− ñ‖∞ we use the Cauchy–Schwarz inequality and
obtain ∑

|γ|>ρ
| ̂(n− ñ)(γ)|

≤

∑

|γ|>ρ
(1 + γ · γ)s| ̂(n− ñ)(γ)|2




1/2
∑

|γ|>ρ

1

(1 + γ · γ)s




1/2

≤ c

ρs−3/2
.(3.5)

Here for the second factor we have employed the inequality

∑
|γ|>ρ

1

(1 + γ · γ)s
≤ c

ρ2s−3
.
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Note that c may denote different constants in what follows.
Next, we study the remaining sum of (3.3) over those multi-indices γ with |γ| ≤ ρ.

To this end we need the following lemma, which, together with the geometrical optics
solutions, is the main tool used to establish a relation between the Fourier coefficients
and the operator Sn − Sñ.

Lemma 3.2. Assume 1 < R < R′. Moreover, n, ñ are refractive indices with
supp(1−n), supp(1− ñ) ⊂ B1. Then, there exists a positive constant M3 (depending
only on k, R, and R′) such that for all solutions u ∈ C2(BR′)∩L2(BR′) to ∆u+k2nu =
0 and all solutions ũ ∈ C2(BR′) ∩ L2(BR′) to ∆ũ + k2ñũ = 0 in BR′ the estimate∣∣∣∣

∫
B1

(n− ñ)u ũ dx

∣∣∣∣ ≤M3 ‖Sn − Sñ‖L2(∂BR) ‖u‖L2(BR′ ) ‖ũ‖L2(BR′ )(3.6)

holds.
Proof. Given u as in the lemma, we first define a function v by extending u|BR

continuously as a radiating solution to the Helmholtz equation in the exterior of
BR, i.e., we set v|BR

= u|BR
in BR and v|R3\BR

to be the radiating solution to the

Helmholtz equation ∆v + k2v = 0 in R
3 \ BR with Dirichlet data v|∂BR

= u|∂BR
.

From Lemma 2.2 we obtain

v = Sn

(
∂v−
∂ν
− ∂v+

∂ν

)
on ∂BR.(3.7)

Proceeding analogously with ũ to define a function ṽ and establishing the analogue
of relation (3.7) for ṽ, we use Green’s second integral theorem to compute∫

∂BR

(
∂v−
∂ν
− ∂v+

∂ν

)
(Sn − Sñ)

(
∂ṽ−
∂ν
− ∂ṽ+

∂ν

)
ds

=

∫
∂BR

v

(
∂ṽ−
∂ν
− ∂ṽ+

∂ν

)
ds−

∫
∂BR

ṽ

(
∂v−
∂ν
− ∂v+

∂ν

)
ds

= k2

∫
B1

(n− ñ)u ũ dx,

and, therefore,∣∣∣∣
∫
B1

(n− ñ)u ũ dx

∣∣∣∣
≤ 1

k2
‖Sn − Sñ‖L2(∂BR)

∥∥∥∥∂v−∂ν
− ∂v+

∂ν

∥∥∥∥
L2(∂BR)

∥∥∥∥∂ṽ−∂ν
− ∂ṽ+

∂ν

∥∥∥∥
L2(∂BR)

.(3.8)

In order to bound the norms of the normal derivatives in (3.8), we apply standard
regularity results (Weyl’s lemma) for the Helmholtz equation in the shells

Γ1 :=

{
x ∈ R

3 :
1 + R

2
< |x| < R′ + R

2

}
⊂ Γ2 := {x ∈ R

3 : 1 < |x| < R′}

to obtain ‖u‖C2(Γ1) ≤ c‖u‖L2(Γ2) ≤ c‖u‖L2(BR′ ). Hence ‖∂v−/∂ν‖L2(∂BR) can be
bounded by ‖u‖L2(BR′ ). Regularity properties for the solution to the exterior bound-
ary value problem for the Helmholtz equation with smooth boundary data u|∂BR

imply that ‖∂v+/∂ν‖L2(∂BR) can also be bounded by ‖u‖L2(BR′ ). The same reason-
ing applies to ṽ. Now the lemma follows from inequality (3.8).
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We are now in a position to estimate the Fourier coefficients for the multi-indices
|γ| ≤ ρ.

Lemma 3.3. Assume ρ ≥ 2 and Cn are positive constants and n, ñ are refractive
indices satisfying ‖1 − n‖Hs , ‖1 − ñ‖Hs ≤ Cn and supp(1 − n), supp(1 − ñ) ⊂ B1.
Moreover, suppose 1 < R and define t0 :=

√
M2

1 + k2 (M1 being the constant from
Lemma 3.1 for R′ = 2R). Then there exists a positive constant M4 (depending only
on s, k, R, and Cn) such that for all γ ∈ Z

3 with |γ| ≤ ρ and all t > t0 the estimate∣∣∣ ̂(n− ñ)(γ)
∣∣∣ ≤M4

(
e4R(t+ρ)‖Sn − Sñ‖L2(∂BR) +

1

t

)
(3.9)

holds true.
Proof. For t > t0 > k and a fixed multi-index γ ∈ Z

3 we choose unit vectors d1,
d2 ∈ R

3 such that d1 · d2 = d1 · γ = d2 · γ = 0 and define the complex vectors

ζt := −1

2
γ + i

√
t2 − k2 +

|γ|2
4

d1 + t d2 ∈ C
3,(3.10)

ζ̃t := −1

2
γ − i

√
t2 − k2 +

|γ|2
4

d1 − t d2 ∈ C
3.(3.11)

Then the relations ζt + ζ̃t = −γ, ζt · ζt = ζ̃t · ζ̃t = k2 are satisfied. Furthermore, t >
t0 =

√
M2

1 + k2 implies | Im(ζt)|, | Im(ζ̃t)| ≥M1. Therefore, according to Lemma 3.1,
there exist the geometrical optics solutions

U(x, ζt) = eiζt·x(1 + v(x, ζt)), x ∈ B2R,

to ∆u + k2nu = 0 and

Ũ(x, ζ̃t) = eiζ̃t·x(1 + ṽ(x, ζ̃t)), x ∈ B2R,

to ∆ũ + k2ñũ = 0. Using Lemma 3.1 once more, we infer

U(x, ζt) Ũ(x, ζ̃t) = e−iγ·x(1 + p(x, t)),

where the L1 norm of the remainder

p(x, t) = v(x, ζt) + ṽ(x, ζ̃t) + v(x, ζt) ṽ(x, ζ̃t)

is bounded by ∫
B1

|p(x, t)| dx ≤ c

t
(3.12)

with a suitable constant c. Then we compute∣∣∣ ̂(n− ñ)(γ)
∣∣∣

=
1

(2π)3/2

∣∣∣∣
∫
B1

(n− ñ)(x) e−iγ·x dx

∣∣∣∣
=

1

(2π)3/2

∣∣∣∣
∫
B1

(n− ñ)(x)U(x, ζt) Ũ(x, ζ̃t) dx

−
∫
B1

(n− ñ)(x) e−iγ·x p(x, t) dx

∣∣∣∣
≤ c′ ‖Sn − Sñ‖L2(∂BR) ‖U(·, ζt)‖L2(B2R) ‖Ũ(·, ζ̃t)‖L2(B2R) +

c′′

t

≤M4

(
e4R(t+ρ)‖Sn − Sñ‖L2(∂BR) +

1

t

)
,(3.13)
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where we have used the estimates (3.6) and (3.12) for the first inequality. For the last
line in (3.13) we note that

‖U(·, ζt)‖L2(B2R) = ‖eiζt·x (1 + v(·, ζt))‖L2(B2R)

≤ ‖eiζt·x‖∞,B2R
‖1 + v(·, ζt)‖L2(B2R)

≤ c′′′e2R(t+ρ)

for all t ≥ t0 and all γ ∈ Z
3 with |γ| ≤ ρ because of | Im(ζt)| ≤ t + |γ| ≤ t + ρ.

Together with the analogous estimate for ‖Ũ(·, ζ̃t)‖L2(B2R), we obtain (3.13), i.e., we
have proved inequality (3.9).

Finally, we can prove Theorem 1.1 by choosing the parameters ρ and t in (3.4),
(3.5), and (3.9) appropriately.

Proof of Theorem 1.1. In view of the Fourier expansion (3.3) for n− ñ, Parseval’s
equation, the inequalities (3.4) and (3.9), and the fact that there are less than cρ3

multi-indices γ ∈ Z
3 with |γ| ≤ ρ, we have

‖n− ñ‖2L2(B1)
≤ c2

ρ2s
+


∑

|γ|≤ρ
| ̂(n− ñ)(γ)|




2

≤ c2

ρ2s
+

(
cρ3

[
e4R(t+ρ)‖Sn − Sñ‖L2(∂BR) +

1

t

])2

≤ c

(
e(4R+1)(t+ρ)‖Sn − Sñ‖L2(∂BR) +

ρ3

t
+

1

ρs

)2

,(3.14)

where we have also used ρ3e4R(t+ρ) ≤ e(4R+1)(t+ρ) (due to ρ3 ≤ 6eρ) in the last line.
Note that the value of the constants c will change during the proof. For the maximum
norm, in view of (3.3) and (3.5), we compute

‖n− ñ‖∞ ≤ c
∑
|γ|≤ρ

| ̂(n− ñ)(γ)|+ c

ρs−3/2

≤ cρ3

(
e4R(t+ρ)‖Sn − Sñ‖L2(∂BR) +

1

t

)
+

c

ρs−3/2

≤ c

(
e(4R+1)(t+ρ)‖Sn − Sñ‖L2(∂BR) +

ρ3

t
+

1

ρs−3/2

)
.(3.15)

For t > t0 + 2s+3 (t0 from Lemma 3.3) and ρ := t1/(s+3) the condition ρ ≥ 2 is
satisfied and inequality (3.14) becomes

‖n− ñ‖L2(B1) ≤ c

(
e(8R+2)t‖ws

n − ws
ñ‖L2(∂BR×∂BR) +

2

ts/(s+3)

)
(3.16)

because of ρ = t1/(s+3) ≤ t and ‖Sn − Sñ‖L2(∂BR) ≤ ‖ws
n − ws

ñ‖L2(∂BR×∂BR).
We may restrict our attention to the case that ‖ws

n − ws
ñ‖L2 is sufficiently small

such that

t := − 1

s + 3

3

8R + 2
ln (‖ws

n − ws
ñ‖L2) > t0 + 2s+3.

Otherwise, the bound on ‖n− ñ‖∞ from the a priori information about n and ñ and
the monotonicity of [− ln−(t)]−p, 0 < p < 1, imply

‖n− ñ‖L2(B1) ≤ c
[− ln−(‖ws

n − ws
ñ‖L2)]−p

[(t0 + 2s+3) s+3
3 (8R + 2)]−p

.
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Inserting t into (3.16) yields the inequality

‖n− ñ‖L2(B1) ≤ c
{
‖ws

n − ws
ñ‖s/(s+3)

L2 + (− ln ‖ws
n − ws

ñ‖L2)
−s/(s+3)

}
≤ c [− ln (‖ws

n − ws
ñ‖L2)]

−s/(s+3)

because x ≤ (− ln(x))−1 for 0 < x < 1.
The analogous analysis with ρ := t2/(2s+3) and

t := − 1

2s + 3

3

4R + 1
ln (‖ws

n − ws
ñ‖L2) > t0 + 2s+3

reveals

‖n− ñ‖∞ ≤ c
{
‖ws

n − ws
ñ‖(2s−3)/(2s+3)

L2 + (− ln ‖ws
n − ws

ñ‖L2)
−(2s−3)/(2s+3)

}
≤ c [− ln (‖ws

n − ws
ñ‖L2)]

−(2s−3)/(2s+3)
.

This finishes the proof.

4. Estimating the refractive index with the help of far field data (proof
of Theorem 1.2). Our proof of Theorem 1.2 is based on the following abstract
linear stability result. It has been proved in [11, 14] for bounded operators. For the
convenience of the reader we include the short proof for compact operators which is
sufficient for our purposes.

Lemma 4.1. Let X,Y be Hilbert spaces, and let T : X → Y be a compact linear
operator. Moreover, assume that f ∈ C([0, ‖T ∗T‖]) is monotonically increasing with
f(0) = 0 and that the function

φf : [0, f(‖T ∗T‖)2]→ [0, ‖T ∗T‖f(‖T ∗T‖)2]

defined by φf (ξ) := ξ · (f · f)−1(ξ) is convex. Then the source condition

w = f(T ∗T )v, ‖v‖ ≤ ρ,(4.1)

implies the stability estimate

‖w‖2 ≤ ρ2φ−1
f

(‖Tw‖2
ρ2

)
.(4.2)

Proof. We can assume that xµ, µ ∈ M, is a Hilbert basis of X with T ∗Txµ =
λµxµ, and λµ ≥ 0 for all µ ∈ M. Replacing w by (1/ρ)w, we see that we can also
assume that ρ = 1. If v =

∑
µ∈M αµxµ, then w =

∑
µ∈M f(λµ)αµxµ. We first

assume that ‖v‖2 =
∑

µ∈M |αµ|2 = 1. Then Jensen’s inequality yields

φf (‖w‖2) = φf


∑

µ∈M
(f(λµ))2|αµ|2


 ≤ ∑

µ∈M
φf ((f · f)(λµ)) |αµ|2

=
∑
µ∈M

(f · f)(λµ) λµ |αµ|2 = ‖Tw‖2.

Since φf is convex and φf (0) = 0, this inequality is also valid for ‖v‖ < 1. Applying
φ−1
f to both sides of the inequality yields the assertion since φ−1

f is increasing under
the given assumptions.
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We want to apply this result to the operator T which maps the difference wn −
wñ = ws

n−ws
ñ of two Green functions on ∂B2R×∂B2R to the corresponding difference

of far field patterns u∞
n −u∞

ñ . For the function f we choose f = gθ, 0 < θ < 1, defined
by

gθ(λ) :=

{
exp(− 1

2 (− lnλ)θ), 0 < λ ≤ exp(−1),
0, λ = 0.

(4.3)

The corresponding functions φθ := φgθ and their second derivatives are given by

φθ(ξ) = ξ exp(−(− ln ξ)
1
θ ), 0 < ξ ≤ exp(−1),

φ′′
θ (ξ) = exp

(
−(− ln ξ)

1
θ

)( (− ln ξ)
1
θ−2

θξ

)(
1− ln ξ +

(− ln ξ)
1
θ − 1

θ

)
.

It is obvious that the functions gθ are continuous and monotonically increasing and
that φ′′

θ (ξ) > 0 for 0 < ξ < exp(−1) and 0 < θ < 1.
With the help of the orthonormal basis

Yr,µ(x, y) =
1

r2
Y m1

l1

(
x

|x|
)
Y m2

l2

(
y

|y|
)
, µ = (l1,m1, l2,m2) ∈M,

of L2(∂Br × ∂Br) and the basis Yµ := Y1,µ in L2(S2 × S2), we infer from the series
expansions in Lemma 2.3 that T defined by

Y2R,µ �→ − π

k2R2
il2−l1

1

h
(1)
l1

(2kR)h
(1)
l2

(2kR)
Yµ(4.4)

maps (wn−wñ)|∂B2R×∂B2R
to u∞

n −u∞
ñ . Because gθ is defined only on [0, exp(−1)], we

introduce the scaling factor ω := ‖T‖ exp(1/2) and use the operator ω−1T . In order
to apply Lemma 4.1, we must check that a function wn−wñ from which it is known a
priori that it originates from refractive indices n, ñ such that ‖1−n‖Hs , ‖1− ñ‖Hs ≤
Cn, supp(1 − n), supp(1 − ñ) ⊂ B1, satisfies the source condition, i.e., there is a
constant ρ > 0 such that (wn − wñ)|∂B2R×∂B2R

= gθ(ω
−2T ∗T )v for an appropriate

v ∈ L2(∂B2R × ∂B2R) with ‖v‖ ≤ ρ. We do this in the following lemma.
Lemma 4.2. Let 1 < R, Cn > 0, and 0 < θ < 1 be given. Furthermore, define

ω := ‖T‖ exp(1/2), where T denotes the operator from (4.4). Then there exists a
constant ρ > 0 such that all (wn − wñ)|∂B2R×∂B2R

originating from refractive indices
n, ñ such that ‖1 − n‖Hs , ‖1 − ñ‖Hs ≤ Cn, supp(1 − n), supp(1 − ñ) ⊂ B1, satisfy
the source condition (wn − wñ)|∂B2R×∂B2R

= gθ(ω
−2T ∗T )v for an appropriate v ∈

L2(∂B2R × ∂B2R) with ‖v‖ ≤ ρ.
Proof. We know from Lemma 2.3 that

(wn − wñ)(rx̂, rŷ) =
∑
µ∈M

αµ r2 h
(1)
l1

(kr)h
(1)
l2

(kr) Yr,µ(rx̂, rŷ)

for all r ≥ R with suitable coefficients αµ. For convenience we set

γµ := −π(kR il1h
(1)
l1

(2kR))−1(kR(−i)l2 h(1)
l2

(2kR))−1

and

δµ = 4
h

(1)
l1

(2kR)

h
(1)
l1

(kR)

h
(1)
l2

(2kR)

h
(1)
l2

(kR)
.



NEW STABILITY ESTIMATES 681

Note that |γµ| are the singular values of T . If we can verify that the function

v :=
∑
µ∈M

αµ R2 h
(1)
l1

(kR)h
(1)
l2

(kR)
δµ

gθ(|γµ|2/ω2)
Y2R,µ

belongs to L2(∂B2R × ∂B2R) and ‖v‖ ≤ ρ, a straightforward computation shows
gθ(ω

−2T ∗T )v = wn−wñ on ∂B2R × ∂B2R, and we have proved the source condition.
Since we know from Lemma 2.1(b) that

∑
µ∈M

∣∣∣αµ R2 h
(1)
l1

(kR)h
(1)
l2

(kR)
∣∣∣2 = ‖(wn − wñ)|∂BR×∂BR

‖2 ≤ c2

for all refractive indices satisfying the assumptions, it suffices to prove

sup
µ∈M

|δµ|
gθ(|γµ/ω|2)

≤ c,(4.5)

or in other words that the supremum in (4.5) is finite. (The variable c denotes various
constants during the proof.)

To see this, we use the asymptotic formulae

1

c

(
l

kRe

)l
≤ |h(1)

l (2kR)| ≤ c

(
l

kRe

)l
, l→∞,(4.6)

h
(1)
l (2kR)

h
(1)
l (kR)

=
1

2l+1

(
1 + O

(
1

l

))
, l→∞,

which follow from the series representation of the spherical Hankel functions (cf. [3]).
Therefore, we have

|δµ| ≤ c 2−l1−l2 .(4.7)

Using the monotonicity of gθ from (4.6) and the inequality (a + b)θ ≤ aθ + bθ, which
holds for a, b ≥ 0 and 0 ≤ θ ≤ 1 (for a proof consider the case a + b = 1), we obtain
the estimate

gθ(|γµ/ω|2)
−2 ≤ gθ

(
c2
(
ekR

l1

)2l1 (ekR

l2

)2l2
)−2

= exp


{ln

(
c2
(

l1
ekR

)2l1 ( l2
ekR

)2l2
)}θ




≤ exp

({
ln c + 2l1 ln

l1
ekR

}θ

+

{
ln c + 2l2 ln

l2
ekR

}θ
)
.

Since liml→∞({ln c + 2l ln(l/(ekR))}θ − 2l ln 2) = −∞, it follows from (4.7) that

|δµ|2
gθ(|γµ/ω|2)2

≤ c

for all µ ∈M. This shows (4.5) and finishes the proof.
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Proof of Theorem 1.2. Lemma 4.2 yields

(wn − wñ)|∂B2R×∂B2R
= gθ(ω

−2T ∗T )v, ‖v‖ ≤ ρ.

Hence, using T ((wn −wñ)|∂B2R×∂B2R
) = u∞

n − u∞
ñ , according to Lemma 4.1 we have

‖(wn − wñ)|∂B2R×∂B2R
‖2 ≤ ρ2φ−1

θ

(‖T ((wn − wñ)|∂B2R×∂B2R
)‖2

ω2ρ2

)

= ρ2φ−1
θ

(‖u∞
n − u∞

ñ ‖2
ω2ρ2

)
.

To estimate φ−1
θ , we write φθ(ξ) = exp(−ψ(− ln ξ)) with ψ(x) := x + x

1
θ . Obvi-

ously, ψ(x) ≤ 2x
1
θ for x ≥ 1, so ψ−1(y) ≥ (y2)θ for y ≥ 2. It follows that

φ−1
θ (λ) = exp(−ψ−1(− lnλ)) ≤ exp

(
−
(− lnλ

2

)θ)

for 0 < λ ≤ exp(−2), and we get

‖ws
n − ws

ñ‖2L2(∂B2R×∂B2R) ≤ ρ2 exp

(
−
(
− ln

‖u∞
n − u∞

ñ ‖L2(S2×S2)

ωρ

)θ)

for sufficiently small ‖u∞
n − u∞

ñ ‖L2(S2×S2). Inserting this into (1.3) and choosing θ
such that θ s

s+3 = s
s+3 − ε yield the assertion. By adjusting the constant, similarly to

the proof of Theorem 1.1, this inequality holds for all refractive indices satisfying the
assumptions. The estimate for ‖n− ñ‖∞ is derived analogously.

5. Applications. In this final section we discuss the numerical solution of the
inverse problem to recover the refractive index n(x) = 1 − a(x) from measurements
of the far field pattern u∞(x̂, d) by iterative regularization methods. Introducing
the Hilbert spaces X = Hs

0(B1), Y = L2(S2 × S2) and the operator F : X → Y ,
F (a) := u∞

1−a, this problem can be formulated as a nonlinear operator equation:

F (a) = u∞.(5.1)

Usually the measured data will be contaminated by noise. We use the notation u∞,δ

with ‖u∞,δ − u∞‖ ≤ δ for noisy data with noise level δ.
A number of methods have been developed to solve general problems of the form

(5.1). Among the most popular are the Landweber iteration

aδj+1 := aδj + µF ′[aδj ]
∗(u∞,δ − F (aδj))(5.2)

(µ ≤ ‖F ′[a]‖−1 for a in a neighborhood of the exact solution a†), the Levenberg–
Marquardt algorithm

aδj+1 := aδj + (αjI + F ′[aδj ]
∗F ′[aδj ])

−1F ′[aδj ]
∗(u∞,δ − F (aδj)),(5.3)

and the iteratively regularized Gauß–Newton method (IRGNM)

aδj+1 := a0 + (αjI + F ′[aδj ]
∗F ′[aδj ])

−1F ′[aδj ]
∗ (u∞,δ − F (aδj) + F ′[aδj ](a

δ
j − a0)

)
.

(5.4)
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For the last two methods there are different strategies for choosing the regularization
parameters αj , e.g., αj = 2−jα0.

An important issue is the choice of the stopping index. The most well-known stop-
ping rule is Morozov’s discrepancy principle, which consists in stopping the iteration
at the first index J = J(δ, u∞,δ) such that

‖F (aδJ)− u∞,δ‖ ≤ τδ(5.5)

with some fixed constant τ ≥ 1.
We call an iterative method aδj+1 := Ψj(aj , . . . , a0, u

∞,δ) together with a stopping

rule J(δ, u∞,δ) an iterative regularization method for F if for all initial guesses a0 in
a neighborhood of a† the iterates aδj+1, j ≤ J(δ, u∞,δ) are well defined and

lim
j→∞

a0
j = a†,(5.6)

lim
δ→0

sup
‖u∞,δ−u∞‖≤δ

‖aδJ(δ,u∞,δ) − a†‖ = 0.(5.7)

It has been shown that under certain conditions restricting the degree of nonlin-
earity of the operator F , the Landweber iteration (Hanke, Neubauer, and Scherzer [9]),
the Levenberg–Marquardt algorithm (Hanke [8]), and the IRGNM (Blaschke/Kaltenbacher,
Neubauer, Scherzer [2]), together with the discrepancy principle (5.5), are regulariza-
tion methods in the sense of the definition above. It must be mentioned that none
of these nonlinearity conditions has been verified for the inverse acoustic medium
scattering problem yet.

Since it is well known that the convergence in (5.7) can be arbitrarily slow for any
ill-posed problem (cf. [5, Proposition 3.11]), one is interested in proving estimates
on the convergence rate under additional a priori assumptions. In the literature,
assumptions of the form

a† − a0 = f(F ′[a†]∗F ′[a†])v, ‖v‖ ≤ ρ,(5.8)

have been studied intensively. These conditions, called nonlinear source conditions,
are nonlinear analogues to (4.1). It turns out that for many exponentially ill-posed
problems source conditions (5.8) with f = fp (p > 0)

fp(λ) :=

{
(− lnλ)−p, 0 < λ ≤ exp(−1),
0, λ = 0

(5.9)

(so-called logarithmic source conditions), have natural interpretations as smoothness
conditions in Sobolev spaces (cf. [11, 13]). The usual Hölder-type source conditions
(5.8) with f(λ) = λµ, µ > 0, are appropriate for mildly ill-posed problems but typ-
ically far too restrictive for exponentially ill-posed problems. Under the logarithmic
source condition (5.8), (5.9), convergence rates of the form

‖aδJ(δ,u∞,δ) − a†‖ = O (fp(δ))

have been established for the IRGNM [10] and for the Landweber iteration [4].
Unfortunately, it seems that logarithmic source conditions for the inverse acoustic

medium scattering problem do not have an equivalent formulation with the help of
known Sobolev spaces. However, Theorem 1.2 gives us a sufficient condition for
convergence rates under the simple assumption that the exact solution n† = 1 − a†

and the initial guess n0 := 1− a0 belong to Hs
0(B1).
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Fig. 5.1. Plot of Ex := ‖a0j − a†‖L2 on a logarithmic scale over Ey := ‖u∞
1−a0

j

− u∞
1−a†‖L2 on

a double logarithmic scale.

Corollary 5.1. Assume that a†, a0 ∈ Hs(B1). Let aδj denote the iterates
generated by an iterative regularization method for F which converges for the initial
guess a0, and assume that the stopping index J is chosen according to (5.5). Then
for any ε > 0

‖a0
j − a†‖L2(B1) = O

(
− ln ‖u∞

1−a0
j
− u∞

1−a†‖
)− s

s+3+ε

, j →∞,(5.10)

‖aδJ(δ,u∞,δ) − a†‖L2(B1) = O
(
(− ln δ)−

s
s+3+ε

)
, δ → 0.(5.11)

Proof. Due to (5.6) we know that there is a constant Cn such that ‖a0
j‖Hs ≤ Cn

for all j. Hence Theorem 1.2 with n = 1−a† and ñ = 1−a0
j yields (5.10). Analogously,

(5.11) follows from (5.7), (5.5), and Theorem 1.2.
In Figure 5.1 the actual values of ‖a0

j − a†‖L2 and ‖u∞
1−a0

j
− u∞

1−a†‖L2 for the

IRGNM and the Landweber iteration are compared to the estimate (5.10). We used
the Hilbert space X = H2

0 (B1), i.e., s = 2. To implement the IRGNM we solved
the equation system involving αjI + F ′[aδj ]

∗F ′[aδj ] by the conjugate gradient method
using a special preconditioner (cf. [12]; our test problem is taken from section 3 of
this paper). We performed 500 Landweber iterations and 20 Newton iterations using
exact synthetic data, which were created using a modified algorithm with a much finer
discretization in order to avoid an inverse crime. The constant in (5.10) was chosen to
fit the data. The picture shows that our estimate is of the right form. The exponent
− s

s+3 = − 2
5 is fairly close to our experimental results, but it seems to be a little too

pessimistic. In fact, using (3.9), we cannot get an exponent greater than 1 even for
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a single Fourier coefficient. As long as estimate (3.9) is used, we cannot expect to
obtain a better stability result than

‖n− ñ‖L2(B1) ≤ C
[− ln− (‖ws

n − ws
ñ‖L2(∂BR×∂BR)

)]−1
.

To our knowledge it is still open whether there is an example which shows that no
better estimate is possible or whether new ideas could improve (3.9) and then the
stability estimate.
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Abstract. We prove here that if an algebraic polynomial f of degree at most n has smaller
absolute values than Tn (the nth Chebyshev polynomial of the first kind) at arbitrary n+ 1 points
in [−1, 1], which interlace with the zeros of Tn, then the uniform norm of f ′ in [−1, 1] is smaller than
n2. This is an extension of a classical result obtained by Duffin and Schaeffer.
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1. Introduction and statement of the result. Denote by πn the class of
algebraic polynomials of degree at most n and by ‖ · ‖ the supremum norm in [−1, 1].
The classical inequality of the brothers Markov [8], [9] asserts that, among all f ∈ πn
satisfying

‖f‖ ≤ 1,(1)

the Chebyshev polynomial of the first kind Tn(x) = cosn arccosx has the greatest
norm of its kth derivative (k = 1, . . . , n). For more than one century the inequality
of the Markov brothers has been a challenge for many mathematicians and an object
of various generalizations (see, e.g., [3], [4, Chapter 4], [7, Chapter 2]). Inequalities
of the Markov type, relating norms of a polynomial and its derivatives, have found
numerous applications in both approximation theory and numerical analysis.

One of the most striking extensions of the classical Markov inequality was found
by Duffin and Schaeffer [5], who showed that the extremal property of Tn persists
under a weaker assumption than (1). Namely, Duffin and Schaeffer proved that Tn
still has the largest uniform norm of its kth derivative in the wider class of polynomials
from πn, satisfying

|f(cos (νπ/n))| ≤ 1, ν = 0, . . . , n.(2)

(Actually, Duffin and Schaeffer proved a more general result, including an inequality
on a strip in the complex plane, but it does not fall in the frame of the present paper.)
Let us mention that (2) is a more natural restriction than (1) since to bound a norm
of a polynomial of degree n it suffices to impose restrictions on its absolute value at
n+ 1 points only.

The points

ην := cos (νπ/n), ν = 0, . . . , n,

are the local extremum points for Tn in [−1, 1] and |Tn(ην)| = 1. Thus the result
of Duffin and Schaeffer may be viewed as a comparison-type theorem: the inequality
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|f | ≤ |Tn| at the points of local extrema for Tn induces the inequalities ‖f (k)‖ ≤ ‖T (k)
n ‖

for k = 1, . . . , n. This suggests the following definition.
Definition. A polynomial Q ∈ πn and a mesh ∆ = {tν}nν=0, (1 ≥ t0 > t1 >

· · · > tn ≥ −1) are said to admit the Duffin- and Schaeffer-type inequality (DS-in-
equality) if for every f ∈ πn the assumption |f(tν)| ≤ |Q(tν)| for ν = 0, . . . , n implies
‖f ′‖ ≤ ‖Q′‖, or, more generally, ‖f (k)‖ ≤ ‖Q(k)‖ for k = 1, . . . , n.

Note that in our definition the comparison points {tν}nν=0 are not necessarily
assumed to be extremum points for Q.

In 1992, Shadrin [16] proposed a simple proof of the Markov inequality under the
assumption (2). Based on a theorem of Shadrin, Bojanov and Nikolov [2] proved a

DS-inequality for Q = P
(λ)
n , the ultraspherical polynomials, when the mesh ∆ consists

of the local extremum points of P
(λ)
n .

Theorem A. Let Q := P
(λ)
n (λ > −1/2) and {tν}nν=0 be the zeros of (1−x2)Q′(x).

If f ∈ πn satisfies

|f(tν)| ≤ |Q(tν)| for ν = 0, . . . , n,

then

‖f (k)‖ ≤ ‖Q(k)‖
for all k ∈ {1, . . . , n} if λ ≥ 0, and for k ≥ 2 if λ ∈ (−1/2, 0). Equality is possible if
and only if f = cQ with |c| = 1.

The special case λ = 0 comes down to the classical inequality of Duffin and
Schaeffer.

For some other DS-inequalities, we refer the reader to [6], [10], [11], [12], [13],
[14]. In particular, the following result has been proved in [12].

Theorem B. If f ∈ πn satisfies |f(±1)| ≤ 1 and

|f(x)| ≤
√
1− x2 at the zeros of Tn−1,

then

‖f (k)‖ ≤ ‖T (k)
n ‖ for k = 1, . . . , n.

Moreover, equality is possible if and only f = cTn with |c| = 1.
Theorems A and B show that for Q = Tn the DS-inequality holds at least for

two choices of “check points,” namely, for those formed by the zeros of (1− x2)T ′
n(x)

and by the zeros of (1 − x2)Tn−1(x). We naturally come to the question, What are
the meshes ∆ admitting the DS-inequality with Q = Tn? The aim of this paper is to
show that for k = 1 each mesh ∆ = {tν}nν=0 whose points interlace with the zeros of
Tn is admissible.

Theorem 1. Let {tν}nν=0 satisfy 1 ≥ t0 > ξ1 > t1 > · · · > ξn > tn ≥ −1, where
{ξν}nν=1 are the zeros of Tn, i.e., ξν = cos ((2ν − 1)π/(2n)). If f ∈ πn and

|f(tν)| ≤ |Tn(tν)| for ν = 0, . . . , n,

then

‖f ′‖ ≤ n2.(3)

Moreover, equality in (3) is possible if and only if f = cTn with |c| = 1.
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Note that the set of all admissible meshes ∆ (i.e., such that DS-inequality holds
with Q = Tn) cannot be substantially larger than the one described in Theorem 1. In
fact, the points of any admissible mesh must separate the zeros of Tn (see section 4).

The proof of Theorem 1 relies on a pointwise inequality given by the next theorem,
which was suggested to the author by Shadrin [18].

Theorem 2. Let Q ∈ πn have n distinct zeros {xν}nν=1, all located in (−1, 1).
Let {tj}nj=0 satisfy 1 ≥ t0 > x1 > t1 > · · · > xn > tn ≥ −1. If f ∈ πn and

|f(tj)| ≤ |Q(tj)| for j = 0, . . . , n,

then for each k ∈ {1, . . . , n} and for every x ∈ [−1, 1] there holds

|f (k)(x)| ≤ max{|Q(k)(x)|, |Q(k)
ν (x)|, ν = 1, . . . , n},

where

Qν(x) = Q(x)
1− xνx
x− xν .

The paper is organized as follows. In section 2, we summarize some results from
V. Markov’s paper and prove Theorem 2. The proof of Theorem 1 is given in section 3.
Section 4 contains some concluding remarks and points out a possible application of
Theorem 1 to the estimation of the round-off error in the Lagrange differentiation
formula.

2. Proof of Theorem 2. We start with an observation from the original work
of Markov [9] concerning polynomial interpolation and pointwise estimates for poly-
nomial derivatives. We formulate it in two lemmas.

Definition. Let p ∈ πn or p ∈ πn+1, q ∈ πn, and p, q have only real and simple

zeros, say, {tj}n(+1)
j=1 and {τj}nj=1. The zeros of p and q are said to interlace if

t1 ≤ τ1 ≤ t2 ≤ · · · ≤ tn−1 ≤ τn(≤ tn+1).

If only strict inequalities appear above, then the zeros of p and q are said to interlace
strictly.

The first of Markov’s lemmas reveals a simple (and, as a matter of fact, very
useful) property of the zeros of algebraic polynomials.

Lemma 3. Let p and q be algebraic polynomials (p �≡ q), which have only real and
simple zeros. If the zeros of p and q interlace, then the zeros of p′ and q′ interlace
strictly.

A proof of Lemma 3 can be found in [15, Lemma 2.7.1] or in [16]. Note that for
polynomials of the same degree the claim of Lemma 3 can be viewed as a monotone
dependence of the zeros of the derivative with respect to the zeros of the polynomial [1,
p. 39].

Given a mesh ∆ = {tj}nj=0 (1 ≥ t0 > t1 > · · · > tn ≥ −1) and ε := {εj}nj=0

(εj > 0, j = 0, . . . , n), we define the set of polynomials

Ωn(∆, ε) := {f ∈ πn : |f(tj)| ≤ εj , j = 0, . . . , n}.
Clearly, Ωn(∆, ε) is a compact set.

Define real valued polynomials {Pν}nν=0 = {Pν(∆, ε; ·)}nν=0 ∈ Ωn(∆, ε) by

|Pν(tj)| = εj for j, ν = 0, . . . , n,

P0(tj−1)P0(tj) < 0 for j = 1, . . . , n,
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and, for each ν = 1, . . . , n,

Pν(tν−1)Pν(tν) > 0, Pν(tj−1)Pν(tj) < 0 for j �= ν.
Evidently, the above conditions determine {Pν}nν=0 uniquely up to a multiplier −1.
Theorem 2 follows easily from the next lemma.

Lemma 4. For each x ∈ [−1, 1] and for every k ∈ {1, . . . , n},
sup{|f (k)(x)| : f ∈ Ωn(∆, ε)} = max{|P (k)

ν (x)|, ν = 0, . . . , n}.
Proof. Note first that the sup is attainable since Ωn(∆, ε) is compact. Set ω(t) :=

(t− t0) · · · (t− tn), ων(t) := ω(t)/(t− tν) (ν = 0, . . . , n); then for f ∈ Ωn(∆, ε) and a
fixed x ∈ [−1, 1] the Lagrange interpolation formula yields

|f (k)(x)| =
∣∣∣∣∣∣
n∑
j=0

ω
(k)
j (x)

ωj(tj)
f(tj)

∣∣∣∣∣∣ ≤
n∑
j=0

∣∣∣∣∣ω
(k)
j (x)

ωj(tj)

∣∣∣∣∣ εj .(4)

The upper bound is attained if |f(tj)| = εj for j = 0, . . . , n and f has a suitable sign
pattern at the points {tj}. Next we show that the polynomials {Pν}nν=0 provide a com-
plete set of appropriate sign patterns. For any pair of indices i, j ∈ {0, . . . , n}, i < j,
the zeros of ωi and ωj interlace (though not strictly); therefore, in view of Lemma 3,

the zeros {γi,µ}n−kµ=1 of ω
(k)
i and the zeros {γj,µ}n−kµ=1 of ω

(k)
j interlace strictly. Further-

more, since the zeros of ωi are less than or equal to the corresponding zeros of ωj , we
have the following arrangement:

γ0,n−k < · · · < γn,n−k < γ0,n−k−1 < · · · < γn,n−k−1 < · · · < γ0,1 < · · · < γn,1.
Since ωj−1(tj−1)ωj(tj) < 0 for j = 1, . . . , n, the above inequalities show that for

x ∈ [−1, 1] \ {γν,j}n n−k
ν=0,j=1, the quantities {ω(k)

j (x)/ωj(tj)}nj=0 either change their
signs alternatively if

x ∈ I0n,k, I0n,k = I0n,k(∆) := [−1, γ0,n−k)
1⋃

j=n−k
(γn,j , γ0,j−1)

⋃
(γn,1, 1]

or change signs alternatively with only one exception:
ω

(k)
ν−1

(x)

ων−1(tν−1)
ω(k)

ν (x)
ων(tν) > 0 for some

ν ∈ {1, . . . , n}. The latter situation occurs when x ∈ Iνn,k, where

Iνn,k = Iνn,k(∆) :=

n−k⋃
j=1

(γν−1,j , γν,j).

Correspondingly, if x ∈ Iνn,k for some ν ∈ {0, . . . , n}, then (4) holds with equality sign

for f = Pν . If x = γν,j , then ω
(k)
ν (x) = 0, and equality in (4) holds for f = Pν as well

as for any f ∈ πn which coincides with Pν at the points {tj : j �= ν}.
Thus, in (4), equality holds for f = Pν if x ∈ Iνn,k (ν = 0, . . . , n), and since

∪nν=0I
ν

n,k = [−1, 1], the proof of Lemma 4 is complete.
Remark . It follows from the proof of Lemma 4 that if for some f ∈ Ωn(∆, ε) we

have equality in (4) for some x ∈ Iνn,k (ν ∈ {0, . . . , n}), then necessarily f = cPν ,

where c is a constant with |c| = 1. Thus, for x ∈ [−1, 1] \ {γν,j}n n−k
ν=0,j=1, any extremal

polynomial in Lemma 4 is of the form f = cPν , where ν ∈ {0, . . . , n} and |c| = 1.
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Proof of Theorem 2. Set εj := |Q(tj)|, j = 0, . . . , n, and define polynomials
{Pν}nν=0 as above. Based on the interlacing assumption, we conclude that P0 = Q or
P0 = −Q, while for ν = 1, . . . , n the sign patterns of Pν and Qν coincide. Moreover,
we have

|Qν(tj)| = εj 1− xνtj|tj − xν | ≥ εj for j = 0, . . . , n and ν = 1, . . . , n.

In the proof of Lemma 4, we deduced that for any f ∈ Ωn(∆, ε)

|f (k)(x)| ≤ |P (k)
ν (x)| if x ∈ Iνn,k, ν = 0, . . . , n.(5)

For ν = 0 (5) reads as |f (k)(x)| ≤ |Q(k)(x)|, while for x ∈ Iνn,k (ν ∈ {1, . . . , n})
we have

|P (k)
ν (x)| =

n∑
j=0

∣∣∣∣∣ω
(k)
j (x)

ωj(tj)

∣∣∣∣∣ εj ≤
n∑
j=0

∣∣∣∣∣ω
(k)
j (x)

ωj(tj)

∣∣∣∣∣ |Qν(tj)| = |Q(k)
ν (x)|.

(For the last equality we used that Pν and Qν have the same sign pattern.) The claim
of Theorem 2 now follows from Lemma 4.

As an immediate consequence of Theorem 2 we get the following corollary.
Corollary 5. If, in addition to the assumptions of Theorem 2, for a k ∈

{1, . . . , n}

max
1≤ν≤n

‖Q(k)
ν ‖ ≤ ‖Q(k)‖,

then

‖f (k)‖ ≤ ‖Q(k)‖.

3. Proof of Theorem 1. The proof of Theorem 1 follows from Corollary 5,
applied to Q = Tn with k = 1. The application of Corollary 5 is possible because of
the following lemma.

Lemma 6. Let the polynomials {Pν}nν=1 be defined by

Pν(x) := Tn(x)
1− ξνx
x− ξν .

Then, for n ≥ 2,

‖P ′
ν‖ < n2 (ν = 1, . . . , n).(6)

For n = 2, 3 the validity of (6) is verified directly; therefore, we assume in what
follows that n ≥ 4. The proof of Lemma 6 goes through a number of lemmas.

Lemma 7. For every x ∈ [−1, 1] and for ν = 1, . . . , n

|P ′
ν(x)| ≤ Rν(x),

where

Rν(x) =

[
(1− ξ2ν)2
(x− ξν)4 +

n2(1− ξνx)2
(1− x2)(x− ξν)2

]1/2
.
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Proof. The result is immediate from

P ′
ν(x) = T

′
n(x)

1− ξνx
x− ξν − Tn(x)

1− ξ2ν
(x− ξν)2 ,(7)

the identity [Tn(x)]
2 + (1− x2)[T ′

n(x)]
2/n2 = 1, and Cauchy’s inequality.

Lemma 8. Rν(x) is a strictly convex function on each of the intervals (−1, ξν)
and (ξν , 1).

Proof. We suppress the index ν, writing

R(x) =

[
(1− ξ2)2
(x− ξ)4 +

n2(1− ξx)2
(1− x2)(x− ξ)2

]1/2
=: (g21(x) + g

2
2(x))

1/2,

where

g1(x) :=
1− ξ2
(x− ξ)2 , g2(x) :=

n(1− ξx)
(1− x2)1/2(x− ξ) .

Since

R′′ =
(g1g

′
2 − g′1g2)2 +R2(g1g

′′
1 + g2g

′′
2 )

R3
,

the lemma will be proved if we show that g1(x)g
′′
1 (x) and g2(x)g

′′
2 (x) are positive in

(−1, ξ) and in (ξ, 1). This is easily seen for the first term, while for the second term
a short calculation yields

(x− ξ)4(1− x2)3

n2
g2(x)g

′′
2 (x)

= 2(1− ξ2)(1− x2)2 − 2x(x− ξ)(1− ξ2)(1− x2) + (1− ξx)(x− ξ)2(2x2 + 1).

The positivity of the right-hand side is easily verified with the help of the inequality

2(1− ξ2)(1− x2)2 + (1− ξx)(x− ξ)2(2x2 + 1)

≥ 2(1− x2)|x− ξ|[2(1− ξ2)(1− ξx)(2x2 + 1)]1/2.

We now examine the polynomials {Pν}nν=1. Due to symmetry, we may (and shall)
consider only half of them, say, those with indices 1 ≤ ν ≤ [(n + 1)/2]. Recall that
the zeros of Pν coincide with the zeros {ξj}nj=1 of Tn with the exception of ξν which is
replaced by 1/ξν . (In the case where n is odd and ν = (n+ 1)/2, 1/ξν is interpreted
as a zero at ∞.) With this last convention, we observe that for 1 ≤ ν ≤ [(n + 1)/2]
the zeros of Pν are located to the right with respect to the zeros {ξi} of Tn and
interlace with them. In view of Lemma 3, the same relation holds between the zeros
of the derivatives of Pν and Tn. We are interested in the behavior of P ′

ν(x) and, in
particular, its critical points. To this end, we shall exploit (7) and the explicit form
of P ′′

ν ,

P ′′
ν (x) = T

′′
n (x)

1− ξνx
x− ξν − 2T ′

n(x)
1− ξ2ν

(x− ξν)2 + 2Tn(x)
1− ξ2ν

(x− ξν)3 .(8)

In the proof of the next lemmas we shall use the differential equation

(1− x2)T ′′
n (x)− xT ′

n(x) + n
2Tn(x) = 0(9)
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as well as the following simple facts:

{n sin (α/n)}∞n=1 ↗ α,(10)

cotα ≤ 1

α
,(11)

where 0 < α ≤ π/2.
Lemma 9. The polynomials P ′

ν (ν = 1, . . . , [(n+ 1)/2]) satisfy the following:

(i) if 2 ≤ ν < n+1
2 , then P

′
ν has exactly one local extremum to the right of 1;

(ii) P ′
ν has exactly one local extremum in (ξν+1, ην);

(iii) P ′
ν is strictly monotone in [ην , ην−1];

(iv) P ′
ν is strictly monotone in [−1, ηn−1] and in [η1, 1].

Proof. The first claim in (iv) follows trivially since, as was already mentioned,
the zeros of Pν are located to the right with respect to {ξj}nj=1. In view of Lemma 3,
the same is true for the zeros of P ′′

ν and T ′′
n . Since the leftmost zero of T ′′

n is located
to the right of ηn−1, so is the smallest zero of P ′′

ν .

Substituting x = 1 in (8), we get

P ′′
ν (1) =

n2(n2 − 1)

3
− 2n2 cot2

(2ν − 1)π

4n
+

cot2 (2ν−1)π
4n

sin2 (2ν−1)π
4n

.

With the help of (10) and (for ν = 2) (11), it is easy to see that P ′′
ν (1) > 0 for

2 ≤ ν ≤ [(n + 1)/2]. Since P ′
ν has a negative leading coefficient and at most one

critical point to the right of x = 1, this proves part (i) of the lemma.

Now we find the sign of P ′′
ν at the points ξν+1, ην , and ην−1. First, we shall show

that

sign {P ′′
ν (ξν+1)} = (−1)ν+1.(12)

Putting x = ξν+1 in (8) and using that T ′′
n (ξν+1) = ξν+1T

′
n(ξν+1)/(1 − ξ2ν+1) and

sign {T ′
n(ξν+1)} = (−1)ν , we get

sign {P ′′
ν (ξν+1)} = (−1)ν+1sign {2(1− ξ2ν)(1− ξ2ν+1) + ξν+1(ξν − ξν+1)(1− ξνξν+1)}.

Now (12) is obvious if ξν+1 ≥ 0. The only possibility where ξν+1 < 0 is ν = m and
n = 2m or n = 2m− 1. An easy calculation shows that for n ≥ 4 (12) is true in this
case, too.

Next we prove both (ii) and (iii) by showing that

sign {P ′′
ν (ηµ)} = (−1)ν for µ = ν, ν − 1, µ �= 0.(13)

Using (8) and (9), we obtain

P ′′
ν (ηµ) =

Tn(ηµ)

(ξν − ηµ)3(1− η2µ)
[n2(1− ξνηµ)(ξν − ηµ)2 − 2(1− ξ2ν)(1− η2µ)].(14)

Since sign {Tn(ηµ)} = (−1)µ, it suffices to prove that the term in the square brackets
is positive. Using the inequality (1− ξ2ν)(1− η2µ) < (1− ξνηµ)2, we obtain

n2(1− ξνηµ)(ξν − ηµ)2 − 2(1− ξ2ν)(1− η2µ) > (1− ξνηµ)[n2(ξν − ηµ)2 − 2(1− ξνηµ)].
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After simple manipulations, using the trigonometric representation of ξν and ηµ, we
find that the inequality n2(ξν − ηµ)2 − 2(1− ξνηµ) ≥ 0 is equivalent to

1

n2 sin2 π
4n

+
1

n2 sin2 (2ν+2µ−1)π
4n

≤ 2.

This last inequality will hold for all ν ∈ {1, . . . , [(n+1)/2]} and µ = ν, ν − 1, (µ �= 0)
if it is true for ν = µ = 1, i.e., if

1

n2 sin2 π
4n

+
1

n2 sin2 3π
4n

≤ 2.

Since the left-hand side is a decreasing function of n (see (10)), and for n = 3 it is
(sin−2(π/12) + 2)/9 = (4

√
3 + 10)/9 < 2, (13) is proved. Now we conclude from (12)

and (13) (with µ = ν) that P ′′
ν has a zero in (ξν+1, ην) for ν = 1, . . . , [(n + 1)/2]. In

addition, (13) implies that this zero is unique, and no zeros of P ′′
ν exist in [ην , ην−1]

(ν ≥ 2); otherwise, there would be at least three zeros in (ξν+1, ξν−1), which is a
contradiction. For the same reason, P ′′

1 has a simple zero in (ξ2, η1), and no zeros of
P ′′

1 exist in [η1, 1]. This is exactly the claim of (iii) for ν = 1 and of the second part
of (iv) for ν = 1.

To prove the second part of (iv) for 2 ≤ ν < (n+ 1)/2, we shall show that

P ′′
ν (η1) > 0.(15)

Having established (15), the second part of (iv) will follow immediately. Indeed, we
found in the beginning of this proof that P ′′

ν (1) > 0 for 2 ≤ ν < (n + 1)/2, and if
P ′
ν was not monotone in [η1, 1], then P

′′
ν would have at least three zeros (two zeros if

ν = (n+ 1)/2)) to the right of η1, which is impossible. The proof of (15) goes along
the lines of the proof of (13). Equation (14) with µ = 1 shows that (15) follows if

n2(1− ξνη1)(ξν − η1)2 − 2(1− ξ2ν)(1− η21) > 0

or, in view of (1− ξ2ν)(1− η21) ≤ (1− ξνη1)2, if
n2(ξν − η1)2 − 2(1− ξνη1) > 0.

The latter inequality is equivalent to the inequality

1

n2 sin2 (2ν−3)π
4n

+
1

n2 sin2 (2ν+1)π
4n

≤ 2,

whose validity is easily verified with the help of (10). Lemma 9 is proved.
Lemma 10. The following estimates for ‖P ′

ν‖ hold true:
(i) for ν = 1, 2,

‖P ′
ν‖ ≤ max{|P ′

ν(−1)|, |P ′
ν(1)|, Rν(ηn−1), Rν(ην)};

(ii) for ν = 3, . . . , [(n+ 1)/2],

‖P ′
ν‖ ≤ max{|P ′

ν(−1)|, |P ′
ν(1)|, Rν(ηn−1), Rν(ην), Rν(ην−1), Rν(η1)}.

Proof. According to Lemma 9, P ′
1 is monotone in [−1, ηn−1] and [η1, 1]; therefore,

on these intervals,

|P ′
1(x)| ≤ max{|P ′

1(−1)|, |P ′
1(ηn−1)|, |P ′

1(η1)|, |P ′
1(1)|}.
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On the complementary interval [ηn−1, η1], we have |P ′
1(x)| ≤ R1(x) (Lemma 7), and

since R1 is convex there (Lemma 8), it follows that R1(x) ≤ max{R1(ηn−1), R1(η1)}
for x ∈ [ηn−1, η1]. This proves (i) for ν = 1.

The proof of (i) for ν = 2 relies on the observation that, by Lemma 9, P ′
2 is mono-

tone in [−1, ηn−1] and in [η2, 1], while |P ′
2(x)| ≤ max{R2(ηn−1), R2(η2)} in [ηn−1, η2],

by virtue of Lemmas 7 and 8.
Part (ii) can be proved in the same fashion, exploiting the monotonicity of P ′

ν on
the intervals [−1, ηn−1], [ην , ην−1], and [η1, 1] and the convexity of Rν on [ηn−1, ην ]
and [ην−1, η1]. We leave the details to the reader.

Our last lemma estimates the quantities appearing in Lemma 10.
Lemma 11. The following inequalities hold true:
(i) |P ′

ν(±1)| < n2 (ν = 1, . . . , [(n+ 1)/2]);
(ii) Rν(η1) < n

2 (ν = 1, 3, 4, . . . , [(n+ 1)/2]);
(iii) Rν(ην) < n

2 (ν = 1, . . . , [(n+ 1)/2]);
(iv) Rν(ην−1) < n

2 (ν = 3, . . . , [(n+ 1)/2]);
(v) Rν(ηn−1) < n

2 (ν = 1, . . . , [(n+ 1)/2]).
Proof. Substituting x = ±1 in (7), we get

P ′
ν(1) = n

2 − cot2
(2ν − 1)π

4n
, |P ′

ν(−1)| = n2 − tan2 (2ν − 1)π

4n
.

Then (10) and 0 < (2ν−1)π/(2n) ≤ π/4 show the validity of slightly sharper inequal-
ities than (i), namely,

n2 − 1 ≤ |P ′
ν(−1)| < n2 − π

4n

and

(1− 16/π2)n2 < P ′
ν(1) < n

2 − 1.

Now we prove (ii). A short calculation yields

Rν(η1) =

[
(1− ξ2ν)2
(η1 − ξν)4 +

n2(1− ξνη1)2
(1− η21)(η1 − ξν)2

]1/2
=: {[A(ν)]2 + [B(ν)]4}1/2,

where

A(ν) =
n

2

∣∣∣∣2 cot πn + cot
(2ν − 3)π

4n
− cot

(2ν + 1)π

4n

∣∣∣∣ ,
B(ν) =

1

2

∣∣∣∣cot (2ν − 3)π

4n
+ cot

(2ν + 1)π

4n

∣∣∣∣ .
Assume first that 3 ≤ ν ≤ [(n + 1)/2]; then it is easy to see that A(ν) ≤ A(3) and
B(ν) ≤ B(3). We use (11) to obtain

B(3) =
1

2

[
cot

3π

4n
+ cot

7π

4n

]
<

20n

21π
,

A(3) =
n

2

[
cot

3π

4n
+ 2 cot

π

n
− cot

7π

4n

]

<
n

2

[
cot

3π

4n
+ 2 cot

π

n

]

<
5n2

3π
.
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Therefore, for 3 ≤ ν ≤ [(n+ 1)/2],

Rν(η1) <

[(
5n2

3π

)2

+

(
20n

21π

)4
]1/2

< 0.54n2 < n2.

Similarly, for ν = 1, we find

A(1) =
n

2

[
cot

π

4n
− 2 cot

π

n
+ cot

3π

4n

]
<
n

2

[
cot

π

4n
+ cot

3π

4n

]
<

8n2

3π
,

B(1) =
1

2

[
cot

π

4n
− cot

3π

4n

]
<

1

2
cot

π

4n
<

2n

π
.

Hence

R1(η1) <

[(
8n2

3π

)2

+

(
2n

π

)4
]1/2

< 0.95n2 < n2.

Thus (ii) is proved.

Next we prove (iii). For 1 ≤ ν ≤ [(n+ 1)/2], we have

Rν(ην) =

[
(1− ξ2ν)2
(ξν − ην)4 +

n2(1− ξνην)2
(1− η2ν)(ξν − ην)2

]1/2
=: {[C(ν)]2 + [D(ν)]4}1/2,

where

C(ν) =
n

2

[
cot

π

4n
+ cot

(4ν − 1)π

4n
− 2 cot

νπ

n

]
,

D(ν) :=
1

2

[
cot

π

4n
− cot

(4ν − 1)π

4n

]
.

Unlike the situation with A(ν) and B(ν), we observe that C(ν) and D(ν) increase
with ν, and for n ≥ 3

D(ν) ≤ D((n+ 1)/2) =
n

n sin π
2n

≤ 2n

3
,

C(ν) ≤ C((n+ 1)/2) =
n

2

[
cot

π

4n
+ 2 tan

π

2n
− tan

π

4n

]
=

n

sin π
2n

+ n
[
tan

π

2n
− tan

π

4n

]

<
n2

n sin π
2n

+
π

4

1

cos2 π
2n

≤ 1

3
(2n2 + π).

With this (iii) is proved since

Rν(ην) < n
2

[(
2

3
+
π

3n2

)2

+

(
2

3

)4
]1/2

< 0.91n2 < n2.
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The same arguments as above lead to the proof of (iv): Rν(ην−1) = [(C̃(ν))2 +
(D̃(ν))4]1/2, where

C̃(ν) =
n

2

[
cot

π

4n
+ 2 cot

(ν − 1)π

n
− cot

(4ν − 3)π

4n

]
,

D̃(ν) =
1

2

[
cot

π

4n
+ cot

(4ν − 3)π

4n

]
.

Observing that C̃(ν) and D̃(ν) decrease with ν, for 3 ≤ ν ≤ [(n + 1)/2] we find the
estimates

D̃(ν) ≤ D̃(3) =
1

2

[
cot

π

4n
+ cot

9π

4n

]
<

20n

9π
,

C̃(ν) ≤ C̃(3) = n
2

[
cot

π

4n
+ 2 cot

2π

n
− cot

9π

4n

]

<
n

2

[
cot

π

4n
+ cot

7π

4n

]

<
16n2

7π
,

and hence

Rν(ην−1) <

[(
16n2

7π

)2

+

(
20n

9π

)4
]1/2

< 0.89n2 < n2.

Finally, (v) can be proved in the same way as (i)–(iv). Alternatively, one can use the
inequality

1− ξη
|ξ − η| ≥

1 + ξη

ξ + η
(0 ≤ ξ, η < 1, ξ �= η)

to compare pairwise A(ν) and B(ν) with the corresponding terms in Rν(ηn−1) =
Rν(−η1). The result is Rν(ηn−1) ≤ Rν(η1) < n2. We omit the details.

Proof of Lemma 6. The inequality follows from Lemmas 10 and 11.
Proof of Theorem 1. Inequality (3) follows immediately from Corollary 5 and

Lemma 6. It remains to clarify in which cases an equality is possible. Let ∆ = {tj}nj=0

be a fixed mesh satisfying the assumptions of Theorem 1. Let ε = (ε0, . . . , εn) =:
(|Tn(t0)|, . . . , |Tn(tn)|), and let the polynomials P0 = Tn, Pν (ν = 1, . . . , n) be defined
as in section 2. Suppose that f ∈ Ω(∆, ε) is an extremal polynomial, i.e., ‖f ′‖ = n2.
According to Lemma 6 and the remark following the proof of Lemma 4, for x ∈
∪nν=1I

ν

n,1 there holds

|f ′(x)| ≤ max
1≤ν≤n

‖P ′
ν‖ < n2;

therefore, ‖f ′‖ is attained for x ∈ I0n,1. However, when x ∈ I0n,1 we have

|f ′(x)| ≤ |P ′
0(x)| = |T ′

n(x)| ≤ T ′
n(1) = n

2,

and equality holds only for x = ±1 and f = cTn with |c| = 1. Theorem 1 is
proved.
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4. Concluding remarks.
1. The requirement in Theorem 1 that the points ∆ = {tj}nj=0 interlace strictly

with the zeros of Tn was imposed only in order to avoid unimportant complications
in the proof. Actually, Theorem 1 is valid under the weaker assumption that {tj}nj=0

interlace with {ξj}nj=1. If a comparison point tj coincides with a zero of Tn, then
the polynomials from the corresponding class Ωn(∆, ε) must vanish at that point. In
the case when all {ξν}nν=1 belong to ∆, Theorem 1 holds trivially since in that case
Ωn(∆, ε) = {cTn(x) : |c| ≤ 1}.

2. So far, we cannot extend Theorem 1 to higher order derivatives, i.e., to prove

‖f (k)‖ ≤ ‖T (k)
n ‖ for all k ≥ 2. However, it should be pointed out that this inequality

holds true for k = n−1 and for k = n. This is easily seen from the proof of Lemma 4:
for any polynomial f ∈ Ωn(∆, ε) and for k = n− 1, n we have ‖f (k)‖ = |f (k)(−1)| or
‖f (k)‖ = |f (k)(1)|, and for x = ±1 the extremal polynomials in Lemma 4 are of the
form cP0 = ±cTn, |c| = 1.

3. According to Lemma 4, a necessary condition for a mesh ∆ = {tj}nj=0 to
admit DS-inequality with an extremal polynomial Q = Tn is for the sign pattern of
(Tn(t0), . . . , Tn(tn)) to coincide (up to a factor −1) with the sign pattern of some of
the polynomials {Pν}nν=0. Theorem 1 asserts DS-inequality for all meshes ∆ having
the sign structure of P0. One may think that DS-inequality also holds for any other
mesh ∆ = {tj}nj=0 for which the sign pattern of (Tn(t0), . . . , Tn(tn)) coincides with
the sign pattern of some Pν , ν ∈ {1, . . . , n}. However, the example below shows that
this is not true in general.

Let tj = ηj+1 for j = 0, 1, . . . , n− 2, tn = ηn, and tn−1 = ζ, where ζ ∈ (−1, ξn).
Define the polynomial

q(x) =




Tn(x) for x = tj , j = 0, . . . , n− 2, n,

−Tn(x) for x = tn−1.

Clearly, q has the same sign structure as Pn−1, and |q(tj)| = |Tn(tj)| (j = 0, . . . , n).
The explicit form of q is

q(x) = Tn(x) + a(1 + x)T
′
n(x), where a = −2Tn(ζ)/((1 + ζ)T ′

n(ζ)) > 0,

and for k = 1, . . . , n we have

‖q(k)‖ ≥ q(k)(1) > T (k)
n (1) = ‖T (k)

n ‖.

4. As was mentioned in [11, p. 174], inequalities of Duffin–Schaeffer type may be
viewed as exact estimates for the round-off error in Lagrange differentiation formulas.
We describe below briefly a possible application of the result of Theorem 1.

Let ∆ = {tj}nj=0 be a mesh whose points interlace strictly with the zeros of

Tn. Suppose that inaccurate data {f̃(tj)}nj=0 for a function f ∈ Cn+1[−1, 1] is given,
where

|f(tj)− f̃(tj)| ≤ δj (j = 0, . . . , n).

If f ′(x) ≈ L′
n(f̃ ;x) is the Lagrange differentiation formula based on this information,

then for the error R(f ;x) := f ′(x)− L′
n(f̃ ;x) there holds

R(f ;x) = Rround(f ;x) +Rtrunc(f ;x)
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with Rround(f ;x) = L′
n(f̃−f ;x) being the error caused by inaccuracy of the data and

Rtrunc(f ;x) being the error caused by the fact that f is not necessarily a polynomial
(truncation error). We have the estimate

‖R(f ; ·)‖ ≤ ‖Rround(f ; ·)‖+ ‖Rtrunc(f ; ·)‖.

The exact bound for the truncation error in the Lagrange differentiation formula
in the general case has been obtained by Shadrin [17] (in our case ‖Rtrunc(f ; ·)‖ ≤
‖f (n+1)‖‖ω′‖/(n + 1)!). For the round-off error, Theorem 1 provides the following
exact upper bound:

‖Rround(f ; ·)‖ ≤Mn2, where M = max
0≤j≤n

δj
|Tn(tj)| .

This upper bound is attained when δj/|Tn(tj)| =M for j = 0, . . . , n.
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Abstract. We discuss and compare various notions of weak solution for the p-Laplace equation

−div(|∇u|p−2∇u) = 0

and its parabolic counterpart

ut − div(|∇u|p−2∇u) = 0.

In addition to the usual Sobolev weak solutions based on integration by parts, we consider the
p-superharmonic (or p-superparabolic) functions from nonlinear potential theory and the viscosity
solutions based on generalized pointwise derivatives (jets). Our main result states that in both
the elliptic and the parabolic case, the viscosity supersolutions coincide with the potential-theoretic
supersolutions.
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1. Introduction. The objective of this paper is to prove that the viscosity so-
lutions of the p-Laplace equation

−div
(|∇u|p−2∇u) = 0(1.1)

and its parabolic analogue coincide with the usual weak solutions, defined with the aid
of test-functions under the integral sign. Our main result is that the viscosity superso-
lutions are the same as the so-called p-harmonic functions, which are defined through
a comparison principle in nonlinear potential theory. In the linear case p = 2 the vis-
cosity supersolutions of the Laplace equation −∆u = 0 are merely the superharmonic
functions in classical potential theory. This result and its parabolic counterpart are
due to Lions and can be found, for example, in [FIT]. For related results for equations
with measurable coefficients see [Je2], and for certain classes of nonlinear equations
see [CKSS].

The p-Laplace equation is the Euler–Lagrange equation for the variational integral∫
Ω

|∇u(x)|p dx.
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Here 1 < p <∞ is a fixed exponent, the function u is scalar valued, and Ω is a domain
in the n-dimensional Euclidean space. Notice that in the case p = 2 (the linear case)
we have the Dirichlet integral and the Laplace equation

−∆u = 0.

The p-harmonic equation is the prototype of a class of quasi-linear equations in the
form

−divAp(x,∇u(x)) = 0,

and it is fundamental in the nonlinear potential theory; cf. [HKM]. The p-harmonic
operator div(|∇u|p−2∇u) also appears in many contexts in physics: non-Newtonian
fluids (dilatant fluids have p > 2, and pseudoplastics have 1 < p < 2), reaction-
diffusion problems, nonlinear elasticity (torsional creep), glaceology (p = 4/3), and
the thermal radiation of a hydrogen bomb (see [B]), just to mention a few applications.

We will study the mere notion of solutions, subsolutions, and supersolutions.
There is something new to be said about this much-investigated basic topic in con-
nection with the so-called viscosity solutions, a modern concept originating in the
theory of Hamilton–Jacobi equations. The viscosity solutions have turned out to be
indispensable in the case p =∞ (not treated here; see [Je], [JLM]) and quite useful for
p finite when it comes to the pointwise interpretation of expedient identities involv-
ing second derivatives; cf. [LMS]. We begin with a brief discussion about different
definitions of solution.

The solutions with continuous second derivatives (classical solutions) have the
advantage of being easy to define: the equation

|∇u|2∆u+ (p− 2)

n∑
i,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj
= 0

has to hold at each point in the domain Ω. However, when p �= 2 this class of solutions
is too restricted for the solvability of the Dirichlet problem. Roughly speaking, this
is due to the fact that solutions may not, in general, be of class C2 at points where
∇u = 0.

To assure the solvability of the Dirichlet boundary value problem, the p-harmonic
functions are usually defined as (continuous) weak solutions in the Sobolev spaceW 1,p.
This is the familiar situation with test-functions under the integral sign; see Definition
2.1 below. The uniqueness comes almost for free here. In other words, one has both
existence and uniqueness for the Dirichlet boundary value problem.

The definition of viscosity solutions is based on pointwise evaluation of the p-
harmonic operator

∆pu = div
(|∇u|p−2∇u) ,

though only for smooth test-functions ϕ; see section 2 below. The underlying phe-
nomenon is that the classical (of class C2) sub- and supersolutions are enough to
determine the p-harmonic functions, although the latter often are less smooth. This
is the content of Corollary 2.6, which states that the viscosity solutions1 are the
p-harmonic functions. To the best of our knowledge, this is a new result.

1To indicate the dependence on the exponent p, they are called viscosity p-solutions below.
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We have also included a section on the so-called p-parabolic equation

ut − div(|∇u|p−2∇u) = 0.

According to Corollary 4.5, its viscosity solutions2 are the p-parabolic functions (con-
tinuous weak solutions in a parabolic Sobolev space). The interpretation of this result
requires some caution in the range 1 < p < 2n

n+2 , because discontinuous “solutions”
have to be ruled out. The proof of the equivalence of the parabolic definitions is
simpler than in the elliptic situation. We end the paper with a brief discussion of an
alternative definition, due to Ishii and Souganidis [IS], for parabolic viscosity solutions
in the singular case 1 < p < 2.

Finally, let us briefly indicate an application. It is to be expected that, at least
under suitable conditions, the limit

lim
t→∞u(x, t)

of a p-parabolic function is p-harmonic. Such a theorem has been proved in [Ju]
with the viscosity technique, which is advantageous for convergence problems. Our
Corollary 2.6 complements the result, making it possible to conclude that the viscosity
p-solution, obtained as limit function, is p-harmonic.

2. Definitions. Let Ω denote a domain in R
n. The Sobolev space W 1,p(Ω)

consists of all functions u Ω → [−∞,∞] that together with their distributional first
derivatives

∇u =
(
∂u

∂x1
,
∂u

∂x2
, . . . ,

∂u

∂xn

)

are p-summable. The corresponding local space is denoted by W 1,p
loc (Ω).

Definition 2.1. We say that a continuous function u ∈W 1,p
loc (Ω) is p-harmonic

in Ω if ∫
Ω

|∇u|p−2〈∇u,∇ϕ〉 dx = 0

for every ϕ ∈ C∞
0 (Ω). Here 1 < p <∞.

By elliptic regularity theory the continuity is redundant in the definition. Ac-
cording to a theorem of Ural’tseva, in the case p > 2, later extended by DiBenedetto
and Lewis to all p > 1, u ∈ C1,α

loc (Ω); cf. [Ur], [DB], [Le].
Next we will define the p-superharmonic functions via a comparison principle as

in [Li]. Notice immediately that the “fundamental solution”

V (x) = |x| p−n
p−1

if 1 < p < n and

V (x) = log

(
1

|x|
)

2To indicate the dependence on the exponent p, they are called parabolic viscosity p-solutions
later.
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if p = n is, indeed, p-superharmonic in R
n according to the definition below, although∫

|x|<1

|∇V (x)|p dx =∞.

Any reasonable definition has to include this example. This is taken into account in
the following potential-theoretic definition.

Definition 2.2. The function u Ω→ (−∞,∞] is called p-superharmonic if
(i) u is lower semicontinuous,
(ii) u �≡ ∞, and
(iii) u satisfies the comparison principle on each subdomain D � Ω: if h ∈ C(D)

is p-harmonic in D and u ≥ h on ∂D, then u ≥ h in D.
We have used the notation D � Ω to indicate that the closure of the domain D is

contained in Ω. For p = 2, this is the classical definition of superharmonic functions
due to Riesz. Note that there are no requirements for the gradient ∇u in Definition
2.2. However, a locally bounded p-superharmonic function u is actually in W 1,p

loc (Ω)
and satisfies the inequality ∫

Ω

|∇u|p−2〈∇u,∇ϕ〉 dx ≥ 0(2.1)

for every nonnegative test-function ϕ ∈ C∞
0 (Ω). Moreover, the converse is also true

for a lower semicontinuous function u in W 1,p
loc (Ω). We refer the reader to [Li] for this

fact and more information about the definition and properties of p-superharmonic
functions.

Needless to say, p-subharmonic functions are defined in an analogous way, so
that u is p-subharmonic if and only if −u is p-superharmonic. A function u is p-
harmonic if and only if it is both p-superharmonic and p-subharmonic. For the sake
of completeness, we mention the comparison principle in nonlinear potential theory;
see [HKM], [Li].

Comparison principle for p-subharmonic and p-superharmonic func-
tions. Suppose that Ω is a bounded domain, that u is p-subharmonic, and that v is
p-superharmonic in Ω. If

lim sup
x→z

u(x) ≤ lim inf
x→z

v(x)

for all z ∈ ∂Ω and if both sides of the inequality are not simultaneously +∞ or −∞,
then u ≤ v in Ω.

Let us now turn our attention to viscosity solutions. The notion of viscosity
solutions requires that the expression

∆pϕ = div
(|∇ϕ|p−2∇ϕ)

= |∇ϕ|p−4


|∇ϕ|2∆ϕ+ (p− 2)

n∑
i,j=1

∂ϕ

∂xi

∂ϕ

∂xj

∂2ϕ

∂xi∂xj




be evaluated pointwise for smooth functions ϕ. This is not a problem when ∇ϕ �= 0,
but the critical points pose additional difficulties, especially in the range 1 < p < 2.
A standard way to deal with singular equations in the theory of viscosity solutions
is to use suitable semicontinuous extensions of the operator; cf. [CGG], [CIL]. For
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the p-Laplacian this approach would allow some false “solutions.” For example, u ≡
constant would then solve

−∆pu(x) = f(x)

in the viscosity sense for any continuous function f .
In the following definition, the pointwise evaluation of ∆pϕ is avoided when

∇ϕ = 0. This precaution has no bearing if p ≥ 2. (Observe that the difficulty
with critical points cannot be just defined away, and, in connection with the approxi-
mating equation −∆pv = ε, isolated critical points have to be dealt with; see Lemma
3.2 below.) To further motivate the definition, we remark that a function ϕ ∈ C2(Ω)
that satisfies −∆pϕ(x) = 0 when ∇ϕ(x) �= 0 (nothing being said about the possible
critical points) is p-harmonic in Ω. This new result is an immediate consequence of
Corollary 2.6 below.

Definition 2.3. The function u Ω→ (−∞,∞] is called a viscosity p-supersolu-
tion if

(i) u is lower semicontinuous,
(ii) u �≡ ∞, and
(iv) whenever x0 ∈ Ω and ϕ ∈ C2(Ω) are such that u(x0) = ϕ(x0), u(x) > ϕ(x)

for x �= x0, and ∇ϕ(x0) �= 0, we have

−∆pϕ(x0) ≥ 0.

Each point x0 requires its own family of test-functions touching from below, which
may very well be empty. It is not difficult to see that condition (iv) can be replaced
by the following condition.

(v) The following comparison holds for each subdomain D � Ω: let ϕ ∈ C2(Ω)
be such that ∇ϕ(x) �= 0 and −∆pϕ(x) < 0 in D. If u ≥ ϕ on ∂D, then u ≥ ϕ in D.

In other words, the comparison is with respect to “smooth strict subsolutions” in
Definition 2.3 and with respect to p-harmonic functions in Definition 2.2. Our main
result, Theorem 2.5 below, guarantees that both definitions yield the same class of
u’s. We have come to a fundamental issue about the difference between conditions
(iii) and (v). At first sight, condition (v) looks like (iii) in Definition 2.2, especially if
one replaces the strict inequality −∆pϕ(x) < 0 by −∆pϕ(x) ≤ 0, which is possible a
posteriori due to our results. The point is that the comparison in (iii) is with respect
to p-harmonic functions that are not necessarily of class C2, the regularity being
merely C1,α, while (v) is restricted to C2-functions. It is in doubt whether one can
further restrict the comparison in (iii) to p-harmonic functions h having continuous
second derivatives.

An upper semicontinuous function u is a viscosity p-subsolution if −u is a viscosity
p-supersolution. A viscosity solution of the equation −∆pu = 0 is both a viscosity
p-supersolution and p-subsolution.

Remark 2.4. If p ≥ 2, then −∆pϕ(x) is well defined also at the critical points of
ϕ, and there is no need to require in (iv) that the gradient of a test-function does not
vanish at the point of touching. However, since it turns out that both versions of the
definition give the same class of solutions, we have decided to use the one that works
also in the singular case 1 < p < 2.

Theorem 2.5. Let 1 < p <∞. In a given domain the p-superharmonic functions
and the viscosity p-supersolutions are the same.

Corollary 2.6. Let 1 < p <∞. A function is p-harmonic if and only if it is a
viscosity p-solution.
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The proof of Theorem 2.5 has two parts. First, we must prove that p-super-
harmonic functions are viscosity p-supersolutions. This is a rather immediate conse-
quence of the classical comparison principle for p-superharmonic and p-subharmonic
functions. Second, we must show that viscosity p-supersolutions are p-superharmonic,
that is, they satisfy the comparison principle with respect to p-harmonic functions.
This is more delicate since the points at which the gradient vanishes present difficul-
ties in the degenerate as well as in the singular case. Since this comparison principle
may be of independent interest, we have stated it by itself. The proof is presented in
section 3 below.

Theorem 2.7 (the comparison principle). Let Ω ⊂ R
n be a bounded domain,

and assume that u is a viscosity p-subsolution and v is a viscosity p-supersolution in
Ω. If

lim sup
x→z

u(x) ≤ lim inf
x→z

v(x)(2.2)

for all z ∈ ∂Ω and if both sides of (2.2) are not simultaneously ∞ or −∞, then u ≤ v
in Ω.

Proof of Theorem 2.5. Let us first assume that u is p-superharmonic. To show
that u is a viscosity p-supersolution, we argue by contradiction and assume that there
exists x0 ∈ Ω and ϕ ∈ C2(Ω) such that u(x0) = ϕ(x0), u(x) > ϕ(x) for all x �= x0,
∇ϕ(x0) �= 0, and

−∆pϕ(x0) < 0.

By continuity, there exists a radius r > 0 such that{−∆pϕ(x) < 0,
∇ϕ(x) �= 0

for every x ∈ Br(x0). Let

m = inf
|x−x0|=r

(u(x)− ϕ(x)) > 0,

and define ϕ̃ = ϕ + m. Then ϕ̃ is p-subharmonic in the open set Br(x0). Since
ϕ̃ ≤ u on ∂Br(x0), we obtain from the comparison principle for p-superharmonic and
p-subharmonic functions that ϕ̃ ≤ u in Br(x0). However,

ϕ̃(x0) = ϕ(x0) +m > u(x0),

which is a contradiction. Therefore, u must be a viscosity p-supersolution.
For the converse implication, it is enough to check that (iii) holds for viscos-

ity p-supersolutions. This, however, follows immediately from Theorem 2.7 after
noticing that by the first half of the proof, every p-harmonic function is a viscosity
p-solution.

3. Proof of the comparison principle. Let the functions u and v satisfy
the assumptions in Theorem 2.7. We begin with some simplifications of the general
situation.

First reduction (approximation by smooth domains). We may assume, without
loss of generality, that the bounded domain Ω is smooth, the function v ∈ C1,α(Ω) is
p-harmonic, and u ≤ v on ∂Ω.
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To see this, let us first observe that by (2.2) we can find for any ε > 0 a smooth
domain D � Ω such that u < v + ε in Ω \D. By semicontinuity there is a function
ϕ ∈ C∞(Ω) such that

u < ϕ < v + ε

on ∂D. Next, let h be the unique weak solution to the Dirichlet problem{−∆ph = 0 in D,
h = ϕ on ∂D.

In other words, h ∈ C(D̄) ∩W 1,p(D) is p-harmonic in D. Since D is regular, h takes
its prescribed continuous boundary values ϕ in the classical sense.

We have

u ≤ h ≤ v + ε
on ∂D. In fact, it is known that h ∈ C1,α(D̄) (see [Lie]), but we prefer to give an
argument which avoids this difficult boundary regularity result. The weaker local
regularity h ∈ C1,α

loc (D) will suffice. To this end, we construct a regular domain
D1 � D such that

u− ε ≤ h ≤ v + 2ε

on ∂D1 and u < v + 2ε in Ω \D1. Notice that now we have h ∈ C1,α(D1), because
h ∈ C1,α

loc (D). If we assume the theorem for regular domains, we get

u− ε ≤ h ≤ v + 2ε

in the whole D1. Therefore, we conclude that u ≤ v + 3ε in Ω. Since ε > 0 was
arbitrary, this is the desired situation. Moreover, since the two cases u − ε ≤ h and
h ≤ v + 2ε are symmetric, it suffices to prove that u− ε ≤ h in D1.

Second reduction (approximation by “regularized” equations). It is enough to
prove the comparison principle in the case when v is a weak solution of the equation

−∆pv = ε, ε > 0.(3.1)

More precisely, suppose that v is a weak solution of (3.1) with smooth boundary
values (v−w ∈W 1,p

0 (Ω) for some w ∈ C1,α(Ω)) and Ω is a bounded smooth domain.
If u is a viscosity p-subsolution in Ω such that u(x) ≤ v(x) for all x ∈ ∂Ω, then we
have u(x) ≤ v(x) for x ∈ Ω.

Indeed, let us assume that the comparison principle holds in the setting described
above, and let u and v be as in the first reduction. If vε is the unique weak solution
of (3.1) with the boundary condition vε = v on ∂Ω, then by the assumed comparison
u ≤ vε in Ω for every ε > 0. On the other hand, by Lemma 3.1 below, vε → v locally
uniformly. This, in turn, means that u ≤ v in Ω, which is exactly what we want to
prove.

Lemma 3.1. Let v ∈ W 1,p(Ω) be p-harmonic in a bounded domain Ω, and let vε
be the unique weak solution of the Dirichlet problem{−∆pvε = ε in Ω,

vε = v on ∂Ω.

Then vε → v locally uniformly in Ω as ε→ 0.
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Proof. Take v − vε ∈ W 1,p
0 (Ω) as a test-function in (1.1) and (3.1), and subtract

the resulting equations. This yields∫
Ω

〈|∇v|p−2∇v − |∇vε|p−2∇vε,∇v −∇vε
〉
dx = ε

∫
Ω

(vε − v) dx

≤ ε|Ω| p−1
p

(∫
Ω

|v − vε|p dx
) 1

p

≤ Kε
(∫

Ω

|∇v −∇vε|p dx
) 1

p

,

where we have used the inequalities of Hölder and Sobolev, and K = K(p, n,Ω) is
some constant depending only on p, n, and Ω.

For p ≥ 2, it follows easily from the elementary vector inequality [DB, Chapter I]

|a− b|p ≤ 2p−1〈|a|p−2a− |b|p−2b, a− b〉
that ∫

Ω

|∇v −∇vε|p dx ≤ Kε
p

p−1 ,(3.2)

where K = K(p, n,Ω). The singular case 1 < p < 2 is slightly more delicate. Start
with the vector inequality [DB, Chapter I]

|a− b|2
(|a|+ |b|)2−p ≤ γ〈|a|

p−2a− |b|p−2b, a− b〉,

where γ depends only on p and n and a, b ∈ R
n. By Hölder’s inequality

∫
Ω

|∇v −∇vε|p dx ≤
(∫

Ω

|∇v −∇vε|2
(|∇v|+ |∇ε|)2−p dx

) p
2
(∫

Ω

(|∇v|+ |∇vε|)p dx
) 2−p

2

,

and this time ∫
Ω

|∇v −∇vε|2
(|∇v|+ |∇ε|)2−p dx ≤ γKε

(∫
Ω

|∇v −∇vε|p dx
) 1

p

.

Therefore, we have the inequality

∫
Ω

|∇v −∇vε|p dx ≤ Kεp
(∫

Ω

(|∇v|+ |∇vε|)p dx
)2−p

.

Since
∫
Ω
|∇vε|p dx, on the other hand, can be estimated in terms of

∫
Ω
|∇v|p dx inde-

pendently of ε for ε small, this implies

∫
Ω

|∇v −∇vε|p dx ≤ C εp
(
1 +

∫
Ω

|∇v|p dx
)2−p

.(3.3)

By estimates (3.2), (3.3), it follows that we have a uniform bound for∫
Ω

|∇vε|p dx
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independent of ε. It then follows from the interior regularity estimates for solutions
of (3.1) (cf. [Le], [DB2]) that if we fix a compact set K ⊂ Ω, we have a uniform
bound for ‖vε‖Cα(K) for any 1 < p < ∞. By Ascoli–Arzelà’s theorem, there exists a
subsequence εi → 0 for which vεi → w uniformly in K. It follows again from (3.2),
(3.3) that indeed w = v and that the full sequence vε → v locally uniformly in Ω as
ε→ 0.

The weak solutions of (3.1) can be seen as strict supersolutions of (1.1), and
this property is of great importance in the proof below of the reduced version of
Theorem 2.7. A similar type of approximation argument has been used by Jensen [Je]
in connection with the ∞-Laplace equation.

We will need the following result on the “viscosity properties” of weak solutions
of (3.1).

Lemma 3.2. Let vε ∈ W 1,p(Ω) be a continuous weak solution of the equation
−∆pvε = ε in Ω, and let x0 ∈ Ω and ϕ ∈ C2(Ω) be such that vε − ϕ has a strict local
minimum at x0. Then

lim sup
x→x0
x�=x0

(−∆pϕ(x)) ≥ ε,

provided that ∇ϕ(x0) �= 0 or x0 is an isolated critical point.
Remark. We have come to a decisive point. In the case p ≥ 2 the proof yields

that −∆pϕ(x0) ≥ ε and that ∇ϕ(x) �= 0 in some neighborhood of x0. It is the case
1 < p < 2 that requires caution, because −∆pϕ(x) is undetermined at the critical
points (which may be encountered).

Proof. Suppose that the assertion is not true, that is, there is r > 0 such that

∇ϕ(x) �= 0 and −∆pϕ(x) < ε,

when 0 < |x − x0| < r. After a translation, we may assume that x0 = 0. Take any
nonnegative test-function φ ∈ C∞

0 (Br), and integrate over the annulus ρ < |x| < r.
(The auxiliary ρ > 0 can be skipped if ∇ϕ(0) �= 0.) According to Gauss’s theorem,

−
∮
|x|=ρ

φ|∇ϕ|p−2〈∇ϕ, xρ 〉 dS =

∫
ρ<|x|<r

div(φ|∇ϕ|p−2∇ϕ) dx

=

∫
ρ<|x|<r

|∇ϕ|p−2〈∇ϕ,∇φ〉 dx+
∫
ρ<|x|<r

φ(∆pϕ) dx.

The flux approaches 0 as ρ→ 0+. Indeed,∣∣∣∣∣
∮
|x|=ρ

φ|∇ϕ|p−2〈∇ϕ, xρ 〉 dS
∣∣∣∣∣ ≤ ‖φ‖∞‖∇ϕ‖p−1

∞ ωn−1ρ
n−1,

where ωn−1ρ
n−1 is the area of the sphere of radius ρ. By the antithesis we have∫

ρ<|x|<r
φ(∆pϕ) dx ≥ −ε

∫
ρ<|x|<r

φdx ≥ −ε
∫
Br

φdx.

Therefore, we obtain∫
Br

|∇ϕ|p−2〈∇ϕ,∇φ〉 dx = lim
ρ→0

∫
ρ<|x|<r

|∇ϕ|p−2〈∇ϕ,∇φ〉 dx ≤ ε
∫
Br

φdx.
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Thus ϕ is a weak subsolution of (3.1). We finish by using the comparison principle as
in the proof of Theorem 2.5 presented in section 2.

After the reductions made above, it suffices to prove the following version of the
comparison principle [see (3.4) below]. In the proof we use the notation

F (η,X) = −|η|p−2

[
trace(X) + (p− 2)

〈
X
η

|η| ,
η

|η|
〉]

(3.4)

when η �= 0 is a vector in R
n andX ∈ Sn, where Sn denotes the class of real symmetric

n× n matrices. For a smooth function ϕ we clearly have

F (∇ϕ(x), D2ϕ(x)) = −div(|∇ϕ(x)|p−2∇ϕ(x))

when ∇ϕ(x) �= 0. Here D2ϕ = ( ∂2ϕ
∂xi∂xj

)n×n is the Hessian matrix of ϕ.

Proposition 3.3. Suppose that Ω ⊂ R
n is a smoothly bounded domain, u is a

viscosity p-subsolution, and v ∈ C1,α(Ω) is a weak solution of −∆pv = ε in Ω such
that u ≤ v on ∂Ω. Then u ≤ v in Ω.

Proof. Without loss of generality, we may assume that ε = 1. We argue by
contradiction and assume that u− v has an interior maximum, that is,

sup
Ω
(u− v) > sup

∂Ω
(u− v).(3.5)

Consider the functions

wj(x, y) = u(x)− v(y)−Ψj(x, y), j = 1, 2, . . . ,

where

Ψj(x, y) =
j
q |x− y|q, q > max

{
p

p− 1
, 2

}
,

and let (xj , yj) be a maximum of wj relative to Ω× Ω. By (3.5) and Proposition 3.7
in [CIL], we see that for j sufficiently large, (xj , yj) is an interior point. Since

u(x)− v(y)−Ψj(x, y) ≤ u(xj)− v(yj)−Ψj(xj , yj)

for all x, y ∈ Ω, we obtain by choosing x = xj that

v(y) ≥ −Ψj(xj , y) + v(yj) + Ψj(xj , yj)

for all y ∈ Ω. Let us denote

φj(y) = −Ψj(xj , y) + v(yj) + Ψj(xj , yj)− 1

q + 1
|y − yj |q+1.

Then, clearly, v − φj has a strict local minimum at yj , and thus

lim sup
y→yj
y �=yj

(−∆pφj(y)) ≥ 1

by Lemma 3.2. This implies that xj �= yj . Indeed, if xj = yj , then a direct computa-
tion shows that −∆pφj(y)→ 0 as y → yj , which is a contradiction.
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The rest of the proof is now a rather standard application of the maximum princi-
ple for semicontinuous functions (also known as the theorem on sums) in [CIL]. Since
(xj , yj) is a local maximum point of wj(x, y), we conclude that there exist symmetric
n× n matrices Xj , Yj such that

(DxΨj(xj , yj), Xj) ∈ J2,+
u(xj),

(−DyΨj(xj , yj), Yj) ∈ J2,−
v(yj),

and (
Xj 0
0 −Yj

)
≤ D2Ψj(xj , yj) +

1

j

[
D2Ψj(xj , yj)

]2
.(3.6)

Here J
2,+
u(xj) and J

2,−
v(yj) are the closures of the second order superjet of u at xj

and the second order subjet of v at yj , respectively. We refer the reader to [C] and
[CIL] for the definition and properties of jets.

Observe that since D2Ψj annihilates vectors of the form ( ξξ ), we obtain from (3.6)
that

Xj ≤ Yj
in the sense of matrices, that is, 〈(Yj −Xj)ξ, ξ〉 ≥ 0 for all ξ ∈ R

n.
Let us now finish the proof. It is well known (see [CIL]) that for equations that

are continuous in each variable, viscosity solutions can be defined using jets instead
of test-functions as in Definition 2.3. Since xj �= yj , we have that

ηj ≡ DxΨj(xj , yj) = −DyΨj(xj , yj) �= 0.

This means that

(η,X) �→ F (η,X),

where F is given by (3.4) and is continuous in a neighborhood of the points (ηj , Xj)
and (ηj , Yj), and we may use the equivalent definition involving jets. Since u is a
subsolution of (1.1), we obtain that

−|ηj |p−2

[
trace(Xj) + (p− 2)

〈
Xj
ηj
|ηj | ,

ηj
|ηj |

〉]
≤ 0.

On the other hand, since ηj �= 0, by the definition of J
2,−

Lemma 3.2 implies that

−|ηj |p−2

[
trace(Yj) + (p− 2)

〈
Yj
ηj
|ηj | ,

ηj
|ηj |

〉]
≥ 1.

Hence

0 < 1 ≤ − |ηj |p−2

[
trace(Yj) + (p− 2)

〈
Yj
ηj
|ηj | ,

ηj
|ηj |

〉]

+ |ηj |p−2

[
trace(Xj) + (p− 2)

〈
Xj
ηj
|ηj | ,

ηj
|ηj |

〉]

≤ 0,
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where the last inequality follows from the fact Xj ≤ Yj . This contradiction means
that our initial assumption (3.5) cannot hold, and, therefore,

sup
Ω
(u− v) = sup

∂Ω
(u− v) ≤ 0

as claimed.

4. The parabolic case. The p-parabolic equation

ut − div
(|∇u|p−2∇u) = 0,(4.1)

where u = u(x, t), has the p-harmonic equation as its stationary equation. Let us
introduce some notation. Let

Q = (a1, b1)× (a2, b2)× · · · × (an, bn)

denote a parallelepiped, and consider the “space-time box”

Qt1,t2 = Q× (t1, t2)

in the (x, t)-space. Its parabolic boundary is

∂parQ =
(
Q× {t1}

) ∪ (∂Q× (t1, t2]) .

It consists of the bottom and the lateral sides, but the interior points of the top are
excluded.

In order to describe the appropriate function space, we introduce the abbreviation

V p(t1, t2;Q) = C
(
t1, t2;L

2(Q)
) ∩ Lp (t1, t2;W 1,p(Q)

)
.

Thus u ∈ V p(t1, t2;Q) implies that the mapping

t �→
∫
Q

|u(x, t)|2 dx

is continuous in [t1, t2], the Sobolev derivative

∇u(x, t) =
(
∂u(x, t)

∂x1
, . . . ,

∂u(x, t)

∂xn

)

exists for almost every t in [t1, t2], and the integral∫ t2

t1

∫
Q

(
u2 + |∇u|p) dt dx

is finite.
Definition 4.1. Let O be a domain in R

n × R, and suppose that the function
uO → R is continuous and belongs to V p(t1, t2;Q) whenever the closure of Qt1,t2 is
comprised in O. We say that u is p-parabolic in O if∫ ∫

O
(−uϕt + |∇u|p−2〈∇u,∇ϕ〉) dt dx = 0(4.2)

for all test-functions ϕ ∈ C∞
0 (O).
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By parabolic regularity theory, the continuity is a redundant requirement in the
definition if p > 2n

n+2 . The case 1 < p ≤ 2n
n+2 is not fully understood. It is known that

there exist locally unbounded u’s satisfying (4.1) in a weaker sense than described
above. We refer to [DB, Chapter XII]. Such weak solutions cannot be viscosity so-
lutions, since the latter are both upper and lower semicontinuous by definition and
hence locally bounded. Thus our characterization of the p-parabolic viscosity solutions
discards such discontinuous weak solutions.

The definition below includes the celebrated Barenblatt solution, which for p > 2
is given as

Bp(x, t) =


 t−

n
λ

{
C − p−2

2 λ
1

1−p

(
|x|
t1/λ

) p
p−1

} p−1
p−2

+

, t > 0,

0, t ≤ 0,

when (x, t) �= (0, 0). Here λ = n(p − 2) + p, and C is a positive constant. With
the definition Bp(0, 0) =∞, the Barenblatt solution is p-superparabolic in the whole
R
n × R, although ∫ 1

−1

∫
|x|<1

|∇Bp(x, t)|p dx dt =∞.

Definition 4.2. A function u : O → R ∪ {∞} is p-superparabolic if
(i) u is lower semicontinuous,
(ii′) u is finite in a dense subset of O, and
(iii) u satisfies the comparison principle on each box Qt1,t2 with closure in O: if

h ∈ C(Qt1,t2) is p-parabolic in Qt1,t2 such that h ≤ u on the parabolic boundary of
Qt1,t2 , then h ≤ u in Qt1,t2 .

We refer to [KL] for a detailed discussion on the properties of the p-superparabolic
functions.

Let us next turn to the definition of viscosity solutions of (4.1). Due to the
presence of the time derivative ut in the equation, we cannot exclude test-functions
with vanishing spatial gradient ∇ϕ(x, t) at the point of touching like we did with the
p-harmonic equation. As in the elliptic case, the equation is singular only in the range
1 < p < 2, but we have chosen again not to distinguish between the two cases.

Definition 4.3. A function u : O → R ∪ {∞} is a parabolic viscosity p-super-
solution if

(i) u is lower semicontinuous,
(ii′) u is finite in a dense subset of O, and
(iv) whenever (x0, t0) ∈ O and ϕ ∈ C2(O) are such that u(x0, t0) = ϕ(x0, t0),

u(x, t) > ϕ(x, t) for (x, t) ∈ O ∩ {t < t0}, and ∇ϕ(x, t) �= 0 if x �= x0, we have

lim sup
(x,t)→(x0,t0)
t<t0,x �=x0

(
ϕt(x, t)−∆pϕ(x, t)

)
≥ 0.

The concepts of parabolic viscosity p-subsolution and parabolic viscosity p-solution
are defined analogously. Notice that the parabolic viscosity p-solutions are continuous
by definition. As in the elliptic case, the precaution about ∇ϕ �= 0 can be ignored for
p ≥ 2.

What is to happen in the future will have no influence on the present time. This
phenomenon, typical of parabolic equations, was taken into account in the definition
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above: the test-function is forced to be under the function u only up to the time t0 of
testing. This yields the same concept as a definition with no emphasis on the special
role of the time variable; cf. [Ju].

Theorem 4.4. Let 1 < p <∞. In a given domain, the p-superparabolic functions
and the parabolic viscosity p-supersolutions are the same.

Corollary 4.5. Let 1 < p <∞. A continuous function is a parabolic viscosity
p-solution if and only if it is p-parabolic.

The proof of Theorem 4.4 is virtually the same as its elliptic counterpart. To
show that a p-superparabolic function is a parabolic viscosity p-supersolution, one
needs to consider space-time boxes instead of balls and use the comparison principle
for p-superparabolic and p-subparabolic functions; see [KL]. For the converse, the
comparison principle for viscosity solutions is needed (Theorem 4.10 below).

Lemma 4.6. Every p-superparabolic function u is a parabolic viscosity p-superso-
lution.

Proof. We argue by contradiction and assume that there exist ϕ ∈ C2(O) and
r > 0 such that u(0, 0) = ϕ(0, 0), u(x, t) > ϕ(x, t) for all (x, t) ∈ O ∩ {t < 0},
∇ϕ(x, t) �= 0 when x �= 0, and

ϕt(x, t)−∆pϕ(x, t) < 0(4.3)

whenever (x, t) ∈ Qr ∪ {x �= 0}, where Qr ≡ Br(0) × (−r, 0). Then for every non-
negative φ ∈ C∞

0 (Qr), we obtain using (4.3) and Gauss’s theorem as in the proof of
Lemma 3.4 that

−
∫∫

Qr

|∇ϕ|p−2〈∇ϕ,∇φ〉 dx dt

= lim
ρ→0

[ ∫∫
Qr\{|x|≤ρ}

φ (∆pϕ) dx dt−
∫∫

Qr\{|x|≤ρ}
div(φ|∇ϕ|p−2∇ϕ) dx dt

]

≥ lim
ρ→0

[ ∫∫
Qr\{|x|≤ρ}

φϕt dx dt+

∫ 0

−r

∮
|x|=ρ

φ|∇ϕ|p−2〈∇ϕ, xρ 〉 dS dt
]

= −
∫∫

Qr

φtϕdx dt.

This implies that ϕ is p-subparabolic in Qr; see [KL]. To conclude, we proceed as
in the elliptic case, and apply the comparison principle for p-superparabolic and p-
subparabolic functions from [KL] to the functions u and ϕ+m, where

m = inf
∂parQr

(u− ϕ) > 0.

This gives the desired contradiction.
Due to the fact that the time derivative ut appears as a linear term in (4.1),

Theorem 4.7 below is easier to prove than the elliptic comparison principle, Theorem
2.7. In fact, the nonsingular case p ≥ 2 follows from a very general result in [C]. Since
the basic idea of the proof is quite similar to the one of the elliptic case, we will be
somewhat sketchy.

Theorem 4.7. Let ΩT = Ω × (0, T ), where Ω ⊂ R
n is a bounded domain,

and assume that u is a parabolic viscosity p-subsolution and v is a parabolic viscosity
p-supersolution in ΩT . If u ≤ v on the parabolic boundary of ΩT , then u ≤ v in ΩT .
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Proof. For simplicity, we assume that u is bounded from above and v is bounded
from below in Ω× [0, T ]. Since the proof is by contradiction, we assume that

sup
ΩT

(u− v) > sup
∂parΩT

(u− v),(4.4)

where ∂parΩT denotes the parabolic boundary of ΩT . By using the standard trick
of replacing v by v(x, t) + ε

T−t for small ε > 0, we may assume that v is a strict
supersolution of (4.1) and v(x, t)→∞ as t→ T .

Let (xj , yj , tj , sj) be a maximum point of

wj(x, y, t, s) = u(x, t)− v(y, s)−Ψj(x, y, t, s)

relative to Ω× Ω× [0, T ]. Here

Ψj(x, y, t, s) =
j

q
|x− y|q + j

2
(t− s)2, q > max

{
p

p− 1
, 2

}
.

By (4.4) and Proposition 3.7 in [CIL], we have that (xj , yj , tj , sj) ∈ Ω×Ω× (0, T )×
(0, T ) for j large enough. We distinguish between two cases.

Case 1. xj = yj .
By the choice of the point (xj , yj , tj , sj) we have

v(y, s) ≥ −Ψj(xj , y, tj , s) + Ψj(xj , yj , tj , sj) + v(yj , sj)

for all (y, s) ∈ Ω× [0, T ]; that is,

φ(y, s) ≡ −Ψj(xj , y, tj , s) + Ψj(xj , yj , tj , sj) + v(yj , sj)− 1

q + 1
|y − yj |q+1

is touching v from below at (yj , sj). Since v is a strict supersolution of (4.1) and
xj = yj , we obtain after straightforward computations

0 <
ε

(T − sj)2 ≤ lim sup
(y,s)→(yj ,sj)
s<sj ,y �=yj

(
φs(y, s)−∆pφ(y, s)

)
= j(tj − sj).(4.5)

Similarly, we see that

θ(x, t) ≡ Ψj(x, yj , t, sj)−Ψj(xj , yj , tj , sj) + u(xj , tj) +
1

q + 1
|x− xj |q+1

is a good test-function for u at the point (xj , tj), and hence

0 ≥ lim inf
(x,t)→(xj ,tj)
t<tj ,x �=xj

(
θt(x, t)−∆pθ(x, t)

)
= j(tj − sj).(4.6)

Subtracting (4.6) from (4.5) gives

0 <
ε

(T − sj)2 ≤ j(tj − sj)− j(tj − sj) = 0,

which is a contradiction.
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Case 2. xj �= yj .
As in the elliptic case, we may use the definition with jets. Using the maximum

principle for semicontinuous functions and Lemma 3.5 from [OS], we infer that there
exist Xj , Yj ∈ Sn such that

(DtΨj , DxΨj , Xj) ∈ P2,+
u(xj , tj),

(−DsΨj ,−DyΨj , Yj) ∈ P2,−
v(yj , sj),

and

Xj ≤ Yj .(4.7)

Here all the derivatives of Ψj are evaluated at the point (xj , yj , tj , sj). For the defini-
tion and properties of the parabolic jets P2,+u and P2,−v and their closures, we refer
the reader to [C] and [CIL].

Let us now finish the proof. Since u is a subsolution and v is a strict supersolution,
we obtain

0 <
ε

(T − sj)2 ≤ −DsΨj + F (−DyΨj , Yj)−DtΨj − F (DxΨj , Xj) ≤ 0,

which is a contradiction. Here the last inequality follows from (4.7) after we notice
that

DtΨj(x, y, t, s) = −DsΨj(x, y, t, s),
DxΨj(x, y, t, s) = −DyΨj(x, y, t, s),

by the choice of Ψj . This shows that (4.4) cannot hold, and we are done.
Remark 4.8. In [CGG], Chen, Giga, and Goto obtained a general comparison

theorem for mean curvature flow-type equations. Those equations are singular at the
points where the spatial gradient vanishes, but the nature of the singularity is different
from that of the p-parabolic equation. Roughly speaking, the mean curvature flow
equation has a bounded discontinuity at the points of singularity, whereas the p-
parabolic equation behaves like O(|∇u|p−2) near those points.

We finish the paper with a brief discussion on another possible definition for
viscosity solutions of (4.1) in the singular case 1 < p < 2. This approach is due to
Ishii and Souganidis [IS], and in connection with the p-parabolic equation it has been
used by Ohnuma and Sato; cf. [OS].

Let us introduce some notation. We set

F =
{
f ∈ C2([0,∞)) f(0) = f ′(0) = f ′′(0) = 0, f ′′(r) > 0 for all r > 0, and

lim
x→0+

(−∆pf(|x|)) = 0
}

and

Σ =
{
σ ∈ C1(R) σ is even, σ(0) = σ′(0) = 0, and σ(r) > 0 for all r �= 0

}
.

Definition 4.9. A function ϕ ∈ C2(O) is admissible if for any (x̂, t̂) ∈ O with
∇ϕ(x̂, t̂) = 0 there are δ > 0, f ∈ F , and σ ∈ Σ such that

|ϕ(x, t)− ϕ(x̂, t̂)− ϕt(x̂, t̂)(t− t̂)| ≤ f(|x− x̂|) + σ(t− t̂)
for all (x, t) ∈ Bδ(x̂)× (t̂− δ, t̂+ δ).
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Notice that if∇ϕ �= 0, then ϕ is automatically admissible. The idea of introducing
the admissible class is, roughly speaking, to have a good a priori control on the
behavior of a test-function at the singular points. For lack of a better terminology, we
call the solutions defined using the class of admissible test-functions relaxed viscosity
solutions.

Definition 4.10. A function u : O → R ∪ {∞} is a relaxed viscosity p-super-
solution if

(i) u is lower semicontinuous,
(ii′) u is finite in a dense subset of O, and
(v) for all admissible ϕ ∈ C2(O) and all local minimum points (x, t) of u− ϕ in

O {
ϕt(x, t)−∆pϕ(x, t) ≥ 0 if ∇ϕ(x, t) �= 0,
ϕt(x, t) ≥ 0 if ∇ϕ(x, t) = 0.

We have taken the liberty to modify the definition given in [IS], [OS] in order to
make a comparison with Definition 4.3 easier. In particular, the original definition of
Ishii and Souganidis was formulated without the semicontinuity assumption (i), and
thus it does not imply continuity for the solutions.

Lemma 4.11. Every parabolic viscosity p-supersolution is a relaxed viscosity p-
supersolution.

Proof. We argue by contradiction and assume that there exist an admissible test-
function ϕ ∈ C2(O) and (x0, t0) ∈ O such that u−ϕ has a local minimum at (x0, t0),
∇ϕ(x0, t0) = 0, and

ϕt(x0, t0) < 0.(4.8)

Let f ∈ F , σ ∈ Σ, and δ > 0 be such that

|ϕ(x, t)− ϕ(x0, t0)− ϕt(x0, t0)(t− t0)| ≤ f(|x− x0|) + σ(t− t0)(4.9)

for all (x, t) ∈ Bδ(x0)× (t0 − δ, t0 + δ). Following the ideas in [IS], we approximate σ
by a sequence σk ∈ C2(R) satisfying{

σk(0) = σ
′
k(0) = 0 for each k = 1, 2, . . . ,

σk(r)→ σ(r), σ′k(r)→ σ′(r) locally uniformly,

and we denote

φ(x, t) = u(x0, t0) + ϕt(x0, t0)(t− t0)− 2f(|x− x0|)− 2σ(t− t0),
φk(x, t) = u(x0, t0) + ϕt(x0, t0)(t− t0)− 2f(|x− x0|)− 2σk(t− t0).

Observe that (4.9) implies that u − φ has a strict local minimum at (x0, t0). Since
σk → σ locally uniformly, we can find a sequence (xk, tk)→ (x0, t0) such that u− φk
has a local minimum at (xk, tk). Moreover, by modifying φk if necessary, we may
assume that this local minimum is, in fact, strict. Hence φk can be used as a test-
function in Definition 4.3, and we obtain

lim sup
(x,t)→(xk,tk)
t<tk, x �=x0

(
(φk)t(x, t)−∆pφk(x, t)

)
≥ 0
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for each k ∈ N. However, a direct computation yields

(φk)t(x, t)−∆pφk(x, t) = ϕt(x0, t0)− 2σ′k(t− t0)− 2p−1∆pf(|x− x0|) < 0

if (x, t) is sufficiently close to (x0, t0) and x �= x0. Here we used (4.8), the definition
of F , and the fact that σ′k(0) = 0. This contradiction shows that the antithesis was
wrong, and the lemma is now proved.

In [OS], Ohnuma and Sato proved a comparison principle for the relaxed viscosity
p-supersolutions and subsolutions. In the light of Lemmas 4.6 and 4.11, this means
that relaxed viscosity p-supersolutions satisfy (p-iii) in Definition 4.2, and hence they
are precisely the parabolic viscosity p-supersolutions.
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Abstract. This article studies the regularity of the solution of the radiosity equation on poly-
hedral surfaces in R

3. We examine the localized equation near the vertices and characterize the
smoothness of its solution in terms of weighted Sobolev spaces. We also consider the effect of shad-
ows and prove local C1-regularity in the case of a piecewise C1-emissivity function.

Key words. radiosity equation, regularity results, Mellin transformation

AMS subject classifications. 45P05, 44A15, 45Exx, 68U05

PII. S0036141000378103

1. Introduction. In this paper we study the properties of the solution of the
radiosity equation over the boundary S := ∂Ω of a polyhedron Ω ⊂ R

3. This implies
that the boundary S is a finite union of triangles.

The solution u : S → R of the radiosity equation describes the outgoing radiation
at every point of the surface of S if the emissivity E : S → R, i.e., the sources of
illumination and their brightness, on S is known. A further assumption is that the
walls (S) behave like Lambertian diffuse reflectors. For many surfaces, i.e., paper or
walls which are not glossy, this assumption is fulfilled. Even if there are mirrors or
glossy surfaces, there exists a number of techniques for including their effects on the
overall radiosity in a second computational step after the calculation of the radiosity
solution; see [5, 20].

If one knows the solution of the radiosity equation and adds the glossy effects,
one has the possibility of generating photo-realistic views into Ω, and one can study
the appearance of rooms or the effect of different light sources before they are built;
see [5, 20].

The radiosity equation is a transport equation, and it is mathematically a second
kind of integral equation

(I −K)u(x) = E(x), x ∈ S,(1.1)

where the integral operator K is given by

(Ku)(x) :=
ρ(x)

π

∫
S

β(x, y)
[nx · (y − x)] [ny · (x− y)]

‖x− y‖4
u(y) dy.(1.2)

Here β is the visibility function, and ρ, ρ(x) ∈ [0, 1), x ∈ S, describes the reflectivity;
see section 2. The vectors nx and ny are the inner normal vectors at point x, and y,
ny exist almost everywhere. We will shortly indicate the physical assumptions, which
lead to (1.2). First, the radiosity u : S −→ R

+, which has the physical unitWatt/m2,
does not depend on the wavelength, and so one has to solve this equation for different
parts of the electromagnetic spectrum if this influence has to be considered. The
outgoing radiance (see [12] for an exact definition of the radiance; here we will think
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of a flux of radiative power, depending on the direction) at point y ∈ S in the direction
of x �= y, ny · (x− y) > 0 is given by

1

π

[ny · (x− y)]

‖x− y‖ u(y) =
1

π
cos(∠(ny, x− y))u(y).(1.3)

This very simple relation between the density of emitted power (radiosity) and the
directed outgoing power density (radiance) is exactly fulfilled for black bodies. But
in the theory of radiative transfer, this relation, known as the Lambertian cosine law,
is often used as an approximation for nonblack bodies, so-called diffusive emitters.
The factor 1/π in formula (1.3) is caused by an integration which relates the radiance
with the radiosity; see [12, formula (2.8b)]. With respect to the distance r from y the
radiance decays like

1

r2
(1.4)

because of the conservation of energy. To get the power flux at the point x of the
surface S we have to multiply the incoming radiance with the cosine of the angle
between the surface normal and the direction of the incoming radiation

cos(∠(nx, y − x)) =
[nx · (y − x)]

‖x− y‖(1.5)

to get the normal component of the flux. In our model the rays of light propagate
along straight lines, so we have only to consider the visible part of the surface S if we
calculate the total incoming flux at x∫

S

β(x, y)
[nx · (y − x)]

‖x− y‖
1

‖x− y‖2

[ny · (x− y)]

π‖x− y‖ u(y)dsy,(1.6)

where we used (1.3)–(1.5). For the reflection we again consider the simplest possible
case and assume that the fraction ρ(x) of (1.6) is reflected. The reflected power
should again be distributed according to the Lambertian cosine law (Lambertian
diffuse reflection). So (1.1), written in the form

u(x) = E(x) + (Ku)(x),(1.7)

states the fact that the radiosity (density of outgoing radiation) u(x) at point x is
caused by a source term E(x) and reflected incoming radiation (Ku)(x).

There are already a large number of publications on (1.1) in computer science;
see the references in [5, 20]. The two dimensional case (cylindrical surfaces) (1.1) was
analyzed by Atkinson [1], and Atkinson and Chandler [2] studied the three dimensional
case. Rathsfeld [17] studied the behavior of the solution u of (1.1) in the three
dimensional case along edges, and Qatanani [16] derived some mathematical properties
of (1.1) in the case of smooth boundaries and studied different numerical methods for
the two dimensional case. Investigations on different collocation methods for the three
dimensional case and their performance can be found in the articles of Atkinson and
Chien [3] and Atkinson, Chien, and Seol [4]. The Galerkin method is analyzed in the
Master’s thesis of Schon [19].

In the present article we follow closely the article of Elschner [8] on the double layer
potential over polyhedral surfaces. But our direction is slightly different. Elschner’s
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main result is the Fredholmness and the invertibility of the double layer operator on
S. Our situation is different because the visibility function allows a very easy proof
of the fact that the operator K of (1.2) is a contraction on L2(S); see also [16]. This
already implies the invertibility of I −K, and Elschner’s main result for our equation
is proved. But we will use Elschner’s Mellin transform techniques to study the local
behavior of u near the vertices. On the other side, the visibility function introduces
a number of regularity problems; these will be investigated in section 4.

In section 2 we formulate our problem and show the invertibility of I − K in
L2(S).

In section 3 we follow Elschner’s analysis and study the equation and its solution
locally near an arbitrary vertex of S. Our first main result is the invertibility of these
local operators in a scale of weighted L2-spaces; see Theorem 3.6. In Theorem 3.6
we describe in three steps a range of weighted L2-spaces where the local operators
are invertible. The explicit calculation of all suitable spaces seems to be impossible
(see the formulas (3.32) and (3.34)) because the range depends on the zeros of some
transcendental functions, but in the third part of this theorem it becomes clear that
it is at least not an empty set. Figure 3 gives some impression of the fitting weights.
The next important result in section 3 is the mapping property of the local operators
between adjacent faces of S; see Lemmas 3.7–3.9. Again this result is very technical.
But Corollary 3.11 shows an application for the case of a convex set Ω and a C∞-
function E(x). In this case the regularity is close to the regularity results in [8] for the
double layer potential. The reason is that for convex regions the visibility function
β(·) is equal to one, and the local regularity results are not disturbed by nonlocal
nonregular contributions. We hope that these two results will lead to error estimates
for the boundary element method. The results of this section can also be used to
derive the Fredholmness of (1.1), but this is already known from section 2. If the
set Ω is not convex, one has to use discontinuity meshing in order to improve the
convergence of the boundary element methods; see [10, 11, 9, 7]. But even then it
is useful to know how the solution behaves near the lines of “discontinuity,” and the
present work is one step in this direction.

In section 3 we neglect the influence of the visibility function β. Now in section
4 we study its influence on the right-hand side of the localized equations of section
3. Even if the emissivity function is smooth on the faces of S, the right-hand sides
of the local operators need not be smooth. This is a big difference from the case
of the double layer potential and is caused by the shadow lines. By cutting down
each face of S into smaller triangles we get a C1-regularity result, Lemma 4.1. In the
proof of this lemma it becomes clear how these nonlocal effects create the nonregular
contributions. Despite the fact that we have a lot of effects to consider, we try to
summarize all contributions for a C1-function E(x) in Corollary 4.2.

2. The radiosity equation and its localization near the vertices. We
consider a bounded domain Ω ⊂ R

3 with boundary S := ∂Ω. The boundary S is
assumed to be a polyhedron, and

S =
n⋃

j=1

∆j ,(2.1)

where ∆j , j = 1(1)n, are closed triangles with

∆̇j ∩ ∆̇k = ∅, j �= k.(2.2)
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Here ∆̇j denotes the relative interior of ∆j . We also use the following notation:

Ṡ =
n⋃

j=1

∆̇j .(2.3)

For x ∈ ∆̇j the inner normal n(x) is well defined and by Ej , j = 1(1)nE , respectively,

Vj , j = 1(1)nV , we denote the edges, respectively, the vertices of S. For x ∈ ∆̇j and

y ∈ ∆̇k the visibility function β(x, y) is given by

β(x, y) :=

{
1, {λx+ (1− λ)y | λ ∈ (0, 1)} ∩ S = ∅ ∧ n(x) · n(y) < 0,
0 otherwise.

(2.4)

For the reflectivity function ρ we assume

ρ(x)|∆j = ρj ∈ [0, 1), j = 1(1)n,(2.5)

and at the beginning our assumption on the emissivity is

E ∈ L2(S).(2.6)

Now we can formulate the radiosity equation as

(I −K)u(x) = E(x), x ∈ S,(2.7)

with the integral operator K given by

(Ku)(x) =
ρ(x)

π

∫
S

β(x, y)
[n(x) · (y − x)] [n(y) · (x− y)]

‖x− y‖4
u(y)dy.(2.8)

Remark.
1. In the integration over S in (2.8) and in (2.7) we neglect the sets ∪nE

j=1Ej and
∪nV

j=1Vj which are of measure zero.
2. We can relax the assumptions on S. It is sufficient if S is the finite union

of triangles (not necessary bounded) and on every triangle ∆j there is a well defined
normal nj . But we then also have to allow that pairs of triangles, for example ∆j

and ∆j+1, are the same, because then we have to consider both sides and normals of
every triangle.

A well-known fact for the radiosity equation is the following lemma.
Lemma 2.1. For x ∈ Ṡ we have

(Ke)(x) = ρ(x) < 1,(2.9)

where e(x) = 1, x ∈ S, is the unity function.
Proof. We will prove (2.9) for the case of a polyhedral surface S. The idea follows

[5], and similar proofs can be found in [17] and [16].
Let x ∈ ∆j0 , and denote

∆j(x) := {y ∈ ∆j |β(x, y) = 1},

S(x) :=

n⋃
j=1

∆j(x).
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We remark that each ∆j(x) is a finite collection of smaller triangles because only the
shadows of some other triangles are subtracted. This implies

S(x) =

ñ⋃
j=1

δj(x),

with δj(x) a triangle for each j. The right-hand side of (2.8) can now be written in
the following way:

ρ(x)

π

∫
S

β(x, y)
[n(x) · (y − x)] [n(y) · (x− y)]

‖x− y‖4
dy

=
ρ(x)

π

∫
S(x)

[n(x) · (y − x)] [n(y) · (x− y)]

‖x− y‖4
dy

=
ρ(x)

π

ñ∑
j=1

∫
δj(x)

[n(x) · (y − x)] [n(y) · (x− y)]

‖x− y‖4
dy.

Choose ε > 0 such that

ε < min

{
dist(x, ∂∆j0),min

j �=j0
dist(x,∆j)

}
.

We assume that x = 0, ∆j0 ⊂ {(ξ1, ξ2, ξ3) | ξ3 = 0}, and we denote by
∂B+

ε (0) := {(ξ1, ξ2, ξ3) | ξ2
1 + ξ2

2 + ξ2
3 = ε2, ξ3 ≥ 0}

the upper part of the sphere with radius ε. We further call δ̃j(x) the projection of
δj(x) on ∂B+

ε (0),

δ̃j(x) :=

{
ε

x

‖x‖ | x ∈ δj(x)

}
,

and Wj(x) is the volume between these two surfaces (see Figure 1),

Wj(x) :=

{
λ

x

‖x‖ |λ ∈ [ε, ‖x‖], x ∈ δj(x)

}
.

We define

f(y) :=
n(x) · (y − x)

‖x− y‖4
(x− y)

and get by a short calculation

div(f) = 0.

The Gaussian divergence theorem implies

0 =

∫
Wj(x)

divf(y)dV (y)

=

∫
∂Wj(x)

f(y) · ̃n(y)dy ̃n outer normal

= −
∫

δj(x)

[n(x) · (y − x)] [n(y) · (x− y)]

‖x− y‖4
dy −

∫
δ̃j(x)

[n(x) · (y − x)] [n(y) · (x− y)]

‖x− y‖4
dy.
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x ε

n

n

δj(x)

δ̃j(x)

Wj(x)

Fig. 1.

So we get∫
δj(x)

[n(x) · (y − x)] [n(y) · (x− y)]

‖x− y‖4
dy = −

∫
δ̃j(x)

[n(x) · (y − x)] [n(y) · (x− y)]

‖x− y‖4
dy

and finally

ρ(x)

π

∫
S

β(x, y)
[n(x) · (y − x)] [n(y) · (x− y)]

‖x− y‖4
dy

= −ρ(x)

π

ñ∑
j=1

∫
δ̃j(x)

[n(x) · (y − x)] [n(y) · (x− y)]

‖x− y‖4
dy

= −ρ(x)

π

∫
∂B+

ε (0)

[n(x) · (y − x)] [n(y) · (x− y)]

‖x− y‖4
dy

=: A(x),(2.10)

because the surface S is closed and in every direction of the upper half plane we
meet the visible surface exactly one time. We neglect again sets of measure zero and
remember x = 0, n(x) = (0, 0, 1), n(y) = y/ε, ‖x− y‖ = ε. This gives us

A(x) = −ρ(x)

π

∫ π/2

0

∫ 2π

0

ε cos(ϑ)(−1/ε)ε2

ε4
ε sin(ϑ)dϕ ε dϑ

= ρ(x)

and proves our result.
Remark. The above proof shows that we get

(Ke)(x) ≤ ρ(x), x ∈ Ṡ,(2.11)



724 OLAF HANSEN

in the case in which S is not a closed surface. Then in (2.10) we get “≤” instead of
“=,” because there may be a set of directions with measure greater than zero where x
sees no part of S. One also has to consider the fact that the kernel function in (2.10)
is positive.

We can copy the proof of [16, Lemma 2.3] and get the following theorem.
Theorem 2.2. There exists a constant qK < 1,

qK :=
n
max
j=1

ρ(x)(2.12)

(see (2.5)), such that

‖K‖L2(S)→L2(S) ≤ qK .(2.13)

The fixed point theorem of Banach shows the following corollary.
Corollary 2.3. Equation (2.7) has exactly one solution u ∈ L2(S), and for

u0 ∈ L2(S) the series (uj)j∈N given by

uj := E +Kuj−1, j ∈ N,(2.14)

converges linearly to u.
We remark here that (2.14) is also of practical importance because it is used in

computer graphics [5, 20] to solve (2.7) approximately. But then the function space
L2(S) in (2.14) has to be replaced by some finite dimensional subspace.

The proper choice of these finite dimensional subspaces depends heavily on the
smoothness of the solution u. There are several reasons for the nonsmoothness of the
solution u. If the emissivity function is not smooth, along a line, for example, then
u will also not be smooth along this line in general. This kind of singularity is very
easy to handle because the right-hand side E of (2.7) is given and normally one knows
its properties. The next reason is due to the visibility function; the solution along
shadow lines may have some singularities. In section 4 we will study this effect in our
context. Finally, along edges and near vertices, the smoothness of u is also not clear.
The behavior of u along edges was studied in [17], and in the following section we will
analyze the behavior of u near the vertices.

We choose one fixed vertex Vj0 , j0 ∈ {1, . . . , nV }, and for simplicity we also
assume

Vj0 = 0.(2.15)

For the localization we choose a function ϕ ∈ C∞(R3), ϕ(x) ∈ [0, 1], x ∈ R
3, and

ϕ(x) =

{
1, ‖x‖ ≤ ε,
0, ‖x‖ ≥ 2ε,(2.16)

where ε > 0 is so small that

Vj �∈ B3ε(0), j �= j0.(2.17)

We get

[(1− ϕ+ ϕ)u](x) = [(1− ϕ) + ϕ]K[[(1− ϕ) + ϕ]u](x) + E(x)

= [ϕKϕu](x) + [ϕK(1− ϕ)u](x) + [(1− ϕ)Ku](x) + E(x),
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and for x ∈ Bε(0) we have

(ϕu)(x) = K(ϕu)(x) + [K(1− ϕ)u](x) + E(x).(2.18)

From now on we assume, without loss of generality, that ε = 1; and by γ = γj0 we
denote

γ := S ∩ ∂B1(0),(2.19)

with γ as a spherical polygon. The infinite polyhedral cone Γ := Γj0 is defined by

Γ := {rω |ω ∈ γ, r ≥ 0},(2.20)

and the operator K̃ on Γ is defined by

(K̃u)(x) :=
ρ̃(x)

π

∫
Γ

β(x, y)
[n(x) · (y − x)] [n(y) · (x− y)]

‖x− y‖4
u(y)dy,(2.21)

u ∈ L2(Γ) (in the next section we will see that K̃ is well defined), ρ̃(x) := ρ(x/‖x‖),
x �= 0, and β is defined corresponding to (2.4).

By ũ and Ẽ we denote the extension by zero of the functions ψu and ψE to Γ,
where

ψ(x) := ϕ(3x),(2.22)

supp(ψ) ⊂ B2/3(0). After some calculations we get

(I − K̃)ũ = Ẽ + ψK(1− ϕ)u+ (ψK̃ − K̃ψ)(ϕu)

=: f1 + f2 + f3.(2.23)

We will study the equation

(I − K̃)v(x) = f(x), x ∈ Γ,(2.24)

in section 3, where we assume that f is sufficiently smooth. In section 4 we take a
closer look at the functions f2 and f3 and recall some results of Rathsfeld [17].

3. The radiosity equation on an infinite polyhedral cone. Here we study
(2.24), K̃ given by (2.21), on the cone Γ of (2.20).

We assume that (0, 0, 1) is a corner of the spherical polygon γ of (2.19), and we
denote by F1 and F2 the two faces of Γ adjacent to edge E1 = {(0, 0, t)|t ≥ 0}. After
a suitable rotation, F1 and F2 have the following representation (see Figure 2):



F1 =


r


 sin(δ)

0
cos(δ)


 | δ ∈ [0, δ1], r ≥ 0


 ,

F2 =


r


 cos(α) sin(δ)
sin(α) sin(δ)

cos(δ)


 | δ ∈ [0, δ2], r ≥ 0




(3.1)

with normals

n1 =


 0
1
0


 , n2 =


 sin(α)

− cos(α)
0


 .(3.2)
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x

y

z

α

F1

F2

δ0

E1

Fig. 2. The two faces adjacent to edge E1.

Here α < π is the angle between F1 and F2. For α ≥ π there would be no
interaction between F1 and F2. We study the solution only local to the edge E1, and
so we assume δ1 = δ2 = δ0 < π/2. Further, δ0 should be sufficiently small in order
to guarantee that each part of F1 can “see” each part of F2. This means that no
occlusion occurs, and for the rest of this section we assume β(x, y) = 1. Using the
local coordinates from (3.1) and the notation u1 := v|F1 , respectively, u2 := v|F2 , we
can rewrite (2.24) as


u1(r, δ)− ρ1

π

∫ ∞

0

∫ δ0

0

k1(r, δ, r
′, δ′)u2(r

′, δ′)dδ′ dr′ = f1(r, δ),

u2(r, δ)− ρ2

π

∫ ∞

0

∫ δ0

0

k1(r, δ, r
′, δ′)u1(r

′, δ′)dδ′ dr′ = f2(r, δ)

(3.3)

with k1 given by

k1(r, δ, r
′, δ′) :=

sin(α)2 sin(δ) sin(δ′)rr′2

(r′2 − 2ω(δ, δ′)rr′ + r2)2
,(3.4)

and

ω(δ, δ′) := cos(α) sin(δ) sin(δ′) + cos(δ) cos(δ′)(3.5)

is the cosine of the angle between
 sin(δ)

0
cos(δ)


 and


 cos(α) sin(δ′)
sin(α) sin(δ′)

cos(δ′)


 .
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We also assume that the reflectivity functions ρ1 and ρ2 are constant on F1, respec-
tively, F2. We will later often use the fact

ω(δ, δ′) ∈ [0, 1], δ ∈ [0, δ0],(3.6)

where we used δ0 < π/2. We remark that the functions f1 and f2 also include the
contributions of the integral over other parts of Γ. Using the new functions

v1 :=
u1 −

√
ρ1/ρ2u2

2
and v2 :=

u1 +
√

ρ1/ρ2u2

2
(3.7)

and multiplying (3.3) by the invertible matrix

1

2

(
1 −√ρ1/ρ2

1
√

ρ1/ρ2

)
,

we see that (3.3) is equivalent to

v1 −Kv1 = 1
2 (f1 −

√
ρ1/ρ2f2)

v2 −Kv2 = 1
2 (f1 +

√
ρ1/ρ2f2)

}
,(3.8)

where the integral operator K on [0,∞)× [0, δ0] is given by

(Kv)(r, δ) :=

∫ ∞

0

∫ δ0

0

k(r, δ, r′, δ′)v(r′, δ′)dδ′ dr′,(3.9)

and the kernel

k(r, δ, r′, δ′) :=
√
ρ1ρ2

π

sin(α)2 sin(δ) sin(δ′)rr′2

(r′2 − 2ω(δ, δ′)rr′ + r2)2
(3.10)

=

√
ρ1ρ2

π
sin(α)2

sin(δ) sin(δ′)(r/r′)
((r/r′)2 − 2ω(δ, δ′)(r/r′) + 1)2

1

r′

=: k1(δ, δ
′, r/r′)

1

r′
.(3.11)

For suitable v (for example, v ∈ C∞
0 ) we can now write the integral operator K as a

Mellin convolution operator with an operator valued kernel:

(Kv)(r, δ) =

∫ ∞

0

(∫ δ0

0

k1(δ, δ
′, r/r′)v(r′, δ′)dδ′

)
dr′

r′
.(3.12)

Because the Mellin convolution is diagonalized by the Mellin transform M, it is now
natural to apply the Mellin transform with respect to r to the operator K.

We summarize the definition and some properties of the Mellin transform M:

(Mv)(z) :=

∫ ∞

0

tz−1v(t) dt;(3.13)

see [13]. If we introduce the weighted L2-space L2
ν([0,∞)) with

‖v‖L2
ν
:=

(∫ ∞

0

∣∣t−νv(t)
∣∣2 dt)1/2

,(3.14)
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then we get that the function

x −→ (Mv)

(
1

2
− ν + ix

)
, v ∈ L2

ν([0,∞)),(3.15)

is well defined and (Mv)(1/2− ν + i·) ∈ L2(R). We denote the mapping

v(x) −→ (Mv)

(
1

2
− ν + ix

)
, x ∈ R,(3.16)

by MRe(z)=1/2−ν and keep in mind

MRe(z)=1/2−ν : L2
ν([0,∞)) 1:1−→ L2(R);(3.17)

see [13, Theorem 3.2], where the restriction ν ≤ 1/2 is caused by his definition of his
set E . We apply this Mellin transform to the operator K with respect to r and get

M(Kv)(z, δ) =

∫ δ0

0

[Mk1(δ, δ
′, ·)](z)[Mv](z, δ′)dδ′

=: [A(z)(Mv)(z)](δ).(3.18)

This means that we get for all z in some area of the complex domain an integral
operator A(z) on the interval [0, δ0] with kernel


k(z, δ, δ′) :=

√
ρ1ρ2

π
sin(α)2 sin(δ) sin(δ′)κ(z, δ, δ′),

κ(z, δ, δ′) := (1− ω(δ, δ′))−3/2κ1(z, δ, δ
′),

κ1(z, δ, δ
′) := 23/2B(1 + z, 3− z) 2F1

(
3

2
− z, z − 1

2
,
5

2
,
1 + ω(δ, δ′)

2

)
.

(3.19)

Here B is the Beta function, and 2F1 is the hypergeometric function; see [15]. Formula
(3.19) follows from the integral table in [14, p. 310, formula 22], where the exponent
ν − 0.5 is corrected to 0.5− ν. The above formula is correct for all z ∈ Σ−1,3,

Σα,β := {z ∈ C|α < Re(z) < β}, α < β, α, β ∈ R.(3.20)

To analyze this operator we first estimate the function κ1.
Lemma 3.1. The function κ1(z, δ, δ

′) is holomorphic in the strip Σ−1,3. We have

|κ1(z, δ, δ
′)| ≤ κ1(Re(z), δ, δ

′),

and for s ∈ [−0.5, 2.5]

0 ≤ κ1(s, δ, δ
′) ≤

{ √
2

8 π, s ∈ [0.5, 1.5],√
2

3 Γ(s+ 1)Γ(3− s), s ∈ [−0.5, 0.5] ∪ [1.5, 2.5].

Proof. We have

κ(z, δ, δ′) =
∫ ∞

0

tz−1t

(1− 2ω(δ, δ′) + t2)2
dt.

This implies the following.
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1. The function κ(z) is holomorphic in Σ−1,3 because of the convergence of the
integral in this domain.

2.

|κ1(z, δ, δ
′)| ≤ (1− ω(δ, δ′))3/2

∫ ∞

0

|tz|
(1− 2ω(δ, δ′)t+ t2)2

dt

= (1− ω(δ, δ′))3/2

∫ ∞

0

tRe(z)

(1− 2ω(δ, δ′)t+ t2)2
dt

= κ1(Re(z), δ, δ
′).

For all z ∈ C we have

Re

(
5

2
−
(
3

2
− z

)
−
(
z − 1

2

))
= Re

(
3

2

)
> 0.

It is known from [21] that the following limit exists:

lim
w→1− 2F1(3/2− z, z − 1/2, 5/2, w) = Γ(5/2)Γ(3/2)

Γ(1 + z)Γ(3− z)
.

By definition (see also [21])

2F1(3/2− z, z − 1/2, 5/2, w) =
∞∑

j=0

(3/2− z)j(z − 1/2)j
(5/2)jj!︸ ︷︷ ︸
=:aj(z)

wj .

If s ∈ [1/2, 3/2], we get aj(s) ≥ 0. This implies that 2F1(3/2 − s, s − 1/2, 5/2, w) is
monotone increasing with respect to w. By (3.6) we know

1 + ω(δ, δ′)
2

∈ [1/2, 1] ∀δ, δ′.
So we estimate

κ1(s, δ, δ
′) ≤ 23/2B(1 + s, 3− s)2F1(3/2− s, s− 1/2, 5/2, 1)
= 23/2Γ(1 + s)Γ(3− s)

Γ(4)

Γ(5/2)Γ(3/2)

Γ(1 + s)Γ(3− s)

= 23/2 1

3!

3

2
Γ(3/2)2

=
√
2
π

8
.

If s ∈ [−1/2, 1/2], we have
(s− 1/2)j ≤ 0, j ≥ 1,
(3/2− s)j > 0, j ≥ 1,
=⇒ aj(s) ≤ 0, j ≥ 1.

So 2F1(3/2− s, s− 1/2, 5/2, w) is monotone decreasing in w, and finally,

κ1(s, δ, δ
′) ≤ 23/2B(1 + s, 3− s)2F1(3/2− s, s− 1/2, 5/2, 0)
= 23/2Γ(1 + s)Γ(3− s)

Γ(4)
1

=

√
2

3
Γ(1 + s)Γ(3− s).
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If s ∈ [3/2, 5/2], it follows that
(s− 1/2)j ≥ 0, j ≥ 1,
(3/2− s)j ≤ 0, j ≥ 1,

and, similar to the above, we can estimate

κ1(s, δ, δ
′) ≤

√
2

3
Γ(1 + s)Γ(3− s).

Now we have proved our estimates.
In the proof we saw that it is sufficient to estimate 2F1(3/2 − z, z − 1/2, 5/2, w)

in the vicinity of w = 1. This proves the following corollary.
Corollary 3.2. Let ε, ε′ > 0. Then we get

|κ1(z, δ, δ
′)| ≤

√
2

8
π + ε′,(3.21)

z ∈ [−1 + ε, 3− ε], δ, δ′ ∈ [0, δ0(ε, ε′)], if δ0(ε, ε′) is sufficiently small.
Our next step is the study of the z-independent part of the integral operator A(z).

We denote this operator by B:

(Bv)(δ) :=
√
ρ1ρ2

π
sin(α)2

∫ δ0

0

sin(δ) sin(δ′)
(1− ω(δ, δ′))3/2

v(δ′)dδ′.(3.22)

The next lemma shows that B is closely connected to a Mellin operator (see also the
proof of Theorem 2.1 in [8]).

Lemma 3.3. We have

B = T−1
2 ◦ T−1

1 ◦ B2 ◦ T1 ◦ T2,

where B2 is a finite Mellin convolution on [0, ϑ0], ϑ0 := tan(δ0/2),

(B2w)(ϑ) :=

∫ ϑ0

0

l2(ϑ/ϑ
′)w(ϑ′)

dϑ′

ϑ′ ,(3.23)

and

l2(t) := 2
3/2

√
ρ1ρ2

π
sin(α)2

t

(1− 2 cos(α)t+ t2)3/2
.(3.24)

The invertible operators T1 and T2 are given by

T1 : L2
ν([0, δ0]) −→ L2

ν([0, δ0]),(T1v)(δ) := v(δ)/ cos(δ/2)(3.25)

and

T2 : L2
ν([0, δ0]) −→ L2

ν([0, ϑ0]),(T2v)(ϑ) := v(2arctan(ϑ)).(3.26)

Proof. In formula (3.22) we use the addition theorems for sine and cosine and get
the following expressions for the numerator, respectively, the denominator, under the
integral sign:

sin(δ) sin(δ′) = 4 sin(δ/2) sin(δ′/2) cos(δ/2) cos(δ′/2),
1− ω(δ, δ′) = 2 cos(δ/2)2 sin(δ′/2)2 + 2 sin(δ/2)2 cos(δ′/2)2

− 4 cos(α) sin(δ/2) sin(δ′/2) cos(δ/2) cos(δ′/2).
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Substituting this in (3.22) gives

Bw(δ)

=
√

2

√
ρ1ρ2

π
sin(α)2

1

cos(δ/2)

∫ δ0

0

tan(δ/2) tan(δ′/2)
(tan(δ/2)2 + tan(δ′/2)2 − 2 cos(α) tan(δ/2) tan(δ′/2))3/2

× cos(δ′/2)w(δ′)
dδ′

cos(δ′/2)2

= (T−1
1 ◦ B1 ◦ T1)w(δ)

with T1 defined in (3.25) and B1 defined according to

(B)1w(δ)

:=
√
2

√
ρ1ρ2

π
sin(α)2

∫ δ0

0

tan(δ/2) tan(δ′/2)
(tan(δ/2)2 + tan(δ′/2)2 − 2 cos(α) tan(δ/2) tan(δ′/2))3/2

× w(δ′)
dδ′

cos(δ′/2)2
.

Substituting ϑ := tan(δ/2), respectively, ϑ′ := tan(δ′/2), which implies

dϑ′ =
1

2

1

cos(δ′/2)2
dδ′,

shows

B1w(2arctan(ϑ))

= 23/2

√
ρ1ρ2

π
sin(α)2

∫ ϑ0

0

ϑϑ′

(ϑ2 + ϑ′2 − 2 cos(α)ϑϑ′)3/2
w(2arctan(ϑ′))dϑ′

= 23/2

√
ρ1ρ2

π
sin(α)2

∫ ϑ0

0

ϑ/ϑ′

((ϑ/ϑ′)2 + 1− 2 cos(α)ϑ/ϑ′)3/2
w(2arctan(ϑ′))

dϑ′

ϑ′ .

The last equation implies

T2 ◦ B1 = B2 ◦ T2.

This proves the representation formula for B, formula (3.23), and the invertibility of
T1 and T2 is clear because of δ0 < π/2.

Now we will give estimates for the operators in Lemma 3.3 to finally get a bound
for the operator norm of A(z).

Lemma 3.4. The operators T1 and T2 and their inverses are continuous and fulfill
the following estimates:




‖T1‖ ≤ 1

cos(δ0/2)
, ‖T2‖ ≤ 1√

2 cos(δ0/2)
max

δ∈[0,δ0]

(
tan(δ/2)

δ

)−ν

,

‖T−1
1 ‖ ≤ 1, ‖T−1

2 ‖ ≤
√
21−2ν

1 + ϑ2
0

max
ϑ∈[0,ϑ0]

(
arctan(ϑ)

ϑ

)−ν

.

(3.27)

Here we omit the domain of definition and the range of the operators.
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Proof. The calculation of all of the above bounds is straightforward, and we give
only the proof for ‖T2‖L2

ν
.

‖T2v‖L2
ν([0,δ0])2→L2

ν([0,ϑ0]) =

∫ ϑ0

0

ϑ−2νv(2arctan(ϑ)) dϑ

=

∫ δ0

0

tan(δ/2)−2νv(δ)2
dδ

2 cos(δ/2)2

=

∫ δ0

0

δ−2νv(δ)2

(
1

2 cos(δ/2)2

(
tan(δ/2)

δ

)−2ν
)

︸ ︷︷ ︸
(∗)

dδ.

The maximum over δ ∈ [0, δ0] of the (∗)-term proves the bound for T2.
In the following we denote the product of all four bounds by σ(δ0),

σ(δ0) := ‖T1‖L2
ν([0,δ0])‖T−1

1 ‖L2
ν([0,δ0])‖T2‖L2

ν([0,δ0])→L2
ν([0,ϑ0])‖T−1

2 ‖L2
ν([0,ϑ0])→L2

ν([0,δ0]),

(3.28)

and it is easy to see that

lim
δ0→0

σ(δ0) = 1.(3.29)

An upper bound for the norm of the operator B2 is given in the next lemma.
Lemma 3.5. The Mellin operator B2 is a bounded operator in L2

ν([0,∞)), ν ∈
(−3/2, 3/2). We get

‖B2‖L2
ν

(3.30)

≤ 25/2

√
ρ1ρ2

π
(1 + cos(α))B(3/2− ν, 3/2 + ν)2F1

(
1/2 + ν, 1/2− ν, 2,

1 + cos(α)

2

)
.

This can be estimated further by

‖B2‖L2
ν

(3.31)

≤ 23/2

√
ρ1ρ2

π
(1 + cos(α))

{
1, ν ∈ [−0.5, 0.5],
Γ(3/2− ν)Γ(3/2 + ν), ν ∈ (−1.5,−.5) ∪ (0.5, 1.5).

Proof. The Mellin transform MRe(z)=1/2−ν transforms the operator B2 on L2
ν

into a multiplication operator with

l̂2(w) = 2
3/2

√
ρ1ρ2

π
sin2(α) 2B(w + 1, 2− w)

1

1− cos(α) 2F1

(
1− w,w, 2,

1 + cos(α)

2

)
,

Re(w) = 1/2− ν;

see [14, p. 310, formula 22]. This transform exists for w ∈ Σ−1,2. Because the function
l2 is positive, we again have the relation∣∣∣l̂2(w)∣∣∣ ≤ l̂2(Re(w)).

This, together with the range for w, proves formula (3.30) because a multiplication
operator is bounded by its essential maximum. For ν ∈ [−0.5, 0.5] the coefficients of
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the power series of 2F1 are positive, so we get (w = 1/2− ν)

2F1

(
1/2 + ν, 1/2− ν, 2,

1 + cos(α)

2

)
≤ 2F1(1/2 + ν, 1/2− ν, 2, 1)

=
Γ(2)Γ(1)

Γ(3/2− ν)Γ(3/2 + ν)
.

Together with

B(3/2− ν, 3/2 + ν) =
Γ(3/2− ν)Γ(3/2 + ν)

Γ(3)
,

we get the upper bound in (3.31). For ν ∈ (−1.5, 0.5], respectively, ν ∈ [0.5, 1.5), the
coefficients of the power series for 2F1(1/2 + ν, 1/2 − ν, 2, w) are negative (with the
exception of the coefficient of w0). This proves

2F1

(
1/2 + ν, 1/2− ν, 2,

1 + cos(α)

2

)
≤ 2F1(1/2 + ν, 1/2− ν, 2, 0)

= 1,

and now the second estimate in (3.31) is also proved.
Theorem 3.6. The operator K (see (3.9)) is a continuous operator on

L2
ν1
([0,∞))⊗ L2

ν2
([0, δ0]), ν1 ∈ (−2.5, 1.5), ν2 ∈ (−1.5, 1.5).

1. The operator (I −K) is invertible if

B0(ν1, ν2)σ0(δ0) < 1(3.32)

holds, where

B0(ν1, ν2)(3.33)

:=
√
ρ1ρ2(1 + cos(α))B(3/2− ν2, 3/2 + ν2)2F1

(
1/2 + ν2, 1/2− ν2, 2,

1 + cos(α)

2

)

×
{
1, (ν1, ν2) ∈ [−1, 0]× (−1.5, 1.5),
8
3Γ(3/2− ν1)Γ(5/2 + ν1), (ν1, ν2) ∈ [(−2,−1) ∪ (0, 1)]× (−1.5, 1.5).

2. (I −K) is invertible if

B1(ν2)(3.34)

:=
√
ρ1ρ2(1 + cos(α))B(3/2− ν2, 3/2 + ν2)2F1

(
1/2 + ν2, 1/2− ν2, 2,

1 + cos(α)

2

)
< 1,

(ν1, ν2) ∈ (−2.5, 1.5)× (−1.5, 1.5), if δ0 is sufficiently small.
3. If δ0 is sufficiently small, the operator I −K is invertible on

L2
ν1
([0,∞))⊗ L2

ν2
([0, δ0]),(ν1, ν2) ∈ [−1, 0]× [−0.5, 0.5].(3.35)
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Proof.
1. After the application of the Mellin transform MRe(z)=1/2−ν1

, the operator

K is transformed into the parameter-dependent operator A(1/2 − ν1 + iτ), τ ∈ R.
For this operator we have

|[[A(1/2− ν1 + iτ)]u](δ)|

≤
√
ρ1ρ2

π
sin(α)2

∫ δ0

0

sin(δ) sin(δ′)
(1− ω(δ, δ′))3/2

|κ1(1/2− ν1 + iτ, δ, δ′)| |w(δ′)| dδ′

≤ C(ν1)[B2 |w|](δ).
Now using the bounds for C(ν1), given in Lemmas 3.1 and 3.5 together with Lemmas
3.3 and 3.4, we get the above bound for A(1/2 − ν1 + iτ) on L2

ν2
, independent of τ .

This proves our result.
2. The proof of part 2 follows from Corollary 3.2.
3. For (ν1, ν2) in the above range we get by Lemmas 3.1 and 3.5 the bound

B0(ν1, ν2) ≤
√
2

8
π ×

√
ρ1ρ2

π
23/2(1 + cos(α))

=
√
ρ1ρ2

1 + cos(α)

2
< 1.

By (3.29) we know that we can choose δ0 sufficiently small to guarantee

B0(ν1, ν2)σ(δ0) < 1,

which proves part 3.
Remark. The result in part 3 of the above theorem shows that the set of values

(ν1, ν2) in parts 1 and 2 for which (I −K) is an invertible operator is nonempty. The
author knows no explicit formula which describes the boundary of the (ν1, ν2)-area,
in dependence on α, where the operator (I −K) is invertible. But the function B1 in
(3.34) depends only on ν2, and one can calculate numerically ν2(α) with B1(ν2(α)) =
1. Because of the symmetry of B1, this implies that

(I −K) : L2
ν1
([0,∞))⊗ L2

ν2
([0, δ0])

1:1−→ L2
ν1
([0,∞))⊗ L2

ν2
([0, δ0]),

(ν1, ν2) ∈ (−2.5, 1.5)× (−ν2(α), ν2(α))

if δ0 is small enough.
Here it is interesting that the range of suitable ν2 values increases near α = 0 (at

least for the more realistic values
√
ρ1ρ2 < 1) and has a minimum for some positive

angle α = α(
√
ρ1ρ2). This is different than in the case of the classical double layer

potential, where the singularities are getting stronger when the angle goes to zero.
Here Figure 3 suggests that there exists some worst angle for the regularity, which is
greater than zero. To the author this property is not clear and cannot be explained
at the moment. But we would like to mention that this behavior can also be seen in
Table 1 of [17], although Rathsfeld has not explicitly mentioned this phenomenon.

Now we want to study the smoothing properties of the operator K. It is our aim
to study the behavior of

sin(δ)m+k

(
r
∂

∂r

)k (
∂

∂δ

)m

k1

(
δ, δ′,

r

r′

)
;(3.36)
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Fig. 3. The curves ν2(α) for three different values of
√
ρ1ρ2 : 0.5, 0.9, and 1.0.

see (3.11). Instead of r ∂
∂r , we will write t ∂

∂t and consider k1(δ, δ
′, t). We recall

here that the function k1 is equivalent to k1; see (3.4). We will see that an integral
operator with kernel (3.36) behaves like the operator K. But first we have to prove
two technical lemmas. Instead of k1 we will use the equivalent but simpler kernel

k2(δ, δ
′, t) :=

sin(δ)t

(1− 2ω(δ, δ′)t+ t2)2
.(3.37)

Lemma 3.7. Let m ∈ N0. Then

(
∂

∂δ

)m

k2(δ, δ
′, t)

=

m∑
n=0,2|n

(
m
n

)
sin(m−n)(δ)


n/2∑

j=1

tj+1fn,j

(1 − 2ωt + t2)2+j
+

n∑
j=n/2+1

tj+1ω′2j−nfn,j

(1 − 2ωt + t2)2+j




+

m∑
n=0,2�n

(
m
n

)
sin(m−n)(δ)


(n+1)/2−1∑

j=1

tj+1fn,j

(1 − 2ωt + t2)2+j
+

n∑
j=(n+1)/2

tj+1ω′2j−nfn,j

(1 − 2ωt + t2)2+j


 ,

where we used the abbreviation ω instead of ω(δ, δ′) and ω′ instead of ∂
∂δω(δ, δ

′), and
fn,j are bounded C∞-functions of δ and δ′.

Proof. The proof is an easy consequence of the following two formulas:

1. n even:

(
∂

∂δ

)n
1

(1− 2ωt+ t2)2
=

n/2∑
j=1

tjfn,j

(1− 2ωt+ t2)2+j
+

n∑
j=n/2+1

tjω′2j−nfn,j

(1− 2ωt+ t2)2+j
;
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2. n odd:

(
∂

∂δ

)n
1

(1− 2ωt+ t2)2
=

(n+1)/2−1∑
j=1

tjfn,j

(1− 2ωt+ t2)2+j
+

n∑
j=(n+1)/2

tjω′2j−nfn,j

(1− 2ωt+ t2)2+j
.

We first look for n = 1 and n = 2 and get

∂

∂δ

1

(1− 2ωt+ t2)2
=

4tω′

(1− 2ωt+ t2)2+1
,

f1,1(δ, δ
′) = 4,(

∂

∂δ

)2
1

(1− 2ωt+ t2)2
=

4tω′′

(1− 2ωt+ t2)2+1
+

24t2ω′2

(1− 2ωt+ t2)2+2
,

f2,1(δ, δ
′) = 4ω′′(δ, δ′),

f2,2(δ, δ
′) = 24.

This shows that our formula is correct for n = 1, 2. We proceed further by induction.
We will show only that the formula is correct for n+ 1 if n is even. The other case is
totally similar. So we assume that the formula is correct for an even n and get

(
∂

∂δ

)n+1
1

(1− 2ωt+ t2)2
=

∂

∂δ


n/2∑

j=1

tjfn,j

(1− 2ωt+ t2)2+j
+

n∑
j=n/2+1

tjω′2j−nfn,j

(1− 2ωt+ t2)2+j




=

n/2∑
j=1

tj+1(4 + 2j)ω′fn,j

(1− 2ωt+ t2)2+j+1
+

n/2∑
j=1

tjf ′
n,j

(1− 2ωt+ t2)2+j

+

n∑
j=n/2+1

tj+1(4 + 2j)ω′2j−n+1fn,j

(1− 2ωt+ t2)2+j+1

+

n∑
j=n/2+1

tj(2j − n)ω′2j−n−1ω′′fn,j

(1− 2ωt+ t2)2+j

+

n∑
j=n/2+1

tjω′2j−nf ′
n,j

(1− 2ωt+ t2)2+j

=

n/2∑
j=2

tj(2 + 2j)ω′fn,j−1

(1− 2ωt+ t2)2+j
+

n/2∑
j=1

tjf ′
n,j

(1− 2ωt+ t2)2+j

+
tn/2+1=((n+1)+1)/2(4 + 2n)ω′fn,n/2

(1− 2ωt+ t2)2+((n+1)+1)/2

+

n+1∑
j=((n+1)+1)/2+1

(2 + 2j)ω′2j−(n+1)tjfn,j−1

(1− 2ωt+ t2)2+j

+

n∑
j=((n+1)+1)/2

tjω′2j−(n+1)(ω′′fn,j + ω′fn,j)

(1− 2ωt+ t2)2+j
.

Because n/2 = (n+2)/2− 1, this proves the formula for n+1 if the functions fn+1,j

are defined correspondingly. Here we see that fn,j is always a function of the sine and
cosine of δ, respectively, δ′.
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The next lemma concerns the derivatives with respect to t.
Lemma 3.8. For n ∈ N0 we have(

∂

∂t

)2n
1

(1− 2ωt+ t2)2+j
=

n∑
l=0

a
(j,2n)
l

(t− ω)2l

((t− ω)2 + (1− ω2))2+j+n+l
,

(
∂

∂t

)2n+1
1

(1− 2ωt+ t2)2+j
=

n∑
l=0

a
(j,2n+1)
l

(t− ω)2l+1

((t− ω)2 + (1− ω2))2+j+n+l+1

with a
(j,n)
l ∈ R.

An easy consequence is the following formula, which we need in the next lemma:

(
t
∂

∂t

)k (
tj+1

(1− 2ωt+ t2)2+j

)
=

k∑
l=0

min{j+1,l}∑
i=0

bj,l,it
j+1+l−i

×




(l−i)/2∑
p=0

a(j,l−i)
p

(t− ω)2p

((t− ω)2 + (1− ω2))2+j+(l−i)/2+p
, l − i even,

(l−i−1)/2∑
p=0

a(j,l−i)
p

(t− ω)2p+1

((t− ω)2 + (1− ω2))2+j+(l−i+1)/2+p
, l − i odd.

Proof. We first calculate the first two derivatives and get

∂

∂t

1

(1− 2ωt+ t2)2+j
=

−(2 + j)2(t− ω)

((t− ω)2 + (1− ω2))3+j
,

(
∂

∂t

)2
1

(1− 2ωt+ t2)2+j
= − (4 + 2j)

((t− ω)2 + (1− ω2))3+j
+
(4 + 2j)(6 + 2j)(t− ω)2

((t− ω)2 + (1− ω2))4+j
,

which proves our result with the corresponding definitions of a
(j,1)
0 , a

(j,2)
0 , and a

(j,2)
1 .

We proceed further by induction, but we again prove only one case. We assume that
the formula is correct for 2n+1 and prove it for 2(n+1). By our assumption we have

(
∂

∂t

)2(n+1)
1

(1− 2ωt+ t2)2+j
=

n∑
l=0

(
a
(j,2n+1)
l (2l + 1)(t− ω)2l

((t− ω)2 + (1− ω2))2+j+n+l+1

−a
(j,2n+1)
l 2(t− ω)2l+2(2 + j + n+ 1 + l)

((t− ω)2 + (1− ω2))2+j+(n+1)+(l+1)

)

=
n∑

l=0

a
(j,2n+1)
l (2l + 1)(t− ω)2l

((t− ω)2 + (1− ω2))2+j+(n+1)+l

−
n+1∑
l=1

a
(j,2n+1)
l−1 2(t− ω)2l(2 + j + n+ l)

((t− ω)2 + (1− ω2))2+j+(n+1)+l
,

and this proves our formula for 2(n + 1) if the coefficients are defined correctly. For
the proof of the last formula we use

(
t
∂

∂t

)j

g(t) =

j∑
i=1

cj,it
i

(
∂

∂t

)i

g(t), cj,i ∈ R,
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and the formula (
∂

∂t

)j

(fg)(t) =

j∑
i=0

(
j
i

)
f (i)(t)g(j−1)(t).

Now we are ready to prove our main result on the kernel k1.
Lemma 3.9. For m, k ∈ N0 we have

sin(δ)m+k

(
t
∂

∂t

)k (
∂

∂δ

)m

k1(δ, δ
′, t) = gm,k(δ, δ

′, t)k1(δ, δ
′, t)

with a bounded continuous function gm,k on [0, δ0]
2 × [0,∞).

Proof. We have only to consider k2. By the previous two lemmas we get

sin(δ)m+k

(
t
∂

∂t

)k (
∂

∂δ

)m

k2(δ, δ
′, t)

=
m∑

n=0,2|n

(
m
n

) n/2∑
j=1

fn,j

k∑
l=1

min{j+1,l}∑
i=0

bj,l,iαm,n,j,l,i

+

m∑
n=0,2|n

(
m
n

) n∑
j=n/2+1

fn,j

k∑
l=1

min{j+1,l}∑
i=0

bj,l,iω
′2j−nαm,n,j,l,i

=

m∑
n=0,2�n

(
m
n

) (n+1)/2−1∑
j=1

fn,j

k∑
l=1

min{j+1,l}∑
i=0

bj,l,iαm,n,j,l,i

+

m∑
n=0,2�n

(
m
n

) n∑
j=n/2+1

fn,j

k∑
l=1

min{j+1,l}∑
i=0

bj,l,iω
′2j−nαm,n,j,l,i,

where

αm,n,j,l,i = sin(δ)
m+k sin(m−n)(δ)tj+1+l−i

×




(l−i)/2∑
p=0

a
(j,l−i)
p (t− ω)2p

((t− ω)2 + (1− ω2))2+j+(l−i)/2+p
, l − i even,

(l−i−1)/2∑
p=0

a
(j,l−i)
p (t− ω)2p+1

((t− ω)2 + (1− ω2))2+j+(l−i+1)/2+p
, l − i odd.

Now one has to consider 16 different summands (αm,n,j,l,i for m even/odd, l − i
even/odd). We will consider only the two cases m even, n even, j ≥ n/2+1, and l− i
even and odd. This corresponds to the two cases in the second of the above sums.
We have only to prove our lemma for small t because for large t the formula is clearly
correct.

First, for l − i even and p arbitrary,

αm,n,j,l,i(δ, δ
′, t) =

sin(δ)m+k(± sin(δ))tj+1+l−i(t− ω)2pω′2j−n

((t− ω)2 + (1− ω2))2+j+(l−i)/2+p

= ±k2
sin(δ)m+ktj+l−iω′2j−n

((t− ω)2 + (1− ω2))j+(l−i)/2

(t− ω)2p

((t− ω)2 + (1− ω2))p

≤ C1k2
sin(δ)m+ktj+l−iω′2j−n

((t− ω)2 + (1− ω2))j+(l−i)/2
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with some constant C1 > 0. Now we remind the reader of

ω′(δ, δ′) ≤ C2(sin(δ) + sin(δ
′)),(3.38)

(1− 2ωt+ t2) = (t− 1)2 + 2t(1− ω)

≥ 2t(1− ω) . . .

≥ C3t(sin(δ) + sin(δ
′))2,(3.39)

where we have again used the addition theorems for sine and cosine in the last formula.
We further estimate

sin(δ)m+ktj+l−iω′2j−n

((t− ω)2 + (1− ω2))j+(l−i)/2

(3.38),(3.39)

≤ C4
t(l−i)/2 sin(δ)m+k

(sin(δ) + sin(δ′))n+l−i
,

C4 > 0, and for the exponent of the denominator we get

n+ l − i ≤ n+ l

≤ m+ k.

This proves the result.
Second, for l − i odd and p arbitrary,

αm,n,j,l,i(δ, δ
′, t) =

sin(δ)m+k(± sin(δ))tj+1+l−i(t− ω)2p+1ω′2j−n

((t− ω)2 + (1− ω2))2+j+(l−i+1)/2+p

= ±k2
sin(δ)m+ktj+l−iω′2j−n

((t− ω)2 + (1− ω2))j+(l−i)/2

(t− ω)2p+1

((t− ω)2 + (1− ω2))p+1/2

≤ C5k2
sin(δ)m+ktj+l−iω′2j−n

((t− ω)2 + (1− ω2))j+(l−i)/2

with some constant C5 > 0. Now we are in the same situation as above, and our proof
is finished.

We will now introduce the function spaces Xm
ν1,ν2

for each face Fj of the cone Γ.
After a suitable rotation we can assume that Fj has the following representation:

Fj =


r


 sin(δ)

0
cos(δ)


 | 0 ≤ r < ∞, δ ∈ [0, δ0]


 , δ0 ∈ (0, 2π).

Then the norm on the function space Xm
ν1,ν2

(Fj) is defined by

‖u;Xm
ν1,ν2

‖2(3.40)

:=
∑

i+l≤m

∫ ∞

0

∫ δ0

0

r−2ν1 sin

(
δ
π

δ0

)−2ν2
(
sin

(
δ
π

δ0

)i+l (
r
∂

∂r

)i (
∂

∂δ

)l

u

)2

dδ dr.

The above lemma implies the following corollary.
Corollary 3.10. Let Fj and Fj+1 be two adjacent faces of the infinite cone,

and define L to be the integral operator

Lu := K̃u|Fj+1 ;



740 OLAF HANSEN

here the function u is given on Fj and extended by zero to the whole of Γ, and K̃ is
the radiosity operator on the infinite cone; see (2.21). Then we get

L : X0
ν1,ν2

(Fj) −→ Xm
ν1,ν2

(Fj+1)

for all m ∈ N, and (ν1, ν2) ∈ (−2.5, 1.5)× (−1.5, 1.5).
Proof. The proof follows from the previous lemma and Theorem 3.6.
To formulate a further application of Lemma 3.9, we introduce a weighted Sobolev

space Xm
ν1,ν2

(S), m ∈ N, on S in the following way. Every face ∆j of S has three

vertices, which we will denote by v
(j)
i , i = 1, 2, 3. There exists a linear transformation

Tj,i (i.e., a rotation followed by a translation) with

Tj,i(v
(j)
i ) = 0,

and the infinite triangle Fj,i generated by Tj,i∆j fulfills

Fj,i =


r


 sin(δ)

0
cos(δ)


 | 0 ≤ r < ∞, δ ∈ [0, δj,i]


 , δj,i ∈ (0, 2π).(3.41)

For each Sj there exist three C∞-functions ϕj,i, i = 1, 2, 3, which are nonnegative,
and

ϕj,1(x) + ϕj,2(x) + ϕj,3(x) = 1, x ∈ ∆j ,

ϕj,i|Uε(v
(j)
i

)
≡ 1, ε > 0.

Further, the support of ϕj,i does not intersect the edge of ∆j on the opposite side of

v
(j)
i . Now Xm

ν1,ν2
(S) is defined by the norm

‖u : Xm
ν1,ν2

(S)‖2 :=

n∑
j=1

3∑
i=1

‖(ϕj,iu) ◦ T −1
j,i ;X

m
ν1,ν2

(Fj,i)‖2.(3.42)

Now we can formulate a special result which follows easily from Lemma 3.9 and shows
its implications if the shadow lines do not disturb the regularity.

Corollary 3.11. Let S be convex, E ∈ L2(S) with E|∆j ∈ C∞(∆j), j = 1(1)n;
then the solution u ∈ L2(S) of (1.1) fulfills

u ∈ Xm
ν1,ν2

(S), m ∈ N,(3.43)

ν1 ∈ (−2.5,−0.5], ν2 ∈ (−1.5, 0].
Proof. We remark that the solution u ∈ L2(S) belongs to X0

ν1,ν2
(S), (ν1, ν2) as

above and f ∈ Xm
ν1,ν2

(S), (ν1, ν2) as above. The representation

u = f −Ku

for u and Lemma 3.9 prove the result.
Remark. We mention here that it would be more interesting to get similar results

for ν1, ν2 > 0. This seems to be possible. Because of Theorem 3.6, one gets the
invertibility of the local operators for positive ν values, and by some localization
techniques this shows that the operator (I − K) is a Fredholm operator with index
zero in X0

ν1,ν2
(S), ν1, ν2 > 0, small enough. But because of X0

ν1,ν2
⊂ L2(S) and
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kernel(I −K)|L2(S) = {0} one gets the invertibility. This would show Corollary 3.11
also for some positive values of ν1, ν2.

However, Lemma 3.9 also makes it possible to get pointwise estimates for the
solution of (1.1) if the assumptions of the above corollary are fulfilled; see [18, Lemma
5.2].1

Corollary 3.12. Let S be convex, E ∈ L2(S), E|∆j
∈ C∞(∆j), j = 1(1)n, and

u ∈ L2(S) be the solution of (1.1). Let ∆j, j ∈ {1, . . . , n}, be an arbitrary face with

vertex v
(j)
i , i ∈ {1, 2, 3}, Dj,i := [0,∞)× [0, δj,i/2] (see (3.41)), and define

uj,i := (ϕj,iu) ◦ T −1
j,i : Dj,i −→ R.

Then we get

sup(r,δ)∈Dj,i

∣∣∣(sin(δ) ∂
∂δ

)l
uj,i(r, δ)

∣∣∣ ≤ cl

sup(r,δ)∈Dj,i

∣∣∣(r ∂
∂r

)l
uj,i(r, δ)

∣∣∣ ≤ cl


 , l ∈ N0, cl > 0.(3.44)

Proof. The proof is analogous to the proof of Rathsfeld’s lemma. First, we notice
that in the case of a convex domain the right-hand side of (2.24), and also of (3.8), is
a C∞-function. So we have to prove that

uj,i := A−1y, A := I −K,

y a C∞-function, fulfills (3.44). But the operator K fulfills the estimate (2.9) of
Lemma 2.1. This also implies ‖K‖L∞(Dj,i) < 1; see [16]. But then we get

A−1 =

∞∑
j=0

K
j
: L∞(Dj,i) −→ L∞(Dj,i)

and

A−1 = I +KA−1.

The operator K is a Mellin convolution operator with respect to r, and so(
r
∂

∂r

)
Ku = K

(
r
∂

∂r
u

)
.

Now (
r
∂

∂r

)l

uj,i = A−1

(
r
∂

∂r
y

)

is bounded and(
sin(δ)

∂

∂δ

)l

uj,i =

(
sin(δ)

∂

∂δ

)l

y +

[(
sin(δ)

∂

∂δ

)l

K

]
︸ ︷︷ ︸

=:Kl

A−1y.

The kernel of the Kl has the same structure as the kernel k1 of K by Lemma 3.9, so
it maps L∞(Dj,i) into L∞(Dj,i), and we have proved our corollary.

1The author would like to thank Dr. J. Elschner for the reference to this lemma.
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4. The regularity near the vertices. Now we start to study the regularity of
the right-hand sides of (3.3) and (2.23). The difference between these two equations
is that the right-hand sides of (3.3) also contain some contributions from the local
cone which come from the nonadjacent faces. But first we consider the function f2 in
(2.23).

For each triangle ∆j , j ∈ {1, . . . , N} (see (2.1)) we denote by {v(j)
1 ,v

(j)
2 ,v

(j)
3 } the

vertices and by {e(j)
1 , e

(j)
2 , e

(j)
3 } the edges of ∆j . Given a triangle ∆ ⊂ R

3, we denote
by E(∆) the plane which is spanned by ∆. If x ∈ R

3 and l ⊂ R
3 is a segment in R

3,
we denote

E(x, l) :=



the plane spanned by l and x if x is not an element of the line

spanned by l,
the line spanned by l otherwise.

For j ∈ {1, . . . , N} we denote by Tj the subset of S where the shadow lines created by
∆j could cause problems for the regularity of the solution of the radiosity equation.
To define Tj we need some preparations. Let

Dj,m :=

{
E(∆j) ∩∆m if some parts of ∆j are visible from ∆m,
∅ otherwise,

m ∈ {1, . . . , N} \ {j}, and

D̃j,m,k,l,i :=

{
E(e

(j)
k , v

(i)
l ) ∩∆m if v

(j)
k or some parts of e

(i)
l can be seen from ∆m,

∅ otherwise,

k, l ∈ {1, 2, 3}, i ∈ {1, . . . , N} \ {j}. From a point x ∈ Dj,m ⊂ ∆m one “sees” the
set ∆j only as a line. Assume x ∈ Dj,m,k,l,i ⊂ ∆m; if one “stands” at the point x
and looks in the direction of the l vertex of ∆i, the ray to the vertex also hits the
edge number k of side ∆j . So it is clear that in every neighborhood of x one finds

points which see the vertex v
(i)
l and others which do not see it. This indicates that the

shape of the shadow (it is a polygon), seen from x, changes essentially (the number of
vertices of the polygon) in the vicinity of x. In the above definitions the phrase “some
parts of set A can be seen from ∆m” means that nA · n∆m

< 0, and there exists a
point y ∈ A and x ∈ ∆m with (y− x) · n∆m

> 0. Here the choice of the point x plays
no role. Now Tj is given by

Tj :=

N⋃
m=1, m �=j


Dj,m ∪


 3⋃

k,l=1

N⋃
i=1,i �∈{m,j}

D̃j,m,k,l,i




 .(4.1)

Tj is the set of points on S, where the shadows of ∆j can cause problems, and T
is the union of all these critical lines

T :=
N⋃

j=1

Tj .(4.2)

Because T is the union of lines, we get

S′ := Ṡ \ T =

N ′⋃
j=1

∆′
j ,(4.3)
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∆′
k

∆′
j

E(∆′
k)

p(x,∆′
k,∆

′
1)

p(x,∆′
k,∆

′
2) ∪ p(x,∆′

k,∆
′
3)

x

∆′
1

∆′
2

∆′
3

Fig. 4. The construction for projections p(x,∆′
k, ·).

where the triangles ∆′
j are open.

To explain the meaning of T we now fix j, k ∈ {1, . . . , N ′}, j �= k, and consider
the shadows of S′ seen from ∆′

j on E(∆′
k). For x ∈ ∆′

j we denote by p(x,∆′
k,∆

′
i)

the projection of the points y ∈ ∆′
i on E(∆′

k). This means that if nx · ny < 0 and
(y − x) · nx > 0 and if there is a λ ≥ 1 such that x + λ(y − x) ∈ E(∆′

k), then
x+ λ(y − x) ∈ p(x,∆′

k,∆
′
i). For each i, p(x,∆′

k,∆
′
i) is either empty, a triangle, or a

triangle where one or two corners are in infinity. But it is never a line because of the
definition of T . Now for p(x,∆′

k,∆
′
i) �= ∅ and p(x,∆′

k,∆
′
l) �= ∅, i �= l, no vertex of

p(x,∆′
k,∆

′
i) crosses the boundary of p(x,∆

′k,∆′
l) as x varies in ∆

′
j . Also, no edge of

p(x,∆′
k,∆i) crosses parallel to an edge of p(x,∆

′k,∆′
l). So p(x,∆′

k,∆
′
i)∪p(x,∆′

k,∆
′
l)

are either two triangles or one polygonal domain in E(∆′
k). This structure stays stable

for all x ∈ ∆′
j . The vertices of this triangle or polygonal domain are C∞-functions on

∆′
j .
Now we can add in succession all shadows and get

Pj,k :=
⋃̃N ′

i=1,i �∈{j,k}p(x,∆
′
k,∆

′
i)

=

N ′(j,k)⋃
i=1

p̃j,k,i(x),(4.4)

where the union in the first line does not contain the ∆′ which are adjacent to ∆′
j .

Each p̃j,k,i(x) is a polygonal domain in E(∆′
k), the edges of p̃j,k,i(x) are C∞-functions

on ∆′
j , and p̃j,k,i(x) ∩ p̃j,k,i′(x) = ∅, i �= i′. If we denote by ṽj,k,i(x) an arbitrary

vertex of p̃j,k,i(x), we get for x, y ∈ ∆′
j that the curve

λ −→ ṽj,k,i(x+ λ(y − x)), λ ∈ [0, 1],
moves along a straight line, and the velocity is always greater than zero (see Figure
4).
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Lemma 4.1. Let u : S → R, u|∆′
j

be continuous, j = 1(1)N ′. Let j0 ∈
{1, . . . , N ′}, and define Sj0 to be the union of all ∆′

j which are not equal or adja-
cent to ∆′

j0
. Define

w(x) :=

∫
Sj0

β(x, y)
nx · (y − x) ny · (x− y)

‖x− y‖4
u(y)dy;

then we get w ∈ C1(∆′
j0
).

Proof. It is sufficient to prove that

w(x) =

∫
∆′

j

β(x, y)
nx · (y − x) ny · (x− y)

‖x− y‖4
u(y)dy

is in C1(∆′
j0
), where ∆′

j is one of the admissible triangles; therefore,

k(x, y) :=
nx · (y − x) ny · (x− y)

‖x− y‖4

is a C∞-function on ∆′
j0
×∆′

j . Define

∆′
j(x) := ∆

′
j \


N(j0,j)⋃

k=1

p̃j0,j,k(x)


 .

Then

w(x) =

∫
∆′

j
(x)

nx · (y − x) ny · (x− y)

‖x− y‖4
u(y)dy.

Because the corners of ∆′
j(x) are C∞-functions of x, we find for every x a real δ > 0

and a triangulation

∆′
j =

Mj⋃
i=1

∆′′
i

(see Figure 5), such that for all z ∈ Uδ(x) ∩ ∆′
j0
in every ∆′′

i there is at most one
corner point of Pj0,j , and this point does not move out of ∆

′′
i when z varies in Uδ(x).

This implies that ∆′′
i (z) := ∆

′′
i ∩∆′

j(z) is either empty or has one of the following
forms (see Figure 6).

If ∆′′
i (z) is empty or has the form of case (a) for all z ∈ Uδ(x), it follows that∫

∆′′
i
(z)

k(z, y)u(y)dy

is a C∞-function of z. The cases (b) and (d) and the cases (c) and (e) are comple-
mentary, and we have only to look for the cases (b) and (c). After some smooth
transformation we can assume that we have the situation shown in Figure 7.

Here ξ0, ξ1, η1, and η2 are C∞-functions of z ∈ Uδ(x). We will treat only the left
case and give the result for the right case. We further consider z to be a real (one
dimensional) variable because no direction has a special significance, and we will see
that the first derivative is continuous.
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p̃j0,j,1(z)

p̃j0,j,2(z)

∆′
j

∆′′
i

p̃j0,j,3(z)

Fig. 5. The partition of ∆′
j(z).

Case b) Case c)Case a)

Case d) Case e)

p0(z)

p0(z) p0(z)

p0(z)

p0(z) p1(z)

p1(z)

p1(z)

p2(z)

p2(z)

∆′′
i (z)∆′′

i (z)

∆′′
i (z)∆′′

i (z)

Fig. 6. The possible shapes for ∆′′
i (z).

Define

F (z) :=

∫
∆′′

i
(z)

k(z, ξ, η)u(ξ, η)dξdη

=

∫ ξ1(z)

0

∫ s1(z,ξ)

0

k(z, ξ, η)u(ξ, η)dηdξ +

∫ η1(z)

0

∫ s2(z,η)

η1(z)

k(z, ξ, η)u(ξ, η)dξdη,

where

s1(z, ξ) := η2(z) + ξ
η1(z)− η2(z)

ξ1(z)
,

s′1(z, ξ) :=
∂

∂z
s1(z, ξ)
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(ξ0(z), 0)

(ξ1(z), η1(z))

(0, η2(z))

∆′′
i (z)

∆′′
i (z)

(0, η1(z))

(ξ0(z), 0)

Fig. 7. The two remaining possible shapes for ∆′′
i (z).

= η′2(z) + ξ
(η′1(z)− η′2(z))ξ1(z)− ξ′1(z)(η1(z)− η2(z))

ξ2
1(z)

,

and

s2(z, η) := ξ0(z) + η
ξ1(z)− ξ0(z)

η1(z)
,

s′2(z, η) =
∂

∂z
s2(z, η)

= ξ′0(z) + η
(ξ′1(z)− ξ′0(z))η1(z)− η′1(z)(ξ1(z)− ξ0(z))

η2
1(z)

.

Now

F (z + h)− F (z) =

∫ ξ1(z)

0

∫ s1(z+h,ξ)

s1(z,ξ)

k(z + h, ξ, η)u(ξ, η)dηdξ

+

∫ ξ1(z)

0

∫ s1(z,ξ)

0

(k(z + h, ξ, η)− k(z, ξ, η))u(ξ, η)dηdξ

+

∫ η1(z)

0

∫ s2(z+h,η)

s2(z,η)

k(z + h, ξ, η)u(ξ, η)dξdη

+

∫ η1(z)

0

∫ s2(z,η)

η1(z)

(k(z + h, ξ, η)− k(z, ξ, η))u(ξ, η)dξdη + O(h2).

This implies

F ′(z) =
∫ ξ1(z)

0

k(z, ξ, s1(z, ξ))u(ξ, s1(z, ξ))s
′
1(z, ξ)dξ

+

∫ η1(z)

0

k(z, s2(z, η))u(s2(z, η), η)s
′
2(z, η)dη

+

∫
∆′′

i
(z)

∂k

∂z
(z, ξ, η)u(ξ, η)dξdη,

and this function depends continuously on the variable z. But because of the appear-
ance of u(ξ, s1(z, ξ)) and u(s2(z, η), η) under the integral sign, we cannot expect that
this function is differentiable if u is only continuous.

In the case of the right-hand side of the picture, we get

F ′(z) =
∫ ξ0(z)

0

k(z, ξ, s1(z, ξ))u(ξ, s1(z, ξ))s
′
1(z, ξ)dξ
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+

∫
∆′′

i
(z)

∂k

∂z
(z, ξ, η)u(ξ, η)dηdξ,

and this shows the result for the second case.

Remark. The previous lemma characterizes the smoothness of the function f2 in
(2.23) because the support of (1−ϕ)u is separated from the support of ψ, and we can
apply Lemma 4.1 to derive the behavior of f2. For a more thorough discussion and
data structures for the calculation of the triangulation ∪N ′

j=1∆
′
j , see [6].

Now we turn to f3 in (2.23). For x ∈ B2/3(0) the function f3 is given by

f3(x) = K̃[(1− ψ)ϕu](x),

and the smoothness of f3 follows from the above discussion. For |x| ≥ 2/3 the
smoothness of f3 follows from the discussion of Rathsfeld [17, Lemma 4.1(ii)], where
he showed that this term is in C1 for continuous u.

For the following we assume that either T ∩ B1(0) = ∅ (see (4.2)) or 0 ∈ T , and
then we assume that we introduce new faces on Γ (see (2.20)) to guarantee that each
line of T ∩Γ belongs to an edge. The last contribution to the right-hand side in (3.3)
are the integrals of the faces of Γ, which are not adjacent, or the corresponding parts
of the spherical γ are separated. Let F1 and F2 be two nonadjacent faces of Γ. We
again assume that F1 is given by

F1(4.5)

:=


r


 sin(δ)

0
cos(δ)


 =: p1(r, δ) | 0 ≤ r ≤ ∞, δ ∈ [0, δ0]


with normal n1 =


 0
1
0


 .

For F2 we assume that the normal is given by

n2 :=


 sin(α) cos(ϑ)
sin(α) sin(ϑ)

cos(α)


 , α ∈ [0, π), ϑ ∈ [−π, π).(4.6)

To satisfy the visibility assumption, ϑ has to fulfill ϑ ∈ (−π, 0). For the plane per-
pendicular to n2 we have the two orthogonal vectors

 cos(α) cos(ϑ)
cos(α) sin(ϑ)

− sin(α)


 ,


 − sin(ϑ)

cos(ϑ)
0


 .

Therefore, we can assume

F2 =


r


cos(δ)


 cos(α) cos(ϑ)
cos(α) sin(ϑ)

− sin(α)


+ sin(δ)


 − sin(ϑ)

cos(ϑ)
0




(4.7)

=: p2(r, δ) | r ≥ 0, δ ∈ [δ1, δ2]

 .

Let u ∈ C([0,∞)× [δ1, δ2]) with compact support, and define
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w(r, δ)(4.8)

:=

∫
F2

β(r, δ, r′, δ′)
n1 · (p2(r

′, δ′)− p1(r, δ)) n2 · (p1(r, δ)− p2(r
′, δ′))

‖p1(r, δ)− p2(r′, δ′)‖4
r′u(r′, δ′)dr′dδ′

=

∫ ∞

0

∫ δ2

δ1

β(r, δ, r′, δ′)k(r, δ, r′, δ′)u(r′, δ′)dδ′dr′,

where

k(r, δ, r′, δ′)(4.9)

= r′2r
(cos(δ) cos(α) sin(ϑ) + sin(δ) cos(ϑ))(sin(δ) sin(α) cos(ϑ) + cos(δ) cos(α))

(r2 + r′2 − 2rr′ω(δ, δ′))2

and

ω(δ, δ′) := sin(δ)(cos(δ′) cos(α) cos(ϑ)− sin(δ′) sin(ϑ))− cos(δ) cos(δ′) sin(α)
≤ c < 1, δ ∈ [0, δ0], δ′ ∈ [δ1, δ2],(4.10)

because F1 and F2 are not adjacent. This implies

k ∈ C∞([0,∞)× [0, δ0]× [0,∞)× [δ1, δ2]).(4.11)

If we take into account shadow lines, then we get

w(r, δ) =

∫ ∞

0

∫ δ2(r,δ)

δ1(r,δ)

k(r, δ, r′, δ′)u(r′, δ′)dδ′dr′.(4.12)

This shows that

w ∈ C1([0,∞)× [0, δ]),(4.13)

where we mention also that the first derivative is continuous up to the boundary.
If the right-hand side E(x) of (1.1) is continuous differentiable on each closed

face, then the right-hand side of (3.3) is a C1-function up to the edge with continuous
first derivative. Therefore, the Mellin transform with respect to the δ variable of the
right-hand side exists for Re(z) > −1, but there is eventually a pole at z = 0 which
corresponds to the value at δ = 0. The regularity of the solution with respect to the
δ-variable is determined by Lemma 3.5. We denote by

ν2 = ν(α,
√
ρ1ρ2) ∈ [0, 3/2)(4.14)

the unique solution of

√
ρ1ρ2(1 + cos(α))B

(
3

2
− ν2,

3

2
+ ν2

)
2F1

(
1

2
+ ν2,

1

2
− ν2, 2,

1 + cos(α)

2

)
= 1,

where α is the angle of Figure 2, and the uniqueness follows by [17, Lemma 3.1]. The
next corollary collects the results from this section and the remark after Theorem 3.6.

Corollary 4.2. Let E : S → R be continuous differentiable on all faces ∆′
j (see

(4.3)) of S, and denote by u the solution of (1.1).
1. u|∆′

j
is a C1-function for all j. If the boundary of ∆′

j has no points in common

with an edge of S, then we have u|
∆′

j

∈ C1(∆′
j).
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2. If v ∈ S is a vertex of S and ∆′
j and ∆′

k are two adjacent faces with v as a

common point, we denote by uv the localization of u to the edge ∆′
j ∩∆′

k. We
introduce polar coordinates and denote by ûv the Mellin transform of uv with
respect to the r variable. Then we get

û(z, δ) = û(z, 0) +Oδ→0(δ
ν2−1/2), Re(z) ∈ (0, 3),(4.15)

where ν2 is given by (4.14); see also Figure 3 for the shape of the function
ν2(·).

3. If ∆′
j is a triangle which gets only light from faces, which can be seen from

every point of ∆′
j (even if these faces are adjacent), then we have

u|∆′
j
∈ C∞(∆′

j)(4.16)

if E ∈ C∞(∆′
j).

Conclusion. In section 3 we proved regularity results for the solution u of the
radiosity equation (2.7) in the vicinity of an arbitrary vertex V of S under the as-
sumption that the set Ω is convex. So if Ω is convex or if the contributions from
distant parts of S (ψK(1 − φ)u; see (2.23)) are negligible, then Theorem 3.6, espe-
cially formula (3.34), indicates how to grade the meshes for the numerical solution
in the direction toward the edges in the vicinity of a vertex. In the case of a convex
set, Corollaries 3.11–3.12 further show that the solution u is a C∞-function if the
right-hand side of the radiosity equation is a C∞-function.

In section 4, we consider the nonconvex case and get the result that we can
divide the surface S in smaller triangles, such that the solution is C1 on these smaller
triangles if the given emissivity function is a C1-function. This partitioning into
smaller triangles is related to the discontinuity meshing; see [10, 11, 7, 9]. On these
finer triangulations we can also apply the results from section 3; see Corollary 4.2(2)
and 4.2(3).
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Abstract. Consider the Cauchy problem for the nonlinear hyperbolic-parabolic equation:

(∗) ut +
1

2
a · ∇xu

2 = ∆u+ for t > 0,

where a is a constant vector and u+ = max{u, 0}. The equation is hyperbolic in the region [u < 0] and
parabolic in the region [u > 0]. It is shown that entropy solutions to (∗) that grow at most linearly
as |x| → ∞ are stable in a weighted L1(RN ) space, which implies that the solutions are unique.
The linear growth as |x| → ∞ imposed on the solutions is shown to be optimal for uniqueness to
hold. The same results hold if the Burgers nonlinearity 1

2
au2 is replaced by a general flux function

f(u), provided f ′(u(x, t)) grows in x at most linearly as |x| → ∞, and/or the degenerate term u+ is
replaced by a nondecreasing, degenerate, Lipschitz continuous function β(u) defined on R. For more
general β(·), the results continue to hold for bounded solutions.

Key words. stability, uniqueness, entropy solutions, hyperbolic-parabolic, degenerate parabolic,
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1. Introduction and results. Consider the Cauchy problem for the nonlinear
hyperbolic-parabolic equation

ut +
1

2
a · ∇xu2 = ∆u+ in D′(ST ),

u(·, 0) = u0 ∈ L∞
loc(R

N ),
(1.1)

where a is a constant vector, u+ = max{u, 0}, the set ST is the strip

ST = R
N × (0, T ] for some T > 0,

and the initial data are taken in the sense of L1
loc(R

N ).
The equation in (1.1) could be regarded as a prototype model for the motion of

an ideal fluid filling R
N and exhibiting both viscous and nonviscous phases. The set

[u > 0] can be identified with the viscous phase, the set [u < 0] is the inviscid phase,
and the set [u = 0] is the free boundary interface separating these phases. Accordingly,
the equation in (1.1) is of mixed type; i.e., it is hyperbolic in the inviscid phase and
parabolic in the viscous phase. It can also be regarded as degenerate parabolic.

The main issues relating to the Cauchy problem (1.1) are its unique solvability
and the local behavior of its solutions. Both issues are relatively well understood if
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one removes the hyperbolic part a · ∇u2, thereby obtaining a degenerate parabolic
equation (see, for example, the discussion and references of [6, 7, 8]). They are
equally well understood if one removes the viscosity term ∆u+. This would give the
N -dimensional Burgers equation (see, for example, [3, 4, 5]).

We establish that entropy solutions of (1.1) that grow at most linearly as |x| → ∞
are stable, which implies that the solutions are unique. We also show that such a
growth is optimal for uniqueness to hold.

For a smooth convex function η(·), let q(η;u) denote the flux function correspond-
ing to the entropy η(u), i.e.,

q(η;u) =

∫ u

0

sη′(s)ds, q(η;u) ≡ q(η;u)a.(1.2)

A function u ∈ L∞
loc(ST ) is an entropy solution of the Cauchy problem (1.1) if

u+ ∈ L2
(
0, T ;W 1,2

loc (R
N )
)

(1.3)

and if, for every convex function η ∈ C2(R), for any nonnegative testing function
ψ ∈ C1

(
[0, T );C2

0 (R
N )
)
with ψ|t≥T = 0,∫

ST

{
η(u)ψt + q(η;u)·∇xψ − η′(u)∇xu+ ·∇xψ

}
dxdt

−
∫
ST

η′′(u) |∇xu+|2 ψ dxdt+
∫

RN

η(u0)ψ(x, 0) dx ≥ 0.

(1.4)

Entropy solutions are distributional solutions. Since u ∈ L∞
loc(ST ), an adaptation of

the results of [2] implies that u+ ∈ Cloc(ST ).
MAIN THEOREM. Let u and v be two entropy solutions of (1.1) in the sense of

(1.2)–(1.4) for initial data u0 and v0. Assume, in addition, that they satisfy the growth
condition

|u(x, t)|+ |v(x, t)| ≤ γ(1 + |x|)(1.5)

for almost all (x, t) ∈ R
N × [0, T ], for some positive constant γ. Then there exists a

smooth, positive weight w(x, t) that can be determined a priori only in terms of γ and
satisfying

w(x, t)
(
1 + |x|) ∈ L1(RN ), uniformly in t ∈ (0, T ),

such that ∫
RN

w(x, t)
∣∣u(x, t)− v(x, t)

∣∣ dx ≤ ∫
RN

w(x, 0)
∣∣u0(x)− v0(x)

∣∣ dx(1.6)

for a.e. t ∈ (0, T ].
The theorem continues to hold if the Burgers nonlinearity 1

2au
2 is replaced by a

more general flux function f(u), provided |f ′(u(x, t))| grows in x at most linearly as
|x| → ∞ for any fixed t ∈ [0, T ). Also, the degenerate term u+ can be replaced by
a nondecreasing, degenerate (possibly identically zero), Lipschitz continuous function
β(u) defined in R. These generalizations follow, mutatis mutandis, from the arguments
in sections 3–7. The Lipschitz requirement on β(·) would exclude degeneracies of the
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type β(u) = um+ for some m > 1. For such a β(·), the theorem continues to hold for
bounded solutions.

The stability theorem and the techniques we develop here may be useful to make
error estimates for various approximate solutions, especially numerical methods, and
to establish similar results for more general hyperbolic-parabolic equations, which
model a wide variety of phenomena, ranging from porous media flow, via flow of
glaciers and sedimentation processes, to traffic flow.

In section 2, we make some remarks to show that the linear growth as |x| → ∞
imposed on the solutions in our main theorem is optimal; and the solutions in general
are local, and if they exist, they blow up in finite time.

In order to prove the main theorem, in section 3, we first use the definition (1.4) of
entropy solutions to derive two integral inequalities for a class of C2 entropy-entropy
flux pairs, depending on a parameter ε > 0. These two inequalities are written for
two entropy solutions u and v of (1.1) with initial data u0 and v0, respectively.

In section 4, we first add these two integral inequalities and choose appropriate
testing functions depending upon a parameter h > 0. These testing functions have
a mollifier-type effect and serve to handle the possible irregularity of the solutions.
Then we introduce a change of variables and employ the new variables in sections 5
and 6 to transform these integral inequalities into a form suitable to study the limits
as ε → 0 and then h → 0 in the indicated order. This will produce a further more
stringent integral inequality for u and v involving testing functions still to be chosen.
In section 7, such testing functions are chosen to identify the weight w(x, t) and the
stability result (1.6).

2. Remarks on the stability. Distributional solutions, which are not entropy
solutions, are not unique and hence are not stable. For example, nonpositive solutions
of (1.1) would be solutions of the inviscid Burgers equation, for which uniqueness fails
outside the class of entropy solutions [3, 4, 5].

The growth condition (1.5) is optimal for uniqueness (hence stability) to hold.
For this, consider locally bounded, nonnegative solutions of (1.1) for N = 1, i.e.,

ut + uux = uxx in D′(ST ),

u(·, 0) = u0 ≥ 0 and smooth in R.
(2.1)

Solutions of (2.1) are smooth and positive in ST . Set

v(x, t) =

∫ x

α

u(y, t) dy for some α ∈ R.

Then u = vx, and u is a solution of (2.1) if and only if v is a classical solution of

(2.1)v

vt +
1

2
(vx)

2 − vxx = cα(t),

v(x, 0) =

∫ x

α

u0(y) dy,

where

cα(t) =
1

2
u2(α, t) − ux(α, t).
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The Hopf-like transformation

w(x, t) = exp

{
−1
2
v +

1

2

∫ t

0

cα(τ) dτ

}

transforms (2.1)v into the equivalent formulation

(2.1)w

wt − wxx = 0 in ST ,

w(x, 0) = exp

{
−1
2
v(x, 0)

}
.

Therefore, well-posedness for (2.1) is equivalent to well-posedness for (2.1)w. The
latter is well-posed if and only if

w(x, t) ≤ exp
{
C
(
1 + x2

)}
for some positive constant C and for all t ∈ [0, T ] (see [1, Chap. 5]). The constant C
and the time T are linked by 4CT < 1. By the Tychonov counterexample [1, p. 237],
a faster growth would not guarantee uniqueness.

In terms of u = −2(ew)x, this implies that the stability theorem would be false
for solutions growing faster than linearly as |x| → ∞. This also implies that solutions
of (1.1) are, in general, not global in time.

If the initial datum u0 is bounded in R
N and in BV (RN ), then solutions of

(1.1) can be constructed as in Volpert–Hudjaev [7, 8]. For such initial data, the
authors also proved uniqueness. If the initial datum u0 is bounded in R

N but not
necessarily regular (i.e., not in BV (RN )), the existence of entropy solutions can be
established as in Kruzhkov [3, 4], as indicated also in [6]. The same construction
also implies ∇u+ ∈ L2

loc(ST ). Attention to the uniqueness problem for parabolic-
hyperbolic equations such as (1.1) has been drawn in [6].

If the initial datum is unbounded, then, by the previous remarks, solutions in
general are local, and if they exist, they blow up in finite time. An existence theorem
would have to involve an estimation of the blow-up time.

3. Proof of the stability theorem (i). In this section, we first use the defi-
nition (1.4) of entropy solutions to derive two integral inequalities for a class of C2

entropy-entropy flux pairs, depending on a parameter ε > 0.
To choose suitable entropy functions η(u) in (1.4), introduce the regularizations

of the Heaviside function:

Hε(s) ≡




1 if s > ε,

sin
( π
2ε

s
)

if |s| ≤ ε,

−1 if s < −ε.
Then, for each k ∈ R, the functions

u −→ ηε(u− k) ≡
∫ u−k

0

Hε(s) ds, 0 < ε� 1,(3.1)

are convex and of class C2 in R. Moreover,

(3.1)′ ηε(u− k) −→ |u− k| as ε → 0.
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For the corresponding flux functions defined in (1.2), we set

Qε(u; k) = q(ηε;u) ≡
(∫ u

k

sHε(s− k) ds

)
a.(3.2)

One verifies that

(3.2)′ Qε(u; k) −→ 1

2

∣∣u2 − k2
∣∣a as ε → 0.

In (1.4) we choose nonnegative testing functions (x, t; y, τ)→ ψ(x, t; y, τ) depend-
ing upon two pairs of variables (x, t) and (y, τ) such that

(x, t) → ψ(x, t; y, τ) ∈ C1
(
[0, T );C2

0 (R
N )
)

uniformly in (y, τ),

(y, τ) → ψ(x, t; y, τ) ∈ C1
(
[0, T );C2

0 (R
N )
)

uniformly in (x, t).

We also require that ψ(x, t; y, τ) = 0 for t ≥ T or τ ≥ T . With such a choice, (1.4)
can be written interchangeably in terms of either pair of variables.

In (1.4), written in terms of (x, t), choose the entropy function

(3.1)(x,t) (x, t) −→ ηε
(
u(x, t)− v(y, τ)

)
, (y, τ) ∈ ST fixed.

For the choice of k = v(y, τ), the flux function introduced in (3.2) takes the form

(3.2)(x,t) Qε

(
u(x, t); v(y, τ)

)
=

(∫ u(x,t)

v(y,τ)

sHε

(
s− v(y, τ)

)
ds

)
a.

We put these choices in (1.4) and then integrate over ST in dydτ to obtain
(3.3)(x,t)∫

ST

∫
ST

{
ηε
(
u(x, t)− v(y, τ)

)
ψt +Qε

(
u(x, t); v(y, τ)

) · ∇xψ
−Hε

(
u(x, t)− v(y, τ)

)∇xu+(x, t) · ∇xψ

−H ′
ε

(
u(x, t)− v(y, τ)

)|∇xu+(x, t)|2 ψ
}
dxdt dydτ

+

∫
ST

∫
RN

ηε
(
u0(x)− v(y, τ)

)
ψ(x, 0; y, τ) dx dydτ ≥ 0.

Next we write the weak formulation (1.1) for the solution (y, τ)→ v(y, τ), and in
the resulting expression we take the entropy function

(3.1)(y,τ) (y, τ) −→ ηε
(
v(y, τ)− u(x, t)

)
, (x, t) ∈ ST fixed,

and the corresponding flux function

(3.2)(y,τ) Qε

(
v(y, τ);u(x, t)

)
=

(∫ v(y,τ)

u(x,t)

sHε

(
s− u(x, t)

)
ds

)
a.
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Integrating over ST in dxdt yields

(3.3)(y,τ) ∫
ST

∫
ST

{
ηε
(
v(y, τ)− u(x, t)

)
ψτ + Qε

(
v(y, τ);u(x, t)

) · ∇yψ
−Hε

(
v(y, τ)− u(x, t)

)∇yv+(y, τ) · ∇yψ

−H ′
ε

(
v(y, τ)− u(x, t)

)|∇yv+(y, τ)|2 ψ
}
dxdt dydτ

+

∫
ST

∫
RN

ηε
(
v0(y)− u(x, t)

)
ψ(x, t; y, 0)dy dxdt ≥ 0.

4. Proof of the stability theorem (ii). In this section, we first add the
inequalities (3.3)(x,t)–(3.3)(y,τ) and choose appropriate testing functions depending
upon a parameter h > 0, and then we introduce a change of variables to transform
these integral inequalities into a form suitable to study the limits as ε and h tend to
zero.

We now add the inequalities (3.3)(x,t)–(3.3)(y,τ) and use the facts that ηε and η′′ε
are even functions and η′ε is odd to obtain

I1,ε + I2,ε + I3,ε ≥ 0,(4.1)

where we have set

I1,ε =

∫
ST

∫
ST

{
ηε
(
u(x, t)− v(y, τ)

)
(ψt + ψτ )

+Qε

(
u(x, t); v(y, τ)

) · ∇xψ
+Qε

(
v(y, τ);u(x, t)

) · ∇yψ
}
dxdt dydτ,

(4.2)

I2,ε = −
∫
ST

∫
ST

{
Hε

(
u(x, t)− v(y, τ)

)
×[∇xu+(x, t) · ∇xψ − ∇yv+(y, τ) · ∇yψ

]
+ H ′

ε

(
u(x, t)− v(y, τ)

)

×[|∇xu+(x, t)|2 + |∇yv+(y, τ)|2
]
ψ

}
dxdt dydτ,

(4.3)

and

I3,ε =

∫
ST

∫
RN

ηε
(
u0(x)− v(y, τ)

)
ψ(x, 0; y, τ)dx dydτ

+

∫
ST

∫
RN

ηε
(
v0(y)− u(x, t)

)
ψ(x, t; y, 0)dy dxdt.

(4.4)

Next we choose the function (x, t; y, τ)→ ψ(x, t; y, τ) of the form

ψ(x, t; y, τ) = ϕ

(
1

2
(x+ y);

1

2
(t+ τ)

)
jh

(
1

2
(x− y);

1

2
(t− τ)

)
,
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where ϕ(·; ·) ∈ C∞
0 (ST ) is nonnegative and

jh

(
1

2
(x− y);

1

2
(t− τ)

)
= ωh

(
1

2
|x− y|

)
ωh

(
1

2
(t− τ)

)
.

Here ω denotes the standard, symmetric mollifying kernel in R, and

ωh(s) =
1

h
ω
( s
h

)
, and ωh(s) = 0 for |s| ≥ h.

Consider the change of variables:

ξ =
1

2
(x+ y), ζ =

1

2
(x− y), s =

1

2
(t+ τ), σ =

1

2
(t− τ),

x = ξ + ζ, y = ξ − ζ, t = s+ σ, τ = s− σ,
(4.5)

whose Jacobian is 4. As (x, t; y, τ) range over ST×ST , the new variables (ξ, s) range
over ST and (ζ, σ) range over S′

T , where

S′
T = R

N ×
(
−1
2
T ,

1

2
T

)
.

Therefore, the change of variables in (4.5) maps ST ×ST into ST × S′
T . In terms of

the new variables, we compute

ψ(x, t; y, τ) = ϕ(ξ; s) jh(ζ;σ),

∇xψ =
1

2
{∇ξϕ jh + ϕ∇ζjh} ,

∇yψ =
1

2
{∇ξϕ jh − ϕ∇ζjh} ,

∇xu+(x, t) =
1

2
{∇ξu+(ξ + ζ , s+ σ) + ∇ζu+(ξ + ζ , s+ σ)}

= ∇ξu+(ξ + ζ , s+ σ),

∇yv+(y, τ) =
1

2
{∇ξv+(ξ − ζ , s− σ) + ∇ξv+(ξ − ζ , s− σ)}

= ∇ξv+(ξ − ζ , s− σ),

∇xjh + ∇yjh = 0, jh,t + jh,τ = 0,

∇xψ + ∇yψ = ∇ξϕ jh, ψt + ψτ = ϕs jh,

ϕζi = 0, jh,ξi = 0, i = 1, 2, . . . , N.

In view of the dependence of u upon (ξ + ζ) and of v upon (ξ − ζ),

∇ξu+(ξ + ζ , s− σ) = ∇ζu+(ξ + ζ , s− σ),

∇ξv+(ξ − ζ , s− σ) = −∇ζv+(ξ − ζ , s− σ).
(4.6)

Next, using these new variables, we transform the various integrals in (4.1).

5. Transformation and limits of I2,ε. We first use the new variables intro-
duced in section 4 to transform I2,ε into a form suitable to study the limits as ε→ 0
and then h→ 0 in the indicated order, and we then estimate the limits.
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With the indicated choices and change of variables, we have

−1
2
I2,ε =

∫
S′
T

∫
ST

Hε

(
u(ξ + ζ, s+ σ)− v(ξ − ζ, s− σ)

)

×
{
∇ξu+(ξ + ζ, s+ σ) · (∇ξϕ jh + ϕ∇ζjh)

−∇ξv+(ξ − ζ, s− σ) (∇ξϕ jh − ϕ∇ζjh)
}
dξds dζdσ

+2

∫
S′
T

∫
ST

H ′
ε

(
u(ξ + ζ, s+ σ)− v(ξ − ζ, s− σ)

)
×{|∇ξu+|2 + |∇ξv+|2

}
ϕ jh dξds dζdσ

=

∫
S′
T

∫
ST

Hε(u− v)∇ξ(u+ − v+) · ∇ξϕ jh dξds dζdσ

+

∫
S′
T

∫
ST

Hε(u− v)∇ξ(u+ + v+) · ϕ∇ζjh dξds dζdσ

+2

∫
S′
T

∫
ST

H ′
ε

(
u(ξ + ζ, s+ σ)− v(ξ − ζ, s− σ)

)
×{|∇ξu+|2 + |∇ξv+|2

}
ϕ jh dξds dζdσ

= I
(1)
2,ε + I

(2)
2,ε + I

(3)
2,ε .

In transforming these integrals, we make use of the integrability of ∇u+. In
particular, |∇u+| vanishes a.e. on the set [u ≤ 0], and a similar fact holds for v+.
Then, for a.e. (ξ, s; ζ, σ) ∈ ST×S′

T , we write

Hε(u− v)∇ξ(u+ − v+) = Hε(u+ − v+)∇ξ(u+ − v+)

+∇ξu+ {Hε(u+ − v)−Hε(u+ − v+)}

+∇ξv+ {Hε(u+ − v+)−Hε(u− v+)} .

As ε→ 0, the last two terms tend to zero a.e. on every compact subset of ST×S′
T , and

their modulus is dominated, uniformly in ε, by a locally integrable function. Thus,

when they are put in the expression of I
(1)
2,ε and after we take the limit as ε→ 0, they

give no contribution. This process in I
(1)
2,ε gives

lim
ε→ 0

I
(1)
2,ε = lim

ε→ 0

∫
S′
T

∫
ST

∇ξ
(∫ u+−v+

0

Hε(θ)dθ

)
· ∇ξϕ jh dξds dζdσ

= − lim
ε→ 0

∫
S′
T

∫
ST

ηε(u+ − v+)∆ξϕ jh dξds dζdσ

= −
∫
S′
T

∫
ST

|u+ − v+|∆ξϕ jh dξds dζdσ.



SOLUTIONS FOR HYPERBOLIC-PARABOLIC EQUATIONS 759

In transforming I
(2)
2,ε , we first assume that u+ and v+ are regular, and we proceed

formally. By a repeated formal integration by parts,

I
(2)
2,ε = −

∫
S′
T

∫
ST

H ′
ε(u+ − v+)∇ξ(u+ + v+) · ∇ζ(u+ − v+)ϕ jh dξds dζdσ

−
∫
S′
T

∫
ST

Hε(u+ − v+) divζ∇ξ(u+ + v+)ϕ jh dξds dζdσ

= −
∫
S′
T

∫
ST

H ′
ε(u+ − v+)

{
∇ξ(u+ + v+) · ∇ζ(u+ − v+)

−∇ξ(u+ − v+) · ∇ζ(u+ + v+)

}
ϕ jh dξds dζdσ

+

∫
S′
T

∫
ST

Hε(u+ − v+)∇ζ(u+ + v+) · ∇ξϕ jh dξds dζdσ.

(5.1)

From this, taking into account the differentiation formulae (4.6) and performing a
further integration by parts, we have

I
(2)
2,ε =

∫
S′
T

∫
ST

H ′
ε(u+ − v+)

{|∇ξ(u+ − v+)|2

− |∇ξ(u+ + v+)|2
}
ϕ jh dξds dζdσ

−
∫
S′
T

∫
ST

(∫ (u+−v+)

0

Hε(θ)dθ

)
∆ξϕ jh dξds dζdσ.

(5.2)

These calculations can be made rigorous by the following procedure. Denote by u+,ν

and v+,ν the mollifications of u+ and v+ with respect to the variables ξ and ζ. Then

I
(2)
2,ε = oν(1) +

∫
S′
T

∫
ST

Hε(u+,ν−v+,ν)∇ξ(u+,ν+v+,ν) · ϕ∇ζjh dξds dζdσ,

where, for ε > 0 fixed, oν(1)→ 0 as ν → 0. We perform integrations by parts in the
integrals involving u+,ν and v+,ν to arrive at a formula analogous to (5.2). We then
let ν → 0 to obtain (5.2), the various limits being justified, since ∇u+ and ∇v+ are
in L2

loc(ST ). Finally, letting ε→ 0 gives

lim inf
ε→ 0

I
(2)
2,ε = −

∫
S′
T

∫
ST

|u+ − v+|∆ξϕ jh dξds dζdσ

− 4 lim inf
ε→ 0

∫
S′
T

∫
ST

H ′
ε(u+ − v+)∇ξu+ · ∇ξv+ ϕ jh dξds dζdσ.

We now combine these calculations in the expression of I2,ε and let ε → 0 to
obtain

lim sup
ε→ 0

I2,ε = 4

∫
S′
T

∫
ST

|u+ − v+|∆ξϕ jh dξds dζdσ

−4 lim sup
ε→ 0

∫
S′
T

∫
ST

H ′
ε(u+ − v+)|∇ξ(u+ − v+)|2ϕ jh dξds dζdσ

≤ 4

∫
S′
T

∫
ST

|u+ − v+|∆ξϕ jh dξds dζdσ
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since ϕ ≥ 0 and jh ≥ 0. Finally, we let h↘ 0 by following the same arguments as in
Kruzhkov [3, 4] to obtain

lim
h→ 0

lim sup
ε→ 0

I2,ε ≤ 4

∫
ST

∣∣u+(x, t)− v+(x, t)
∣∣∆xϕ(x, t) dx dt.

6. Transformation and limits of I1,ε and I3,ε. Now we continue to perform
the change of variables to transform I1,ε and I3,ε into a form suitable to study the
limits as ε→ 0 and then h→ ε.

In transforming I1,ε, we use the definitions (3.1)–(3.1)′ of the entropy and the
definitions (3.2)–(3.2)′ of the corresponding flux functions. Taking into account (4.5),
we compute

lim
ε→ 0

I1,ε = 4

∫
S′
T

∫
ST

{
|u(ξ + ζ, s+ σ)− v(ξ − ζ, s− σ)|ϕs(ξ, s) jh(ζ, σ)

+
1

2

∣∣u2(ξ + ζ, s+ σ)− v2(ξ − ζ, s− σ)
∣∣a · ∇ξϕ(ξ, s) jh(ζ, σ)

}
dξds dζdσ.

Letting now h→ 0, we find

lim
ε→ 0

I1,ε = 4

∫
ST

{
|u(x, t)− v(x, t)|ϕt(x, t)

+
1

2

∣∣u2(x, t)− v2(x, t)
∣∣a · ∇xϕ(x, t)

}
dx dt.

In transforming I3,ε, we perform the change of variables (4.5) involving only the
space variables, whereas the time variables are left unchanged. The Jacobian of the
transformation is 2. Analogous arguments and limiting processes yield

limε→ 0 I3,ε = 2

∫
ST

∫
RN

|u0(ξ + ζ)− v(ξ − ζ, τ)|ϕ
(
ξ,
1

2
τ

)
jh

(
ζ,−1

2
τ

)
dξ dζdτ

+2

∫
ST

∫
RN

∣∣v0(ξ − ζ)− u(ξ + ζ, t)
∣∣ϕ(ξ, 1

2
t

)
jh

(
ζ,

1

2
t

)
dξ dζdt.

Now letting h→ 0 gives

lim
h→ 0

lim
ε→ 0

I3,ε = 4

∫
RN

∣∣u0(x)− v0(x)
∣∣ϕ(x, 0) dx.

7. Proof of the stability theorem (iii). By combining these calculations in
(4.1) and after taking the limit first for ε↘ 0 and then for h↘ 0, we arrive at∫

ST

{∣∣u(x, t)− v(x, t)
∣∣ϕt(x, t) +1

2

∣∣u2(x, t)− v2(x, t)
∣∣a · ∇xϕ(x, t)

+
∣∣u+(x, t)− v+(x, t)

∣∣∆xϕ(x, t)

}
dxdt

+

∫
RN

∣∣u0(x)− v0(x)
∣∣ϕ(x, 0)dx ≥ 0.

(7.1)

In this more stringent integral inequality, the nonnegative testing function ϕ is still
to be chosen.
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In this section, we choose the testing function to identify the weight w(x, t) and
the stability result (1.6).

First we rewrite (7.1) in the form∫
ST

∣∣u(x, τ)− v(x, τ)
∣∣{ϕτ +A · ∇xϕ + b∆xϕ

}
dx dτ

+

∫
RN

∣∣u0(x)− v0(x)
∣∣ϕ(x, 0) dx ≥ 0,

(7.2)

where we have set

A(x, τ) ≡ 1

2

∣∣u2(x, τ)− v2(x, τ)
∣∣

|u(x, τ)− v(x, τ)| a =
1

2
|u(x, τ) + v(x, τ)| a,

b(x, τ) ≡
∣∣u+(x, τ)− v+(x, τ)

∣∣∣∣u(x, τ)− v(x, τ)
∣∣

if u �= v, and A = b = 0 if u = v. In (7.2) we choose the testing functions

ϕε,δ(x, τ) = hδ(τ)w(x, τ) ζ(x).

Here, for 0 < δ � 1, we have set

hδ(τ) =
1

δ

∫ ∞

τ−t
ω
(s
δ

)
ds, 0 < t ≤ T − δ,

where ω(·) is the standard, symmetric mollifier in R. Moreover,

w(x, τ) = e− (1 +λ1 τ) |x|2 −λ2 τ

for positive constants λ1 and λ2 to be chosen. Finally, x → ζ(x) is a standard,
nonnegative cutoff function in the ball {|x| < 2R}, satisfying



ζ(x) = 1 for |x| < R,

|∇ζ| ≤ 1

R
for all |x| < 2R,

|∆ζ| ≤ const

R2
for all |x| < 2R.

These testing functions are admissible since both hδ and wζ are nonnegative and
regular, and, by the properties of the mollifiers, hδ(τ) = 0 for τ ≥ t+ δ. We compute

wτ (x, τ) = − (λ2 + λ1 |x|2
)
w(x, τ),

∇xw(x, τ) = −2 (1 + λ1 τ) xw(x, τ),

∆xw(x, τ) = 2 (1 + λ1 τ)
{
2 (1 + λ1 τ) |x|2 − N

}
w(x, τ).

By the structure of x→ w(x, τ) and ζ(x),

lim
R→∞

∫
{R<|x|<2R}

{w (ζ + |∇ζ|+ |∆ζ|) + |∇xw · ∇ζ|} dx = 0,
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uniformly in τ ∈ (0, T ). Putting this testing function in (7.2) and letting R→∞ give

−
∫
ST

|u(x, τ)− v(x, τ)| 1
δ
ω

(
τ − t

δ

)
w(x, τ) dx dτ

+

∫
ST

|u(x, τ)− v(x, τ)|hδ(τ) {wτ +A · ∇xw + b∆xw} dx dτ

+

∫
RN

|u0(x)− v0(x)|hδ(0)w(x, 0) dx ≥ 0.

(7.3)

The growth condition (1.5) implies that there exists a positive constant C, de-
pending only upon γ, such that

A · x ≤ C
(
1 + |x|2) for all x ∈ R

N .

Then

wτ +A · ∇xw + b∆xw ≤ w
{
C − λ2 +

[
C + 4(1 + λ1τ)

2 − λ1

] |x|2} .
Choose λ2 = C and T0 = λ−1

1 . Then select λ1 from

C + 4 (1 + λ1 τ)
2 − λ1 ≤ C + 16 − λ1 ≤ 0.

For such choices, we discard the second integral in (7.3) and let δ → 0 to obtain∫
RN

w(x, t)|u(x, t)− v(x, t)| dx ≤
∫

RN

w(x, 0)|u0 − v0| dx

for a.e. t ∈ (0, T0). Since the weight w depends only upon γ, the process can be
repeated to exhaust, in a finite number of steps, the time interval of existence.

In the case of general nonlinearities f(u) and β(u), the weight w can be con-
structed depending only on the Lipschitz constant of β(u) and sup(x,t)∈ST

|f′(u(x, t))|/
(1 + |x|).

Note added in proof. After we submitted this paper, we were aware of Carrillo’s
paper [9] dealing with bounded solutions for a similar problem in bounded domains.
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Abstract. In this paper we investigate the properties of the solutions for some general reaction-
diffusion systems due to Othmer–Stevens which arise in modelling chemotaxis, and we prove some
results about collapse and finite-time action of certain local modifications of the environment.
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1. Introduction. In biology, it is very important to investigate the movement
of some cells or organisms in some given biological system (cf. [2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12]). The mechanism of communication between cells or organisms depends
on the different ways they interact. In many biological systems, the movement occurs
in response to a diffusible substance or otherwise transported signal. Other systems
are modelled by so-called short-range interactions due to local modifications of the
environment such as the production and release of nutrients. In this case, dispersal is
not simply one of simple diffusion but rather one of correlated or reinforced random
walks. In order to understand how the movement rules are affected by the effect of
the chemo-attractant, Othmer and Stevens introduced in [4] several general classes of
partial differential equations. In one of their models, they considered a master equa-
tion, i.e., barrier, and nearest neighbor lattice model. Following a limiting process,
the model is described by the following system of partial differential equations:



∂p

∂t
= D∇ ·

(
p∇

(
ln
( p
w

)))
∂w

∂t
= F (p, w)

for x ∈ Ω, t > 0,

p∇
(
ln
( p
w

))
· 
n = 0 for x ∈ ∂Ω, t > 0,

p(x, 0) = p0(x) > 0

w(x, 0) = w0(x) > 0
for x ∈ Ω,

(1.1)

where p(x, t) is the particle density of a particular species and w(x, t) is the density
of the local control species.

From the boundary condition and the first equation of (1.1), we can easily deduce
that, for any solution p(x, t) of (1.1), we have∫

Ω

p(x, t)dx =

∫
Ω

p(x, 0)dx.(1.2)
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Through a large number of numerical experiments, Othmer and Stevens found
that the asymptotic behavior of the solutions depends strongly on the dynamics of w.
In particular, the growth of w determines whether or not blow-up occurs. In fact, from
their numerical results in [4], Othmer and Stevens conjecture that, when w has linear
growth, there is a global solution of the dynamics, and p(x, t) collapses in some cases,
where we say that the solution p(x, t) collapses, which means when t tends to infinity,
p(x, t) could be controlled by the initial data, i.e., limt→∞ sup ‖p(·, t)‖L∞ < ‖p0(·)‖L∞

(see Definition 2.1 below); whereas when w grows exponentially, p(x, t) should blow up
in finite time. For the case of w possessing exponential growth, Levine and Sleeman
[2] have studied a special one-dimensional example under the additional boundary-
value condition px = wx = 0. In that situation they constructed an exact solution
supporting the numerical observations of Othmer and Stevens.

In this paper, we extend some results of [2] to the case of general boundary con-
ditions, general positive initial data, and higher dimensional spaces R

n (n ≥ 1). We
concentrate on the two situations where w grows linearly and exponentially, respec-
tively. We found that if w grows linearly, the conjectures suggested by numerical
observations of Othmer and Stevens are true in general cases. When w possesses
exponential growth, the numerical results lose a lot of information. We construct
both global and blow-up in a finite-time solution, respectively, for the case Levine
and Sleeman [2] considered. So even at the same growth rate the behavior of the bi-
ological systems can be very different just because they start their action in different
conditions. That may be a very important fact in biological systems.

Our results are the following.
(1) When the production of w is proportional to the local density of p, i.e.,

∂w

∂t
= βp− µw,(1.3)

there exists a unique global solution that is bounded. Furthermore, when the
initial data satisfy some additional conditions, in particular, when w0(x) is a
constant, but not necessarily p0(x), then p collapses.

(2) When the control species grows exponentially, i.e.,

∂w

∂t
= (βp− µ)w,(1.4)

both global and blow-up in finite-time solutions may exist dependent on their
choice of initial data. We have constructed two families of solutions: global
and blow-up in finite time. Also, we have proved that if blow-up occurs,
p(x, t), as well as w(x, t), will blow up at the same points.

We discuss linear and exponential growth of w in sections 2–4, respectively. In
section 5, we show how our method can be used to solve other dynamics which also
arise from mathematical models in biology. We list without proof the main results we
have obtained for these new systems.

The main tools we use here are the maximum principle, subsuper solutions, and
function transformations.

2. The dynamics with w possessing linear growth. In this section, we
consider the dynamics with w possessing linear growth. Thus we investigate the
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following problem:


∂p

∂t
= D∇ ·

(
p∇

(
ln
( p
w

)))
∂w

∂t
= βp− µw

for x ∈ Ω, t > 0,

p∇
(
ln
( p
w

))
· 
n = 0 for x ∈ ∂Ω, t > 0,

p(x, 0) = p0(x) > 0

w(x, 0) = w0(x) > 0
for x ∈ Ω,

(2.1)

where Ω is a bounded smooth domain in R
n (n ≥ 1), 
n is the outer normal on ∂Ω,

and D > 0, β > 0, µ ≥ 0 are all constants.
In their numerical results, Othmer and Stevens [4] suggest that when µ > 0, there

is a global solution that might collapse. In the case µ = 0, the asymptotic behavior
of the solution is still unknown, but it is conjectured that small amplitude stable
solutions exist.

In order to prove their conjecture, we introduce a new function u(x, t) = p(x,t)
w(x,t) .

It can be easily shown that (p(x, t), w(x, t)) is a solution of the dynamics (2.1) if and
only if (u(x, t), w(x, t)) is a solution of the following dynamics:



∂u

∂t
= D∆u+D

1

w
(∇w) · (∇u) + (µ− βu)u

w(x, t) = w0(x) exp

{∫ t

0

(βu(x, τ)− µ) dτ
} for x ∈ Ω, t > 0,

∂u

∂n
= 0 for x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x)
∆
=
p0(x)

w0(x)
> 0

w(x, 0) = w0(x) > 0
forx ∈ Ω

(2.2)

and

p(x, t) = w0(x)u(x, t) exp

{∫ t

0

(βu(x, τ)− µ) dτ
}

for x ∈ Ω, t > 0.(2.3)

Here we have used the fact that

ut =
( p
w

)
t
=

1

w
(pt − uwt),

pt = D∇ ·
(
p∇

(
ln
( p
w

)))
= D∇ · (w∇u) = Dw∆u+D(∇w) · (∇u).

Since we can assert the local-in-time existence as well as the uniqueness of solu-
tions by the result of [7] (also see [1, 2, 4]), we set

T = sup{T̃ > 0; (p, w) exists for x ∈ Ω, t ∈ [0, T̃ ]}.(2.4)

So T > 0 is well defined. Thus there exists a solution (u(x, t), w(x, t)) of the dynamics
(2.2) for x ∈ Ω, t ∈ [0, T ). For fixed w, we investigate the property of u. First we
consider µ > 0.

Lemma 2.1. If u0(x) ≤ µ
β , then u(x, t) ≤ µ

β as long as the solution exists in time.

Furthermore, if for any fixed t ∈ (0, T ), u(·, t) takes its minimum value at the point
xt, then ut(xt, t) > 0 if u(xt, t) <

µ
β .
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Proof. Assume that the result is false; then there exists (x∗, t∗) ∈ Ω× (0, T ) such
that u(x∗, t∗) > µ

β . Without loss of generality, we have

u(x̄, t̄) = max
Ω̄×[0,t∗]

u(x, t) >
µ

β
.

We know t̄ > 0 because of u(x̄, 0) = u0(x̄) ≤ µ
β . Since at the point (x, t) = (x̄, t̄) we

have

ut −D∆u−D 1

w
(∇w) · (∇u) = (µ− βu)u < 0,

we get (x̄, t̄) �∈ Ω× (0, t∗] by the maximum principle. That means x̄ ∈ ∂Ω. Again, by
the maximum principle argument, we should have ∂u

∂n

∣∣
(x̄,t̄)

> 0, which is a contradic-

tion. That leads to u(x, t) ≤ µ
β for all (x, t) ∈ Ω̄× (0, T ).

For any fixed t > 0 we obtain from the maximum principle

−D∆u−D 1

w
(∇w) · (∇u) = −ut + (µ− βu)u ≤ 0

at the point (xt, t). Since (µ− βu)u ≥ 0 for all (x, t) ∈ Ω× (0, T ), we have ut ≥ 0 at
(xt, t). When u(xt, t) <

µ
β , we can get ut(xt, t) > 0 immediately. This completes the

proof.
It is easy to see that similar arguments lead to the following results.
Lemma 2.2. If u0(x) ≥ µ

β , then u(x, t) ≥ µ
β for all (x, t) ∈ Ω × [0, T ). If u(·, t)

takes its maximum at the point x = xt for any fixed t ∈ (0, T ), then ut(x
t, t) < 0 if

u(xt, t) > µ
β .

Lemma 2.3. If m
∆
= minx∈Ω u0(x) <

µ
β < maxx∈Ω u0(x)

∆
= M , then m ≤

u(x, t) ≤M for all (x, t) ∈ Ω× (0, T ). Furthermore, ut(x
t, t) < 0 if u(xt, t) > µ

β , and

ut(xt, t) > 0 if u(xt, t) <
µ
β , where x

t, xt are the same as above.

Remark 2.1. If T = +∞, we can prove that limt→+∞ u(x, t) = µ
β for µ > 0.

Theorem 2.1. For arbitrary strictly positive initial data (p0(x), w0(x)), x ∈ Ω,
compatible with the boundary condition along x ∈ ∂Ω, there exists a unique global
positive solution (p(x, t), w(x, t)) of the dynamics (2.1) when µ > 0.

Proof. We know that the dynamics (2.1) have a unique local positive solution.
What we need to do is to prove T = +∞.

Assume T < +∞. From Lemmas 2.1–2.3 we know that the solution u(x, t)
of the related dynamics (2.2) is a bounded smooth function in Ω × (0, T ). So the

function w(x, t) = w0(x) exp{
∫ t
0
(βu(x, τ) − µ) dτ} is not only well defined but also

continuous on Ω̄ × [0, T ]. This implies that both u(x, t) and p(x, t) are well defined
and continuous on Ω̄×[0, T ]. Replacing the initial data (p0(x), w0(x)) of the dynamics
(2.1) by (p(x, T ), w(x, T )), we can obtain a new local positive solution (p̄(x, t), w̄(x, t))
defined in Ω× [0, δ) for some δ > 0. It is obvious that (P (x, t),W (x, t)) is a positive
solution of the dynamics (2.1) defined in Ω× [0, T + δ), where

P (x, t) =

{
p(x, t) for (x, t) ∈ Ω× (0, T ),

p̄(x, t− T ) for (x, t) ∈ Ω× [T, T + δ),

W (x, t) =

{
w(x, t) for (x, t) ∈ Ω× (0, T ),

w̄(x, t− T ) for (x, t) ∈ Ω× [T, T + δ).
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This result is a contradiction to the definition of T . Thus T = +∞, as required.
The uniqueness of the solution for (2.1) is trivial.
Remark 2.2. The problem (2.1) is actually a special case of the following Keller–

Segel (KS) model with Neumann boundary conditions, i.e.,

(KS)

{
pt = ∇ · (d1∇p− χp∇ logw), wt = d2w + βp− µw,
Neumann boundary conditions,

under the conditions of d1 = χ = D, d2 = 0. From Theorem 2.1, we have proved,
in this case, that the (KS) model has a unique global solution. However, the global
existence of solutions for the general (KS) models depends on the parameters in (KS),
the space dimensions, and initial functions (cf. [13, 14, 15]).

Based on their numerical results for a wide variety of initial data, Othmer and
Stevens conjectured in [4] that p(x, t) collapse when µ > 0. In the case µ = 0, this is
unknown. Before discussing this problem, we introduce the concept of collapse used
in [4].

Definition 2.1. Let p(x, t) be the solution of the dynamics (2.1) for given ini-
tial distribution p0(x). Then if limt→∞ sup ‖p(·, t)‖L∞ < ‖p0(·)‖L∞ , we say there is
collapse.

In other words, if p(x, t) denotes the particle density of a particular species and
p(x, t) collapses, what represents the species will not be aggregation (see [4] for de-
tails).

It is obvious that if µ > 0, the dynamics (2.1) has a constant solution (p, w) =
(p0, βp0/µ). So collapse does not occur. Furthermore, we can give a class of steady-
state solutions for p which do not collapse at all.

Example 2.1. For any smooth function Φ(x) > 0 defined on Ω,

(p, w) =

(
1, e−µt

(
c− β

µ

)
+
β

µ

)
Φ(x)

is the solution of the dynamics (2.1) with initial data (p0(x), w0(x)) = (1, c)Φ(x) for
all c > 0. It is obvious that we cannot expect collapse.

Theorem 2.2. Let µ > 0. For the dynamics (2.1) the solution (p, w) is bounded.
Furthermore, for all (x, t) ∈ Ω × [0,+∞) we have p(x, t) < w0(x)maxΩ u0(x) if
w0(x) �= cp0(x) for some c > 0.

Proof. Let c0 = [maxx∈Ω̄ u0(x)]
−1 and v(t) = eµt[c0 + β

µ (e
µt − 1)]−1. We can

easily find that v(t) is a supersolution of the dynamics (2.2). From u(x, t) ≤ v(t) for
all (x, t) ∈ Ω× (0 +∞) we have

p(x, t) = w0(x)u(x, t) exp

{∫ t

0

(βu(x, τ)− µ) dτ
}

≤ w0(x)v(t) exp

{∫ t

0

(βv(τ)− µ) dτ
}

= w0(x)/c0

= w0(x)maxx∈Ω̄ u0(x) < +∞.

Next, from (eµtw)t = βe
µtp, we have
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eµtw(x, t) = w(x, 0) + β

∫ t

0

eµτp(x, τ)dτ

≤ w(x, 0) + β
∫ t

0

w0(x)max
x∈Ω̄

u0(x)e
µτdτ

= w0(x) +
β

µ
w0(x)max

x∈Ω̄
u0(x)[e

µt − 1],

which means

w(x, t) ≤ e−µtw0(x) +
β

µ
w0(x)max

x∈Ω̄
u0(x)[1− e−µt] < +∞.

When w0(x) �= cp0(x), then u(x, t) < v(t) for all (x, t) ∈ Ω × (0,+∞), which
implies p(x, t) < w0(x)maxx∈Ω̄ u0(x) for (x, t) ∈ Ω × (0,+∞). This completes the
proof.

Let u0(x) attain its maximum at the point x1 and p0(x) its maximum at the point
x2. Denote σ = p0(x2)/p0(x1). If w0(x) ≤ σw0(x1) for all x ∈ Ω̄, then p(x, t) < p0(x2)
when w0(x) �= cp0(x). This fact leads to the following result on the collapse.

Corollary 2.1. Let µ > 0, and suppose that u0(x) takes its maximum at
the point x1, and let σ = [p0(x1)]

−1 maxx∈Ω p0(x). If w0(x) ≤ σw0(x1) for x ∈ Ω
when w0(x) �= cp0(x) for some c > 0, then p(x, t) < maxx∈Ω p0(x) for all (x, t) ∈
Ω× (0,+∞). This means that there is collapse.

Othmer and Stevens discuss in [4] the system




∂p

∂t
= D

∂

∂x

(
p
∂

∂x

(
ln
( p
w

)))
∂w

∂t
= p− µw

for x ∈ (0, 1), t > 0,

p
∂

∂x

(
ln
( p
w

))
= 0 for x = 0, 1, t > 0,

p(x, 0) = p0(x) > 0

w(x, 0) = w0(x) > 0
for x ∈ [0, 1]

and find that if µ = 0, the space-independent solution (p0, w0 + p0t) is unstable.
When µ > 0, we have seen that there exists a solution

(p, w) =

(
1, e−µt

(
c− β

µ

)
+
β

µ

)
Φ(x)(2.5)

for the dynamics (2.1), where p is t-independent, with initial data (p0, w0) = (1, c)Φ(x).
However, we can prove the solution (2.5) will be unstable asymptotically. In fact, if
we choose a positive function ψ(x), which takes its minimum at the maximum point of
the function Φ, then both functions Φ and Φ

1+ψ attain their maxima at the same point.

Thus, as a consequence of Theorems 2.1 and 2.2, we know that the dynamics (2.1) has
a unique global solution (p(x, t), w(x, t)) with initial data (p0, w0) = ( 1

1+ψ(x) , c)Φ(x),
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which satisfies p(x,t)
w(x,t) = u(x, t) < v(t) and

p(x, t) < w0(x)max
x∈Ω̄

u0(x) = w0(x)max
x∈Ω̄

(
1

c(1 + ψ(x))

)

= cΦ(x)max
x∈Ω̄

(
1

c(1 + ψ(x))

)
≤ max

x∈Ω̄
Φ(x)max

x∈Ω̄

(
1

1 + ψ(x)

)

= max
x∈Ω̄

(
Φ(x)

1 + ψ(x)

)
.

Let x̄ be the maximum point of p0(x) (i.e., x̄ is the maximum point of Φ(x) and
the minimum point of ψ(x)); then we have

p(x̄, t) < p0(x̄) =
Φ(x̄)

1 + ψ(x̄)
< Φ(x̄).

That implies, for any ψ(x) > 0 but quite small, we have

lim
t→+∞ p(x̄, t) ≤ p0(x̄) < Φ(x̄).

Therefore, we get the following result.
Corollary 2.2. When µ > 0, the solution

(p, w) =

(
1, e−µt

(
c− β

µ

)
+
β

µ

)
Φ(x)

with t-independent p is not asymptotically stable.
Next we consider the case µ = 0.
Theorem 2.3. When µ = 0, for any strictly positive initial data (p0(x), w0(x))

(satisfying the comparison condition similarly as above in Theorem 2.1), there exists a
unique global positive solution (p(x, t), w(x, t)) of the dynamics (2.1) such that p(x, t)

is bounded and w(x, t)
t→+∞−→ +∞. Furthermore,

p(x, t) < w0(x)max
Ω
u0(x)

if w0(x) �= cp0(x) for some c > 0.

Proof. Let u(x, t) = p(x,t)
w(x,t) ; we know that (p(x, t), w(x, t)) is a positive solution of

the dynamics (2.1) if and only if (u(x, t), w(x, t)) is a positive solution of the following
dynamics:



∂u

∂t
= D∆u+D

1

w
(∇w) · (∇u)− βu2

w(x, t) = w0(x) exp

{∫ t

0

(βu(x, τ)) dτ

} for x ∈ Ω, t > 0,

∂u

∂n
= 0 for x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x)
∆
=
p0(x)

w0(x)
> 0

w(x, 0) = w0(x) > 0
for x ∈ Ω

and

p(x, t) = w0(x)u(x, t) exp

{∫ t

0

βu(x, τ) dτ

}



770 YIN YANG, HUA CHEN, AND WEIAN LIU

for x ∈ Ω, t > 0. It can be easily found that(
min
x∈Ω̄

u0(x)

)[
1 + βmin

x∈Ω̄
u0(x)t

]−1

≤ u(x, t) ≤
(
max
x∈Ω̄

u0(x)

)[
1 + βmax

x∈Ω̄
u0(x)t

]−1

,

which implies that there exists a global positive solution for the dynamics (2.1) by
the method we use in the proof of Theorem 2.1. If w0(x) �= cp0(x) for some c > 0, we
obtain

u(x, t) <

(
max
x∈Ω̄

u0(x)

)[
1 + βmax

x∈Ω̄
u0(x)t

]−1

and

p(x, t) = w0(x)u(x, t) exp

{∫ t

0

βu(x, τ) dτ

}

< w0(x)
maxx∈Ω̄ u0(x)

1 + βmaxx∈Ω̄ u0(x)t
exp

{∫ t

0

βmaxx∈Ω̄ u0(x)

1 + βmaxx∈Ω̄ u0(x)τ
dτ

}
= w0(x)max

x∈Ω̄
u0(x),

and w(x, t) ≥ w0(x)[1 + βminx∈Ω̄ u0(x)t]
t→+∞−→ +∞.

Similarly, we have the following result.
Corollary 2.3. For µ = 0, the statements of Corollaries 2.1 and 2.2 are also

valid.

3. One-dimensional case with w possessing exponential growth. The
growth rate of w is very important to the characteristics of p, which determines
whether or not blow-up occurs. Actually, Othmer and Stevens [4] conjectured that,
when w grows exponentially, p(x, t) should blow up in finite time. It is obvious
that when both initial data p(x, 0) and w(x, 0) are positive constants, we can get
a global solution immediately: (p0, w0e

(βp0−µ)t). What we are very interested in is
the situation about nonconstant initial data. In a recent result of [2], Levine and
Sleeman studied a special one-dimensional example under the additional boundary-
value condition px = wx = 0, and they constructed a class of solutions

p(x, t) = 1− 2NcεeNct
εeNct − cos(Nx)

1− 2εeNct cos(Nx) + ε2e2Nct
,

w(x, t) =
et

1− 2εeNct cos(Nx) + ε2e2Nct

satisfying the problem, taking D = β = 1, µ = 0,


∂p

∂t
= D

∂

∂x

(
p
∂

∂x

(
ln
( p
w

)))
∂w

∂t
= (βp− µ)w

for x ∈ (0, π), t > 0,

px = wx = 0 for x = 0, π; t > 0,

p(x, 0) =
1− 2ε(1−Nc) cos(Nx) + (1− 2Nc)ε2

1− 2ε cos(Nx) + ε2

w(x, 0) =
1

1− 2ε cos(Nx) + ε2

for x ∈ [0, π],



GLOBAL SOLUTION AND BLOW-UP OF CHEMOTAXIS EQUATIONS 771

where N > 0 is an integer, c = 2
N+

√
N2+4

, and ε > 0 sufficiently small. Levine

and Sleeman’s work confirms the conjecture of Othmer and Stevens. Unfortunately,
combining the technique of [2] and the other technique, even we can find that, in the
one-dimensional case, the blow-up conjecture is false. In fact, the situation in this
case is more complicated; we can find two kinds of solutions. One would exist globally,
and another one would blow up in finite time. In particular, the solution as obtained
by Levine and Sleeman [2] is one of the special cases in our blow-up solutions family
here.

At the beginning, let us follow the technique in Levine and Sleeman [2] and
consider the special case of the dynamics:



∂p

∂t
=
∂

∂x

(
p
∂

∂x

(
ln
( p
w

)))
∂w

∂t
= pw

for x ∈ (0, π), t > 0,

px = wx = 0 for x = 0, π; t > 0,

p(x, 0) = p0(x) > 0

w(x, 0) = w0(x) > 0
for x ∈ [0, π].

(3.1)

Let ψ(x, t) = lnw(x, t); we obtain the following initial boundary-value problem
for ψ: 



ψtt − ψxxt + (ψxψt)x = 0 for x ∈ (0, π), t > 0,

ψx = 0 for x = 0, π; t > 0,

ψ(x, 0) = ψ0(x) = lnw0(x)

ψt(x, 0) = p0(x) > 0
for x ∈ (0, π).

(3.2)

Let ψ = αt+ φ. Then φ satisfies


φtt + αφxx − φxxt + φtφxx + φxφxt = 0 for 0 < x < π, t > 0,

φx = 0 for x = 0, π; t > 0,

φ(x, 0) = φ0(x)

φt(x, 0) = p0(x)− α
for x ∈ (0, π).

(3.3)

Let φ(x, t) = − ln(c− u). Then

φt =
ut
c− u, φx =

ux
c− u, φtt =

(c− u)utt + u2
t

(c− u)2 ,

φxx =
(c− u)uxx + u2

x

(c− u)2 , φxt =
(c− u)uxt + uxut

(c− u)2 ,

and

φxxt =
1

(c− u)4
{
(c− u)2[(c− u)uxxt − utuxx + 2uxuxt

]
+2(c− u)ut

[
(c− u)uxx + u2

x

]}
=

1

(c− u)uxxt +
1

(c− u)2
[
2uxuxt + utuxx

]
+

2utu
2
x

(c− u)3 .
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So we have

0 = φtt + αφxx − φxxt + φtφxx + φxφxt

=
1

(c− u)2
(
u2
t + αu

2
x − uxuxt

)
+

1

c− u
(
utt + αuxx − uxxt

)
=

1

(c− u)2
(
u2
t + αu

2
x − uxuxt + cutt + cαuxx

−cuxxt − uutt − αuuxx + uuxxt
)
.

If u(x, t) < c, the above equation is equivalent to the following equation:

cutt + cαuxx − cuxxt + u2
t + αu

2
x − uxuxt − uutt − αuuxx + uuxxt = 0.

Thus we have

cutt + cαuxx − cuxxt = −(u2

t + αu
2
x − uxuxt − uutt − αuuxx + uuxxt

)
for 0 < x < π, t > 0,

ux = 0 for x = 0, π, t > 0.

(3.4)

Next, let u(x, t) = X(x)T (t) + g(t). Then

0 = cXT ′′ + cg′′(t) + cαX ′′T − cX ′′T ′ +
[
XT ′ + g′(t)

]2
+ αX ′2T 2 −X ′2TT ′

−(XT + g(t)
)(
XT ′′ + g′′(t)

)− α[XT + g(t)
]
X ′′T +

[
XT + g(t)

]
X ′′T ′

=
[
cT ′′ + 2g′(t)T ′ − g′′(t)T − g(t)T ′′]X +

[
cαT − cT ′ − αg(t)T + g(t)T ′]X ′′

+
[
T ′2 − TT ′′]X2 +

[
αT 2 − TT ′]X ′2 +

[
TT ′ − αT 2

]
XX ′′

+[g′(t)]2 − g(t)g′′(t) + cg′′(t).

If T ′2 = TT ′′, we obtain T ′
T = T ′′

T ′ , which implies T (t) = c2e
c1t. In this case, we

can get

0 =
{[
cc21 + 2c1g

′(t)− g′′(t)− c21g(t)
]
X +

[
αc− cc1 − αg(t) + c1g(t)

]
X ′′

+
[
α− c1

]
(X ′)2T +

[
c1 − α

]
TXX ′′}T + cg′′(t)− g(t)g′′(t) + [g′(t)]2.

Choose X(x) = cosnx. Then

0 =
[
cc21 + 2c1g

′(t)− g′′(t)− c21g(t)− αcn2 + cc1n
2 + αn2g(t)− c1n2g(t)

]
XT

+
{
n2[α− c1] sin2 nx+ n2[α− c1] cos2 nx

}
T 2 + cg′′(t)− g(t)g′′(t) + [g′(t)]2

=
[
cc21 − αcn2 + cc1n

2 + 2c1g
′(t)− g′′(t) + (αn2 − c21 − c1n2)g(t)

]
XT

+(αn2 − c1n2)T 2 + cg′′(t)− g(t)g′′(t) + [g′(t)]2.

Now let us consider the following equations:

g′′(t)− 2c1g

′(t) + (c21 − αn2 + c1n
2)g(t) = c(c21 + c1n

2 − αn2),(3.5)

(c− g(t))g′′(t) + (g′(t))2 = n2c22(c1 − α)e2c1t.(3.6)
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From (3.5), it is obvious that g(t) = Aek1t + Bek2t + c, where c1 < α, k1 =
c1 + n

√
α− c1, and k2 = c1 − n

√
α− c1. Taking g(t) into (3.6), we have

n2c22(c1 − α)e2c1t =
[−Aek1t −Bek2t][Ak2

1e
k1t +Bk2

2e
k2t
]
+
[
Ak1e

k1t +Bk2e
k2
]2

= −AB(k1 − k2)2e2c1t,

which implies

n2c22(α− c1) = AB(k1 − k2)2 = 4n2AB(α− c1),

which leads to 4AB = c22. Replacing 2c2 by c2, A by −A, and B by −B, we obtain

ψ(x, t) = αt− ln[±2
√
ABec1t cosnx+Aek1t +Bek2t]

and

p(x, t) = α− Ak1e
k1t +Bk2e

k2t ± 2c1
√
ABec1t cosnx

Aek1t +Bek2t ± 2
√
ABec1t cosnx

.

It is obvious that

w(x, t) =
eαt

±2√ABec1t cosnx+Aek1t +Bek2t .

(p, w) is the solution for the problem (3.1) with the initial data

(p0(x), w0(x)) =

(
α− Ak1 +Bk2 ± 2c1

√
AB cosnx

A+B ± 2
√
AB cosnx

,
1

±2√AB cosnx+A+B

)
.

Theorem 3.1. For the dynamics (3.1), we have the following kinds of solutions:

(a) Assume A > B > 0; if c1 < α − n2{
√
A+

√
B√

A−√
B
}2, then (p(x, t), w(x, t)) is the

global solution for the dynamics (3.1).
(b) Assume 0 < A < B; then for any c1 < α there exists T > 0 such that

(p(x, t), w(x, t)) is the solution of the dynamics (3.1) for 0 < t < T , and the solution
will blow up at the finite time t = T at some point x ∈ [0, π].

Proof. (a) Since A > B > 0, we can choose a point x0, satisfying cosnx0 = −1.
Then, for x ∈ [0, π], t > 0, we have

Aek1t +Bek2t ± 2
√
ABec1t cosnx ≥ Aek1t +Bek2t + 2

√
ABec1t cosnx0

= ec1t
(√
Ae

(n
√

α−c1)t

2 −√Be− (n
√

α−c1)t

2

)2

≥ ec1t(√A−√B)2 > 0,

which implies that p(x, t) and w(x, t) are well defined and w(x, t) > 0 for all t > 0.

Furthermore, because of c1 < α and c1 < α − n2{
√
A+

√
B√

A−√
B
}2, which implies that
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α− c1 − n
√
α− c1

√
A+

√
B√

A−√
B
> 0, we obtain that

p(x, t) = α− Ak1e
k1t +Bk2e

k2t ± 2
√
ABc1e

c1t cosnx

Aek1t +Bek2t ± 2
√
ABec1t cosnx

= α− Ak1e
n
√
α−c1t +Bk2e−n

√
α−c1t ± 2

√
ABc1 cosnx

Aen
√
α−c1t +Be−n

√
α−c1t ± 2

√
AB cosnx

= α− c1 − n
√
α− c1 Aen

√
α−c1t −Be−n

√
α−c1t

Aen
√
α−c1t +Be−n

√
α−c1t ± 2

√
AB cosnx

≥ α− c1 − n
√
α− c1 Aen

√
α−c1t −Be−n

√
α−c1t{√

Ae
n
√

α−c1t

2 −
√
Be−

n
√

α−c1t

2

}2

= α− c1 − n
√
α− c1

√
Ae

n
√

α−c1t

2 +
√
Be

−n
√

α−c1t

2

√
Ae

n
√

α−c1t

2 −
√
Be−

n
√

α−c1t

2

≥ α− c1 − n
√
α− c1

√
A+
√
B√

A−
√
B
> 0.

Furthermore, for any x ∈ [0, π], t > 0, we get that

p(x, t) = α− c1 − n
√
α− c1 Aen

√
α−c1t −Be−n

√
α−c1t

Aen
√
α−c1t +Be−n

√
α−c1t ± 2

√
AB cosnx

≤ α− c1 − n
√
α− c1 Aen

√
α−c1t −Be−n

√
α−c1t{√

Ae
n
√

α−c1t

2 +
√
Be−

n
√

α−c1t

2

}2

= α− c1 − n
√
α− c1

√
Ae

n
√

α−c1t

2 −
√
Be

−n
√

α−c1t

2

√
Ae

n
√

α−c1t

2 +
√
Be−

n
√

α−c1t

2

≤ α− c1 − n
√
α− c1 < +∞,

w(x, t) =
eαt

±2
√
ABec1t cosnx+Aek1t +Bk2t

≤ e(α−c1)t

−2
√
AB +Aen

√
α−c1t +Be−n

√
α−c1t

=
e(α−c1)t{√

Ae
n
√

α−c1t

2 −√Be−n
√

α−c1t

2

}2 < +∞.

That leads to the global existence of the solution for the system (3.1).
(b) When B > A > 0, there exists a point x0 ∈ [0, π] such that cosnx0 = ∓1
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satisfying, for any 0 < t < T = 1
2n

√
α−c1 ln

B
A ,

p(x0, t) = α− c1 + n
√
α− c1 Be−n

√
α−c1t −Aen

√
α−c1t

Be−n
√
α−c1t +Aen

√
α−c1t ± 2

√
AB cosnx0

= α− c1 + n
√
α− c1

√
Be

−n
√

α−c1t

2 +
√
Ae

n
√

α−c1t

2

√
Be

−n
√

α−c1t

2 −√Aen
√

α−c1t

2

,

w(x0, t) =
eαt

±2√ABec1t cosnx0 +Aek1t +Bk2t

=
e(α−c1)t{√

Be
−n

√
α−c1t

2 −√Aen
√

α−c1t

2

}2

.

It is clear that limt→T− p(x0, t) = +∞, limt→T− w(x0, t) = +∞. We can also show
that for any x ∈ (0, π), 0 < t < T ,

p(x, t) = α− c1 + n
√
α− c1 Be−n

√
α−c1t −Aen

√
α−c1t

Be−n
√
α−c1t +Aen

√
α−c1t ± 2

√
AB cosnx

≥ α− c1 + n
√
α− c1

√
Be

−n
√

α−c1t

2 −√Aen
√

α−c1t

2

√
Be

−n
√

α−c1t

2 +
√
Ae

n
√

α−c1t

2

> 0,

w(x, t) =
eαt

±2√ABec1t cosnx+Aek1t +Bk2t

≥ e(α−c1)t{√
Be

−n
√

α−c1t

2 +
√
Ae

n
√

α−c1t

2

}2 > 0,

and

p(x, t) = α− c1 + n
√
α− c1 Be−n

√
α−c1t −Aen

√
α−c1t

Be−n
√
α−c1t +Aen

√
α−c1t ± 2

√
AB cosnx

≤ α− c1 + n
√
α− c1

√
Be

−n
√

α−c1t

2 +
√
Ae

n
√

α−c1t

2

√
Be

−n
√

α−c1t

2 −√Aen
√

α−c1t

2

< +∞,

w(x, t) =
eαt

±2√ABec1t cosnx+Aek1t +Bk2t

≤ e(α−c1)t{√
Be

−n
√

α−c1t

2 −√Aen
√

α−c1t

2

}2 < +∞.

That implies that the solution (p(x, t), w(x, t)) of the problem is well defined for
x ∈ (0, π), 0 < t < T, the solution will blow up at the point x = x0, and t tends to
finite-time T .

Theorem 3.1 is proved.
Remark 3.1. For the different cases corresponding to the different situations in

Theorem 3.1, please see Figures 1–4 below.
Remark 3.2. We cannot respect the case A = B, because at this time the initial

data (p(x, 0), w(x, 0)) cannot be well defined at the points x satisfying cosnx = ∓1.
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Fig. 1. In the case of Theorem 3.1(a), for the solution p(x, t), where A = 4, B = 1, n = 1,
c1 = 1, α = 11.

Fig. 2. In the case of Theorem 3.1(a), for the solution w(x, t), where A = 4, B = 1, n = 1,
c1 = 1, α = 11.

Remark 3.3. If we choose c1 = α, we can obtain g(t) = (A+Bt)et, and B must
be 0 in this case. Then we get (p(x, t), w(x, t)) = (0, 1

A+c2 cosnx ) for any |A| > |c2|,
which is not permitted in our problem because we want only a positive solution.

Remark 3.4. Assume that c1 > α; we can get the solution

p(x, t) = α− c1 +

√
c1 − α[A sinn

√
c1 − αt−B cosn

√
c1 − αt]

A cosn
√
c1 − αt+B sinn

√
c1 − αt±

√
A2 +B2 cosnx

,

w(x, t) =
e(α−c1)t

A cosn
√
c1 − αt+B sin n

√
c1 − αt±

√
A2 +B2 cos nx

.

It can be easily found that the initial data (p(x, 0), w(x, 0)) cannot be well defined.

Remark 3.5. Let c1 = −n2+n
√
n2+4

2 . Then k1 = 2c1, k2 = 0, and

p(x, t) = α− 2c1
Ae2c1t + 2

√
ABec1t cosnx

B + 2
√
ABec1t cosnx+Ae2c1t

.

If we take α = B = 1, A = ε2, and n = N, then we get the same solution as obtained
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Fig. 3. In the case of Theorem 3.1(b), for the solution p(x, t), where A = 0.1, B = 1, c1 = 0.84,
α = 1, n = 2.

Fig. 4. In the case of Theorem 3.1(b), for the solution w(x, t), where A = 0.1, B = 1, c1 = 0.84,
α = 1, n = 2.

by Levine and Sleeman [2].
Remark 3.6. For the problem (3.2), we can consider ψ(x, t) = − ln(c − φ(x, t))

directly, and so we get

p(x, t) = k1 − µ Aeµt −Be−µt

Aeµt +Be−µt ± 2
√
AB cosnx

,

w(x, t) =
ek1t

Aeµt +Be−µt ± 2
√
AB cosnx

,

where µ = n
√
k1. It is clear that the solution (p(x, t), w(x, t)) blows up if B > A >

0. Furthermore, the blow-up time is T = 1
µ ln(

√
B
A ) , and the blow-up point is

x0 ∈ [0, π] satisfying cosnx0 = ∓1. (p(x, t), w(x, t)) is global if A > B > 0 and

k1 > n
2{

√
A+

√
B√

A−√
B
}2.

By the arguments above, we know that the maximal existence time of the solution
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for the system (3.1) is strongly dependent on the choice for their initial data. Also,
we can investigate the asymptotic behavior of the solution and find something very
interesting: First, we can get two pairs of solutions (pi(x, t), wi(x, t))(i = 1, 2) such
that even though the difference of their initial data is relatively large, they still have
very similar asymptotic behavior:

lim
t→+∞(p1(x, t)− p2(x, t)) = 0, lim

t→+∞(w1(x, t)− w2(x, t)) = 0 for x ∈ Ω̄.

Second, even if the difference of their initial data is very small, we can also find two
solutions (pi(x, t), wi(x, t)), i = 1, 2, in which one solution exists globally and another
one will blow up in finite time. This means that these biological systems are unstable.

We have following result.
Theorem 3.2. For any positive spatial independent solution of the dynamics

(3.1) (p0, w0e
p0t), we have the following results.

(a) There exists a family of positive solutions for the dynamics (3.1)

p(x, t) = k − µ Aeµt −Be−µt

Aeµt +Be−µt ± 2
√
AB cosNx

,

w(x, t) =
ekt

Aeµt +Be−µt ± 2
√
AB cosNx

,

where µ = N
√
k, satisfying

lim
t→+∞(p(x, t)− p0) = 0, lim

t→+∞

(
w0e

p0t

w(x, t)

)
= 1.

(b) For any positive constant ε > 0 small enough, we can find a positive solution
(p(x, t), w(x, t)) with the initial data p0 − ε < p(x, 0) < p0 + ε and 0 < w(x, 0) < ε,
and (p(x, t), w(x, t)) will blow up at finite-time T.

Proof. (a) For any p0 > 0, w0 > 0, and positive integer N > 0 fixed, denote by√
k the positive solution of the equation

λ2 −Nλ− p0 = 0.

Then we have k − N√k = p0 > 0. Since the function
√
A+x√
A−x is strictly increasing

continuous for 0 < x <
√
A, satisfying

lim
x→0+

√
A+ x√
A− x = 1, lim

x→√
A

−

√
A+ x√
A− x = +∞

for any positive constant A, we can find B > 0 sufficiently small such that

k > N2

{√
A+
√
B√

A−√B

}2

.

According to Theorem 3.1, the solution of the dynamics (3.1)

p(x, t) = k −N√k AeN
√
kt −Be−N

√
kt

AeN
√
kt +Be−N

√
kt ± 2

√
AB cosNx

,

w(x, t) =
ekt

AeN
√
kt +Be−N

√
kt ± 2

√
AB cosNx
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exists globally, and

lim
t→+∞ p(x, t) = k −N

√
k = p0, lim

t→+∞

[
w0e

p0t

w(x, t)

]
= Aw0.

If we choose A = 1
w0
, we can get the result as mentioned in (a).

(b) For any ε > 0, we can find a positive constant B0 > 0 sufficiently large such

that for any B ≥ B0, |p0(
√
B−√

A√
B+

√
A
− 1)| < ε, |p0(

√
B+

√
A√

B−√
A
− 1)| < ε for some positive

constant A, where we suppose B0 > A. Let k =
(
√
N2+4p0−N)2

4 ; then we have

k +N
√
k = p0.

Choose T > 0 satisfying

T =
1

N [
√
N2 + 4p0 −N ]

ln
B

A
> 0.

It is well known that the solution (p(x, t), w(x, t)), denoting N
√
k by µ, where

p(x, t) = k + µ
Be−µt −Aeµt

Be−µt +Aeµt ± 2
√
AB cosNx

,

w(x, t) =
ekt

Be−µt +Aeµt ± 2
√
AB cosNx

,

is a solution for the system (3.1) with the initial data

p0 − ε < k + µ
√
B −√A√
B +

√
A
≤ p(x, 0) ≤ k + µ

√
B +

√
A√

B −√A < p0 + ε

that will blow up in finite-time T at the point x0 chosen above.
The proof is completed.
Remark 3.7. According to the statement above, we know that the maximum

existence of the solution for the dynamics (3.1) is very sensitive to the initial data.
Even close to the constant initial data, we can find both global and blow-up in finite-
time solutions, respectively.

Remark 3.8. We can find from the argument in the proof of (b) of Theorem 3.2
that the blow-up time is

T =
1

N [
√
N2 + 4p0 −N ]

ln
B

A
=

[
√
N2 + 4p0 +N ]

4p0N
ln
B

A
=

√
1 +

4p0
N2

+ 1

4p0
ln
B

A
.

It is obvious that T is increasing with B.

4. High dimensional case with w possessing exponential growth. In
section 3, we knew that even in the special case, when w has exponential growth, the
behavior of the solutions is very complicated. Let us consider the following general
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case: 


∂p

∂t
= D∇

(
p∇

(
ln
( p
w

)))
∂w

∂t
= (βp− µ)w

for x ∈ Ω ⊆ Rn, t > 0,

p∇
(
ln
( p
w

))
· 
n = 0 for x ∈ ∂Ω, t > 0,

p(x, 0) = p0(x) > 0

w(x, 0) = w0(x) > 0
for x ∈ Ω,

(4.1)

where Ω, 
n,D, β, and µ are all the same as in the preceding section and n ≥ 1. Let

u(x, t) = p(x,t)
eµtw(x,t) . Since (eµtw)t = βe

µtwp, u = p
eµtw = (eµtw)t

β(eµtw)2 , we have

w(x, t) =
w0(x)e

−µt

1− βw0(x)

∫ t

0

u(x, τ) dτ

, p(x, t) =
w0(x)u(x, t)

1− βw0(x)

∫ t

0

u(x, τ) dτ

.(4.2)

Also, we easily find that (p(x, t), w(x, t)) is a solution of the dynamics (4.1) if and
only if (u(x, t), w(x, t)) is a solution of the following initial boundary-value problem:


∂u

∂t
= D∆u+D

1

w
(∇w) · (∇u)− βw0u

2

1− βw0

∫ t

0

u(x, τ) dτ

w(x, t) =
w0(x)e

−µt

1− βw0(x)

∫ t

0

u(x, τ) dτ

for x ∈ Ω, t > 0,

∂u

∂n
= 0 for x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) =
p0(x)

w0(x)
> 0

w(x, 0) = w0(x) > 0
for x ∈ Ω.

(4.3)
Similarly as in the preceding section, we know that there is a unique smooth

positive solution for smooth initial data locally in time. What we want to discuss
is the solutions of the systems (4.1) that do not exist globally. It is worthwhile to
point out that the space-independent solution (p0, w0e

(βp0−µ)t), p0, w0 both positive
constants, is a global solution of the dynamics (4.1). In the following, we consider
only the solution (p, w) that is not independent of the spatial variable. In fact, let

T = sup{T̃ > 0; (p(x, t), w(x, t)) exists in Ω× (0, T̃ ]};
then by using the maximum principle, for the solution (u(x, t), w(x, t)) of the dynamics
(4.3), we can easily obtain

0 < u(x, t) < max
x∈Ω

u0(x), w(x, t) > 0.(4.4)

Also observe that, for x ∈ Ω, 0 < t < T , we have

0 < βw0(x)

∫ t

0

u(x, τ)dτ ≤ max
x∈Ω

[
βw0(x)

∫ t

0

u(x, τ)dτ

]
< 1.(4.5)
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Let us define

w0


= min

x∈Ω
w0(x), w0



= max

x∈Ω
w0(x),

u0


= min

x∈Ω
u0(x), u0



= max

x∈Ω
u0(x),

m(t)


= 1−max

x∈Ω

[
βw0(x)

∫ t

0

u(x, τ)dτ

]

and

0 < φ(t)


= min

x∈Ω
u(x, t) ≤ max

x∈øverlineΩ
u(x, t)



= ψ(t) for 0 < t < T.

Thus if (p(x, t), w(x, t)) is a global solution of (4.1), then we have the following nec-
essary condition.

Theorem 4.1. If T = +∞, then m(+∞) = 0, which implies that

max
x∈Ω

[
βw0(x)

∫ ∞

0

u(x, τ)dτ

]
= 1.

Proof. Since T = +∞, the dynamics (4.1) has a unique global positive solution
(p(x, t), w(x, t)) with positive initial data p(x, 0) = p0(x), w(x, 0) = w0(x) on Ω,
which implies that the function transformation, given by (4.2), is well defined for all
time and that 1/w is positive and finite for all time. Because u(x, t) is a solution of
the dynamics (4.3), we have

∂u

∂t
−D u−D 1

w
(∇w) · (∇u) = − βw0(x)u

2

1− βw0(x)

∫ t

0

u(x, τ)dτ

≥ −βw0u
2

m(t)

for x ∈ Ω, t > 0. This implies that u(x, t) is a supersolution of the following dynamics:


∂v

∂t
−D v −D 1

w
(∇w) · (∇v) = −βw0v

2

m(t)
for x ∈ Ω, t > 0,

∂v

∂n
= 0 for x ∈ ∂Ω, t > 0,

v(x, 0) = u0 for x ∈ Ω.

(4.6)

We can solve the dynamics (4.6), which has a unique solution as follows:

v(x, t) = v(t) =
u0

1 +

∫ t

0

βw0u0

m(t1)
dt1

, x ∈ Ω, t > 0;

thus we obtain

u(x, t) ≥ φ(t) ≥ v(t) = u0

1 +

∫ t

0

βw0u0

m(t1)
dt1

, x ∈ Ω, t > 0.(4.7)
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Observe that for all t > 0 we have

1 > max
x∈Ω

[
βw0

∫ t

0

u(x, τ)dτ

]
≥ βw0

∫ t

0

φ(τ)dτ ≥ βw0

∫ t

0

v(τ)dτ

=

∫ t

0

βw0u0

1 +

∫ t1

0

βw0u0

m(t2)
dt2

dt1

=

∫ t

0

βw0u0

m(t1)
· m(t1)

1 +

∫ t1

0

βw0u0

m(t2)
dt2

dt1

≥ m(t)

∫ t

0

βw0(x)u0

m(t1)
· 1

1 +

∫ t1

0

βw0u0

m(t2)
dt2

dt1

= m(t) ln

(
1 +

∫ t

0

βw0u0

m(t1)
dt1

)
.

Keeping in mind that maxx∈Ω[βw0(x)
∫ t
0
u(x, τ)dτ ] < 1 and u(x, t) > 0 for x ∈ Ω

and t > 0, we can obtain, from the estimate above, that

m(+∞) = 0, which implies that max
x∈Ω

[
βw0(x)

∫ +∞

0

u(x, τ)dτ

]
= 1,

as required.
Theorem 4.2. For the dynamics (4.1), if (p, w) does not exist globally, which

means that T < +∞, then the solution (p(x, t), w(x, t)) will blow up as t tends to T .
Furthermore, we can find an x∗ ∈ Ω such that

lim
t→T−

w(x∗, t) = +∞ and lim
t→T−

p(x∗, t) = +∞.

Proof. Let u(x, t) = p(x,t)
w(x,t)eµt . Then (u(x, t), w(x, t)) is the solution of the follow-

ing system:




∂u

∂t
= D∆u+D

1

w
(∇w) · (∇u)− βw0u

2

1− βw0

∫ t

0

u(x, τ) dτ

w(x, t) =
w0(x)e

−µt

1− βw0(x)

∫ t

0

u(x, τ) dτ

for x ∈ Ω, 0 < t < T ,

∂u

∂n
= 0 for x ∈ ∂Ω, 0 < t < T ,

u(x, 0) = u0(x) =
p0(x)

w0(x)
> 0

w(x, 0) = w0(x) > 0
for x ∈ Ω.

Let f(x, t, u) = βw0(x)

1−βw0(x)
∫ t

0
u(x,τ) dτ

, and let fk(x, t, u) = min{f, k}. For w fixed,
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we denote u(k)(x, t) the solution of the following dynamics:


∂u

∂t
−D� u−D

1

w
(∇w) · (∇u) + fk(x, t, u)u

2 = 0 for (x, t) ∈ Ω× (0, T ),

∂u

∂n
= 0 for (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x) for x ∈ Ω.

(4.8)

We know that the dynamics (4.8) has a unique solution u(k)(x, t) in Ω × (0, T ) and
u(x, t) ≤ u(k)(x, t) for all (x, t) ∈ Ω× (0, T ).

For any fixed k we can show that u(x, t) �≡ u(k)(x, t). Assume it is false, and
assume we can find some k satisfying u(x, t) ≡ u(k)(x, t) for (x, t) ∈ Ω × (0, T ).

Then f(x, t, u) = fk(x, t, u) ≤ k. Since w(x, t) = 1
βeµt f(x, t, u) = 1

βeµt fk(x, t, u),

p(x, t) = 1
β f(x, t, u)u = 1

β fk(x, t, u)u, w(x, T ), p(x, T ) can be well defined for all x ∈
Ω̄. Replace the initial data (p0(x), w0(x)) of the dynamics (4.1) by (p(x, T ), w(x, T ));
we can extend the domain of the existence of the solution for the dynamics (4.1) from
Ω×(0, T ) to Ω×(0, T +δ) for some δ > 0. That is in contradiction with the definition
of T . So u(x, t) �≡ u(k)(x, t) for all k.

Notice that w(x, t) = 1
βeµt f(x, t, u) for (x, t) ∈ Ω̄ × (0, T ), and for all k there

is (xk, tk) ∈ Ω̄ × (0, T ) such that f(xk, tk, u) > k. Then limk→∞ w(xk, tk) = +∞.
It is obvious that tk → T−. We can choose {xkj} such that xkj → x∗ ∈ Ω̄; then
limt→T− w(x∗, t) = +∞.

Since βp = (eµtw)t
eµtw , we have

β

∫ t

0

p(x∗, τ) dτ =

∫ t

0

(eµtw)τ
eµτw

dτ = ln

(
eµtw(x∗, t)
w0(x∗)

)
t→T−
−→ +∞.

Noticing T < +∞, we have limt→T− p(x∗, t) = +∞. This completes our proof.
Corollary 4.1. If the solution (p(x, t), w(x, t)) of the systems (4.1) blows up in

finite time, then both p(x, t) and w(x, t) will blow up in the same point in the same
time.

Proof. If the solution of the systems (4.1) will blow up in finite time, say, in the
time t = T , then at least one of functions p(x, t) and w(x, t) blows up at time T . If
w(x, t) blow up at the point x = x0, we know that p(x, t) will blow up at the point
x = x0 at the same time from the proof of Theorem 4.2 directly. Assume that p(x, t)

blows up. From the fact that u(x, t) = p(x,t)
w(x,t)eµt and

0 =
∂u

∂t
−D u−D 1

w
(∇w) · (∇u)− µu+ βw0(x)u

2

1− βw0(x)

∫ t

0

u(x, τ)dτ

≥ ∂u
∂t
−D u−D 1

w
(∇w) · (∇u)− µu,

and ∂u
∂n = 0, u(x, 0) = u0(x) < ū0, we know that for the time t = T , there exist

positive constants M > m > 0, such that m < u(x, t) < M for every x ∈ Ω̄. So we
must have that w(x0, t) will blow up as time t tends to T . By the argument above,
we know that the statement in the corollary is true.

Remark 4.1. Levine and Sleeman [2] discuss the boundary condition px(0, t) =
px(π, t) = 0 (which is the same as the boundary conditions wx(0, t) = wx(π, t) = 0),
which is somewhat stronger than the original boundary conditions. They find that



784 YIN YANG, HUA CHEN, AND WEIAN LIU

for their model (3.1), if wx = 0 initially at an end point, then both w and p have to
satisfy the zero-flux boundary condition on the entire existence interval.

According to our results in this paper, since w = w0(x)e
−µt

1−βw0(x)
∫ t

0
u(x,τ) dτ

, we have

(∇w) · 
n =




e−µt

1− βw0(x)

∫ t

0

u dτ

(∇w0)− w0e
−µt(

1− βw0(x)

∫ t

0

u dτ

)2

×
[
−β(∇w0)

∫ t

0

u dτ − βw0

∫ t

0

(∇u) dτ
]


· 
n

=
e−µt

1− βw0(x)

∫ t

0

u dτ


1 +

βw0

∫ t

0

u dτ

1− βw0

∫ t

0

u dτ


 (∇w0) · 
n

+
βw2

0e
−µt(

1− βw0

∫ t

0

u dτ

)2

∫ t

0

(∇u) · 
n dτ

=
e−µt

1− βw0(x)

∫ t

0

u dτ


1 +

βw0

∫ t

0

u dτ

1− βw0

∫ t

0

u dτ


 (∇w0) · 
n.

This implies that even for the original dynamics (4.1), at any point on ∂Ω, (∇w0)·
n =
0 if and only if (∇w(x, t)) · 
n = 0 on the entire existence interval. This situation also
occurs for the dynamics (4.1).

5. Some results for other biological models. Othmer and Stevens have also
constructed some other biological model:



∂p

∂t
= D∇ · (p∇(ln(pw)))

∂w

∂t
= F (p, w)

for x ∈ Ω, t > 0,

p∇ (ln (pw)) · 
n = 0 for x ∈ ∂Ω, t > 0,

p(x, 0) = p0(x) > 0

w(x, 0) = w0(x) > 0
for x ∈ Ω.

(5.1)

For this system we can also consider the growth rate of w as (i) F (p, w) = βp−µw
and (ii) F (p, w) = (βp−µ)w; respectively. Here we introduce function transformations
u(x, t) = pw, u(x, t) = pweµt, respectively; then we can prove the following results.

(i) When F (p, w) = βp− µw and if the initial data satisfy the boundary condi-
tions in (5.1), then there exists a unique global solution (p, w) of the dynamics
(5.1) in which p(x, t) is bounded. If w0(x) = constant, then there is collapse,
except for the constant solution (p, w) = (1, βµ )c.

(ii) When F (p, w) = (βp−µ)w and if the initial data satisfy the boundary condi-
tions in (5.1), then there exists a unique global solution (p, w) of the dynamics
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(5.1), and p(x, t) is bounded. If w0(x) ≤ 1, then there is collapse, except for
the constant solution (p, w) = (µβ , c).

Since the processes of the proofs for these results are very similar to the above
work in sections 2 and 4, we omit them here.
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Abstract. A “potato chip singularity” forms when two distinct surfaces moving with a three-
dimensional (3D) fluid coincide at a finite time. Potato chip singularities were suggested by a
numerical study of 3D ideal magnetohydrodynamics. We prove that an incompressible flow satisfying
a mild assumption on velocity growth cannot form a potato chip singularity.
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In this note, we show that the technique we developed in [2, 3, 4] applies to a
problem posed by Grauer and Marliani [5] on the possible formation of current sheet
singularities in three-dimensional (3D) ideal incompressible magnetohydrodynamics
(3D MHD). Numerical simulations in [5] show rapid initial increase of the current
density, leading to a large current density in a thin neighborhood of a curved surface,
called a “potato chip” in [5]. If the thickness of the potato chip becomes zero in
finite time, then one has a breakdown for an initially smooth 3D MHD solution. That
is, the initially smooth solution cannot be continued to a smooth 3D MHD solution
beyond some finite “breakdown time” T . The numerics in [5] indicate that the initial
rapid growth of current density changes to a merely exponential growth. Grauer and
Marliani suggest in [5] that the technique of Cordoba [1] might be used to rule out
a potato chip singularity for 3D MHD. This contrasts with earlier work of Kerr and
Brandenburg [6], who reported observing a breakdown for a 3D MHD solution with
an initial condition similar to that of [5].

The purpose of this note is to rule out finite-time potato chip singularities for
general 3D incompressible flows, under a mild assumption on the velocity growth.
We begin by giving a precise definition of a potato chip singularity. Our definition
applies in particular to the scenario contemplated by Grauer and Marliani [5].

Let U = {(x1, x2, x3) ∈ R
3 : x2

1 + x2
2 < a2, −H2 < x3 <

H
2 } be a cylinder, and

let [0, T ) be an interval (a,H, T > 0). We denote the closure of U by Ū . A moving
surface in U × [0, T ) is defined as S(t) = {(x1, x2, x3) ∈ U : x3 = f(x1, x2, t)} for
t ∈ [0, T ), where f is a C1 function from {(x1, x2, t) : x2

1 + x2
2 < a2, 0 ≤ t < T} to(−H2 , H2 ). Suppose we are given a velocity field u(x, t) = (u1(x, t), u2(x, t), u3(x, t)),

defined for x ∈ Ū , t ∈ [0, T ). The moving surface S(t) is said to move with the velocity
field u if the equation

∂f

∂t
(x1, x2, t) = u1(x1, x2, x3, t)

∂f

∂x1
(x1, x2, t) + u2(x1, x2, x3, t)

∂f

∂x2
(x1, x2, t)

+ u3(x1, x2, x3, t)

holds for all x ∈ S(t), t ∈ [0, T ).
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The velocity field u is said to form a potato chip singularity at time T if there
exists a pair of moving surfaces

S±(t) = {(x1, x2, x3) ∈ U : x3 = f±(x1, x2, t)} in U × [0, T ),

both moving with the velocity field u and satisfying the following two conditions:
• f−(x1, x2t) < f+(x1, x2, t) for x

2
1 + x2

2 < a2, t ∈ [0, T ),
• limt→T− [f+(x1, x2, t)− f−(x1, x2, t)] = 0 for x2

1 + x2
2 < a2.

Our result on potato chip singularities is as follows.
Theorem. Let u(x, t) be a C1, divergence-free velocity field, defined on Ū×[0, T ).

If we have
∫ T
0

supx∈Ū |u(x, t) |dt < ∞, then u cannot form a potato chip singularity
at time T .

This places an added burden on anyone alleging potato chip singularity formation
in a numerical simulation: The velocity must be seen to grow so rapidly as to suggest

the divergence of
∫ T
0
supx∈U |u(x, t)| dt.

The rest of this note gives the proof of this theorem. We assume that a potato
chip singularity forms at time T , and we derive a contradiction. By analogy with
[3, 4], we introduce a time-varying region

Ω(t) = {(x1, x2, x3) ∈ R
3 : x2

1 + x2
2 < (R(t))2, f−(x1, x2, t) < x3 < f+(x1, x2, t)}

for t ∈ [t0, T ).
Here, 0 < R(t) < a is an increasing C1 function on the interval [t0, T ). Both the

function R(t) and the initial time t0 ∈ (0, T ) will be specified later. We will derive an
obvious formula for the time derivative of the volume of Ω(t). To do so, we first note
that the boundary ∂Ω(t) consists of the top and bottom,

E±(t) = {(x1, x2, x3) ∈ R
3 : x2

1 + x2
2 ≤ (R(t))2, x3 = f±(x1, x2, t)},

and the side

S(t) = {(x1, x2, x3) ∈ R
3 : x2

1 + x2
2 = (R(t))2, f−(x1, x2, t) ≤ x3 ≤ f+(x1, x2, t)}.

The outward-pointing unit normal ν to ∂Ω(t) is given on E±(t) by

ν = ν± = ±
(
1,
∂f±
∂x1

,
∂f±
∂x2

) /√
1 +

(
∂f±
∂x1

)2

+

(
∂f±
∂x2

)2

and on S(t) by

ν = ν0 = (x1, x2, 0)

/√
x2

1 + x2
2.

The derivative of the volume of Ω(t) with respect to t is given by

d

dt
Vol Ω(t) =

∫
x2
1+x

2
2<(R(t))2

(
∂f+
∂t
− ∂f−

∂t

)
dx1dx2

+R′(t)
∫
x2
1+x

2
2=(R(t))2

(f+ − f−) d (length).

Now we bring in the fact that the surfaces S±(t) move with the velocity field. We
have
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±
∫
x2
1+x

2
2<(R(t))2

∂f±
∂t

dx1dx2 = ±
∫
E±(t)

(
u1
∂f±
∂x1

+ u2
∂f±
∂x2

+ u3

)
dx1dx2

=

∫
E±(t)

(u1, u2, u3) ·

±(1, ∂f±

∂x1
,
∂f±
∂x2

) /√
1 +

(
∂f±
∂x1

)2

+

(
∂f±
∂x2

)2



·
√
1 +

(
∂f±
∂x1

)2

+
(
∂f±
∂x2

)2

dx1dx2

=

∫
E±

u · ν d (Area).

Therefore, our previous formula for the time derivative of Vol Ω(t) may be rewritten
in the form

d

dt
VolΩ(t) =

∫
E+(t)∪E−(t)

u · νd (Area) + R′(t)
∫
S(t)

d (Area).

We can rewrite this again because the velocity field u is divergence-free. In fact,
the divergence theorem for Ω(t) yields

0 =

∫
Ω(t)

(∇ · u) d (Vol) =

∫
E±(t)∪E−(t)

u · νd (Area) +

∫
S(t)

u · ν d (Area).

Consequently, we have the following proposition.
Proposition.

d

dt
VolΩ(t) =

∫
S(t)

[R′(t)− u · ν] d (Area).

This is our basic formula for the time derivative of Vol Ω(t).
Now we pick the function R(t) and the starting time t0 ∈ (0, T ). We take

R(t) =
1

2
a −

∫ T

t

sup
y∈Ū
|u(y, τ)| dτ for t0 ≤ t < T.

Our assumptions on u show that R(t) is a C1 function on [t0, T ), with R′(t) =
supy∈Ū |u(y, t)|, and also that 0 < R(t) < a for all t ∈ [t0, T ), provided t0 is taken
close enough to T . We pick t0 to make this happen. For this particular R(t), the
above proposition gives

d

dt
VolΩ(t) =

∫
x∈S(t)

[
sup
y∈Ū
|u(y, t)| − u(x, t) · ν(x, t)

]
d(Area) ≥ 0

for all t ∈ [t0, T ), since S(t) ⊂ Ū .
Since Vol Ω(t0) > 0, it follows that lim inft→T− Vol Ω(t) > 0, and consequently

lim inf
t→T−

∫
x2
1+x

2
2<a

2

(f+(x1, x2, t) − f−(x1, x2, t)) dx1dx2 > 0.(1)

On the other hand, if a potato chip singularity forms at time T , then

lim
t→T−

(f+(x1, x2, t) − f−(x1, x2, t)) = 0 for x2
1 + x2

2 < a2,
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with

0 < f+(x1, x2, t) − f−(x1, x2, t) < H.

Therefore, the Lebesgue dominated convergence theorem implies

lim
t→T−

∫
x2
1+x

2
2<a

2

(f+(x1, x2, t) − f−(x1, x2, t)) dx1dx2 = 0.(2)

The contradiction between (1) and (2) shows that a potato chip singularity cannot
form at time T . The proof of the theorem is complete.
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Abstract. We study the Cauchy problem for the system of one dimensional compressible
adiabatic flow through porous media and the related diffusive problem. We introduce a new approach
which combines the usual energy methods with special L1-estimates and use the weighted Sobolev
norms to prove the global existence and large time behavior for the solutions of the problems. The
asymptotic states for the solutions are given by either stationary solutions or similarity solutions
depending on the behavior of the initial data when |x| → ∞. Our estimates provide asymptotic time
decay rates.

Key words. damping mechanism, diffusive profile, L1-estimates, weighted energy estimates,
decay rates
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1. Introduction. The motion of the adiabatic gas flow through porous media
can be modeled by the following damped hyperbolic system:


vt − ux = 0,

ut + p(v, s)x = −αu, α > 0,

(e(v, s) + 1
2u

2)t + (pu)x = −αu2.

(1.1)

Where v denotes the specific volume, u is the velocity, s stands for entropy, p denotes
the gas pressure with pv(v, s) < 0 for v > 0, and e is the specific internal energy for
which one has es �= 0 and ev + p = 0 (due to the second law of thermodynamics). For
smooth solutions, the system (1.1) is equivalent to the following one:


vt − ux = 0,

ut + p(v, s)x = −αu, α > 0,

st = 0.

(1.2)

It is strictly hyperbolic with characteristic speeds −λ1 = λ3 =
√−pv and λ2 = 0.

In this paper, we are interested in the influence of the damping mechanism to
the smoothness and the large time behavior of the solutions. We study the Cauchy
problem for the system (1.2) with the following initial data:

(v, u, s)(x, 0) = (v0(x), u0(x), s0(x)), x ∈ R,(1.3)

satisfying the limit conditions

(v0, u0, s0)(x)→ (v±, u±, s±) as x→ ±∞,

∗Received by the editors December 3, 1999; accepted for publication (in revised form) October 4,
2000; published electronically December 18, 2001.
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with v± > 0. For the sake of simplicity, from now on, we take α = 1 and p(v, s) =
(γ − 1)v−γes, with γ > 1, which is the case for the polytropic gas dynamics.

The global existence with small initial data of smooth solutions for the Cauchy
problem (1.2)–(1.3) has been studied first in [10] and [11] and later by [22]. Then a
natural problem is the large time behavior of the solutions. From asymptotic analysis,
it is known that the first term of (1.2)2 decays to zero, as t→∞, faster than others.
Therefore it is natural to expect that the problem (1.2)–(1.3) is time-asymptotically
equivalent to the following reduced problem:



ṽt = −p(ṽ, s)xx,
ũ = −p(ṽ, s)x,
st = 0,

ṽ(x, 0) = ṽ0(x), s(x, 0) = s0(x),

ṽ0(±∞) = v±, s0(±∞) = s±.

(1.4)

The system in (1.4) is obtained from (1.2) by approximating the momentum equation
in (1.2) with Darcy’s law. Since the first equation of (1.4) is parabolic, the damping
mechanism in (1.2) creates some diffusive effects when t tends to infinity.

For the isentropic flow, namely, s = const, (1.2) takes the following form:{
vt − ux = 0,
ut + p(v)x = −u.(1.5)

The diffusive effect created by the damping mechanism has been investigated for the
Cauchy problem of (1.5) with the initial data

(v(x, 0), u(x, 0)) = (v∗(x), u∗(x))(1.6)

such that

lim
x→±∞(v∗(x), u∗(x)) = (v±, u±).

It has been proved in [5] that the smooth solution of (1.5)–(1.6) can be described
time-asymptotically by the solution of the following parabolic problem:


ṽt = −p(ṽ)xx,
ũ = −p(ṽ)x,
ṽ(x, 0) = ṽ∗(x+ d0).

(1.7)

Where ṽ∗ is the similarity solution of (1.7)1 with ṽ∗(±∞) = v±. For other results, we
refer to [3], [4], [6], and [19] for smooth solutions and to [1], [4], [8], [12], [13], [14],
[15], [17], [18], and [21] for weak solutions. For the initial boundary value problems
on a quarter plane, we refer to [16] and [20].

There are few results in the literature for the case s �= const. Partial answers are
given in [11] and [7] for the Cauchy problem and in the recent paper of Hsiao and
Pan [9] concerning the initial boundary value problem. The case v− = v+ = v̄ and
s− = s+ = s̄ was investigated in [11] and the case v− �= v+ and s− = s+ = s̄ was
treated in [7] by using a technical condition (that they refer to in [7] as condition V)
which requires us to solve the following parabolic problem{

ṽt = −p(ṽ, s)xx,
ṽ0(x) = e

1
γ (s(x)−s̄)ṽ∗(x+ x0)

(1.8)
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and to control the behavior of its solutions by means of the similarity solutions of{
ṽ∗t = −p(ṽ∗, s̄)xx,
ṽ∗(±∞) = v±.

(1.9)

The purpose of this paper is to deal with the following two cases:
Case 1: s− = s+ = s̄;
Case 2: (v±, s±) satisfy p(v−, s−) = p(v+, s+) = p̄.
In Case 1, namely, s− = s+ = s̄, we cannot use the methods of [7] and we need new

techniques. In particular we shall combine the usual energy methods with special L1-
estimates and with the use of weighted Sobolev norms to solve the problems in detail.
This is the only case where p(v−, s−) �= p(v+, s+) that we can treat in this paper. In
this case, the asymptotic states will be the similarity solution of (1.9) given by the
scaling invariance with respect to the transformation x → σx, t → σ2t. Our results
strongly improved those in [7]. Indeed, we remove the technical condition V and we
describe the asymptotic states both for the diffusion problem and the hyperbolic one
by using the similarity solutions. Thanks to our new approach, it is possible to get
a decay rate which did not exist in the previous results (see [7]). Our results on the
parabolic problem generalize the result of [2] to the adiabatic case, and also obtain
better decay rates.

In Case 2, we can determine a special solution v3(x) to (1.4)1 by solving the
equation p(v3, s) = p̄. Then in this case we establish results similar to those obtained
in [11] with, in addition, some decay rates.

Before stating the main results, we describe the plan of this paper. In section
2, the parabolic problem (1.4) is studied in detail for both cases by using our new
approach. Then sections 3 and 4 are devoted to the hyperbolic problem (1.2)–(1.3)
for Case 1 and Case 2, respectively.

We now state our main results.

1.1. Main results: Parabolic equation. Since in (1.2) or (1.4) st = 0, then
s(x, t) = s(x) = s0(x). Let us denote

a(x) = (γ − 1)−
1
γ e−

1
γ s(x),

a1 = (γ − 1)−
1
γ e−

1
γ s̄,

w ≡ a(x)ṽ = p(ṽ, s)−
1
γ ,

(1.10)

then (1.4) is equivalent to the following:


wt + a(x)(w−γ)xx = 0,

ũ = −(w−γ)x,
s(x, t) = s0(x),

w(x, 0) = w0(x) = a(x)ṽ0(x),

w(±∞) = w± > 0.

(1.11)

Moreover, we will denote by w̃(η) (with η = x√
t+1

) the similarity solution of the

following problem: {
w̃t + a1(w̃

−γ)xx = 0,

w̃(±∞) = w±.
(1.12)
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By combining the weighted energy method and L1-estimate, we can prove the follow-
ing theorem for Case 1.

Theorem 1.1. Assume that w0(x) and s0(x) are C2 functions and

w0(x)− w̃(x, 0) ∈ H2(R) ∩ L1(R), x(s0(x)− s̄) ∈ L1(R).

There exists δ0 > 0 such that, if 0 < δ < δ0 and

|w+ − w−|+ ‖w0(x)− w̃(x, 0)‖H2 ≤ δ,

then (1.11) has a unique global smooth solution (w, ũ, s)(x, t) satisfying

w(x, t)− w̃ ∈ C0([0, t];H2) for all t > 0.

Moreover, there exist positive constants C > 0, β1 > 1
3 , and β2 > 1

2 such that

‖w(x, t)− w̃‖L∞ ≤ C(1 + t)−
1
2 (1 + log(1 + t))β1 ,

‖ũ+ (w̃−γ)x‖L∞ ≤ C(1 + t)−1(1 + log(1 + t))β2 .

Thus, by setting ṽ = a−1w, v̂ = a−1w̃, and û = −(w̃−γ)x, one obtains the (unique)
global smooth solution (ṽ, ũ, s) to (1.4) which satisfies

‖ṽ − v̂‖L∞ ≤ C(1 + t)−
1
2 (1 + log(1 + t))β1 ,

‖ũ− û‖L∞ ≤ C(1 + t)−1(1 + log(1 + t))β2 .

Remark 1. (a) Our results in Theorem 1.1 generalize the ones in [2] to the
adiabatic case and extend to a larger class of initial data. The decay rate here is
better than in [2] and is almost optimal.

(b) The condition x(s(x)− s̄) ∈ L1(R) can be replaced by the weaker one:

|x|β(s(x)− s̄) ∈ L1(R)

for β > 0. This is clear from our proof below.
For Case 2, where w− = w+ = w̄ in (1.11), it is clear that (w̄, 0, s0(x)) is a

special solution for the system in (1.11). Let us denote v1(x) = a−1w̄ and we have
the following.

Theorem 1.2. Assume that w0(x) and s0(x) are C2 functions and w0− w̄ ∈ H2.
There exists δ0 > 0 such that if 0 < δ < δ0 and ‖w0 − w̄‖H2 ≤ δ, then (1.11) has a
unique global smooth solution (w, ũ, s)(x, t) satisfying

lim
t→∞ ‖w(x, t)− w̄‖L∞ = 0.

Furthermore, if w0(x)− w̄ ∈ L1, then

‖w(x, t)− w̄‖L∞ ≤ C(1 + t)−
1
2 (1 + log(1 + t))β1 ,

‖ũ‖L∞ ≤ C(1 + t)−1(1 + log(1 + t))β2 .

Thus, by setting v2 = a−1w and u2 = ũ, one has a unique global smooth solution
(v2, u2, s) to (1.4) such that

‖v2 − v1‖L∞ ≤ C(1 + t)−
1
2 (1 + log(1 + t))β1 ,

‖u2‖L∞ ≤ C(1 + t)−1(1 + log(1 + t))β2 .
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1.2. Main results: Hyperbolic problems. Based on the results in the previ-
ous theorems, we can solve (1.2)–(1.3) in detail for both cases, respectively.

Following [5], we define

m(x, t) ≡ −(u+ − u−)m0(x)e
−t,

um(x, t) ≡ u−e−t +
∫ x

−∞
mt(ξ, t) dξ,

(1.13)

where m0(x) is a smooth function with compact support such that∫ +∞

−∞
m0(x) dx = 1.

We first treat Case 1, where s− = s+ = s̄. Denote by (ṽ, ũ, s) the solution to
(1.4) obtained in Theorem 1.1. In addition, we assume∫ +∞

−∞
(v0(x)− ṽ0(x)) dx = −(u+ − u−).(1.14)

A special choice of ṽ0 is given in Remark 2 below. Let us denote y(x, t) =
∫ x
−∞(v −

ṽ −m)(ξ, t) dξ, then y satisfies


ytt + [p(yx + ṽ +m, s)− p(ṽ, s)]x + yt = p(ṽ, s)xt,

y(x, 0) = y0(x) =

∫ x

−∞
(v0(ξ)− ṽ0(ξ)−m(ξ, 0)) dξ,

yt(x, 0) = y1(x) = u0(x)− ũ(x, 0)− um(x, 0).

(1.15)

Theorem 1.3. Under the conditions of Theorem 1.1, there exists ε0 > 0 such
that for all 0 < ε < ε0 and ‖y0‖H3 + ‖y1‖H2 ≤ ε, the system (1.15) admits a unique
global smooth solution y such that

y ∈ C0([0, t];H3), yt ∈ C0([0, t];H2)

for all t > 0. Moreover, there exists C = C(ε) > 0 such that

‖yx‖L∞ ≤ C(1 + t)−
3
4 , ‖yt‖L∞ ≤ C(1 + t)−

5
4 .

Hence, by setting v(x, t) = ṽ+m+ yx and u(x, t) = ũ+um+ yt, one has the (unique)
global smooth solution (v, u, s) to (1.2)–(1.3), such that

‖v − ṽ‖L∞ ≤ C(1 + t)−
3
4 , ‖u− ũ‖L∞ ≤ C(1 + t)−

5
4 .

Furthermore, in view of Theorem 1.1, one has

‖v − v̂‖L∞ ≤ C(1 + t)−
1
2 (1 + log(1 + t))β1 ,

‖u− û‖L∞ ≤ C(1 + t)−1(1 + log(1 + t))β2 ,

where β1 and β2 are the same as before.
Remark 2. (a) The global existence for the smooth solution to (1.2)–(1.3) has

been proved in [22], via characteristic method, provided that the initial data are small.
We present here an alternative version in H2 spaces by the energy estimate method.
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(b) (1.14) is the restriction on the initial data which comes from (1.2)–(1.3) and
(1.4). This is also the case for (1.16) and (1.18) below. There is a large class of
functions ṽ0(x) which can be chosen (for any given v0(x) in (1.3)). A special choice
is ṽ0(x) = a−1w̃(x+ x0, 0), where x0 is uniquely determined by∫ +∞

−∞
(v0(x)− a−1w̃(x+ x0, 0)) dx = −(u+ − u−),

which is the special case discussed in [7]. Since Theorem 1.1 is obviously valid for
w0(x) = w̃(x+ x0, 0), we include the results of [7].

(c) A similar condition was used in [9] for the initial boundary problem related to
(1.2), where it was proved that both the solutions to the damped hyperbolic problem
and those of the related diffusive problem have the same time asymptotic states if the
initial total excessive mass is zero.

Let us now consider Case 2. Assume that∫ +∞

−∞
(v0(x)− v2(x, 0)) dx = −(u+ − u−),(1.16)

and denote by ỹ(x, t) =
∫ x
−∞(v − v2 −m)(ξ, t) dξ, then we have



ỹtt + [(p(ỹx + v2 +m, s)− p(v2, s)]x = p(v2, s)xt,

ỹ(x, 0) = ỹ0(x) =
∫ x
−∞(v0(ξ)− v2(ξ, 0)−m(ξ, 0)) dξ,

ỹt(x, 0) = ỹ1(x) = u0(x)− u2(x, 0)− um(x, 0).

(1.17)

Similarly to Theorem 1.3, we have the following.
Theorem 1.4. Under the hypotheses of the Theorem 1.2, there exists ε0 > 0 such

that if 0 < ε < ε0 and ‖ỹ0‖H3 + ‖ỹ1‖H2 ≤ ε, then (1.17) has a unique global smooth
solution ỹ such that

ỹ ∈ C0([0, t];H3), ỹt ∈ C0([0, t];H2)

for all t > 0. Moreover, there exists C = C(ε) > 0 such that

‖ỹx‖L∞ ≤ C(1 + t)−
3
4 , ‖ỹt‖L∞ ≤ C(1 + t)−

5
4 .

Hence, by setting v(x, t) = v2+m+ ỹx and u(x, t) = u2+um+ ỹt, one has the (unique)
global smooth solution (v, u, s) to (1.2)–(1.3); moreover,

‖v − v2‖L∞ ≤ C(1 + t)−
3
4 , ‖u− u2‖L∞ ≤ C(1 + t)−

5
4 .

Furthermore, in view of Theorem 1.2, one has

‖v − v1‖L∞ ≤ C(1 + t)−
1
2 (1 + log(1 + t))β1 ,

‖u‖L∞ ≤ C(1 + t)−1(1 + log(1 + t))β2 .

Since (v1(x), 0, s(x)) is a special solution to both (1.2) and (1.4), if we assume∫ +∞

−∞
(v0 − v1)(x) dx = −(u+ − u−)(1.18)
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and denote by z(x, t) =
∫ x
0
(v − v1 −m)(ξ, t) dξ, we have




ztt + [p(zx + v1 +m, s)− p(v1, s)]x + zt = 0,

z(x, 0) = z0(x) =

∫ x

−∞
(v0(ξ)− v1(ξ)−m(ξ, 0)) dξ,

zt(x, 0) = z1(x) = u0(x)− um.

(1.19)

Then in this special case, we have the following result, which includes the paper [11].
Theorem 1.5. There exists ε0 > 0 such that if 0 < ε < ε0 and ‖z0‖H3+‖z1‖H2 ≤

ε, then (1.19) has a unique global smooth solution z such that

z ∈ C0([0, t];H3), zt ∈ C0([0, t];H2)

for all t > 0. Moreover,

‖zx‖L∞ ≤ C(1 + t)−
3
4 , ‖zt‖L∞ ≤ C(1 + t)−

5
4 .

Hence, by setting v(x, t) = v1 +m + zx and u(x, t) = um + zt, one has the (unique)
global smooth solution (v, u, s) to (1.2)–(1.3) such that

‖v − v1‖L∞ ≤ C(1 + t)−
3
4 , ‖u‖L∞ ≤ C(1 + t)−

5
4 .

We will end this introduction by making a reduction. In fact, in sections 3 and 4,
we will only prove Theorems 1.3–1.5 for the case u− = u+ = 0, where m(x, t) = 0
and um = 0. The general case can be treated in the similar way since m(x, t) and um
decay to zero exponentially fast.

2. Nonlinear diffusion equation. This section is devoted to studing the dif-
fusive problem (1.4). Clearly one has s(x, t) = s0(x) ≡ s(x) for all t > 0, which then
is sufficient to solve the following equation:

{
ṽt = −p(ṽ, s)xx,
ṽ(x, 0) = ṽ0(x), ṽ0(±∞) = v± > 0.

(2.1)

The equation (2.1) is equivalent to the following porous media type equation:



wt + a(x)(w−γ)xx = 0,

w(x, 0) = w0(x) = a(x)ṽ0(x),

w(±∞) = w± > 0,

(2.2)

where a(x) = (γ − 1)−
1
γ e−

1
γ s(x), w ≡ a(x)ṽ = p(ṽ, s)−

1
γ . We will study the equation

(2.2) instead of (2.1) for the following two cases, which are equivalent to those stated
in the introduction.

Case 1: s− = s+ = s̄.
Case 2: (v±, s±) are chosen such that w− = w+ = w̄, where we set w± =

w(v±, s±).
We will concentrate our main efforts on Case 1 which is the most difficult part.
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2.1. Case 1: s− = s+ = s̄. In this subsection, (2.2) will be solved near the
similarity solution for the related isentropic problem.

Now let us recall some results on the similarity solution for (2.2)1 with s(x) =
const = s̄. In this case, (2.2)1 takes the form

wt + a1(w
−γ)xx = 0,(2.3)

with a1 = (γ − 1)−
1
γ e−

1
γ s̄. It is well known that (2.3) has a unique (up to a shift)

similarity solution w̃(η) (where η = x√
1+t

) satisfying the limiting conditions w̃(±∞) =

w±. Some properties of w̃(η) are listed in the following lemma (see, for instance, [5]).
Lemma 2.1. Let w̃(η) be the similarity solution to (2.3) with w̃(±∞) = w± and

η = x√
1+t

. It follows that

|w̃′(η)|+ |w̃′′(η)| ≤ C1|w+ − w−| exp{−C2η
2},

|w̃(η)− w−|η<0 + |w̃(η)− w+|η>0 ≤ C1|w+ − w−| exp{−C2η
2},

w̃x = (1 + t)−
1
2 w̃′(η), w̃t = −1

2
(1 + t)−1ηw̃′(η), (w̃−γ)xx = −a−1

1 w̃t,

‖Di
tD

j
xw̃(·, t)‖2 ≤ C|w+ − w−|2(1 + t)−(2i+j)+ 1

2 ,

‖Di
tD

j
xw̃(·, t)‖L∞ ≤ C1|w+ − w−|(1 + t)−(i+ 1

2 j)

for i+ j ≥ 1 and i ≥ 0, j ≥ 0.
We now prove Theorem 1.1 by comparing w(x, t) with w̃(η).
Let us denote φ = w−w̃; then from (2.2) and (2.3) we have the following equation:{

φt + a(x)(ψ(w̃)φ)xx + (a− a1)(w̃
−γ)xx + a(x)(g(φ, w̃)φ2)xx = 0,

φ(x, 0) = φ0(x) = w0(x)− w̃(x, 0).
(2.4)

Here

ψ(w̃) = −γw̃−(γ+1)

g(φ, w̃)φ2 = (φ+ w̃)−γ − w̃−γ − ψ(w̃)φ.

Now let F = −ψ(w̃)φ; the corresponding problem on F is given by

Ft + a(x)ψ(w̃)Fxx − ψ(w̃)(a− a1)(w̃

−γ)xx

−ψ1(w̃)Fw̃t − aψ(w̃)(fF 2)xx = 0,

F (x, 0) = F0(x) = −ψ(w̃(x, 0))φ0(x),

(2.5)

where

−ψ1(w̃)F = ψ′(w̃)φ, fF 2 = gφ2.

We will establish the global existence and large time behavior, for the solution F
to (2.5), in the Banach space X(0, T ) defined for all T > 0 by

X(0, t) = {F ∈ C0([0, t];H2), 0 ≤ t ≤ T}
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and equipped with the norm

N2(t) = sup
0≤τ≤t

‖F (τ)‖2H2 .

The main result of this subsection is the following theorem.
Theorem 2.2. Assume that F0(x) and s(x) = s0(x) are C2 functions such that

F0 ∈ H2(R) ∩ L1(R) and

x(s(x)− s̄) ∈ L1(R).(2.6)

Then there exist constants ε0 > 0 and δ > 0 such that if |w+−w−| ≤ δ and ‖F0‖H2 ≤
ε0, then (2.5) has a unique global smooth solution F satisfying

2∑
j=0

wj+1(t)‖∂jxF (·, t)‖2 +
∫ t

0

3∑
j=1

wj(τ)‖∂jxF (·, τ)‖2 dτ ≤ C,

where the weight functions wj(t) are given by

w1(t) = (1 + t)
1
2 (1 + log(1 + t))−k, wj(t) = (1 + t)j−1w1(t)

for j, k > 1.
Remark 3. (a) The condition (2.6) plays an important role in our proof of The-

orem 2.2 (see Lemmas 2.3–2.7, 2.9–2.10 below). This condition enables us to bound
the L1-norm of F for all time. In [7], s(x) − s̄ is assumed to be compact support
besides the technical condition V; our condition (2.6) is much weaker. In fact, (2.6)
asks only some decay properties on s(x)− s̄ as x→ ±∞.

(b) The condition (2.6) can be replaced by the weaker one such as

(2.6′) |x|β(s(x)− s̄) ∈ L1(R)

for some β > 0. This is clear following our proof.
(c) In general, we could not bound the L1-norm of F for all time without the

conditions on the decay properties of s(x)− s̄ as x→ ±∞ such as (2.6′). One cannot
even bound the total mass of F uniformly in time under the condition s(x)− s̄ ∈ L1.
From this point of view, (2.6′) is optimal.

The local existence and uniqueness of the solution to (2.5) in X(0, T ) is standard,
so to get the global existence, we will prove uniform estimates on the solution of (2.5).
Hence, from now on, we assume the local existence in X(0, T ) for some T > 0.

The following L1-estimate follows from the standard contraction property of the
porous media type equation and will play a fundamental role in the rest of this section.

Lemma 2.3. Under the conditions of Theorem 2.2, as long as the solution exists
in X(0, T ), there exist positive constants C1 and C2, such that

‖φ(·, t)‖L1 ≤ C1‖F (·, t)‖L1 ≤ C2(‖φ0‖L1 + δ).(2.7)

Proof. We present here a formal argument which can easily be made rigorous
by using any sequence approximating the sign function and passing into the limit by
means of the Lebesgue dominated convergence theorem. Observe that h = sign(φ) =
sign(F ). Let us multiply the equation in (2.4) by a−1h, then by integrating over
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[0, t]× (−∞,+∞), it follows that∫ +∞

−∞
a−1|φ|(x, t)dx+

∫ t

0

∫ +∞

−∞
sign′(F )F 2

xdxdτ

≤ C

∫ +∞

−∞
a−1|φ0|(x)dx+ C

∣∣∣∣
∫ t

0

∫ +∞

−∞
(a− a1)w̃tsign(F )dxdτ

∣∣∣∣
+

∣∣∣∣
∫ t

0

∫ +∞

−∞
(fF 2)xFxsign

′(F )dxdτ
∣∣∣∣

≤ C(‖φ0‖L1 + δ).

(2.8)

Here, we have used the following facts:∣∣∣∣
∫ t

0

∫ +∞

−∞
(a− a1)w̃tsign(F )dxdτ

∣∣∣∣
≤ C

∫ t

0

∫ +∞

−∞
|s− s̄||w̃t|dxdτ

≤ C

∫ t

0

∫ +∞

−∞
(1 + t)−

3
2 |x(s− s̄)||w̃′(η)|dxdτ

≤ Cδ,

(2.9)

∫ t

0

∫ +∞

−∞
(fF 2)xFxsign

′(F )dxdτ

=

∫ t

0

∫ +∞

−∞
Fx(2fFx + fFFFx + fw̃Fw̃x)Fδ{F=0}dxdτ

= 0.

(2.10)

Hence (2.8) gives the proof of (2.7).
With the help of Lemma 2.3, we can make the energy estimates on F .
Lemma 2.4. Under the hypotheses of Theorem 2.2, there exists ε∗ > 0 such that

if 0 < ε < ε∗ and N(T ) ≤ ε, then we have

‖F (·, t)‖2 +
∫ t

0

‖Fx(·, τ)‖2dτ ≤ C(‖F0‖2 + δ)(2.11)

for 0 ≤ t ≤ T .
Proof. Let us multiply (2.4) by a−1F and integrate the result over [0, t] ×

(−∞,+∞); we then get∫ +∞

−∞

1

2
a−1Fφ(x, t)dx+

∫ t

0

∫ +∞

−∞
F 2
xdxdτ

≤
∫ +∞

−∞

1

2
a−1F0φ0dx+

∣∣∣∣
∫ t

0

∫ +∞

−∞
a−1(a− a1)(w̃

−γ)xxFdxdτ

∣∣∣∣
+

∣∣∣∣
∫ t

0

∫ +∞

−∞

1

2
a−1ψ2(w̃)F

2w̃tdxdτ

∣∣∣∣+
∣∣∣∣
∫ t

0

∫ +∞

−∞
(fF 2)xFxdxdτ

∣∣∣∣
≡
∫ +∞

−∞

1

2
a−1F0φ0dx+ I1 + I2 + I3,

(2.12)
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with ψ2(w̃)F
2 = φ2ψ′(w̃).

We use I1, I2, and I3 step-by-step as follows:

I1 =

∣∣∣∣
∫ t

0

∫ +∞

−∞
a−1(a− a1)(w̃)

−γ
xx Fdxdτ

∣∣∣∣
≤ Cδε

∫ t

0

(1 + τ)−
3
2 ‖x(s− s̄)‖L1 dτ

≤ Cδε,

(2.13)

I2 =

∣∣∣∣
∫ t

0

∫ +∞

−∞

1

2
a−1ψ2(w̃)F

2w̃tdxdτ

∣∣∣∣
≤ C

∫ t

0

‖F‖L∞‖w̃t‖L∞‖F‖L1dxdτ

≤ Cδ

∫ t

0

‖F‖ 1
2 ‖Fx‖ 1

2 (1 + τ)−1dτ

≤ Cδ

(∫ t

0

‖F‖2‖Fx‖2dτ +
∫ t

0

(1 + τ)−
4
3 dτ

)

≤ Cδ

(
1 + ε2

∫ t

0

‖Fx‖2 dτ

)
,

(2.14)

I3 =

∣∣∣∣
∫ t

0

∫ +∞

−∞
(fF 2)xFxdxdτ

∣∣∣∣
≤
(
1

2
+ Cε

)∫ t

0

‖Fx‖2 dτ + Cδ2

∫ t

0

‖F‖4L∞ dτ

≤
(
1

2
+ Cε

)∫ t

0

‖Fx‖2 dτ + Cδ2

∫ t

0

‖F‖2‖Fx‖2 dτ

≤
(
1

2
+ Cε

)∫ t

0

‖Fx‖2 dτ.

(2.15)

Due to the smallness of δ and ε, we conclude from (2.12)–(2.15) that

‖F (·, t)‖2 +
∫ t

0

‖Fx(·, τ)‖2dτ ≤ C(‖F0‖2 + δ),(2.16)

which completes the proof of Lemma 2.4.
For higher order estimates, we use the problem (2.5) to obtain the following

results.
Lemma 2.5. Under the same conditions of Lemma 2.4, we have

‖Fx(·, t)‖2 +
∫ t

0

‖Fxx(·, τ)‖2 dτ ≤ C(‖F0‖2H1 + δ).(2.17)
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Proof. Let us multiply the equation in (2.5) by Fxx, then∫ +∞

−∞
F 2
x (x, t)dx+

∫ t

0

∫ +∞

−∞
F 2
xx(x, τ) dxdτ

≤ C

(
‖F0x‖2 +

∣∣∣∣
∫ t

0

∫ +∞

−∞
w̃tFxx dxdτ

∣∣∣∣
+

∣∣∣∣
∫ t

0

∫ +∞

−∞
(fF 2)xxFxx dxdτ

∣∣∣∣
)
,

(2.18)

which implies, with the help of the Cauchy–Schwarz inequality and Lemma 2.1, that∫ +∞

−∞
F 2
x (x, t)dx+

∫ t

0

∫ +∞

−∞
F 2
xx(x, τ) dxdτ

≤ C(‖F0x‖2 + δ2) + C

∫ t

0

∫ +∞

−∞
(fF 2)2xx dxdτ.

(2.19)

We bound the last term in (2.19) as follows:∫ t

0

∫ +∞

−∞
(fF 2)2xx dxdτ

≤ C

∫ t

0

∫ +∞

−∞
[(|F |+ |Fx|+ |wx|)2F 2

x + F 2F 2
xx + F 4(w̃2

xx + w̃4
x)] dxdτ

≤ Cε2δ2 + Cε

∫ t

0

∫ +∞

−∞
F 2
xx(τ, x) dxdτ.

(2.20)

Then, by (2.19)–(2.20) and the estimates in Lemma 2.4, we get (2.17).
We now turn to the third order estimates. For this purpose, we differentiate the

equation in (2.5) with respect to x

Ftx + aψ(w̃)Fxxx + (aψ(w̃))xFxx − (ψ(w̃)(a− a1)(w̃
−γ)xx)x

+(ψ1(w̃)Fw̃t)x − (aψ(w̃)(fF 2)xx)x = 0.
(2.21)

Multiplying (2.21) by Fxxx and then integrating it over [0, t]× (−∞,+∞), one has∫ +∞

−∞
F 2
xx(·, t)dx+

∫ t

0

∫ +∞

−∞
F 2
xxx(τ, x) dxdτ

≤ C

(
‖F0xx‖2 +

∫ t

0

∫ +∞

−∞
((aψ)xFxx)

2 dxdτ +

∫ t

0

∫ +∞

−∞
(ψ1w̃F w̃t)

2
x dxdτ

+

∫ t

0

∫ +∞

−∞
[((ψ(w̃)(a− a1)(w̃

−γ)xx)2x + (aψ(w̃)(fF 2)xx)
2
x] dxdτ

)

≤ C(‖F0‖2H2 + δ2) + Cε

∫ t

0

∫ +∞

−∞
F 2
xxx(τ, x) dxdτ,

(2.22)

which can be summarized as follows.
Lemma 2.6. Under the same conditions as Lemma 2.4, one has

‖Fxx(·, t)‖2 +
∫ t

0

‖Fxxx(·, τ)‖2 dτ ≤ C(‖F0‖2H2 + δ).(2.23)
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From Lemma 2.4–2.6, we can conclude the following.
Lemma 2.7. Under the same conditions as Theorem 2.2, there exists ε∗ > 0 such

that if 0 < ε < ε∗ and N(T ) ≤ ε, then it follows that

‖F (t)‖2H2 +

∫ t

0

(‖Ft‖2H1 + ‖Fx‖2H2)(τ) dτ ≤ C0(‖F0‖2H2 + δ)

for all 0 ≤ t ≤ T , where C0 is a positive constant independent of t.
With the help of the previous lemmas we obtain the global existence of the solution

F (x, t) to (2.5).
Theorem 2.8. Under the same conditions as Theorem 2.2, (2.5) has a unique

global smooth solution F (x, t) which tends to zero uniformly in H1 as t goes to infin-
ity.

Proof. We choose δ, ε0, and ε small such that C0(ε
2
0 + δ) ≤ ε3, ε ≤ 1

4 so that
all the previous arguments are valid. Then, due to the local results, there exists a
positive t1 such that the solution F (x, t) exists in (−∞,+∞)× [0, t1] and satisfies

N(t)2 ≤ 4N2(0) for all t ∈ [0, t1].
We can apply the L1-estimate for F of Lemma 2.3 and then Lemma 2.7 in 0 ≤ t ≤ t1.
Therefore, it follows that

N2(t) ≤ C0(‖F0‖2H2 + δ) ≤ ε3 for all t ∈ [0, t1].
By iterating the above procedure, a standard continuity argument allows us to

establish the global existence in time for the solution to (2.5).
Now, from Lemma 2.7 and the above argument, we have

‖F (t)‖2H2 +

∫ t

0

(‖Fx‖2H2 + ‖Ft‖2H1)(τ) dτ ≤ C0(‖F0‖2H2 + δ) for all t > 0.(2.24)

From (2.24) we know that

‖Fx(t)‖2 +
∫ +∞

0

∣∣∣∣ ddt‖Fx(t)‖2
∣∣∣∣ dt ≤ C,

which implies

lim
t→+∞ ‖Fx(t)‖

2 = 0.

Then, the Sobolev inequality implies

lim
t→+∞ ‖F (t)‖

2 ≤ lim
t→+∞ ‖F (t)‖L∞‖F (t)‖L1

= O(1) lim
t→+∞ ‖Fx(t)‖

1
2

= 0,

which completes the proof of this theorem.
By using the weighted energy method, we can prove the following decay estimates.
Lemma 2.9. Let F be the solution to (2.5) obtained in Theorem 2.8, then

w1(t)‖F (t)‖2 + w2(t)‖Fx(t)‖2

+

∫ t

0

(w1(τ)‖Fx(τ)‖2 + w2(τ)‖Fxx(τ)‖2) dτ ≤ C.

(2.25)



DIFFUSIVE PROFILES 803

Proof. Let us multiply (2.5) by w2(t)Fxx, then we get(
1

2
w2(t)F

2
x

)
t

− aψ(w̃)w2(t)F
2
xx −

1

2
w′

2(t)F
2
x − ψ1(w̃)FFxxw̃tw2(t)

= −w2(t)ψ(w̃)(a− a1)(w̃
−γ)xxFxx − aψ(w̃)(fF 2)xxFxxw2(t) + (· · · )x,

(2.26)

where (· · · )x denotes the term which does not need to be computed explicitly since it
will disappear by integrating in x. Then one has

w2(t)‖Fx(·, t)‖2 +
∫ t

0

w2(τ)‖Fxx(·, τ)‖2 dτ

≤ C1

(
‖F0x‖2 +

∣∣∣∣
∫ t

0

∫ +∞

−∞
w′

2(τ)F
2
xdxdτ

∣∣∣∣
+

∣∣∣∣
∫ t

0

∫ +∞

−∞
w̃2
tw2(τ)(a− a1)

2 dxdτ

∣∣∣∣
+

∣∣∣∣
∫ t

0

∫ +∞

−∞
F 2w̃2

tw2(τ) dxdτ

∣∣∣∣+
∫ t

0

∫ +∞

−∞
w2(τ)(fF

2)2xx dxdτ

)

≡ C1(‖F0x‖2 + J1 + J2 + J3 + J4).

(2.27)

On the other hand, if we multiply (2.4) by a−1w1(t)F , we get(
1

2
Fφa−1w1(t)

)
t

+ w1(t)F
2
x −

1

2
w′

1(t)a
−1ψ1(w̃)F

2

=
1

2
a−1w1(t)F

2w̃t − a−1w1(t)(a− a1)F (w̃
−γ)xx

+w1(t)Fx(fF
2)x + (· · · )x,

(2.28)

which, integrated on [0, t]× (−∞,+∞), yields

w1(t)‖F (·, t)‖2 +
∫ t

0

w1(t)‖Fx(τ)‖2dτ

≤ C2

(
‖F0‖2 +

∣∣∣∣
∫ t

0

∫ +∞

−∞
w′

1(τ)F
2 dxdτ

∣∣∣∣
+

∣∣∣∣
∫ t

0

∫ +∞

−∞
w1(τ)F

2w̃t dxdτ

∣∣∣∣+
∣∣∣∣
∫ t

0

∫ +∞

−∞
w1(τ)w̃tF (a− a1) dxdτ

∣∣∣∣
+

∣∣∣∣
∫ t

0

∫ +∞

−∞
w1(τ)Fx(fF

2)x dxdτ

∣∣∣∣
)

≡ C2(‖F0‖2 + J5 + J6 + J7 + J8).

(2.29)

By calculating K × (2.29) + (2.27) with a K > 0 to be determined later, we have

Kw1(t)‖F (t)‖2 + w2(t)‖Fx(t)‖2

+

∫ t

0

(Kw1(τ)‖Fx(τ)‖2 + w2(τ)‖Fxx(τ)‖2) dτ

≤ (C1‖F0x‖2 +KC2‖F0‖2)

+C1(J1 + J2 + J3 + J4) +KC2(J5 + J6 + J7 + J8).

(2.30)
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The following inequalities will be used to estimate the terms on Ji(i = 1, . . . , 8):

|w′
1(t)| =

∣∣∣∣12(1 + t)−1w1(t)− k(1 + log(1 + t))−1(1 + t)−1w1(t)

∣∣∣∣
≤ C(1 + t)−1w1(t),

(2.31)

|w′
2(t)| ≤ C(1 + t)−1w2(t) = Cw1(t).(2.32)

Then, by choosing K large enough, one has

C1J1 ≤ 1

2
K

∫ t

0

w1(τ)‖Fx(τ)‖2 dτ,(2.33)

J2 ≤ Cδ2

∫ t

0

(1 + τ)−3w2(τ) dτ ≤ Cδ2.(2.34)

To estimate J3, observe that the following inequality on F holds:

‖F‖L∞ ≤ C‖Fx‖ 2
3(2.35)

since

‖F‖L∞ ≤ C‖F‖ 1
2 ‖Fx‖ 1

2

≤ C‖F‖ 1
4

L∞‖Fx‖ 1
2 ‖F‖ 1

4

L1 .

Then we see that

C1J3 = C1

∣∣∣∣
∫ t

0

∫ +∞

−∞
F 2w̃2

tw2(τ) dxdτ

∣∣∣∣
≤ C

∫ t

0

w2(τ)‖w̃t‖L∞‖F‖L∞‖F‖L1 dτ

≤ Cδ2

∫ t

0

(1 + τ)−2w2(τ)‖Fx‖ 2
3 dτ

≤ Cδ2 +
1

4
K

∫ t

0

w1(τ)‖Fx(·, τ)‖2 dτ.

(2.36)

Similarly, we can estimate J5, J6, and J7 as follows:

C2KJ5 = C2K

∣∣∣∣
∫ t

0

∫ +∞

−∞
w′

1(τ)F
2 dxdτ

∣∣∣∣
≤ CK

∫ t

0

(1 + τ)−1w1(τ)‖Fx‖ 2
3 dτ

≤ CK +
1

8
K

∫ t

0

w1(τ)‖Fx(·, τ)‖2 dτ,

(2.37)
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C2KJ6 = C2K

∣∣∣∣
∫ t

0

∫ +∞

−∞
w1(τ)F

2w̃t dxdτ

∣∣∣∣
≤ CKδ +

1

16
K

∫ t

0

w1(τ)‖Fx(·, τ)‖2 dτ,

(2.38)

C2KJ7 = C2K

∣∣∣∣
∫ t

0

∫ +∞

−∞
w1(τ)w̃tF (a− a1) dxdτ

∣∣∣∣
≤ CKδ +

1

32
K

∫ t

0

w1(τ)‖Fx(·, τ)‖2 dτ.

(2.39)

To estimate J8, we have

C2KJ8

= C2K

∣∣∣∣
∫ t

0

∫ +∞

−∞
w1(τ)Fx(fF

2)x dxdτ

∣∣∣∣
≤ C

∣∣∣∣
∫ t

0

∫ +∞

−∞
w1(τ)Fx(2fFFx + fFF

2Fx + fw̃w̃xF
2) dxdτ

∣∣∣∣
≤ CεK

∫ t

0

w1(τ)‖Fx(·, τ)‖2dτ + CK

∫ t

0

∫ +∞

−∞
w1(τ)w̃

2
xF

2 dxdτ

≤ CK(δ + ε)

∫ t

0

w1(τ)‖Fx(·, τ)‖2dτ + CKδ.

(2.40)

We now deal with the term J4. Noting that

(fF 2)xx = (2FFxf + fFF
2Fx + fw̃w̃xF

2)x

= (2fF + fFF
2)Fxx + (2f + 4fFF + fFFF

2)F 2
x

+(4fw̃F + 2fFw̃F
2)Fxw̃x + (fw̃w̃xx + fw̃w̃w̃

2
x)F

2,

we have

J4 =

∣∣∣∣
∫ t

0

∫ +∞

−∞
w2(τ)(fF

2)2xx dxdτ

∣∣∣∣
≤ Cε

∫ t

0

w2(τ)‖Fxx(·, τ)‖2 dτ + C

∫ t

0

∫ +∞

−∞
F 4
xw2(τ) dxdτ

+C

∣∣∣∣
∫ t

0

∫ +∞

−∞
w2(τ)F

2
x w̃

2
xF dxdτ

∣∣∣∣
+C

∫ t

0

∫ +∞

−∞
w2(τ)F

4(w̃2
xx + w̃4

x) dxdτ

≡ Cε

∫ t

0

w2(τ)‖Fxx(·, τ)‖2 dτ + C(J9 + J10 + J11).

(2.41)
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We can estimate J10 and J11 in the following way:

J10 =

∣∣∣∣
∫ t

0

∫ +∞

−∞
w2(τ)F

2
x w̃

2
xF dxdτ

∣∣∣∣
≤ Cεδ2

∫ t

0

w1(τ)‖Fx(·, τ)‖2 dτ,

(2.42)

J11 =

∫ t

0

∫ +∞

−∞
w2(τ)F

4(w̃2
xx + w̃4

x) dxdτ

≤ Cδ2ε2

∫ t

0

w1(τ)‖Fx(·, τ)‖2 dτ,

(2.43)

while J9 can be bounded as follows:

J9 =

∫ t

0

∫ +∞

−∞
F 4
xw2(τ) dxdτ

≤ Cε2

∫ t

0

w2(τ)‖Fxx‖2 dτ + C

∫ t

0

w2(τ)‖Fx(τ)‖2‖Fx(τ)‖2 dτ.

(2.44)

Due to the smallness of δ and ε, by choosing K large enough, we deduce

w1(t)‖F (t)‖2 + w2(t)‖Fx(t)‖2

+

∫ t

0

(w1(τ)‖Fx(τ)‖2 + w2(τ)‖Fxx(τ)‖2) dτ

≤ C

(
1 +

∫ t

0

w2(τ)‖Fx(τ)‖2‖Fx(τ)‖2 dτ

)
.

(2.45)

Therefore, from (2.45), it follows that

w2(t)‖Fx(t)‖2 ≤ C

(
1 +

∫ t

0

w2(τ)‖Fx(τ)‖2‖Fx(τ)‖2 dτ

)
,

which implies, with the help of Gronwall inequality, that

w2(t)‖Fx(t)‖2 ≤ C

and ∫ t

0

w2(τ)‖Fx(τ)‖2‖Fx(τ)‖2 dτ ≤ C.(2.46)

Hence, (2.45) and (2.46) give the proof of this lemma.
The following lemma contains the decay rates for the derivatives of F , which will

be useful in the next section.
Lemma 2.10. The solution F to (2.5), obtained in Theorem 2.8, satisfies

w3(t)‖Ft(t)‖2 +w4(t)‖Ftx‖2 +
∫ t

0

(w3(τ)‖Ftx(τ)‖2 + w4(τ)‖Ftxx(τ)‖2) dτ

≤ Cδ,

‖Ft‖L∞ ≤ Cw3(t)
− 1

4w4(t)
− 1

4 .

(2.47)
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Proof. It is sufficient to prove (2.47), since the estimate for ‖Ft‖L∞ can be derived
from (2.47) by using Sobolev inequality.

Let us differentiate (2.5)1 in t, then

Ftt + aψ(w̃)Ftxx + aψ′(w̃)w̃tFxx − [ψ(w̃)(a− a1)(w̃
−γ)xx]t

−(ψ1(w̃)Fw̃t)t − [aψ(w̃)(fF 2)xx]t = 0.
(2.48)

If we multiply (2.48) by a−1w3(t)Ft, we get(
1

2
a−1w3(t)F

2
t

)
t

− ψ(w̃)w3(t)F
2
tx +

1

2
F 2
t ψ(w̃)xxw3(t)− 1

2
F 2
t a

−1w′
3(t)

+ψ′(w̃)w̃tFxxw3(t)Ft − a−1[ψ(w̃)(a− a1)(w̃
−γ)xx]tw3(t)Ft

−a−1(ψ1(w̃)Fw̃t)tw3(t)Ft − [ψ(w̃)(fF 2)xx]tw3(t)Ft + {· · · }x = 0.

(2.49)

From the proof of Lemma 2.9 and (2.5)1 it is clear that∫ t

0

w2(τ)‖Ft(·, τ)‖2 dτ

≤ C

(∫ t

0

w2(t)‖Fxx(τ)‖2dτ +
∫ t

0

∫ +∞

−∞
(a− a1)

2w̃2
tw2(τ) dxdτ

+

∫ t

0

∫ +∞

−∞
F 2w̃2

tw2(τ) dxdτ +

∫ t

0

∫ +∞

−∞
(fF 2)2xxw2(τ) dxdτ

)

≤ C.

(2.50)

Moreover, we have

a−1(ψ1(w̃)Fw̃t)tw3(t)Ft = O(1)[w̃tw3(t)F
2
t + (w̃2

t + w̃tt)w3(t)FFt],

a−1[ψ(w̃)(a− a1)(w̃
−γ)xx]tw3(t)Ft = O(1)(a− a1)(w̃

2
t + w̃tt)w3(t)Ft,

[ψ(w̃)(fF 2)xx]tw3(t)Ft = O(1)w̃t(fF
2)xxw3(t)Ft − ψ(w̃)(fF 2)xxtw3(t)Ft.

Now, integrating (2.49) and integrating by parts, we have

w3(t)‖Ft(t)‖2 +
∫ t

0

w3(τ)‖Ftx(τ)‖2 dτ

≤ C + C

∫ t

0

∫ +∞

−∞
F 2
t w2(τ) dxdτ +

∫ t

0

∫ +∞

−∞
w̃tw3(τ)F

2
xx dxdτ

+

∫ t

0

∫ +∞

−∞
[(a− a1)

2 + F 2](w̃2
t + w̃tt)

2w3(τ)(1 + τ) dxdτ

+

∫ t

0

∫ +∞

−∞
w2(τ)(fF

2)2xx dxdτ +

∣∣∣∣
∫ t

0

∫ +∞

−∞
ψ(w̃)(fF 2)xxtw3(τ)Ft dxdτ

∣∣∣∣
≤ C

(
1 +

∣∣∣∣
∫ t

0

∫ +∞

−∞
w3(τ)(fF

2)xt(Ftx + Ftw̃x) dxdτ

∣∣∣∣
)
.

(2.51)



808 PIERANGELO MARCATI AND RONGHUA PAN

To bound the previous terms, we observe that∣∣∣∣
∫ t

0

∫ +∞

−∞
w3(τ)(fF

2)xtFtw̃x dxdτ

∣∣∣∣
≤ C + C

∫ t

0

∫ +∞

−∞
w3(τ)(fF

2)2xt dxdτ

and ∣∣∣∣
∫ t

0

∫ +∞

−∞
w3(τ)(fF

2)xtFtx dxdτ

∣∣∣∣
≤ ε3

∫ t

0

∫ +∞

−∞
w3(τ)F

2
tx dxdτ + C(ε3)

∫ t

0

∫ +∞

−∞
w3(τ)(fF

2)2xt dxdτ.

Then choosing ε3 sufficient small, we have

w3(t)‖Ft(t)‖2 +
∫ t

0

w3(τ)‖Ftx(τ)‖2 dτ

≤ C

(
1 +

∫ t

0

∫ +∞

−∞
w3(τ)(fF

2)2xt dxdτ

)
.

(2.52)

Moreover, since

(fF 2)2xt = [2fFFx, fFF
2Fx + fw̃w̃xF

2]2t

= O(1)(|F |F 2
xt + F 2

t F
2
x + w̃2

tF
2
xF

2

+F 2F 2
t w̃

2
x + (w̃2

tx + w̃2
t w̃

2
x)F

4),

it follows that ∫ t

0

∫ +∞

−∞
w3(τ)(fF

2)2xt dxdτ)

≤ C

(
ε

∫ t

0

w3(τ)‖Ftx‖2dτ +A1 +A2 +A3 +A4

)
,

(2.53)

where, as in the previous estimates we get

A1 =

∫ t

0

∫ +∞

−∞
w3(τ)F

2
t F

2
x dxdτ ≤ C,(2.54)

A2 =

∫ t

0

∫ +∞

−∞
w3(τ)w̃

2
tF

2
xF

2 dxdτ ≤ Cδ2ε2,(2.55)

A3 =

∫ t

0

∫ +∞

−∞
w3(τ)F

2F 2
t w̃

2
x dxdτ ≤ Cδ2ε2,(2.56)

and

A4 =

∫ t

0

∫ +∞

−∞
w3(τ)(w̃

2
tx + w̃2

t w̃
2
x)F

4 dxdτ ≤ Cδ2.(2.57)
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Thus, we conclude from (2.52)—(2.57) that

w3(t)‖Ft(t)‖2 +
∫ t

0

w3(τ)‖Ftx(τ)‖2 dτ ≤ C,(2.58)

which completes the proof of the first part of (2.47).
Let us turn to the second part of (2.47). For this purpose, we multiply (2.48) by

w4(t)Ftxx. After similar calculations as before, by virtue of (2.58), we get

w4(t)‖Ftx(t)‖2 +
∫ t

0

w4(τ)‖Ftxx(τ)‖2 dτ

≤ C(1 +B1 +B2 +B3 +B4),

(2.59)

where

B1 =

∫ t

0

∫ +∞

−∞
w̃2
tw4(τ)F

2
xx dxdτ ≤ Cδ2,

B2 =

∫ t

0

∫ +∞

−∞
(w̃2

t + w̃tt)
2w4(τ)(a− a1)

2 dxdτ ≤ Cδ2,

B3 =

∫ t

0

∫ +∞

−∞
w4(τ)[ψ1(w̃)Fw̃t]

2
t dxdτ ≤ Cδ2,

and

B4 =

∫ t

0

∫ +∞

−∞
w4(τ)[ψ(w̃(fF

2)xx]
2
t dxdτ

≤ Cδ2 + C

∫ t

0

∫ +∞

−∞
w4(τ)(fF

2)2txx dxdτ.

Hence, one has

w4(t)‖Ftx(t)‖2 +
∫ t

0

w4(τ)‖Ftxx(τ)‖2 dτ

≤ C

(
1 +

∫ t

0

∫ +∞

−∞
w4(τ)(fF

2)2txx dxdτ

)
.

(2.60)

In order to bound the last term in (2.60), we use the following identity:

(fF 2)2txx

= O(1)[F 2F 2
txx + F 2

xF
2
tx + F 2w̃2

xF
2
tx

+(w̃2
xx + w̃4

x)F
2F 2

t + w̃2
txF

2F 2
x ]

+O(1)[(F 2
t F

2
xx + F 2

xxF
2w̃2

t ) + (F 4
xF

2
t + w̃2

tF
4
x )

+(F 2
t F

2
x w̃

2
x + F 2w̃2

t w̃
2
xF

2
x )

+(F 4F 2
t (w̃

2
xx + w̃4

x) + (w̃2
txx + w̃2

xw̃
2
tx)F

4)]

= [Γ1 + Γ2 + Γ3 + Γ4 + Γ5] + [∆1 +∆2 +∆3 +∆4].
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Then we bound each of these terms. Therefore, we have∫ t

0

∫ +∞

−∞
w4(τ)Γ1 dxdτ

≤ C

∫ t

0

∫ +∞

−∞
w4(τ)F

2F 2
txx dxdτ

≤ Cε2

∫ t

0

w4(τ)‖Ftxx‖2 dτ,

(2.61)

∫ t

0

∫ +∞

−∞
w4(τ)Γ2 dxdτ

≤ C

∫ t

0

w4(τ)‖Ftx‖2‖Fx‖2 dτ + Cε2

∫ t

0

w4(τ)‖Ftxx‖2dτ,
(2.62)

∫ t

0

∫ +∞

−∞
w4(τ)Γ3 dxdτ ≤ Cε2,(2.63)

∫ t

0

∫ +∞

−∞
w4(τ)Γ4 dxdτ ≤ Cδ2ε2,(2.64)

∫ t

0

∫ +∞

−∞
w4(τ)Γ5 dxdτ ≤ Cδ2ε2,(2.65)

∫ t

0

∫ +∞

−∞
w4(τ)∆1 dxdτ ≤ C(1 + δ2ε2),(2.66)

∫ t

0

∫ +∞

−∞
w4(τ)∆2 dxdτ ≤ C,(2.67)

∫ t

0

∫ +∞

−∞
w4(τ)∆3 dxdτ

≤ Cδ2

∫ t

0

(‖Fx‖2 + ‖Fxx‖2)(w3(τ)‖Ft‖2) dτ + Cδ2ε2

∫ t

0

w1(τ)‖Fx‖2 dτ

≤ C,

(2.68)

∫ t

0

∫ +∞

−∞
w4(τ)∆4 dxdτ

≤ Cδ2

∫ t

0

‖Ft‖2w2(τ) dτ + Cδ2

∫ t

0

w1(τ)‖F‖2‖Fx‖2 dτ

≤ Cδ2.

(2.69)
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Thus, we see from (2.60)–(2.69) that

w4(t)‖Ftx(t)‖2 +
∫ t

0

w4(τ)‖Ftxx(τ)‖2 dτ

≤ C + C

∫ t

0

w4(τ)‖Ftx‖2‖Fx‖2 dτ.

(2.70)

Then the Gronwall inequality implies that

w4(t)‖Ftx(t)‖2 +
∫ t

0

w4(τ)‖Ftxx(τ)‖2 dτ ≤ C.(2.71)

Equation (2.47) follows from (2.58) and (2.71).
Corollary 2.11. The solution F to (2.5), obtained in Theorem 2.8, satisfies

w3(t)‖Fxx‖2 ≤ C, ‖Fxx‖L∞ ≤ C(w3(t)w4(t))
− 1

4 ,

‖Fx‖2L∞ ≤ Cw3(t)
− 1

2w2(t)
− 1

2 .

Proof. From (2.5), we see that

Fxx = O(1)(Ft + (a− a1)w̃t + Fw̃t + F 2
x

+FFxw̃x + (w̃xx + w̃2
x)F

2).
(2.72)

Taking the L2-norm in (2.72), we have

w3(t)‖Fxx‖2 ≤ Cw3(t)(‖Ft‖2 + ‖(a− a1)w̃t‖2 + ‖Fw̃t‖2 + ‖F 2
x‖2

+‖FFxw̃x‖2 + ‖(w̃xx + w̃2
x)F

2‖2)

≤ C(1 + w3(t)‖F 2
x‖2)

≤ C(1 + w3(t)‖Fx‖2(‖Fx‖2 + ‖Fxx‖2))

≤ C + Cw3(t)‖Fx‖2‖Fxx‖2

which implies

w3(t)‖Fxx‖2 ≤ C.

Then

‖Fx‖2L∞ ≤ Cw3(t)
− 1

2w2(t)
− 1

2 .

Last, if we take the L∞-norm in (2.72), we obtain

‖Fxx‖L∞ ≤ C(‖Ft‖L∞ + ‖(a− a1)w̃t‖L∞ + ‖Fx‖2L∞

+‖FFxw̃x‖L∞ + ‖F 2(w̃xx + w̃2
x)‖L∞)

≤ C(w3(t)w4(t))
− 1

4 .
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Then Theorem 2.2 follows from Theorem 2.8, Lemmas 2.9–2.10, and Corollary
2.11.

Now, from F it is easy to obtain the solution φ of (2.4) and from φ the unique
smooth solution w of (2.2). By defining ṽ = a−1(x)w and ũ = −(w−γ)x, we obtain the
solution of (1.4). Theorem 1.1 then follows from Theorem 2.2 and the decay estimates
follow from the interpolation inequality and (2.35).

2.2. Case 2: w− = w+ = const = w̄. Observe that w = w̄ is a stationary
solution to (2.2). We will prove Theorem 1.2 by solving the Cauchy problem (2.2)
near w̄.

Let us denote by φ̃ = w − w̄, then φ̃

φ̃t − ba(x)φ̃xx + a(x)(f1(φ̃)φ̃

2)xx = 0,

φ̃(x, 0) = φ̃0(x) = w0(x)− w̄,

(2.73)

where

b = γw̄−(γ+1), f1φ̃
2 = (w̄ + φ̃)−γ − w̄−γ − bφ̃.

Then we have the following.
Theorem 2.12. Suppose φ̃0(x) and s(x) = s0(x) are C2 functions and φ̃0 ∈

H2(R). There exists ε0 > 0 such that if 0 < ε < ε0 and ‖φ̃0‖H2 ≤ ε, then (2.73) has
a unique global smooth solution φ̃(x, t) satisfying

‖φ̃(·, t)‖2H2 +

∫ t

0

‖φ̃x(·, τ)‖2H2 dτ ≤ Cε2(2.74)

and

lim
t→∞ ‖φ̃(·, t)‖L∞ = 0.

Furthermore, if φ̃0 ∈ L1(R), then

2∑
j=0

wj+1(t)‖∂jxφ̃(·, t)‖2 +
∫ t

0

3∑
j=1

wj(τ)‖∂jxφ̃(·, τ)‖2 dτ ≤ C.

Proof. Since the local result for (2.73) is classical, to prove the first part of
Theorem 2.12, it is sufficient to derive the uniform estimate (2.74) under the a priori
assumption ‖φ̃‖H2 ≤ δ0 for δ0 suitably small.

Multiply (2.73)1 by a−1φ̃, integrate it over (−∞,+∞)× [0, t], and one then has

‖φ̃(·, t)‖2 +
∫ t

0

‖φ̃x(·, τ)‖2 dτ

≤ Cε2
0 + C

∣∣∣∣
∫ t

0

∫ +∞

−∞
(f1(φ̃)φ̃

2)xφ̃x dxdτ

∣∣∣∣
≤ Cε2

0 + Cδ0

∫ t

0

‖φ̃x‖2 dτ,

which implies

‖φ̃(·, t)‖2 +
∫ t

0

‖φ̃x(·, τ)‖2 dτ ≤ Cε2
0.(2.75)
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Next, multiplying (2.73)1 by φ̃xx and integrating over (−∞,+∞)× [0, t], one has

‖φ̃x(·, t)‖2 +
∫ t

0

‖φ̃xx(·, τ)‖2 dτ

≤ Cε2
0 + C

∣∣∣∣
∫ t

0

∫ +∞

−∞
(f1(φ̃)φ̃

2)xxφ̃xx dxdτ

∣∣∣∣
≤ Cε2

0 +
1

2

∫ t

0

‖φ̃xx(·, τ)‖2 dτ + C

∫ t

0

∫ +∞

−∞
(f1(φ̃)φ̃

2)2xx dxdτ

≤ Cε2
0 +

(
1

2
+ Cδ0

)∫ t

0

‖φ̃xx(·, τ)‖2 dτ.

Thus we get

‖φ̃x(·, t)‖2 +
∫ t

0

‖φ̃xx(·, τ)‖2 dτ ≤ Cε2
0.(2.76)

Finally, by differentiating (2.73)1 in x and by repeating the previous procedure, one
can derive

‖φ̃xx(·, t)‖2 +
∫ t

0

‖φ̃xxx(·, τ)‖2 dτ ≤ Cε2
0.(2.77)

The estimate (2.74) follows from (2.75)–(2.77) and then (2.73) has a unique smooth
solution φ̃ such that

lim
t→∞ ‖φ̃(·, t)‖L∞ = 0.

We proceed now to prove the second part of Theorem 2.12. In this framework,
we can develop a theory similar to what we did in the previous sections. Actually, it
is less complicated since w̄ is a constant.

Observe that if φ̃0(x) ∈ L1, we can use the same argument used in Lemma 2.3 to
prove

‖φ̃(·, t)‖L1 ≤ ‖φ̃0‖L1 .(2.78)

Then we can employ the same argument used in subsection 2.1 to complete the proof
of the decay estimates. We perform here just the first two orders estimates.

For the first order estimates, we multiply (2.73)1 by w1(t)a
−1φ̃ then integrate it

by parts over (−∞,+∞)× [0, t]. We have

w1(t)‖φ̃(·, t)‖2 +
∫ t

0

w1(τ)‖φ̃x(·, τ)‖2 dτ

≤ C + C

∫ t

0

(1 + τ)−1w1(τ)‖φ̃(·, τ)‖L∞‖φ̃(·, τ)‖L1 dτ

+Cδ0

∫ t

0

w1(τ)‖φ̃x(·, τ)‖2 dτ,

(2.79)

where ∫ t

0

(1 + τ)−1w1(τ)‖φ̃(·, τ)‖L∞‖φ̃(·, τ)‖L1 dτ

≤ C(ε1)

∫ t

0

w1(τ)(1 + t)−
3
2 dτ + ε1

∫ t

0

w1(τ)‖φ̃x(·, τ)‖2 dτ.

(2.80)
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By choosing ε1 small, we see from (2.79)–(2.80)

w1(t)‖φ̃(·, t)‖2 +
∫ t

0

w1(τ)‖φ̃x(·, τ)‖2 dτ ≤ C.(2.81)

For the second order estimates, we multiply (2.73)1 by w2(t)φ̃xx, integrate it by
parts over (−∞,+∞)× [0, t], then

w2(t)‖φ̃x(·, t)‖2 +
∫ t

0

w2(τ)‖φ̃xx(·, τ)‖2 dτ

≤ C +
1

2

∫ t

0

w2(τ)‖φ̃xx(·, τ)‖2 dτ

+C

∫ t

0

∫ +∞

−∞
w2(τ)(f1(φ̃)φ̃

2)2xx dxdτ,

(2.82)

where ∫ t

0

∫ +∞

−∞
w2(τ)(f1(φ̃)φ̃

2)2xx dxdτ

≤ Cδ0

∫ t

0

w2(τ)‖φ̃xx(·, τ)‖2 dτ

+C

∫ t

0

w2(τ)‖φ̃x(τ)‖2(‖φ̃x‖2 + ‖φ̃xx‖2) dτ

≤ Cδ0

∫ t

0

w2(τ)‖φ̃xx(·, τ)‖2 dτ + C

∫ t

0

w2(τ)‖φ̃x(τ)‖4 dτ.

(2.83)

We conclude from (2.82)–(2.83) that

w2(t)‖φ̃x(·, t)‖2 +
∫ t

0

w2(τ)‖φ̃xx(·, τ)‖2 dτ

≤ C + C

∫ t

0

w2(τ)‖φ̃x(τ)‖4 dτ,

which, together with the help of Gronwall inequality, implies that

w2(t)‖φ̃x(·, t)‖2 +
∫ t

0

w2(τ)‖φ̃xx(·, τ)‖2 dτ ≤ C.(2.84)

In the following, we denote by v2(x, t) = a−1w(x, t) the solution to (2.1) obtained
in Theorem 1.2, and u2(x, t) = −p(v2, s)x. Theorem 1.2 then follows from Theorem
2.12.

3. Convergence to similarity solutions. In this section, we will study (1.2)–
(1.3) for Case 1, namely, we assume that s− = s+ = s̄. We shall prove Theorem 1.3
by comparing the solutions of (1.2)–(1.3) with those of (1.4) obtained in Theorem 2.2.
Since the result for s(x, t) is clear, in the following part we only deal with (v, u)(x, t).

Let (ṽ, ũ, s(x)) be the solution of (1.4) with the initial data (ṽ0(x), s0(x)). As
pointed in introduction, we will only prove Theorem 1.3 for the case where u− =
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u+ = 0 and thus (1.14) turns into

∫ +∞

−∞
(v0(x)− ṽ0(x)) dx = 0.(3.1)

Let us denote

ve = v − ṽ, ue = u− ũ,(3.2)

then it follows from (1.2) and (1.4) that{
vet − uex = 0,
uet + [p(ṽ + ve, s)− p(ṽ, s)]x = −ue + p(ṽ, s)xt.

(3.3)

As usual let us consider

y =

∫ x

−∞
ve(ξ) dξ,(3.4)

which satisfies the following nonlinear wave equation:


ytt + [p(yx + ṽ, s)− p(ṽ, s)]x + yt = p(ṽ, s)xt,

y(x, 0) = y0(x) =

∫ x

−∞
(v0 − ṽ0)(ξ) dξ,

yt(x, 0) = y1(x) = u0(x)− ũ(x, 0)

since yx = ve and yt = ue. Therefore


ytt + (pv(ṽ, s)yx)x + yt = p(ṽ, s)xt − (F1(ṽ, yx, s)y
2
x)x,

y(x, 0) = y0(x) =

∫ x

−∞
(v0 − ṽ0)(ξ) dξ,

yt(x, 0) = y1(x) = u0(x)− ũ(x, 0),

(3.5)

where

p(yx + ṽ, s)− p(ṽ, s) = pv(ṽ, s)yx + F1(ṽ, yx, s)y
2
x.

The main result of this section is the following.
Theorem 3.1. There exists δ0 > 0 such that if 0 < δ < δ0 and

‖y0‖H3 + ‖y1‖H2 + |v+ − v−| ≤ δ,

then (3.5) has a unique smooth solution y ∈ H3 and yt ∈ H2 satisfying

‖y(t)‖2H3 + ‖yt(t)‖2H2 +

∫ t

0

‖(yx, yt)(τ)‖H2 dτ ≤ Cδ2.

Moreover,

(1 + t)‖yx(·, t)‖2 + (1 + t)2‖yt(·, t)‖2 ≤ C(3.6)
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and

‖yx(·, t)‖L∞ ≤ C(1 + t)−
3
4 , ‖yt(·, t)‖L∞ ≤ C(1 + t)−

5
4 .(3.7)

Then Theorem 1.3 follows from Theorem 2.2 and Theorem 3.1.
We now prove Theorem 3.1. First of all, we have the following.
Theorem 3.2. There exists δ0 > 0 such that if 0 < δ < δ0 and

‖y0‖H3 + ‖y1‖H2 + |v+ − v−| ≤ δ,

then (3.5) has a unique global smooth solution y ∈ H3 and yt ∈ H2 satisfying

‖y(t)‖2H3 + ‖yt(t)‖2H2 +

∫ t

0

‖(yx, yt)(τ)‖H2 dτ ≤ Cδ2.(3.8)

Proof. It is sufficient to prove the uniform estimates (3.8) under the following a
priori assumption:

‖y(t)‖2H3 + ‖yt‖2H2 ≤ ε

for ε > 0 suitably small.
Multiplying (3.5)1 by y + 2yt, we have[

y2
t − pv(ṽ, s)y

2
x +

1

2
y2 + yyt

]
t

+ y2
t − pv(ṽ, s)y

2
x

= pvv(ṽ, s)ṽt(y
2
x − yx − 2yxt) + (F1y

2
x − p(ṽ, s)t)(yx + 2ytx) + {· · · }x,

(3.9)

where {· · · }x denote the terms which disappear after integration with respect to x.
Integrating (3.9) over [0, t]× (−∞,+∞), we get

‖(y, yt, yx)(t)‖2 +
∫ t

0

‖(yt, yx)(τ)‖2 dτ

≤ Cδ2 + C

∣∣∣∣
∫ t

0

∫ +∞

−∞
pvv(ṽ, s)ṽty

2
x

−p(ṽ, s)t(yx + 2yxt) + F1y
2
x(yx + 2ytx) dxdτ

∣∣∣∣ .
(3.10)

Due to the smallness of ε, we can reduce (3.10) into

‖(y, yt, yx)(t)‖2 +
∫ t

0

‖(yt, yx)(τ)‖2 dτ

≤ Cδ2 + C

∣∣∣∣
∫ t

0

∫ +∞

−∞
p(ṽ, s)t(yx + 2yxt) dxdτ

∣∣∣∣ ,
(3.11)

while ∣∣∣∣
∫ t

0

∫ +∞

−∞
p(ṽ, s)t(yx + 2yxt) dxdτ

∣∣∣∣
≤ C(ε1)

∫ t

0

∫ +∞

−∞
(p(ṽ, s)2t + p(ṽ, s)2tx) dxdτ + ε1

∫ t

0

∫ +∞

−∞
(y2
x + y2

t ) dxdτ

(3.12)
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and ∫ t

0

∫ +∞

−∞
p(ṽ, s)2t + p(ṽ, s)2tx dxdτ ≤ Cδ2.(3.13)

Now, by taking ε1 small, it reads from (3.11)–(3.13) that

‖(y, yt, yx)(t)‖2 +
∫ t

0

‖(yx, yt)(τ)‖2 dτ ≤ Cδ2.(3.14)

We now differentiate (3.5) in x and then

yttx + (pv(ṽ, s)yx)xx + ytx = p(ṽ, s)xtx − (F1(ṽ, yx, s)y
2
x)xx.(3.15)

If we multiply (3.15) by yx+2ytx and integrate the resulting equation over [0, 1]×[0, t],
by using (3.14) we get

‖(yx, ytx, yxx)(t)‖2 +
∫ t

0

‖(ytx, yxx)(τ)‖2 dτ

≤ Cδ2 + C

∫ t

0

∫ +∞

−∞
(F1y

2
x)

2
x dxdτ

+C

∫ t

0

∫ +∞

−∞
[O(1)yxy

2
xx]t dxdτ

+Cδ

∫ t

0

∫ +∞

−∞
(y2
x + y2

tx + y2
xx) dxdτ,

which implies

‖(yx, ytx, yxx)(t)‖2 +
∫ t

0

‖(ytx, yxx)(τ)‖2 dτ ≤ Cδ2.

Repeating the above procedure, we can easily obtain the third order estimates
and complete the proof of this theorem.

With the help of Theorem 3.2, it is easy to obtain the following convergence
results by using an argument similar to the proof of Theorem 2.8.

Theorem 3.3. The solution y to (3.5) in the Theorem 3.2 satisfies

lim
t→∞(‖y(·, t)‖L∞ + ‖(yt, yx)(·, t)‖H1) = 0.

We investigate now the problem of the decay rate. We will follow the approach
introduced by [19] concerning the isentropic case. However, since the entropy s(x) is
not constant here, some modifications are necessary.

Lemma 3.4. Under the previous hypotheses, it follows that

(1 + t)‖(yx, yt)(t)‖2 +
∫ t

0

(1 + τ)‖yt(τ)‖2 dτ ≤ Cδ2.

Proof. First, we notice that (3.5)1 is equivalent to

ytt + yt + [p(ṽ + yx, s)− p(ṽ, s)]x = p(ṽ, s)xt.(3.16)
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Multiplying (3.16) by (1 + t)yt, after some calculations we get[
(1 + t)

(
1

2
y2
t + q

)]
t

+ (1 + t)y2
t − q

−
∫ yx

0

[pv(ṽ + ξ, s)− pv(ṽ, s)] dξ + ṽt(1 + t)y2
x −

1

2
y2
t

= (1 + t)ytp(ṽ, s)xt + {· · · }x.

(3.17)

Integrating (3.17) over [0, t]× (−∞,+∞), with the help of (3.8), we have

(1 + t)‖(yx, yt)(t)‖2 +
∫ t

0

(1 + τ)‖yt(τ)‖2 dτ

≤ Cδ2 +
1

2

∫ t

0

(1 + τ)‖yt(τ)‖2 dτ,

which implies

(1 + t)‖(yt, yx)(t)‖2 +
∫ t

0

(1 + τ)‖yt(τ)‖2 dτ ≤ Cδ2.(3.18)

Here we have used the following properties:

q = −
∫ yx

0

[p(ṽ + ξ, s)− p(ṽ, s)] dξ = O(1)y2
x,∫ yx

0

[pv(ṽ + ξ, s)− pv(ṽ, s)] dξ = O(1)y2
x,

ṽt ≤ O(1)(Ft + w̃t) ≤ O(1)(1 + t)−1.

Lemma 3.5. Under the previous hypotheses, we have

(1 + t)2‖(yt, ytt, ytx)(t)‖2 +
∫ t

0

(1 + τ)2‖(ytt, ytx)(τ)‖2 dτ ≤ Cδ2.

Proof. Differentiating (3.5)1 in t, we have

yttt + (pv(ṽ, s)yx)xt + ytt = p(ṽ, s)xtt − (F1y
2
x)xt.(3.19)

Let us multiply (3.19) by (1 + t)yt and (1 + t)ytt, respectively, then we deduce[
(1 + t)

(
ytytt +

1

2
y2
t

)]
t

− pv(ṽ, s)(1 + t)y2
tx − (1 + t)y2

tt −
1

2
y2
t − ytytt

= pvv ṽt(1 + t)yxytx + (1 + t)yt(p(ṽ, s)xtt − (F1y
2
x)xt) + {· · · }x,

(3.20)

[
1

2
(1 + t)(y2

tt − pvy
2
tx)

]
t

+ (1 + t)y2
tt

−1
2
y2
tt +

1

2
pvy

2
tx +

1

2
(1 + t)pvv ṽty

2
tx + (1 + t)ytt(yxpvv ṽt)x

= (1 + t)ytt(p(ṽ, s)xtt − (F1y
2
x)xt) + {· · · }x.

(3.21)
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By using Theorem 3.2 and Lemma 3.4 and by integrating 8× (3.21) + (3.20) one has

(1 + t)‖(yt, ytt, ytx)‖2 +
∫ t

0

(1 + τ)‖(ytt, ytx)(τ)‖2 dτ

≤ C

(
δ2 +

∫ t

0

∫ +∞

−∞
(1 + τ)p(ṽ, s)2xtt dxdτ

+

∣∣∣∣
∫ t

0

∫ +∞

−∞
(1 + τ)(ytx + yttx)(F1y

2
x)t dxdτ

∣∣∣∣
)

≤ Cδ2 + C

∣∣∣∣
∫ t

0

∫ +∞

−∞
(1 + τ)(ytx + yttx)(F1y

2
x)t dxdτ

∣∣∣∣ .

(3.22)

Moreover, one has ∣∣∣∣
∫ t

0

∫ +∞

−∞
(1 + τ)ytx(F1y

2
x)t dxdτ

∣∣∣∣
≤ C

∫ t

0

∫ +∞

−∞
(1 + τ)(|yx|y2

tx + |ṽty2
xytx|) dxdτ

≤ Cδ2 + Cδ

∫ t

0

∫ +∞

−∞
(1 + τ)y2

tx dxdτ

(3.23)

and ∣∣∣∣
∫ t

0

∫ +∞

−∞
(1 + τ)yttx(F1y

2
x)t dxdτ

∣∣∣∣
≤ Cδ2 + Cδ

(
(1 + t)‖ytx(t)‖2 +

∫ t

0

(1 + τ)‖ytx‖2 dτ

)
.

(3.24)

In view of the smallness of δ, from (3.22)–(3.24) we have

(1 + t)‖(yt, ytt, ytx)(t)‖2 +
∫ t

0

(1 + τ)‖(ytt, ytx)(τ)‖2 dτ ≤ Cδ2.(3.25)

Now we multiply (3.19) by (1+t)2yt and (1+t)2ytt and repeat the previous calculations
to conclude Lemma 3.5.

Lemma 3.6. The solution y to (3.5) in Theorem 3.2 satisfies

(1 + t)2‖(Vt, Vx)(t)‖2 +
∫ t

0

(1 + τ)‖(Vt, Vx)(τ)‖2 dτ ≤ Cδ2,

where V = pv(ṽ, s)yx.
Proof. The estimate for Vt can be obtained from Lemma 3.5 and the following

relation:

Vt = pv(ṽ, s)ytx + pvv(ṽ, s)ṽtyx.

It is easy to see that

Vx = −(ytt + yt + p(ṽ, s)xt + (F2V
2)x),(3.26)
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where F2V
2 = F1y

2
x. Then we calculate the decay rate for Vx by using (3.26). First

of all, it is easy to see by taking the L2-norm in (3.26) that

(1 + t)‖Vx(t)‖2 ≤ Cδ2(3.27)

and

(1 + t)2‖Vx‖2

≤ C(1 + t)2(‖ytt‖2 + ‖yt‖2 + ‖(F2V
2)x‖2)

≤ Cδ2 +
1

2
(1 + t)2‖Vx‖2 + C(1 + t)(‖V ‖2 + ‖Vx‖2)

≤ Cδ2 +
1

2
(1 + t)2‖Vx‖2

thus

(1 + t)2‖Vx‖2 ≤ Cδ2.(3.28)

Then, multiplying (3.26) by (1 + t)Vx and integrating it, one has∫ t

0

(1 + τ)‖Vx(τ)‖2 dτ

≤ C

∫ t

0

∫ +∞

−∞
(1 + τ)(y2

tt + y2
t + p(ṽ, s)2xt + (F2V

2)2x) dxdτ

≤ Cδ2 + C

∫ t

0

∫ +∞

−∞
(F2V

2)2x(1 + τ) dxdτ

≤ Cδ2 + C

∫ t

0

∫ +∞

−∞
(1 + τ)V 4 dxdτ

≤ Cδ2 + C

∫ t

0

(‖yx‖2 + ‖yxx‖2)(1 + τ)‖yx‖2 dτ

≤ Cδ2.

(3.29)

The following result easily holds by repeating the previous arguments on the
equation (3.19) differentiated with respect to x.

Lemma 3.7. The solution y to (3.5) in Theorem 3.2 satisfies

(1 + t)2‖(yttx, ytxx)(t)‖2 +
∫ t

0

(1 + τ)2‖(yttx, ytxx)(τ)‖2 dτ ≤ Cδ2.

Now we can prove the desired estimates on ytx.
Lemma 3.8. Under the previous hypotheses, one has

(1 + t)3‖(ytt, ytx)(t)‖2 +
∫ t

0

(1 + τ)3‖ytt(τ)‖2 dτ ≤ Cδ2.

Proof. Multiply (3.19) by (1 + t)3ytt, then we obtain

(1 + t)3‖(ytt, ytx)(t)‖2 +
∫ t

0

(1 + τ)3‖ytt(τ)‖2 dτ

≤ Cδ2 + C

∣∣∣∣
∫ t

0

∫ +∞

−∞
(1 + τ)3yttx(F1y

2
x)t dxdτ

∣∣∣∣ .
(3.30)
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We have that ∣∣∣∣
∫ t

0

∫ +∞

−∞
(1 + τ)3yttx(F1y

2
x)t dxdτ

∣∣∣∣
≤ C

∣∣∣∣
∫ t

0

∫ +∞

−∞
[O(1)(1 + τ)3y2

txyx]t dxdτ

∣∣∣∣
+C

∣∣∣∣
∫ t

0

∫ +∞

−∞
((1 + t)2y2

tx + (1 + τ)3y3
tx dxdτ

∣∣∣∣
+C

∣∣∣∣
∫ t

0

∫ +∞

−∞
(1 + τ)3ytt(F3ṽtV

2)x dxdτ

∣∣∣∣
≤ C(α1)δ

2 + Cδ(1 + t)3‖ytx(t)‖2 + α1

∫ t

0

(1 + τ)3‖ytt‖2 dτ,

(3.31)

where F3V
2 = F1vy

2
x.

By choosing α1 suitable small, we conclude from (3.30)–(3.31) that

(1 + t)3‖(ytt, ytx)(t)‖2 +
∫ t

0

(1 + τ)3‖ytt‖2 dτ ≤ Cδ2.

Therefore, we obtain the following desired decay rates.
Theorem 3.9. The solution y to (3.5) in Theorem 3.2 satisfies

1∑
k=0

[(1 + t)k+1‖∂kxV (·, t)‖2 + (1 + t)k+2‖∂kxyt(·, t)‖2] ≤ C(3.32)

and

‖yx(·, t)‖L∞ ≤ C(1 + t)−
3
4 , ‖yt(·, t)‖L∞ ≤ C(1 + t)−

5
4 .(3.33)

Proof. (3.32) comes directly from Lemmas 3.4–3.8. (3.33) follows from the inter-
polation inequality and (3.32), where

‖yx(·, t)‖L∞ ≤ C‖V (·, t)‖L∞ ≤ C(1 + t)−
3
4 .

Theorem 3.1 then follows from Theorem 3.2 and Theorem 3.9.

4. Convergence to stationary solution. This section is devoted to proving
Theorem 4 and Theorem 5, where (v−, v+) and (s−, s+) are chosen so that p(v−, s−) =
p(v+, s+) = p̄ = const.

Denote by (v2, u2)(x, t) the solution of (1.4) obtained in Theorem 2.12. We solve
(1.2)–(1.3) near (v2, u2)(x, t) under u− = u+ = 0 and then (1.16) implies

∫ +∞

−∞
(v0(x)− v2(x, 0)) dx = 0.(4.1)

Similarly to section 3, we set

ỹ =

∫ x

−∞
(v(ξ, t)− v2(ξ, t)) dξ,
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which satisfies


ỹtt + (pv(v2, s)ỹx)x + ỹt = p(v2, s)xt − (F1(v2, ỹx, s)ỹ
2
x)x,

ỹ(x, 0) = ỹ0(x) =

∫ x

−∞
(v0(ξ)− v2(ξ, 0)) dξ,

ỹt(x, 0) = ỹ1(x) = u0(x)− u2(x, 0),

(4.2)

where

p(ỹx + v2, s)− p(v2, s) = pv(v2, s)ỹx + F1(v2, ỹx, s)ỹ
2
x.

From the results in subsection 2.2 and the argument used in section 3, it is clear
that the same argument of the section 3 can be used here to prove the following
results.

Theorem 4.1. There exists δ0 > 0 such that if 0 < δ < δ0 and

‖ỹ0‖23 + ‖ỹ1‖22 ≤ δ,

then (4.2) has a unique smooth solution ỹ satisfying

1∑
k=0

[(1 + t)k+1‖∂kxV1(·, t)‖2 + (1 + t)k+2‖∂kx ỹt(·, t)‖2] ≤ C,(4.3)

with V1 = pv(v2, s)ỹx, and

‖ỹx(·, t)‖L∞ ≤ C(1 + t)−
3
4 , ‖ỹt(·, t)‖L∞ ≤ C(1 + t)−

5
4 .(4.4)

It is clear that Theorem 1.4 comes from Theorem 1.2 and Theorem 4.1.
We turn to proving Theorem 1.5 next. Since (v1(x), 0, s0(x)) is the stationary

solution of both (1.2) and (1.4), we can also solve (1.2)–(1.3) near v1 instead of v2,
under the condition u− = u+ = 0 and (1.19), then∫ +∞

−∞
(v0(x)− v1(x)) dx = 0.(4.5)

Denote

z =

∫ x

−∞
(v(ξ, t)− v1(ξ)) dξ;(4.6)

then it follows that


ztt + (pv(v1, s)zx)x + zt = −(F1(v1, zx, s)z
2
x)x,

z(x, 0) = z0(x) =

∫ x

−∞
(v0(ξ)− v1(ξ)) dξ,

zt(x, 0) = z1(x) = u0(x),

(4.7)

where

p(zx + v1, s)− p(v1, s) = pv(v1, s)zx + F1(v1, zx, s)z
2
x.
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We will prove the following theorem.
Theorem 4.2. There exists δ0 > 0 such that if 0 < δ < δ0 and

‖z0‖H3 + ‖z1‖H2 ≤ δ,

then (4.7) has a unique global smooth solution z satisfying

1∑
k=0

[(1 + t)k+1‖∂kxV2(·, t)‖2 + (1 + t)k+2‖∂kxzt(·, t)‖2] ≤ C,

where V2 = pv(v1, s)zx and

‖zx(·, t)‖L∞ ≤ C(1 + t)−
3
4 , ‖zt(·, t)‖L∞ ≤ C(1 + t)−

5
4 .

Hence (1.2)–(1.3) has a unique global smooth solution (v, u, s)(x, t) such that

‖(v − v1)(·, t)‖L∞ ≤ C(1 + t)−
3
4 , ‖u(·, t)‖L∞ ≤ C(1 + t)−

5
4 .

We note that Theorem 4.2 implies Theorem 1.5.
Using the same proof as in Theorem 3.2, noting p(v1, s) = const, we can deduce

the following lemma.
Lemma 4.3. There exists δ0 > 0 such that if 0 < δ < δ0 and

‖z0‖H3 + ‖z1‖H2 ≤ δ,

then (4.7) has a unique smooth solution z satisfying

‖z(t)‖2H3 + ‖zt(t)‖2H2 +

∫ t

0

‖(zx, zt)(τ)‖H2 dτ ≤ Cδ2.(4.8)

The next result concerns the decay rates.
Lemma 4.4. The solution z of (4.7), obtained in Lemma 4.3, satisfies

1∑
k=0

[(1 + t)k+1‖∂kxV2(·, t)‖2 + (1 + t)k+2‖∂kxzt(·, t)‖2] ≤ C,(4.9)

where V2 = pv(v1, s)zx and

‖zx(·, t)‖L∞ ≤ C(1 + t)−
3
4 , ‖zt(·, t)‖L∞ ≤ C(1 + t)−

5
4 .(4.10)

Proof. We multiply (4.7)1 by (1 + t)zt and integrate it by parts. Then by using
(4.8), we obtain, by a calculation similar to that one in the proof of Lemma 3.4, that

(1 + t)‖(zx, zt)(t)‖2 +
∫ t

0

(1 + τ)‖zt(τ)‖2 dτ ≤ Cδ2.(4.11)

Now let us differentiate (4.7)1 in t, then we have

zttt + (pv(v1, s)yx)xt + ytt = −(F1z
2
x)xt.(4.12)
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Multiplying (4.12) by (1 + t)zt and (1 + t)ztt, respectively, we deduce[
(1 + t)

(
ztztt +

1

2
z2
t

)]
t

− pv(v1, s)(1 + t)z2
tx − (1 + t)z2

tt

=
1

2
z2
t + ztztt − (F1z

2
x)t(1 + t)ztx + {· · · }x,

(4.13)

[
1

2
(1 + t)(z2

tt − pvz
2
tx)

]
t

+ (1 + t)z2
tt

=
1

2
z2
tt −

1

2
pvz

2
tx − (1 + t)zttx(F1z

2
x)t) + {· · · }x.

(4.14)

Then by using (4.8) and (4.11), and by integrating 8× (4.14) + (4.13), we have

(1 + t)‖(ztt, ztx)‖2 +
∫ t

0

(1 + τ)‖(ztt, ztx)(τ)‖2 dτ

≤ C + C

∣∣∣∣
∫ t

0

∫ +∞

−∞
(1 + τ)(ztx + zttx)(F1z

2
x)t dxdτ

∣∣∣∣ .
(4.15)

We see that ∣∣∣∣
∫ t

0

∫ +∞

−∞
(1 + τ)ztx(F1z

2
x)t dxdτ

∣∣∣∣
≤ Cδ

∫ t

0

(1 + τ)‖ztx(τ)‖2 dτ,

(4.16)

and ∣∣∣∣
∫ t

0

∫ +∞

−∞
(1 + τ)zttx(F1z

2
x)t dxdτ

∣∣∣∣
≤ C

∣∣∣∣
∫ t

0

∫ +∞

−∞
[O(1)|zx|(1 + τ)z2

tx]t dxdτ

∣∣∣∣
+Cδ

∫ t

0

∫ +∞

−∞
(1 + (1 + τ))z2

tx dxdτ.

(4.17)

Due to the smallness of δ, from (4.15)–(4.17) we have

(1 + t)‖(ztt, ztx)‖2 +
∫ t

0

(1 + τ)‖(ztt, ztx)(τ)‖2 dτ ≤ C.(4.18)

Now let us multiply (4.12) by (1 + t)2zt and (1 + t)2ztt and repeat the previous
calculations, then

(1 + t)2‖(zt, ztt, ztx)‖2 +
∫ t

0

(1 + τ)2‖(ztt, ztx)(τ)‖2 dτ ≤ C.(4.19)

The same proof as used in Lemma 3.6 yields

(1 + t)2‖(V2t, V2x)‖2 +
∫ t

0

(1 + τ)‖(V2t, V2x)(τ)‖2 dτ ≤ C.(4.20)
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By differentiating (4.12) in x, we get

(1 + t)2‖(zttx, ztxx)‖2 +
∫ t

0

(1 + τ)2‖(zttx, ztxx)(τ)‖2 dτ ≤ C,(4.21)

and finally, by multiplying (4.12) by (1 + t)3ztt, it follows that

(1 + t)3‖(ztt, ztx)‖2 +
∫ t

0

(1 + τ)3‖ztt(τ)‖2 dτ

≤ C + C

∣∣∣∣
∫ t

0

∫ +∞

−∞
[O(1)|zx|(1 + τ)3z2

tx]t dxdτ

∣∣∣∣
+Cδ

∫ t

0

∫ +∞

−∞
(1 + τ)2z2

tx dxdτ + C

∣∣∣∣
∫ t

0

∫ +∞

−∞
(1 + τ)3z3

tx dxdτ

∣∣∣∣ ,
which implies

(1 + t)3‖(ztt, ztx)‖2 +
∫ t

0

(1 + τ)3‖ztt(τ)‖2 dτ

≤ C + C

∣∣∣∣
∫ t

0

∫ +∞

−∞
(1 + τ)3z3

tx dxdτ

∣∣∣∣ .
(4.22)

We have ∣∣∣∣
∫ t

0

∫ +∞

−∞
(1 + τ)3z3

tx dxdτ

∣∣∣∣
≤ C

∫ t

0

∫ +∞

−∞
(1 + τ)2z2

tx + (1 + τ)4z4
tx dxdτ

≤ C + C

∫ t

0

(1 + τ)2(‖ztx‖2 + ‖ztxx‖2) dτ

≤ C.

(4.23)

Then from (4.22)–(4.23), it follows that

(1 + t)3‖(ztt, ztx)‖2 +
∫ t

0

(1 + τ)3‖ztt(τ)‖2 dτ ≤ C.(4.24)

Hence, (4.9) follows from the combination of (4.11), (4.19)–(4.21), and (4.24). The
estimate (4.10) follows from (4.9).

By combining Lemmas 4.3 and 4.4, we complete the proof of the Theorem 4.2.
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Abstract. The goal of this paper is to give a representation formula for the mean curvature
motion in terms of the value function of some stochastic optimal control problem. This result is
generalized to several geometric evolution equations.
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Introduction. The main result of this paper is a representation formula for the
solutions of the equation of the mean curvature motion (MCM). This equation is the
following second order parabolic (degenerate and nonlinear) PDE:{

ut = |Du|curv(u) on (0,+∞)× R
n,

u(0, ·) = g on R
n,

(1)

where curv(u) = div(Du/|Du|) = (∆u− 〈D2uDu,Du〉
|Du|2 )/|Du|. It is known (cf. [5], [7])

that this equation has a unique solution in the viscosity sense when g : R
n → R

n is
bounded and uniformly continuous. We have obtained the following formula: For any
t > 0,

u(t, x) = inf
v∈A

(
ess-supΩ g(Xx,v(·)(t))

)
,

where “infv∈A” means the infimum over any complete stochastic basis (Ω,F , P ; (Fs,
s ∈ [0, T ])) endowed with an n-dimensional standard (Fs)-Brownian motion W =
(W (s), s ∈ [0, T ]), and over any (Fs)-progressively measurable process v(·) taking its
values in the set

V = {v ∈ Sn | v ≥ 0, I − v2 ≥ 0, and Tr(I − v2) = 1}

(in brief: v ∈ A(Ω,F , P ;W )). The process Xx,v(·) = (Xx,v(·)(s), s ∈ [0, T ]) is the
solution of the associated stochastic control system{

dXx,v(·)(s) =
√
2v(s)dW (s),

Xx,v(·)(0) = x.
(2)

As a byproduct of this result we obtain a representation formula for the MCM.
A family of moving hypersurfaces (Σt) of R

n (without boundary) is evolving by its
mean curvature if its normal velocity is equal at each point to its mean curvature at
that point. It is known that, in general, there is no regular solution of the MCM: the

∗Received by the editors November 1, 2000; accepted for publication (in revised form) August 22,
2001; published electronically December 18, 2001.
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family of moving surfaces (Σt) usually develops singularities in finite time. Several
definitions for the front after the apparitions of singularities have been proposed. Here
we use, on the one hand, the level set method introduced in [5] and [7], and, on the
other hand, the distance solutions of a front introduced in an equivalent way in [11]
and [3].

In the level set method, the front (Σt) is defined as the 0-level set of the solution
u of (1) for some uniformly continuous function g vanishing on Σ0. The level set
method gives a unique solution for the front (independent of g) but has to face the
fattening problem: The set Σt may have a nonempty interior.

A distance solution of the MCM is a family of moving sets (Σt) such that the
function u(t, x) = 1Σt(x) is a (discontinuous) solution to (1) with g = 1Σ0(x). Com-
pared with the level set method, this way of defining a solution is more intrinsic.
Unfortunately, distance solutions are not unique in general. In fact, the fattening
problem in the level method and the nonuniqueness problem of distance solutions
are directly related: Indeed, the solution given by the level set method is always a
distance solution, and fattening occurs if and only if this solution is not the unique
one. The solution given by the level set method is sometimes called the biggest flow
because it contains any distance solution.

Let us finally recall that if there is a smooth solution to the MCM on the interval
[0, T ], then this solution is unique and the distance solutions—and therefore also the
biggest flow—coincide with the smooth solution on [0, T ].

We obtain the following representation formula for the MCM: Let (Σt) be the
biggest flow of the MCM. Then we have

∀t ≥ 0, Σt = {x ∈ R
n | ∃v(·) ∈ A such that Xx,v(·)(t) ∈ Σ0 a.s.},(3)

where “∃v(·) ∈ A” means that there is a complete stochastic basis (Ω,F , P ; (Fs, s ∈
[0, T ])) endowed with an n-dimensional standard (Fs)-Brownian motion W = (W (s),
s ∈ [0, T ]) and that v(·) is some V-valued and (Fs)-progressively measurable process.
The process Xx,v(·) is the solution to (2).

We actually prove that (Σt) satisfies a stronger property:

∀t ≥ 0, x ∈ Σt ⇔ ∃v(·) ∈ A such that Xx,v(·)(s) ∈ Σs for s ∈ [0, t].(4)

This statement can be understood as a dynamic programming principle. In fact, (4)
not only holds true for the solution of the MCM given by the level set method but
also for the distance solutions of the MCM. This property even characterizes these
distance solutions. Indeed, if (Σt) is a family of moving sets, we prove that (Σt) is a
distance solution of the MCM if and only if both (Σt) and (R

n\Σt) satisfy a dynamic
programming principle similar to (4).

This characterization of distance solutions relies upon a viability theorem for
moving sets. Similar viability results can be found in the literature: see, in particular,
[1], [2], [4], [9].

Let us now explain how this paper is organized. In section 1, we establish the
representation formula for the solution of (1). Section 2 is devoted to the solutions of
the MCM given by the level set approach, while the study of the distance solutions
is the aim of section 3. In section 4, we generalize these results to some more general
geometric equations. We complete the paper by giving in the appendix a statement
of the viability theorem for moving sets and its proof.

When this paper was almost complete, we learned that Soner and Touzi [12] had
a representation result similar to ours. In fact, their result is applicable to the motion
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by mean curvature in any codimension. In codimension one (i.e., the case we consider
here), they prove that the moving set (Σt) given by

Σt = {x ∈ R
n | ∃v(·) ∈ A such that Xx,v(·)(t) ∈ Σ0 a.s.}

is a distance solution of the MCM. Our result is slightly more precise, since it shows
that (Σt) is in fact the solution given by the level set method.

1. A control problem. Let us first define the set of controls: Let Sn be the set
of all n× n symmetric matrices, and let V be the following compact subset of Sn:

V = {v ∈ Sn | v ≥ 0, I − v2 ≥ 0 and Tr(I − v2) = 1},

where I is the n × n identity matrix. Let us point out that we have the following
equality:

{v2 | v ∈ V} = {w ∈ Sn | w ≥ 0, I − w ≥ 0, Tr(I − w) = 1},(5)

from which we deduce that {v2 | v ∈ V} is a convex subset of Sn and that

{v2 | v ∈ V} = Co {(I − aa∗) | a ∈ R
n, |a| = 1},(6)

where Co(A) stands for the closed convex hull of a set A.
Let W = (W (s), s ∈ [0, T ]) be an n-dimensional standard (Fs)-Brownian motion

on some complete stochastic basis (Ω,F , P ; (Fs)). We denote by A = A(Ω,F , P ;W )
the set of all V-valued (Fs)-progressively measurable processes v(·). A process v(·) ∈
A is called an admissible control.

Let us recall that, if (Ω,A, P ) is a probability space and if Y : Ω→ R is a random
variable, then the ess-sup of Y is defined by

ess-supΩ Y = sup{τ ∈ R | P (Y ≥ τ) > 0}.

Our aim is to prove the following result.
Theorem 1.1. Let g : Rn → R be a bounded uniformly continuous function. Let

T > 0 be fixed, and let us set, for any initial position (t, x) ∈ [0, T ]× R
n,

V (t, x) = inf
v∈A

(
ess-supΩ g(Xt,x,v(·)(T ))

)
,(7)

where Xt,x,v(·)(·) is the solution to{
dXt,x,v(·)(s) =

√
2v(s)dW (s) ,

Xt,x,v(·)(t) = x.
(8)

Then V is the solution, in the viscosity sense, of the equation of the MCM (written
here with a terminal condition):{

−Vt −∆V + 〈D2V DV,DV 〉
|DV |2 = 0 in (0, T )× R

n,

V (T, ·) = g(·) in R
n.

(9)

Remarks.
1. In particular, the value function V , as the solution to (9), is continuous.



830 R. BUCKDAHN, P. CARDALIAGUET, AND M. QUINCAMPOIX

2. We prove below that, for any (t, x) ∈ [0, T ] × R
n, there is an optimal con-

trol v(·) ∈ A in the following sense: There is a complete stochastic basis
(Ω,F , P ; (Fs, s ∈ [0, T ])) endowed with an n-dimensional standard (Fs)-
Brownian motion W = (W (s), s ∈ [0, T ]), and some (Fs)-progressively mea-
surable process v(·) taking its values in the set V, such that the solution
Xt,x,v(·) of (8) satisfies

V (t, x) = ess-supΩ g(Xt,x,v(·)(T )).

Proof of Theorem 1.1. Since, for any constants a > 0 and b ∈ R, the function
(t, x)→ aV (t, x)+ b is the value function for the ess-sup equation (7) for the terminal
cost x → ag(x)+ b, and since g is bounded, we can assume, without loss of generality,
that

∀x ∈ R
n, 1 ≤ g(x) ≤ 2.(10)

Let us set, for any p ≥ 1 and any (t, x) ∈ [0, T ]× R
n,

Vp(t, x) = inf
v∈A

[
E((g(Xt,x,v(·)(T )))p)

] 1
p

,

where Xt,x,v(·)(·) is the solution to (8). It is known (see [8]) that V p
p is the solution,

in the viscosity sense, of the following equation:{ −(V p
p )t +H(D2V p

p ) = 0 in (0, T )× R
n,

V p
p (T, ·) = gp(·) in R

n,
(11)

where

∀S ∈ Sn, H(S) = sup
v∈V

[−Tr(vv∗S)] .

Since, from (6), the elements of V are symmetric matrices v such that v2 are convex
combinations of matrices of the form (I − aa∗), we get

∀S ∈ Sn, H(S) = sup
|a|=1

[−Tr((I − aa∗)S)] = − [Tr(S)− λmax(S)] ,

where λmax(S) is the largest eigenvalue of S because

max
|a|=1

Tr(aa∗S) = max
|a|=1

〈Sa, a〉 = λmax(S).

We divide the proof of Theorem 1.1 in two steps. In the first step, we prove that
(Vp) converges to V . In the second step, we deduce from (11), satisfied by the V p

p ,
that V is the solution of (9).

First step. Let (t, x) ∈ [0, T ]× R
n be fixed. We claim that

lim
p→+∞Vp(t, x) = V (t, x).(12)

Proof of the first step. Since, for any v(·) ∈ A and any 1 ≤ p ≤ q, we have

[
E((g(Xt,x,v(·)(T )))p)

] 1
p ≤

[
E((g(Xt,x,v(·)(T )))q)

] 1
q ≤ ess-supΩ g(Xt,x,v(·)(T )),
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we deduce that the sequence (Vp(t, x)) is nondecreasing and that

lim
p→+∞Vp(t, x) ≤ V (t, x).

Let us now prove the converse inequality. For doing so, we consider, for any p ≥ 1, a
control vp(·) such that[

E((g(Xt,x,vp(·)(T )))p)
] 1

p ≤ Vp(t, x) +
1

p
.

Recall that V is compact. From (6), the set { 1
2 (
√
2v)(

√
2v)∗ | v ∈ V} is convex.

Hence, from standard arguments,1 there exist a probability space (Ω,F , P ), some n-
dimensional Brownian motion W on this space, some process v(·) ∈ A(Ω,F , P ;W ),
and a subsequence pk such that

∀q ≥ 1, lim
k→+∞

[
E((g(Xt,x,vpk (·)(T )))q)

] 1
q

=
[
E((g(Xt,x,v(·)(T )))q)

] 1
q

.

We have, for any fixed q ≥ 1 and k sufficiently large,[
E((g(Xt,x,vpk (·)(T )))q)

] 1
q ≤

[
E((g(Xt,x,vpk (·)(T )))pk)

] 1
pk ≤ Vpk(t, x) +

1

pk
.

Since the sequence (Vp(t, x)) has a limit when p → +∞, letting k → +∞, we get
[
E((g(Xt,x,v(·)(T )))q)

] 1
q ≤ lim

p→+∞Vp(t, x).

Then, letting q → +∞, we obtain the desired result:
V (t, x) ≤ ess-supΩ g(Xt,x,v(·)(T )) ≤ lim

p→+∞Vp(t, x).

In particular, we see that the admissible control v(·) ∈ A is optimal.
Second step. We now prove that V is the solution of (9). For doing so, we use

the fact that V can be approximated by the Vp. Let us point out that V is lower
semicontinuous, as the supremum of the continuous maps Vp. We do not prove directly
that V is a solution. Instead, we consider the half-relaxed upper-limit V � of the Vp:

∀(t, x) ∈ [0, T ]× R
n, V �(t, x) = lim sup

(t′,x′)→(t,x), p→+∞
Vp(t

′, x′).

We are going to prove that V is a supersolution and that V � is a subsolution.
Moreover, V and V � satisfy the following boundary conditions: V (T, ·) ≥ g and
V �(T, ·) ≤ g. Then we obtain the equality V = V � by the comparison principle since
clearly

∀(t, x), V (t, x) ≤ V �(t, x).

Equation satisfied by Vp. From (11), one can deduce easily that Vp is a solution
to{ −pV p−1

p (Vp)t +H(p(p− 1)V p−2
p DVp(DVp)

∗ + pV p−1
p D2Vp) = 0 in (0, T )× R

n,
Vp(T, ·) = g(·) in R

n.

1See, in particular, [6] or [13, Theorem 5.3, Chapter 2] and its proof, namely, relations (5.25)
and (5.26) and the conclusion from (5.41) to (5.43).
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Since, from assumption (10), we have g ≥ 1, we also have Vp ≥ 1. Thus we can divide
the above equation by pV p−1

p to get that Vp is in fact the solution to{ −(Vp)t +H((p− 1)V −1
p DVp(DVp)

∗ +D2Vp) = 0 in (0, T )× R
n,

Vp(T, ·) = g(·) in R
n(13)

because H is positively homogeneous of degree one.
V is a supersolution. We now prove that V is a supersolution of (9). Let

φ be a test function such that V − φ has a strict local minimum at some point
(t, x) ∈ (0, T )× R

n. We have to prove that, at the point (t, x), we have

−φt +H∗(Dφ,D2φ) ≥ 0,
where we have set

∀d ∈ R
n\{0}, ∀S ∈ Sn, H(d, S) = −Tr(S) + 〈Sd, d〉

|d|2

and where H∗ is an upper regularization of H when d = 0, namely,

∀S ∈ Sn, H∗(0, S) = −Tr(S) + λmax(S).

Standard arguments show that there is a sequence (tp, xp) converging to (t, x) such
that (Vp(tp, xp)) converges to V (t, x) and such that Vp − φ has a local minimum at
(tp, xp). Therefore, we have, at the point (tp, xp),

−φt +H((p− 1)V −1
p Dφ(Dφ)∗ +D2φ) ≥ 0(14)

because Vp is a viscosity solution of (13).
First case. Dφ(t, x) �= 0. In this case, we have to prove that, at the point (t, x),

we have

−φt −∆φ+
〈D2φDφ,Dφ〉

|Dφ|2 ≥ 0.

Let us compute H((p− 1)V −1
p Dφ(Dφ)∗ +D2φ) at the point (tp, xp):

H((p− 1)V −1
p Dφ(Dφ)∗ +D2φ)

= −(p− 1)V −1
p |Dφ|2 −∆φ+ λmax((p− 1)V −1

p Dφ(Dφ)∗ +D2φ)
(15)

from the definition of H. At this stage, we need to recall the following classical result.
Lemma 1.2. Let S ∈ Sn be such that the space of eigenvectors associated with

λmax(S) is of dimension one. Then, the map S → λmax(S) is of class C1 in a
neighborhood of S. Moreover, its derivative Dλmax(S) at this point S is given by

∀H ∈ Sn, Dλmax(S)(H) = 〈Ha, a〉,(16)

where a ∈ R
n is an eigenvector of S associated with λmax(S) and such that |a| = 1.

(The proof of the lemma is given at the end of the present section for the sake of
completeness.)

We apply the lemma to the matrix

S =
Dφ(t, x)(Dφ(t, x))∗

V (t, x)
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for which λmax(S) =
|Dφ(t,x)|2
V (t,x) , and where a = Dφ(t, x)/|Dφ(t, x)| since Dφ(t, x) �= 0.

Let us also set

Sp =
Dφ(tp, xp)(Dφ(tp, xp))

∗

Vp(tp, xp)
,

and let us notice that Sp converges to S. Moreover, since the matrices Sp satisfy the
conditions of Lemma 1.2, the Taylor formula states that there is some θp ∈ (0, 1) such
that

λmax

(
Sp +

D2φp
p− 1

)
= λmax(Sp) +

1

p− 1Dλmax

(
Sp +

θp
p− 1D

2φp

)
(D2φp),

where we have set, for simplicity, Dφp = Dφ(tp, xp) and D2φp = D2φ(tp, xp). We
now use the fact that λmax is C1 in a neighborhood of S and that Sp → S to get

λmax

(
Sp +

D2φp
p− 1

)
= λmax(Sp) +

1

p− 1Dλmax(S)(D
2φp) + o(1/p),

where p o(1/p)→ 0 when p → +∞. Then formula (16) gives

λmax

(
Sp +

D2φp
p− 1

)
= λmax(Sp) +

〈D2φpDφ(t, x), Dφ(t, x)〉
(p− 1)|Dφ(t, x)|2 + o(1/p).

Using this last equality in (15), we get, at the point (tp, xp),

H((p− 1)V −1
p Dφ(Dφ)∗ +D2φ) = −∆φ+

〈D2φDφ(t, x), Dφ(t, x)〉
|Dφ(t, x)|2 + p o(1/p),

which, combined with (14), gives the desired inequality when p → +∞:

−φt −∆φ+
〈D2φDφ,Dφ〉

|Dφ|2 ≥ 0

at the point (t, x).
Second case. Dφ(t, x) = 0. In this case, we have to prove that, at the point (t, x),

we have

−φt −∆φ+ λmax(D
2φ) ≥ 0.

In order to use inequality (14), we first compute the quantity

H((p− 1)V −1
p Dφ(Dφ)∗ +D2φ)

taken at the point (tp, xp). Let us notice that, since S → λmax(S) is subadditive, we
have

λmax((p− 1)V −1
p Dφ(Dφ)∗ +D2φ) ≤ (p− 1)V −1

p |Dφ|2 + λmax(D
2φ),

from which we deduce the following inequality, taken at the point (tp, xp):

H((p− 1)V −1
p Dφ(Dφ)∗ +D2φ) ≤ −∆φ+ λmax(D

2φ).

Using this inequality in (14) and letting p → +∞ give the desired result:

−φt −∆φ+ λmax(D
2φ) ≥ 0.
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V � is a subsolution. We set, for any positive z, any d ∈ R\{0}, and S ∈ Sn,

Hp(z, d, S) = H
(
p− 1
z

dd∗ + S

)
.

Let us notice that we have

Hp(z, d, S) ≥ −Tr(S) + 〈Sd, d〉
|d|2

because

Hp(z, d, S) = − (p− 1)
z

|d|2 − Tr(S) + λmax

(
(p− 1)

z
dd∗ + S

)

with

λmax

(
(p− 1)

z
dd∗ + S

)
≥ (p− 1)

z
|d|2 + 〈Sd, d〉

|d|2 .

Thus the Vp, being the solutions of (13), are subsolutions of (9). Then, from standard
argument, the half-relaxed upper-limit of the Vp, which is nothing but V �, is still a
subsolution of (9).

V satisfies the terminal condition. Since the Vp satisfy Vp(T, ·) = g and since
Vp(T, ·)→ V (T, ·), we clearly have V (T, ·) = g.

V � satisfies the terminal condition. We have to show that V �(T, ·) ≤ g. We
argue by contradiction, by assuming that there are some x0 ∈ R

n and some ε > 0
such that V �(T, x0) ≥ g(x0) + ε. Let β > 0 be sufficiently large such that

∀x ∈ R
n,

β

2
|x− x0|2 + g(x0) +

ε

2
≥ g(x) +

ε

4
.

(There is such a β because g is bounded and continuous.) We now choose α > β(n−1)
sufficiently large so that

∀x ∈ R
n, αT +

β

2
|x− x0|2 + g(x0) +

ε

2
≥ 3.

Let us set

φ(t, x) = α(T − t) +
β

2
|x− x0|2 + g(x0) +

ε

2
.

From the construction of φ, we have

∀x ∈ R
n, φ(0, x) ≥ 3 and φ(T, x) ≥ g(x) +

ε

4
.

Hence we have, for any p ≥ 1,

∀x ∈ R
n, φ(0, x) ≥ Vp(0, x) + 1 and φ(T, x) ≥ Vp(T, x) +

ε

4
(17)

because 1 ≤ Vp ≤ 2 and Vp(T, ·) = g. From our assumption, V �(T, x0) ≥ g(x0)+ ε, we
deduce that there are a subsequence pk and some (tk, xk) converging to (T, x0) such
that

lim
k→+∞

Vpk(tk, xk) = V �(T, x0) ≥ g(x0) + ε.
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Hence, for k sufficiently large, we have

Vpk(tk, xk) > φ(tk, xk)(18)

since φ(T, x0) = g(x0) + ε/2. Let us now notice that Vpk − φ has a local maximum
at some point (sk, yk) ∈ [0, T ] × R

n because −(Vpk − φ) is coercive. From (18), this
maximum is positive. Thus, from (17), we have sk ∈ (0, T ). Since Vpk is the solution
to (13), we have

α+H((pk − 1)V −1
pk
(sk, yk)β

2(yk − x0)(yk − x0)
∗ + βI) ≤ 0,(19)

where

H((pk − 1)V −1
pk
(sk, yk)β

2(yk − x0)(yk − x0)
∗ + βI) = −β(n− 1).

This is in contradiction with (19) since α > β(n− 1). Therefore, we have proved that
V �(T, ·) ≤ g.

Conclusion. From the previous steps, we know that V � is a subsolution of
(9) with V �(T, ·) ≤ g, while V is a lower semicontinous supersolution of (9) with
V (T, ·) ≥ g. Let us also recall that

∀(t, x) ∈ [0, T ]× R
n, V (t, x) ≤ V �(t, x).

Therefore,

∀x ∈ R
n, V (T, x) = V �(T, x) = g(x).

Since g is uniformly continuous and since V and V � are globally bounded, the com-
parison principle of [10] states that V � ≤ V . Therefore, we have proved that V � = V
is the solution to (9).

Remark. In particular, V is continuous.
Proof of Lemma 1.2. Let us recall that

∀S ∈ Sn, λmax(S) = max|a|=1
〈Sa, a〉.

Hence, if dim(Ker(S − λmax(S)I)) = 1, standard argument show that λmax is differ-
entiable at S and that

∀H ∈ Sn, Dλmax(S)(H) = 〈Ha(S), a(S)〉,
where a(S) is an eigenvalue associated with λmax(S) with |a(S)| = 1. Moreover, the
map (λ, S′)→ dim(Ker(S′−λI)) being upper semicontinuous, there is a neighborhood
O of S on which dim(Ker(S′ − λmax(S

′)I)) = 1 for any S′ ∈ O. Hence λmax is
differentiable at S′ for S′ ∈ O, and its derivative is again given by Dλmax(S

′)(H) =
〈Ha(S′), a(S′)〉. This map is clearly continuous (because dim(Ker(S′−λmax(S

′)I)) =
1), and we have proved that λmax is C1 in a neighborhood of S.

2. The representation formula. In this section, we briefly recall the level set
method for the MCM, and we prove the representation formula given in the introduc-
tion.

Let Σ0 be a closed subset of R
n, and let g : R

n → R be a uniformly continuous
bounded function vanishing on Σ0:

Σ0 = {x ∈ R
n | g(x) = 0}.(20)
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Let us consider the solution (in the viscosity sense) to{
ut = |Du|curv(u) on (0,+∞)× R

n,
u(0, ·) = g on R

n,
(21)

where curv(u) = div(Du/|Du|) = (∆u− 〈D2uDu,Du〉
|Du|2 )/|Du|. It is known (see [5], [7])

that the set

Σt = {x ∈ R
n | u(t, x) = 0}

does not depend on g but only on Σ0 = {g = 0}: Namely, if g1 and g2 are two
uniformly continuous, bounded functions, such that

Σ0 = {g1 = 0} = {g2 = 0},
then the associated solutions u1 and u2 satisfy

Σt = {u1(t, ·) = 0} = {u2(t, ·) = 0}.
The moving sets (Σt) can be understood as a generalized motion by mean curvature.
Indeed, if there is a classical solution to the MCM starting from Σ0 on some interval
[0, T ], then this classical solution coincides with (Σt) on [0, T ].

Let us recall that the front (Σt) built by this method is sometimes called the
biggest flow because it contains any distance solution of the MCM. (See the next
section for the definition of distance solution.)

Remark. The connection between (9) and (21) is the following: A function u :
R+ × R

n → R is a solution to (21) if and only if, for any T > 0, the function
uT (s, y) = u(T − s, y) is a solution to (9).

Theorem 2.1. Let (Σt) be defined as above. Then

Σt = {x ∈ R
n | ∃v(·) ∈ A such that Xx,v(·)(t) ∈ Σ0 a.s.},

where Xx,v(·)(s) is the solution to{
dXx,v(·)(s) =

√
2v(s)dW (s),

Xx,v(·)(0) = x.
(22)

Proof of Theorem 2.1. Let t > 0 be fixed. Let g be a nonnegative, bounded,
uniformly continuous function satisfying (20), and let u be the solution to (21). Let
us set V (s, y) = u(t−s, y). Then V is the solution to (9), with a terminal time T = t;
hence it is equal to the value function defined by (7).

Therefore, a point x belongs to Σt if and only if V (0, x) = u(t, x) = 0, i.e., there
is some optimal control v(·) ∈ A for V (0, x) (cf. the remark to Theorem 1.1) such
that the solution X0,x,v(·) of (8) satisfies

ess-supΩg(X
0,x,v(·)(t)) = 0.

Since g is nonnegative and satisfies (20), this means that

X0,x,v(·)(t) ∈ Σ0 a.s.

Moreover, X0,x,v(·) of (8) is nothing but the solution Xx,v(·) of (22). This shows
that a point x belongs to Σt if and only if there is some control v(·) ∈ A such that
Xx,v(·)(t) ∈ Σ0 a.s.
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3. Characterization of distance solutions of the MCM. We say that a
family (Σt) of moving sets is a distance solution of the MCM if the function u(t, x) =
1Σt(x) is a discontinuous solution of the following equation:{

ut = |Du|curv(u) on (0,+∞)× R
n,

u(0, ·) = 1Σ0
on R

n.
(23)

This means that the half-relaxed upper-limit u∗ is a subsolution of (23), with u∗ ≤
(1Σ0

)∗ at t = 0, while the half-relaxed lower-limit u∗ is a subsolution of (23), with
u∗ ≥ (1Σ0

)∗ at t = 0. Let us point out that distance solutions are not unique in
general. The biggest solution, i.e., the solution given by the level set method, is a
distance solution.

Notation. If (Σt) is a family of moving sets, we set

Σ̄t = Lt′→tΣt′ = {x ∈ R
n | ∃tk → t, xk ∈ Σtk with xk → x}.

In the same way, we set

Σ̂t = Limsupt′→tR
n\Σt = {x ∈ R

n | ∃tk → t, xk /∈ Σtk with xk → x}.
We characterize the fact that (Σt) is moving by the mean curvature in terms of

the viability of (Σt) and (R
n\Σt) for the stochastic control system (22).

Proposition 3.1. Let (Σt) be a family of moving sets satisfying the initial
condition:

Σ0 = Σ̄0 and Rn\Σ0 = Σ̂0.(24)

Then (Σt) is a distance solution of the MCM if and only if the two following
properties are satisfied:

(i) For any t ≥ 0 and any x ∈ Σ̄t, there exists some v(·) ∈ A such that the
solution Xx,v(·) of (22) satisfies

∀s ∈ [0, t], Xx,v(·)(s) ∈ Σ̄t−s a.s.

(ii) For any t ≥ 0 and any x ∈ Σ̂t, there exists some v(·) ∈ A such that the
solution Xx,v(·) of (22) satisfies

∀s ∈ [0, t], Xx,v(·)(s) ∈ Σ̂t−s a.s.

Remarks.
1. Actually, property (i) is equivalent with the fact that u is a subsolution of
(23), while property (ii) is equivalent with the fact that u is a supersolution.

2. Since the solution given by the level set method is a distance solution, this
means that this solution satisfies (i) and (ii).

The proposition is an application of a stochastic viability theorem (Theorem A.1)
given in the appendix.

Proof of Proposition 3.1. We are going to prove that the map u(t, x) = 1Σt(x) is a
subsolution of (23) if and only if (Σt) satisfies (i). The proof that u is a supersolution
of (23) if and only if (Σt) satisfies (ii) is similar, and so we omit it.

Let us notice that u∗(t, x) = 1Σ̄t
(x). From Theorem A.1, (ii), applied to the

control system (8), the fact that u(t, x) = 1Σt(x) is a subsolution of (23) means that,
for any T > 0, the family of moving sets (KT

t )t∈[0,T ] defined by

∀t ∈ [0, T ], KT
t = Σ̄T−t
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is a viability domain (cf. Definition A.2 below) for the stochastic control system (8).
Let us first assume that u is a subsolution of (23). Then, for any t > 0 and any

x ∈ Σt, the viability theorem applied to the viability domain (KT
s )s∈[0,T ], for some

T > t, together with Remark A.1 part 3, implies that there is some control v ∈ A
such that the solution X0,x,v(·) of (8) satisfies

∀s ∈ [0, t], X0,x,v(·)(s) ∈ KT
T−t+s = Σ̄t−s,

because the point x belongs to KT
T−t = Σ̄t. Therefore, part (i) of the proposition is

satisfied since the solution X0,x,v(·) is nothing but the solution Xx,v(·) of (22).
Conversely, let us now assume that assertion (i) of the proposition holds true.

Then Remark A.1 part 3 implies that, for any T > 0, the family (KT
t ) is a viability

domain for system (8). Hence u is a subsolution of (23).

4. Representation formula for anisotropic flows. In this section we con-
sider geometric equations of the form

ut = F (Du,D2u).(25)

By geometric, we mean that the function F : Rn\{0} × Sn → R is elliptic, i.e.,

F (p,A) ≤ F (p,B) whenever A ≤ B(26)

and satisfies the following conditions: for all a ∈ R\{0} and for all σ ∈ R,

F (ap, aX) = aF (p,X) and F (p,X + σpp∗) = F (p,X).(27)

A geometric equation enjoys the so-called invariance property: If u is a solution to (25)
in the viscosity sense, then, for any continuous function θ : R → R, the function θ(u)
also satisfies (25) (cf. [5], [7]). With such an equation, one can associate a geometric
flow: If Σ0 is a closed subset of R

n, the flow (Σt) of Σ0 by F is defined by

∀t ≥ 0, Σt = {x ∈ R
n | u(t, x) = 0},

where u : R+ × R
n → R is the viscosity solution to{

ut = F (Du,D2u) on (0,+∞)× R
n,

u(0, ·) = g on R
n,

(28)

and where g : Rn → R
n is some uniformly continuous and bounded function vanishing

on Σ0. If F satisfies (27) and the following regularity conditions:


(i) F is continuous on (Rn\{0})× Sn,
(ii) F is bounded on bounded subset of (Rn\{0})× Sn,
(iii) F ∗(0, 0) = F∗(0, 0) = 0,

(29)

then the set Σt depends only on Σ0 and not on g.
In this section, we give a representation formula for the solution of (28) and for

the flow (Σt) when F satisfies (26), (27), (29), and the following additional conditions:


(i) S → F (p, S) is concave for any p �= 0,
(ii) ∀p �= 0, ∀S ∈ Sn, ∀λ ∈ (R\{0}), F (λp, S) = F (p, S),
(iii) ∀p �= 0, ∀S ∈ Sn, ∀x /∈ Rp, F (p, S + xx∗) > F (p, S).

(30)
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We comment upon these assumptions after the statement of the lemma.
Lemma 4.1. Let F : R

n\{0} × Sn → R satisfy (26), (27), (29), and (30). There
is some compact subset VF of Sn such that

∀(p, S) ∈ R
n\{0} × Sn, F (p, S) = min

v∈VF , vp=0
Tr(Sv2),(31)

and

{v2 | v ∈ VF } is convex and compact.(32)

Remarks.
1. The lemma still holds true if we assume that assumption (27) is satisfied only
for a > 0. However, in this case, the geometric equation associated with
(25) is orientation dependent. This means that the correct definition of the
associated flow (Σt) by the level set method requires the function g in (28) to
be positive in the interior of Σ0 and negative outside. Then the second part
of Theorem 4.2 does not hold true anymore.

2. Conditions (30) (i) and (ii) are clearly necessary for formula (31) to hold
true. Although (30) (iii) does not seem necessary, it cannot be omitted. For
instance, let us assume that F is of the form

F (p, S) = φ(p/|p|)
(
Tr(S)− 〈Sp, p〉

|p|2
)

,

where φ : R
n\{0} → R is a continuous nonnegative function which is ho-

mogeneous of degree zero, which vanishes at some point p0 �= 0 and is not
identically zero. Then F satisfies all the assumptions of Lemma 4.1 but (30)
(iii). We claim that there is no set VF such that equality (31) holds true.
Indeed, otherwise, the set VF should contain 0 because F (p0, ·) = 0. In that
case, equality (31) implies that F ≤ 0, which is impossible since we have as-
sumed that φ is a nonnegative function and is not identically zero. Therefore,
there is no set VF such that the representation formula (31) holds true for F .

3. The set VF can be constructed as follows: Let Cp be defined as
∀p �= 0, Cp = {w ∈ Sn | ∀S ∈ Sn, Tr(Sw) ≥ F (p, S)},

and C =
⋃
p�=0 Cp. Then we can take

VF = {v ∈ S+
n | v2 ∈ Co(C)},

where S+
n is the set of all n × n symmetric nonnegative matrices and where

Co(C) stands for the convex hull of the set C.
Proof. Let us first notice that, for any p �= 0, the map S → F (p, S) is positively

homogeneous. Indeed, from (27) and (30) (ii), we have

∀S ∈ Sn, ∀λ > 0, F (p, λS) = λF (p/λ, S) = λF (p, S).

Let Cp be defined as in the remark. From the separation theorem applied to F (p, ·),
which is concave from assumption (30) (i) and positively homogeneous, the set Cp is
nonempty, and we have

∀S ∈ Sn, F (p, S) = inf
w∈Cp

Tr(Sw).(33)
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Let us also notice that, from assumption (30) (ii), we have

∀p �= 0, ∀λ ∈ R\{0}, Cλp = Cp.(34)

Hence, from the definition of Cp, the set
⋃
p�=0 Cp =

⋃
|p|=1 Cp is closed. Let us also

point out that Cp is convex for any p �= 0.
We claim that

∀p �= 0, ∀w ∈ Cp, we have w ≥ 0 and Ker(w) = Rp,(35)

where Ker(w) stands for the kernel of w.
Proof of the claim. Let w ∈ Cp. For any x ∈ R

n, we have, from (26) and (33)
applied with S = xx∗,

0 = F (p, 0) ≤ F (p, xx∗) ≤ 〈wx, x〉.

Hence w ≥ 0. Using assumption (27), (30) (ii), and (33), we get, for any λ ∈ R\{0},

0 = F (p, λpp∗) ≤ λ〈wp, p〉,

from which we deduce that Rp ⊂ Ker(w). Finally, from (30) (iii), we have, for x /∈ Rp,

0 = F (p, 0) < F (p, xx∗) ≤ 〈wx, x〉,

which implies that Ker(w) ⊂ Rp.
We now claim that Cp is bounded independently of p �= 0. Let p �= 0 and w ∈ Cp.

From (33) applied to S = −In, we have

Tr(Sw) = −Tr(w) ≥ F (p,−In) ≥ min
|q|=1

F (q,−In) > −∞,

because F is continuous on R
n\{0}×Sn (assumption (29)). From this inequality, we

deduce that

∀p ∈ R
n\{0}, ∀w ∈ Cp, Tr(w) ≤ − min

|q|=1
F (q,−In),

which in turn implies that Cp, for p �= 0, are uniformly bounded since the w are
nonnegative matrices. In particular, this proves that the set C =

⋃
p�=0 Cp is compact.

We now claim that

∀p �= 0, {w ∈ Co(C) | wp = 0} = Cp.(36)

Proof. Let us first notice that (35) implies that Cp is contained in {w ∈ Co(C) | wp
= 0}. Let w belong to Co(C) with wp = 0. There are wi ∈ Cpi for some pi �= 0 and
λi ≥ 0,

∑
i λi = 1, such that w =

∑
i λiwi. Then wp = 0 implies that

0 =

〈∑
i

λiwip, p

〉
=
∑
i

λi〈wip, p〉.

From (35), 〈wip, p〉 ≥ 0 for any i, and thus 〈wip, p〉 = 0. Then (35) again states that
pi ∈ Rp, which proves that, for any i, wi ∈ Cpi = Cp from (34). Since Cp is convex,
w belongs to Cp, and (36) is established.
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Let us finally set

VF = {v ∈ S+
n | v2 ∈ Co(C)}.

Let us notice that

{v2 | v ∈ VF } = Co(C)

because, for any w ∈ Co(C), we have w ≥ 0 from (35), and thus there is some v ∈ S+
n

with v2 = w. Hence (32) is satisfied because Co(C) is convex and compact. We now
prove equality (31). We have

∀(p, S) ∈ R
n\{0} × Sn, min

v∈VF , vp=0
Tr(Sv2) = min

w∈Co(C), wp=0
Tr(Sw) = min

w∈Cp

Tr(Sw)

from (36). Thus we have, from (33),

∀(p, S) ∈ R
n\{0} × Sn, min

w∈C, vp=0
Tr(Sv2) = min

w∈Cp

Tr(Sw) = F (p, S),

which proves (31).
Theorem 4.2. Let us assume that F satisfies (26), (27), (29), and (30). Let VF

satisfy properties (31) and (32) of Lemma 4.1, and let us denote by AF = AF (Ω,F , P ;W )
the set of all VF -valued (Fs)-progressively measurable processes v(·). Then the follow-
ing hold.

1. For any uniformly continuous, bounded function g : Rn → R
n, the solution u

of (28) can be represented as follows:

∀(t, x) ∈ R+ × R
n, u(t, x) = inf

v(·)∈AF

ess-supΩg(X
x,v(·)(t)),

where Xx,v(·) is the solution to{
dXx,v(·)(s) =

√
2v(s)dW (s),

Xx,v(·)(0) = x.
(37)

2. The front (Σt) associated with F can be represented as follows:

∀t ≥ 0, Σt = {x ∈ R
n | ∃v(·) ∈ AF such that Xx,v(·)(t) ∈ Σ0 a.s.},

where Xx,v(·) is the solution to (37).
Remark. Distance solutions of the evolution equation associated with (25) can be

characterized exactly as in Proposition 3.1.
Proof. It is the same proof as for Theorems 1.1 and 2.1. So we omit it.

Appendix. A viability theorem. Let us consider a stochastic control system
described by the following differential equation:{

dX(s) = b(s,X(s), v(s))ds+ σ(s,X(s), v(s))dW (s),
X(t) = x,

(38)

where V is a compact metric space, b : [0, T ]×R
n×V → R

n, σ : [0, T ]×R
n×V → R

n×d,
and W is now a d-dimensional standard Brownian motion. We denote by Xt,x,v(·) the
solution of (38).

Let (Kt)t∈[0,T ] be a family of moving sets. The aim of the following theorem is
to give a necessary and sufficient condition for the existence of an admissible control
v(·) that keeps Xt,x,v(·)(s) in Ks for s ∈ [t, T ], whenever x ∈ Kt.

In what follows, we assume that the control system satisfies the following condi-
tions:
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(H1) b and σ are uniformly continuous in (t, x, v);
(H2) |σ(t, x, v) − σ(t, x′, v)| ≤ C0|x − x′| for all t ∈ [0, T ], for all x, x′ ∈ R

n,
for all v ∈ V;

(H3) 〈b(t, x, v)− b(t, x′, v), x− x′〉 ≤ µ|x− x′|2 for all t ∈ [0, T ], for all x, x′ ∈ R
n,

for all v ∈ V;
(H4) the set

{(
1
2σσ

∗(t, x, v), b(t, x, v)
)
, v ∈ V} is convex and compact for all t ∈

[0, T ], for all x ∈ R
n.

The following result is strongly inspired by several results already existing in the
literature (see [1], [2], [4], [9]). We give here a version for time dependent sets.

Theorem A.1. Let (Kt)t∈[0,T ] be a family of moving sets such that the set K
defined by

K =
⋃

t∈[0,T ]

{t} ×Kt

is a closed subset of [0, T ]×R
n. Let us assume that conditions (H1)−(H4) are satisfied

by the stochastic control system (38). Then the following statements are equivalent:
(i) For any t ∈ (0, T ), for any x ∈ Kt, there is a control v(·) ∈ A such that the

solution Xt,x,v(·) to (38) satisfies

∀s ∈ [t, T ], Xt,x,v(·)(s) ∈ Ks a.s.

(ii) The map u(t, x) = 1− 1Kt(x) is a supersolution to the following equation:

ut(t, x) + inf
v∈V, σ(t,x,v)∗Du(t,x)=0

Lt,x,vu = 0,(39)

where L is the operator defined by

Lt,x,vu = 〈b(t, x, v), Du(t, x)〉+ 1
2
Tr
(
D2uσσ∗) (t, x, v),

and where we use the convention inf∅ = +∞.
(iii) For any C2 function φ : [0, T ]×R

n → R with a local maximum on K at (t, x),
we have

φt(t, x) + inf
v∈V, σ(t,x,v)∗Dφ(t,x)=0

(Lt,x,vφ) ≤ 0.

Remark A.1.
1. The map u(t, x) = 1−1Kt(x) is lower semicontinuous (but not continuous in
general) since the set K is closed.

2. Let us assume that the family (Kt) satisfies one of the above statements and
the following regularity condition at time t = 0:

∀x ∈ K0, ∃tk → 0, ∃xk ∈ Ktk with xk → x.(40)

Then (i) holds true up to time t = 0.
3. The statements of Theorem A.1 are equivalent with the following assertion:
For any t ∈ (0, T ), for any x ∈ Kt, there is a control v(·) ∈ A such that the
solution X of{

dX(s) = b(t+ s,X(s), v(s))dt+ σ(t+ s,X(s), v(s))dW (s),
X(0) = x,

(41)

satisfies

∀s ∈ [0, T − t], X(s) ∈ Kt+s a.s.
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Parts 2 and 3 of the remark are proved below.
Definition A.2. If a family of moving sets (Kt) satisfies one of the equivalent

conditions of Theorem A.1, we say that it is a viability domain for the controlled
system (38).

Proof of Theorem A.1. We are going to prove the following implications: (iii)⇒(ii)
⇒ (i)⇒(iii).

(iii)⇒(ii). This is straightforward, and we leave this proof to the reader.
(ii) ⇒ (i). Let us consider a uniformly continuous map f : [0, T ]× R

n → R such
that

∀(t, x) ∈ [0, T ]× R
n, 0 ≤ f(t, x) ≤ 1, and f(t, x) = 0⇔ x ∈ Kt.(42)

We introduce the following optimal control problem:

V (t, x) = inf
v∈A

E

∫ T

t

f(s,Xt,x,v(·)(s))ds.

It is known that V (t, x) is the unique solution to the following equation:

Vt(t, x) + inf
v∈V
(Lt,x,vV )(t, x) + f(t, x) = 0(43)

with terminal condition V (T, ·) = 0 (cf. [8]). Moreover, the value function V is
uniformly continuous and bounded. Finally, for any (t, x) there is at least one optimal
control v(·), cf. [6]. Hence (i) holds true if and only if V = 0 on K ∩ (0, T ).

Since u is a supersolution to (39), a straightforward computation shows that the
map w(t, x) = e(T−t)u(t, x) satisfies (in the viscosity sense)

wt + inf
v
Lt,x,vw + w ≤ 0.

Thus w is a supersolution of (43) because f ≤ w from (42). Moreover, w and V satisfy
the following terminal conditions at time T :

w(T, ·) ≥ 0 and V (T, ·) = 0.
Hence, from the comparison principle (see [8]), we have w ≥ V on (0, T ]×R

n. There-
fore, V = 0 on K ∩ (0, T ), and implication (ii) ⇒ (i) is established.

(i) ⇒ (iii). Let φ be a test function with a local maximum on K at (t, x) with
t ∈ (0, T ). This means that

∀(s, y) ∈ K ∩B((t, x), r), φ(s, y) ≤ φ(t, x)(44)

for some r > 0, where B((t, x), r) = [t − r, t + r] × B(x, r) (B(x, r) being the ball
centered at x of radius r). From (i), there is some admissible control v(·) ∈ A such
that the solution Xt,x,v(·) satisfies

∀s ∈ [t, T ], Xt,x,v(·)(s) ∈ Ks a.s.(45)

For any ε ∈ (0, r), let us introduce the stopping time τε defined by

τε = (t+ ε) ∧ inf{s ≥ t , |Xt,x,v(·)(s)− x| > ε}.
Then, from (44) and (45), we have

∀s > t, φ(s ∧ τε, X
t,x,v(·)(s ∧ τε)) ≤ φ(t, x).
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From standard arguments, the fact that this inequality holds for any s > t and any
ε > 0 implies that

φt(t, x) + inf
v∈V
(Lt,x,vφ)(t, x) ≤ 0.(46)

Let θ : R → R be an increasing function such that θ′(φ(t, x)) = 1 and θ′′(φ(t, x)) = α,
where α > 0 is arbitrary. Since φ has a local maximum on K at (t, x), θ ◦ φ also has
a local maximum on K at (t, x). Hence, from the definition of L and inequality (46),
we have at the point (t, x)

φt + inf
v∈V

(
〈b,Dφ〉+ 1

2
Tr((αDφDφ∗ +D2φ)σσ∗)

)
≤ 0.(47)

Let vα ∈ V be a minimum in the above expression. When α → +∞, the expresssion

Tr(αDφ(t, x)Dφ(t, x)∗σ(t, x, vα)σ∗(t, x, vα)) = α|σ∗(t, x, vα)Dφ(t, x)|2

remains bounded, which proves, since V is compact, that there are some αk → +∞
and some v ∈ V such that vαk

→ v and σ∗(t, x, v)Dφ(t, x) = 0. Let us also point out
that, for any k, inequality (47) implies that

φt + 〈b(vαk
), Dφ〉+ 1

2
Tr(D2φσ(vαk

)σ∗(vαk
)) ≤ 0,

where we have omitted the dependence in (t, x) for simplicity. Letting k → +∞ gives

φt + 〈b(v), Dφ〉+ 1
2
Tr(D2φσ(v)σ∗(v)) ≤ 0.

Since σ∗(t, x, v)Dφ(t, x) = 0, we have proved the desired result.
Proof of Remark A.1. We first prove part 2. If (Kt) enjoys property (40), then

the value function V , defined above in the proof of (ii)⇒(i), vanishes also on {0}×K0.
Indeed, V is zero on K ∩ (0, T ), and, from (40), any point of {0} × K0 can be
approximated by a point of K ∩ (0, T ). Hence (i) holds true up to time t = 0.

Let us now prove part 3 of the remark. We first assume that (Kt) is a viability
domain for system (38). Let us fix some t ∈ (0, T ). Using characterization (ii) or (iii)
of Theorem A.1, one can prove that the family (K̃s)s∈[0,T−t] defined by

∀s ∈ [0, T − t], K̃s = Ks+t

is a viability domain for the stochastic control system{
dX̃(τ) = b̃(τ, X̃(τ), v(τ))dτ + σ̃(τ, X̃(τ), v(τ))dW (τ),

X̃(s) = x,
(48)

where

b̃(τ, y, v) = b(t+ τ, y, v) and σ̃(τ, y, v) = σ(t+ τ, y, v).

We claim that (K̃s)s∈[0,T−t] satisfies property (40). Indeed, for any x ∈ K̃0 = Kt,
there exists a control v for which the solution Xt,x,v of (38) satisfies Xt,x,v(s) ∈ Ks

on [t, T ] a.s. Let us choose ω such that this property is satisfied and for which
s → Xt,x,v

ω (s) is continuous. Then, for any sequence sk → t+, the sequence of points
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xk = Xt,x,v
ω (sk) converges to x and belongs to Ksk . Hence any point x of K̃0 = Kt

can be approximated by a sequence of points xk of K̃sk−t = Ksk . This proves (40) for
K̃. Now applying part 2 of Remark A.1 to the viability domain (K̃s)s∈[0,T−t] gives,
for any x ∈ K̃0, the existence of some control v(·) such that the solution X̃0,x,v(·) of
(48) satisfies

X̃0,x,v(·)(τ) ∈ K̃τ ∀τ ∈ [0, T − t] a.s.

Since K̃τ = Kτ+t and since X̃0,x,v(·) is nothing but the solution of (41), we have
proved the desired result.

Let us now assume that the set (Kt) satisfies the conditions of part 3 of the
remark. Let V be the value function defined in the above proof of (ii)⇒(i). Let us
define V t on [0, T − t] × R

n by V t(s, y) = V (s + t, y). Then one easily checks that
V t = Ṽ , where Ṽ is the value function of the following control problem:

Ṽ (s, y) = inf
v∈A

E

∫ T−t

s

f(t+ τ, X̃s,y,v(·)(τ))dτ,

where X̃s,y,v(·) is the solution to (48). Indeed, V t and Ṽ both satisfy the same equation
on (0, T−t)×R

n (namely, (43) with f̃(s, ·) = f(s+t, ·) instead of f) and have the same
terminal condition V t(T − t, ·) = Ṽ (T − t, ·) = 0. Moreover, our assumption implies
that V t = Ṽ vanishes on {0}× K̃0. This means that the value function V vanishes on
{t} ×Kt. This in turn implies that, for any x ∈ Kt, there is an optimal control v for
V (t, x) (cf. [6]) such that the solution Xt,x,v of (38) satisfies Xt,x,v(s) ∈ Ks on [t, T ]
a.s. Since this holds true for any t ∈ (0, T ), we have proved that (Kt) is a viability
domain for (38).

Acknowledgment. We would like to thank J.-P. Aubin for suggesting the char-
acterization in terms of viability given in section 3.
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PASCAL AZÉRAD† AND FRANCISCO GUILLÉN‡
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Abstract. Geophysical fluids all exhibit a common feature: their aspect ratio (depth to hori-
zontal width) is very small. This leads to an asymptotic model widely used in meteorology, oceanog-
raphy, and limnology, namely the hydrostatic approximation of the time-dependent incompressible
Navier–Stokes equations. It relies on the hypothesis that pressure increases linearly in the vertical
direction. In the following, we prove a convergence and existence theorem for this model by means
of anisotropic estimates and a new time-compactness criterium.

Key words. Navier–Stokes equations, shallow domains, geophysical fluid dynamics, hydrostatic
approximation, singular perturbation, compactness criterium, asymptotic analysis

AMS subject classifications. 35Q30, 35B40, 76D05, 34C35
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1. Introduction. Atmospheric flow in meteorology, water flow in oceanography,
and limnology are all described by the Navier–Stokes equations. Due to the fact that
the aspect ratio

ε =
characteristic depth

characteristic width

is very small in most geophysical domains, asymptotic models have been used; see,
e.g., [9, 15, 22]. One such model is the primitive equations model; see, e.g., [11, 12],
wherein the unknown flow variables are velocity, pressure, temperature, and salinity
(in the case of an ocean). Besides, most geophysical fluids are stratified (i.e., density
is a known function of the temperature (and salinity, if any)) and have a free surface.
We shall not investigate these features in this paper, leaving it, rather, for forthcoming
work.

Instead we shall focus on the assumption that the pressure is hydrostatic, i.e.,
increases linearly with respect to the depth, as in the static case. This law agrees
well with experiment (as first observed by Blaise Pascal around 1650; see [14])) and
is frequently taken as a hypothesis in geophysical fluid dynamics. We justify this
assumption by means of asymptotic analysis (taking ε as the small parameter). Our
derivation is made possible by the use of anisotropic eddy viscosities, namely ν =
(νx, νy, νz), relying on the fact that the ratio between the horizontal and vertical
scales leads to very different sizes for the horizontal and vertical eddies (see [9, 15]).
Specifically, if we assume that ν = (ν1, ν2, ε

2 ν3) with νi = O(1) for i = 1, 2, 3, then
we will see that weak solutions of the Navier–Stokes equations converge to a weak
solution of a limit problem with hydrostatic pressure.
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Sevilla, 41012 Sevilla, Spain (guillen@numer.us.es).

847
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The stationary case has already been studied (see [4] for the linear problem and
[5] for the nonlinear one), whereas the linear time-dependent case was solved in [1].
The main task of this paper is then to solve the nonlinear time-dependent case. Our
result was announced in [2], whereas numerical simulations stemming from it were
discussed in [3].

Fluid flow in thin domains (flat, curved, and with various boundary conditions)
has been extensively studied; see [7, 13, 16, 20, 21]. In these works, an isotropic
viscosity is used, and the depth is constant. By averaging along the vertical direction,
two-dimensional (2D) limit models are obtained, together with existence and global
regularity results.

Our approach is different, because we neither eliminate the vertical velocity by
averaging nor assume the depth of the domain to be constant. By making use of differ-
ent horizontal and vertical eddy viscosities, we are able to derive a three-dimensional
(3D) limit nonlinear model. Let us emphasize that the anisotropic viscosity hypoth-
esis is fundamental for the derivation of the primitive equations: in the stationary
case, keeping an isotropic viscosity, the asymptotic model is linear, with vanishing
horizontal diffusion; see [6].

The paper is organized as follows. In section 2, we present the physical model
and the scaling leading to the primitive equations. We state the main theorem in
section 3. The functional setting and weak formulation are described in section 4. In
the next section, we state and prove a time-compactness result, which we shall use in
the proof of the main theorem in section 6. Finally, in section 7, we comment on the
convergence of the pressure and the orders of magnitude of the vertical velocity with
respect to the aspect ratio.

2. Equations governing the flow and scaling. Let us consider an incom-
pressible homogeneous fluid filling a thin domain defined by

Ωε =
{
(x, y, z) ∈ R

3; (x, y) ∈ ω,−ε h(x, y) < z < 0} ,
where ω is an open bounded Lipschitz domain in R

2 and h : ω → R is a nonnega-
tive lipschitzian application, which is arbitrary provided that Ωε is lipschitzian. In
particular, h may vanish, contrary to [12, 9], but in order that the domain Ωε has no
cusps, the slope must not vanish on the shores.1 We denote by Γs = ω×{0} the fluid
surface and by Γε

b = ∂Ωε \ Γs the basin bottom. The fluid flow in Ωε is generated
by the wind traction on the surface Γs, influenced by the Coriolis and centrifugal
forces and governed by the Navier–Stokes equations, in which we take different eddy
viscosities according to the direction; see [5, 9, 15]. Finally, we take the density as
identically equal to one. In a geophysical rotating frame (z pointing upwards, x east,
and y north), the initial-boundary value problem reads as follows.

Find v = (v1, v2, v3) (velocity) and q (pressure), such that

∂tv + (v · ∇)v −∆νv +∇q + 2w × v = g in Ωε × (0,T),(2.1)

divv = 0 in Ωε × (0, T ),(2.2)

v = 0 on Γε
b × (0, T ),(2.3)

νz∂zv1 = τ1, νz∂zv2 = τ2, v3 = 0 on Γs × (0, T ),(2.4)

v(·, t = 0) = v0 in Ωε.(2.5)

1This is a technical hypothesis. One could probably dispense with it due to the specific shape of
the domain.
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In (2.1), ∇ = (∂x, ∂y, ∂z) denotes the gradient vector, and ∆ν denotes the aniso-
tropic Laplacian defined by ∆ν = νx∂

2
xx+νy∂

2
yy+νz∂

2
zz with ν = (νx, νy, νz) the eddy

kinematic viscosity vector. Moreover, w = f (0, cos(l(y)), sin(l(y))) represents the
earth rotation angular speed (f the module and l(y) the latitude), 2w× v represents
the Coriolis acceleration (× denotes the cross-product in R

3), and g represents the
force due to gravity (which also includes the centrifugal effect). It is well known
(cf. [15, p. 18]) that g is a potential, i.e., g = ∇ϕ. It is customary to incorporate the
gravity potential in the pressure term; thus we set

p = q − ϕ.

Equation (2.2) represents the incompressibility condition, and (2.3) represents the
no-slip condition on the bottom.

In (2.4), τi, i = 1, 2, stand for the horizontal tractions exerted by the wind on the
(fixed) surface Γs of the fluid, and w = 0 on Γs comes from the rigid lid hypothesis.
In (2.5), v0 = (v01, v02, v03) designates the initial velocity.

Remark. We have neglected the earth’s curvature, and hence our analysis is valid
only locally, e.g., for lakes; for seas or oceans, spherical coordinates should be used
[12], although this can be somewhat cumbersome.

As usual in asymptotic analysis, we perform a vertical scaling to make the domain
independent of ε, that is,

x = x1, y = x2, z = ε x3,

so that Ω =
{
(x1, x2, x3) ∈ R

3; (x1, x2) ∈ ω, −h(x1, x2) < x3 < 0
}
is the new fixed

domain.
The corresponding kinematic scaling is

v1 = u
ε
1, v2 = u

ε
2, v3 = ε u

ε
3, p = pε,(2.6)

so that uε = (uε1, u
ε
2, u

ε
3) is the new unknown velocity and p

ε is the new pressure.
It is necessary to scale the mechanical quantities accordingly. First, it is only

natural to assume v01 = u01, v02 = u02, and v03 = εu03, where u0i does not depend
on ε, i = 1, 2, 3. Next we assume νx = ν1, νy = ν2, and νz = ε2 · ν3, where ν1, ν2, ν3
are constants. As mentioned in the introduction, in oceanography the vertical eddy
viscosity is usually very small compared to the horizontal one. We refer to [5] for
a mathematical discussion of this assumption, and here we content ourselves with
one heuristic comment. Basically, a kinematic viscosity has the dimension L2/T ,
where L (resp., T ) is a typical length (resp., time) scale so that νx and νy have the
dimension L2

H/T , whereas νz has the dimension L
2
V /T , where LH (resp., LV ) denotes

a typical horizontal (resp., vertical) length scale. It follows that the ratio νz/νx and
νz/νy = O(ε

2).2

Now (2.4) becomes

ν3∂3u
ε
i = τ

ε
i /ε, i = 1, 2.

We see that in order to end up with an O(1)-wind force on the rescaled domain, we
have to assume that τ εi = ε · θi, i = 1, 2, where the θi are functions independent of ε.

2We do not delude ourselves with this sketchy argument. As far as we know, up to now there
has been no rigorous derivation of any eddy viscosity model.
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Remark. This last assumption can also be motivated by dimensional analysis, as
follows. From τi = νz∂zvi, one derives that τi has the dimension of

L2
V

T
· 1
LV
· LH

T
= ε

L2
H

T 2
= O(ε).

With the above considerations, problem (2.1)–(2.5) transforms into the following
anisotropic Navier–Stokes equations:

∂tu
ε
1 + uε · ∇uε1 −∆νu

ε
1 − αuε2 + ε β uε3 + ∂1p

ε = 0 in Ω× (0, T ),(2.7)

∂tu
ε
2 + uε · ∇uε2 −∆νu

ε
2 + αu

ε
1 + ∂2p

ε = 0 in Ω× (0, T ),(2.8)

ε2 {∂tuε3 + uε · ∇uε3 −∆νu
ε
3} − ε β uε1 + ∂3p

ε = 0 in Ω× (0, T ),(2.9)

divuε = 0 in Ω× (0, T ),(2.10)

uε = 0 on Γb × (0, T ),(2.11)

ν3∂3u
ε
1 = θ1, ν3∂3u

ε
2 = θ2, uε3 = 0 on Γs × (0, T ),(2.12)

uε(·, t = 0) = u0 in Ω.(2.13)

Now ∇ = (∂1, ∂2, ∂3), ∆ν = ν1∂
2
11 + ν2∂

2
22 + ν3∂

2
33, Γb = ∂Ω \ Γs, α = 2f sin(l(x2)),

and β = 2f cos(l(x2)).
If we assume that uε = O(1), then neglecting the ε2 and ε terms in the first and

third momentum equation, (2.7) and (2.9), we formally get the hydrostatic Navier–
Stokes equations, also called the primitive equations:

∂tu1 + u · ∇u1 −∆νu1 − αu2 + ∂1p = 0 in Ω× (0,T),(2.14)

∂tu2 + u · ∇u2 −∆νu2 + αu1 + ∂2p = 0 in Ω× (0,T),(2.15)

∂3p = 0 in Ω× (0,T),(2.16)

divu = 0 in Ω× (0, T ),(2.17)

u1 = u2 = u3n3 = 0 on Γb × (0, T ),(2.18)

ν3∂u1 = θ1, ν3∂3u2 = θ2, u3 = 0 on Γs × (0, T ),(2.19)

ui(·, t = 0) = u0i in Ω, i = 1, 2.(2.20)

Remark. The boundary condition (2.18) differs from its counterpart (2.11) be-
cause u3 is less regular than u1, u2 as we shall see below. Also, the initial condition
(2.20) does not involve u3, the time derivative of which is missing in the hydrostatic
model. The problem is not in the Cauchy–Kowalevska form.3

Remark. If u3 were to be computed directly from (2.17), which is a first order
equation, it is not obvious at all that it would fulfill the two boundary conditions on
the bottom (2.18) and the surface (2.19).

3. Main theorem. Let T be a fixed positive duration. We make the natural
assumption of a wind of finite energy: θ1, θ2 ∈ L2(0, T ;H−1/2(Γs)). Our main result
is the following theorem.
Theorem 3.1. Let u0 ∈ L2(Ω)3, with divu0 = 0, u0 · n = 0 on ∂Ω, and θ1, θ2 ∈

L2(0, T ;H−1/2(Γs)); there exists a weak solution u of the hydrostatic Navier–Stokes
equations (2.14)–(2.20), obtained as a limit of weak solutions uε of the anisotropic
Navier–Stokes equations (2.7)–(2.13), as the aspect ratio ε tends to zero.

3Meteorologists say that u3 is no longer a prognostic variable (see [11, 12]).



JUSTIFICATION OF THE HYDROSTATIC APPROXIMATION 851

The proof relies on a priori estimates in anisotropic spaces (Propositions 6.1 and
6.2), which are sufficient to take the limit in the linear terms (see [1]), whereas for the
nonlinear terms, we establish a new time-compactness criterium (Theorem 5.1), which
enables us to get strong convergence of the horizontal velocities; see Lemma 6.3. This
theorem states essentially that a small perturbation of an Lp-equicontinuous family
still possesses a strong convergent subsequence. Let us emphasize that this seemingly
technical refinement is by no means superfluous. Indeed, the usual compactness esti-
mate fails: as (uε1, u

ε
2, ε

2uε3) is not divergence free, even if it is easy from (2.7)–(2.9)
to control ∂t(u

ε
1, u

ε
2, ε

2uε3) in some dual space of divergence free velocities, it is not
possible to apply the Aubin–Lions lemma to get compactness.

Another major difficulty of the proof is the lack of regularity of the vertical ve-
locity, which is determined only by the incompressibility equation (2.10).

Remark. It is possible to handle a general force (f1, f2, f3) in problem (2.14)–
(2.20), by simply adding f = (f1, f2,

f3

ε ) to (2.1), in order to end up with (f1, f2, f3)
in (2.7)–(2.9).

4. Weak formulation and anisotropic spaces. We need the following Hilbert
spaces:

H1
b (Ω) = C

∞
b (Ω)

H1(Ω)
=
{
v ∈ H1(Ω); v = 0 on Γb

}
(where C∞

b (Ω) =
{
ϕ ∈ C∞(Ω̄); ϕ = 0 in some neighborhood of Γb

}
),

V =
{
v ∈ H1

b (Ω)×H1
b (Ω)×H1

0 (Ω); divv = 0 in Ω
}
,

H(∂3,Ω) =
{
v ∈ L2(Ω); ∂3v ∈ L2(Ω)

}
(endowed with the norm ‖v‖2H(∂3,Ω) = ‖v‖2L2(Ω) + ‖∂3v‖2L2(Ω) ),

H0(∂3,Ω) = C∞
0 (Ω)

H(∂3,Ω)
= {v ∈ H(∂3,Ω); v n3 = 0 on ∂Ω}

(n3 is the third component of the normal exterior vector on ∂Ω, and v n3 is understood
in the H−1/2(∂Ω) sense (see [19] for these spaces)),

W =
{
u ∈ H1

b (Ω)×H1
b (Ω)×H0(∂3,Ω); divu = 0 in Ω

}
.

Let us denote that uH = (u1, u2), θH = (θ1, θ2), b(uH) = α (−u2, u1), and ∇ν =

(ν
1/2
1 ∂1, ν

1/2
2 ∂2, ν

1/2
3 ∂3). The scalar product in L

2(Ω)d, or the duality Lp(Ω), Lp′
(Ω),

is denoted by (·, ·), and the duality H−1/2(Γs)H
1/2(Γs), is denoted by 〈·, ·〉Γs .

The weak form of the hydrostatic Navier–Stokes equations (2.14)–(2.20) is then
as follows.

Find u = (uH , u3) ∈ L2(0, T ;W), with uH ∈ L∞(0, T ;L2(Ω)2), such that

∫ T

0

−(uH , ∂tvH)− (uH , (u · ∇)vH) + (b(uH), vH) + (∇νuH ,∇νvH)

= −(u0H , vH(0)) +

∫ T

0

〈θH , vH〉Γs

(4.1)

for allv = (vH , v3) ∈ H1(0, T ;W), with vH(T ) = 0 and ∂3vH ∈ L∞(0, T ;L3(Ω)2).
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Remark. Notice that a weak solution of the Navier–Stokes equations verifies the
following regularity:

u ∈ L2(0, T ;V) ∩ L∞(0, T ;L2(Ω)3)

(cf. [8, 10, 18]). Now the lack of regularity of u3 makes it necessary to change V to
W. Moreover, in general, u3 �∈ L∞(0, T ;L2(Ω)).

Remark. The regularity L∞(0, T ;L3(Ω)2) is required for ∂3vH to give a mean-

ing to
∫ T

0
(uH , u3∂3vH) dt. The regularity L

2(0, T ;L∞(Ω)2) or any interpolated one
L2/a(0, T ;L3/(1−a)(Ω)2) with 0 ≤ a ≤ 1 can also be considered.

5. Compactness by perturbation. We give a compactness criterium, new
to our knowledge, which generalizes the well-known translation criterium of Riesz–
Fréchet–Kolmogorov, extended to the vectorial case by Simon [17]. In the following,
τhf(t) denotes f(t+ h).

Theorem 5.1. Let T > 0, and let the Banach spaces X
compact
↪→ B ↪→ Y. Let

(fε)ε>0 be a family of functions of Lp(0, T ;X), 1 ≤ p ≤ ∞, with the extra condition
(fε)ε>0 ⊂ C(0, T ;Y) if p =∞, such that
(H1) (fε)ε>0 is bounded in Lp(0, T ;X),
(H2) ‖τhfε − fε‖Lp(0,T−h;Y) ≤ ϕ(h) + ψ(ε) with{

limh→0 ϕ(h) = 0,
limε→0 ψ(ε) = 0.

Then the family (fε)ε>0 possesses a cluster point in Lp(0, T ;B) and also in C(0, T ;B)
if p =∞, as ε→ 0.

Proof. It is enough to prove that, for every sequence (εn)n such as εn > 0 and
εn → 0, the family (fεn)n is relatively compact in L

p(0, T ;B). We apply Theorem
5 of Simon [17, p. 84] to the sequence (fεn)n, while observing that hypothesis (H2)
implies that

‖τhfεn − fεn‖Lp(0,T−h;Y) → 0 as h→ 0

uniformly with respect to n. Indeed, (H2) implies that

∀n, ‖τhfεn − fεn‖Lp(0,T−h;Y) ≤ ϕ(h) + ψ(εn).
Let ε > 0 and then ∃N , such that for alln ≥ N , ψ(εn) ≤ ε/2. On the other hand,
∃ δ > 0, such that for allh : 0 ≤ h < δ, ϕ(h) ≤ ε/2. Therefore, we get the estimate

∀n ≥ N and ∀h : 0 ≤ h < δ, ‖τhfεn − fεn‖Lp(0,T−h;Y) ≤ ε.
In addition, for each k ≤ N , ∃ δk > 0, such that for allh : 0 ≤ h < δk

‖τhfεk − fεk‖Lp(0,T−h;Y) ≤ ε.
This follows from the Lp-continuity by translation of an Lp function for p < ∞ and
for p =∞; this is precisely a hypothesis.

Defining η = min{δ, δ1, . . . , δN}, we obtain the desired uniform estimate
∀h : 0 ≤ h < η, ‖τhfεn − fεn‖Lp(0,T−h;Y) ≤ ε ∀n.

The family (fεn)n fulfills the hypotheses of Simon’s theorem.
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6. Proof of the main theorem. For simplicity in the notation, from now on,
unless we specify otherwise, we will denote u = uε as a weak solution of the anisotropic
Navier–Stokes equations (2.7)–(2.13).

6.1. Energy estimates. The usual energy inequality (cf. [10]) for the Navier–
Stokes equations gives, for a.e. t ∈ [0, T ],

‖uH(t)‖2L2 + ε2 ‖u3(t)‖2L2 +

∫ t

0

{‖∇νuH(τ)‖2L2 + ε2 ‖∇νu3(τ)‖2L2} dτ

≤ ‖u0H‖2L2 + ε2‖u03‖2L2 +

∫ t

0

〈θH , uH〉Γs
.

Hence we obtain as in the isotropic Navier–Stokes system (cf. [1]) the following propo-
sition.
Proposition 6.1. The sequences u1, u2, εu3 are bounded in L∞(0, T ;L2(Ω)) ∩

L2(0, T ;H1(Ω)).
For the vertical velocities, we prove the following.
Proposition 6.2. The sequences u3 and ∂3u3 are bounded in L2(0, T ;L2(Ω));

i.e., u3 is bounded in L2(0, T ;H0(∂3,Ω)).
Proof. As divu = 0, ∂3u3 = −∂1u1 − ∂2u2 is bounded in L

2(0, T ;L2(Ω)). More-
over, the Poincaré inequality in the vertical direction, owing to u3 = 0 on Γs, yields

‖u3‖L2 ≤ hmax ‖∂3u3‖L2 , where hmax = max
ω
h.

Therefore, we have proved the proposition.

6.2. Fractional time derivatives in horizontal spaces. First, we define the
auxiliary Hilbert spaces

BH = PHU (L2)2

, WH = PHU (H1)2

, and YH = PHU (H2)2

,

where

U = {ϕ ∈ C∞
b (Ω)

2 × C∞
0 (Ω); divϕ = 0

}
and PH is the projection

PH : (x1, x2, x3) ∈ R
3 �→ (x1, x2) ∈ R

2.

Then, from the Sobolev–Rellich embeddings, one deduces easily that

YH ↪→WH ↪→ BH ≡ B′
H ↪→W ′

H ↪→ Y ′
H ,(6.1)

where all are dense and compact embeddings. Here and henceforth, X ′ denotes the
dual space of X.

Now, we have the following lemma.
Lemma 6.3. The estimate ‖τhuH − uH‖L∞(0,T−h;Y ′

H
) ≤ C(h1/4 + ε) holds.

Proof. The spatial weak form of the Navier–Stokes equation (2.7)–(2.13) is

d

dt
(uH , vH)− (uH , (u · ∇)vH) + (b(uH), vH) + (∇νuH ,∇νvH)

+ ε2
{
d

dt
(u3, v3) + (u · ∇u3, v3) + (∇νu3,∇νv3)

}
+ ε
{
(βu3, v1)− (βu1, v3)

}
= 〈θH , vH〉Γs

inD′(0, T )
∀v = (vH , v3) ∈ V.

(6.2)
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Letting vH ∈ YH , there is a null divergence lifting v = (vH , v3) ∈ H2
b (Ω)

2×H1
0 (∂3,Ω)

such that

‖v3‖H1 + ‖∂3 v3‖H1 ≤ C‖vH‖YH
.(6.3)

Here, the spaces H2
b (Ω) and H

1
0 (∂3,Ω) are the natural extensions of the spaces H

1
b (Ω)

and H0(∂3,Ω):

H2
b (Ω) = C

∞
b (Ω)

H2(Ω)
=

{
v ∈ H2(Ω); v =

∂v

∂n
= 0 on Γb

}
,

H1(∂3,Ω) =
{
v ∈ H1(Ω); ∂3v ∈ H1Ω)

}
,

H1
0 (∂3,Ω) = C∞

0 (Ω)
H1(∂3,Ω)

=
{
v ∈ H1(∂3,Ω); v = ∂3v = 0 on ∂Ω

}
.

Indeed, as vH ∈ YH , there exists a sequence (ϕn
H , ϕ

n
3 ) ∈ U such that ϕn

H → vH in
H2(Ω)2. Then ∂3ϕ

n
3 = −∂1ϕ

n
1 − ∂2ϕ

n
2 is a Cauchy sequence in H

1(Ω), and by vertical
Poincaré inequality, ϕn

3 is also a Cauchy sequence in H
1(Ω). Therefore, ϕn

3 , being a
Cauchy sequence in H1(∂3,Ω), converges to a function v3, which provides the desired
lifting function. The continuous dependence (6.3) results from the above construction.

Now we take this v = (vH , v3) as a test function in (6.2) and integrate over
(t, t+ h); i.e.,

(τhuH(t)− uH(t), vH) + ε2 (τhu3(t)− u3(t), v3) =

∫ t+h

t

gε(s) ds,(6.4)

where

gε(s) = (uH , (u · ∇)vH)− ε2 (u · ∇u3, v3)− (b(uH), vH)− (∇νuH ,∇νvH)

−ε (∇ν(εu3),∇νv3)− ε {(βu3, v1)− (βu1, v3)}+ 〈θH , vH〉Γs .

Now we prove that

‖gε‖L4/3(0,T ) ≤ C‖vH‖YH
.(6.5)

To this end, we estimate every piece of gε. For the nonlinear terms, we have

(uH , (u · ∇)vH) ≤ ‖uH‖L3‖u‖L2‖∇vH‖L6 ≤ C ‖uH‖L3‖u‖L2‖vH‖YH

and

ε2 (u · ∇u3, v3) ≤ ‖εu‖L3‖∇(εu3)‖L2‖v3‖L6 ≤ C ‖εu‖L3‖εu3‖H1‖vH‖YH
.

By interpolation between L∞(0, T ;L2) and L2(0, T ;L6), uH is bounded in L
4(0, T ;L3);

i.e., ‖uH‖L3 is bounded in L4(0, T ). As ‖u‖L2 is bounded in L2(0, T ), we have
(uH , (u · ∇)vH) bounded in L4/3(0, T ). Similarly, as ‖εu‖L3 is bounded in L4(0, T )
and ‖εu3‖H1 is bounded in L2(0, T ), we have ε2 (u · ∇u3, v3) bounded in L

4/3(0, T ).
The linear terms of gε are handled easily by the Cauchy–Schwarz inequality:

(b(uH), vH) ≤ ‖uH‖L2‖vH‖L2 bounded in L∞(0, T ),
(∇νuH ,∇νvH) ≤ ‖uH‖H1‖vH‖H1 bounded in L2(0, T ),

ε (∇ν(εu3),∇νv3) ≤ ε ‖εu3‖H1‖v3‖H1 bounded in L2(0, T ),

εβ {(u3, v1)− (u1, v3)} ≤ 2f‖εu‖L2‖v‖L2 bounded in L∞(0, T ),
〈θH , vH〉Γs ≤ C ‖θH‖H−1/2(Γs)‖vH‖H1 bounded in L2(0, T ).
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Therefore, taking into account (6.3), according to all previous bounds, (6.5) holds.
Next, applying the Hölder inequality to (6.5), we see that

∫ t+h

t

|gε(s)|ds ≤ C h1/4‖vH‖YH
.

On the other hand,

|ε2 (τhu3(t)− u3(t), v3)| ≤ ε {‖τh(εu3)(t)‖L2 + ‖εu3(t)‖L2}‖v3‖L2 ≤ εC ‖vH‖YH

by virtue of Proposition 6.1.
These last two estimates together with (6.4) yield the required result.

6.3. Convergence. Here we come back to the notation uε. The space-time
weak form of the anisotropic Navier–Stokes equations (2.7)–(2.13) is as follows.

Find uε = (uεH , u
ε
3) ∈ L2(0, T ;V) ∩ L∞(0, T ;L2(Ω)3) such that

∫ T

0

−(uεH , ∂tvH)− (uεH , (uε · ∇)vH) + (b(uεH), vH) + (∇νu
ε
H ,∇νvH)

+ ε2
∫ T

0

−(uε3, ∂tv3) + (uε · ∇uε3, v3) + (∇νu
ε
3,∇νv3)

+ ε β

∫ T

0

(uε3, v1)− (uε1, v3) = −(u0H , vH(0))− ε2(u03, v3(0)) +

∫ T

0

〈θH , vH〉Γs

∀v = (vH , v3) ∈ H1(0, T ;V), with v(T ) = 0.

(6.6)

The purpose of the following is to take the limit as ε → 0 in (6.6) to come to (4.1).
By Propositions 6.1 and 6.2, it follows that uε is bounded in L2(0, T ;W) and uεH is
bounded in L∞(0, T ;BH), allowing us to extract a subsequence, still denoted by uε,
such that

uε = (uεH , u
ε
3)⇀ u = (uH , u3) inL2(0, T ;W) weak,

uεH
�
⇀ uH inL∞(0, T ;BH) weak− 3.

These weak convergences are enough to take the limit in the linear terms of (6.6)
(cf. [1]). In particular, the terms of O(ε) associated with the Coriolis acceleration
vanish as ε tends to zero. Indeed,

ε β

∫ T

0

(uε3, v1)− (uε1, v3) ≤ ε 2f
∫ T

0

‖uε‖L2‖v‖L2

≤ ε 2f ‖uε‖L2(0,T ;L2)‖v‖L2(0,T ;L2) ≤ εC ‖v‖L2(0,T ;L2) ≤ C ε.

On the other hand, combining (6.1), Proposition 6.1, and Lemma 6.3, we can apply

Theorem 5.1 for p =∞ and the spaces BH
compact
↪→ W ′

H ↪→ Y ′
H . Therefore, there exists

a subsequence uεH → uH in C(0, T ;W ′
H) strong. Thus we get the weak time-continuity

uH ∈ C(0, T ;W ′
H), so that the initial condition (2.20) makes sense for the horizontal

velocities. On the other hand, the term of 0(ε2) related to the initial condition for
the vertical velocity vanishes as ε tends to zero. Indeed,

−ε2(u03, v3(0)) ≤ ε2‖u03‖L2‖v3(0)‖L2 ≤ ε2‖u0‖L2‖v3‖C(0,T ;L2) ≤ C ε2.(6.7)
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Now the nonlinear terms fall into four types:

(I) ε2
∫ T

0

(uεi∂iu
ε
3, v3) dt, 1 ≤ i ≤ 2,

(II) ε2
∫ T

0

(uε3∂3u
ε
3, v3) dt,

(III)

∫ T

0

(uεiu
ε
j , ∂jvi) dt, 1 ≤ i, j ≤ 2,

(IV)

∫ T

0

(uεiu
ε
3, ∂3vi) dt, 1 ≤ i ≤ 2.

Type (I) term:

ε2
∫ T

0

(uεi∂iu
ε
3, v3) dt ≤ ε

∫ T

0

‖uεi‖L6‖∂i(εuε3)‖L2‖v3‖L3

≤ C ε ‖uεi‖L2(0,T ;H1)‖∂i(εuε3)‖L2(0,T ;L2)‖v3‖C(0,T ;H1) ≤ C ε.

Type (II) term:

ε2
∫ T

0

(uε3∂3u
ε
3, v3) dt ≤ ε

∫ T

0

‖εuε3‖L6‖∂3u
ε
3‖L2‖v3‖L3

≤ C ε ‖εuε3‖L2(0,T ;H1)‖∂3u
ε
3‖L2(0,T ;L2)‖v3‖C(0,T ;H1) ≤ C ε.

Consequently, the type (I) and (II) terms are O(ε) and vanish as ε tends to zero.
To handle the type (III) and (IV) terms, we need some strong convergences. From

compactness by perturbation (Theorem 5.1 for p = 2 and the spaces WH
compact
↪→

BH ↪→ Y ′
H), there exists a subsequence, still denoted by u

ε
H , such that

uεH → uH inL2(0, T ;L2(Ω)2) ≡ L2((0, T )× Ω)2 strong.

By Proposition 6.1, we have uεH bounded in L
∞(0, T ;L2(Ω)2)∩L2(0, T ;L6(Ω)2), which

by interpolation ensures that

uεH is bounded inL
10/3(0, T ;L10/3(Ω)2) ≡ L10/3((0, T )× Ω)2.

By the interpolation inequality again, for all q : 2 ≤ q < 10/3 there exists α : 0 < α ≤
1 such that

‖uεH − uH‖Lq ≤ ‖uεH − uH‖αL2‖uεH − uH‖1−α
L10/3 .

Thus

uεH → uH inLq((0, T )× Ω) strong ∀ q : 2 ≤ q < 10/3.(6.8)

Type (III) term: By the Hölder inequality and (6.8), we have

uεiu
ε
j → uiuj inLr((0, T )× Ω) strong ∀ r : 1 ≤ r < 5/3
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and for all i, j = 1, 2. On the other hand, by interpolation between L∞(0, T ;L2) and
L2(0, T ;L6), uεi (and u

ε
j) is bounded in L

8/3(0, T ;L4), and hence uεiu
ε
j is bounded in

L4/3(0, T ;L2), and finally,

uεiu
ε
j ⇀ uiuj inL4/3(0, T ;L2) weak, 1 ≤ i, j ≤ 2.

In particular, we get∫ T

0

(uεiu
ε
j , ∂jvi)→

∫ T

0

(uiuj , ∂jvi), 1 ≤ i, j ≤ 2.

Indeed, vi ∈ C(0, T ;H1) so that

∂jvi ∈ L∞(0, T, L2) ⊂ L4(0, T, L2) ≡ (L4/3(0, T, L2))′.

Type (IV) term: We have

uε3 ⇀ u3 inL2(0, T ;L2) weak.

So by the Hölder inequality and (6.8),

uεiu
ε
3 ⇀ uiu3 inLs(0, T ;Ls) weak ∀ s : 1 ≤ s < 5/4

and for all i = 1, 2. On the other hand, it is easy to see that uεiu
ε
3 is bounded in

L8/7(0, T ;L4/3), and hence

uεiu
ε
3 ⇀ uiu3 inL8/7(0, T ;L4/3) weak, 1 ≤ i ≤ 2.

Now we shall have to slightly increase the regularity of the test functions of (4.1) to
finish the limit process in the Type (IV) terms. For instance, assuming the additional
regularity for the test functions ∂3vi ∈ L8(0, T ;L4), we get∫ T

0

(uεiu
ε
3, ∂3vi)→

∫ T

0

(uiu3, ∂3vi), 1 ≤ i ≤ 2.

In conclusion, the limit function u is a solution of the variational formulation (4.1)
for all v = (vH , v3) ∈ H1(0, T,V) with vH(T ) = 0 and ∂3vH ∈ L8(0, T ;L4). Finally,
we can argue by density, taking advantage of the regularity of each term of (4.1),
and obtain that (4.1) holds for all v = (vH , v3) ∈ H1(0, T,W) with vH(T ) = 0 and
∂3vH ∈ L∞(0, T ;L3); hence the proof of Theorem 3.1 is finished.

7. Concluding remarks.

7.1. Convergence of the pressure. By using the De Rham lemma [18] in
the formulation (6.6) (resp., (4.1)), we can recover the potentials pε (resp., p) as
distributions

∇pε =

 −∂tuε1 − uε · ∇uε1 +∆νu

ε
1 + αu

ε
2 − εβuε3

−∂tuε2 − uε · ∇uε2 +∆νu
ε
2 − αuε1

−ε2 {∂tuε3 + uε · ∇uε3 −∆νu
ε
3}+ εβuε1


 ,(7.1)

respectively,

∇p =

 −∂tu1 − u · ∇u1 +∆νu1 + αu2

−∂tu2 − u · ∇u2 +∆νu2 − αu1

0


 .(7.2)
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Moreover, (7.1) is also verified in H−1(0, T ;H−1(Ω)3) (i.e., in the dual space of
H1

0 (0, T ;H
1
0 (Ω)

3)), whereas (7.2) holds in H−1(0, T ;W−1,3/2(Ω)3) (i.e., in the dual
space of H1

0 (0, T ;W
1,3
0 (Ω)3)). Proceeding as in subsection 6.3, we may derive that

∂ip
ε �
⇀ ∂ip inH−1(0, T ;W−1,3/2(Ω)), i = 1, 2,

and

‖∂3p
ε‖H−1(0,T ;H−1(Ω)) ≤ Cε.

In particular, we have the strong convergence of ∂3p
ε to ∂3p.

Remark. The strong convergence of ∂3p
ε takes place in a better space than the

weak convergence of ∂ip
ε, i = 1, 2. In some sense, this means that the validity of

the hydrostatic approximation is less demanding than the validity of the horizontal
momentum equations.

Remark. The above convergences can be slightly improved with respect to time.
They remain true, replacing the spaceH−1(0, T ;W−1,3/2(Ω)) (resp.,H−1(0, T ;H−1(Ω)))
with the space W−1,∞(0, T ;W−1,3/2(Ω)) (resp., W−1,∞(0, T ;H−1(Ω))).

7.2. Orders of magnitude of the vertical velocity in the original domain.
The purpose of this last subsection is to interpret the previous results in the original
domain Ωε. Consequently, we are going to consider v = (v1, v2, v3), the weak solution
in Ωε of problem (2.1)–(2.5), related to uε = (uε1, u

ε
2, u

ε
3), a weak solution of problem

(2.7)–(2.13) in Ω; see (2.6). First, it is important to notice that the true vertical
velocity v3 = εu

ε
3 is small with respect to the horizontal velocities vi, i = 1, 2. Indeed,

taking into account the estimates in Proposition 6.1 for uεi , i = 1, 2, and Proposition
6.2 for uε3, scaling off Ω to Ωε, we obtain

‖v3‖L2(0,T ;L2(Ωε))

‖vi‖L2(0,T ;L2(Ωε))
= 0(ε), i = 1, 2.

By the same argument, we obtain

‖∂zv3‖L2(0,T ;L2(Ωε))

‖∂zvi‖L2(0,T ;L2(Ωε))
= 0(ε), i = 1, 2.

This phenomenon is actually observed in most geophysical flows, which, therefore,
are quasi-horizontal. It is striking that the vertical velocity goes to zero even if the
initial vertical velocity is not assumed to be small. Looking at (6.7) in the proof of
convergence, we need only that ε2‖u03‖L2(Ω) → 0, that is, ‖v03‖L2(Ωε)/‖v0i‖L2(Ωε) =
O(ε−α), α < 1.

Whereas, for the horizontal gradient, we cannot avail ourselves of Proposition 6.2,
and we obtain only

‖∇x,y v3‖L2(0,T ;L2(Ωε))

‖∇x,y vi‖L2(0,T ;L2(Ωε))
= 0(1), i = 1, 2.
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[2] P. Azérad and F. Guillén, Equations de Navier-Stokes en bassin peu profond:
hydrostatique l’approximation, C. R. Acad. Sci. Paris Sér. I Math., 329 (1999), pp. 961–966.
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A MATHEMATICAL MODEL OF THE WEARING PROCESS OF A
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Abstract. We formulate the wearing process of a nonconvex stone in terms of partial differential
equations (PDEs). We establish a comparison theorem, an existence theorem, and some stability
properties of solutions of this PDE.
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1. Introduction. In this paper we study a mathematical model of the wearing
process of a stone rolling on beach.

In [6], Firey proposed a mathematical model of the wearing process of such a stone
in the case when it has a convex shape. In his model, a stone evolves according to the
Gauss curvature flow. See, for instance, [1, 3, 7] for the mathematical developments
regarding the Gauss curvature flow.

We extend his arguments to the case when the stone does not necessarily have a
convex shape. The idea of this extension is very simple, and it is explained as follows.
Let Vt ⊂ Rn+1 be a stone at time t being worn due to hits of the bottom of the
sea (or beach). In Firey’s and our model the bottom of the sea is supposed to be
a hyperplane. We fix a coordinate system for which the stone does not rotate and
translate, and, for each unit vector p ∈ Rn+1, we associate the hyperplane

Hp = {x ∈ Rn+1 | x · p = 0}.

The set Vt evolves by losing its volume near the point where it is hit by the hyperplane
Hp. Here the meaning of the sentence “A point Q ∈ Vt is hit by Hp” is that the half
space

Q+ {x ∈ Rn+1 | x · p > 0}

does not intersect with Vt. Of course, if Q ∈ Vt is hit by a hyperplane, then Q ∈
∂Vt. Three assumptions in this model of this wearing process are as follows: (i) the
probability of Hp hitting the stone Vt is uniform in the direction p; (ii) the volume loss
near a point Q ∈ ∂Vt is proportional to how often the point Q is hit by hyperplanes;
and (iii) the total volume loss of the stone in a time period is proportional to the
length of the time period. Of course, once Vt becomes empty at a time t0, then, by
definition, Vt = ∅ for all t > t0.
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In what follows, we restrict our study to the case when the boundary of the stone
Vt at time t is given by the graph of an evolving function. That is, we study the case
when Vt is given by

Vt = {(x, y) ∈ Rn ×R | y ≥ u(x, t)}
for some function u : Rn × [0,∞) → R. Restricting our study to this case is not
realistic in applications to the wearing process of a stone, but we are so far forced
to do so by technical difficulties. Despite this restriction, we believe that the results
obtained here are of some interest at least from the mathematical viewpoint. A
natural approach to a PDE model of the wearing process of a compact stone seems
to be the level set approach. We refer to [2] for this approach to the Gauss curvature
flow.

In the case of a convex stone, the PDE which the function u should satisfy is

ut(x, t) = g(Du(x, t), D2u(x, t)) for (x, t) ∈ Rn × (0,∞),

where g : Rn × Sn → R is given by

g(p,X) =
det+X

(1 + |p|2)(n+1)/2
.

Here and later we denote by Sn the space of all real n× n symmetric matrices, and,
for X ∈ Sn,

det+X =

n∏
i=1

max{λi, 0},

with λi denoting the eigenvalues of X.
The extension to the general case is straightforward, and, in the general case, the

PDE for u to satisfy is

ut(x, t) = χ(u,Du(x, t), x, t)g(Du(x, t), D2u(x, t)) for (x, t) ∈ Rn× (0,∞),(1.1)

where χ : F ×Rn ×Rn × (0,∞)→ {0, 1} is given by

χ(u, p, x, t) =

{
1 if u(y, t) ≥ u(x, t) + p · (y − x) for y ∈ Rn,
0 otherwise,

and F denotes the space of all real functions on Rn × (0,∞). The heuristic meaning
of χ in (1.1) is that if χ(u, p, x, t) = 0, then the point (x, u(x, t)) on the surface (of
the stone) y ≥ u(x, t) is not hit by the hyperplane (the sea bottom) H(p,−1), and
otherwise it is hit by H(p,−1). The precise meaning of (1.1) will be clarified in the
next section.

One of the new features in the PDE (1.1) is its nonlocality due to the factor χ.
Our primary purposes are to establish a comparison result for solutions of (1.1)

and an existence theorem of solutions of (1.1). We use the notion of viscosity solution
adapted to (1.1), and some stability results are established as well. The comparison
result is stated and proved in section 2, the existence result is treated in section 3,
and stability properties of viscosity solutions of (1.1) are discussed in section 4.

Finally, we wish to pursue some properties of solutions of (1.1) in a future publi-
cation.



862 HITOSHI ISHII AND TOSHIO MIKAMI

2. Comparison theorem. We first introduce a function which describes the
asymptotic behavior of solutions we shall be concerned with. Let h0 be a real-valued
function on Rn. Assume that

h0 ∈ C(Rn) and h0(x) ≥ ε0|x| ∀x ∈ Rn,(2.1)

for some constant ε0 > 0.
Let u, v : Rn × [0,∞)→ R. We make the following assumptions:

u ∈ USC(Rn × [0,∞)), v ∈ LSC(Rn × [0,∞)),(2.2)

u(x, 0) ≤ v(x, 0) ∀x ∈ Rn.(2.3)

For each T > 0,

sup
(x,t)∈Rn×[0,T ]

(|u(x, t)− h0(x)|+ |v(x, t)− h0(x)|) <∞.(2.4)

u satisfies

ut(x, t) ≤ χ+(u,Du(x, t), x, t)g(Du(x, t), D2u(x, t)) in Rn × (0,∞)(2.5)

in the viscosity sense, where

χ+(u, p, x, t) = χ(u, p, x, t).

To be more precise, we call u ∈ USC(Rn×(0,∞)) a viscosity subsolution of (1.1) if
whenever ϕ ∈ C2(Rn×(0,∞)) and u−ϕ attains its maximum at (x̂, t̂) ∈ Rn×(0,∞),
then

ϕt(x̂, t̂) ≤ χ+(u,Dϕ(x̂, t̂), x̂, t̂)g(Dϕ(x̂, t̂), D2ϕ(x̂, t̂)).

The condition (2.5) is now stated that u is a viscosity subsolution of (1.1). v satisfies

vt(x, t) ≥ χ−(v,Dv(x, t), x, t)g(Dv(x, t), D2v(x, t)) in Rn × (0,∞)(2.6)

in the viscosity sense, where

χ− ≡ χ−(v, p, x, t) = 1

if

v(y, t) > v(x, t) + p · (y − x) for y ∈ Rn \ {x},

and there is ε > 0 such that for all (y, s) ∈ Rn × (0,∞) satisfying |y| > ε−1 and
|s− t| < ε,

v(y, s) > p · y + ε|y|,

and, otherwise,

χ− ≡ χ−(v, p, x, t) = 0.



WEARING PROCESS OF A STONE 863

Again, to be precise, we call a function v ∈ LSC(Rn × (0,∞)) a viscosity super-
solution of (1.1) if whenever ϕ ∈ C2(Rn × (0,∞)) and u− ϕ attains its minimum at
(x̂, t̂) ∈ Rn × (0,∞), then

ϕt(x̂, t̂) ≥ χ−(u,Dϕ(x̂, t̂), x̂, t̂)g(Dϕ(x̂, t̂), D2ϕ(x̂, t̂)).

The exact meaning of (2.6) is that v is a viscosity supersolution of (1.1).
We call a function u : Rn×(0,∞)→ R a viscosity solution of (1.1) if the function

u∗(x, t) := lim
r↓0

sup{u(y, s) | |y − x|+ |s− t| ≤ r}

is a viscosity subsolution of (1.1) and the function

u∗(x, t) := lim
r↓0

inf{u(y, s) | |y − x|+ |s− t| ≤ r}

is a viscosity supersolution of (1.1). We often suppress “viscosity” for the sake of
simplicity of presentation.

Theorem 1. Assume that (2.1)–(2.6) hold. (a) For any θ ∈ (0, 1), the inequality
u(x, θt) ≤ v(x, t) holds for all (x, t) ∈ Rn × [0,∞). (b) Assume, in addition, that

h0 ∈ C2(Rn),

det+D
2h0(x) ≤ C

(
1 + |Dh0(x)|2

)(n+1)/2 ∀x ∈ Rn,

for some constant C > 0 and that for each ε > 0 there is a constant R ≡ R(ε) > 0
such that for all x ∈ Rn, if |x| ≥ R, then

u(x, 0)− ε ≤ h0(x) ≤ v(x, 0) + ε.

Then u ≤ v on Rn × [0,∞).
Remark. Note that under the assumptions of (b) above, the function

w(x, t) = Ct+ h0(x)

satisfies

wt(x, t) ≥ g(Dw(x, t), D2w(x, t)) ∀(x, t) ∈ Rn × (0,∞).

Proof. First, we prove part (a). We fix θ ∈ (0, 1) and T > 0 and intend to prove
that

u(x, θt) ≤ v(x, t) ∀(x, t) ∈ Rn × [0, T ).(2.7)

Define

uθ(x, t) := u(x, θt) ∀(x, t) ∈ Rn × [0,∞),

and observe that

uθ,t ≤ θχ+g(Duθ, D
2uθ) in Rn × [0,∞).

In view of (2.4), we may assume, if necessary, by adding u and v a constant that
u ≥ 0 on Rn × [0, T ).
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Let µ ∈ (0, 1) be such that θµ1−n ≤ 1. Noting that for (p, x, t) ∈ Rn×Rn×(0,∞),
if

uθ(y, t) ≥ uθ(x, t) + p · (y − x) ∀y ∈ Rn,

then

µuθ(y, t) ≥ µuθ(x, t) + µp · (y − x) ∀y ∈ Rn,

and computing formally that, since θµ ≤ µn,

µuθ,t ≤µθut(x, θt) ≤ µnχ+(uθ, Duθ, x, t)
det+D

2uθ
(1 + |Duθ|2)(n+1)/2

≤χ+(µuθ, µDuθ, x, t)
det+(µD

2uθ)

(1 + |µDuθ|2)(n+1)/2
,

we see that µuθ is a subsolution of

ut ≤ χ+g(Du,D2u) in Rn × (0,∞).

In order to prove (2.7), it is enough to show that for all µ ∈ (0, 1) satisfying
θµ1−n ≤ 1, we have

µuθ ≤ v on Rn × [0, T ).(2.8)

Fix µ ∈ (0, 1) such that θµ1−n ≤ 1. To see that (2.8) holds for this µ, we suppose
to the contrary that

sup
Rn×[0,T )

(µuθ − v) > 0.

By assumption (2.4), there is a constant C0 > 0 such that

|u(x, t)− h0(x)|+ |v(x, t)− h0(x)| ≤ C0 ∀(x, t) ∈ Rn × [0, T ].

From this, we see that for all x ∈ Rn and t, s ∈ [0, T ],
µuθ(x, t) ≤ µ(h0(x) + C0) ≤ v(x, s) + C0 + (µ− 1)(h0(x) + C0)

≤ v(x, s)− (1− µ)ε0|x|+ 2C0.
(2.9)

In particular, we see that there is R > 0 such that, for all (x, t) ∈ Rn × [0, T ], if
|x| ≥ R, then

µuθ(x, t) ≤ v(x, t).

For notational simplicity, we write w := µuθ.
Subtracting from w a function like

α

T + α2 − t ,

where α is a small positive constant, we may assume that

wt ≤ χ+g(Dw,D2w)− δ ∀(x, t) ∈ Rn × (0, T ),
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for some constant δ > 0. Moreover, there is a constant γ ∈ (0, T/2) such that

w ≤ v ∀(x, t) ∈ B(0, R)× ([0, γ] ∪ [T − γ, T ].

Set

Q := B(0, R+ γ)× [0, T ]

and

M := sup
Q
(|w|+ |v|).

We assume for the moment that for some (ξ, τ) ∈ Q and p ∈ Rn,

w(x, τ) ≥ w(ξ, τ) + p · (x− ξ) ∀x ∈ Rn.(2.10)

Then we observe by using (2.9) that for any (η, σ) ∈ Q,

v(x, σ) ≥w(x, τ) + (1− µ)ε0|x| − 2C0 ≥ w(ξ, τ) + p · (x− ξ) + (1− µ)ε0|x| − 2C0

= v(η, σ) + p · (x− η) + (1− µ)ε0|x|+ p · (η − ξ) + w(ξ, τ)− v(η, σ)− 2C0.

Observe as well that

h0(x) + C0 ≥ h0(ξ)− C0 + p · (x− ξ) ∀x ∈ Rn

and hence that

|p| ≤ 2C0 + h0(ξ)− h0(ξ + |p|−1p) ≤ 2C0 + 2 sup
B(0,R+γ+1)

|h0|.

Now we choose a constant L > 0 so that

1

2
(1− µ)ε0(R+ L) > 2C0 + 4(R+ γ)

(
C0 + sup

B(0,R+γ)

|h0|
)
+M,

and, consequently, for all x ∈ Rn and (η, σ) ∈ Q, if |x| ≥ R + L and if (2.10) holds
for some (ξ, τ) ∈ Q and p ∈ Rn, then

v(x, σ) > v(η, σ) + p · (x− η).(2.11)

Set QL := B(0, R+ L+ γ)× [0, T ]. Let ε ∈ (0, 1) and

wε(x, t) = max

{
w(y, s)− 1

2ε
(|x− y|2 + |t− s|2)

∣∣∣ (y, s) ∈ QL
}
,

and

vε(x, t) = min

{
v(y, s) +

1

2ε
(|x− y|2 + |t− s|2)

∣∣∣ (y, s) ∈ QL
}
.

It is well known that

w ≤ wε and v ≥ vε on QL
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and that if ε > 0 is sufficiently small, then

wε(x, t) > w(y, s)− 1

2ε
(|x− y|2 + |t− s|2)

and

vε(x, t) < v(y, s) +
1

2ε
(|x− y|2 + |t− s|2)

hold for all (x, t), (y, s) ∈ QL such that |x− y|2 + |t− s|2 ≥ (γ/2)2. Fix such a small
ε > 0. Set Q′ := intB(0, R + γ/2) × (γ/2, T − γ/2). Again, it is well known that if
(x, t) ∈ Q′ and (p, q,X) ∈ J2,+wε(x, t), then, for y = x+ εp and s = t+ εq,

wε(x, t) = w(y, s)− 1

2ε

(|x− y|2 + |t− s|2)
and

(p, q,X) ∈ J2,+w(y, s).

We refer to [4] for the definition of J2,±. Similarly, if (x, t) ∈ Q′ and (p, q,X) ∈
J2,−vε(x, t), then, for y = x− εp and s = t− εq,

vε(x, t) = v(y, s) +
1

2ε

(|x− y|2 + |t− s|2)
and

(p, q,X) ∈ J2,−v(y, s).

Finally, as is well known, wε and −vε are Lipschitz continuous and semiconvex on
Rn+1.

We maximize functions which are small perturbations of the function wε − vε on
QL. First, we note that

max
QL\Q′

(wε − vε) ≤ 0 < max
QL

(wε − vε).(2.12)

By perturbed optimization techniques (see, e.g., [5, Corollary 3.8]), for each n ∈ N
there is (an, bn) ∈ Rn ×R such that the function

wε(x, t)− vε(x, t)− an · x− bnt
on QL attains a strict maximum at a point (xn, tn) ∈ QL and such that |an|+ |bn| <
1/n.

Focusing our attention on large n ∈ N, in view of (2.12), we may assume that
(xn, tn) ∈ Q′.

For each such n ∈ N there is a function ψn ∈ C2(Rn) such that

ψn(x) > 0 ∀x �= xn, ψn(xn) = 0;

ψn(x) is strictly convex on Rn;

wε(x, t)− vε(x, t)− an · x− bnt+ ψn(x) attains a strict maximum at (xn, tn);
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‖ψn‖∞ + ‖Dψn‖∞ + ‖D2ψn‖∞ < 1/n.

By Jensen’s maximum principle (see, e.g., [4, Lemmas A.2 and A.3]), there are
(pn, qn) ∈ Rn×R and (yn, sn) ∈ QL such that wε(x, t)−vε(x, t)+ψn(x)−(an+pn)·x−
(bn + qn)t attains a maximum at (yn, sn) over QL, w

ε and vε are twice differentiable
at (yn, sn), and |pn|+ |qn| < 1/n. We may assume that (yn, sn) ∈ Q′.

By the elementary maximum principle, we have

Pn := Dwε(yn, sn) = Dvε(yn, sn)−Dψn(yn) + an + pn,

Qn := wεt (yn, sn) = vε,t(yn, sn) + bn + qn,

Xn := D2wε(yn, sn) ≤ D2vε(yn, sn)−D2ψn(yn).

By the semiconvexity of wε and −vε, we have

−1
ε
I ≤ D2wε(yn, sn), D2vε(yn, sn) ≤ 1

ε
I.

Moreover, wε and vε are Lipschitz continuous on Q. For example, there is a constant
C ≡ C(ε) > 0 such that for (x, t), (y, s) ∈ Q,

|wε(x, t)− wε(y, s)|+ |vε(x, t)− vε(y, s)| ≤ C(|x− y|+ |t− s|).
As a consequence, we have

|Dwε(yn, sn)|+ |Dvε(yn, sn)|+ |wεt (yn, sn)|+ |vε,t(yn, sn)| ≤ 4C.

Let (ξn, tn) ∈ QL and (ηn, σn) ∈ QL be the maximum and minimum points of
functions

w(x, t)− 1

2ε

(|x− yn|2 + |t− sn|2)
and

v(x, t) +
1

2ε

(|x− yn|2 + |t− sn|2)
on QL, respectively. Recall that

|ξn − yn|2 + |τn − σn|2 < (γ/2)2 and |ηn − yn|2 + |σn − sn|2 < (γ/2)2

and hence that (ξn, τn), (ηn, σn) ∈ intQ.
Now we have

Qn ≤ χ+(w,Pn, ξn, τn)g(Pn, Xn)− δ;

Qn − qn − bn ≥χ−(v, Pn +Dψn(yn)− an − pn, ηn, σn)
· g(Pn +Dψn(yn)− an − pn, Xn + ψn(yn)).

If χ+(w,Pn, ξn, τn) = 0, then

Qn + δ ≤ 0 ≤ Qn − qn − bn.(2.13)
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Suppose instead that χ+(w,Pn, ξn, τn) = 1. This yields

w(x, τn) ≥ w(ξn, τn) + Pn · (x− ξn) ∀x ∈ Rn.(2.14)

We have from this

w(x, τn)− 1

2ε
(|yn − ξn|2 + |sn − τn|2) ≥ wε(yn, sn) + Pn · (x− ξn) (x ∈ Rn).

If y ∈ B(0, R+ L+ γ/2), then x := y + ξn − yn ∈ B(0, R+ L+ γ), and we have

wε(yn, sn)+Pn · (y−yn) ≤ w(y+ξn−yn, τn)− 1

2ε
(|yn−ξn|2+ |sn−τn|2) ≤ wε(y, sn).

Since (yn, sn) is a maximum point of

wε(x, t)− vε(x, t) + ψn(x)− (an + pn) · x− (qn + bn)t

over QL, we have for any x ∈ Rn, with |x| ≤ R+ L+ γ,

wε(x, sn)− vε(x, sn) + ψn(x)− (an + pn) · x− (qn + bn)sn

≤ wε(yn, sn)− vε(yn, sn) + ψn(yn)− (an + pn) · yn − (qn + bn)sn.

Thus, using the strict convexity of ψn, for any x �= yn with |x| ≤ R + L + γ/2, we
have

vε(x, sn) ≥ vε(yn, sn) + wε(x, sn)− wε(yn, sn) + ψn(x)− ψn(yn)
− (an + pn) · (x− yn)

≥ vε(yn, sn) + (Pn − an − pn) · (x− yn) + ψn(x)− ψn(yn)
>vε(yn, sn) + (Pn − an − pn +Dψn(yn)) · (x− yn).

Therefore, we have, for all x ∈ B(0, R+ L+ γ/2) with x �= yn and (y, s) ∈ QL,

v(y, s) +
1

2ε

(|y − x|2 + |s− sn|2)
>v(ηn, σn) +

1

2ε

(|ηn − yn|2 + |σn − sn|2)
+ (Pn − an − pn +Dψn(yn)) · (x− yn),

and hence, for y ∈ B(0, R + L) with y �= ηn, plugging s = σn, x = y + yn − ηn ∈
B(0, R+ L+ γ/2) \ {yn}, we get

v(y, σn) > v(ηn, σn) + (Pn − an − pn +Dψn(yn)) · (y − ηn).

On the other hand, by our choice of L (see (2.11)), we have from (2.14)

v(y, σn) > v(ηn, σn) + Pn · (y − η) + 1

2
(1− µ)ε0|y|(2.15)

for all y ∈ Rn satisfying |y| ≥ R+ L. Choosing n large enough, we may assume that
for all y ∈ Rn, if |y| ≥ R+ L, then

(|an|+ |pn|+ |Dψn(yn)|)(|y|+R+ γ) ≤ 1

2
(1− µ)ε0|y|.
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Then we have

v(x, σn) > v(ηn, σn) + (Pn − an − pn +Dψn(yn)) · (x− ηn) ∀x ∈ Rn \ {ηn}.

This, together with (2.15), guarantees that

χ−(v, Pn +Dψn(yn)− an − pn, ηn, σn) = 1,

and we have

g(Pn +Dψn(yn)− an − pn, Xn + ψn(yn)) ≤ Qn − qn − bn ≤ g(Pn, Xn)− δ.

This and (2.13) yield a contradiction as we send n→∞.
Next we prove part (b). Fix ε > 0. Select R > 0 so that

u(x, 0)− ε ≤ h0(x) ≤ v(x, 0) + ε ∀x ∈ Rn \B(0, R).

We note that there is a function kε(x) ∈ C(B(0, R+ 1)) such that

u(x, 0)− ε/2 ≤ kε(x) ≤ v(x, 0) + ε/2 ∀x ∈ B(0, R+ 1).(2.16)

Indeed, since u(x, 0) is upper semicontinuous on B(0, R + 1), we find a sequence of
continuous functions jn on B(0, R+ 1) such that

jn(x) ↓ u(x, 0) as n→∞ ∀x ∈ B(0, R+ 1).

Then, noting that

(jn(x)− v(x, 0))+ ↓ 0 as n→∞

and the functions (jn(x) − v(x, 0))+ are upper semicontinuous on B(0, R + 1), by
virtue of Dini’s lemma, we see that

(jn(x)− v(x, 0))+ ↓ 0

uniformly on B(0, R+1) as n→∞. Selecting n large enough, the function jn satisfies
(2.16) with kε = jn. Now a simple argument based on the mollification of kε and on
partition of unity, we see that there is a function hε ∈ C2(Rn) such that

u(x, 0)− ε ≤ hε(x) ≤ v(x, 0) + ε ∀x ∈ Rn,

and, for some constant Cε > 0,

det+D
2hε(x) ≤ Cε(1 + |Dhε(x)|2)(n+1)/2 ∀x ∈ Rn.(2.17)

Set z(x, t) := hε(x) + ε+ Cεt for (x, t) ∈ Rn × [0,∞). By (2.17) we see that z is
a supersolution of

zt ≥ g(Dz,D2z) in Rn × (0,∞).

Moreover, z satisfies not only this property but also the other properties required for
v in part (a). Hence we see that, for any θ ∈ (0, 1),

u(x, θt) ≤ z(x, t) ∀(x, t) ∈ Rn × [0,∞),
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i.e.,

u(x, t) ≤ z(x, θ−1t) ∀(x, t) ∈ Rn × [0,∞).

Since z is continuous, we get

u(x, t) ≤ z(x, t) ∀(x, t) ∈ Rn × [0,∞).

Now let δ > 0, and observe that

u(x, δ) ≤ z(x, δ) = hε(x) + ε+ Cεδ ≤ v(x, 0) + 2ε+ Cεδ ∀x ∈ Rn.

Define

w(x, t) := u(x, δ + t)− 2ε− Cεδ ∀(x, t) ∈ Rn × [0,∞).

Then w satisfies all the properties required for u in part (a), and hence we have

w(x, θt) ≤ v(x, t) ∀(x, t) ∈ Rn × [0,∞), ∀θ ∈ (0, 1).
For example, we have

u(x, δ + θt) ≤ v(x, t) + 2ε+ Cεδ ((x, t) ∈ Rn × [0,∞) ∀θ ∈ (0, 1).
Therefore, for all (x, t) ∈ Rn× (δ,∞), choosing θ = (t− δ)/t ∈ (0, 1) in the above, we
have

u(x, t) ≤ v(x, t) + 2ε+ Cεδ.

Letting δ ↓ 0, we see that u(x, t) ≤ v(x, t) + 2ε for all (x, t) ∈ Rn × (0,∞). It is
immediate to conclude that u ≤ v in Rn × [0,∞).

3. Existence theorem. Let h ∈ C(Rn) satisfy

lim
|x|→∞

∣∣h(x)− h0(x)
∣∣ = 0,(3.1)

where h0 ∈ C2(Rn) is a function satisfying (2.1) and

det+D
2h0(x) ≤ C(1 + |Dh0(x)|2)(n+1)/2 ∀x ∈ Rn,(3.2)

for some constant C > 0.
Theorem 2. Assume that (3.1) and (3.2) hold. Then there is a viscosity solution

u ∈ C(Rn × [0,∞)) of{
ut(x, t) = χ(u,Du(x, t), x, t)g(Du(x, t), D2u(x, t)) in Rn × (0,∞),

u(x, 0) = h(x) for x ∈ Rn
(3.3)

satisfying

sup
(x,t)∈Rn×[0,T ]

|u(x, t)− h(x)| <∞ ∀T > 0.(3.4)

Proof of Theorem 2. Step 1. Construction of a supersolution: Let ε ∈ (0, 1), and
let hε ∈ C2(Rn) be a function such that

|h(x)− hε(x)| < ε ∀x ∈ Rn;
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det+D
2hε(x) ≤ Cε(1 + |Dhε(x)|2)(n+1)/2 ∀x ∈ Rn,

for some constant Cε > 0.
Set

w(x, t; ε) := ε+ hε(x) + Cεt ∀(x, t) ∈ Rn × [0,∞).

Then the function w(x, t; ε) of (x, t) is a supersolution of

wt ≥ χ−g(Dw,D2w) in Rn × (0,∞)

and satisfies

h(x) ≤ w(x, t; ε) ≤ h(x) + 2ε+ Cεt ∀(x, t) ∈ Rn × [0,∞).(3.5)

Define

v(x, t) := inf
ε∈(0,1)

w(x, t; ε) ∀(x, t) ∈ Rn × [0,∞).

Since the pointwise infimum of supersolutions is a supersolution, the function v∗ is a
supersolution of

vt ≥ χ−g(Dv,D2v) in Rn × (0,∞).

Moreover, v is USC on Rn × [0,∞), v(x, 0) = h(x) for all x ∈ Rn by (3.5), and, for
each T > 0, h(x) ≤ v(x, t) ≤ h(x) + CT for all (x, t) ∈ Rn × [0, T ] and for some
constant CT > 0 by (3.5).

Step 2. Construction of a subsolution. We set

z(x, t) = h(x) ∀(x, t) ∈ Rn × [0,∞).

Then z is a subsolution of

zt ≤ χ+g(Dz,D2z) ∀(x, t) ∈ Rn × (0,∞)

and satisfies

z(x, 0) = h(x) ∀x ∈ Rn;

z(x, t) ≤ h(x) ∀x ∈ Rn, ∀t ≥ 0.

Step 3. Perron’s method. We apply Perron’s method (see Theorem 5) to obtain
a solution u of (3.3) such that

h(x) ≤ u(x, t) ≤ v(x, t) ∀(x, t) ∈ Rn × [0,∞).

This inequality shows that

sup
(x,t)∈Rn×[0,T ]

|u(x, t)− h(x)| <∞ ∀T > 0

and that

lim
t↓0

sup
x∈Rn

|u(x, t)− h(x)| = 0.

Now Theorem 1 yields that u∗ ≤ u∗ on Rn × [0,∞) and therefore that u ∈ C(Rn ×
[0,∞)).
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4. Stability properties. In this section, we establish some stability results for
viscosity solutions of (1.1), the nature of which is rather standard in the theory of
viscosity solutions [4]. Note that Theorem 5 has already been applied in the proof of
Theorem 2.

Theorem 3. Let {uα} be a family of viscosity subsolutions of (1.1). Assume that
the function

u(x, t) :=
(
sup
α
uα
)∗
(x, t)

on Rn × (0,∞) is locally bounded. Then u is a viscosity subsolution of (1.1).
Theorem 4. Let {uα} be a family of viscosity supersolutions of (1.1). Assume

that the function

u(x, t) :=
(
inf
α
uα
)
∗
(x, t)

on Rn × (0,∞) is locally bounded. Then u is a viscosity supersolution of (1.1).
Theorem 5. Let f− ∈ LSC(Rn × [0,∞)) and f+ ∈ USC(Rn × [0,∞)) be a

viscosity subsolution and a viscosity supersolution of (1.1), respectively. Suppose that
f− ≤ f+ on Rn × [0,∞). Let S be the set of viscosity subsolutions v, defined on
Rn × [0,∞), of (1.1) such that f− ≤ v ≤ f+ on Rn × [0,∞), and set

u(x, t) := sup{v(x, t) | v ∈ S} for (x, t) ∈ Rn × [0,∞).

Then u is a viscosity solution of (1.1).
Proof of Theorem 3. Let ϕ ∈ C2(Rn × (0,∞)). Let (x̂, t̂) ∈ Rn × (0,∞) be a

maximum point of u− ϕ. We may assume that (x̂, t̂) is a strict maximum point and
that uα is USC in Rn × (0,∞).

As usual, we can select sequences of αn and of points (xn, tn) ∈ Rn × (0,∞) so
that uαn − ϕ attains a local maximum at (xn, tn) and so that, as n→∞,

uαn(xn, tn)→ u(x̂, t̂) and (xn, tn)→ (x̂, t̂).

In view of standard proofs, we need only to show that if

χ+ (uαn , Dϕ(xn, tn), xn, tn) = 1 ∀n ∈ N,(4.1)

then

χ+(u,Dϕ(x̂, t̂), x̂, t̂) = 1.

Let us assume that (4.1) holds. Then, by definition, we have

uαn(y, tn) ≥ uαn(xn, tn) +Dϕ(xn, tn) · (y − xn) ∀y ∈ Rn.

Hence we have

u(y, tn) ≥ uαn(xn, tn) +Dϕ(xn, tn) · (y − xn) ∀y ∈ Rn.

Sending n→∞, we get

u(y, t̂) ≥ u(x̂, t̂) +Dϕ(x̂, t̂) · (y − x̂) ∀y ∈ Rn,
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i.e.,

χ+(u,Dϕ(x̂, t̂), x̂, t̂) = 1.

Proof of Theorem 4. Let ϕ ∈ C2(Rn × (0,∞)). Let (x̂, t̂) ∈ Rn × (0,∞) be a
minimum point of u − ϕ. We may assume that (x̂, t̂) is a strict minimum point and
that uα is LSC in Rn × (0,∞).

As before, there are sequences of αn and of points (xn, tn) ∈ Rn × (0,∞) so that
uαn − ϕ attains a local minimum at (xn, tn) and, as n→∞,

uαn(xn, tn)→ u(x̂, t̂) and (xn, tn)→ (x̂, t̂).

In view of standard proofs, we need only to show that if

lim inf
n→∞ χ− (uαn , Dϕ(xn, tn), xn, tn) = 0,(4.2)

then

χ−(u,Dϕ(x̂, t̂), x̂, t̂)g(Dϕ(x̂, t̂), D2ϕ(x̂, t̂)) = 0.(4.3)

We argue by contradiction and so assume that (4.2) holds and that (4.3) does not
hold. By passing to a subsequence, we may assume that

χ− (uαn , Dϕ(xn, tn), xn, tn) = 0 ∀n ∈ N.(4.4)

We have

χ−(u,Dϕ(x̂, t̂), x̂, t̂) = 1;(4.5)

g(Dϕ(x̂, t̂), D2ϕ(x̂, t̂)) > 0.(4.6)

Then from (4.5) there is a constant ε > 0 such that, for (x, t) ∈ Rn × (0,∞), if
|x| > ε−1, |t− t̂| < ε, then

u(x, t) > p · x+ 2ε|x|,(4.7)

where p := Dϕ(x̂, t̂). We write pn for Dϕ(xn, tn) as well. We may assume that
|tn − t̂| < ε/2 and |pn − p| < ε for all n ∈ N.

From (4.7), for all n ∈ N and (x, t) ∈ Rn × (0,∞), if |x| > ε−1, |t − tn| < ε/2,
then we have

uαn(x, t) > pn · x+ ε|x|.
Therefore, we see from (4.4) that there is a sequence of points yn ∈ Rn such that
yn �= xn and such that

uαn(yn, tn) ≤ uαn(xn, tn) + pn · (yn − xn),(4.8)

which immediately yields

u(yn, tn) ≤ uαn(xn, tn) + pn · (yn − xn).(4.9)

We see easily from (4.7) and (4.9) that there is a constant R > 0 such that

|yn| ≤ R ∀n ∈ N.
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Thus there is a subsequence of n ∈ N such that along the subsequence, {yn} converges
to a point ŷ ∈ Rn. We have from (4.9)

u(ŷ, t̂) ≤ u(x̂, t̂) + p · (ŷ − x̂).
Now (4.6) implies that the matrix D2ϕ(x̂, t̂) is positive definite. By continuity,

there is a constant δ > 0 such that

D2ϕ(x, t) ≥ δI ((x, t) ∈ B(x̂, δ)× [t̂− δ, t̂+ δ]).

We may assume that (xn, tn) ∈ B(x̂, δ/2)× [t̂− δ/2, t̂+ δ/2] for all n ∈ N. By using
Taylor’s expansion, we see that, for all n ∈ N and x ∈ B(xn, δ/2),

uαn(x, tn) ≥ uαn(xn, tn) + pn · (x− xn) + δ

2
|x− xn|2.

This, together with (4.8), guarantees that |yn − xn| > δ/2 for all n ∈ N and hence
that |ŷ − x̂| ≥ δ/2. Thus we see that

χ−(u, p, x̂, t̂) = 0,

which is a contradiction.
Proof of Theorem 5. From Theorem 3, we know that u∗ is a subsolution of

ut ≤ χ+g(Du,D2u) in Rn × (0,∞).

We must show that u∗ is a supersolution of

ut ≥ χ−g(Du,D2u) in Rn × (0,∞).

To do this, we argue by contradiction and so suppose that there are ϕ ∈ C2(Rn ×
(0,∞)) and (x̂, t̂) ∈ Rn × (0,∞) such that

ϕt(x̂, t̂) < χ−(u∗, Dϕ(x̂, t̂), x̂, t̂)g(Dϕ(x̂, t̂), D2ϕ(x̂, t̂))

and such that u∗−ϕ attains a strict minimum at (x̂, t̂). We may assume that u∗(x̂, t̂) =
ϕ(x̂, t̂).

If

χ−(u∗, Dϕ(x̂, t̂), x̂, t̂)g(Dϕ(x̂, t̂), D2ϕ(x̂, t̂)) = 0,

then ϕ is a classical subsolution of

ut < 0

in a neighborhood of (x̂, t̂), and the standard argument for Perron’s method yields a
contradiction.

Next consider the case where

χ−(u∗, Dϕ(x̂, t̂), x̂, t̂)g(Dϕ(x̂, t̂), D2ϕ(x̂, t̂)) > 0.

Let us write û = u∗(x̂, t̂), a = Dϕ(x̂, t̂), and b = ϕt(x̂, t̂).
Fix η > 0 so that

D2ϕ(x, t) > 0 ∀(x, t) ∈ Qη.
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Here Qη denotes the cylinder {(x, t) ∈ Rn ×R | |x − x̂| < η, |t − t̂| < η}, and η is
chosen so small that Qη ⊂ Rn × (0,∞).

Since

χ−(u∗, a, x̂, t̂) = 1,

we have

u∗(x, t̂) > û+ a · (x− x̂) ∀x ∈ Rn \ {x̂},
and

u∗(y, s) > a · y + δ|y| if |y| > δ−1, |s− t̂| < δ,

for some δ > 0. From these, we deduce that there is γ > 0 such that if |p − a| < γ,
|t− t̂| < γ, and |r − û| < γ, then

u∗(x, t) > r + p · (x− x̂) if |x− x̂| ≥ η.

As usual in the proof of existence by Perron’s method, we find r > 0 and ε > 0
such that

Q2r ⊂ Rn × (0,∞);

ϕ(x, t) + ε < u(x, t) if (x, t) ∈ Q2r \Qr;

ϕ(x, t) + ε ≤ g(x, t) if (x, t) ∈ Q2r;

ϕt(x, t) < g(Dϕ(x, t), D2ϕ(x, t)) if (x, t) ∈ Q2r.

We may assume that Q2r ⊂ Qη and that

|ϕ(x, t) + ε− û| < γ ∀(x, t) ∈ Q2r,

|Dϕ(x, t)− a| < γ ∀(x, t) ∈ Q2r,

and that 2r < γ.
Note that for (x, t) ∈ Q2r and y ∈ Rn, if |y − x̂| ≥ η, then we have

u∗(y, t) > ϕ(x, t) + ε+Dϕ(x, t) · (y − x).(4.10)

Define

v(x, t) :=

{
u(x, t) for (x, t) ∈ (Rn × (0,∞)) \Qr,
max{u(x, t), ϕ(x, t) + ε} for (x, t) ∈ Qr.

We intend to show that v∗ is a subsolution in Rn × (0,∞). Let ψ ∈ C2(Rn ×
(0,∞)). Let (y, s) ∈ Rn × (0,∞) be a maximum point of the function v∗ − ψ.

Noting that v ≥ u in Rn × (0,∞) and that v = u on Rn × (0,∞) \ Qr, we see
that for (p, x, t) ∈ Rn ×Rn × (0,∞), if (x, t) �∈ Qr, then

χ+(v∗, p, x, t) ≥ χ+(u∗, p, x, t).



876 HITOSHI ISHII AND TOSHIO MIKAMI

Hence, if (y, s) �∈ Qr, then
ψt(y, s) ≤ χ+(v∗, Dψ(y, s), y, s)g(Dψ(y, s), D2ψ(y, s)).

Now assume that (y, s) ∈ Q2r. If v
∗(y, s) = u∗(y, s), then, as above, we get

ψt(y, s) ≤ χ+(v∗, Dψ(y, s), y, s)g(Dψ(y, s), D2ψ(y, s)).

If v∗(y, s) = ϕ(y, s) + ε, then ϕ− ψ has a local maximum at (y, s). Hence we have

Dϕ(y, s) = Dψ(y, s), ϕt(y, s) = ψt(y, s), D2ϕ(y, s) ≤ D2ψ(y, s),

and, therefore,

ψt(y, s) ≤ g(Dψ(y, s), D2ψ(y, s)).

Since D2ϕ(x, t) > 0 in Q2r, we have

ϕ(x, s) + ε ≥ ϕ(y, s) + ε+Dϕ(y, s) · (x− y) if |x− x̂| < 2r

and hence

v∗(x, s) ≥ v∗(y, s) +Dϕ(y, s) · (x− y) if |x− x̂| < 2r.

Furthermore, from (4.10) we have

v∗(x, s) ≥ u∗(x, s) ≥ ϕ(y, s) + ε+Dϕ(y, s) · (x− y) if x− x̂| ≥ 2r.

These together yield

v∗(x, s) ≥ v∗(y, s) +Dψ(y, s) · (x− y) if x ∈ Rn.

Thus we see that

χ+(v∗, Dψ(y, s), y, s) = 1

and conclude that

ψt(y, s) ≤ χ+(v∗, Dψ(y, s), y, s)g(Dψ(y, s), D2ψ(y, s)),

which shows that v∗ is a subsolution. Since f− ≤ v ≤ f+ and v �≤ u, this yields a
contradiction.
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AN UP-TO-THE BOUNDARY VERSION OF FRIEDRICHS’S LEMMA
AND APPLICATIONS TO THE LINEAR KOITER SHELL MODEL∗
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Abstract. In this work, we introduce a variant of the standard mollifier technique that is valid
up to the boundary of a Lipschitz domain in R

n. A version of Friedrichs’s lemma is derived that gives
an estimate up to the boundary for the commutator of the multiplication by a Lipschitz function
and the modified mollification. We use this version of Friedrichs’s lemma to prove the density of
smooth functions in the new function space introduced in our earlier work concerning the linear
Koiter shell model for shells with little regularity. The density of smooth functions is in turn used
to prove continuous dependence of the solution of Koiter’s model on the midsurface. This provides
a complete justification of our new formulation of the Koiter model.

Key words. Friedrichs’s lemma, shell theory, Koiter’s model

AMS subject classifications. 35A99, 74K25
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1. Introduction. Mollification is a basic technique in analysis. It is classically
performed by convolution with a compactly supported mollifier. In order for the
convolution to be defined, it is necessary either to work on the whole of R

n or in a
compactly contained subdomain ω of the domain of interest Ω. For many classical
function spaces on a domain Ω, approximation by smooth functions is quite straight-
forward if the boundary of the domain Ω is regular enough. In effect, in the latter
case, there usually is a continuous extension operator that reduces the case of the do-
main to that of R

n. It suffices to perform the mollification on the extended function
and then restrict the mollifed function to the domain. See [1], [13], [14], [22], and [24]
among others.

Our main field of application here is the linear Koiter shell model in elasticity (see
[21]). In [5], [6], we introduced a new formulation of this model that makes sense and
is well-posed for midsurfaces of class W 2,∞ instead of C3, as was customarily assumed
earlier; see also [9] and [11] for shell models in the same context of regularity. The
simplest and most natural examples of W 2,∞-shells are given by globally C1- and
piecewise C3-midsurfaces. Consider, for instance, a shell consisting of a planar part
that is connected to a circular cylinder part or an egg-shaped shell made of a quarter
of a sphere and a quarter of an ellipsoid glued together along a circle. Our new
formulation entails the introduction of a new functional setting. The new function
space involves multiplication of distributional partial derivatives of the functions by
given Lipschitz functions related to the geometry of the midsurface. It is required
that such quantities be square-integrable. To the best of our knowledge, this specific
kind of function space was not studied before regarding such fundamental issues as
the density or nondensity of smooth functions. There are relatively close ideas in
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transport equation theory (see [2], [12], [10]) although the techniques used therein do
not apply in our case. For the function space introduced in [5], there is no obvious
extension operator, and it is not natural to work on the whole of R

2. Thus different
ideas were needed to address the density question.

One such idea was first put forth in [23], without mention of regularity for the
domain, and was then rediscovered simultaneously later on by the authors and by [15]
in a slightly different form. The idea consists in defining a new mollification technique
in which the mollifier is simultaneously scaled and translated inside the domain. For
the technique to work, it is necessary that the domain satisfy a uniform cone condi-
tion, which is practically equivalent to being Lipschitz; see [1], [16]. This simple but
powerful idea yields mollified functions defined on the whole domain without any need
for an extension operator to provide values for the function outside of its domain of
definition.

It is a straightforward matter to reproduce the proof of Friedrichs’s lemma using
the above convolution-translation in place of the convolution itself. This gives an
Lp estimate on the whole domain for the commutator of the convolution-translation
and the multiplication by a Lipschitz function applied to partial derivatives of an Lp

function.
This version of Friedrichs’s lemma is the main tool in proving the density of

smooth functions in the new function space for Koiter’s model. This density has
important consequences. For example, it shows that standard finite element methods
actually approximate the solution of the newly formulated variational problem for
Koiter’s model; see [19] and [20]. Another consequence that we develop here is that if
we consider a sequence of W 2,∞-midsurfaces that converge in a natural sense toward
a given midsurface and a sequence of loads that also converge, then the corresponding
sequence of solutions to Koiter’s model converges in a natural sense too. Since the
new model coincides with the classical model for C3-midsurfaces, taking a sequence
of such C3-midsurfaces converging to a midsurface that is only W 2,∞ shows that our
new formulation is an appropriate extension of the classical formulation to less regular
midsurfaces from the mathematical point of view.

2. A modified mollification technique. In this section, we develop the con-
volution-translation technique introduced in [23] (see also [15]) that allows for up-to-
the-boundary mollification without requiring an extension operator. It is well known
that the density of smooth functions in, for example, Sobolev spaces, may fail if the
domain under consideration is not regular. It is thus natural that the regularity of
the boundary should come into play.

First of all, let us recall the uniform cone property for a domain Ω in R
n. We

refer the reader to [1], [13], [16], and [24] for details.
Definition 2.1. An open set Ω ⊂ R

n is said to satisfy the cone property if there
exists an open cone

C = {x = (x′, xn) ∈ R
n; 0 < xn < h, |x′| < xn tan(θ/2)},

with h > 0 and 0 < θ < π, such that for every point x in Ω̄ there is a rotation Rx
such that C̄x = x + RxC̄ ⊂ Ω̄. In other words, any point x is the vertex of a cone
congruent to C and included in Ω̄ (or Ω). Here | · | denotes the standard Euclidean
norm either on R

n−1 or on R
n.

The set Ω is said to satisfy the uniform cone property if there exists a locally
finite open covering {Ui}i≥1 of ∂Ω, and a corresponding sequence {Ci} of cones, each
congruent to some fixed cone C, such that the following hold.
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(i) There exists M such that every Ui has diameter less than M .
(ii) For some δ > 0, Ωδ = {x ∈ Ω; dist(x; ∂Ω) < δ} ⊂ ⋃∞

i=1 Ui.
(iii) For every i ∈ N, Qi =

⋃
x∈Ω∩Ui

(x + Ci) ⊂ Ω.
(iv) There exists N ∈ N such that every collection of N + 1 of the sets Qi has an

empty intersection.
Remark 2.2. Note that a bounded domain of R

n satisfies the uniform cone
property if and only if its boundary is Lipschitz; see [7] or [16, Theorem
1.2.2.2].

Let us now introduce some notation for the convolution-translation operator,
which is the basic tool for subsequent developments.

Definition 2.3. Let e be a unit vector in R
n and τ > 0. For all u, v ∈ L1(Rn),

we define their convolution-translation (of amount τ in the direction e) u �τ,e v by

u �τ,e v(x) = u � v(x− τe),(2.1)

that is,

u �τ,e v(x) =

∫
Rn

u(x− τe− y)v(y) dy.(2.2)

Obviously, u �τ,e v ∈ L1(Rn), u �τ,e v = v �τ,e u, and if v is C∞, so is u �τ,e v with
∂α(u �τ,e v) = u �τ,e ∂

αv for any multi-index α ∈ N
n.

The interesting feature of this slightly modified convolution is that it can be used
to define a mollification technique for Sobolev spaces that is valid up to the boundary
of any domain in R

n that satisfies the uniform cone condition, without using any
extension operator. Let us now describe how this can be achieved.

Let ρ be a standard mollifier, i.e., a positive C∞ function on R
n supported in the

unit ball and such that
∫

Rn ρ(x) dx = 1. Let Ω be a domain in R
n that satisfies the

uniform cone condition, and denote by Ui the locally finite covering of the boundary
from Definition 2.1. To entirely cover Ω, we let U0 = {x ∈ Ω; dist(x; ∂Ω) > δ/2}. We
denote by (ϕi)i∈N an associated C∞ partition of unity.

Theorem 2.4. For all u ∈ Wm,p(Ω), there exists a sequence uε in C∞(Ω̄) such
that

uε → u in Wm,p(Ω) when ε→ 0.(2.3)

Proof. This is of course a very classical result. We only include it here to show how
it can be proved using the convolution-translation instead of standard mollification
together with an extension operator.

We begin by localizing u =
∑
i∈N

ui with ui = ϕiu. Each ui has compact support
in Ui∩Ω̄. The “interior” part u0 does not pose any problem and can be approximated
by standard mollification. Let us concentrate on what happens near the boundary.

From now on, we may thus assume that u has support in, say, U1∩Ω̄ = U without
loss of generality. As far as cones are concerned, we may as well assume that C = C1.

We consider an open subset Ω′ of R
n such that U1 ∩ Ω̄′ = U and that satisfies

conditions (i), (ii), and (iii) of Definition 2.1 with just one cone equal to C. Such a
set clearly exists. Indeed, in view of [16, Theorem 1.2.2.2], ∂Ω ∩ U is the graph of a
Lipschitz function Φ from a compact subset K of a hyperplane in R

n into R (using
an appropriate coordinate system (x′, xn)). If M denotes the Lipschitz constant of Φ,
the standard McShane, or Whitney, extension of Φ to the whole hyperplane defined
by

Φ̃(x′) = min
y∈K

(Φ(y) + M |x′ − y|)
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provides a globally defined Lipschitz extension of Φ with the same Lipschitz constant
M . It is thus sufficient to set Ω′ = {x ∈ R

n;xn < Φ̃(x′)}. Now, the extension of u by
zero to Ω′ \ Ω clearly yields a function in Wm,p(Ω′).

It follows from the previous considerations that we may assume that Ω satisfies
the uniform cone condition with just one cone equal to C. Let θC , eC , and hC be,
respectively, the cone’s angle, outward unit axis vector, and height.

For all 0 < ε, we now define

η(ε) = ε sin(θC/2)(2.4)

and

ρε(y) = η(ε)−nρ(y/η(ε)).(2.5)

Let εC = hC
1+sin (θC/2)

. For all 0 < ε < εC and all x ∈ Ω̄, we then let

uε(x) =

∫
B(0,η(ε))

u(x− εe− y)ρε(y) dy.(2.6)

By construction, we have x−εe−B(0, η(ε)) ⊂ x+C ⊂ Ω; therefore, uε(x) is well
defined up to the boundary. Moreover, since ρε has support in B̄(0, η(ε)), we have
that

uε(x) =

∫
Rn

ũ(x− εe− y)ρε(y) dy = ũ �ε,e ρε(x),

i.e., uε = (ũ�ε,eρε)|Ω̄, where ũ is any extension of u to R
n—for instance, the extension

by 0. It follows that uε ∈ C∞(Ω̄). Moreover, it is easy to see that, for any multi-index
α and all x ∈ Ω̄, we also have

∂αuε(x) =

∫
Rn

∂̃αu(x− εe− y)ρε(y) dy = ∂̃αu �ε,e ρε(x).

To conclude, it is thus sufficient to show that uε → u in Lp(Ω) when ε→ 0. This
follows from the same argument that is used in standard mollification by approxi-
mating u in Lp(Ω) by a compactly supported continuous function and performing the
convolution-translation on this function.

3. A generalized version of Friedrichs’s lemma. Friedrichs’s lemma was
introduced to deal with partial differential equations with varying coefficients. There
are many different versions of the lemma. We are concerned here with the version
that estimates the commutator of the multiplication by a Lipschitz function and the
convolution by a mollifier on R

n or on a compactly contained subset of the domain Ω;
see [17] and [18]. We replace here the usual convolution by the previously introduced
up-to-the-boundary convolution-translation.

In what follows, Ω is a domain in R
n that satisfies the uniform cone condition

with just one cone, as before. For all v ∈ Lp(Ω), we denote by ∂αv its distributional
partial derivative with respect to xα. (We thus do not use the multi-index notation.)
Therefore, ∂αv ∈ W−1,p(Ω). We need to define the convolution-translation for such
distributions:

∂αv �ε,e ρε(x) =

∫
B(0,η(ε))

v(x− εe− y)∂αρε(y) dy,(3.1)
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where η(ε) and ρε are defined as in formulas (2.4) and (2.5). Clearly, this definition
agrees with (2.6) when v is C∞. Moreover, the resulting function is in C∞(Ω̄). Finally,
if we take a sequence vk ∈ C∞(Ω̄) such that vk → v in Lp(Ω) when k → +∞, then
∂αvk �ε,e ρε → ∂αv �ε,e ρε in Lp(Ω).

Our version of Friedrichs’s lemma is as follows.
Lemma 3.1. Let v ∈ Lp(Ω) and a ∈ W 1,∞(Ω); then there exists a constant M

which depends only on ρ and on the cone angle such that

‖(a∂αv) �ε,e ρε − a(∂αv �ε,e ρε)‖Lp(Ω) ≤M‖a‖W 1,∞(Ω)‖v‖Lp(Ω).(3.2)

Proof. Note first that if v ∈ Lp(Ω) and a ∈ W 1,∞(Ω), then a∂αv ∈ W−1,p(Ω) so
that all terms are well defined. Moreover, in view of the above remarks, it is sufficient
to establish estimate (3.2) for functions v in D(Ω), which is a dense subset of Lp(Ω).
In this case, a∂αv belongs to W 1,∞(Ω) with compact support.

Let us estimate the commutator. For all x ∈ Ω̄, we have

[(a∂αv)�ε,eρε−a(∂αv�ε,eρε)](x) =

∫
B(0,η(ε))

[a(x−εe−y)−a(x)]∂αv(x−εe−y)ρε(y) dy.
(3.3)

Integrating the right-hand side of (3.3) by parts in the ball, we obtain

[(a∂αv) �ε,e ρε−a(∂αv �ε,e ρε)](x) =

∫
B(0,η(ε))

∂αa(x− εe− y)v(x− εe− y)ρε(y) dy

+

∫
B(0,η(ε))

[a(x−εe−y)−a(x)]v(x−εe−y)∂αρε(y) dy.(3.4)

Note that both integral quantities vanish for x outside of a compact neighborhood K
of the support of v that is independent of ε for ε ≤ εC . We denote by ˜̃a the McShane
extension of the restriction of a to K, and by ṽ the extension of v by zero. It is then
clear that for all x ∈ Ω̄,

[(a∂αv) �ε,e ρε − a(∂αv �ε,e ρε)](x) = f1(x) + f2(x),(3.5)

where

f1(x) =

∫
Rn

∂α˜̃a(x− εe− y)ṽ(x− εe− y)ρε(y) dy

and

f2(x) =

∫
Rn

[˜̃a(x−εe−y)− ˜̃a(x)]ṽ(x−εe−y)∂αρε(y) dy

for all x ∈ R
n. It is thus enough to estimate f1 and f2 in Lp separately.

For the first term, we have

|f1(x)| ≤
∫

Rn

|∂α˜̃a(x− εe− y)||ṽ(x− εe− y)|ρε(y) dy

≤ ‖∂α˜̃a‖L∞(Rn)

∫
Rn

|ṽ(x− εe− y)|ρε(y) dy

≤ ‖a‖W 1,∞(Ω)(|ṽ| � ρε)(x− εe)
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for all x ∈ R
n. Therefore,

‖f1‖Lp(Ω) ≤ ‖f1‖Lp(Rn)

≤ ‖a‖W 1,∞(Ω)‖(|ṽ| � ρε)‖Lp(Rn)

≤ ‖a‖W 1,∞(Ω)‖ṽ‖Lp(Rn)

= ‖a‖W 1,∞(Ω)‖v‖Lp(Ω).

Similarly, for the second term,

|f2(x)| ≤
∫

Rn

|˜̃a(x−εe−y)− ˜̃a(x)| |ṽ(x−εe−y)| |∂αρε(y)| dy

≤ ‖∇˜̃a‖L∞(Rn)

∫
Rn

|ṽ(x−εe−y)| |εe− y| |∂αρε(y)| dy
≤ ‖a‖W 1,∞(Ω)(|ṽ| � gε)(x− εe)

for all x ∈ R
n, where

gε(y) = |εe− y| |∂αρε(y)|.

In view of definitions (2.4) and (2.5), it is easy to see that

‖gε‖L1(Rn) ≤
(

1

sin(θC/2)
+ 1

)
‖∂αρ‖L1(Rn).

Therefore,

‖f2‖Lp(Ω) ≤
(

1

sin(θC/2)
+ 1

)
‖∂αρ‖L1(Rn)‖a‖W 1,∞(Ω)‖v‖Lp(Ω),

hence the result with M = 1 +
(

1
sin(θC/2)

+ 1
)‖∂αρ‖L1(Rn).

The following corollary will be the basic tool for our density results in the context
of the Koiter shell model.

Corollary 3.2. For all v ∈ Lp(Ω) and a ∈W 1,∞(Ω),

‖(a∂αv) �ε,e ρε − a(∂αv �ε,e ρε)‖Lp(Ω) → 0 when ε→ 0.(3.6)

Proof. Proceed as in [18] by approximating v in Lp(Ω) by a sequence of functions
in D(Ω).

4. Application to the Koiter shell model.

4.1. Formulation of the problem. In this section, we briefly recall the formu-
lation of the linear Koiter shell model introduced in [5] and [6]. This formulation is
much simpler than the classical formulation and is, furthermore, valid for midsurfaces
that can have discontinuous curvatures. We refer to [3] and [8] for general elastic shell
theory.

In what follows, Greek indices and exponents always belong to the set {1, 2},
while Latin indices and exponents belong to the set {1, 2, 3}. We use the Einstein
summation convention unless otherwise specified.

Let ω denote a Lipschitz domain of R
2. We consider a shell with midsurface S =

ϕ(ω̄), where ϕ ∈W 2,∞(ω; R3) is a one-to-one mapping such that the two vectors aα =
∂αϕ are linearly independent at each point x ∈ ω̄. We let a3 = a1 ∧ a2/|a1 ∧ a2| be the
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unit normal vector on the midsurface at point ϕ(x). The vectors ai define the covariant
basis at point ϕ(x). The regularity of the midsurface chart and the hypothesis of
linear independence on ω̄ imply that the vectors ai belong to W 1,∞(ω; R3). The
contravariant basis ai is defined by the relations

ai(x) · aj(x) = δij ,

where δij is the Kronecker symbol. In particular, a3(x) = a3(x). As before, ai ∈
W 1,∞(ω; R3). We let a(x) = |a1(x) ∧ a2(x)|2 so that

√
a is the area element of the

midsurface in the chart ϕ.
The first fundamental form of the surface is given in covariant components by

aαβ = aα · aβ ∈ W 1,∞(ω). The Christoffel symbols of the midsurface are given by
Γραβ = Γρβα = aρ · ∂βaα, and we have Γραβ ∈ L∞(ω).

Let us recall the new expressions for the various strain tensors that were in-
troduced in [5] and [6]. Let u ∈ H1(ω; R3) be a displacement of the midsurface,
i.e., a regular mapping from ω̄ into R

3. Its linearized strain tensor is given by
γ(u) = γαβ(u)aα ⊗ aβ with

γαβ(u) =
1

2
(∂αu · aβ + ∂βu · aα) ∈ L2(ω),(4.1)

and its linearized change of curvature tensor is given by Υ(u) = Υαβ(u)aα ⊗ aβ with

Υαβ(u) = (∂αβu− Γραβ∂ρu) · a3 ∈ H−1(ω).(4.2)

See [6] for a comparison with the classical approach, in which the displacement is
identified with the triple of its covariant components, and an explanation of why our
new approach does not require ϕ to be of class at least C3, which includes many
interesting cases, as we mentioned earlier.

In [5] and [6], we introduced the function space

W =
{
v ∈ H1(ω; R3), ∂αβv · a3 ∈ L2(ω)

}
(4.3)

for shell displacements. Note that if v ∈ H1(ω; R3), then ∂αβv · a3 is a priori in
H−1(ω). In view of formulas (4.1) and (4.2), it is apparent that displacements in
W are such that their linearized strain and change of curvature tensors are square-
integrable. When equipped with its natural norm

‖v‖W =


‖v‖2H1(ω;R3) +

∑
α,β

‖∂αβv · a3‖2L2(ω)




1/2

,(4.4)

the space W is a Hilbert space. To formulate an equilibrium problem for the shell, we
consider e > 0 to be the thickness of the shell and an elasticity tensor aαβρσ ∈ L∞(ω),
which we assume to satisfy the usual symmetries and to be uniformly strictly positive.

In terms of boundary conditions, the simplest case is that of a shell clamped on
all of its boundaries. This corresponds to the space

V1 =
{
v ∈W ; v = ∂αv · a3 = 0 on ∂ω

}
,(4.5)

which is a closed subspace of W , endowed with the norm of W . In [6], we proved the
following existence and uniqueness result for Koiter’s model.
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Theorem 4.1. Let f ∈ L2(ω; R3) be a given force resultant density. Then there
exists a unique solution to the variational problem: Find u ∈ V1 such that

∀v ∈ V1,

∫
ω

eaαβρσ
(
γαβ(u)γρσ(v) +

e2

12
Υαβ(u)Υρσ(v)

)√
a dx =

∫
ω

f ·v√a dx.

(4.6)

Remark 4.2. 1. The proof of this theorem relies on the new version of the rigid
displacement lemma and the Korn inequality for surfaces with W 2,∞ regularity; see
[6] for details.

2. Also in [6], it is proved that the space W defines an extension of the classical
framework of [4] to our case. Indeed, when ϕ ∈ C3, the function space of [4] is
canonically isomophic to the space V1. Moreover, the new and classical expressions for
the linearized strain and change of curvature tensors coincide under this isomorphism.
Consequently, the solution given by Theorem 4.1 is in this case equal, modulo the
isomorphism, to the solution found in [4].

3. The case of a shell clamped on a part of its boundary γ0 ⊂ ∂ω and submitted
to tractions and moments on the remaining part is also treated in [6]. The relevant
function space is

V1,γ0 =
{
v ∈W ; v = ∂αv · a3 = 0 on γ0

}
,(4.7)

which is also a closed subspace of W . For a simply supported shell, the relevant space
is simply

V0 = {v ∈W ; v = 0 on ∂ω}.(4.8)

We thus also obtain existence and uniqueness results in these cases.

4.2. Density results. One fundamental issue that was not addressed in [6] is
the density of smooth functions in the various function spaces introduced in our new
formulation of the Koiter model. The density of smooth functions is, for instance,
required in order to make sure that standard finite element methods will actually
approximate the solution of the continuous problem. Another use of this density will
be to show the continuous dependence of the solution of the model on the midsur-
face, in an appropriate sense. In [6], the consistency of our formulation with the
classical formulation is an a priori consistency: we know that our formulation is more
general than and coincides with the classical formulation when both are applicable.
Continuous dependence is a way to prove a posteriori consistency via a convergence
result.

It should be noted that such a density result cannot be taken for granted since
these spaces are not of a standard kind. Similar questions arise in transport theory;
see [2], [12], and [15], for example. In the case of the transport equation, the definition
of the relevant function spaces involves a directional derivative of the form a∇u, with
a a vector field and u a scalar unknown, that is required to satisfy some integrability
condition. Although formally slightly reminiscent of this situation, our function space
setting is different, since the quantities of interest in shell theory, ∂αβu · a3, are not
directional derivatives—a3 does not “live” in the same space as u—and we cannot
adapt techniques based on this special structure to our case.

It should also be noted that if ω = R
2, then the density of smooth functions in W

follows more or less readily from the classical version of Friedrichs’s lemma (see [18]),
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as will be made clear in the ensuing proofs. However, from the point of view of the
applications, a shell whose midsurface was described by a chart over R

2 would be of
little interest. Prescribing tractions and moments on the boundary would be difficult,
and the shell would be diffeomorphic to an open disk, which is restrictive in terms of
the topology of the shell since multiply connected shells would not be allowed. Thus
there is no escaping the difficulties that arise at the boundary.

As we mentioned earlier, the standard way of performing mollification up to
the boundary consists in using an extension operator and then mollifying over R

2.
This does not seem to be of much help here. Indeed, if E1(u) and E2(ϕ) denote,
respectively, an H1-extension operator for the displacement u and a W 2,∞-extension
operator for the chart ϕ to R

2, there does not seem to be an easy way of devising E1

and E2 in a way that ensures that ∂αβ(E1(u)) · ã3 will belong to L2(R2), where ã3

denotes the corresponding extended normal vector (assuming it is defined), whenever
∂αβu · a3 belongs to L2(ω). The classical techniques using reflections or integral
operators do not seem to work very well because of the product of two quantities.
The same remark applies if we try to extend a3 itself without any reference to the
geometrical underpinnings of the situation.

It is this failure that prompted us to look for an alternative and eventually redis-
cover a mollification technique essentially already put forth in [23].

Let us start with the larger function space, without boundary conditions.

Theorem 4.3. Assume that ω satisfies the uniform cone condition. Then the
space C∞(ω̄; R3) is dense in W .

Proof. First, it is clear that C∞(ω̄; R3) ⊂ W . Let u ∈ W . We want to construct
a sequence uε of C∞(ω̄; R3)-functions that converges to u in the norm of W , i.e., such
that uε → u in H1(ω; R3) and ∂αβuε · a3 → ∂αβu · a3 in L2(ω) for all indices α, β.

It is not difficult to check that the space W can be localized using a partition
of unity that is adapted to the uniform cone condition satisfied by ω. We can thus
assume that u is compactly supported in one of the sets Ui∩ ω̄ introduced in the proof
of Theorem 2.4. We leave the case of the “interior” part in U0 ∩ ω̄ aside for the time
being.

Let U = U1 ∩ ω̄. As in the proof of Theorem 2.4, we can assume that ω satisfies
the uniform cone condition with just one cone and that u is compactly supported in
U . Then introducing

uε = ũ �ε,e ρε,

Theorem 2.4 shows that

uε → u in H1(ω; R3).

Let ui, uε,i, and a3,i denote the Cartesian components of u, uε, and a3, respec-
tively, so that ∂αβu · a3 = (∂αβui)a3,i. Applying Corollary 3.2 to ∂βui ∈ L2(ω), we
obtain

‖(a3,i∂αβui) �ε,e ρε − a3,i((∂αβui) �ε,e ρε)‖L2(ω) −→ 0 when ε→ 0.

Now, since u ∈ W , we also have that (a3,i∂αβui) ∈ L2(ω). Therefore, by Theorem
2.4, it follows that

‖a3,i∂αβui − (a3,i∂αβui) �ε,e ρε‖L2(ω) −→ 0 when ε→ 0
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as well. Since

∂αβui,ε = (∂αβui) �ε,e ρε,

we have thus shown that

‖a3,i∂αβui − a3,i∂αβui,ε‖L2(ω) −→ 0 when ε→ 0,

which concludes the proof near the boundary.
Concerning the interior part of u, it is apparent that the same proof works using

standard mollification and the classical Friedrichs lemma.
Let us now consider the case of various boundary conditions. As before, we

assume that ω satisfies the uniform cone condition.
Theorem 4.4. For a totally clamped shell, D(ω; R3) is dense in V1.
Proof. Localize as before near the boundary. We claim that the extension ũ of u

by zero to the whole of R
2 is such that ũ ∈ H1(R2; R3) and ∂αβũ·˜̃a3 ∈ L2(R2). Indeed,

both conditions are equivalent to having ũ ∈ H1(R2; R3) and ∂αũ· ˜̃a3 ∈ H1(R2). Since
both functions are piecewise H1 and have no jump on ∂ω, the claim is true.

Instead of translating inside the domain as earlier, we translate here outside and
let uε = ũ �ε,−e ρε. The same proof as in Theorem 4.3 shows that (uε)|ω → u in W
and that uε ∈ C∞(R2; R3). Moreover, since ũ is identically zero outside of ω, it is
clear that uε has compact support in ω. It may be necessary to change the cone in
such a way that the exterior cone condition is also satisfied to achieve this, which is
possible since ω is locally Lipschitz. Hence the result.

Theorem 4.4 above can be seen as an intermediary step for the following density
result.

Theorem 4.5. Assume that γ0 consists of a finite union of open arcs in ∂ω,
and let C∞

c,γ0(ω̄; R3) denote the set of functions in C∞(ω̄; R3) that are equal to 0 in a
neighborhood of γ0. Then C∞

c,γ0(ω̄; R3) is dense in V1,γ0 .
Proof. We localize as before around γ0, the interior of its complement in ∂ω, and

the endpoints of γ0. Clearly, for the parts localized around γ0, the same argument as
in the proof of Theorem 4.4 applies. Equally clearly, for the parts localized around
the interior of the complement, the argument of the proof of Theorem 4.3 applies.
What remains are the parts that are localized around the endpoints of γ0.

Let us thus assume that 0 is such an endpoint, and let us localize u in a ball
of radius ε around this point. To this end, we introduce a function θ ∈ D(B(0, 1))
such that θ(x) = 1 if |x| ≤ 1/2 and θ(x) = 0 for |x| ≥ 3/4, and let θε(x) = θ(x/ε).
We want to show that θεu tends to zero strongly in W when ε → 0, so that we can
approximate u by 0 in B(0, ε/2).

Since u and ∂αu · a3 vanish on an arc that has 0 as an endpoint, we can apply
Poincaré’s inequality to both quantities to deduce that

‖u‖2L2(B(0,ε);R3) ≤ ε2‖∇u‖2L2(B(0,ε);M32)
(4.9)

and

‖∂αu · a3‖2L2(B(0,ε)) ≤ ε2‖∇(∂αu · a3)‖2L2(B(0,ε);R2).(4.10)

By estimate (4.9), we see that θεu→ 0 in H1(ω; R3). Indeed, ∂α(θεu) = (∂αθε)u+
θε∂αu, and

‖(∂αθε)u‖2L2(B(0,ε);R3) ≤ ‖∇u‖2L2(B(0,ε);M32)
→ 0 when ε→ 0.
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We now note that u · a3 also vanishes on the same arc so that by Poincaré’s
inequality

‖u · a3‖2L2(B(0,ε)) ≤ ε2‖∇(u · a3)‖2L2(B(0,ε);R2).(4.11)

Now ∂α(u · a3) = ∂αu · a3 + u · ∂αa3, and therefore

‖∂α(u·a3)‖2L2(B(0,ε)) ≤ 2
(‖∂αu·a3‖2L2(B(0,ε))+‖u·∂αa3‖2L2(B(0,ε))

) ≤ Cε2‖u‖2W (B(0,ε)),

using estimate (4.10) for the first term and estimate (4.9) and the fact that ∂αa3 ∈
L∞(ω) for the second term, where ‖ · ‖W (B(0,ε)) denotes the local W -norm on B(0, ε).
Consequently, by estimate (4.11), we obtain

‖u · a3‖2L2(B(0,ε)) ≤ Cε4‖u‖2W (B(0,ε)).(4.12)

We have

∂αβ(θεu) · a3 = (∂αβθε)u · a3 + (∂αθε)(∂βu) · a3 + (∂βθε)(∂αu) · a3 + θε(∂αβu) · a3.

Therefore, putting estimates (4.10) and (4.12) together, we see that

‖∂αβ(θεu) · a3‖L2(B(0,ε)) ≤ C‖u‖W (B(0,ε)) → 0 when ε→ 0,

which shows that θεu→ 0 in W .
Finally, it is fairly clear that the elements of the sequence uε, which are recon-

structed by patching together all the local approximations of u, belong to C∞
c,γ0(ω̄; R3),

and the theorem is proved.
Remark 4.6. Note that the space C∞

c,γ0(ω̄; R3) does not depend on the chart ϕ,
whereas the space V1,γ0 does. This is useful since one of the applications we have in
mind is the dependence of the solution of Koiter’s model on the midsurface. The space
C∞
c,γ0(ω̄; R3) is a common dense subspace of all possible V1,γ0 spaces for all possible

midsurfaces.
The case of a simply supported shell actually seems to be more difficult. We only

solve it here for a domain ω of class C∞ and by resorting to classical techniques.
Theorem 4.7. Assume that ω is of class C∞. Then C∞(ω̄; R3) ∩H1

0 (ω; R3) is
dense in V0.

Proof. We proceed in a classical fashion. First localize as before. For the parts
near the boundary, we can thus assume that ω = {(x1, x2) ∈ R

2;x2 < Ψ(x1)}, where
Ψ: R→ R is of class C∞. Next we flatten the boundary using the C∞-diffeomorphism{

Θ1(x) = x1,

Θ2(x) = x2 −Ψ(x1).

This obviously induces an isomorphism on the associated V0 spaces so that we are
reduced to the case ω = R× R

∗
−. We now extend u and a3 for x2 > 0 by{
ũ(x1, x2) = −u(x1,−x2),

ã3(x1, x2) = a3(x1,−x2),

respectively. Clearly, ũ ∈ H1(R2; R3), ã3 ∈ W 1,∞(R2; R3), and ũ is odd with respect
to x2.
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Let us show that ∂αβũ · ã3 belongs to L2(R2), or, equivalently, that ∂αũ · ã3 is in
H1(R2). For x2 > 0, we have{

∂1ũ · ã3(x1, x2) = −∂1u · a3(x1,−x2),

∂2ũ · ã3(x1, x2) = ∂2u · a3(x1,−x2),

so that (∂αũ · ã3)|R×R∗
+

belongs to H1(R×R
∗
+). It thus suffices to prove that the jump

of both quantities across x2 = 0 is zero. This is clear for the second one as the traces
at x2 = 0 of both sides of the equality obviously coincide. It can also be shown with
a little more work that ∂1u · a3 considered as a function in the variable x2 belongs to
C0(R−;H−1(R)) with ∂1u · a3(0) = 0, and thus there is no jump either.

We can now introduce a radial mollifier ρ, define ρε = ε−2ρ(·/ε), and let uε =
ũ � ρε. Clearly, uε|ω ∈ C∞(ω̄; R3), uε|ω → u in W as ε→ 0 by the classical Friedrichs
lemma, and uε(x1, 0) = 0 by the imparity of u and parity of ρ with respect to x2.

We can go back to the original domain by composition with the C∞-diffeomor-
phism Θ−1.

Remark 4.8. 1. Since we are mainly interested in finding a dense subspace that
does not depend on the midsurface, the above proof shows that if ω is of class W 2,∞,
then W 2,∞(ω; R3) ∩H1

0 (ω; R3) is dense in V0.
2. The above proof also works for piecewise C∞ domains satisfying the uniform

cone condition, for instance polygons, by performing adequate reflections at the angles.
In this case, C∞(ω̄; R3) ∩H1

0 (ω; R3) is also dense in V0.

4.3. Continuous dependence on the midsurface. Our goal in this section
is to show that the formulation of Koiter’s model we proposed in [5] and [6] pro-
vides an adequate extension of the classical formulation for C3-midsurfaces to W 2,∞-
midsurfaces, at least from the mathematical point of view. The density results of the
previous section were formulated for a domain that satisfies the uniform cone condi-
tion. For practical purposes in the case of shells, we will from now on consider only
bounded Lipschitz domains.

Let us thus consider a sequence of midsurface charts ϕn that approximate a
given chart ϕ in the sense that ϕn → ϕ in W 2,p(ω; R3) strong for all 1 < p < +∞ and

ϕn
∗
⇀ ϕ in W 2,∞(ω; R3) weak-∗. (Note that for any ϕ ∈W 2,∞(ω; R3), it is possible to

construct such a sequence with ϕn of class C3.) All corresponding geometric quantities
will from now on be indicated by an n superscript. For instance, the covariant basis
vectors are denoted by ani , the covariant components of the first fundamental form
and the area element by anαβ and

√
an, respectively, and the Christoffel symbols by

Γn,ραβ . We assume for simplicity that all shells have the same thickness and the same

Lamé moduli µ and λ and denote by an,αβρσ the contravariant components of the
elasticity tensor

an,αβρσ = 2µ(an,αβan,ρσ + an,ασan,βσ) +
4λµ

λ + 2µ
an,αβan,ρσ,(4.13)

where an,αβ denote the contravariant components of the first fundamental form. Fi-
nally, for all displacements v of the shells, we denote by

γnαβ(v) =
1

2
(∂αv · anβ + ∂βv · anα)

and

Υnαβ(v) = (∂αβv − Γn,ραβ ∂ρv) · an3
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the covariant components of the strain and change of curvature tensors with explicit
dependence on the charts.

Let us collect all the information on convergence properties of the various geo-
metric and mechanical quantities that we will need later on in one lemma.

Lemma 4.9. Let ϕn be a sequence of charts such that ϕn → ϕ in W 2,p(ω; R3)

strong for all 1 < p < +∞ and ϕn
∗
⇀ ϕ in W 2,∞(ω; R3) weak-∗. Then

ani → ai strongly in W 1,p(ω; R3) ∀ 1 < p < +∞ and weakly-∗ in W 1,∞(ω; R3),
(4.14)

anαβ → aαβ ,
√
an → √a, and an,αβρσ → aαβρσ in C0(ω̄),(4.15)

and

Γn,ραβ → Γραβ strongly in Lp(ω) ∀ 1 < p < +∞ and weakly-∗ in L∞(ω).(4.16)

Proof. The proof is clear, using Morrey’s theorem and the fact that the covariant
tangent vectors are assumed to be linearly independent.

In what follows, we will concentrate on the case of a totally clamped shell sub-
mitted only to force resultants for brevity. All results remain true—with appropriate
modifications—for a simply supported shell and a partially clamped shell submitted
to edge tractions and moments on the free part of the boundary. Let us rewrite
the spaces involved with explicit dependence on the charts. For all n, we thus let
Wn =

{
v ∈ H1(ω; R3), ∂αβv·an3 ∈ L2(ω)

}
, equipped with their natural norm ‖v‖Wn =(‖v‖2H1(ω;R3)+

∑
α,β ‖∂αβv·an3‖2L2(ω)

)1/2
, and V n1 =

{
v ∈Wn; v = ∂αv·an3 = 0 on ∂ω

}
,

which is a closed subspace of Wn for all n.
For fn ∈ L2(ω; R3) we let un be the unique solution to the variational formulation

of Koiter’s model: Find un ∈ V n1 such that

∀vn ∈ V n1 ,

∫
ω

ean,αβρσ
(
γnαβ(u

n)γnρσ(v
n) +

e2

12
Υnαβ(u

n)Υnρσ(v
n)

)√
an dx

=

∫
ω

fn · vn√an dx.(4.17)

Our main result is the following.
Theorem 4.10. Let ϕn be a sequence of charts such that ϕn → ϕ in W 2,p(ω; R3)

strong for all 1 < p < +∞ and ϕn
∗
⇀ ϕ in W 2,∞(ω; R3) weak-∗, and let fn be a

sequence of force resultant densities such that fn → f in L2(ω; R3). Then

un → u in H1(ω; R3) and Υnαβ(u
n)→ Υαβ(u) in L2(ω),(4.18)

where u is the solution to Koiter’s model for a clamped shell with midsurface chart ϕ
and applied force resultant density f .

The proof is comprised of a series of lemmas.
Lemma 4.11. If vn ∈ H1(ω; R3) and ϕn ∈ W 2,∞(ω; R3) are two sequences such

that vn ⇀ v weakly in H1(ω; R3), ϕn → ϕ strongly in W 2,p(ω; R3) for all p < +∞,

and ϕn
∗
⇀ ϕ weakly-∗ in W 2,∞(ω; R3), then γnαβ(v

n) ⇀ γαβ(v) weakly in L2(ω) and

Υnαβ(v
n) ⇀ Υαβ(v) weakly in H−1(ω).

Proof. First, since anα → aα strongly in C0(ω̄; R3), it follows clearly that

γnαβ(v
n) =

1

2
(∂αv

n · anβ + ∂βv
n · anα) ⇀ γαβ(v) in L2(ω).
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The case of the change of curvature tensor is more intricate. We know that
∂αβv

n ⇀ ∂αβv in H−1(ω; R3). Let θ be a test-function in H1
0 (ω). By the Sobolev

embedding theorem, θ ∈ L4(ω), and, as ∂αa
n
3 → ∂αa3 strongly in L4(ω; R3) by (4.14)

with p = 4, it follows that{
θan3 → θa3,

∂α(θa
n
3 ) = (∂αθ)a

n
3 + θ∂αa

n
3 → ∂α(θa3),

strongly in L2(ω; R3)

so that

θan3 → θa3 strongly in H1
0 (ω; R3).

Therefore,

〈∂αβvn · an3 , θ〉 = 〈∂αβvn, θan3 〉 → 〈∂αβv · a3, θ〉;
hence

∂αβv
n · an3 ⇀ ∂αβv · a3 weakly in H−1(ω).

Let us now deal with the other part of Υnαβ(v
n). We have that ∂ρv

n ⇀ ∂ρv weakly

in L2(ω; R3), Γn,ραβ → Γραβ strongly in Lp(ω), and an3 → a3 strongly in W 1,p(ω; R3) for
all p < +∞. It follows easily from this and Hölder’s inequality that

Γn,ραβ ∂ρv
n · an3 ⇀ Γραβ∂ρv · a3 weakly in Lq(ω) ∀ 1 < q < 2.

Now, by the two-dimensional Sobolev embedding theorem, we have Lq(ω) ↪→ H−1(ω)
for all 1 < q < 2, hence the result.

Let us now establish some uniform norm equivalence results.
Lemma 4.12. There exist two constants 0 < c < C < +∞ independent of n such

that for all vn ∈ V n1 ,

c‖vn‖Wn ≤


∑
αβ

(‖γnαβ(vn)‖2L2(ω;R3) + ‖Υnαβ(vn)‖2L2(ω;R3)

)
1/2

≤ C‖vn‖Wn .(4.19)

Proof. The proof is essentially identical to that of Lemma 11 in [6] for a single
chart.

We also need uniform positive definiteness of the elasticity tensors. By assump-
tion, for each midsurface, there exists a constant ηn > 0 such that for all symmetric
tensors τ =

(
ταβ
)

and almost all x ∈ ω, an,αβρσ(x)ταβτρσ ≥ ηnταβταβ . For instance,
in the case of an isotropic material, this is a statement concerning the Lamé moduli
µ and λ and not the geometry of the midsurface. We will concentrate here on the
isotropic case.

Lemma 4.13. There is constant η > 0 independent of n such that ηn ≥ η for all
n.

Proof. We know that an,αβρσ converge uniformly to aαβρσ. As ηn is the infimum
of the quadratic form an,αβρσ(x)ταβτρσ on the Cartesian product of the unit sphere
of the space of symmetric tensors with ω̄, the result is clear.

We now are in a position to establish uniform bounds for the various quantities
of interest.
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Lemma 4.14. There is constant M independent of n such that

‖un‖H1(ω;R3) ≤M, ‖∂αβun · an3‖L2(ω) ≤M.(4.20)

Proof. Let us take vn = un as a test-function in the variational formulation of
Koiter’s problem (4.17). In view of Lemmas 4.12 and 4.13, we obtain

cη
√
δ min(e, e3/12)‖un‖2Wn ≤ ‖

√
anfn‖L2(ω;R3)‖un‖L2(ω;R3),

where δ is a uniform lower bound for an(x). The lemma easily follows from the above
estimate.

Lemma 4.15. There exists a subsequence (still denoted by) un and u ∈ V1 such
that

un ⇀ u weakly in H1(ω; R3) and ∂αβu
n · an3 ⇀ ∂αβu · a3 weakly in L2(ω).(4.21)

Proof. Because of the previous bounds, we can find a subsequence un, a function
u ∈ H1

0 (ω; R3), and functions καβ ∈ L2(ω) such that

un ⇀ u weakly in H1(ω; R3) and ∂αβu
n · an3 ⇀ καβ weakly in L2(ω).

As in the proof of Lemma 4.11, we see that καβ = ∂αβu · a3 so that u ∈ W .
Moreover, ∂αu

n · an3 ⇀ ∂αu · a3 in H1(ω) so that ∂αu · a3 ∈ H1
0 (ω) and therefore

u ∈ V1.
Our next task is to identify the weak limit u of the above subsequence of solutions

un as being the solution to the Koiter problem corresponding to the limit midsurface
and loads.

Lemma 4.16. The limit u is the unique solution to the following: Find u ∈ V1

such that

∀v ∈ V1,

∫
ω

eaαβρσ
(
γαβ(u)γρσ(v) +

e2

12
Υαβ(u)Υρσ(v)

)√
a dx =

∫
ω

f ·v√a dx.

(4.22)
The whole sequence is convergent.

Proof. By Theorem 4.4, we know that the spaces V n1 and V1 all share a common
dense subspace, namely here, D(ω; R3). Therefore, any ψ ∈ D(ω; R3) is a legitimate
test-function for all n, as well as for the eventual limit problem (4.22). Now

an,αβρσγnρσ(ψ)
√
an → aαβρσγρσ(ψ)

√
a strongly in L2(ω)

and

an,αβρσΥnρσ(ψ)
√
an → aαβρσΥρσ(ψ)

√
a strongly in L2(ω)

by Lemma 4.9. On the other hand,

γnαβ(u
n) ⇀ γαβ(u) weakly in L2(ω)

and

Υnαβ(u
n) ⇀ Υαβ(u) weakly in L2(ω)

by Lemma 4.11 and since Lemmas 4.12 and 4.14 imply that Υnαβ(u
n) is bounded in

L2(ω). Therefore, we can pass to the limit as n→ +∞ in problem (4.17) and obtain
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problem (4.22) for all test-functions ψ ∈ D(ω; R3). The identification of u then follows
from the fact that D(ω; R3) is dense in V1, viz. Theorem 4.4.

The solution of problem (4.22) is unique; therefore, the standard uniqueness ar-
gument shows that the whole sequence un converges, and not just a subsequence
thereof.

The final step in the proof of Theorem 4.10 consists in showing that all weak
convergences are actually strong. This would be a straightforward matter if the test-
function spaces did not depend on n. We would just take u − un as a test-function.
There is a slight twist here since u �∈ V n1 and un �∈ V1 so that u − un is a legitimate
test-function neither for problem (4.17) nor for problem (4.22). We recast the problem
in abstract form to circumvent this difficulty.

Let us be given a family of Hilbert spaces (Hn, ‖ · ‖n)n∈N and a Hilbert space
(H, ‖ · ‖) with the following properties:

(i) There is a subspace D common to all Hn and H such that D is dense in H.
(ii) For all y ∈ D, ‖y‖n → ‖y‖ as n→ +∞.
Let us also be given a corresponding family of continuous (on their respective

spaces) symmetric bilinear forms an and a and a family of continuous linear forms ln

and l with the following properties:
(iii) There exists a constant η independent of n such that

∀yn ∈ Hn, an(yn, yn) ≥ η‖yn‖2n.
(iv) For all y, z in D, an(y, z)→ a(y, z) and ln(y)→ l(y) when n→ +∞.
Lemma 4.17. Assume that hypotheses (i)–(iv) are satisfied, and let xn ∈ Hn and

x ∈ H be the solutions of the variational problems

∀yn ∈ Hn, an(xn, yn) = ln(yn) and ∀y ∈ H, a(x, y) = l(y).

If, in addition, ln(xn)→ l(x), then

‖xn‖n → ‖x‖ when n→ +∞.(4.23)

Proof. For all y ∈ D, we have

an(xn − y, xn − y) = ln(xn − 2y) + an(y, y).

By assumption (iii), it follows that

η‖xn − y‖2n ≤ ln(xn)− 2ln(y) + an(y, y).

Letting n tend to +∞, we obtain

lim sup
n→+∞

‖xn − y‖2n ≤
1

η
(l(x)− 2l(y) + a(y, y))

by assumption (iv). Therefore,

lim sup
n→+∞

∣∣‖xn‖n − ‖y‖n∣∣ ≤
√

1

η
(l(x)− 2l(y) + a(y, y)).

Now ∣∣‖xn‖n − ‖x‖∣∣ ≤ ∣∣‖xn‖n − ‖y‖n∣∣+ ∣∣‖y‖n − ‖y‖∣∣+ ∣∣‖y‖ − ‖x‖∣∣
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so that, letting n tend to +∞, we obtain

lim sup
n→+∞

∣∣‖xn‖n − ‖x‖∣∣ ≤
√

1

η
(l(x)− 2l(y) + a(y, y)) +

∣∣‖y‖ − ‖x‖∣∣
for all y ∈ D, by assumption (ii). The lemma then results from assumption (i) and
the fact that a and l are continuous on H.

We can now apply Lemma 4.17 to our shell problem to complete the proof of
Theorem 4.10.

Lemma 4.18. We have

un → u strongly in H1(ω; R3) and Υnαβ(u
n)→ Υαβ(u) strongly in L2(ω).(4.24)

Proof. By the weak convergence result of Lemma 4.15, we know that

lim inf
n→+∞ ‖u

n‖H1(ω;R3) ≥ ‖u‖H1(ω;R3) and lim inf
n→+∞ ‖∂αβu

n ·an3‖L2(ω) ≥ ‖∂αβu·a3‖L2(ω).

The Hilbert spaces V n1 and V1 and the bilinear and linear forms associated with
the Koiter problems clearly satisfy the hypotheses of Lemma 4.17 with D = D(ω; R3).
Therefore,

‖un‖2H1(ω;R3) +
∑
αβ

‖∂αβun · an3‖2L2(ω) = ‖un‖2V n
1

→ ‖u‖2V1 = ‖u‖2H1(ω;R3) +
∑
αβ

‖∂αβu · a3‖2L2(ω),

which, together with the previous estimates, implies that

‖un‖H1(ω;R3) → ‖u‖H1(ω;R3) and ‖∂αβun · an3‖L2(ω) → ‖∂αβu · a3‖L2(ω).

The first convergence implies that un → u strongly in H1(ω; R3), and the second
convergence implies that ∂αβu

n · an3 → ∂αβu · a3 strongly in L2(ω). Both facts imply
that ∂αu

n · an3 → ∂αu · a3 strongly in H1(ω); therefore, by the Sobolev embedding
theorem and Lemma 4.9, Γn,ρα,β∂ρu

n · an3 → Γρα,β∂ρu · a3 strongly in L2(ω), which
completes the proof.

Remark 4.19. Note that the convergences established in Theorem 4.10 are quite
natural in the sense that they imply the convergence of the displacements and of the
associated strain and change of curvature tensors in their respective natural spaces.
This in turn implies the strong L2 convergence of the various stress resultants.

Let us close the article with the final comparison between the classical formulation
of Koiter’s model and our formulation. Let us be given a sequence of charts ϕn as in
Theorem 4.10. For any displacement v ∈ V n1 , we denote by vni = vn · ani the covariant
components of v so that

vn(x) = vni (x)an,i(x).

Note that in some sense, in considering the covariant components as the basic unknown
as is classically done, one mixes regularity issues concerning the displacement with
regularity issues concerning the chart. This leads to the restrictive C3 assumption
that is made in the classical formulation. This remark may be illustrated by the
following result.
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Theorem 4.20. Let ϕn be a sequence of C3-charts such that ϕn→ϕ inW 2,p(ω; R3)

strong for all 1 < p < +∞ and ϕn
∗
⇀ ϕ in W 2,∞(ω; R3) weak-∗ with ϕ piecewise C3

and ϕ �∈ C3(ω; R3). Let fn be a sequence of force resultant densities such that fn → f
in L2(ω; R3). Let (un1 , u

n
2 , u

n
3 ) ∈ H1

0 (ω)×H1
0 (ω)×H2

0 (ω) be the solution of the classical
formulation of Koiter’s problem as in [4]. Then, for all n ∈ N,

un(x) = uni (x)an,i(x),(4.25)

un tends to u in the sense of Theorem 4.10, but un3 is generically unbounded in H2(ω).

Proof. The fact that (4.25) holds was already noted in [6]. Clearly, un3 → u3 in
L2(ω) by Theorem 4.10. If un3 was bounded in H2(ω), this would thus imply that
u3 ∈ H2(ω). This is not the case. As was already noted in [6], for a piecewise
C3-midsurface, the derivatives of the second fundamental form contain Dirac masses
concentrated on the interfaces between the smooth parts of the shell. The condition
∂αβu · a3 ∈ L2(ω) is equivalent to ∂αu · a3 ∈ H1(ω), which means that the jump of
∂αu·a3 vanishes on each interface. In covariant components, this reads [∂αu3+bραuρ] =
0, or, equivalently, [∂αu3] = −[bρα]uρ, on each interface (with u3 piecewise H2), where
bρα denote the mixed components of the second fundamental form. Since the jump of
bρα is nonzero for some components, this will generically induce a jump on ∂αu3. The
normal component u3 thus cannot be in H2(ω).

Remark 4.21. The previous result indicates that a continuous dependence analy-
sis similar to the present one would be difficult to carry out in the classical formulation.
Some extra conditions would need to be imposed on the sequence of midsurfaces in
order to obtain a uniform H2-bound on un3 .

Example 4.22. Let us consider the example of a W 2,∞-shell made of a plane part
and a circular cylindrical part. We take ω = {−π/2, π/2} × {0, 1} and

ϕ(x) =

{
(x1, x2, 0)T for x1 ≤ 0,
(sinx1, x2, 1− cosx1)

T for x1 > 0.

The midsurface of this shell is of class W 2,∞ and has a curvature discontinuity across
x1 = 0. In particular, it is not C3 and the classical formulation of Koiter’s model is
not applicable. It is easy to construct an explicit sequence of C3-midsurfaces ϕn that
converge in all W 2,p and in W 2,∞ weak-∗ by using Hermite interpolation polynomials
in the strip {0 ≤ x1 ≤ 1/n}. The sequence of solutions associated with the sequence
of interpolated midsurfaces falls into the classical framework. The limit midsurface
is not of class C3; thus the limit displacement requires our new formulation. The
interface between the smooth parts is the line {x1 = 0}. On this interface, all mixed
components of the second fundamental form are continuous except b11, and it is easy
to see that [b11] = 1. Therefore, we obtain that [∂1u3] = −u1 (and [∂2u3] = 0). Since,
in general, u1 will not vanish on {x1 = 0}, we see that u3 is not in H2(ω). This is
not surprising if we remember that u3 is a covariant component of u, hence a scalar
product of u with the covariant basis vector a3. The (lack of) regularity of a3 is thus
necessarily reflected in the degree of regularity of u3.
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n, C. R. Acad. Sci. Paris

Sér. I Math., 277 (1973), pp. 905–907.
[8] P. G. Ciarlet,Mathematical Elasticity. Vol. III: Theory of Shells, North-Holland, Amsterdam,

2000.
[9] M. C. Delfour, Intrinsic differential geometric methods in the asymptotic analysis of lin-

ear thin shells, in Boundaries, Interfaces, and Transitions (Banff, AB, 1995), CRM Proc.
Lecture Notes 13, AMS, Providence, RI, 1998, pp. 19–90.

[10] B. Desjardins, A few remarks on ordinary differential equations, Comm. Partial Differential
Equations, 21 (1996), pp. 1667–1703.

[11] P. Destuynder and M. Salaün, A mixed finite element for shell model with free edge boundary
conditions. Part 1. The mixed variational formulation, Comput. Methods Appl. Mech.
Engrg., 120 (1995), pp. 195–217.

[12] R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev
spaces, Invent. Math., 98 (1989), pp. 511–547.

[13] D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators, Oxford Math.
Monogr., Oxford University Press, New York, 1987.

[14] L. E. Fraenkel, On regularity of the boundary in the theory of Sobolev spaces, Proc. London
Math. Soc. (3), 39 (1979), pp. 385–427.

[15] V. Girault and L. R. Scott, Analysis of a two-dimensional grade-two fluid model with a
tangential boundary condition, J. Math. Pures Appl., 78 (1999), pp. 981–1011.

[16] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathe-
matics 24, Pitman, Boston, London, 1985.
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coques peu régulières, C. R. Acad. Sci. Paris Sér. I Math., 326 (1998), pp. 1335–1340.

[20] N. Kerdid and P. Mato-Eiroa, Conforming finite element approximation for shells with little
regularity, Comput. Methods Appl. Mech. Engrg., 188 (2000), pp. 95–107.

[21] W. T. Koiter, On the foundations of the linear theory of thin elastic shells. I, II, Nederl.
Akad. Wetensch. Proc. Ser. B, 73 (1970), pp. 169–195.
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Abstract. Energy-Casimir functionals are a useful tool for the construction of steady states and
the analysis of their nonlinear stability properties for a variety of conservative systems in mathemat-
ical physics. Recently, Y. Guo and the author employed them to construct stable steady states for
the Vlasov–Poisson system in stellar dynamics, where the energy-Casimir functionals act on number
density functions on phase space. In the present paper we construct natural, reduced functionals
which act on mass densities on space and study compactness properties and the existence of mini-
mizers in this context. This puts the techniques developed by Y. Guo and the author into a more
general framework. We recover the concentration-compactness principle due to P.-L. Lions [Ann.
Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), pp. 109–145] in a more specific setting and connect
our stability analysis with that of G. Wolansky [Ann. Inst. H. Poincaré Anal. Non Linéaire, 16
(1999), pp. 15–48].
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1. Introduction. The purpose of the present paper is to investigate the com-
pactness properties and existence of minimizers of certain functionals which appear
naturally in the stability analysis of various systems in kinetic theory. Given a large
ensemble of particles which interact by gravitational attraction we consider energy-
Casimir functionals which are defined on the space of phase space density functions,
and certain reduced versions of these which are defined on the space of spatial den-
sity functions. This reduction procedure should put the techniques developed in
[1, 2, 3, 4, 5, 11, 12] into a more general framework and make them applicable to
problems outside kinetic theory. However, to be specific we start by recalling the
Vlasov–Poisson system which describes the time evolution of a large ensemble of par-
ticles interacting by the gravitational field which they create collectively:

∂tf + v · ∂xf − ∂xU · ∂vf = 0,

�U = 4π ρ, lim
|x|→∞

U(t, x) = 0,

ρ(t, x) =

∫
f(t, x, v)dv.

Here the dynamic variable is the number density f = f(t, x, v) of the ensemble in
phase space, x, v ∈ R

3 denote position and velocity, ρ = ρ(t, x) is the spatial mass
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density induced by f , and U = U(t, x) is the induced gravitational potential. It is
straightforward to check that∫ ∫

Q(f(t, x, v)) dv dx +
1

2

∫ ∫
|v|2f(t, x, v) dv dx− 1

2

∫ ∫
ρ(t, x) ρ(t, y)

|x− y| dx dy

is conserved along solutions for any suitable scalar function Q. The first part, which
is conserved by itself, is a so-called Casimir functional, the second is the kinetic, and
the third part is the potential energy of the system. When viewed as a functional on
phase space densities f = f(x, v) ≥ 0 we denote this functional by HC . It is fairly
straightforward to see that any minimizer of this functional subject to the constraint∫ ∫

f(x, v) dv dx = M

with prescribed total mass M > 0 is a steady state of the Vlasov–Poisson system.
It is far less obvious that such minimizers exist and that they are nonlinearly stable.
When analyzing the minimization problem

HC(f0) = inf

{
HC(f)|f ≥ 0,

∫ ∫
f dv dx = M

}
,(1.1)

one needs to make sure that one can pass to the limit in the (quadratic) potential en-
ergy along a minimizing sequence. Obviously, the potential energy is not a functional
of f itself but of the induced spatial density ρ, and the crucial question is how, along
a minimizing sequence, the spatial density can or cannot split into parts or spread
uniformly in space. This was analyzed in the context of the Vlasov–Poisson system
and with various variations in [1, 2, 3, 4, 5, 11, 12].

In the present paper we want to bring out the basic mechanism more clearly
and in a framework not restricted to kinetic theory. To this end we construct in the
next section a reduced version HrC of the energy-Casimir functional HC , which will be
defined on spatial densities ρ:

HrC(ρ) =
∫

Φ(ρ(x)) dx− 1

2

∫ ∫
ρ(x) ρ(y)

|x− y| dx dy

with Φ a function determined by Q, which is convex if Q is convex. Then we explore
the relation between the variational problems

HrC(ρ0) = inf

{
HrC(ρ)|ρ ≥ 0,

∫
ρ dx = M

}
(1.2)

and (1.1); in particular we will show how a minimizer of the reduced problem (1.2)
induces a minimizer of (1.1). In the third section we reformulate the techniques
developed for (1.1) in the framework of (1.2) and obtain the existence of a minimizer
ρ0 under appropriate conditions on Φ. In particular, we prove the essential part
of the concentration-compactness principle due to P.-L. Lions [9] by a more direct
method based on scaling and splitting. In the last section we discuss the role of
symmetries in the problem and point out some applications and extensions of our
results. An example of a function Φ which satisfies all the necessary assumptions is
Φ(ρ) = ρ1+1/n with 0 < n < 3. In this case the potential U0 induced by a minimizer
ρ0 is a solution of the semilinear elliptic problem

�U0 = (E0 − U0)
n
+, lim

|x|→∞
U0(x) = 0,
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where (·)+ denotes the positive part and E0 is some constant. This equation is
sometimes referred to as the Emden–Fowler equation and appears naturally in the
study of self-gravitating fluid balls. Throughout this paper we restrict ourselves to
the case of space dimension 3; extending these techniques to other space dimensions
by adjusting various exponents is easy. We remark that the use of energy-Casimir
functionals for questions of stability was discussed in a very broad context in [7].

2. Reduction of energy-Casimir functionals. For a measurable function
f = f(x, v) we define

ρf (x) :=

∫
f(x, v) dv, x ∈ R

3,

and

Uf := −ρf ∗ 1

| · | .

Next we define

Ekin(f) :=
1

2

∫ ∫
|v|2f(x, v) dv dx,

Epot(f) := − 1

8π

∫
|∇Uf (x)|2dx = −1

2

∫ ∫
ρf (x)ρf (y)

|x− y| dx dy

(Epot can equally well be viewed as a functional of ρ instead of f), and

HC(f) := C(f) + Ekin(f) + Epot(f),

where

C(f) :=
∫ ∫

Q(f(x, v)) dv dx,

and Q is a given function satisfying the following assumption.

Assumption on Q. Q ∈ C1([0,∞[) is strictly convex, Q(0) = Q′(0) = 0, and
Q(f)/f →∞, f →∞.

In particular, this implies that Q ≥ 0 and Q′ : [0,∞[→ [0,∞[ is one-to-one and
onto.

We study the following variational problem: Minimize HC over the set

FM :=

{
f ∈ L1

+(R
6) | C(f) + Ekin(f) <∞, ρf ∈ L6/5(R3),

∫ ∫
f = M

}
,(2.1)

where M > 0 is prescribed and L1
+(R

6) denotes the set of a.e. nonnegative functions

in L1(R6). Note that since ρf ∈ L6/5(R3) the convolution defining Uf exists in L6(R3)
with ∇Uf ∈ L2(R3) according to the extended Young’s inequality, and the potential
energy of ρf is finite.

In order to guarantee the existence of a minimizer we will require additional
growth conditions on Q to be introduced later; at the moment Epot(f) could be
minus infinity for f ∈ FM . A typical example of a function for which there exists a
minimizer is Q(f) = f1+1/k with 0 < k < 3/2.
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To obtain a reformulation in terms of spatial densities ρ which captures the es-
sential properties of this variational problem we proceed as follows. For r ≥ 0 we
define

Gr :=
{

g ∈ L1
+(R

3)|
∫ (

1

2
|v|2g(v) + Q(g(v))

)
dv <∞,

∫
g(v) dv = r

}
(2.2)

and

Φ(r) := inf
g∈Gr

∫ (
1

2
|v|2g(v) + Q(g(v))

)
dv.(2.3)

In addition to the variational problem of minimizing HC over the set FM we consider
the problem of minimizing the functional

HrC(ρ) :=
∫

Φ(ρ(x)) dx + Epot(ρ)(2.4)

over the set

FrM :=

{
ρ ∈ L6/5 ∩ L1

+(R
3) |

∫
Φ(ρ(x)) dx <∞,

∫
ρ(x) dx = M

}
.(2.5)

The relation between the minimizers of HC and HrC is the main theme of this section,
and a remark on how we passed from HC to HrC can be found at the end of the section.

Theorem 2.1.

(a) For every function f ∈ FM ,

HC(f) ≥ HrC(ρf ),

and if f = f0 is a minimizer of HC over FM , then equality holds.
(b) Let ρ0 ∈ FrM be a minimizer of HrC with induced potential U0. Then there

exists a Lagrange multiplier E0 ∈ R such that a.e.

ρ0 =

{
(Φ′)−1(E0 − U0), U0 < E0,

0, U0 ≥ E0.

Denote by

E = E(x, v) :=
1

2
|v|2 + U0(x)

the energy of a particle at position x with velocity v, and define

f0 :=

{
(Q′)−1(E0 − E), E < E0,

0, E ≥ E0.

Then f0 ∈ FM is a minimizer of HC.
(c) Now assume that HrC has at least one minimizer in FrM . Then the following

holds: If f0 ∈ FM is a minimizer of HC, then ρ0 := ρf0 ∈ FrM is a minimizer of HrC.
This map is one-to-one and onto between the sets of minimizers of HC in FM and of
HrC in FrM , respectively, and is the inverse of the map ρ0 �→ f0 described in (b).
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Remark. This theorem does not exclude the possibility that HC has a minimizer
but HrC has none. In the next section we show that under appropriate assumptions on
Φ the reduced functional HrC does have a minimizer, and then the theorem guarantees
that we recover all minimizers of HC in FM by “lifting” the ones of HrC as described
in (b).

Before we prove this theorem, we investigate the relation between Q and Φ; for a
function h : R→]−∞,∞] we denote by

h∗(λ) := sup
r∈R

(λ r − h(r))

its Legendre transform. Some of the results of the lemma below will be relevant for
the next section.
Lemma 2.2. Let Q be as specified above, let Φ be defined by (2.2), (2.3), and

extend both functions by +∞ to the interval ]−∞, 0[.
(a) For λ ∈ R,

Φ∗(λ) =
∫

Q∗
(

λ− 1

2
|v|2
)

dv,

and, in particular, Q∗(λ) = 0 = Φ∗(λ) for λ < 0.
(b) Φ ∈ C1([0,∞[) is strictly convex, and Φ(0) = Φ′(0) = 0.
(c) Let k > 0 and n = k+3/2. As in the rest of the paper, constants denoted by

C are positive, may depend on Q or M , and may change from line to line (or within
one line).

(i) If Q(f) = C f1+1/k, f ≥ 0, then Φ(ρ) = C ρ1+1/n, ρ ≥ 0.
(ii) If Q(f) ≥ C f1+1/k, f ≥ 0 large, then Φ(ρ) ≥ C ρ1+1/n, ρ ≥ 0 large.
(iii) If Q(f) ≤ C f1+1/k, f ≥ 0 small, then Φ(ρ) ≤ C ρ1+1/n, ρ ≥ 0 small.

If the restriction to large, respectively, small values of f can be dropped, then the
corresponding restriction for ρ can be dropped as well.

Proof. By definition,

Φ∗(λ) = sup
r≥0

[
λ r − inf

g∈Gr

∫ (
1

2
|v|2g(v) + Q(g(v))

)
dv

]

= sup
r≥0

sup
g∈Gr

∫ [(
λ− 1

2
|v|2
)

g(v)−Q(g(v))

]
dv

= sup
g∈L1

+
(R3)

∫ [(
λ− 1

2
|v|2
)

g(v)−Q(g(v))

]
dv

=

∫
sup
y≥0

[(
λ− 1

2
|v|2
)

y −Q(y)

]
dv =

∫
Q∗
(

λ− 1

2
|v|2
)

dv.

As to the last-but-one equality, observe that both sides are obviously zero for λ ≤ 0.
If λ > 0 then for any g ∈ L1

+(R
3),∫ [(

λ− 1

2
|v|2
)

g(v)−Q(g(v))

]
dv ≤

∫
sup
y≥0

[(
λ− 1

2
|v|2
)

y −Q(y)

]
dv.

If |v| ≥ √2λ then supy≥0 [· · ·] = 0, and for |v| < √2λ the supremum of the term in

brackets is attained at y = yv := (Q′)−1
(
λ− 1

2 |v|2
)
. Thus with

g0(v) :=

{
yv, |v| < √2λ,

0, |v| ≥ √2λ,
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we have∫
sup
y≥0

[(
λ− 1

2
|v|2
)

y −Q(y)

]
dv =

∫ [(
λ− 1

2
|v|2
)

g0(v)−Q(g0(v))

]
dv

≤ sup
g∈L1

+
(R3)

∫ [(
λ− 1

2
|v|2
)

g(v)−Q(g(v))

]
dv,

and part (a) is established.
Since Q is strictly convex and lower semicontinuous as a function on R with

lim|f |→∞ Q(f)/|f | → ∞, Q∗ ∈ C1(R); cf. [10, Prop. 2.4]. Obviously, Q∗(λ) = 0 for
λ ≤ 0; in particular, (Q∗)′(0) = 0. Also, (Q∗)′ is strictly increasing on [0,∞[ since Q′

is strictly increasing on [0,∞[ with range [0,∞[. Since for |λ| < λ0 with λ0 > 0 fixed
the integral in the formula for Φ∗ extends over a compact set we may differentiate
under the integral sign to conclude that Φ∗ ∈ C1(R) with derivative strictly increasing
on [0,∞[. This in turn implies the assertion of part (b).

Finally, Q(f) ≥ C f1+1/k, f ≥ 0 large, implies that Q(f) ≥ C f1+1/k−C ′, f ≥ 0.
Thus

Q∗(λ) ≤ C ′ + sup
f≥0

(
fλ− C f1+1/k

)
= C ′ +

1

1 + k

(
k

CQ (1 + k)

)k
λ1+k, λ ≥ 0,

and

Φ∗(λ) ≤ Cλ3/2 + C

∫
|v|≤√

2λ

(
λ− 1

2
|v|2
)1+k

dv = Cλ3/2 + C

∫ λ

0

E1+k
√

λ− E dE

= C ′ + C λk+5/2 = C ′ + Cλ1+n, λ ≥ 0.

This in turn yields the assertion on Φ in (c)(ii). The assertion in (c)(i) is now obvious.
As to (c)(iii) note first that for λ ≥ 0 and small the corresponding supremum is
attained at small f ’s, and thus

Q∗(λ) ≤ sup
f≥0

(
λ f − C f1+1/k

)
= Cλ1+k.

Thus still for λ ≥ 0 small, Φ∗(λ) ≥ Cλ1+n, which in turn implies the assertion for
Φ.

We now prove the theorem above.
Proof of Theorem 2.1. Proof of the inequality in part (a). For ρ ∈ FrM define

Fρ := {f ∈ FM |ρf = ρ}.(2.6)

Clearly, for ρ = ρf with f ∈ FM ,

C(f) + Ekin(f) ≥ inf
f̃∈Fρ

(C(f̃) + Ekin(f̃))

≥ inf
f̃∈Fρ

∫ [
inf

g∈Gρ(x)

∫ (
1

2
|v|2g(v) + Q(g(v))

)
dv

]
dx

=

∫ [
inf

g∈Gρ(x)

∫ (
1

2
|v|2g(v) + Q(g(v))

)
dv

]
dx

=

∫
Φ(ρ(x)) dx,(2.7)
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and the inequality in part (a) is established.
An intermediate assertion. We claim that if f ∈ FM is such that up to sets of

measure zero, {
Q′(f) = E0 − E > 0, where f > 0,

E0 − E ≤ 0, where f = 0,
(2.8)

with E defined as in (b) but with Uf instead of U0 and E0 a constant, then equality
holds in part (a).

To prove this, observe that since Q is convex, we have for a.e. x ∈ R
3 and every

g ∈ Gρf (x),

1

2
|v|2g(v) + Q(g(v)) ≥ 1

2
|v|2f(x, v) + Q(f(x, v))

+

(
1

2
|v|2 + Q′(f(x, v))

)
(g(v)− f(x, v)) a.e.

Now by (2.8),∫ (
1

2
|v|2 + Q′(f)

)
(g − f) dv =

∫
{f>0}

. . . +

∫
{f=0}

. . .

= (E0 − Uf (x))

∫
{f>0}

(g − f) dv +

∫
{f=0}

1

2
|v|2g dv

= −(E0 − Uf (x))

∫
{f=0}

(g − f) dv +

∫
{f=0}

1

2
|v|2g dv

=

∫
{f=0}

(E − E0) g dv ≥ 0;

observe that g ≥ 0 and
∫

g dv =
∫

f dv so
∫
(g − f) dv = 0. Thus we see that

Φ(ρf (x)) ≥
∫ (

1

2
|v|2f + Q(f)

)
dv

≥ inf
g∈Gρf (x)

∫ (
1

2
|v|2g + Q(g)

)
dv = Φ(ρf (x)) a.e.,

and the proof of our intermediate assertion is complete.
Proof of the equality assertion in (a). If f0 ∈ FM is a minimizer of HC then the

Euler–Lagrange equation of the minimization problem implies that (2.8) holds for
some Lagrange multiplier E0; this can be proved as in [5, Thm. 2]. Thus equality
holds in (a) by the intermediate assertion, and the proof of part (a) is complete.

Proof of part (b). Let ρ0 ∈ FrM be a minimizer of HrC . Then the Euler–Lagrange
equation yields the relation between ρ0 and U0. Let f0 be defined as in (b). Then up
to sets of measure zero,∫

f0(x, v) dv =

∫
|v|≤
√

2(E0−U0(x))

(Q′)−1

(
E0 − U0(x)− 1

2
|v|2
)

dv

= (Φ∗)′(E0 − U0(x)) = (Φ′)−1(E0 − U0(x)) = ρ0(x),

where U0(x) < E0, and both sides are zero where U0(x) ≥ E0. Thus ρ0 = ρf0 , in
particular, f0 ∈ FM . By definition, f0 satisfies the Euler–Lagrange relation (2.8) and
thus by our intermediate assertion HC(f0) = HrC(ρ0). Therefore, again by part (a),

HC(f) ≥ HrC(ρf ) ≥ HrC(ρ0) = HC(f0), f ∈ FM ,
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so that f0 is a minimizer of HC , and the proof of part (b) is complete.
Proof of part (c). Assume that HrC has a minimizer ρ0 ∈ FrM and define f0 as

above. Then part (a), the fact that each ρ ∈ FrM can be written as ρ = ρf for some
f ∈ FM , and our intermediate assertion imply that

inf
f∈FM

HC(f) ≥ inf
f∈FM

HrC(ρf ) = inf
ρ∈Fr

M

HrC(ρ)
= HrC(ρ0) = HC(f0) ≥ inf

f∈FM

HC(f).(2.9)

Now take any minimizer g0 ∈ FM of HC . Then by (2.9) and part (a),

inf
ρ∈Fr

M

HrC(ρ) = inf
f∈FM

HC(f) = HC(g0) = HrC(ρg0),

that is, ρg0 ∈ FrM minimizes HrC , and the proof of part (c) is complete.
Remark. If we define an intermediate functional

P(ρ) := inf
f∈Fρ

∫ ∫ (
1

2
|v|2f(x, v) + Q(f(x, v))

)
dv dx

with Fρ as defined in (2.6), then (2.7) shows that

HC(f) ≥ P(ρf ) + Epot(ρf ) ≥
∫

Φ(ρf (x)) dx + Epot(ρf ) = HrC(ρf )

with equality for minimizers. Note that P(ρ) is obtained by minimizing the positive
contribution to HC , which also happens to be the part depending on phase space
densities f directly, over all f ’s which generate a given spatial density ρ. Then in a
second step one minimizes for each point x over all functions g = g(v) which have as
integral the value ρ(x).

These constructions are borrowed from [14] where they appear for the special case
Q(f) = f1+1/k. In [14] the resulting functional of ρ is investigated under the assump-
tion of spherical symmetry by rewriting it as a functional of mρ(r) := 4π

∫ r
0

s2ρ(s) ds
where r := |x|. While minimizers of the present variational problems are spherically
symmetric a posteriori, the a priori restriction to spherical symmetry implies that
any stability result derived from their minimizing property is restricted to spheri-
cally symmetric perturbations, which is undesirable. Moreover, in the last section we
will comment on some extensions of the present techniques to situations where the
minimizers are not spherically symmetric.

3. Concentration-compactness principle and existence of minimizers.
In this section we prove a concentration-compactness principle that will yield a solu-
tion to the following variational problem: Minimize the functional

HrC(ρ) :=
∫

Φ(ρ(x)) dx + Epot(ρ)

over the set

FrM :=

{
ρ ∈ L1

+(R
3) |

∫
Φ(ρ) <∞,

∫
ρ = M

}
(3.1)

for M > 0 given and Φ satisfying the following.
Assumptions on Φ. Φ ∈ C1([0,∞[), Φ(0) = 0 = Φ′(0), and
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(Φ1) Φ is strictly convex;
(Φ2) Φ(ρ) ≥ Cρ1+1/n, ρ ≥ 0 large, with 0 < n < 3;
(Φ3) Φ(ρ) ≤ Cρ1+1/n′

, ρ ≥ 0 small, with 0 < n′ < 3.
Note that Lemma 2.2 tells us that the function Φ, which we constructed from a
given Q in section 2, has these properties, provided Q satisfies the growth conditions
corresponding to (Φ2) and (Φ3). The aim of this section is to prove the following
result.
Theorem 3.1. The functional HrC is bounded from below on FrM . Let (ρi) ⊂ FrM

be a minimizing sequence of HrC. Then there exists a sequence of shift vectors (ai) ⊂ R
3

and a subsequence, again denoted by (ρi), such that for any ε > 0 there exists R > 0
with ∫

ai+BR

ρi(x) dx ≥M − ε, i ∈ N,

Tρi := ρi(·+ ai) ⇀ ρ0 weakly in L1+1/n(R3), i→∞,

and ∫
BR

ρ0 ≥M − ε.

Finally,

∇UTρi → ∇U0 strongly in L2(R3), i→∞,

and ρ0 ∈ FrM is a minimizer of HrC.
Here and in the following we denote for 0 < R < S ≤ ∞,

BR := {x ∈ R
3||x| ≤ R},

BR,S := {x ∈ R
3|R ≤ |x| < S}.

We split our argument into a series of lemmas. The first thing to note is that HrC is
bounded from below on FrM .
Lemma 3.2. Under the above assumptions on Φ,

HrC(ρ) ≥
∫

Φ(ρ) dx− C − C

(∫
Φ(ρ) dx

)n/3
, ρ ∈ FrM ,

in particular,

hrM := inf
Fr

M

HrC > −∞.

Proof. By the extended Young’s inequality, interpolation, and assumption (Φ2),

−Epot(ρ) ≤ C‖ρ‖26/5 ≤ C‖ρ‖(5−n)/3
1 ‖ρ‖(n+1)/3

1+1/n

≤ C + C

(∫
Φ(ρ) dx

)n/3
, ρ ∈ FrM .

Since n < 3, HrC is bounded from below on FrM .
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Corollary 3.3. Any minimizing sequence of HrC in FrM is bounded in L1+1/n(R3)
and therefore has a subsequence which converges weakly in L1+1/n(R3).

Proof. By Lemma 3.2,
∫
Φ(ρ) is bounded along any minimizing sequence. The

assertion follows by (Φ2) and the fact that
∫

ρ = M for ρ ∈ FrM .

Note that the estimates above show that the definition (3.1) coincides with our
earlier definition for the set FrM . We also see that the assumption (Φ2) is quite
natural. Next we prove a splitting estimate which will show that along a minimizing
sequence the mass cannot vanish.

Lemma 3.4. Let ρ ∈ FrM . Then

sup
a∈R3

∫
a+BR

ρ(x) dx ≥ 1

RM

(
−2Epot(ρ)− M2

R
− C‖ρ‖21+1/n

R(5−n)/(n+1)

)
, R > 1.

Proof. We split the potential energy as follows:

−2Epot(ρ) =

∫ ∫
|x−y|≤1/R

ρ(x) ρ(y)

|x− y| dx dy +

∫ ∫
1/R<|x−y|<R

· · ·+
∫ ∫

R≥|x−y|
· · ·

=: I1 + I2 + I3.

By Hölder’s inequality and Young’s inequality,

I1 ≤ ‖ρ‖1+1/n‖ρ ∗ (1B1/R
1/| · |)‖

n+1
≤ ‖ρ‖21+1/n‖1B1/R

1/| · |‖
(n+1)/2

≤ C ‖ρ‖21+1/nR
−(5−n)/(n+1);

here 1S denotes the indicator function of the set S ⊂ R
3. The estimates for I2 and

I3 are straightforward:

I2 ≤ R

∫ ∫
|x−y|≤R

ρ(x) ρ(y) dx dy ≤M R sup
a∈R3

∫
a+BR

ρ(x) dx,

and

I3 ≤ R−1M2.

Putting these estimates together yields the assertion.

Note that to obtain this estimate we actually split the Green’s function 1/|x|. To
exploit this estimate along minimizing sequences we need to know that hrM < 0. It is
here that we need the assumption (Φ3).

Lemma 3.5.

(a) For every M > 0 we have hrM < 0.
(b) For every 0 < M̄ ≤M we have hr

M̄
≥ (M̄/M)5/3hrM .

Proof. For ρ ∈ FrM and a, b > 0 we define ρ̄(x) := aρ(bx). Then∫
ρ̄ dx = ab−3

∫
ρ dx,

Epot(ρ̄) = a2b−5Epot(ρ),∫
Φ(ρ̄) = b−3

∫
Φ(aρ) dx.
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To prove part (a) we fix a bounded and compactly supported function ρ ∈ FrM and
choose a = b3 so that ρ̄ ∈ FrM as well. By (Φ3) and since 3/n′ > 1,

HrC(ρ̄) = b−3

∫
Φ(b3ρ) dx + bEpot(ρ) ≤ C b3/n′

+ bEpot(ρ) < 0, b→ 0,

and part (a) is established. As to part (b), we take a = 1 and b = (M/M̄)1/3 ≥ 1.
For ρ ∈ FrM and ρ̄ ∈ Fr

M̄
rescaled with these parameters we find that

HrC(ρ̄) = b−3

∫
Φ(ρ) dx + b−5Epot(ρ)

≥ b−5

(∫
Φ(ρ) dx + Epot(ρ)

)
=

(
M̄

M

)5/3

HrC(ρ).(3.2)

Since for the present choice of a and b the map ρ �→ ρ̄ is one-to-one and onto between
FrM and Fr

M̄
, this estimate proves part (b).

Corollary 3.6. Let (ρi) ⊂ FrM be a minimizing sequence of HrC. Then there
exist δ0 > 0, R0 > 0, i0 ∈ N, and a sequence of shift vectors (ai) ⊂ R

3 such that∫
ai+BR

ρi(x) dx ≥ δ0, i ≥ i0, R ≥ R0.

Proof. By Corollary 3.3, (‖ρi‖1+1/n) is bounded. By Lemma 3.5(a) we have

Epot(ρi) ≤ HrC(ρi) ≤
1

2
hrM < 0, i ≥ i0,

for a suitable i0 ∈ N. Thus by Lemma 3.4 there exist δ0 > 0, R0 > 0, and a sequence
of shift vectors (ai) ⊂ R

3 as required.
Finally, we will also need to exploit the well-known compactness properties of the

solution operator of the Poisson equation.
Lemma 3.7. Let (ρi) ⊂ L1+1/n(R3) be bounded and

ρi ⇀ ρ0 weakly in L1+1/n(R3).

(a) For any R > 0,

∇U1BR
ρi → ∇U1BR

ρ0 strongly in L2(R3).

(b) If in addition (ρi) is bounded in L1(R3), ρ0 ∈ L1(R3), and for any ε > 0
there exist R > 0 and i0 ∈ N such that∫

|x|≥R
|ρi(x)| dx < ε, i ≥ i0,

then

∇Uρi → ∇Uρ0 strongly in L2(R3).

Proof. As to part (a), take any R′ > R. Since 1 + 1/n > 4/3 > 6/5, the mapping

L1+1/n(R3) � ρ �→ 1BR′∇U1BR
ρ ∈ L2(BR′)
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is compact. Thus the asserted strong convergence holds on BR′ . On the other hand,∫
|x|≥R′

|∇U1BR
ρi |2dx ≤ C

R′ −R
‖1BR

ρi‖21 ≤
C

R′ −R
, i ∈ N ∪ {0},

which is arbitrarily small for R′ large. As to part (b), we have for any R > 0,

‖∇Uρi −∇Uρ0‖2 ≤ ‖∇U1BR
ρi −∇U1BR

ρ0‖2 + ‖∇U1BR,∞ρi −∇U1BR,∞ρ0‖2.
Using the extended Young’s inequality, interpolation, and the boundedness of the
sequence in L1+1/n(R3), we find that

‖∇U1BR,∞ρi −∇U1BR,∞ρ0‖2 ≤ C
(
‖1BR,∞ρi‖6/5 + ‖1BR,∞ρ0‖6/5

)
≤ C

(
‖1BR,∞ρi‖(5−n)/6

1
+ ‖1BR,∞ρ0‖(5−n)/6

1

)
.

Given ε > 0 we now choose R > 0 and i0 ∈ N such that this is less than ε > 0 for
i ≥ i0, and recalling (a) completes the proof.

We are now ready to prove the main result of this section.
Proof of Theorem 3.1. We split ρ ∈ FrM into three different parts:

ρ = 1BR1
ρ + 1BR1,R2

ρ + 1BR2,∞ρ =: ρ1 + ρ2 + ρ3;

the parameters R1 < R2 of the split are yet to be determined. With

Ilm :=

∫ ∫
ρl(x) ρm(y)

|x− y| , l,m = 1, 2, 3,

we have

HrC(ρ) = HrC(ρ1) +HrC(ρ2) +HrC(ρ3)− I12 − I13 − I23.

If we choose R2 > 2R1, then

I13 ≤ C

R2
.

Next, we use the Cauchy–Schwarz inequality, the extended Young’s inequality, and
interpolation to get

I12 + I23 =
1

4π

∣∣∣∣
∫
∇(U1 + U3) · ∇U2dx

∣∣∣∣ ≤ C‖ρ1 + ρ3‖6/5‖∇U2‖2
≤ C‖ρ‖(n+1)/6

1+1/n ‖∇U2‖2.
Using the estimates above and Lemma 3.5(b), we find with Ml =

∫
ρl, l = 1, 2, 3,

hrM −HrC(ρ) ≤
(
1−

(
M1

M

)5/3

−
(

M2

M

)5/3

−
(

M3

M

)5/3
)

hrM

+ C
(
R−1

2 + ‖ρ‖(n+1)/6
1+1/n ‖∇U2‖2

)
≤ C

M2
(M1M2 + M1M3 + M2M3) hrM

+ C
(
R−1

2 + ‖ρ‖(n+1)/6
1+1/n ‖∇U2‖2

)
≤ ChrM M1 M3 + C

(
R−1

2 + ‖ρ‖(n+1)/6
1+1/n ‖∇U2‖2

)
;(3.3)
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observe that by Lemma 3.5(a) hrM < 0 and that constants denoted by C are positive
and depend on M and Φ but not on R1 or R2. We want to use (3.3) to show that up
to a subsequence and a shift M3 becomes small along any minimizing sequence for i
large provided the splitting parameters are suitably chosen.

The sequence Tρi := ρi(·+ ai), i ∈ N, is minimizing and bounded in L1+1/n(R3)
so there exists a subsequence, denoted by (Tρi) again, such that Tρi ⇀ ρ0 weakly
in L1+1/n(R3); cf. Corollary 3.3. Now choose R0 < R1 so that by Corollary 3.6,
Mi,1 ≥ δ0 for i large. By (3.3),

−C hrMδ0Mi,3 ≤ C

R2
+ C ‖∇U0,2‖2 + C‖∇Ui,2 −∇U0,2‖2 +HrC(Tρi)− hrM ,(3.4)

where Ui,l is the potential induced by ρi,l which in turn has mass Mi,l, i ∈ N∪{0}, and
the index l = 1, 2, 3 refers to the splitting. Given any ε > 0 we increase R1 > R0 such
that the second term on the right-hand side of (3.4) is small, say less than ε/4. Next
choose R2 > 2R1 such that the first term is small. Now that R1 and R2 are fixed, the
third term in (3.4) converges to zero by Lemma 3.7(a). Since (Tρi) is minimizing the
remainder in (3.4) follows suit. Therefore, for i sufficiently large,∫

ai+BR2

Tρi = M −Mi,3 ≥M − (−C hrMδ0)
−1ε.(3.5)

Clearly, ρ0 ≥ 0 a.e. By weak convergence we have that for any ε > 0 there exists
R > 0 such that

M ≥
∫
BR

ρ0 dx ≥M − ε,

which in particular implies that ρ0 ∈ L1(R3) with
∫

ρ0dx = M . The functional
ρ �→ ∫

Φ(ρ) dx is convex, so by Mazur’s lemma and Fatou’s lemma∫
Φ(ρ0) dx ≤ lim sup

i→∞

∫
Φ(Tρi) dx.

The strong convergence of the gravitational fields now follows by Lemma 3.7(b), and
in particular,

HrC(ρ0) ≤ lim sup
i→∞

HrC(ρi) = hrM

so that ρ0 is a minimizer of HrC .
4. Applications, symmetries, extensions. Although the main purpose of the

present paper is to get a more general understanding of the techniques developed in
[1, 2, 3, 4, 5, 11, 12] we want to at least indicate some possible applications of these
techniques. First we should mention that [5] differs from the other papers in so far as
there the Casimir functional is used as part of the constraint under which then the
total energy is minimized. This made it possible to relax the growth conditions on Q—
0 < k ≤ 7/2 is covered in [5]—but since in the reduction process we turn C(f)+Ekin(f)
into a new functional of ρ, [5] seems to be outside the present framework.

We start with the observation, already noted in Theorem 2.1, that if ρ0 ∈ FrM is
a minimizer of HrC with induced potential U0, then

ρ0 = (Φ′)−1
+ (E0 − U0) :=

{
(Φ′)−1(E0 − U0), U0 < E0,

0, U0 ≥ E0,
(4.1)
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and thus

�U0 = 4π(Φ′)−1
+ (E0 − U0)(4.2)

on R
3. The corresponding minimizer of HC ,

f0 =

{
(Q′)−1(E0 − E), E < E0,

0, E ≥ E0,

is a steady state of the Vlasov–Poisson system, since E = E(x, v) = 1
2 |v|2 + U0(x)

is a conserved quantity for the characteristics of the Vlasov equation with potential
U0 induced by ρ0 = ρf0 . Steady states obtained in this manner have finite mass
M , which is a necessary property for physically relevant steady states. We remark
that the ansatz f0 = φ(E0 −E) reduces the stationary Vlasov–Poisson system to the
semilinear Poisson equation

�U0 = 4π

∫
φ

(
E0 − 1

2
|v|2 − U0

)
dv,

which is exactly (4.2), provided Q can be chosen such that (Q′)−1 = φ on R+ and
φ = 0 on R−. As far as the existence of steady states is concerned, our “reduced”
approach allows us to cover f0 = (E0 − E)k+ with −1 < k < 3/2 which leads to (4.2)
with right-hand side C (E0 − U0)

n
+ with n = k + 3/2 in the permissible range ]0, 3[;

note that the lower bound k > −1 is necessary to make the v-integral above converge.
With the direct approach working with HC we were restricted to 0 < k < 3/2.

The main feature of steady states obtained as minimizers in this manner is that
their nonlinear stability. Since this is the main point in the investigations cited above,
we do not go into this here. Instead, we briefly look a the role of symmetries in our
problem. First we note that for any ρ0 ∈ FrM its spherically symmetric decreasing
rearrangement, denoted by ρ∗0, also lies in FrM and satisfies∫

Φ(ρ0) =

∫
Φ(ρ∗0), Epot(ρ0) ≥ Epot(ρ

∗
0)

with equality if and only if ρ0 = ρ∗0(· − x∗) for some x∗ ∈ R
3; cf. [8, Thms. 3.7,

3.9]. In particular, any minimizer of HrC must be spherically symmetric with respect
to some point in R

3. If we are interested only in solving (4.2) or the stationary
Vlasov–Poisson system, we therefore lose nothing if we restrict ourselves to the set
of spherically symmetric functions in FrM . The crucial part of the concentration-
compactness argument simplifies considerably under this restriction.
Lemma 4.1. Define

R0 = −3
5

M2

hrM
> 0.

Let ρ ∈ FrM be spherically symmetric, R > 0, and

m :=

∫
{|x|≥R}

ρ.

Then the following estimate holds:

HrC(ρ) ≥ hrM +

[
1

R0
− 1

R

]
(M −m)m.
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If R > R0, then for any spherically symmetric minimizing sequence (ρi) ⊂ FrM of HrC,

lim
i→∞

∫
|x|≥R

ρi = 0.

Proof. Clearly,

HrC(ρ) = HrC(ρ1) +HrC(ρ2)−
∫

ρ1(x) ρ2(y)

|x− y| dx dy,

where ρ1 = 1BR
ρ, ρ2 = ρ− ρ1. Due to spherical symmetry,∫

ρ1(x) ρ2(y)

|x− y| dx dy =
1

4π

∫
∇Uρ1 · ∇Uρ2dx

=

∫ ∞

0

4π

r2

∫ r

0

ρ1(s) s
2ds

4π

r2

∫ r

0

ρ2(s) s
2ds r2dr

=

∫ ∞

R

· · · dr ≤ (M −m)m

R
.

Thus by Lemma 3.5,

HrC(ρ) ≥ hrM−m + hrm −
(M −m)m

R

≥
[(

M −m

M

)5/3

+
(m

M

)5/3
]

hrM −
(M −m)m

R

≥
[
1− 5

3

M −m

M

m

M

]
hrM −

(M −m)m

R
,

which is the first assertion of the lemma; note that the scaling transformations in the
proof of Lemma 3.5 preserve spherical symmetry. Now take R > R0 and assume that
the second assertion is false so that up to a subsequence,

lim
i→∞

∫
|x|≥R

ρi = m > 0.

Choose Ri > R such that

mi :=

∫
|x|≥Ri

ρi =
1

2

∫
|x|≥R

ρi.

By the already established splitting estimate,

HrC(ρi) ≥ hrM +

[
1

R0
− 1

Ri

]
(M −mi)mi ≥ hrM +

[
1

R0
− 1

R

]
(M −mi)mi,

and with i→∞,

hrM ≥ hrM +

[
1

R0
− 1

R

]
(M −m/2)m/2 > hrM ,

a contradiction.
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The lemma above now replaces Lemma 3.4, Corollary 3.6, and the proof of (3.5),
which relied on the fairly lengthy argument via (3.3) and (3.4). In addition, we get a
somewhat sharper result on the minimizer:

supp ρ0 ⊂ BR0
.

That spherical symmetry helps with compactness issues was already noted in [13].
The a priori restriction to the spherically symmetric case is undesirable in view of
resulting stability assertions: These would then be restricted to spherically symmetric
perturbations. Moreover, the symmetry simplification cannot be used if one does not
a priori know that the minimizers will be spherically symmetric. One example for this
situation is the construction of steady states with axial symmetry, say with respect
to the x3-axis, by making Q in addition depend explicitly on x1v2−x2v1, the angular
momentum with respect to the axis of symmetry. The same reduction procedure as
before now gives a function Φ that depends in addition on r = r(x) =

√
x2

1 + x2
2, and

minimizers will not be spherically symmetric. An investigation of axially symmetric
steady states and their stability will be the content of [6].

To illustrate the method explained in section 3 let Φ = Φ(r, ρ) satisfy the as-
sumptions (Φ1)–(Φ3) uniformly in r ≥ 0, and assume in addition that Φ(·, ρ) is
nonincreasing for every ρ > 0. Then all the arguments in section 3 go through the
following: That Φ is nonincreasing in r is needed in the scaling argument (3.2)—note
that b ≥ 1 so r(x)/b ≤ r(x) there—and all the other estimates remain unchanged.
Thus we obtain a minimizer ρ0 with induced potential U0. Let us take the specific
example

Φ(r, ρ) :=
2 + r

1 + r
ρ2, r ≥ 0, ρ ≥ 0.

Then the variational equation (4.1) reads as

ρ0(x) =
1

2

1 + r(x)

2 + r(x)
(E0 − U0(x))

on the support of ρ0, and due to the explicit dependence on r(x) this minimizer is not
spherically symmetric, and the simpler arguments stated above for the spherically
symmetric case do not apply. If one wishes to study the minimization of HrC with
Φ(ρ) generalized to Φ(x, ρ) the crucial step in the analysis which restricts the possible
dependence on x is the scaling in Lemma 3.5.

Another situation where the minimizers will in general not be spherically sym-
metric arises if one includes in the Vlasov–Poisson system an exterior gravitational
field, say Ue = Uρe with some fixed ρe ∈ L1

+ ∩ L1+1/n(R3). It is quite easy to check
that all the analysis carried out in this paper extends to this case; only the potential
energy needs to be modified accordingly:

Epot(ρ) = −1
2

∫ ∫
ρ(x) ρ(y)

|x− y| dx dy −
∫ ∫

ρ(x) ρe(y)

|x− y| dx dy

=
1

2

∫
ρ(x)Uρ(x) dx +

∫
ρ(x)Ue(x) dx,

and if ρe is not spherically symmetric, then neither are possible minimizers.
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Abstract. Sufficient conditions for nonlinear stability of viscous shock wave solutions of systems
of conservation laws are given. The analysis applies to strong shocks of Lax type but is restricted to
perturbations with zero mass. We use the Laplace transform and reduce the question of stability to
a spectral condition for the resolvent equation of the linearized problem.
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1. Introduction. Traveling wave solutions occur in systems modeling physical
phenomena such as gas dynamics, magnetohydrodynamics, and phase transitions.
To be able to simulate such a problem it is important to understand the dynamic
properties of the system. In this paper we consider the stability of viscous shock
waves satisfying a parabolic system of conservation laws

vt + f(v)x = Bvxx,

where v approaches asymptotic states UR and UL as x → ±∞. We assume that
in the corresponding inviscid case the asymptotic states can be connected by a so-
called Lax shock (see Lax [10]). In the case of sufficiently weak shocks, that is,
when the difference between the asymptotic states is sufficiently small, existence and
stability is understood. See, for instance, Kopell and Howard [7], Liu [13], Goodman
[4], and Szepessy and Xin [17]. In the latter three papers nonlinear stability under
increasingly more general perturbations is established. Under general conditions on
the nonlinearity only stable viscous shock waves are possible.

For strong shocks, however, we do not expect sufficient conditions for stability
to be as general as in the weak shock case. In Freistühler and Zumbrun [3] and in
Liefvendahl and Kreiss [12] viscous shock waves of Lax type are constructed such
that the linearized problem has solutions that grow exponentially. An example of
a stability result is the paper by Matsumura and Nishihara [16], where a stability
theorem for strong shock waves of a model system for compressible viscous gases is
proven. The system is of mixed hyperbolic-parabolic type.

In this paper we assume the existence of a strong viscous shock wave of Lax
type and prove a theorem stating sufficient conditions for stability under zero mass
perturbations. The result is presented in greater detail in Liefvendahl [11]. It is an
extension of the results in Kreiss and Kreiss [9], where the case B = I is treated.
In our approach the conditions for stability involve the spectral properties of the
linearized problem. The theorem proved here is a special case of the results stated in
Zumbrun and Howard [18]. The latter apply also to general mass perturbations and
to nonconstant B.
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1.1. The main theorem. In this subsection we state the problem and all as-
sumptions and formulate the main result. In the next subsection we outline the proof.

Consider the Cauchy problem for a system of n real conservation laws:

vt + f(v)x = Bvxx, t > 0, x ∈ R,

v(x, 0) = v0(x).

Here the matrix B is constant and has eigenvalues with positive real part and the
function f is smooth.

We shall assume there is a traveling wave solution U , which without loss of gener-
ality can be assumed to be stationary. We make the following assumption concerning
U .

Assumption 1. (i) There is a smooth solution U(x) tending exponentially to
constant states UR, UL as x → ±∞; that is, there are constants β > 0 and K such
that

|U(x)− UR| ≤ Ke−βx,
|U(x)− UL| ≤ Keβx.

(ii) The Jacobian matrix of f evaluated at UR and UL has real, distinct, nonzero
eigenvalues. Let nR denote the number of negative eigenvalues of f ′(UR) and nL the
number of positive eigenvalues of f ′(UL). Then nR + nL = n + 1.

(iii) Let αi(ξ) denote the eigenvalues of the symbol −iξA− ξ2B, where ξ ∈ R and
A = AR or AL. Then there is a constant γ > 0 such that

Re αi(ξ) ≤ −γξ2.

The last two conditions ensure that the shock wave is of Lax type and that the
asymptotic states are stable; see Majda and Pego [15].

The zero mass of the perturbation enters in the following assumption on the initial
data.

Assumption 2. Let the initial condition be of the form

v0(x) = U(x) + ε (ṽ0(x))x , |ε| << 1,

where ṽ0 and its derivatives have bounded L1- and L2-norms.
With B = I the Assumptions 1 and 2 imply Assumption 1.1 in [9]. Also, note

that our assumptions on f , A, and B are a special case of (H0)–(H4) in [18].
We shall use Lp-norms, for p ∈ {1, 2,∞}, and the H1-norm. For a function

f : R→ R
n with components {fk}nk=1, these are defined by

‖f‖Lp(a,b) =

(
n∑
k=1

∫ b

a

|fk(x)|pdx
)1/p

, p ∈ {1, 2},

‖f‖L∞(a,b) = max
1≤k≤n

(
ess supx∈(a,b)|fk(x)|

)
,

‖f‖H1(a,b) =
(
‖f‖2L2(a,b) + ‖fx‖2L2(a,b)

)1/2

.

When it is obvious which interval (a, b) to use or when it is the entire real axis we
will not explicitly write it.
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The aim of this paper is to supplement the above assumptions by structural con-
ditions which imply nonlinear stability. We shall investigate stability by considering
the equation for the perturbation from steady state. Since we will use the Laplace
transform, we want to consider a problem with homogeneous initial data. Therefore
we introduce

v(x, t) = U(x) + εe−t (ṽ0(x))x + εu(x, t).

This leads to the following equation for the introduced function u:

ut + (Au)x + ε (Cu + g(u))x = Buxx − hx,(1)

with homogeneous initial data

u(x, 0) = 0.(2)

In (1) we introduced the following:

A(x) = f ′(U(x)),

C(x, t) = f ′(U + εe−tṽ0x)− f ′(U),

h(x, t) =
1

ε

(
f(U + εe−tṽ0x)− f(U)

)− e−t (ṽ0 + Bṽ0xx) ,

and g, which is the rest term in the Taylor expansion of the nonlinearity, so it can be
bounded according to |g(u)| ≤ K|u|2.

Connected with (1) is the eigenvalue problem

Bϕxx − (Aϕ)x = µϕ, ‖ϕ‖L2 <∞.(3)

Clearly zero is an eigenvalue with eigenfunction Ux. This eigensolution corresponds to
the nonuniqueness of shock wave solutions (U can be shifted in space). A necessary
condition for linear (and therefore also for nonlinear) stability is that there are no
eigenvalues with positive real part.

Assumption 3. The only eigenvalue with Reµ ≥ 0 is µ = 0. The dimension of
the corresponding eigenspace is 1.

The last assumption follows.
Assumption 4. The n× n matrix

M = (SIIR SIL UR − UL )

is nonsingular. Here SIIR consists of the eigenvectors of AR corresponding to posi-
tive eigenvalues and SIL consists of the eigenvectors of AL corresponding to negative
eigenvalues.

The importance of the matrix M for shock wave stability has been known a long
time. Assumption 4 appears as a condition for stability of viscous profiles in, for
instance, [8], [9], [17], and [18]. It is shown to hold for all sufficiently weak shocks in
[17] and to be necessary for stability in [18]. (Note the misprint concerning this in [18],
first appearing on page 19; {r±j : a±j ≶ 0} should be {r±j : a±j ≷ 0}.) For the inviscid
problem the condition is necessary for stability; see Majda [14] and Erpenbeck [2].
This is also the situation for a corresponding discrete problem; see Bultelle, Grassin,
and Serre [1].

We can now formulate our main result. We use the following concept of stability.
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Definition 1. Problem (1), (2) is nonlinearly stable under zero mass perturba-
tions if the solution u(x, t) remains smooth for all t ≥ 0 and ||u(·, t)||L∞ tends to zero
for t→∞ for sufficiently small ε. In particular, we call the problem linearly stable if
the convergence takes place for ε = 0.

Our main theorem is as follows.
Theorem 1. If Assumptions 1–4 are satisfied, then problems (1)–(2) are nonlin-

early stable under zero mass perturbations.
Note that we do not require the shock to be weak. Also, we give no temporal

decay rate for the solution. This cannot be done without more severe requirements
on the spatial decay of the initial perturbation.

1.2. Outline of the proof. Most parts of the proof of the theorem are identical
with the proof of the corresponding theorem in [9]. In this paper we give details only
of the parts that differ significantly, which of course concern the generalization B �= I.

We will derive estimates for the corresponding linear problem. The linear problem
is Laplace transformed in time, yielding the resolvent equation

Bûxx −
(
A(x)û

)
x
− sû = ĥx, ‖û(·, s)‖L2 <∞.(4)

As in [9], we want to prove the estimate

‖û‖2H1 ≤ K
(
‖ĥ‖2L2 + ‖ĥ‖2L1

)
, Re s > 0.(5)

From the estimate (5) nonlinear stability follows; see [9].
For sufficiently large |s|, (5) is obtained by integration by parts. This can be done

since there is a constant matrix H = H∗ (a symmetrizer) which is positive definite
and satisfies

Re (ûx, (HB + B∗H)ûx) ≥ ‖ûx‖2L2 .

Here (·, ·) denotes the complex L2-inner product.
For C ≥ |s| ≥ c > 0 we need a result stating that for A = AR and AL, all roots

κ(s) of the characteristic equation,

det(sI − κA− κ2B) = 0, Re s > 0,

have real part bounded away from zero, and that there are precisely n roots with
positive real part and n roots with negative real part. Then we can proceed as in
[9], reducing the problem (4) to a bounded interval and deriving the estimate (5) by
compactness arguments. The required result for the characteristic equation is given
in section 2.1.

In [9] the treatment for the remaining part of the s plane relies heavily on the
diagonalization of the constant coefficient problems obtained by letting |x| → ∞ in
the resolvent equation. In our case the method of proof must be modified, since only
block-diagonalization is possible. The details of this part of the proof are given in this
paper.

In section 2.1 we analyze the constant coefficient problems connected with the
asymptotic states UR and UL. In the appendix we have collected some results for
ODEs on a half-line that relate this analysis to the resolvent equation. In section 2.2
there is also a preliminary analysis of the resolvent equation when s = 0. In section
3 we use these results to prove the following result.

Lemma 1. There exists constants K and c > 0 such that for s ∈ Ωc := {s ∈ C :
Re s > 0, |s| ≤ c} the solution of (4) satisfies the estimate (5).
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2. Preliminary analysis. In the first part of this section we state properties
of the limiting coefficients of the resolvent equation when |x| → ∞. In the last part
we analyze the resolvent equation for s = 0 in the case with forcing having bounded
support.

2.1. Properties of the limiting coefficient matrices. The coefficients of the
resolvent equation are nearly constant when |x| � 1. In this section we study the
limiting coefficient matrices (x → ±∞) when the resolvent equation is written as a
first order system.

More precisely, we will study the eigenvalues and block-diagonalizing transforma-
tions for the matrix

D0(s) :=

(
B−1AR B−1

sI 0

)
.

The treatment of the corresponding matrix when AR is changed to AL is completely
analogous. Recall that AR has distinct eigenvalues. Thus we can diagonalize it as

T1RARS1R =

(
Λ− 0
0 Λ+

)
.

Here the diagonal of Λ− consists of λ1, . . . , λnR
, which are all negative. The diagonal

of Λ+ consists of λnR+1, . . . , λn, which are all positive.

We will now state a series of properties of the introduced matrices. Statements 1–4
below are established in [18] and play an equally fundamental role therein. Statement
5 is special to our approach and is new.

Lemma 2. Denote the eigenvalues of B−1AR by {τi}ni=1 and the eigenvalues of
D0(s) by {κi(s)}2ni=1.

1. For |s| � 1 we have the expansions

κi = τi +O(s1/n),(6)

κi+n = − s

λi
+

s2b̃ii
λ3
i

+O(s3),

which hold for i = 1, . . . , n. Here {b̃ii}ni=1 denotes the diagonal elements of
T1RBS1R.

2. For s ∈ Ω := {s ∈ C : Re s ≥ 0, s �= 0}, exactly n of the functions κi
have positive real part and n have negative real part. We emphasize that for
no s ∈ Ω is there a κi which is purely imaginary. Also, no κi crosses the
imaginary axis when s varies in Ω.

3. The number of eigenvalues {τi}ni=1 with positive real part is n − nR and the
number with negative real part is nR. We can block diagonalize B−1AR ac-
cording to

T2RB−1ARS2R =

(
A+ 0
0 A−

)
,

where the τi with positive real part are eigenvalues of A+ and those with
negative real part are eigenvalues of A−. We have T2R = S−1

2R .

4. Re b̃ii > 0 for i = 1, . . . , n.
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5. In the region Ωc := {s ∈ C : Re s > 0, |s| ≤ c}, for a sufficiently small c, we
have analytic matrices SR(s) and TR := S−1

R such that

TR(s)D0(s)SR(s) =




C+(s) 0 0 0
0 C−(s) 0 0
0 0 K+(s) 0
0 0 0 K−(s)


 ,(7)

where
• C+ is an (n−nR)×(n−nR) matrix. The eigenvalues of C+ are κ1, . . . ,

κn−nR
.

• C− is an nR × nR matrix. The eigenvalues of C
− are κn−nR+1, . . . κn.

• K+ is an nR × nR diagonal matrix. The eigenvalues of K+ are κn+1,
. . ., κn+nR

.
• K− is an (n− nR)× (n− nR) diagonal matrix. The eigenvalues of K−

are κn+nR+1, . . . , κ2n.
• The block-diagonalizing transformations have the following form for
|s| � 1:

SR(s) =

(
S2R −A−1

R S1R

0 S1R

)
+O(s),

TR(s) =

(
T2R T2RA−1

R

0 T1R

)
+O(s).(8)

Proof. Start with property 1. The κi are solutions of the characteristic equation
P (κ, s) := det(κ2B − κAR − sI) = 0. We see that P is a polynomial in κ and s,
so the κi are algebraic functions. This means that the κi(s) are functions which are
analytic except at finitely many points; see [6, p. 119]. To determine the expansions
we first solve P (κ, 0) = 0 and obtain the O(1) terms. For κn+1, . . . , κ2n this term is
zero. For κ1, . . . , κn we do not need more information; the remainder is in the worst
case O(s1/n). For κn+1, . . . , κ2n we continue by grouping terms of P (γis, s) according
to powers in s. We will determine {γi}ni=1; here γi correspond to κi+n. We neglect
higher order terms and set the expression to zero, which gives γi. To obtain the O(s2)
terms we use the ansatz κi+n = −s/λi + s2θi and determine θi. The details are given
in [11].

To prove property 2, we first study the characteristic equation for |s| � 1,

det(κ2B − sI) ≈ 0,

which yields κi ≈ ±
√

s/βi, where βi are the eigenvalues of B. This means that for
|s| � 1 and s ∈ Ω half of the κi have positive real part and half of them have negative
real part. Now we assume that one of the κi crosses the imaginary axis when s varies
in Ω. Then

det(−ξ2
0B − iξ0AR − s0I) = 0(9)

for some ξ0 ∈ R. According to (9), s0 is an eigenvalue of the symbol −ξ2
0B − iξ0AR.

Assumption 1 then implies Re s0 < −γξ2
0 , which contradicts s0 ∈ Ω. Thus the number

of κi with positive and negative real part, respectively, is n for all s ∈ Ω.
Property 3 follows by using the expansions of κi with a real s and counting the

number of eigenvalues in the right and left complex half planes.
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Property 4 follows from the expansion for κn+1, . . . , κ2n for a purely imaginary s
and the requirement that no κi can be purely imaginary.

To prove property 5, we note that the information contained in the expansions
in (6), concerning grouping of eigenvalues of with positive and negative real part,
and the order of the branching of the O(s) eigenvalues, make Theorem 8, page 70,
in [5] applicable. This theorem is stated in terms of eigenprojections corresponding
to eigenvalues. Restating it in terms of block diagonal transformations we get the
existence and analyticity of SR and TR. The expansions of the matrices SR and TR
then follow by inspection; see [11] for details. This concludes the proof.

Finally we introduce notation for submatrices of the block-diagonalizing transfor-
mations introduced in this section. We partition the matrices T1R and T2R according
to

T1R =

(
T I1R
T II1R

)
, T2R =

(
T I2R
T II2R

)
,

where T I1R contains the first nR rows of T1R, and T II1R contains the last n− nR rows.
Correspondingly, T I2R contains the first n−nR rows of T2R, and T II2R the last nR rows.

We partition the matrix TR into submatrices corresponding to the blocks on the
diagonal of the matrix in the right-hand side of (7),

TR(s) =




T IR(s)
T IIR (s)
T IIIR (s)
T IVR (s)


 .

The partition is done so that T IR has (n− nR) rows, T IIR has nR rows, etc.

2.2. Solution at the zero eigenvalue when the forcing has bounded sup-
port. The resolvent equation (4), with s = 0 and forcing stemming from initial data
with zero mass, can be integrated once. We then obtain the problem

ux = B−1Au + f,(10)

where we have dropped the ˆ-notation for the Laplace-transformed function. The
forcing f is not directly related to ĥ. Instead we assume supp f ⊂ [−l0, l0] for some l0
and f ∈ L1∩L2. Studying (10) on an interval [l,∞) with l > l0, we can apply Lemma
4. According to the lemma there exists an l1, which we take larger than l0, such that
for l > l1 the following holds. For solutions of the ODE (10), the requirement that u
is bounded is equivalent with the condition

R(l)u(l) = 0,(11)

where R(l) can be written as

R(l) = T I2R − e−βlP (l)T II2R.(12)

Here T I2R and T II2R were introduced in the preceding section and P satisfies |P (l)| ≤ K.
The argument above can also be applied to (10) on an interval (−∞,−l] with

l > l0 and we obtain boundary conditions

R(−l)u(−l) = 0,(13)
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where we, in the same manner, have the expression R(−l) = T II2L − e−βlP (−l)T I2L.
Now we consider (10) for x ∈ [−l, l] with the boundary conditions (11) and (13).

This problem consists of n first order ODEs together with n−1 boundary conditions.
We also note that any solution of this problem is also a solution of (10) on the whole
real axis, and vice versa. The reason for replacing the ODE on the real axis with
that on a bounded interval is to make it possible to estimate the solutions via a
“compactness” argument, which we describe below.

Next we derive a representation formula for the solution by introducing a funda-
mental matrix Ψ(x) for the homogeneous version of (10). The n columns of Ψ are
linearly independent solutions of (10) with f = 0. The solution of the inhomogeneous
problem can now be written as

u(x) = Ψ(x)

[
u(0) +

∫ x

0

Ψ−1(ξ)f(ξ)dξ

]
.

Inserting this into the boundary conditions at x = ±l we obtain the following system
of n− 1 linear equations for the components of u(0):(

R(l)Ψ(l)
R(−l)Ψ(−l)

)
u(0) =

(
R(l)Ψ(l)

∫ l
0

Ψ−1(ξ)f(ξ)dξ

−R(−l)Ψ(−l)
∫ 0

−l Ψ
−1(ξ)f(ξ)dξ

)
.(14)

For the homogeneous problem, f = 0, we have zero in the right-hand side of (14).
According to Assumption 3, the solutions of the homogeneous problem have the form
u = αϕ0 for an arbitrary α, i.e., the eigenspace of zero has dimension one. This means
that the solutions of (14) in the homogeneous case are u(0) = αϕ0(0).

The solutions of (14) are not unique. Our goal is to construct one solution which
can be estimated in terms of the forcing function f . This is done by adding one
more condition, which is that we choose the solution u(0) of (14) that has minimal
Euclidean length.

The above procedure gives a function u(x), which can be written as

u(x) = αϕ0 + Ψ(x)

[
u0 +

∫ x

0

Ψ−1(ξ)f(ξ)dξ

]
.

Here u0 is any solution of (14) and α is determined by the requirement that αϕ0(0)+u0

be the minimal solution of (14). We have the estimate

|u(0)| ≤ K

∣∣∣∣∣
∫ l

−l
Ψ−1(ξ)f(ξ)dξ

∣∣∣∣∣ ≤ K max
x∈[−l,l]

∣∣Ψ−1(x)
∣∣ ‖f‖L1 .

We obtain the last inequality since |Ψ−1(x)| is a continuous function on a compact
domain, and therefore is bounded. The same argument holds for |Ψ(x)|. We also need
to use

‖f‖L1[−l,l] ≤ K
√

l‖f‖L2[−l,l].

Using the solution formula it is now easy to derive

‖u‖L1[−l,l] + ‖u‖L2[−l,l] + ‖u‖L∞[−l,l] ≤ K‖f‖L2 .(15)

To extend the solution from [−l, l] to the entire real axis we use Lemma 3 with the
now-determined boundary values. This gives the estimate

‖u‖L1[l,∞) + ‖u‖L2[l,∞) + ‖u‖L∞[l,∞) ≤ K|u(l)|(16)
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and the corresponding one to the left. Since the right-hand side in (16) can be
estimated by the L∞-norm of u, we can use (15) to get an estimate in terms of f .
Combining the estimates and using the triangle inequality in (10) we get

‖u‖H1 + ‖u‖L1 + ‖u‖L∞ ≤ K‖f‖L2 .

3. The resolvent estimate near the zero eigenvalue. In this section we
prove Lemma 1. The proof proceeds by splitting the unknown into several terms
which satisfies simpler problems. These auxiliary problems are treated in sections
3.1–3.3, then we complete the proof by summing the constructions in section 3.4.

3.1. Reduction of the forcing to O(s). In our procedure to solve and esti-
mate the solution of (4), we start by splitting the unknown û = u1 + u2, where u1

solves the equation

u1x = B−1Au1 + ĥ.(17)

When u1 has been determined, u2 must satisfy the following equation, which is derived
by inserting û = u1 + u2 into (4):

su2 + (Au2)x = Bu2xx − su1.(18)

Here we see that u1, multiplied by the small s, occurs as forcing. Equation (18) is
treated in section 3.2. To solve (17) we split the unknown further:

u1 = u1M + ϕRu1R + ϕLu1L.

Here ϕR and ϕL are smooth monotone cut-off functions,

ϕR =

{
1, x > l,
0, x < l − 1,

ϕL =

{
1, x < −l,
0, x > −l + 1,

where l will be given below. The function u1R solves the problem

u1Rx = B−1Au1R + ĥ, x ∈ [l − 1,∞),
T I2Ru1R(l − 1) = 0,

(19)

and u1L solves the corresponding problem on the interval (−∞,−l + 1] with T II2L as
coefficient matrix in the linear homogeneous boundary conditions at x = −l + 1.

The remaining part of u1 must satisfy

u1Mx = B−1Au1M + hM ,(20)

where hM = (1−ϕR−ϕL)ĥ−ϕRxu1R−ϕLxu1L. We note that supphM ⊂ [−l, l]. The
equation for u1M will be considered below after we have determined u1R and u1L.

If l is chosen sufficiently large, the problems for u1R and u1L are of the type
treated in Lemma 3. We thus have unique solutions u1R and u1L for the problems to
the right and left, respectively. The function u1R satisfies the estimate

‖u1R‖L1[l−1,∞) + ‖u1R‖H1[l−1,∞) + ‖u1R‖L∞[l−1,∞) ≤ K
(
‖ĥ‖L1 + ‖ĥ‖L2

)
.(21)

The function u1L satisfies the corresponding estimate, i.e., with all R-subscripts re-
placed by L-subscripts and the interval changed from [l − 1,∞) to (−∞,−l + 1].
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Now we study the equation for u1M . Combining the expression for hM with the
estimate of u1R and u1L in terms of ĥ, we obtain an estimate of hM in terms of ĥ:

‖hM‖L1 + ‖hM‖L2 ≤ K
(
‖ĥ‖L1 + ‖ĥ‖L2

)
.

Equation (20) is of the type treated in section 2.2. Using the construction described
there, we obtain a function u1M , which solves (20) and can be estimated in terms of

hM and thus also in terms of ĥ:

‖u1M‖H1 + ‖u1M‖L1 ≤ K
(
‖ĥ‖L1 + ‖ĥ‖L2

)
.

The last step in this section is to combine the constructions and estimates of u1R,
u1L, and u1M . This yields the function u1 and the following estimate for it:

‖u1‖H1 + ‖u1‖L1 ≤ K
(
‖ĥ‖L1 + ‖ĥ‖L2

)
.(22)

3.2. Cut-off of forcing to obtain bounded support. In this section we will
study (18), where u1 has the role of forcing. We rewrite the equation to a system of
first order equations by introducing the variable v2 = Bu2x −Au2. This leads to(

u2

v2

)
x

=

(
B−1A B−1

sI 0

)(
u2

v2

)
+ s

(
0
u1

)
.

To solve this problem we split the unknown:(
u2

v2

)
=

(
u2M

v2M

)
+ ϕR

(
u2R

v2R

)
+ ϕL

(
u2L

v2L

)
.

Here ϕR and ϕL are, as before, smooth and monotone cut-off functions for the right
and left half-infinite intervals, respectively. The location where the cut-off is per-
formed in this section is chosen independently of the cut-off location in section 3.1.
For u2R and v2R we have the problem(

u2R

v2R

)
x

=

(
B−1A B−1

sI 0

)(
u2R

v2R

)
+ s

(
0
u1

)
, x ∈ [l − 1,∞),(23)

where l remains to be fixed. We choose homogeneous boundary conditions(
T IR(s)
T IIIR (s)

)(
u2R(l − 1)
v2R(l − 1)

)
= 0,

where T IR and T IIIR were introduced in section 2.1. For u2L and v2L we have the
corresponding problem on the interval (−∞,−l+1], with T IIL and T IVL as submatrices
in the homogeneous boundary conditions at x = −l + 1.

The remaining parts of u2 and v2, u2M and v2M , must satisfy the equation(
u2M

v2M

)
x

=

(
B−1A B−1

sI 0

)(
u2M

v2M

)
+ s

(
g
h

)
,(24)

where {
sg = −ϕRxu2R − ϕLxu2L,
sh = s(1− ϕR − ϕL)u1 − ϕRxv2R − ϕLxv2L.

(25)
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Equation (24) will be studied in section 3.3.
If l is chosen sufficiently large, the problems for (u2R, v2R)T and (u2L, v2L)T are

of the type treated in Lemma 5. We thus have unique, bounded solutions of both
problems. The functions u2R and v2R satisfy the estimates

‖u2R(·, s)‖H1[l−1,∞) + ‖v2R(·, s)‖H1[l−1,∞) ≤ K (‖u1‖L1 + ‖u1‖L2) ,(26)

‖u2R(·, s)‖L∞[l−1,∞) + ‖v2R(·, s)‖L∞[l−1,∞) ≤ |s|K (‖u1‖L1 + ‖u1‖L2) .

Here the L2 estimate follows from the lemma. The L2 estimate of the derivative,
and thereby the H1 estimate, follows from the triangle inequality applied to (23).
For the functions u2L and v2L we have the corresponding estimates on the interval
(−∞,−l+1]. We also observe that, using (22), we obtain an estimate in terms of the

original forcing ĥ.

3.3. Approximation of the component in the zero eigenspace. We now
study (24). Recall that the forcing is O(s) and has support in a bounded interval,
for which we introduce the notation [−l0, l0]. The forcing functions g and h can, via

(22), (25), and (26), be estimated in terms of the original forcing ĥ. For |s| � 1 the
problem is nearly singular, and we expect the solution to have a large component in
the zero eigenspace of (3). This motivates the following splitting of u2M :

u2M = u3 + αϕ̃0 + u4,(27)

where

ϕ̃0(x) =

{
ϕ0(x), |x| ≤ l,
0, |x| ≥ l,

and l will be determined below. We introduce v3 := v2M for notational convenience.
We use ϕ̃0 instead of ϕ0 in the ansatz (27) because we want to retain the bounded
support of the forcing in the equations for u3 and v3, which are(

u3

v3

)
x

=

(
B−1A B−1

sI 0

)(
u3

v3

)
+ s

(
g

h− αϕ̃0

)
.(28)

We can apply Lemma 6 to (28) on an interval [l,∞). According to the lemma there
exists an l1, which we choose larger than l0, such that for l > l1 the following holds. For
solutions of the ODE (28), the requirement that the solution is bounded is equivalent
to the condition

R̃(l, s)

(
u3(l)
v3(l)

)
= 0,(29)

where R̃ is described in the lemma. Lemma 6 can also be applied to (24) on the
interval (−∞,−l + 1] and we obtain boundary conditions

R̃(−l, s)

(
u3(−l)
v3(−l)

)
= 0.(30)

We use an iteration to construct α, u3, and v3 on [−l, l], so that estimates in terms
of g and h are possible, and (28), (29), and (30) are satisfied. When u3, v3, and
α have been determined we will, in section 3.4, consider the equation for u4, which
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we introduced in (27). The iteration, which is described in detail below, is an L∞-
contraction for sufficiently small |s|. The limit is our solution u3, v3, and α.

The first iterate satisfies the problem(
u(1)

v(1)

)
x

=

(
B−1A B−1

0 0

)(
u(1)

v(1)

)
+ s

(
g

h− α(1)ϕ0

)
,

R̃(l, 0)

(
u(1)(l)
v(1)(l)

)
= 0, R̃(−l, 0)

(
u(1)(−l)
v(1)(−l)

)
= 0.

(31)

The nth iterate satisfies the problem(
u(n)

v(n)

)
x

=

(
B−1A B−1

0 0

)(
u(n)

v(n)

)
+ s

(
0

u(n−1) − α(n)ϕ0

)
,

R̃(l, 0)

(
u(n)(l)
v(n)(l)

)
= (R̃(l, s)− R̃(l, 0))

(
u(n−1)(l)
v(n−1)(l)

)
,

R̃(−l, 0)

(
u(n)(−l)
v(n)(−l)

)
= (R̃(−l, s)− R̃(−l, 0))

(
u(n−1)(−l)
v(n−1)(−l)

)
.

(32)

First we determine v(1), α(1). From (31), using the expression (47) for R̃(l, 0), we
extract the following equations for v(1), α(1):

v(1)
x = sh− sα(1)ϕ0, T I1Rv(1)(l) = 0, T II1Lv

(1)(−l) = 0.(33)

The last two expressions imply that we can write v(l) = SIIR cII and v(−l) = SILc
I ,

where SIIR and SIL were introduced in Assumption 4. Here the components of cI and
cII together comprise n − 1 unknowns. Using these expressions and integrating the
first equation in (33) we arrive at the following n× n system of linear equations:(

SI1L; SII1R;

∫ l

−l
ϕ0 dx

) cI

cII

sα(1)


 = s

∫ l

−l
h dx.(34)

We have ∣∣∣∣∣UR − UL −
∫ l

−l
ϕ0 dx

∣∣∣∣∣ ≤ Ke−βl

and thus, by Assumption 4, (34) is solvable for sufficiently large l. Since v(1) is
expressed by an integral of h, it is easy to derive

‖v(1)‖L∞[−l,l] + ‖v(1)‖H1[−l,l] ≤ |s|K‖h‖L2 ,(35)

|α(1)| ≤ K‖h‖L2 .

Next we turn to the problem for u(1). The boundary conditions will be inhomo-
geneous; e.g., to the right, we have

R(l)u(1)(l) = −R̃12(l)v
(1)(l).

The standard procedure to make the boundary conditions homogeneous is to make
an ansatz u(1) = w + ũ and choose w as a smoothly varying function which satisfies
the boundary conditions. The problem for ũ is

ũx = B−1Aũ + sg(1),
R(l)ũ(l) = 0, R(−l)ũ(−l) = 0,
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where sg(1) = sg−wx + B−1Aw. The L2-norm of the function g(1) can be estimated
in terms of g and h via (35). The problem for ũ is of the type treated in section
2.2, and using the construction described there, we obtain a function ũ which solves
the above problem. Using u(1) = w + ũ we get a solution of (31), which satisfies the
estimate

‖u(1)‖L∞[−l,l] + ‖u(1)‖H1[−l,l] ≤ |s|K (‖g‖L2 + ‖h‖L2) .

This completes the construction and estimate of the first iterate. The treatment of
the nth iterate is similar, only the forcing functions in the equations are changed.
First we determine v(n) and α(n). The boundary conditions are now inhomogeneous.
From (32) and (47) we have

T I1Rv(n)(l) = sQ1(l, s)

(
u(n−1)(l)
v(n−1)(l)

)
.

Thus

v(n)(l) = SII1RcII + b(n)(l),(36)

where

b(n)(l) = sSI1RQ1

(
u(n−1)(l)
v(n−1)(l)

)
.

In the same manner we obtain the following expression to the left:

v(n)(−l) = SI1Lc
I + b(n)(−l).(37)

Thus we can express v(n)(l) and v(n)(−l) in terms of the n − 1 unknowns, cI and
cII . Next we integrate the equation for v(n) and use the expressions (36) and (37) to
obtain(

SI1L; SII1R;

∫ l

−l
ϕ0 dx

) cI

cII

sα(n)


 = s

∫ l

−l
u(n−1) dx + b(n)(−l) + b(n)(−l).

As before, the system can be solved for sufficiently large l, and the solution can be
estimated as

‖v(n)‖L∞[−l,l] + ‖v(n)‖H1[−l,l] + |sα(n)|(38)

≤ sK
(
‖u(n−1)‖L2[−l,l] + ‖u(n−1)‖L∞[−l,l] + ‖v(n−1)‖L∞[−l,l]

)
.

The problem for u(n) also has inhomogeneous boundary conditions. They are
treated with the standard procedure described above. Referring to the construction
in section 2.2, we obtain a solution which satisfies

‖v(n)‖L∞[−l,l] + ‖v(n)‖H1[−l,l](39)

≤ sK
(
‖u(n−1)‖L2[−l,l] + ‖v(n−1)‖L2[−l,l] + ‖u(n−1)‖L∞[−l,l] + ‖v(n−1)‖L∞[−l,l]

)
.

The construction is now complete. We see that for sufficiently small |s| the iteration
defines a contraction. The solution of our original problem (28), (29), and (30) is
given by the uniformly convergent sums

u3 =

∞∑
n=1

u(n), v3 =

∞∑
n=1

v(n), α =

∞∑
n=1

α(n).
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Summing the estimates for the iterates, we obtain

‖u3‖H1[−l,l] ≤ |s|K (‖h‖L2 + ‖g‖L2) ,(40)

|α| ≤ K (‖h‖L2 + ‖g‖L2) .

3.4. Summary of the splittings. Before the summing of the splitting of û
into terms, we extend the function u3 to the intervals [l,∞) and (−∞,−l]. Since (28)
is homogeneous in these regions, we can apply Lemma 5. This gives estimates that
together with (40) yield

‖u3‖H1 ≤ K (‖h‖L2 + ‖g‖L2) .

Summing the splittings from the sections above, we have the following expression of
the original unknown in terms of the introduced parts:

û = u1 + ϕRu2R + ϕLu2L + u3 + αϕ0 + u4.

Here the function u4 satisfies the equation

su4 + (Au4)x = Bu4xx + sα(ϕ0 − ϕ̃0).

This means that the function u4 satisfies the same type of problem as u2; see (18).
The difference is that the norms of the forcing has been reduced by a factor O(e−βl).
This leads us to define an iteration to determine û. The first iterate û(1) is given by

û(1) = u1 + ϕRu2R + ϕLu2L + u3 + αϕ̃0.

Then we repeat the process and split u4 according to

u4 = ϕRu
(2)
2R + ϕLu

(2)
2L + u

(2)
3 + α(2)ϕ0 + u

(2)
4

and define the second iterate by û(2) = u4 − u
(2)
4 . The process is continued, and we

have

u
(n−1)
4 = ϕRu

(n)
2R + ϕLu

(n)
2L + u

(n)
3 + α(n)ϕ0 + u

(n)
4 .

For l large enough, the size of the forcing in the equation for u
(n)
4 is reduced in each

step and we have

lim
n→∞ ‖u

(n)
4 ‖L∞ = 0.

In conclusion, we have constructed a solution of the resolvent equation (4):

û =
∞∑
n=1

û(n)

for s ∈ Ωc. Summing the estimates of the iterates using (22), (26), and (40) we obtain

‖û‖H1 ≤ K
(
‖ĥ‖L1 + ‖ĥ‖L2

)
,

which completes the proof of Lemma 1.
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Appendix. Results for ODEs on a half-line. Here we derive four lemmas on
systems of ODEs, with nearly constant coefficients, on a half-infinite interval. These
results are used in sections 2.2 and 3. In section A.1 we introduce the ODE and state
all assumptions on the coefficients and forcing in the section. In section A.2, on the
other hand, we state the results for exactly the problem treated in the main body of
the article. Consequently we refer to objects defined in earlier sections.

In this appendix we state the results without proof. The proofs are rather straight-
forward. Similar results are given in [9], and in [11] these results are given with very
minor changes. Proofs can be found in both these references.

A.1. Systems without a parameter. Consider the ODE

ux = Au + f, x ∈ [0,∞),(41)

where the coefficient matrix converges to a constant matrix

lim
x→∞A(x) = A0.

The limiting matrix has no purely imaginary eigenvalues, so we can block-diagonalize
it according to

TA0S =

(
A+ 0
0 A−

)
,

where A+ is a k×k matrix. We denote by T I the first k rows of T and by T II the last
n − k rows. We have the following measure of the difference between the coefficient
matrix and the limiting matrix:

γ =

∫ ∞

0

|A(x)−A0|dx.

We are now in position to state two lemmas.

Lemma 3. Consider (41) with the boundary conditions

T IIu(0) = uII0(42)

and assume f ∈ L1. Then there exists a γ0, determined by A0, such that, if γ ≤ γ0,
there exists a unique solution of the problem (41), (42). This solution satisfies the
following estimate:

‖u‖L∞ + ‖u‖L1 + ‖u‖L2 ≤ K
(|uII0 |+ ‖f‖L1

)
,

where the constant K depends only on A0.

Lemma 4. Consider (41) with f = 0. Then there is a γ0 such that, if γ < γ0,
there is a matrix P such that all bounded solutions u of (41) satisfy

(T I − PT II)u(0) = 0.

We also have |P | ≤ Kγ. The constants γ0 and K depend only on A0.



928 M. LIEFVENDAHL AND G. KREISS

A.2. Systems with a parameter. We consider(
u
v

)
x

= D(x, s)

(
u
v

)
+ f, x ∈ [l,∞), s ∈ Ωc,(43)

where

D(x, s) =

(
B−1A B−1

sI 0

)
,

and B, A, and Ωc denote the same matrices and region, respectively, as in the main
body of the article. For this problem we have the following difference between the
coefficient matrix and the limiting matrix D0:∫ ∞

l

|D(x, s)−D0(s)|dx ≤ Ke−βl.

This is because the shock profile approaches the left and right states exponentially in
x.

We now state two lemmas for the system (43), corresponding to the two lemmas
in the preceding section.

Lemma 5. Consider (43) with f ∈ L1 and boundary conditions(
T II(s)
T IV (s)

)(
u(l)
v(l)

)
=

(
uII0
vII0

)
.

Then there is an l0, independent of s, such that for l > l0, there is a unique bounded
solution. This solution satisfies the estimates

‖u‖L∞ + ‖v‖L∞ ≤ K
(|uII0 |+ |vII0 |+ ‖f‖L1

)
,(44)

‖u‖H1 + ‖v‖H1 ≤ K

|s|
(|uII0 |+ |vII0 |+ ‖f‖L1

)
.(45)

The constant K in these inequalities depends only on B and AR. The norms are taken
over the interval [l,∞).

Remark. The estimates for the H1-norm of the solution break down in the limit
s→ 0 (for s ∈ Ωc). This is a consequence of the fact that some of the eigenvalues κi
of D0 tend to zero as s → 0 (see (6)), so the decay rate is not uniform in s. When
this lemma is applied in the derivation of the resolvent estimate, it is possible to get,
an s-independent estimate because we have first reduced the forcing to O(s).

Lemma 6. Consider (43) with f = 0. Then there is an l0 such that, for all l > l0,
all bounded solutions of (43) satisfy

R̃(l, s)

(
u(l)
v(l)

)
= 0,(46)

where R̃ can be written

R̃(l, s) =

(
T IR(s)
T IIIR (s)

)
− e−βlQ̃(l, s)

(
T IIR (s)
T IVR (s)

)
.

Q̃ is analytic in s and can be written

Q̃(l, s) =

(
P (l) Q12(l)

0 0

)
+O(s),
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where P was introduced in (12) and Q12 is a bounded function of l. Conversely, any
function (u, v)T which satisfies (43) and (46) is bounded.

Remark. Using the expression (8) for TR(s) we obtain

R̃(l, s) =

(
T I2R − e−βlP (l)T II2R R̃12(l)

0 T I1R

)
+ sQ1(s, l),(47)

where R̃12 is a bounded function of l and Q1 is a bounded function of s and l, for
l > l0 and s ∈ Ωc. We observe that the submatrix in the upper left corner is just the
matrix R(l) from (11).
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Abstract. In this work we consider a convolution model for nonlinear conservation laws. Due to
the delicate balance between the nonlinear convection and the nonlocal forcing, this model allows for
narrower shock layers than those in the viscous Burgers’ equation and yet exhibits the conditional
finite time breakdown as in the damped Burgers’ equation. We show the critical threshold phe-
nomenon by presenting a lower threshold for the breakdown of the solutions and an upper threshold
for the global existence of the smooth solution. The threshold condition depends only on the relative
size of the minimum slope of the initial velocity and its maximal variation. We show the exact
blow-up rate when the slope of the initial profile is below the lower threshold. We further prove the
L1 stability of the smooth shock profile, provided the slope of the initial profile is above the critical
threshold.

Key words. wave breakdown, critical threshold, shock profile, stability
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1. Introduction. Consider the scalar equation of the form

ut + uux = Q ∗ u− u,(1.1)

where Q is a regular symmetric kernel, monotonically decreasing on R
+, subject to

initial data

u(0, x) = u0(x), u0 ∈ C1
b (R).(1.2)

We are concerned with the critical threshold phenomenon supported by the balance
between the nonlinear convection and the nonlocal source term in (1.1).

For the kernel Q, we make the following assumption:
(H1) Q ∈ C1(R), Q(−r) = Q(r) ≥ 0,

∫
Q(y)dy = 1,

∫
Q(y)|y|dy < ∞, and

Q′(x) ≤ 0 for x ≥ 0.
To clarify the effect of the nonlocal term on the right-hand side of (1.1), we make

a hyperbolic scaling

(t, x)→
(
t

ε
,
x

ε

)
, ε > 0,

which leads to

ut + uux =
1

ε
[Qε ∗ u− u],(1.3)

where Qε :=
1
εQ(xε ) and is converging to a delta function δ(x) as the scaled parameter

ε tends to zero.
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A typical example of the kernel Q is 1
2e

−|x|; with this specific kernel, (1.3) can be
written as

ut + uux = F−1

[ −εξ2
1 + ε2ξ2

û(t, ξ)

]
= εF−1

[
1

1 + ε2ξ2
û(t, ξ)

]
xx

,(1.4)

which is called an R-C-E model after Rosenau’s regularized version of the Chapman–
Enskog expansion for hydrodynamics [17]. The operator on the right-hand side of
(1.4) looks like the usual viscosity term εuxx at low wave-number ξ, while for higher
wave numbers it is intended to model a bounded approximation of a linearized collision
operator, thereby avoiding the artificial instabilities that occur when the Chapman–
Enskog expansion is truncated after a finite number of terms [17]. This idea has
been greatly advanced recently by Slemrod and his collaborators. A renormalization
procedure was introduced in [19] to eliminate the truncation instability and to produce
the desired dissipation; the corresponding applications can be found in [20, 21, 22].
The regularization of the Burnett equations via relaxation was investigated by Jin
and Slemrod [5, 6]. The rigorous analysis of the model (1.4), including the existence
of the shock profiles, the smoothness, as well as the upper-Lipschitz continuity, has
been studied by Schochet and Tadmor [23]. We remark that, as observed in [23], the
solution sequence {uε} of (1.4) does not satisfy the Kružkov entropy inequality. The
convergence of the solution uε of (1.4) to the entropy solution of the inviscid Burgers’
equation was proved in [23] via the L1 contraction argument.

(1.3) with Q = 1
2e

−|x| can also be written as a hyperbolic-elliptic system

ut + uux = φx, x ∈ R, t > 0,(1.5)

ε2φxx − φ+ εux = 0.(1.6)

It is easy to see that (1.6) enables one to express φ in terms of u formally as

φ = (1− ε2∂2
x)

−1εux = εQε ∗ ux,

which in turn gives the right-hand side of (1.3),

φx = εQε ∗ uxx =
1

ε
[Qε ∗ u− u].

The system of equations (1.5)–(1.6) is derived as the third-order approximation of
the full system describing the motion of radiating gas in therm-nonequilibrium, while
the second-order approximation gives the viscous Burgers’ equation ut + uux = εuxx,
and the first-order approximation gives the inviscid Burgers’ equation ut + uux = 0.
Hamer [4] studied these equations in the physical respect, especially for the steady
progressive shock wave solutions. Noting that if ε in (1.6) is small, one has φ ∼ εux,
which leads to the usual viscous Burgers’ equation. The viscous Burgers’ equation
admits smooth shock wave profiles but does not allow the finite time breakdown. On
the other hand, if the parameter ε is large, one finds from (1.6) that εφxx + ux ∼ 0,
which when combined with (1.5) gives the damped Burgers’ equation ut+uux = −u/ε.
This damped equation reflects the conditional breakdown in finite time but does not
support monotone traveling waves (shock profiles).

The parameter ε in (1.3) does not play a role in our analysis and so will be set to 1
for convenience. Equation (1.3) with ε = 1, i.e., (1.1), is a physical model that allows
for the shock wave profile and yet exhibits the finite time breakdown. For stability
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of shock profiles via energy method we refer to [11, 8]. The global weak solution to
(1.1) was studied in [23].

As is known, the typical well-posedness result asserts that either a solution of
a time-dependent PDE exists for all time (global existence of the smooth solution)
or else there is a finite time (called life span) such that some norm of the solution
becomes unbounded as the life span is approached (called finite time breakdown). The
natural question is whether there is a critical threshold for the initial data such that
the global existence of the smooth solution or the finite time breakdown depends only
on crossing such a critical threshold. This remarkable critical threshold phenomenon
was first observed and studied in [3] for a class of Euler–Poisson equations. In this
paper we confirm such a critical threshold phenomenon for (1.1)–(1.2) by giving an
upper threshold for the global existence of the smooth solution and a lower threshold
for the finite time breakdown. We also show the exact blow-up rate as the life span
is approached.

In this paper we shall use the following notation for g ∈ L∞(R) to denote the
maximal variation:

V (g) := max
x∈R

g(x)−min
x∈R

g(x).

The first result tells us the critical threshold phenomenon in (1.1).
Theorem 1.1. Consider the Cauchy problem (1.1)–(1.2) with initial data u0 ∈

C1
b (R). Let the kernel Q satisfy (H1); then we have the following:
• If V (u0) <

1
4Q(0) and

inf
x∈R

∂xu0(x) > −1

2

[
1 +

√
1− 4Q(0)V (u0)

]
,

then the smooth solution exists for all time.
• If

inf
x
∂xu0(x) < −1

2

[
1 +

√
1 + 4Q(0)V (u0)

]
,

then the solution u must break down at finite time T . Moreover,

lim
t→T

(min
x∈R

{ux(t, x)}) = −∞

and the exact blow-up rate is

lim
t→T

((T − t)min
x∈R

{ux(t, x)}) = −1.

Concerning this theorem, several remarks are in order.
Remarks. 1. The above results show that the solution behavior of (1.1)–(1.2)

depends on the relative size of the minimum slope of the initial profile and its maximal
variation. If either the maximal variation is too large or the initial velocity slope is too
negative, the solution would lose smoothness in finite time. This peculiar phenomenon
explains the result obtained in [23], in which additional constraints on the shock
strength are imposed to ensure the smoothness of the shock profiles. Further relation
between the smoothness of the shock profiles and the shock strength are given in [8].
The critical threshold phenomenon was already partially observed in previous studies;
see [23] and [9].
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2. As an example, we take uθ0(x) = exp(−x2/θ) for θ > 0. Note that

inf
x∈R

[∂xu
ε
0(x)] = −

√
2

eθ
, V (uθ0) = 1.

Therefore, choosing θ so small that

θ <
4

e(1 + 2Q(0) +
√

1 + 4Q(0))
,

we see that ∂xu
θ
0 is below the lower threshold, and thereby the corresponding solution

uθ(t, x) breaks down in finite time.
3. Note that at the blow-up time, the solution is still bounded, and the gradient of

the solution becomes unbounded from below. Such a breakdown is referred to as wave
breaking in the context of the shallow water waves. In [25] Whitham emphasized that
wave breaking phenomena are some of the most intriguing long-standing problems
of water theory. This issue was first settled recently in [15] for Whitham’s equation.
Another shallow water equation derived recently by Camassa and Holm [2] can be
written as (1.5) coupled with the following equation:

φxx − φ− u2 − 1

2
u2
x = 0.

This equation as a completely integrable system has a soliton solution and yet exhibits
finite time breakdown phenomena for a large class of initial data, which has been
observed and justified by Holm [2], Constantin and Escher [1], and McKean [14]. The
main tool used in the above papers is to trace the solution gradient along a curve on
which the minimum of the gradient is obtained. In this work we trace the dynamics
of the solution gradient along the characteristics, which are well known in the context
of the hyperbolic equations; see, e.g., [12, 7, 13]. For the global weak solution to the
above shallow water equation, we refer to [24] and references therein.

4. From the results above we see that if the magnitude of the initial profile is
small, both thresholds given in Theorem 1.1 are close to infx∈R ∂xu0(x) = −1, which
is exactly the critical threshold for the damped Burgers’ equation:

ut + uux = −u.
Indeed, along the particle path x(α, t) defined by

d

dt
x(α, t) = u(t, x(α, t)), x(α, 0) = α, α ∈ R,

the gradient of the solution to the damped Burgers’ equation above can be written
explicitly as

ux(t, x) = [et(1 + (∂xu0(α))
−1)− 1]−1,

which is bounded from below for all time if and only if

inf
x∈R

∂xu0(x) ≥ −1.

This remarkable critical threshold phenomenon explains why (1.1) admits nar-
rower shock layers than those in the viscous Burgers’ equation. We now turn to
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discussing the asymptotic behavior of solutions, as the initial data are above the crit-
ical threshold. We shall concentrate on the case u0(−∞) = u− > u+ = u0(+∞). As
shown in [23], (1.1) with Q = 1

2e
−|x| admits a smooth shock profile U(x−st) connect-

ing u+ to u− if and only if the strength |V (U)| = |u+ − u−| ≤
√
2. Considering the

conservative form of the equation, the natural question is whether this shock profile
is stable in L1(R).

Our stability result is summarized below.
Theorem 1.2. Let U(x − st) be a continuous shock profile of (1.1) and S(t)u0

be a solution to (1.1)–(1.2) with initial data u0 ∈ U + L1(R) and u0 ∈ [inf U, supU ].
If ∂xu0 ≥ − 1

2 [1 +
√
1− 4Q(0)V (u0)], then there exists a constant k such that

lim
t→∞ ‖S(t)u0 − U(· − st+ k)‖L1 = 0.

Remarks. 1. The Lp(1 ≤ p < ∞) stability is immediate from the above L1

stability result and the L∞ boundedness of S(t)u0. Consult [8] for the stability of
traveling waves via the energy principle.

2. We assume that the initial data are above the upper critical threshold to
ensure the regularity of the ω-limit set of the solution. This condition is expected to
be relaxed since our upper threshold is not sharp.

We now conclude this section by outlining the rest of the paper. In section 2,
we recall several properties of (1.1) and give the estimate of the nonlocal term in
(1.1), which paves the way for the next sections. The lower threshold for finite time
breakdown is given in section 3, in which we also prove the exact blow-up rate. The
upper threshold for global existence of the smooth solution is carried out in section
4. The final section is devoted to the L1 stability of the shock profiles.

2. Preliminaries. This section is devoted to some estimates which will be used
in the next two sections.

In order to formulate the problem, we denote the solution operator of (1.1) as
S(t), indexed with t ∈ [0,∞),

S(t) : L∞(R)→ L∞(R), t ≥ 0,

such that the solution u(t, x) of (1.1) with initial data a can be expressed as

u(t) = S(t)a.

We recall from [23] that the solution operator S(t) satisfies the following proper-
ties:

• (translate invariance) S(t)a(x+ k) = (S(t)a)(x+ k) for any k ∈ R;
• (conservative) if a− b ∈ L1(R), then for all t > 0, S(t)a− S(t)b ∈ L1(R) and∫

(S(t)a− S(t)b) = ∫ (a− b);
• (L1 contraction) if a − b ∈ L1(R), then S(t)a − S(t)b ∈ L1(R) and ‖S(t)a −
S(t)b‖1 is nonincreasing for t > 0;

• (monotonicity) if a(x) ≥ b(x) for x ∈ R, then S(t)a ≥ S(t)b for all t > 0.
The above monotonicity immediately gives us the following maximum principle.

Lemma 2.1. Let u0 ∈ L∞(R). Then the solution u(t, ·) is also bounded with

min
x∈R

u0(x) ≤ u(t, ·) ≤ max
x∈R

u0(x).

This maximum principle leads to the following bounds, which will be used in
figuring out our threshold conditions.
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Lemma 2.2. Let u be the smooth solution in [0, T ]. Then it holds that

min
x∈R

u0(x) ≤ Q ∗ u(t, ·) ≤ max
x∈R

u0(x), t ∈ [0, T ],(2.1)

−Q(0)V (u0) ≤ Q ∗ ux(t, ·) ≤ Q(0)V (u0).(2.2)

Proof. The first inequality follows from the fact Q ∗ 1 = 1 and the L∞ bound
minx∈R u0(x) ≤ u(t, ·) ≤ maxx∈R u0(x). We shall prove the second inequality as
follows:

Q ∗ ux =

∫
R

Q(x− y)uy(t, y)dy

=

∫
R

Qx(x− y)u(t, y)dy

=

[∫ x

−∞
Qx(x− y)u(t, y)dy +

∫ +∞

x

Qx(x− y)u(t, y)dy
]

≤ min
x∈R

u0(x)

∫ x

−∞
Qx(x− y)dy +max

x∈R

u0(x)

∫ +∞

x

Qx(x− y)dy

≤ Q(0)

[
−min
x∈R

u0(x) + max
x∈R

u0(x)

]
= Q(0)V (u0).

The lower bound −Q(0)V (u0) is clear from the above estimate.
The existence of T is ensured by the local existence theorem stated in the following

lemma.
Lemma 2.3. Consider the Cauchy problem (1.1)–(1.2) with initial data u0 ∈

C1
b (R). Then there exists a positive constant T , depending only on ‖u0‖C1

b
(R), such

that (1.1)–(1.2) has a unique smooth solution in C1
b (R× [0, T ]).

The proof of this local existence is standard via an iteration scheme; the details are
omitted. This local existence provides a base for extending the solution or justifying
the finite time breakdown.

3. Blow-up criterion—lower threshold. This section is devoted to a general
discussion of wave breaking criteria.

Theorem 3.1. Consider the Cauchy problem (1.1)–(1.2). The maximal existence
time T is finite if and only if the gradient of the solution becomes unbounded from
below in finite time.

Proof. From the local existence in Lemma 2.3 it follows that if the gradient of
the solution becomes unbounded from below in finite time, then T <∞.

Let the life span T <∞ and assume that for some constant M > 0 we have

ux(t, x) ≥ −M, (t, x) ∈ [0, T )× R.(3.1)

On the other hand, by [23, Theorem 5.1] the solution u(t, x) satisfies the one-sided
Lipschitz condition, i.e.,

ux(t, x) ≤ 1

(maxx∈R u0x)−1 + t
≤ max

x∈R

u0x <∞.

Therefore the standard continuation argument enables us to extend the solution to
[0, T + δ) with δ > 0, and thereby one must have T =∞. This contradiction ensures
that

lim
t→T−

(min
x∈R

ux(t, x)) = −∞.
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The lower threshold is given in the following theorem.
Theorem 3.2. Consider the Cauchy problem (1.1)–(1.2) with the initial profile

u0 ∈ C1
b (R). If u0 is bounded and its gradient is negative with

inf
x∈R

∂xu0(x) < −1

2

[
1 +

√
1 + 4Q(0)V (u0)

]
,

then the life span T must be finite. Moreover,

T ≤
[
−1

2

(
1 +

√
1 + 4Q(0)V (u0)

)− inf
x∈R

∂xu0(x)

]−1

and

lim
t→T

(min
x∈R

{ux(t, x)}) = −∞.

Proof. Differentiation of (1.1) with respect to x leads to

dt + udx + d2 = Q ∗ ux − d, t ∈ (0, T ),

where d := ux(t, x). The smoothness of u ensures that there exists a smooth curve
x(α, t) satisfying

d

dt
x(α, t) = u(t, x(α, t)), x(α, 0) = α, α ∈ R.

Evaluating the above d− equation at x(α, t) and using Q ∗ ux ≤ A := Q(0)V (u0)
stated in Lemma 2.2, we have

d′ + d2 = Q ∗ ux(t, x(α, t))− d ≤ A− d, ′ := ∂t + u∂x

for t ∈ (0, T ). That is,

d′ ≤ −(d−M1)(d−M2), t ∈ (0, T ),(3.2)

with

M1 := −1

2
[1 +

√
1 + 4A], M2 := −1

2
[1−√1 + 4A].

For a fixed α ∈ R, if d0(α) := u′0(α) < M1, then we claim that

d(t) < d0(α), t ∈ (0, T ).(3.3)

If this would not be true, there is some t0 ∈ (0, T ) with d(t) < d0 on [0, t0) and
d(t0) = d0 by the continuity of d = ux in time. But in this case

d′ ≤ −(d0 −M1)(d0 −M2) < 0, t ∈ (0, t0).

An integration over (0, t0) yields

d(t0) < d0,

which contradicts our assumption that d(t0) = d0 for t0 < T . This implies that (3.3)
holds.
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Combining (3.3) with (3.2), we obtain

d′ ≤ −(d−M1)
2, t ∈ (0, T ),

and integration yields

d(t) ≤M1 +

[
t− 1

M1 − d0

]−1

.

From this we find that d(t) → −∞ before t reaches 1
M1−d0 . This proves that the

solution breaks down in finite time once ∂xu0 ≥M1 fails.
The blow-up rate at the breaking time is summarized in the next theorem.
Theorem 3.3. Let T be the maximal existence time of (1.1)–(1.2). If the life

span T is finite, then

lim
t→T

(
(T − t)

(
min
x∈R

{ux(t, x)}
))

= −1.

Proof. By Theorem 3.1 one has

lim
t→T

(
min
x∈R

{ux(t, x)}
)

= −∞.

For t ∈ [0, T ) the solution u is smooth and the curve x(α, t) is well defined by

d

dt
x(α, t) = u(t, x(α, t)), x(α, 0) = α, α ∈ R.

This implies

∂

∂α
x(α, t) = exp

(∫ t

0

ux(τ, x(α, τ))dτ

)
> 0, t ∈ (0, T ),

and hence x(α, t) is a one-to-one mapping from R to R. From these facts it follows
that there exists an α ∈ R such that

min
x∈R

{ux(t, x)} = ux(t, x(α, t)).

As done previously, we consider dynamics of d = ux along the curve x(α, t), using
−A ≤ Q ∗ ux ≤ A = Q(0)V (u0) to obtain

−A− d ≤ d′ + d2 ≤ A− d, t ∈ (0, T ).

Let ε ∈ (0, 1) be suitably small. Since limt→T d(t) = −∞, there exists t0 ∈ (0, T ) such
that

d(t) < B−(ε), t ∈ [t0, T ),(3.4)

with

B−(ε) =
−2A√

1 + 4Aε(2− ε)− 1
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being the smaller root of (ε2 − 2ε)d2 − d+ A = 0. Otherwise there exists δ > 0 such
that

d(t) < B−(ε), t ∈ (t0, t0 + δ),

and for δ < T − t0
d(t0 + δ) = B−(ε).

Hence for d(t) < B−(ε) on (t0, t0 + δ),

d

dt
d(t) ≤ A− d− d2 ≤ −(1− ε)2d2 < 0, t ∈ (t0, t0 + δ).

Integration gives

d(t0 + δ) < d(t0) < B−(ε).

This contradiction shows that

d ≤ B−(ε), t ∈ [t0, T );

therefore

d′ ≤ −(1− ε)2d2, t ∈ [t0, T ).(3.5)

On the other hand, let

B+(ε) =
−2A√

1 + 4Aε(2 + ε) + 1
,

which is the bigger root of (ε2 + 2ε)d2 − d−A = 0. We find that B−(ε) < B+(ε) and

d(t) < B+(ε), t ∈ (t0, T ).

This gives (ε2 + 2ε)d2 − d−A > 0, yielding

d′ ≥ −(d2 + d+A) ≥ −(1 + ε)2d2, t ∈ (t0, T ).(3.6)

A combination of (3.5) with (3.6) gives

−(1 + ε)2d2 ≤ d′ ≤ −(1− ε)2d2, t ∈ (t0, T ).

Note that d is locally Lipschitz on (t0, T ) and so is 1/d on (t0, T ). The above inequality
leads to

(1− ε)2 ≤
(
1

d

)′
≤ (1 + ε)2, t ∈ (t0, T ).

For t ∈ (t0, T ), integrate the above over (t, T ) to obtain

−(1− ε)2(T − t) ≤ 1

d(t)
≤ −(1 + ε)2(T − t), t ∈ (t0, T ).

Optimizing the above in terms of ε, one then has

lim
t→T

(T − t)d(t) = −1.

This completes the proof.
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4. Global smoothness—upper threshold. With the breakdown criterion in
section 2, we are ready to discuss the upper threshold for the global existence of the
smooth solution to (1.1)–(1.2).

Theorem 4.1. Consider the Cauchy problem (1.1)–(1.2) with the initial profile
u0 ∈ C1

b (R). If u0 is bounded with the maximal variation V (u0) ≤ 1
4Q(0) and its

gradient is above an upper threshold, i.e.,

inf
x∈R

∂xu0(x) ≥ −1

2

[
1 +

√
1− 4Q(0)V (u0)

]
,

then the smooth solution exists for all time and satisfies

∂xu(t, x) ≥ −1

2

[
1 +

√
1− 4Q(0)V (u0)

]
.

Proof. To show the global existence of the smooth solution it suffices to establish
an a priori lower bound for the gradient of solution ux. As argued earlier, we evaluate
d := ux along the particle path x(α, t) to obtain

d′ + d2 = Q ∗ ux(t, x(α, t))− d(t).

Noting that the lower bound of Qux is −A = −V (u0)Q(0), we find that

d′ ≥ −A− d− d2 = −(d−A1)(d−A2),

where

A1 = −1

2
[1 +

√
1− 4A], A2 = −1

2
[1−√1− 4A].

Now let q solve the following problem:

d

dt
q(t) = −(q −A1)(q −A2), q(0) = d0.

Then the comparison of the above differential relations yields

d− q ≥ (d0 − q(0)) exp
(
−
∫ t

0

(d+ q + 1)dτ

)
= 0, t > 0.

However, q can be solved explicitly as

q(t) =

[
A1 −A2

d1 −A1

d0 −A2
exp (A2 −A1)t

] [
1− d1 −A1

d0 −A2
exp (A2 −A1)t

]−1

.

Therefore for A2 > d0 ≥ A1 one has d(t) ≥ q(t) ≥ A1; for d0 ≥ A2 one has d(t) ≥
q(t) ≥ A2. The possible breakdown occurs only when d0 < A1 because

q(t∗) = −∞, t∗ =
1

A2 −A1
log

d1 −A2

d0 −A1
> 0.

The lower bound of d cannot be ensured for d0 < A1. However, d0 ≥ A1 is sufficient
to ensure the global existence of the smooth solution.
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5. L1 stability of shock profiles. Let us rewrite (1.1) as

ut + f(u)x = Q ∗ u− u, f = u2/2.(5.1)

A shock wave with speed s ∈ R is a solution of (5.1) of the form U(x − st), with
U approaching two different shock states u± at far field. The function U formally
satisfies the equation

−sU ′ + f(U)′ = Q ∗ U − U, U(±∞) = u±.

The critical threshold phenomenon revealed in the previous sections suggests that the
smooth shock profile is possibly subject to some constraints on the shock strength.

Indeed the existence of the shock profiles for (5.1) with convex flux function f has
been proved [23, Theorem 3.1], which we state below, for Q = 1

2e
−|x|, for the reader’s

convenience.
Theorem 5.1. Assume f ′′ > 0. Then the Lax shock condition

f ′(u+) < s < f ′(u−)(5.2)

and the Rankine–Hugoniot shock condition

H(u+) = 0, H(u) ≡ −s(u− u−) + f(u)− f(u−),(5.3)

are necessary conditions for the existence of a traveling wave solution

U(z ≡ x− st), lim
z→±∞U(z) = u±,

for (5.1). Conversely, if (5.2) and (5.3) hold, then a sufficient condition for the
existence of such a traveling wave is

4 sup
u+<u<u−

{−f ′′(u)H(u)} ≤ 1,

and a necessary condition is

4{−f ′′(u∗)H(u∗)} ≤ 1.

Here u∗ is defined by

f ′(u∗) = s.

Note that for the Burgers’ flux f = u2/2, the shock speed by the Rankine–
Hugoniot relation (5.3) becomes s = u++u−

2 . If the shock condition (5.2), i.e.,

u+ < u−

holds, then there exists such a traveling wave if and only if

|u+ − u−| ≤
√
2.(5.4)

This shows that the traveling wave solutions of the R-C-E equation give narrower
shock layers than those of the viscous Burgers’ equation.

Recall that the solution operator

S(t) : L∞(R)→ L∞(R), t ≥ 0,
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satisfies the nice properties listed in section 2, which ensures that S(t) can be well
extended to L1(R) + L∞(R) and preserves all those properties.

To reformulate the stability problem, we introduce the following set:

A := U + L1(R),

which is a complete metric space with the metric

ρ(a1, a2) = ‖a1 − a2‖1.
We also set two subspaces of A,

A1 := {U(·+ k), k ∈ R}
and

A2 = {a ∈ A : lim
t→∞S(t)a exists and lim

t→∞S(t)a ∈ A1}.

Equipped with the above notations, we see that proving the stability result in
Theorem 1.2 reduces to proving the relation

A ∩ [u+, u−] ⊂ A2,(5.5)

provided S(t)a is smooth.
We introduce the ω-limit set of a as

ω(a) = ∩s≥0∪t≥s{S(t)a}.
This ω-limit set is invariant for S(t). In fact, the definition implies that b ∈ ω(a) if
and only if there is a sequence {tk} → ∞ such that

ρ(S(tk)a, b)→ 0.

The following lemma plays a critical role in proving (5.5).
Lemma 5.2. If a, b ∈ A ∩ [u+, u−] and a− b does not keep same sign on R, then

‖S(t)a− S(t)b‖1 < ‖a− b‖1, t > 0.

Proof. By Kružkov’s argument [10] we have∫ T

0

∫
R

{|u− v|φt + sgn(u− v)[f(u)− f(v)]φx}dxdt

≥
∫ T

0

∫
R

{|u− v| − sgn(u− v)G ∗ (u− v)}φdxdt,

where φ is an arbitrary nonnegative test function. Thus, by taking φ(x, t) = χ(t)ψ(x, t),
letting ψ = 1 − gε(|x − x0| −M(T − t)) with M = sup|f ′| tend to the function that
is identically one, and letting χ(t) approximate the indicator function of the interval
[0, t], we conclude

(5.6)

‖a− b‖1 − ‖S(t)a− S(t)b‖1 ≥
∫

R

|S(t)a− S(t)b| − sgn(a− b)G ∗ (S(t)a− S(t)b)dx.
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Using the monotonicity of S(t) we see that if a − b changes sign on R, then so does
S(t)a− S(t)b. Note that since ‖Q‖1 = 1, we find that∫

R

|u| − sign(u)Q ∗ udx = 0

if and only if u does not change sign or u ≡ 0. This shows that the right-hand side of
(5.6) is positive if a− b changes sign on R.

Armed with the above lemma we proceed to complete the stability proof via the
following steps, which have become standard since the work by Osher and Ralston
[16] and Serre [18].

First we restrict our stability proof to the initial data in

N(U, k1, k2) := {a ∈ A, U(x+ k1) ≤ a(x) ≤ U(x+ k2), for some k1, k2 ∈ R},
and we can later extend our argument to a larger class using the following dense
lemmas.

Step 1 (dense argument). We first show that both A1 and A2 are complete
subspaces of A.

Lemma 5.3. Let U be the monotone shock profile; then Ai, i = 1, 2, are close in
A.

Proof. We first show the closeness of A1. It is easy to see that for any k ∈ R,
U(x+ k) ∈ A since

‖U(·+ k)− U(·)‖1 = |k(u+ − u−)| <∞.
We assume U(x+ kn) converges in A; then it is a Cauchy sequence. Note that

‖U(·+ kn)− U(·+ km)‖L1 = |(kn − km)(u+ − u−)|
implies kn is also a Cauchy sequence in R. Let its limit be k; then by letting m→∞
in the above equation, one finds that the limit of U(x+ kn) is U(x+ k) ∈ A1.

We now turn to showing the closeness of A2. Let ak ∈ A2 be a Cauchy sequence
with its limit being a ∈ A. We need to show a ∈ A2. Note that for each ak ∈ A2

we have that limt→∞ S(t)ak = ãk ∈ A1 exists. Hence ãk is a Cauchy sequence in the
complete metric space A1, for

‖ãk − ãl‖1 = lim
t→∞ ‖S(t)ak − S(t)al‖1 ≤ ‖ak − al‖1.

We denote the limit of ãk by ã as k →∞, which, when combined with the closeness
of A1, implies that ã ∈ A1. Therefore a ∈ A2 since

‖S(t)a− ã‖1 ≤ ‖S(t)a− S(t)ak‖1 + ‖S(t)ak − ãk‖1 + ‖ãk − ã‖1 → 0

as k →∞ and t→∞.
Lemma 5.4. For any given k1, k2 ∈ R, the set N(U, k1, k2) is dense in A ∩

[u+, u−].
The proof can be done as in [16]; the details are omitted.
Step 2 (compact criteria).
Lemma 5.5. For any k1, k2 ∈ R, the ω-limit set ω(N(U, k1, k2)) is not empty.
Proof. It suffices to show that ∪t≥0{S(t)a} is precompact for any a ∈ N(U, k1, k2).

Indeed, due to a− U ∈ L1 and the L1 contraction of S(t) we have

‖S(t)a− U‖1 = ‖S(t)a− S(t)U‖1 ≤ ‖a− U‖1 <∞, t ≥ 0.
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The L1 equicontinuity follows from the fact that

‖S(t)a(x+ h)− S(t)a(x)‖1 ≤ ‖a(x+ h)− a(x)‖1 → 0

uniformly in time as h goes to zero. Using the semigroup property of S(t), we have

U(x+ k1) ≤ S(t)a ≤ U(x+ k2), t ≥ 0.

Hence

||S(t)a−U(x)||L1(|x|>M)≤ max{‖U(·+k1)−U‖L1(|x|>M), ‖U(·+k2)−U‖L1(|x|>M)}→0

uniformly in t as M goes to ∞.
When recalling the Frechet–Kolmogorov–Riesz compactness theorem, the above

facts yield that ∪t≥0{S(t)a} is precompact.
Step 3 (time-invariance).
Lemma 5.6. Let b ∈ ω(N(U, k1, k2)). Then for any given k ∈ R

‖b− U(·+ k)‖1 = ‖S(t)b− U(·+ k)‖1.

Proof. Since b ∈ ω(N(U, k1, k2)), we see that there exists a ∈ N(U, k1, k2) and a
sequence {tn} such that tn →∞ as n→∞ and

lim
n→∞ ‖S(tn)a− b‖1 = 0.

Given any k ∈ R, by contraction of S(t) we know that

‖S(t)a− U(x+ k)‖1 = ‖S(t)a− S(t)U(x+ k)‖1
is decreasing in time and thus admits a limit ck ≥ 0 as t→∞, i.e.,

lim
t→∞ ‖S(t)a− U(x+ k)‖1 = ck ≥ 0.

Letting t = tn in the above equation and passing to the limit, we have

‖b− U(·+ k)‖1 = ck.

Note that if b ∈ ω(a), then S(t)b ∈ ω(a) (ω is invariant under the flow); thereby

‖S(t)b− U(·+ k)‖1 = ck.

Therefore

‖S(t)b− U(·+ k)‖1 = ‖b− U(·+ k)‖1 ∀t > 0, k ∈ R.

We are now ready to prove (5.5). We first prove

N(U, k1, k2) ⊂ A2.

By Lemma 5.5 we know that ω(N(U, k1, k2)) is not empty. For a ∈ N(U, k1, k2)
and b ∈ ω(a), we need to show that there exists a k ∈ R such that

b = U(x+ k).
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Lemma 5.6 shows that

‖b− U(·+ k)‖1 = ‖S(t)b− U(·+ k)‖1 = ck.

Noting that U(x+ k) is the fixed point of S(t), Lemma 5.2 shows that b− U(x+ k)
must stay with one sign.

Therefore, choosing

k =

∫
R

(a− U)dx/(u+ − u−)

gives

ck =

∫
R

[b− U(·+ k)] =

∫
R

[a− U(·+ k)] = 0.

On the other hand, since the initial data a are assumed to be above the critical
threshold, ∂x(S(t)a) is uniformly bounded with respect to t, and hence b is Lipschitz
continuous. This regularity combined with the above fact yields

b = U(x+ k).

We now conclude the proof of (5.5). Let a ∈ A ∩ [u+, u−]. We need to show
a ∈ A2.

Using Lemma 5.4 shows that there exists an ∈ N(U, k1, k2) ∈ A such that ‖an −
a‖1 → 0 as n→∞. By the above proved fact we see that there exists kn such that

lim
t→∞ ‖S(t)an − U(·+ kn)‖1 = 0.

This tells us that an ∈ A2. Due to the closeness of A2, the limit a also belongs to A2.
Therefore there exists a k such that

lim
t→∞ ‖S(t)a− U(·+ k)‖1 = 0;

as argued above, the constant k as the limit of
∫

R
(an − U)dx/(u+ − u−) is∫

R

(a− U)dx/(u+ − u−)

since | ∫ (an− a)dx| ≤ ‖an− a‖ → 0 as n→∞. This completes the proof of (5.5) and
thereby of Theorem 1.2.
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Abstract. In this study, we are mainly interested in error estimates of interpolation, using
smooth radial basis functions such as multiquadrics. The current theories of radial basis function
interpolation provide optimal error bounds when the basis function φ is smooth and the approximand
f is in a certain reproducing kernel Hilbert space Fφ. However, since the space Fφ is very small
when the function φ is smooth, the major concern of this paper is to prove approximation orders
of interpolation to functions in the Sobolev space. For instance, when φ is a multiquadric, we
will observe the error bound o(hk) if the function to be approximated is in the Sobolev space of
smoothness order k.
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multiquadric, “shifted” surface spline
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1. Introduction. Radial basis function interpolation is a very useful and con-
venient tool for multivariate scattered data approximation problems. Its strengths
are as follows: (i) it facilitates the evaluation of the approximant; (ii) the accuracy of
approximation is usually very satisfactory provided the approximand f is reasonably
smooth; (iii) there is enough flexibility in the choice of basis functions. A function
φ : Rd → R is radial in the sense that φ(x) = Φ(|x|), where | · | is the usual Euclidean
norm.

Let Πm denote the subspace of C(Rd) consisting of all algebraic polynomials of
degree less than m on R

d. Suppose that a continuous function f : R
d → R is known

only at a set of discrete points X := {x1, . . . , xN} in Ω ⊂ R
d. Radial basis function

interpolation to f on X starts with choosing a basis function φ, and then it defines
an interpolant by

af,X(x) :=

�∑
i=1

βipi(x) +

N∑
j=1

αjφ(x− xj),(1.1)

where p1, . . . , p� is a basis for Πm and the coefficients αj (j = 1, . . . , N) and βi
(i = 1, . . . , �) are chosen to satisfy the linear system

af,X(xj) = f(xj), j = 1, . . . , N,(1.2)

N∑
j=1

αjpi(xj) = 0, i = 1, . . . , �.

Here, the set of scattered points X has the nondegeneracy property for Πm; that is, if
p ∈ Πm and p(xj) = 0, j = 1, . . . , N , then p = 0. It guarantees that the interpolation
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method reproduces the polynomial space Πm, i.e., ap,X = p for any p ∈ Πm. For a
wide choice of functions φ and polynomial orders m, the existence and uniqueness of
the solution of the linear system (1.2) is ensured when φ is a conditionally positive
definite function (see [M]).

Definition 1.1. Let φ : R
d → R be a continuous function. We say that φ is

conditionally positive definite of order m ∈ N := {1, 2, . . .} if for every finite set of
pairwise distinct points X = {x1, . . . , xN} ⊂ R

d and for every α = (α1, . . . , αN ) ∈
R
N \ 0 satisfying

N∑
j=1

αjp(xj) = 0, p ∈ Πm,

the quadric form

N∑
i=1

N∑
j=1

αiαjφ(xi − xj)

is positive definite.
In what follows, we assume φ = Φ(| · |) to be conditionally positive definite of

order m. Also, the function φ is considered as a tempered distribution in D′(Rd),

and we assume that its Fourier transform φ̂ coincides on R
d \ 0 with some continuous

function while having a certain type of singularity (necessarily of a finite order) at

the origin, i.e., φ̂ is of the form

| · |nφ̂ = F > 0, n ≥ 0, and F ∈ L∞(Rd).

Among many radial basis functions, our major concern is with smooth functions φ
such as multiquadrics φ(x) := cm,d(|x|2 + λ2)m−d/2, d odd, m > d/2, where cm,d is a
suitable constant.

For a given basis function φ, there arises a function space

Fφ :=
{
f : |f |φ :=

∫
Rd

|f̂(θ)|2
φ̂(θ)

dθ <∞
}

,(1.3)

which is called reproducing kernel Hilbert space (or “native” space) for φ ([MN2] and
[WS]). For all x ∈ Ω, f ∈ Fφ, bounds for the interpolation error are usually of the
form

|f(x)− af,X(x)| ≤ Pφ,X(x)|f |φ.(1.4)

Here Pφ,X is the power function that evaluates the norm of the error functional at x:

Pφ,X(x) = sup
|f |φ �=0

|f(x)− af,X(x)|
|f |φ .

In fact, when the basis function φ is smooth, the interpolation method provides opti-
mal asymptotic decay of errors, but the space Fφ is very small. The approximands f
need to be extremely smooth for effective error estimates. However, practically, most
multivariate scattered data are not arising from extremely smooth functions. An error
analysis for the case that the underlying function is reasonably smooth needs to be
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provided. Thus, the main objective of this paper is to prove asymptotic error bounds
of interpolation (by using smooth basis function φ) to functions in a larger space,
especially in the Sobolev space.

Asymptotic approximation properties are usually quantified by the notion of ap-
proximation order. In order to make this notion feasible, we measure the “density”
of X (in Ω) by

h := h(X; Ω) := sup
x∈Ω

min
xj∈X

|x− xj |.(1.5)

Here we assume that Ω ⊂ R
d is an open bounded domain with both cone property

and Lipschitz boundary. In particular, for a given set X, we adopt the scaled basis
functions φω := φ(·/ω), where

ω := ω(h)

is a parameter depending on h such that h/ω → 0 as h→ 0, and we use the notation

sf,X(x) :=

�∑
i=1

βipi(x) +

N∑
j=1

αjφω(x− xj)(1.6)

to differentiate from the notation af,X in (1.1). Then our goal is to provide error
estimates of f − sf,X of the following form: Let φ be a smooth basis function (e.g.,
multiquadric). Under some suitable conditions of the parameter ω (e.g., ω = hr with
r ∈ [0, 1)), we will show the asymptotic property

‖f − sf,X‖L∞(Ω) = o(hk), h→ 0,

provided that f ∈ W k
∞(Ω), the L∞-Sobolev space of smoothness order k. To the

writer’s knowledge, this is the first paper dedicated to the study of spectral approxi-
mation order of interpolation to the functions in the Sobolev space W k

∞(Ω). Indeed,
Buhmann and Dyn also explored the spectral convergence order of multiquadric in-
terpolation in the paper [BuD]. However, this result considers interpolants on h · Zd

under some conditions of the underlying function f , while we work with a finite subset
X in Ω.

The reader who is interested in knowing more about the state of the art in the
area of radial basis function methods may find it useful to consult with the surveys
[Bu], [D], and [P]. Other important sources are the works of Wu and Schaback [WS]
and especially those of Madych and Nelson [MN1], [MN2], who developed a theory of
interpolation based on reproducing kernel Hilbert spaces. Interpolation by compactly
supported basis functions has been studied by Wendland [W].

The following notations will be used throughout this paper. For any k ∈ N, the
Sobolev space is defined by

W k
p (Ω) :=

{
f : ‖f‖k,Lp(Ω) :=

( ∑
|α|1≤k

‖Dαf‖pLp(Ω)

)1/p

<∞
}

with 1 ≤ p ≤ ∞. Several different function norms are used. When g is a matrix or a
vector, ‖g‖p indicates its p-norm with 1 ≤ p ≤ ∞. For x ∈ R

d, |x| := (x2
1+· · ·+x2

d)
1/2

stands as its Euclidean norm. The Fourier transform of f ∈ L1(R
d) is defined as

f̂(θ) :=

∫
Rd

f(t) exp(−iθ · t) dt.
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Also, for a function f ∈ L1(R
d) we use the notation f∨ for the inverse Fourier trans-

form. In particular, the Fourier transform can be uniquely extended to the space of
tempered distributions on R

d.

2. The extension of a function f in W k
∞(Ω). Our analysis in this paper

requires the construction of a suitable extension of a given function f ∈W k
∞(Ω) to a

function on R
d. Indeed, the lengthy assumptions on Ω in section 1 assure the existence

of a function on R
d whose restriction to Ω agrees with f . The following result is cited

from literature.
Theorem 2.1 (Brenner and Scott [BrS]). Suppose that Ω has a Lipschitz bound-

ary. Then for every function f ∈W k
p (Ω), there is an extension mapping E :W k

p (Ω)→
W k

p (R
d) defined for all nonnegative integer k and real numbers p in the range 1 ≤ p ≤

∞ satisfying Ef |Ω = f for all f ∈W k
p (Ω) and

‖Ef‖k,Lp(Rd) ≤ c‖f‖k,Lp(Ω),

where the constant c is independent of f .
The construction of our suitable extension of f ∈ W k

∞(Ω) to a function on R
d

can be done in two steps. First, according to Theorem 2.1, there exists a function
Ef ∈ W k

∞(R
d) such that Ef |Ω = f . Second, we let σ

Ω
be a C∞-cutoff function such

that σΩ
(x) = 1 for x ∈ Ω and σ

Ω
(x) = 0 for |x| > r with a sufficiently large r > 0.

Then we define an extension fo by

fo := σ
Ω
Ef.

Of course, fo is compactly supported and fo(x) = f(x) for x ∈ Ω. Indeed, for a
large part of this paper, we wish to work with fo and not f . For convenience, we will
henceforth write f for fo. Therefore, here and in what follows, without great loss, we
assume that an approximand f ∈W k

∞(Ω) is supported in a sufficiently large compact
set in R

d such that f ∈W k
∞(R

d).

3. Error bounds. In this section, we will provide a (modified) method of error
analysis of interpolation to functions in the Sobolev space W k

∞(Ω). In addition, we
obtain a sufficient condition for the optimal convergence order ‖f − sf,X‖L∞(Ω) =

o(hk) with f ∈ W k
∞(Ω). For this purpose, we start with finding a mollified function

(say, fH) of a given (underlying) function f . The function fH is supposed to be in
the space Fφω in (1.3) and should be a good approximation to f in some sense. In
order to define a mollification fH of f , we use a nonnegative C∞-cutoff function

σ : Rd → [0, 1].(3.1)

Here, for convenience, we assume that the function σ is radially symmetric and supp
σ lies in the Euclidean ball B1 = {x ∈ R

d : |x| ≤ 1}, and we assume that σ = 1 on
B1/2 and ‖σ‖L∞(Rd) = 1. Then, letting σδ := σ(·/δ) with δ > 0, we construct two
functions fH and fT by

fH := σδ(h·)∨ ∗ f,(3.2)

fT := f − σδ(h·)∨ ∗ f.

It clearly follows that

f = fH + fT .
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Also, due to the fact that the interpolation operator sf,X is linear, it is useful to split
the error f − sf,X as follows:

f − sf,X = (fH − sfH ,X) + (fT − sfT ,X).

Accordingly, this section falls naturally into two parts. In the first, since fH ∈ Fφω ,
we estimate the term fH − sfH ,X by applying the well-known method in (1.4). The
second part of the section deals with fT − sfT ,X . Our main tool for this case is to use
stability results on the interpolation process. Afterward, the final result is stated in
Theorem 3.6

From the papers (see, e.g., [WS], [MN2]), we cite the following lemma.
Lemma 3.1. Let aX,f in (1.1) be an interpolant to f on X = {x1, . . . , xN}. Given

φ and m, for all functions f in the space Fφ, there is an error bound of the form

|f(x)− af,X(x)| ≤ |f |φPφ,X(x),
where Pφ,X(x) is the norm of the error functional at x, i.e.,

Pφ,X(x) = sup
|f |φ �=0

|f(x)− af,X(x)|
|f |φ .(3.3)

The following lemma estimates the error fH − sfH ,X .
Lemma 3.2. Let fH := σδ(h·)∨ ∗ f with σδ(h·) as the cutoff function in (3.1),

and let sfH ,X in (1.6) be the interpolant to fH on X using the basis function φω. Let
ω be a parameter depending on h, i.e., ω = ω(h). Then, for every f ∈ L2(R

d), we
have an estimate of the form

|fH(x)− sfH ,X(x)| ≤ Pφ,X/ω(x/ω)Mφ,ω(δ/h)‖f‖L2(Rd), x ∈ Ω,
where Mφ,ω(r), r > 0, is defined by

Mφ,ω(r) := sup
θ∈Br

|φ̂ω(θ)|−1/2.(3.4)

Proof. Recalling the definition of sfH ,X in (1.6), one simply notes that the function
sfH ,X(ω·) can be considered as an interpolant (employing the shifts of φ) to the scaled
function fH(ω·) on X/ω, i.e.,

sfH ,X(ω·) =
�∑

i=1

βipi(x) +

N∑
j=1

αjφ(· − xj/ω) = afH(ω·),X/ω,

with af,X in (1.1). Then, since fH(ω·) belongs to the space Fφ, Lemma 3.1 can be
used directly to derive the bound

|fH(x)− sfH ,X(x)| = |fH(ω·)− afH(ω·),X/ω|(x/ω)(3.5)

≤ Pφ,X/ω(x/ω)|fH(ω·)|φ.
Now, in order to estimate the term |fH(ω·)|φ, we find from the definition of fH in
(3.2) that

f̂H(ω·)(θ) = ω−dσδ(hθ/ω)f̂(θ/ω).
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Then the explicit formula of the norm | · |φ in (1.3) induces by change of variables
that

|fH(ω·)|2φ = ω−d
∫

Rd

∣∣σδ(hθ)f̂(θ)∣∣2φ̂−1(ωθ)dθ

≤ sup
θ∈Bδ/h

|φ̂ω(θ)|−1‖f‖2L2(Rd).

Due to the expression (3.5), we finish the proof.
Now, we are going to turn to the estimate of the error fT −sfT ,X with fT in (3.2).

Since there is no guarantee that the function fT belongs to the space Fφ, the classical
method of the error analysis of interpolation is not applicable to this case. Hence,
in order to make the estimate fT − sfT ,X feasible, we employ the stability results on
interpolation process. To this end, we define the separation distance within X by

q := qX := min
1≤i �=j≤N

|xi − xj |/2.(3.6)

It is well known from literature (e.g., [NSW2], [S1]) that as q is getting smaller, the
condition number of the interpolation matrix becomes larger. Also, the irregularity
of a set X can be measured by the ratio h/q. In particular, we assume that the sets of
scattered points considered in this study are sets of quasi-uniformly distributed points.
These sets satisfy the following property: There exists a constant η > 0 independent
of X such that

2q ≤ h ≤ ηq.(3.7)

This condition implies that the number of the scattered points in the set X is bounded
above by a quantity that depends on the density of X, i.e., N = O(h−d). On the
other hand, we particularly introduce a function ϕ defined by

ϕ := σ∨
ε = σ(·/ε)∨,(3.8)

where σε is the cutoff function in (3.1). For the purpose of simplifying the following
analysis, we assume ε > 0 to be any fixed number satisfying the condition

ε < δ/η(3.9)

with δ in (3.2). It is obvious that the Fourier transform of ϕ is ϕ̂ = σε, which is
supported in the ball Bε. Furthermore, since σ is a C∞-cutoff function, ϕ(x) decays
fast as x tends to ∞. Indeed, the function ϕ is employed to use the stability results
on the interpolation process. It first requires us to show that ϕ is a conditionally
positive definite radial function. For this proof, we find the following identity:

N∑
i=1

N∑
j=1

αiαjϕ(xi − xj) =

∫
Rd

ϕ̂(θ)

∣∣∣∣∣∣
N∑
j=1

αje
ixj ·θ

∣∣∣∣∣∣
2

dθ

for any α = (α1, . . . , αN ) ∈ R
N \ 0. Since the map θ �→ ∑N

j=1 αje
ixj ·θ, θ ∈ R

d, has
zeros at most on a set of measure zero, we see that the integral in the right-hand side
of the above identity is always positive. It is asserted from Definition 1.1 that the
function ϕ is conditionally positive definite of order m = 0. Also, since the cutoff
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function σε is radially symmetric, its inverse Fourier transform ϕ is also a radial
function (see [S3]). Then an interpolant to f on X using the (scaled) function

ϕq(x) := ϕ(x/q)

is of the form

gf,X(x) =

N∑
j=1

βjϕq(x− xj).(3.10)

One simply notes that the matrix Aϕq := (ϕq(xi − xj))i,j=1,...,N is positive definite.
Proposition 3.3. Let X be a q-separated set with q in equation (3.6). Let

bf := (β1, . . . , βN )
T , and let Aϕq := (ϕq(xi−xj))i,j=1,...,N be the interpolation matrix

by ϕq. Then we have the following properties:
(a) ‖A−1

ϕq
‖2 ≤ c1 for some c1 > 0.

(b) ‖A−1
ϕq
‖1 = ‖A−1

ϕq
‖∞ ≤ c2 ‖A−1

ϕq
‖2 for some c2 > 0.

(c) ‖bf‖∞ ≤ c3‖f‖L∞(Rd) for some c3 > 0.
Proof. Since the interpolation matrix Aϕq has the separation distance 1, the

matrix norm ‖A−1
ϕq
‖2 is bounded by a constant (see [NSW2]). Furthermore, the basis

function ϕq decays fast around ∞, and the inequality in (b) is proved by a direct
application of Theorem 3.11 in the paper [BSW]. The identity ‖A−1

ϕq
‖1 = ‖A−1

ϕq
‖∞ is

an obvious consequence of symmetry. Finally, to prove (c), we find that the matrix
bf can be written as

bf = A−1
ϕq
f

with f := (f(x1), . . . , f(xN ))
T . After some direct calculations, one can prove the

inequality ‖bf‖∞ ≤ ‖A−1
ϕq
‖1‖f‖L∞(Rd). Hence, by using (b), the relation in (c) is

immediate.
Before estimating the error fT − sfT ,X , we cite the following result.
Lemma 3.4 (Yoon [Y1]). Let fT = f −σδ(h·)∨ ∗f with σδ(h·) the cutoff function

in (3.1). Then, for every f ∈W k
∞(R

d) with k a positive integer, we have the following
decaying property:

‖fT ‖L∞(Rd) = ‖f − fH‖L∞(Rd) = o(hk).

Lemma 3.5. Let X be a set of scattered points with the condition (3.7), and let
sfT ,X in (1.6) be the interpolant to fT on X using φω, where fT = f −σδ(h·)∨ ∗f and
ω = ω(h). Then, for every f ∈ W k

∞(Ω) with k a positive integer, there is an error
bound of the form

|fT (x)− sfT ,X(x)| ≤ o(hk)(1 + Pφ,X/ω(x/ω)Mφ,ω(δ/h)), x ∈ Ω,
as h→ 0, with Mφ,ω(r), r > 0, in (3.4).

Proof. Let us first define a function f̃ by

f̃ := h−kfT .

It is clear that h−ksfT ,X = sf̃ ,X . Then, we employ the interpolant gf̃ ,X in (3.10) to
derive the following bound:

h−k|fT (x)− sfT ,X(x)| ≤ |f̃(x)|+ |gf̃ ,X(x)|+ |gf̃ ,X(x)− sf̃ ,X(x)|.
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The convergence property ‖fT ‖L∞(Rd) = o(hk) in Lemma 3.4 yields that ‖f̃‖L∞(Rd) =
o(1) as h tends to 0. Also, by applying Proposition 3.3, we get

|gf̃ ,X(x)| ≤ ‖bf̃‖∞
N∑
j=1

ϕq(x− xj)

≤ c ‖f̃‖L∞(Rd) = o(1).

Here, since X is a q-separated set and the function ϕq decays fast around ∞, we can
easily check that

∑N
j=1 ϕq(·−xj) is uniformly bounded on Ω. Therefore, it remains to

show that the term gf̃ ,X − sf̃ ,X is bounded by o(1)Pφ,X/ω(x/ω)Mφ,ω(δ/h) as h→ 0.
For this, we claim that

sf̃ ,X = sgf̃,X ,X
.

In fact, this identity is immediate from the interpolation property f̃(xj) = gf̃ ,X(xj)
for any j = 1, . . . , N . Then, applying the same technique as in the proof of Lemma
3.2 gives us the bound

|sf̃ ,X(x)− gf̃ ,X(x)| ≤ Pφ,X/ω(x/ω)|gf̃ ,X(ω·)|φ, x ∈ Ω.(3.11)

Moreover, according to the definition of the norm | · |φ, we get

|gf̃ ,X(ω·)|2φ =
∫

Rd

∣∣∣∣∣∣
N∑
j=1

βje
ixj ·θ

∣∣∣∣∣∣
2

σ2
ε (qθ)φ̂

−1
ω (θ)q2ddθ(3.12)

≤M2
φ,ω(ε/q)

∫
Rd

∣∣∣∣∣∣
N∑
j=1

βjϕq(x− xj)

∣∣∣∣∣∣
2

dx.

Remembering the relations 1
q ≤ η

h in (3.7) and ε < δ
η in (3.9), we easily find that

ε
q ≤ ηε

h ≤ δ
h . Then since Mφ,ω(r) is monotonically increasing as r grows, it follows

that

Mφ,ω(ε/q) ≤Mφ,ω(δ/h).(3.13)

Also, since
∑N

j=1 ϕq(· − xj) is uniformly bounded, we have

∫
Rd

∣∣∣∣∣∣
N∑
j=1

βjϕq(x− xj)

∣∣∣∣∣∣
2

dx ≤ c‖bf̃‖2∞
∫

Rd

∣∣∣∣∣∣
N∑
j=1

ϕq(x− xj)

∣∣∣∣∣∣ dx(3.14)

≤ c′‖f̃‖L∞(Rd) = o(1)

by Proposition 3.3 and the condition N = O(h−d). Hence, inserting (3.13) and (3.14)
into (3.12), we arrive at the bound

|gf,X |φ ≤Mφ,ω(δ/h)o(1).

Together with (3.11), we complete the proof of this lemma.
From Lemma 3.2 and Lemma 3.5, we realize that one of the important ingredients

for the estimate f − sf,X is the term Mφ,ω(δ/h), δ > 0. Observing the definition of
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fH in (3.2) carefully, we find that the number δ can be chosen arbitrarily. Of course,
a certain choice of δ should induce a suitable bound of Pφ,X/ω(x/ω)Mφ,ω(δ/h), which
leads to a desirable estimate of f − sf,X . We are now ready to describe the main
result of this section.

Theorem 3.6. Let X be a set of scattered points with the condition (3.7), and
let sf,X in (1.6) be an interpolant to f on X using the basis function φω = φ(·/ω).
Let Mφ,ω(r), r > 0, be defined as in (3.4). Assume that there exists a constant δ0 > 0
such that

Pφ,X/ω(x/ω)Mφ,ω(δ0/h) ≤ o(hk).

Then, for every function f ∈W k
∞(Ω) with k a positive integer, we have an error bound

of the form

‖f − sf,X‖L∞(Ω) = o(hk).

4. Applications to special radial basis functions. We now turn to appli-
cations to special radial basis functions. Employing some known basis functions φ,
we will show that the interpolant sf,X provides optimal approximation orders for
f ∈W k

∞(Ω). All the examples here are based on Theorem 3.6.
Example 4.1. Let the radial basis function φ be chosen to be one of the following:
(a) φλ(x) := (−1)�m−d/2(|x|2 + λ2)m−d/2, d odd, m > d/2 (multiquadrics),
(b) φλ(x) := (−1)m−d/2+1(|x|2 + λ2)m−d/2 log(|x|2 + λ2)1/2, m > d/2, d even

(“shifted” surface splines).
(c) φλ(x) := (|x|2 + λ2)m−d/2, 0 < m < d/2 (inverse multiquadrics),

where d, m ∈ N and λ > 0, and where �s� indicates the smallest integer greater than
s. Note that we stress the parameter λ by using the notation φλ. We find (see [GS])
that the Fourier transform of φλ is of the form

φ̂λ = c(m, d)K̃m(λ·)| · |−2m,

where c(m, d) is a positive constant depending onm and d, and K̃ν(|t|) := |t|νKν(|t|) �=
0, t ≥ 0, with Kν(|t|) the modified Bessel function of order ν. It is well known from
literature (e.g., [AS]) that

K̃ν ∼ (1 + | · |(2ν−1)/2) exp(−| · |).

Then, for all θ ∈ Bδ/h, we have the bound φ̂λ(ωθ)
−1/2 ≤ c|ωδ/h|m exp(λωδ/2h) for a

constant c > 0. It leads to the inequality

Mφλ,ω(δ/h) ≤ c(δ)ω−d/2|ω/h|m exp(λωδ/2h),

where c(δ) is a constant depending on δ. On the other hand, due to Madych and
Nelson [MN3], we see that there exists a constant c′ > 0 independent of X such that

Pφλ,X/ω(x/ω) ≤ c exp(−c′λω/h)

for a sufficiently small h > 0. Since ωm−d/2 ≤ o(h−d/2) (see section 1), from the
above two inequalities, we arrive at the expression

Mφλ,ω(δ/h)Pφλ,X/ω(x/ω) ≤ c(δ)h−m−d/2 exp
(
−λω

h
(c′ − δ/2)

)
.(4.1)
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Here, we can choose a sufficiently small δ0 > 0 such that c′ − δ/2 > 0 for any δ ≤ δ0.
In particular, we assume ω to satisfy the relation

h| log h|1+r ≤ ω

for any fixed r > 0. Then, it follows that

exp

(
−λω

h
(c′ − δ0/2)

)
≤ exp (− λ| log h|1+r(c′ − δ0/2)

)
(4.2)

= hλ(c′−δ0/2)| log h|r .

Indeed, as h tends to 0, the number λ(c′ − δ0/2)| log h|r > 0 becomes arbitrarily
large. Hence, for any given k ∈ N, there exists a sufficiently small h0 > 0 such that
hλ(c′−δ/2)| log h|r ≤ o(hk+m+d/2) for any h ≤ h0. Consequently, together with (4.1)
and (4.2), we conclude that

Mφλ,ω(δ0/h)Pφλ,X/ω(x/ω) ≤ o(hk), h ≤ h0.

According to Theorem 3.6, we have the following result.
Theorem 4.1. Let φλ be one of the radial basis functions: multiquadrics, inverse

multiquadrics, and “shifted” surface splines. Let X be a set of scattered points with
the condition (3.7), and let sf,X in (1.6) be an interpolant to f on X using φλ(·/ω).
Assume that ω = ω(h) is chosen to satisfy the relation

h| log h|1+r ≤ ω

for any fixed r > 0. Then, for every f ∈ W k
∞(Ω) with k a positive integer, we have

an error estimate of the form

‖f − sf,X‖L∞(Ω) = o(hk) as h→ 0.

Corollary 4.2. Let φλ be one of the radial basis functions: multiquadrics,
inverse multiquadrics, and “shifted” surface splines. Let X be a set of scattered points
with the condition (3.7), and let sf,X in (1.6) be an interpolant to f on X using
φλ(·/ω). Assume that ω(h) = hs with s ∈ [0, 1) or ω(h) = h| log h|1+r with r > 0.
Then, for every f ∈W k

∞(Ω) with k a positive integer,

‖f − sf,X‖L∞(Ω) = o(hk) as h→ 0.

Remark. Recalling that the interpolant af,X in (1.1) uses the original (nonscaled)
basis function, we make an observation concerning the interpolants af,X in relation
to sf,X . Given a set X, assume that the interpolant af,X employs the basis function
φωλ instead of φλ. Then, one should realize that the interpolant af,X is identically
equal to sf,X , which uses φλ. The equality can be verified by the uniqueness of the
solution of the linear system (1.2). The reader is referred to the paper [Y2] for the
details of the proof.

Example 4.2. Let us consider the basis function φ whose Fourier transform φ̂ is
of the form

φ̂(θ) = exp(−|θ|a)
with 0 < a ≤ 1. In the case a = 1, the basis function φ becomes the so-called Poisson
kernel

φ =
cd

(1 + | · |2)(d+1)/2
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with a suitable constant cd. For any θ ∈ Bδ/h, we get φ̂(ωθ)
−1 ≤ exp((ωδ/h)a). It

leads to the inequality

Mφ,ω(δ/h) ≤ ω−d/2 exp((ωδ)a/ha).

Also, due to Madych and Nelson (see [MN3]), there exists a constant c′ > 0 indepen-
dent of X such that

Pφ,X/ω(x/ω) ≤ c exp(−c′ωa/ha)

for sufficiently small h > 0. Invoking the condition ω−d/2 ≤ o(h−d/2), we derive from
the above inequalities that

Mφ,ω(δ/h)Pφ,X/ω(x/ω) ≤ ch−d/2 exp
(
−ωa

ha
(c′ − δa)

)
.(4.3)

Now, in a similar fashion to the case of Example 4.1, we can choose a sufficiently small
δ0 > 0 such that c′ − δa > 0 for any δ ≤ δ0 . In particular, we assume ω to satisfy

ha| log h|1+r ≤ ωa

for any fixed r > 0. Then, it follows that

exp

(
−ωa

ha
(c′ − δa0 )

)
≤ exp (− | log h|1+r(c′ − δa0 )

)
= h| log h|r(c′−δa0 ).

Here, | log h|r(c′ − δa0 ) becomes arbitrarily large as h tends to 0. Thus, for any given
k ∈ N, there exists a sufficiently small h0 > 0 such that h| log h|r(c′−δa) ≤ o(hk+d/2) if
h ≤ h0. Therefore, together with (4.3), we conclude that

Mφλ,ω(δ/h)Pφλ,X/ω(x/ω) ≤ o(hk), h ≤ h0.

According to Theorem 3.6, we have the following result.
Theorem 4.3. Let φ be the basis function whose Fourier transform φ̂ is defined

by φ̂ = exp(−|x|a) with a ≤ 1. Let X be a set of scattered points with the condition
(3.7), and let sf,X in (1.6) be an interpolant to f on X using φλ(·/ω). Assume that
ω = ω(h) is chosen to satisfy the relation

h| log h|(1+r)/a ≤ ω

with a fixed number r > 0. Then, for every f ∈ W k
∞(Ω) with k a positive integer, we

have an error bound of the form

‖f − sf,X‖L∞(Ω) = o(hk) as h→ 0.

Corollary 4.4. Let φ be the function whose Fourier transform φ̂ is of the form
φ̂ = exp(−|x|a) with 0 < a ≤ 1. Let X be a set of scattered points with the condition
(3.7), and let sf,X in (1.6) be an interpolant to f on X using φλ(·/ω). Assume that
ω = hs with s ∈ [0, 1) or ω = h| log h|(1+r)/a with r > 0. Then, for every f ∈W k

∞(Ω)
with k a positive integer,

‖f − sf,X‖L∞(Ω) = o(hk) as h→ 0.
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Remark. The Gaussian function φ := exp(−α| · |2), α > 0, is not included in the
examples of section 4. Indeed, the “quadratic exponential” error bound exp(−c/h2),
c > 0, of its power function Pφ,X is necessary to obtain the condition

Pφ,X/ω(x/ω)Mφ,ω(δ0/h) ≤ o(hk)

for some δ0 > 0. However, it is not yet proven in the bounded domain case, but it
is shown only on all of R

d under certain circumstances. The reader is referred to the
manuscript [S3] for the details. More generally, for any given basis function φ, there

would be a general theorem on the bounds of Pφ,X in terms of φ̂. In fact, we can

easily check that Pφ,X is dependent only on the Fourier transform φ̂, more precisely,

on the decaying property of φ̂ (see [WS] and [MN2] for the details).
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STABILITY OF L∞ SOLUTIONS FOR HYPERBOLIC SYSTEMS
WITH COINCIDING SHOCKS AND RAREFACTIONS∗
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Abstract. We consider a hyperbolic system of conservation laws{
ut + f(u)x = 0,
u(0, ·) = u0,

where each characteristic field is either linearly degenerate or genuinely nonlinear. Under the assump-
tion of coinciding shock and rarefaction curves and the existence of a set of Riemann coordinates w,
we prove that there exists a semigroup of solutions u(t) = Stu0, defined on initial data u0 ∈ L∞.
The semigroup S is continuous w.r.t. time and the initial data u0 in the L1loc topology. Moreover, S
is unique and its trajectories are obtained as limits of wave front tracking approximations.

Key words. hyperbolic systems, conservation laws, well posedness

AMS subject classification. 35L65

PII. S0036141000377900

1. Introduction. Consider the Cauchy problem for a strictly hyperbolic system
of conservation laws {

ut + f(u)x = 0,
u(0, ·) = u0,

(1.1)

where u ∈ R
n and f : Ω �→ R

n is sufficiently smooth, Ω open. If the initial data u0

are of small total variation, the global existence was proved first in [18]. Moreover,
a series of papers [6, 7, 9, 10, 15] establishes the uniqueness and well posedness of
the Cauchy problem (1.1). However, when u0 has large total variation or, even more
generically, u0 belongs to L∞, the solution u may not exist globally in L∞ [20]: only
for special systems it is possible to consider initial data with large total variation. We
recall some of the results available in this direction.

(1) For scalar conservation laws, the entropy solution to (1.1) generates a con-
tracting semigroup w.r.t the L1 distance on a domain of L∞ data [21].

(2) For a general Temple class system, in [3, 5, 24] the existence and stability of
the entropy solution for initial data with arbitrarily large but bounded total
variation are proved.

(3) If all characteristic families are genuinely nonlinear and the system is Temple
class, the existence and stability for initial data in L∞ are proved in [12].

(4) For special 2×2 systems, in which one of the equations is autonomous, various
results have been proved in [4, 16], with initial data with unbounded total
variation.

An open question is whether the semigroup of solutions to the systems of case (2),
defined on all the initial data u0 with total variation arbitrary large but bounded, can
be extended to data in L∞. In many systems, in fact, some of the characteristic fields
are linearly degenerate, so that the results of [12] do not apply.
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An example is the 2× 2 traffic model considered in [2],{
ρt +

(
ρv
)
x

= 0,(
ρ(v + p(v))

)
t

+
(
ρv(v + p(ρ))

)
x

= 0,
(1.2)

where ρ(t, x) is the density of cars in the point (t, x) and v(t, x) is their velocity. In
this model, the first eigenvalue is genuinely nonlinear and the integral curves of the
corresponding right eigenvector are straight lines. The second eigenvector is linearly
degenerate, so that the assumption of coinciding shock and rarefaction curves is veri-
fied for this system. The existence of a set of Riemann coordinates follows by the fact
that the system is 2× 2.

Another example is a simple 2× 2 model for chromatography,


u1
t +

(
u1

1 + u1 + u2

)
x

= 0,

u2
t +

(
u2

1 + u1 + u2

)
x

= 0,

where all characteristic fields are linearly degenerate and the integral curves of the
eigenvalues are straight lines. The major difficulty here in applying the results of [12]
is the fact that the total variation of the solution does not decay in time.

The aim of this paper is to prove that, at least in the case where the eigenvalues
are genuinely nonlinear or linearly degenerate and shocks and rarefactions coincide,
the solution to (1.1) can be defined for u0 ∈ L∞.

This result is particularly interesting from the point of view of control theory.
Consider for example the traffic model (1.2) in the quarter plane t ≥ 0, x ≥ 0: this
system describes the flow of cars in a highway, given a boundary condition ũ(t) on
the line x = 0. The function ũ can be thought of as a control on the system: we are
allowed to choose ũ in order to minimize some prescribed cost functional, for example,
the average time spent by a car to arrive from x = 0 to x = x̄. As shown in [1], in
general the compactness of the attainable set can be obtained only with L∞ boundary
data.

To illustrate the heart of the matter, we assume that the system (1.1) admits
a system of Riemann coordinates w ∈ R

n, and that shock and rarefaction curves
coincide in Ω. Moreover, we assume that each characteristic field is linearly degenerate
or genuinely nonlinear. Differently from [11], we do not assume that rarefaction curves
are straight lines. We consider a set E of the form

E
.
=
{
u ∈ Ω : w(u) ∈ [ai, bi], i = 1, . . . , n

}
.

With L∞(R;E) we denote the space of L∞ functions with values in E. The main
result of this paper is the following.

Theorem 1.1. There exists a unique semigroup S : [0,+∞) × L∞(R;E) �−→
L∞(R;E) such that the following properties are satisfied:

(i) for all un, u ∈ L∞(R;E), tn, t ∈ [0,+∞), with un → u in L1
loc, |t − tn| → 0

as n→ +∞,
lim

n→+∞Stnun = Stu in L1
loc;

(ii) the trajectory Stu0 is a weak entropy solution to the Cauchy problem (1.1) for
every u0 ∈ L∞(R;E);
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(iii) if u0 is piecewise constant, then, for t sufficiently small, Stu0 coincides with
the function obtained by piecing together the solutions of the corresponding
Riemann problems.

From the results of [11, 14], any solution to (1.1) satisfying Lax entropy conditions
and a weak regularity assumption is unique. Theorem 1.1 proves that it is possible
to define a weak solution u(t) when the initial data are in L∞ so that u(t) depends
continuously w.r.t. the initial data u0. The uniqueness follows because S satisfies (iii)
and it is the limit of wave front approximations.

As is shown in the last example of [12], the semigroup S cannot be uniformly
continuous; thus we cannot apply any compactness argument to construct the solu-
tion u(t)

.
= Stu0. The fundamental problem is that, differently from [12], the total

variation of the Riemann invariants corresponding to linearly degenerate families does
not decrease in time.

The main idea of this paper is to study how the solution to the characteristic
equation

ẋ(t) = λi(u(t, x(t))), x(0) = y,(1.3)

depends on the solution u of (1.1). Denote with x(t, y) the solution of (1.3).
It will be shown that, for a fixed time τ , the map y �→ x(τ, y) depends Lipschitz

continuously on the initial data u0, and, moreover, the Lipschitz constant is indepen-
dent of the total variation of u0. Since the Riemann invariant wi is the broad solution
to

(wi)t + λi(u(t, x))(wi)x = 0,(1.4)

a simple argument gives the convergence of the wave front tracking approximations.
We recall that a broad solution of (1.4) with initial data w̄i(·) is given by wi(x(t, y)) =
w̄i(y), where x(t, x) is the solution to (1.3). In other words, the value of wi is constant
along the integral lines of (1.3).

We note that the stability of the map y �→ x(t, y) implies also the well posedness
of the ODE (1.3) when u(t, x) is an L∞ solution of the system (1.1). This result is
quite surprising because, as noted in [16], for general hyperbolic systems the solution
to (1.3) does not exist or it is not unique. In our case, the assumption on the exis-
tence of Riemann invariants and the conservation form of (1.1) implies the continuous
dependence of x(t, y) on the initial data u0, and then we can extend the notion of
solutions to (1.3) when u0 is in L∞.

The paper is organized as follows. Section 2 contains the basic assumptions on
system (1.1). Moreover, we construct the wave front approximation of the solution
u(t). In section 3 we carefully analyze the shift differential map, i.e., the evolution of
a perturbation in u0 in which only the position of the initial jumps has changed. The
method we use is essentially the one in [12], with slight modifications due to the fact
that in our system the rarefaction curves do not need to be straight lines. The main
result here is the explicit computation of the shift differential map.

Section 4 is concerned with the equation for characteristics (1.3). We prove the
Lipschitz dependence of the map y �→ x(t) w.r.t. both the initial data u0 and y.
Moreover, we will show that the Lipschitz constant is independent from the total
variation of u0. Finally, in section 5, we prove Theorem 1.1.

2. Basic assumptions and wave front approximations. We consider a
strictly hyperbolic system of conservation laws

ut + f(u)x = 0,(2.1)
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where f : Ω → R
n is a smooth vector field defined on some open set Ω ⊆ R

n. Let
A(u)

.
= Df(u) be the Jacobian matrix of f and denote with λi(u) its eigenvalues

and with ri(u), li(u) its right and left eigenvectors, respectively. We assume that
the eigenvalues λi can be either genuinely nonlinear or linearly degenerate. In the
following the ith rarefaction curve through u ∈ Ω will be written as Ri(s)u, with
Ri(0)u = u, while the ith shock curve will be denoted by Si(s)u, and its speed by
σi(s, u). The directional derivative of a function φ(u) in the direction of ri(u) will be
denoted as

ri • φ(u)
.
= lim
h→0

φ(u + hri(u))− φ(u)

h
,

while the left and right limit of a bounded variation function f in a point x will be
written as

f(x−) = lim
y→x− f(y), f(x+) = lim

y→x+
f(y).

We assume that the rarefaction curves Ri generate a system of Riemann coordinates
w(u). We recall that a necessary and sufficient condition for the local existence of
Riemann coordinates is the Frobenius involutive condition: if [X,Y ] denotes the Lie
bracket of the vector fields X,Y , the condition is

[ri, rj ] ∈ span{ri, rj} for all i, j = 1, . . . , n.

In the following we will use indifferently the conserved coordinates u or the Riemann
coordinates w.

Fix a domain

E
.
=
{
u ∈ Ω : w(u) ∈ [ai, bi], i = 1, . . . , n

}
.(2.2)

Since E is compact, there is a constant c > 0 such that

ri • λi(u) > c for all u ∈ E if λi is genuinely nonlinear.(2.3)

We suppose that the system (2.1) is uniformly strictly hyperbolic in Ω: this means
that there exists a constant d such that

λi+1(u)− λi(v) ≥ d for all u, v ∈ E, i = 1, . . . , n− 1.(2.4)

We also assume that in the system (2.1) shock and rarefaction curves coincide: this
implies [27] that either the rarefaction curve Ri(s)u is a straight line or the eigenvalue
is linearly degenerate. In fact, one can prove that

d2

ds2
σi(s, u)

∣∣∣∣∣
s=0

=
1

6
(ri • λi(u))〈li(u), ri • ri(u)〉+

1

3
ri • (ri • λi(u)),(2.5)

and for the shock curve Si(s)u we have

〈lj(u), S′′′(0)u−R′′′(0)u〉 =
1

2(λj(u)− λi(u))
(ri • λi(u))〈lj(u), ri • ri(u)〉.(2.6)

If λi is genuinely nonlinear, the left-hand side of (2.6) is zero if and only if the
rarefaction curve is a straight line, because ri • ri(u) is orthogonal to ri(u).

The flux function f thus satisfies the following assumptions:



L∞ SOLUTIONS OF HYPERBOLIC SYSTEMS 963

E

u

u

1

2

E

u

u

1

2

E

u

u

1

2

i) ii) iii)

Fig. 1. The various situations for a 2× 2 system considered in Remark 2.1.

(H1) the eigenvalues λi of Df are linearly degenerate or genuinely nonlinear;
(H2) the rarefaction curves form a system of coordinates;
(H3) shock and rarefaction curves coincide.

The system (2.1) thus has nld linearly degenerate fields λi, corresponding to the
Riemann invariants wi, and ngnl = n−nld genuinely nonlinear fields λk, corresponding
to the Riemann invariants wk. In the latter case we have rk • rk(u) = 0 for all u ∈ E.

Remark 2.1. If Ω ⊆ R
2, then the rarefaction curves Ri(s)u always generate a

system of Riemann coordinates. Thus our assumptions are satisfied by the following
classes of systems:

(i) both eigenvalues are linearly degenerate;
(ii) one eigenvalue is linearly degenerate, the other genuinely nonlinear, and the

rarefaction curves of the latter are straight lines;
(iii) both eigenvalues are genuinely nonlinear and the system is of Temple class.

The various situations are shown in Figure 1. Case (ii) corresponds to the traffic
model considered in [2], while case (i) corresponds to 2× 2 chromatography.

Given the two points u−, u+ ∈ E, with coordinates u− = u(w−
1 , . . . , w−

n ) and
u+ = u(w+

1 , . . . , w+
n ), with w+

i �= w−
i , consider the intermediate states u(ωi), where

ω0 = w(u−), ωi = (w+
1 , . . . , w+

i , w−
i+1, . . . , w

−
n ), i = 1, . . . , n.(2.7)

For all i = 1, . . . , n, we denote with vi(u
−, u+) the vectors defined as

vi(u
−, u+) = u(ωi)− u(ωi−1),(2.8)

and we define ri(u
−, u+) as

ri(u
−, u+) =




vi(u
−, u+)

|vi(u−, u+)| =
u(ωi)− u(ωi−1)

|u(ωi)− u(ωi−1)| if w−
i �= w+

i ,

ri(ωi−1) = ri(ωi) if w−
i = w+

i ,
(2.9)

where ri(u) is the ith eigenvector of DF (u). We assume that the vectors ri(u
−, u+)

are linearly independent for all u−, u+ ∈ E. This condition is satisfied for data
in a sufficiently small neighborhood of a given point ū ∈ Ω. We denote also with
{li(u−, u+), i = 1, . . . , n} the dual base.

We now define an approximated semigroup of solutions Sν on a set Eν ⊆ E. The
construction is similar to the one in [3]. For any integer ν ∈ N, set

Eν .
=
{
u ∈ E : wi(u) ∈ 2−νZ, i = 1, . . . , n

}
,(2.10)
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and let Dν,M be the domain defined as

Dν,M .
=
{
u : R �−→ Eν : u piecewise constant and Tot.Var.(u) ≤M

}
.(2.11)

Given ū ∈ Eν , we construct a solution u(t) by wave front tracking. We first define
how to solve the Riemann problem [u−, u+], with u−, u+ ∈ Eν .

The solution to the Riemann problem u−, u+ is constructed by piecing together
the solutions to the simple Riemann problems [ωi−1, ωi], where ωi is defined in (2.7).
If the ith field is linearly degenerate, then [ωi−1, ωi] is solved by a contact discontinuity
traveling with speed λi(ωi). If the ith field is genuinely nonlinear and w+

i < w−
i , then

[ωi−1, ωi] is solved by a shock traveling with the Rankine–Hugoniot speed σi(ωi−1, ωi).
Finally, if the ith field is genuinely nonlinear and w+

i > w−
i , then [ωi−1, ωi] is solved

by a rarefaction fan: if w+
i = w−

i + pi2
−ν , pi ∈ N, consider the states

ωi,0 = ωi−1, ωi,l = (w+
1 , . . . , w+

i−1, w
−
i + )2−ν , w−

i+1, . . . , w
−
n ), ) = 1, . . . , pi.

The solution will consist of pi shock waves [ωi,l−1, ωi,l], traveling with the correspond-
ing shock speed σi(ωi,l−1, ωi,l).

At time t = 0 we solve the initial Riemann problems of ū. Note that the number
of wave fronts is bounded by 2ν · Tot.Var.(ū). When two or more fronts interact, we
again solve the Riemann problem they generate, and so on. It is easy to show that at
each interaction at least one of the following alternatives holds:

(i) the number of waves decreases at least by 1;
(ii) the total variation of the solution u(t) decreases by 21−ν ;
(iii) the interaction potential Q(t), defined as

Q(t)
.
=

∑
α,β approaching

|σα||σβ | ≤M2,(2.12)

decreases by 2−ν . We recall that two waves σα, σβ of the families kα, kβ ,
located at points xα, Xβ , are considered as approaching if xα < xβ and
kα > kβ .

This implies that there are at most a finite number of interactions, so that we can
construct our approximate solution for all t ≥ 0. Note that Sνt u = u(t) is a semigroup
of solutions, but not entropic due to the presence of rarefaction fronts.

If the ith family is linearly degenerate, the ith Riemann coordinate wi(t, ·) of the
solution can be constructed by solving the semilinear system{

(wi)t + λi(u(t, x))(wi)x = 0,
wi(0, x) = wi,0(x).

(2.13)

Since u is a piecewise constant solution, with a finite number of jumps, the broad
solution to (2.13) is well defined [8]: If we denote with x(t, y) the solution to the ODE

ẋ = λi(u(t, x)), x(0) = y,(2.14)

then the solution to (2.13) is given by

wi(t, x(t, y)) = wi,0(y).(2.15)

In the following sections we will consider the dependence on the initial data u0 of the
genuinely nonlinear Riemann coordinates wk(t, ·) and the map hti(y) defined as

hti(y)
.
= xi(t, y),(2.16)

where xi(t, y) is the solution to (2.14).
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3. Estimates on the shift differential map. In this section we prove some
properties of the shift differential map. These properties are closely related to the
structure of (2.1), i.e., the conservation form, the coinciding shock and rarefaction
assumption, which prevents the creation of shock when two jumps of the same family
collide, and the existence of Riemann invariants, which prevents the creation of shock
when two jumps of different families interact.

Consider a wave front solution u(t, ·) of (2.1), and assume that the initial datum
u(0, ·) has a finite number N of jumps σα, located in yα:

u(0, x) =

N∑
α=1

σαχ[yα,+∞)(x).

If ξα is the shift rate of the jump σα, define uθ(t, ·) as the front tracking solution with
initial datum

uθ(0, x) =

N∑
α=1

σαχ[yα+θξα,+∞)(x).(3.1)

In the following, we will use the integral shift function, defined by

v(t, x)
.
= lim
θ→0

{
−1

θ

∫ x

−∞
uθ(t, y)− u(t, y)dy

}
.(3.2)

If u(t, ·) has a shock σβ , located in yβ , and if ξβ is its shift rate, it is clear that the
following relation holds:

σβξβ = v(t, yβ+)− v(t, yβ−).(3.3)

We first recall the following result in [12], obtained using the conservation form
of the equations.

Lemma 3.1. Consider a bounded, open region Γ in the t-x plane. Call σα,
α = 1, . . . , N , the fronts entering Γ, and let ξα be their shifts. Assume that the fronts
leaving Γ, say σ′

β, β = 1, . . . , N ′, are linearly independent. Then their shifts ξ′β are
uniquely determined by the linear relation

N ′∑
β=1

ξ′βσ
′
β =

N∑
α=1

ξασα.(3.4)

Remark 3.2. As observed in [12], (3.4) implies that the shift rates of the outgoing
fronts depend only on the shift rates of the incoming ones, and not on the order in
which these wave fronts interact inside Γ. In particular, we can perform the following
operations, without changing the shift rates of the outgoing fronts:

(O1) switch the order of which three or more fronts interact;
(O2) invert the order of two fronts at time 0, if they have zero shift rate.

The second lemma is concerned with a configuration where a sequence of contact
discontinuities interacts with a wave of another family.

Lemma 3.3. Consider a family of parallel contact discontinuities σα of the ith
linearly degenerate family, α = 1, . . . , N , and a single wave front σ of the kth family,
k �= i. Let ξα and ξ be their initial shifts, respectively, and let ξ′α, ξ

′ be their shifts
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Fig. 2. Interaction with a sheaf of contact discontinuities.

after interaction. Assume that ξα = ξ̄ for all α. Then after the interactions all the
shift rates ξ′α of the ith family have the same value ξ̄′ and

ξ′α = ξ̄′ =
ξ̄(Λ̄′ − Λ)− ξ(Λ̄′ − Λ̄)

Λ− Λ̄
, ξ′ =

ξ̄(Λ′ − Λ)− ξ(Λ̄′ − Λ̄)

Λ− Λ̄
,(3.5)

where Λ̄, Λ and Λ̄′, Λ′ are the speeds of the shocks σα and σ before and after interac-
tion, respectively.

Proof. Define the vector v in the t-x plane as the shift of the first collision point.
By a direct computation one finds

v =

(
ξ − ξ̄

Λ̄− Λ
,

Λ̄ξ − Λξ̄

Λ̄− Λ

)
.(3.6)

Since all the incoming shocks of the linearly degenerate family have the same speed
Λ̄, by simple geometrical considerations it follows that the vector v is constant during
all interactions (Figure 2). Formula (3.5) follows easily.

Remark 3.4. Note that this lemma allows us to perform the following new
operation, without changing the shift rates:

(O3) replace a family of contact discontinuities σα of a linearly degenerate family,
all with the same shift rate ξ̄, by a single wave σ =

∑
σα with shift rate ξ̄.

In the next lemma we will show that the existence of Riemann coordinates w
implies a strong relation among shocks of different families.

Lemma 3.5. Consider two adjacent jumps belonging to different families, σi and
σj, i < j, located at xi > xj. Let σ

′
i, σ

′
j be their strength after interaction. Then the

following holds:

span{σi, σj} = span{σ′
i, σ

′
j}.(3.7)

Proof. If ξi, ξj are the shift rates before interaction, and ξ′i, ξ′j after interaction,
then (3.7) follows easily from the conservation relation

σiξi + σjξj = σ′
iξ

′
i + σ′

jξ
′
j for all ξi, ξj ∈ R,(3.8)

because, by assumption, no waves of other families are generated.
Remark 3.6. Note that the previous lemma implies that the conservation relation

(3.8) is bidimensional, i.e., the shocks σi, σj and σ′
i, σ′

j lie on a two dimensional
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plane (Figure 3). We can then obtain an identity which relates the strengths σ with
the speeds Λ: substituting (3.5) into (3.8), since ξ̄, ξ are arbitrary, we get

σi(Λj − Λi) = σ′
i(Λ

′
i − Λj) + σ′

j(Λ
′
j − Λj),(3.9)

σj(Λi − Λj) = σ′
i(Λ

′
i − Λi) + σ′

j(Λ
′
j − Λi).

One can show that if a Riemann solver verifies (3.9) for all pairs of waves i, j, then
there exists a flux function f such that the wave front approximation is a weak solution
to (2.1).

An important property of the shift differential map for Temple class systems is
the fact that a perturbation to the initial data, initially localized in [a, b], remains in
the neighborhood of the set ∪i[xi(t, a), xi(t, b)], where xi(t, y) is the solution of the
ith characteristic equation starting at y. We now extend this property to hyperbolic
systems satisfying the hypotheses (H1), (H2), (H3) of section 2.

Consider N jumps σα, α = 1, . . . , N , of some linearly degenerate family i, located
at xα and corresponding to the jumps c(α)ei in the Riemann coordinates w:

σα = u(w(xα−) + c(α)ei)− u(w(xα−))(3.10)

for some constants c(α), α = 1, . . . , N .
Definition 3.7. We say that the jumps σα defined in (3.10) are in involution if

N∑
α=1

c(α) = 0,(3.11)

i.e., the initial and final Riemann coordinate wi is the same: wi(x1−) = wi(xN+).
Note that, by the existence of Riemann coordinates, this relation does not depend

on the positions and strength of the shocks of the other families. We can now extend
Lemma 2 in [12] to our systems.

Lemma 3.8. Consider a wave front tracking solution u. Assume that there are
N shocks σα either

(i) of the ith linearly degenerate family in involution, or
(ii) of the kth genuinely nonlinear family,

and let xα(t), 0 ≤ t ≤ T , be the position of the shock σα, α = 1, . . . , N . Then it is
possible to assign at time t = 0 shift rates to all shocks such that ξ1 = 1 and the shift
of all fronts outside the strip Γ

.
= {(t, x); t ∈ [0, T ], x1(t) ≤ x ≤ xN (t)} is zero.
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Proof. We consider only the case of linearly degenerate family i, since in the other
case the proof is exactly the one given in [12].

Let xα(t), α = 1, . . . , N , be the position of the shock σα of the ith family in
involution, and let w̄i be the value of the Riemann coordinate at x1(t)− = x1(0)−.
For w ∈ E, define w̃ as the projection of w on the hyperplane {wi = w̄i}, and
ũ = u(w̃).

We choose the shift rates such that

− d

dθ

∫ x

−∞
uθdy =

∑
xi(t)≤x

ξi(t)σi(t) = c(t, x)(u(t, x)− ũ(t, x)),(3.12)

where c(t, x) is a scalar function different from 0 only in [x1(t), xN (t)], and we recall
that ũ(t, x) = u(w̃(t, x)).

By imposing the value ξ1 = 1, i.e., c(0, x1(0)−) = 0, c(0, x1(0)+) = 1, we need to
prove that (3.12) can be satisfied at time t = 0. We have two cases.

(1) If the jump σi belongs to the ith family and is inside [x0(0), xN (0)], then set
ξ = c(t, xi−).

(2) If the jump σi belong to the kth family with k �= i, then by assumption (2.8)
and by (3.7) there exists a unique shift ξi and a unique constant c(0, x+) such
that

ξiσi + c(0, x−)(u(0, x−)− ũ(0, x−)) = c(0, x+)(u(0, x+)− ũ(0, x)).

Since we assume that the shocks are in involution, setting ξN = c(0, xn−) we have that
(3.12) holds at time t = 0: in fact, the last jump has size ũ(0, xN (0)−)−u(0, xN (0)−).

We now show that this property is conserved for all t ≥ 0. This follows easily
from conservation and Lemma 3.5. The proof is exactly the same as in [12]; we repeat
it for completeness. Consider the interaction between two shocks σi and σj in the
point (τ, y); see Figure 4. By inductive assumption, we have for the states ul, um,
and ul that ∑

xγ(τ)<y

σγ(τ)ξγ(τ) = cl(ul − ũl),(3.13)
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cl(ul − ũl) + σiξi = cm(um − ũm),

cm(um − ũm) + σjξj = cr(ur − ũr).

Using conservation we have

ξiσi + ξjσj = ξ′jσ
′
j + ξ′iσ

′
i,(3.14)

so that for the new middle state u′
m we have

cl(ul − ũl) + σ′
jξ

′
j = c′m(u′

m − ũ′
m) = cr(ur − ũr)− σ′

iξ
′
i,(3.15)

and using Lemma 3.5 we conclude

span
{
ul − ũl, σ

′
j

}⋂
span

{
ur − ũr, σ

′
i

}
= span

{
um − ũ′

m

}
.

The same relation proves that they vanish outside Γ. In fact, assume for example
that cl = 0 and j < i. Then from (3.15) we get

σ′
jξ

′
j = c′m(u′

m − ũ′
m),

which implies that c′m = 0. This concludes the proof.
Remark 3.9. Note that for discontinuities of a linearly degenerate family all

shift rates have the same sign. Note, moreover, that if no waves of other families
are present, then we shift all jumps σα by unit rate 1. This corresponds to the case
considered in Lemma 3.3, i.e., to the substitution of a family of contact discontinuities
with a single jump, whose strength in this case is 0 by the involution assumption.

Using conservation and the previous lemmas, we obtain explicitly the shift differ-
ential map at a given time τ . We recall that, given the states u−, u+ ∈ E, we denote
with ri(u

−, u+) the vectors defined in (2.9), and with li(u−, u+) its dual base. Let
Pj(u

−, u+) be the projection operator on span{ri(u−, u+), i = 1, . . . , j}:

Pj(u
−, u+)v

.
=

j∑
i=1

〈
li(u−, u+), v

〉
ri(u

−, u+),(3.16)

where 〈·, ·〉 denotes the scalar product in R
n.

Given a point (t, x), with u(t, x) continuous in x, define xi to be the intersection
of the backward ith characteristics starting at (t, x) with the real axis {(0, x)}, and
for all (0, y) let j(y) be the index such that xj(y) ≤ y < xj(y)−1, j(y) = 1, . . . , n + 1,
with x0 = +∞ and xn+1 = −∞. Without any loss of generality, we can assume that
in (0, y) there is a jump σ of the kth family.

Define the points wl, wr ∈ E by

wl(x, y)(3.17)

.
=




w(t, x), j(y) = 1,
(w1(0, y−), . . . , wj(y)−1(0, y−), wj(y)(t, x), . . . , wn(t, x)), 2 ≤ j(y) ≤ n,

w(0, y−), j(y) = n + 1,

wr(x, y)

.
=




w(0, y+), j(y) = 1,
(w1(t, x), . . . , wj(y)−1(t, x), wj(y)(0, y+), . . . , wn(0, y+)), 2 ≤ j(y) ≤ n,

w(t, x), j(y) = n + 1.
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Moreover, for 2 ≤ j(y) ≤ n, define the point wm ∈ E by

wm(x, y)(3.18)
.
= (w1(t, x), . . . , wk(0, y+), . . . , wj(y)−1(t, x), wj(y)(0, y+), . . . , wn(0, y+))

if k < j(y). In a similar way, if k ≥ j(y),

wm(x, y)(3.19)
.
= (w1(t, x), . . . , wj(y)−1(t, x), wj(y)(0, y+), . . . , wk(0, y−), . . . , wn(0, y+)).

Define P (x, y) as the vector

P (x, y)
.
=(3.20) 


0, j(y) = 1,
Pj(y)−1(wl, wm)σ + Pj(y)−1(wm, wr)

(
σ − Pj(y)−1(wl, wm)σ

)
,

2 ≤ j(y) ≤ n + 1, k < j(y),
Pj(y)−1(wl, wm)

(
Pj(y)−1(wm, wr)σ

)
, 2 ≤ j(y) ≤ n, k ≥ j(y),

where wl = wl(x, y), wm = wm(x, y), wr = wr(x, y), and σ is the initial jump in (0, y).
Consider now a front tracking solution uθ, obtained by shifting the initial jumps σα
in yα with rates ξα.

Theorem 3.10. If v(t, x) is the integral shift function of uθ(t, ·), defined in (3.2),
then

v(t, x) = lim
θ→0

{
−1

θ

∫ x

−∞
uθ(t, y)− u(t, y)dy

}
=
∑
α

P (x, yα)ξα.(3.21)

Proof. The theorem will be proved outside the times of interaction, because the
Lipschitz dependence in L1 of the approximate semigroup implies the validity of (3.21)
for all t ≥ 0.

If is sufficient to show that
∑
yα

P (x, yα)ξα is piecewise constant, with jumps only
at the points xβ where u(t, ·) has a shock σβ , and the following relation holds:∑

yα

(
P (xβ+, yα)− P (xβ−, yα)

)
ξα = σβξβ , lim

x→−∞

∑
yα

P (x, yα)ξα = 0,(3.22)

where ξβ is the shift rate of σβ , located in x. Note that by (3.20) the second equality
of (3.22) is trivially satisfied.

By linearity in the shift rates ξα, we can consider the case in which a single shock
is shifted, let us say σ at y; (3.21) becomes

v(t, x) = P (x, y)ξ.(3.23)

Formula (3.16) follows from the following considerations: Consider a wave front
pattern, Figure 5, where for simplicity we assume that k < j(y). The states wl,
wm are computed considering the Riemann problem generated by adding to the k-
jump σ in (0, y) all the i-waves starting from the left of (0, y) and ending in the
right of (t, x) and all the i-waves, with i �= k, starting from the right of (0, y)
and ending in the left of (t, x). The jump wm, wr is a single wave of the kth
family formed by adding all the k-waves between (0, y) and (t, x). Using the def-
inition of v(t, x) given (3.2), one obtains easily the second case of (3.20). In fact
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Fig. 5. Wave pattern for the computation of formula (3.16).

the shift rates of the shocks in the left of (t, x) are given by the shift rates of the
jumps of the Riemann problem wl, wm ending in the left of (t, x), Pj(y)−1(wl, wm)σ,
plus the shift rate of the shock wm, wr, Pk(wm, wr)(σ − Pj(y)−1(wl, wm)σ). Since
only the i-waves with i ≥ j(y) > k are present in σ − Pj(y)−1(wl, wm)σ, then
Pk(wm, wr)(σ − Pj(y)−1(wl, wm)σ) = Pj(y)−1(wm, wr)(σ − Pj(y)−1(wl, wm)σ). The
other cases can be computed in a similar way: in this case one solves the Riemann
problem wm, wr in (0, y) and considers the k-wave wl, wm starting in the left of (0, y)
and ending in the right of (t, x).

From the above considerations, it is clear that P (x, y) is piecewise constant with
jumps only when there is an i-shock σ′ in (t, x). In fact, otherwise, the wave front
pattern used to compute P (x, y) remains the same. Let {zp : p = 1, . . . ,M} be the
set of the starting points of all shocks arriving in (t, x), and define

z− = min
p

zp, z+ = max
p

zp.(3.24)

We consider two cases:

(1) The shocks arriving in (t, x) start on both sides of (0, y): z− ≤ y ≤ z+. In
this case, (P (x+, y) − P (x−, y))ξ is the shift rate of the i-shock starting in
the Riemann problem wl(x−, y), wm(x+, y) if i > k (wm(x−, y), wr(x+, y) if
i < k), which collides with a k-shock wm(x+, y), wr(x+, y) (wl, wm if i < k).
In fact, the only difference is that in wm(x−, y), wm(x+, y) there is a shock
of the ith family starting in (0, y), and i is genuinely nonlinear. Finally, using
ri • ri(u) = 0 and Lemma 3.5, one can change position to the i-wave and the
remaining k-wave wm, wr, whose strength does not change.
If i = k, there are no k-shocks starting on the right (left) of (0, y) and ending
on the right (left) of (t, x), so that (P (x+, y)−P (x−, y))ξ is the shift rate of
the i-shock of the Riemann problem wl(x−, y), wr(x+, y).

(2) The shocks of the ith family arriving in (t, x) start either in (−∞, y) or
(y,+∞). Assume for definiteness that y < z−. In this case the difference
(P (x+, y) − P (x−, y))ξ is the shift rate of the shock σ′ colliding with the
shifted shocks of the Riemann problem wl(x−, y), wm(x−, y) in (0, y), crossing
the jump wm(x−, y), wr(x−, y), and finally overtaking σ′. In fact one can use
Lemma 3.5 (and ri • ri(u) = 0 if i is genuinely nonlinear) to obtain the wave
pattern of Figure 6.

The various cases will be proved in the following lemmas.

Lemma 3.11. Assume that z− ≤ y ≤ z+, i.e., case (1). If the shock σ′ is of the
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Fig. 6. Computation of the shift rate in the case of Lemma 3.12.

ith family, then its shift ξ′ is

ξ′σ′ =
(
P (x+, y)− P (x−, y)

)
ξ.(3.25)

Proof. We follow closely the method of [12]. Assume for definiteness k < j(y), the
other cases being similar. The basic idea is to reduce the computation to the single
Riemann problem wl(x−, y), wm(x+, y), with eventually a single k-wave wm, wr.

Consider Figure 7. By Lemma 3.1, we can simplify the wave configuration con-
sidering only the fronts crossing starting in the right of (0, y) and ending in the left
of (t, x). In fact we can move the other fronts to ±∞ without changing the shift rate
of σ′.

We can now shift the initial position of the waves of the ith family merging in x
such that their initial position coincides with y, without changing the shift rate ξ′.
This operation can be repeated for all shocks of genuinely nonlinear families.

Finally, we can move the shocks of the linearly degenerate families such that they
have the same sequence of interaction with the other shocks. This means that, if xji is
the position of the jth shock of the ith linearly degenerate family, the only interactions
among shocks occurring in the sector [x1

i (t), x
n
i (t)] are those involving one ith wave

and one kth wave, with k �= i. Using Lemma 3.3, we can at this point substitute them
with a single shock, whose strength is the sum of the strengths of the i-waves. Finally
we move their position at t = 0 such that it coincides with y; we obtain the wave
patterns of Figure 7. To conclude, we just need to prove that the Riemann problem
obtained in this way is exactly wl(x−, y), wm(x+, y) and that the remaining k-wave
is wm(x+, y), wr(x+, y).

By the previous argument, the strength of the shock of the jth family, j < i,
j �= k, is given by the j-waves starting in the right of y and ending in the left of x.
Since they are the only j-wave crossing the segment [(0, y−), (t, x+)], it follows that

wl,j(x, y) = wj(0, y−), wr,j(x, y) = wj(t, x+).

The other relations for j = k and j > i follow in the same way. Finally, for j = i
the jump is wi(t, x+) − wi(t, x−). Note that the wave pattern is the same as that
obtained in case (1).

We consider only the case y < z−, since the other is entirely similar.
Lemma 3.12. Assume that y < z−. Then the shift ξ′ of σ′ is given by

ξ′σ′ =
(
P (x+, y)− P (x−, y)

)
ξ.(3.26)
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Fig. 7. Computation of the shift rate in the case of Lemma 3.11.

Proof. The hypothesis implies that the ith shock ending at x starts in the right of
y. With the same simplification considered in Lemma 3.11, we reduce to the Riemann
problem wl(x, y), wr(x, y) in ȳ, such that the waves of the jth families, j > i, generated
at ȳ collide with the i-wave in xα (see Figure 6) after overtaking the k-wave wm, wr.
The conclusion follows easily, since the wave pattern is the same as that considered
in (2).

This concludes the proof of Theorem 3.10.
Finally we extend to our case the following result proved in [12].
Proposition 3.13. Let u be a wave front tracking solution, and consider two

wave fronts, x(t) and y(t), t ∈ [0, T ]. Then there exists a second front tracking
solution ũ such that the initial and final positions of the two shocks are the same, and
Tot.Var.(ũ) is uniformly bounded.

Proof. For genuinely nonlinear fields, the proof is the same as in [12]. We then
restrict the proof to the case of linearly degenerate fields i.

Assume that there exist two jumps σ1, σ2 of the ith family, with positions z1(t) <
z2(t), such that

x(0) /∈ [z1(0), z2(0)] and y(0) /∈ [z1(0), z2(0)],(3.27)

x(T ) /∈ [z1(T ), z2(T )] and y(T ) /∈ [z1(T ), z2(T )].

For definiteness, assume wi(0, z1−) < wi(0, z1+), and the following condition is sat-
isfied:

wi(0, z1−) ∈ [wi(0, z2−), w(0, z2+)].(3.28)

Let σα, α = 1, . . . , N , be the jumps of linearly degenerate family i in the strip
[z1(0), z2(0)). If we define

σN+1 = u(wi(0, z1−))− u(wi(0, z2−)),

it is easy to verify that the shocks σα, α = 1, . . . , N + 1, are in involution. By Lemma
3.8, we can then move the jumps to the left until either z1(t) meets the wave fronts
x(t), or z1(t) coincides with another shock of the ith family (Figure 8). It is clear
that we can repeat the same procedure also in the following cases:

(i) wi(0, z1−) > wi(0, z1+) and wi(0, z1−) ∈ [wi(0, z2+), w(0, z2−)];
(ii) wi(0, z2−) < wi(0, z2+) and wi(0, z2+) ∈ [wi(0, z1+), w(0, z1−)];
(iii) wi(0, z2−) > wi(0, z2+) and wi(0, z2+) ∈ [wi(0, z1−), w(0, z1+)].

It is now easy to prove that the total variation of the jumps of the ith family satisfying
(3.27) can be at most 3‖w‖∞. Since x(t), y(t) divide the lines t = 0 and t = τ in
three regions, the total variation of wi is bounded by 27‖w‖∞.
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4. Estimates on characteristics. In this section we prove some estimates on
the solution xi(t, y) of the characteristic equation{

ẋi = λi(u(t, xi)),
xi(0) = y.

(4.1)

We assume for simplicity that the ith family is linearly degenerate; however, the same
results are valid for characteristics of a genuinely nonlinear family if the following
condition holds: for all τ there exists an ε such that in the strip {(t, x); τ ≤ t ≤
T, xi(t, y) − ε ≤ x ≤ xi(t, y) + ε} there are no shock waves of the ith family. Given
front tracking, approximation u, xi(t, y) is unique, since it crosses only a finite number
of transversal jumps, and it depends Lipschitz continuously on the initial data y (see
[8]).

We want to give uniform estimates on this dependence. The idea is to suppose
that in y there is a shock σε of the i-family of size ε: wi(0, y+)−wi(0, y−) = ε. Since
by assumption no shocks of the i-family collide with σε, it is easy to construct a wave
front solution. For x < x(t, y), the solution uε(t, ·) takes values in

Eν,− .
=
{
u : wj(u) ∈ [aj , bj ] ∩ 2−νZ, j = 1, . . . , n

}
,

while for x > x(t, y), enlarging E and assuming ε sufficiently small,

Eν,+ .
=
{
u : wj(u) ∈ [aj , bj ] ∩ 2−νZ, j �= i, wi(u) ∈ [ai, bi] ∩

{
2−νZ + ε

}}
.

The following lemma proves the continuous dependence of the solution uε(t) and
the position xεi(t, y) of the shock σε w.r.t. ε.

Lemma 4.1. Consider a front tracking solution u, with initial data u0 and the
characteristic lines xi(t, y1) < xi(t, y2), defined in (4.1) for a linearly degenerate family
i. Let uε be the wave front solution with initial data u(wε0), where wε0 is defined as

wε0(x)
.
=




w(u0(x)), x ≤ y1,
w(u0(x)) + εei, y1 < x ≤ y2,

w(u0(x)), x > y2.
(4.2)

Then there exist constants L, L′, depending only on the total variation of the initial
data u0, such that for all t ≥ 0∫

R

∣∣u(t, x)− uε(t, x)
∣∣dx ≤ Lε

∣∣y1 − y2

∣∣ and∣∣xεi(t, yj)− xi(t, yj)
∣∣ ≤ L′εt

∣∣y1 − y2

∣∣, j = 1, 2,

(4.3)
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where xεi(t, yj) is the position of the shock σεj starting in (0, yj).

Proof. The first inequality is an easy consequence of the L1 continuous dependence
for front tracking solutions; see [3]. For the second one, note that all the shocks
different from σε have size uniformly bigger than 0, so that their position is shifted
of the order ε. Thus the second inequality follows by standard ODE perturbation
estimates; see [8].

An easy application of the previous lemma together with Proposition 3.13 implies
that to compute x1(t, y1) and x2(t, y2) we can actually consider in (4.1) a solution ũ
with uniformly bounded total variation, so that the constant L′ in (4.3) is independent
on the total variation of u0.

We now estimate the dependence of xi(t, y) w.r.t. u.
Proposition 4.2. Let ξα be the shift rate of the jump σα in u(0, ·), and denote

with xθi the solution to {
ẋθi = λi(u

θ(t, xθi )),
xθi (0) = y,

where uθ(t) is the shifted front tracking solution. Then there exists a constant D
independent of the total variation of u such that∣∣∣∣ limθ→0

xθi (t, y)− xi(t, y)

θ

∣∣∣∣ ≤ D
∑
α

∣∣∣σαξα∣∣∣.(4.4)

Proof. If ε is the size of the shock σε located in (0, y), then we can apply Theorem
3.10 to compute its shift ξε. By formula (3.21) we obtain

ξεσε =
∑
α

(
P (x+, yα)− P (x−, yα)

)
ξα.(4.5)

If θ is sufficiently small, then we have

ξε =
xθ,εi (t, y)− xεi(t, y)

θ
,

where xθ,εi (t, y) is the position of the shifted shock and xεi(t, y) is its original position.
Note that (P (x+, yα) − P (x−, yα))ξα is the shift rate of the shock σε after colliding
with the shocks of the Riemann problems wl, wm and wm, wr. Their total shift is
proportional to |σαξα|, and after the interaction with σε, the shift of the latter is
proportional to |σε||σαξα|. Thus taking the limit as ε tends to 0 of (4.5), we obtain
for ε sufficiently small ∣∣∣∣xθi (t, y)− xi(t, y)

θ

∣∣∣∣ ≤ D
∑
α

∣∣∣σαξα∣∣∣,
which implies (4.4).

We now prove the uniform Lipschitz continuity of the map y �−→ xi(t, y) for all
t ≥ 0.

Proposition 4.3. Consider two characteristic lines xi(t, y1), xi(t, y2), solutions
to (4.1). There exists C > 0, depending only on the system and the set E, such that

1

C
≤ x2

i (t, y2)− x1
i (t, y1)

y2 − y1
≤ C.(4.6)
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Proof. As in the previous proposition, let ε be the size of the shock σε(t) located
in (0, y) in Riemann coordinates. If ξ(t) is its shift rate, then for θ sufficiently small
by Theorem 3.10 we obtain

xεi(t, y + θξ)− xεi(t, y)

θ
σε(t) = ξε(t)σε(t) = ri(wl, wr)

〈
li(wl, wr), σ(0)

〉
ξ(0).(4.7)

In fact, by assumption, in the simplified wave patterns to compute the shift rate of
σε, there are no waves of the ith family different from σε. Dividing by ε and taking
the limit as ε tends to 0, we obtain

xi(t, y + θξ)− xi(t, y)

θ

∂

∂wi
u(t, x) =

∂

∂wi
u(0, y)

〈
li(wl, wr), ri(0, y)

〉
ξ(0),

which implies

d

dy
xi(t, y) =

∂u(0, y)/∂wi
∂u(t, x)/∂wi

〈
li(wl, wr), ri(0, y)

〉
.(4.8)

We use the fact that σε(t)/ε tends to ∂u(0, y)/∂wi · ri(wl, wr) as ε → 0. Since E is
compact, the conclusion (4.6) follows easily.

Remark 4.4. The above proposition implies that the map hti defined in (2.16) is
uniformly Lipschitz, independent on the total variation of u0, together with its inverse
map (hti)

−1.
To end this section, we give a different proof of the following result given in [12].
Proposition 4.5. If x(t), y(t) are the positions of two adjacent k-rarefaction

waves, then for some constant κ > 0 one has

y(τ)− x(τ) ≥ κτ2−ν ,(4.9)

where c > 0 is the constant defined in (2.3). Thus for all τ > 0 the total variation
of the Riemann invariant wk of the kth genuinely nonlinear family with N shocks at
t = 0 is bounded by

Tot.Var.{wk(τ, ·); [a, b]} ≤ 2(b− a)

κτ
+
∥∥wk∥∥L∞ + (N + 1)21−ν .(4.10)

Proof. Consider two adjacent k-rarefaction fronts x(t) and y(t), and let tα, α =
1, . . . , N , be the interaction times of x(t), y(t) with other waves in the interval [0, τ ].
Fix ti ∈ (tᾱ, tᾱ+1) for some ᾱ and let z(t, x(ti)) be the characteristic line of the kth
genuinely nonlinear family starting in (ti, x(ti)) (see Figure 9). Assume ti+1 > ti
sufficiently close to ti such that ti+1 ∈ (tᾱ, tᾱ+1) and z(t, x(ti)) does not collide with
shocks of other families for t ∈ [ti, ti+1]. Let z(t, x(ti+1)) be the characteristic curve
starting in (ti+1, x(ti+1)). By the assumption of genuine nonlinearity, at time ti+1 we
have

z(ti+1, x(ti))− z(ti+1, x(ti+1)) ≥ c(ti+1 − ti)2
−ν−1

for some constant c, depending only on E. Using Proposition 4.3, at time τ we have

z(τ, x(ti))− z(τ, x(ti+1)) ≥ c

C
(ti+1 − ti)2

−ν−1.(4.11)

Repeating the process, it is possible to find a countable number of times ti such that

lim
i→−∞

ti = tᾱ, lim
i→+∞

ti = tᾱ+1,
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Fig. 9. Decay of positive waves.

and using (4.11) we get

z(τ, x(tᾱ))− z(τ, x(tᾱ+1)) ≥ c

C
(tᾱ+1 − tᾱ)2−ν−1.(4.12)

Repeating the process for y(t) and for all intervals (tα+1, tα), we obtain (4.9), where
κ = c/C.

The second equation follows, noticing that the total amount of positive jumps in
the interval [a, b] is bounded by (1 + N)2−ν + (b− a)/κτ .

5. Proof of the main theorem. In this section we construct the semigroup S
on L∞(R;E). In [3] it is shown that for all M there exists a semigroup SM defined
on the domain

DM .
=
{
u : R �→ E : Tot.Var.(u) ≤M

}
,(5.1)

which is the only limit of the wave front tracking approximations constructed in section
2. We now study the dependence of the solution on the initial data u ∈ DM . We
consider separately the case for genuinely nonlinear and linearly degenerate families.

Proposition 5.1. Consider a front tracking solution u, such that u(0, ·) has N
jumps σα, α = 1, . . . , N , and let ξα be their shift rates. Given τ ≥ 0, denote with σβ
the jumps in the Riemann invariant wk(τ, ·) of the kth genuinely nonlinear family.
Then there exists a constant K, depending only on the system and the domain E,
such that

∑
β

∣∣ξβσβ∣∣ ≤ K(1 + N2−ν)

N∑
α=1

∣∣ξασα∣∣.(5.2)

Proof. The proof follows by Theorem 3.10 and Proposition 4.5. In fact, given a
fixed shock σᾱ, using Theorem 3.10, we have that at time τ for a shock σβ of the ith
family there exist D′ such that ∣∣ξβσβ∣∣ ≤ D′∣∣ξᾱσᾱ∣∣(5.3)



978 STEFANO BIANCHINI

if the shock σβ starts on both sides of σᾱ, or, using the same estimate of Proposition
4.2, ∣∣ξβ∣∣ ≤ D

∣∣σᾱξᾱ∣∣(5.4)

if σβ starts on one side of σᾱ. Since there is at most 1 shock such that (5.3) holds,

and the interval of influence is [xᾱ− λ̂τ, xᾱ + λ̂τ ], using Proposition 4.5 together with
(5.3) and (5.4) we obtain

∑
β

∣∣ξβσβ∣∣ ≤ D′∣∣ξᾱσᾱ∣∣+D
∣∣σᾱξᾱ∣∣·Tot.Var.

{
wk, [xᾱ−λ̂τ, xᾱ+λ̂τ ]

}
≤ F (1+2−ν)

∣∣ξᾱσᾱ∣∣.
The conclusion follows the linearity of the shift differential map.

Using the results of the previous section, the following result is trivial.
Proposition 5.2. Consider a wave front solution u, such that u(0, ·) has N

jumps σα, α = 1, . . . , N , and let ξα be their shifts. Consider (4.1), with the eigenvalue
λi linearly degenerate. For fixed τ ≥ 0, the shift ξi of xi(τ, y) is then bounded by

∣∣ξi∣∣ ≤ D

N∑
α=1

∣∣ξασα∣∣.(5.5)

Proof. This is a corollary of Proposition 4.2.
Using the above propositions, we can prove the following theorem.
Theorem 5.3. Consider two initial data u1 and u2, and denote with wj,k(t, ·)

the kth Riemann coordinate of SMuj, j = 1, 2, corresponding to the kth genuinely
nonlinear family. Moreover, let hτj,i, j = 1, 2, be the map defined in (4.1) for the ith
linearly degenerate family. Then there exists a constant K ′, independent of M , such
that the following estimates hold:∫

R

∣∣w1,k(t, x)− w2,k(t, x)
∣∣dx ≤ K ′

∫
R

∣∣u1(x)− u2(x)
∣∣dx,(5.6)

sup
t≥0,x∈R

∣∣ht1,i(x)− ht2,i(x)
∣∣ ≤ K ′

∫
R

∣∣u1(x)− u2(x)
∣∣dx.(5.7)

Proof. Consider two piecewise constant initial data uν1 , uν2 in DM,ν , and construct
a pseudopolygonal path γ0 : θ �−→ uνθ , connecting u1 and u2, such that∥∥γ0

∥∥
L1 ≤ E

∥∥uν1 − uν2
∥∥
L1 .

We can assume that uνθ has a finite number N of jumps. If we denote with γντ the
path θ �−→ Sντ uνθ , we have by Proposition 5.1

∥∥wν2,k(τ)− wν1,k(τ)
∥∥
L1 ≤

∥∥∥(γντ )k
∥∥∥
L1
≤ K(1 + N2−ν)

∥∥γ0

∥∥
L1(5.8)

≤ K ′(1 + N2−ν)
∥∥u2 − u1

∥∥
L1 .

Now if ν → +∞, since wνj,k(τ) converges to wj,k(τ), we obtain (5.6). Since this
estimate does not depend on the number of initial jumps N , we can extend it uniformly
on DM .
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Using the same pseudopolygonal path, in a similar way we can prove that∣∣xν2,i(τ, y)− xν1,i(τ, y)
∣∣ ≤ K ′∥∥u2 − u1

∥∥
L1 .

This shows that xνi (τ, ·) converges uniformly to the solution xi(τ, ·) as ν → +∞ and
uν → u. It also implies that∣∣x2,i(τ, y)− x1,i(τ, y)

∣∣ ≤ K ′∥∥u2 − u1

∥∥
L1 .

This concludes the proof.
We can now define S on the domain L∞(R;E).
Definition 5.4. For all u ∈ L∞(R, E), let uM ∈ DM be such that

lim
M→+∞

uM = u in L1
loc.(5.9)

Define Stu as

Stu = lim
M→+∞

SMt u,(5.10)

where the limit is in L1
loc.

It is easy to prove that the right-hand side of (5.10) is a Cauchy sequence in every
compact set [a, b]. In fact, using the finite speed of propagation, we can consider u with

compact support [a−λ̂t, b+λ̂t]. For the components wk of the kth genuinely nonlinear
family, it follows directly from (5.6), while for a linearly degenerate component wi,
let w̃ be a Lipschitz continuous function such that∫

R

∣∣wi(0, x)− w̃(x)
∣∣dx ≤ ε.

By Theorem 5.3 we have for u1, u2 ∈ DM such that ‖u− ui‖L1 < δ, i = 1, 2,

sup
t≥0,x∈R

∣∣ht1,i(x)− ht2,i(x)
∣∣ < K ′δ,

and it follows by easy computations that

∥∥w1,i(t)− w2,i(t)
∥∥
L1 ≤

∥∥w1,i(t)− w̃ ◦ (ht1,i)−1∥∥
L1(5.11)

+
∥∥w2,i(t)− w̃ ◦ (ht2,i)−1∥∥

L1

+
∥∥w̃ ◦ (ht1,i)−1 − w̃ ◦ (ht2,i)−1∥∥

L1

≤ C
∥∥w1,i(0)− w̃

∥∥
L1 + C

∥∥w2,i(0)− w̃
∥∥
L1

+L(b− a)G
∥∥u2 − u1

∥∥
L1

≤ 2C(ε + δ) + L(b− a)Gδ,

where L is the Lipschitz constant of w̃. This shows that wMi (t) is a Cauchy sequence
for all t ≥ 0, because the right-hand side of (5.11) can be made arbitrarily small. We
can now prove the main theorem.

Theorem 5.5. The semigroup S : [0,+∞)⊗L∞(R;E) �−→ L∞(R;E) defined in
(5.10) is the only continuous semigroup on L∞(R;E) such that the following properties
are satisfied:
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(i) for all ūn, ū ∈ L∞(R;E), tn, t ∈ [0,+∞), with ūn → ū in L1
loc, |t − tn| → 0

as n→ +∞,

lim
n→+∞Stn ūn = Stū in L1

loc;(5.12)

(ii) each trajectory t �→ Stu0 is a weak entropic solution to the Cauchy problem{
ut + f(u)x = 0,
u(0, x) = u0(x)

(5.13)

with u0 ∈ L∞(R;E);
(iii) if u0 is piecewise constant, then, for t sufficiently small, Stu0 coincides with

the function obtained by piecing together the solutions of the corresponding
Riemann problems.

Proof. The statement follows easily, since we proved that Stu is the unique limit
of wave front approximations, and for data with bounded total variation we can apply
the results in [3].

Remark 5.6. Note that we also proved that the characteristic equation (4.1)
is well posed for L∞ data: the solution xi(t, y) is Lipschitz continuous w.r.t. both
variables. In fact, if un0 converges to u0 in L1

loc, Proposition 4.2 implies that xni (t, y),
solution to the i characteristic equation, tends to x(t, y) uniformly for all t, y. It is
then easy to prove that x(t, y) satisfies the equation

xi(t, y) = y +

∫ t

0

λi
(
s, xi(s, y)

)
ds.

The above equation implies uniqueness of xi(t, y) in the sense of Carathéodory, and
Proposition 4.3 prove continuous dependence on y.

This is not trivial, since even for 2 × 2 systems not in conservation form the
dependence is Hölder continuous, while for general n × n the solution does not exist
[16].

Note, moreover, that semigroup S is continuous but not uniformly continuous.
However, if the initial data takes values in a compact set of L1 ∩ L∞, then the semi-
group becomes uniformly continuous. This extends the Lipschitz continuity when the
initial data have bounded total variation.

Acknowledgment. I wish to thank Prof. Alberto Bressan for having suggested
the problem and his careful reading of the manuscript.
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Abstract. We establish that the Cauchy problem for the Benjamin–Ono equation and for a
rather general class of nonlinear dispersive equations with dispersion slightly weaker than that of the
Korteweg–de Vries equation cannot be solved by an iteration scheme based on the Duhamel formula.
As a consequence, the flow map fails to be smooth.
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1. Introduction. The Benjamin–Ono equation is one of the fundamental equa-
tions describing the evolution of weakly nonlinear dispersive internal long waves. It
has been derived by Benjamin [4] as an approximate model for long-crested unidirec-
tional waves at the interface of a two-layer system of incompressible inviscid fluids;
the top layer is assumed to be infinitely deep, while the heavier bottom layer has finite
depth. In nondimensional variables, the Benjamin–Ono equation writes as

ut −Huxx + uux = 0, u = u(t, x), (t, x) ∈ R
2,(1)

where u(t, x) is proportional to the vertical deviation of the interface from its rest
position at the point x at time t, and H is the Hilbert transform applied in the
spatial variable.

The Benjamin–Ono equation has attracted a considerable number of papers dur-
ing the last 20 years, particularly because it is completely integrable, at least formally
[3]. Actually, rigorous results concerning the inverse scattering transform method
require a certain small norm condition that excludes solitary waves [8].

We now review the state of the art concerning the Cauchy problem for the
Benjamin–Ono equation, which turns out to be more delicate than expected.

First, (1) possesses two conservation laws:1∫ ∞

−∞
u2(t, x)dx =

∫ ∞

−∞
u2(0, x)dx (momentum),(2)

∫ ∞

−∞

[
1

2
||Dx| 12 u|2 − 1

6
u3

]
(t, x)dx

=

∫ ∞

−∞

[
1

2
||Dx| 12 u|2 − 1

6
u3

]
(0, x)dx (energy).(3)
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1In fact, (1) possesses an infinite number due to the integrability.
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This suggests that the space L2(R) or the energy space H1/2(R) are good candi-
dates for a global well-posedness theory of the Cauchy problem. This problem is open
and one aim of this paper is to present some obstructions to its solvability by iteration
methods. On the other hand, some positive results are known. The Benjamin–Ono
equation has global weak solutions in the energy space (see [19]) and even global weak
solutions for data in L2 (see [10, 11, 22]). This last result is based on smoothing prop-
erties of the underlying linear group. It has also been shown that the Cauchy problem
is globally well-posed in Hs, s > 3/2 (see [9, 2]).2 This result has been extended to
s = 3/2 by Ponce (see [18]) by using dispersive estimates on the linear group. It
is worth noticing that all the results summarized above are based on a compactness
method: one passes to the limit by compactness arguments on some approximate so-
lutions. Another natural way of solving the Cauchy problem is to perform an iterative
method on the integral equation corresponding to the Benjamin–Ono equation with
initial data φ:

u(t) = S(t)φ−
∫ t

0

S(t− t′)(ux(t′)u(t′))dt′,

where S(t) = exp(tH∂2
x) is the generator of the free evolution.

Our results are negative ones and are inspired by a previous work of the authors on
the Kadomtsev-Petviashvili-I equation (see [17]). They show that one cannot solve
the Cauchy problem for the Benjamin–Ono equation by a Picard iterative method
implemented on the integral formulation of (1) for initial data in the Sobolev space
Hs(R), s ∈ R. In particular the methods introduced by Bourgain [6] and Kenig,
Ponce, and Vega [13] for the Korteweg–de Vries (KdV) equation cannot be used for
the Benjamin–Ono equation. Note that scaling arguments imply that the Cauchy
problem should be ill-posed in Hs(R), s < −1/2, and actually this has been recently
proved in [5].

As a consequence, there does not exist a T > 0 such that (1) admits a unique
local solution defined on the interval [−T, T ] and such that the flow-map data-solution
φ �−→ u(t), t ∈ [−T, T ], is C2 differentiable at the origin from Hs(R) to Hs(R). This
implies in particular that the flow map for the Cauchy problem solved in [2, 9, 18] is
not smooth (C2) at the origin, a fact which would be difficult to establish from the
compactness theory alone.

We note that the situation is radically different for the generalized Benjamin–Ono
equation

ut + ukux −Huxx = 0,(4)

which has been studied by Kenig, Ponce, and Vega [14]. Actually, they establish by
an iterative method (thus the corresponding flow is smooth) that (4) is locally well-
posed for small data in a Sobolev space Hsk(R) (sk > 1 if k = 2, sk > 5/6 if k = 3,
sk ≥ 3/4 if k ≥ 4).

The rest of the paper is organized as follows. In the next section we state and
prove our main results for the Benjamin–Ono equation. Section 3 is devoted to a
natural extension of our arguments to a general class of nonlinear dispersive equa-
tions with dispersion slightly weaker than that of the KdV equation. This includes,
for instance, the intermediate long wave equation (ILW), the Smith equation, and
equations describing waves in rotating fluids.

2This result uses the next conservation law.
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Notations. Different numerical constants are denoted by c and may change from
line to line. For any positive A and B the notation A � B (resp., A � B) means that
there exists a positive constant c such that A ≤ cB (resp., A ≥ cB). The notation
A ∼ B means that A � B � A. We denote the Fourier transform by ·̂ or F .

2. The Benjamin–Ono equation. Consider the Cauchy problem{
ut −Huxx + uux = 0, (t, x) ∈ R

2,
u(0, x) = φ(x).

(5)

Write (5) as an integral equation:

u(t) = S(t)φ−
∫ t

0

S(t− t′)(ux(t′)u(t′))dt′.(6)

Our main results follow.
Theorem 1. Let s ∈ R and T be a positive real number. Then there does not

exist a space XT continuously embedded in C([−T, T ], Hs(R)) such that there exists
C > 0 with

‖S(t)φ‖XT
≤ C‖φ‖Hs(R), φ ∈ Hs(R),(7)

and ∥∥∥∥
∫ t

0

S(t− t′) [u(t′)ux(t′)] dt′
∥∥∥∥
XT

≤ C‖u‖2XT
, u ∈ XT .(8)

Note that (7) and (8) would be needed to implement a Picard iterative scheme
on (6), in the space XT . As a consequence of Theorem 1 we can obtain the following
result.

Theorem 2. Fix s ∈ R. Then there does not exist a T > 0 such that (5) admits
a unique local solution defined on the interval [−T, T ] and such that the flow-map
data-solution

φ �−→ u(t), t ∈ [−T, T ],

for (5) is C2 differentiable at zero from Hs(R) to Hs(R).
We note that in [23] the failure of C2 regularity of the flow map of the KdV

equation on Hs(R) for s < −3/4 is studied, motivated by work of Bourgain [7]. A
direct corollary of Theorem 2 is the next statement.

Theorem 3. The flow map in the existing results for the Benjamin–Ono equation
is not C2 from Hs(R) to Hs(R).

2.1. Proof of Theorem 1. Suppose that there exists a space XT such that (7)
and (8) hold. Take u = S(t)φ in (8). Then∥∥∥∥

∫ t

0

S(t− t′) [(S(t′)φ)(S(t′)φx)] dt′
∥∥∥∥
XT

≤ C‖S(t)φ‖2XT
.

Now using (7) and that XT is continuously embedded in C([−T, T ], Hs(R)) we obtain
for any t ∈ [−T, T ] that∥∥∥∥

∫ t

0

S(t− t′) [(S(t′)φ)(S(t′)φx)] dt′
∥∥∥∥
Hs(R)

� ‖φ‖2Hs(R).(9)
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We show that (9) fails by choosing an appropriate φ.
Take φ defined by its Fourier transform as3

φ̂(ξ) = α− 1
2 1lI1(ξ) + α− 1

2 N−s1lI2(ξ), N � 1, 0 < α 1,

where I1, I2 are the intervals

I1 = [α/2, α], I2 = [N,N + α].

Note that ‖φ‖Hs ∼ 1. We will use the next lemma.
Lemma 1. The following identity holds:∫ t

0

S(t − t′)
[
(S(t′)φ)(S(t′)φx)

]
dt′

= c

∫
R2

eixξ+itp(ξ) ξ φ̂(ξ1)φ̂(ξ − ξ1)
eit(p(ξ1)+p(ξ−ξ1)−p(ξ)) − 1

p(ξ1) + p(ξ − ξ1)− p(ξ)
dξdξ1,

where p(ξ) = ξ|ξ|.
Proof of Lemma 1. The proof is very similar to that of Lemma 4 in [17]. We give

it for the sake of completeness. Taking the inverse Fourier transform with respect to
x, it is easily seen that∫ t

0

S(t− t′)
[
(S(t′)φ)(S(t′)φx)

]
dt′

= c

∫ t

0

∫
R

eixξ+itp(ξ)e−it
′p(ξ)ξ

[
(eit

′p(·)φ̂(·)) ∗ (eit
′p(·)φ̂(·))

]
(ξ) dξ dt′

= c

∫
R2

eixξ+itp(ξ) ξ φ̂(ξ1)φ̂(ξ − ξ1)

∫ t

0

eit
′(p(ξ1)+p(ξ−ξ1)−p(ξ)) dt′ dξ1dξ

= c

∫
R2

eixξ+itp(ξ) ξ φ̂(ξ1)φ̂(ξ − ξ1)
eit(p(ξ1)+p(ξ−ξ1)−p(ξ)) − 1

p(ξ1) + p(ξ − ξ1)− p(ξ)
dξ1dξ.

According to the above lemma,∫ t

0

S(t− t′) [(S(t′)φ)(S(t′)φx)] dt′ = c(f1(t, x) + f2(t, x) + f3(t, x)),

where, from the definition of φ, we have the following representations for f1, f2, f3:

f1(t, x) =
c

α

∫
ξ1∈I1

ξ−ξ1∈I1

ξ eixξ+itξ|ξ|
eit(ξ1|ξ1|+(ξ−ξ1)|ξ−ξ1|−ξ|ξ|) − 1

ξ1|ξ1|+ (ξ − ξ1)|ξ − ξ1| − ξ|ξ|dξdξ1,

f2(t, x) =
c

αN2s

∫
ξ1∈I2

ξ−ξ1∈I2

ξ eixξ+itξ|ξ|
eit(ξ1|ξ1|+(ξ−ξ1)|ξ−ξ1|−ξ|ξ|) − 1

ξ1|ξ1|+ (ξ − ξ1)|ξ − ξ1| − ξ|ξ|dξdξ1,

f3(t, x) =
c

αNs

∫
ξ1∈I1

ξ−ξ1∈I2

ξ eixξ+itξ|ξ|
eit(ξ1|ξ1|+(ξ−ξ1)|ξ−ξ1|−ξ|ξ|) − 1

ξ1|ξ1|+ (ξ − ξ1)|ξ − ξ1| − ξ|ξ|dξdξ1

+
c

αNs

∫
ξ1∈I2

ξ−ξ1∈I1

ξ eixξ+itξ|ξ|
eit(ξ1|ξ1|+(ξ−ξ1)|ξ−ξ1|−ξ|ξ|) − 1

ξ1|ξ1|+ (ξ − ξ1)|ξ − ξ1| − ξ|ξ|dξdξ1.

3The analysis below works as well for Re φ instead of φ (some new harmless terms appear).
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Set

χ(ξ, ξ1) := ξ1|ξ1|+ (ξ − ξ1)|ξ − ξ1| − ξ|ξ|.
Then clearly

Fx�→ξ(f1)(t, ξ) =
c ξeitξ|ξ|

α

∫
ξ1∈I1

ξ−ξ1∈I1

eitχ(ξ,ξ1) − 1

χ(ξ, ξ1)
dξ1,

Fx�→ξ(f2)(t, ξ) =
c ξeitξ|ξ|

αN2s

∫
ξ1∈I2

ξ−ξ1∈I2

eitχ(ξ,ξ1) − 1

χ(ξ, ξ1)
dξ1,

Fx�→ξ(f3)(t, ξ) =
c ξeitξ|ξ|

αNs

(∫
ξ1∈I1

ξ−ξ1∈I2

eitχ(ξ,ξ1) − 1

χ(ξ, ξ1)
dξ1 +

∫
ξ1∈I2

ξ−ξ1∈I1

eitχ(ξ,ξ1) − 1

χ(ξ, ξ1)
dξ1

)
.

Since the supports of Fx�→ξ(fj)(t, ξ), j = 1, 2, 3, are disjoint, we have∥∥∥∥
∫ t

0

S(t− t′) [(S(t′)φ)(S(t′)φx)] dt′
∥∥∥∥
Hs(R)

≥ ‖f3(t, ·)‖Hs(R).

We now give a lower bound for ‖f3(t, ·)‖Hs(R). Note that for (ξ1, ξ − ξ1) ∈ I1 × I2 or
(ξ1, ξ − ξ1) ∈ I2 × I1 one has |χ(ξ, ξ1)| = 2|ξ1(ξ − ξ1)| ∼ αN . Hence it is natural to
choose α and N so that αN = N−ε, 0 < ε 1. Then∣∣∣∣eitχ(ξ,ξ1) − 1

χ(ξ, ξ1)

∣∣∣∣ = |t|+ O(N−ε)

for ξ1 ∈ I1, ξ − ξ1 ∈ I2 or ξ1 ∈ I2, ξ − ξ1 ∈ I1. Hence for t �= 0,

‖f3(t, ·)‖Hs(R) � N Ns αα
1
2

αNs
= α

1
2 N.

Therefore we arrive at

1 ∼ ‖φ‖2Hs(R) ≥ ‖f3(t, ·)‖Hs(R) ≥ α
1
2 N ∼ N

1−ε
2 ,

which is a contradiction for N � 1 and ε 1. This completes the proof of Theorem
1.

2.2. Proof of Theorem 2. Consider the Cauchy problem{
ut −Huxx + uux = 0,
u(0, x) = γφ, γ  1, φ ∈ Hs(R) .

(10)

Suppose that u(γ, t, x) is a local solution of (10) and that the flow map is C2 at the
origin from Hs(R) to Hs(R). We have

∂2u

∂γ2
(0, t, x) = −2

∫ t

0

S(t− t′) [(S(t′)φ)(S(t′)φx)] dt′.

The assumption of C2 regularity yields∥∥∥∥
∫ t

0

S(t− t′) [(S(t′)φ)(S(t′)φx)] dt′
∥∥∥∥
Hs(R)

� ‖φ‖2Hs(R).

But the above estimate is (9), which has been shown to fail in section 2.1.
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3. A class of nonlinear dispersive equations. We consider now the class of
equations

ut + uux − Lux = 0, u(0, x) = φ(x), (t, x) ∈ R
2,(11)

where L is defined via the Fourier transform

L̂f(ξ) = ω(ξ)f̂(ξ).

Here ω(ξ) is a continuous real-valued function. Set p(ξ) = ξ ω(ξ). We assume that
p(ξ) is differentiable and such that, for some γ ∈ R,

|p′(ξ)| � |ξ|γ , ξ ∈ R.(12)

The next theorem shows that (11) shares the bad behavior of the Benjamin–Ono
equation with respect to iterative methods.

Theorem 4. Assume that (12) holds with γ ∈ [0, 2[. Then the conclusions of
Theorems 1, 2, and 3 are valid for the Cauchy problem (11).

The proof follows the considerations of the previous section. The main point in
the analysis is that for ξ1 ∈ I1, ξ − ξ1 ∈ I2 one has

|p(ξ1) + p(ξ − ξ1)− p(ξ)| � αNγ , α 1, N � 1.

We choose α and N such that αNγ = N−ε, 0 < ε 1. We take the same φ as in the
proof of Theorem 1 and arrive at the lower bound

1 ∼ ‖φ‖2Hs(R) ≥ α
1
2 N = N1− γ+ε

2 ,

which fails for 0 < ε 1, γ ∈ [0, 2[.
Here we give several examples where Theorem 4 applies.
• Pure power dispersion:

ω(ξ) = |ξ|γ , 0 ≤ γ < 2.

This dispersion corresponds to a class of models for vorticity waves in the coastal
zone (see [20]). It is interesting to notice that the case γ = 2 corresponds to the KdV
equation which can be solved by iterative methods (see [6, 13]). Therefore Theorem
4 is sharp for a pure power dispersion. However, the Cauchy problem corresponding
to 1 ≤ γ < 2 has been proven in [12, Theorem 1.3] to be locally well-posed by a
compactness method combined with sharp estimates on the linear group for initial
data in Hs(R), s ≥ (9− 3γ)/4.
• Perturbations of the Benjamin–Ono equation:

ω(ξ) = (|ξ|2 + 1)
1
2 (see [21]),

ω(ξ) = ξ coth(ξ) (the ILW equation; see [15, 1, 2]).

• Equations describing waves in rotating fluids:

ω(ξ) = ξ2K0(|ξ|) (where K0 is the Bessel function of order zero; see [16]).
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1. Introduction. Inverse function theorems are fundamental tools for the study
of solutions to nonlinear equations. Proofs depend on iteration arguments. When a
nonlinear equation comes from a partial differential equation, it often happens that
the operators under consideration do not have enough regularity and the iteration
process is defined only for a few steps. This is known as loss of derivatives. In
order to overcome this difficulty, iteration techniques have been designed to allow the
iteration to lead to a limit. These are known as generalized inverse function theorems.
They generally depend on having a scale of intermediate spaces between the domain
and the range of the nonlinear operator under consideration. Most notable of such
results is the one proven by J. Moser in [5] and [6] (see also [2]). The reader is referred
to [3] for a sharper version of the results of [5].

Here we prove an inverse function theorem (Theorem 2.1 below) using finite
dimensional subspaces of infinitely differentiable functions, which makes the phe-
nomenon of loss of derivatives immaterial. In addition we only assume the operators
to have a first order derivative. This is in contrast with the results of [5] and [3]
where Newton-like iteration techniques require extensive use of the properties of the
quadratic remainder (see (10)). In [12] another inverse function theorem is proven
without assumptions on the quadratic remainder. Our use of continuous steepest de-
scent has roots in [1], [7], [8], and [9]. For applications of generalized inverse function
theorems to elliptic systems the reader is referred to [4] and [11].

2. Main result. For the sake of simplicity we present our main result in the
context of a particular class of Sobolev spaces. However, the general principle applies
to many other scales of spaces sharing the general properties of the Sobolev spaces
that are defined in the next paragraph. The reader is referred to [2] for various other
scales of spaces.

Let each of m and n denote a positive integer. For each nonnegative integer ρ let
Cρ denote the set of ρ-differentiable functions u : Rn → Rm that are 2π-periodic in
each of its n independent real variables. The norm in Cρ is given by

|u|ρ = max{|u(x)|;x ∈ Rn}+max{|Dαu(x)|;x ∈ Rn, |α| = ρ};(1)
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here, α = (α1, . . . , αn) is an n-tuple of nonnegative integers and |α| = α1 + · · ·+ αn.
Similarly for r ≥ 0 we define Hr as the Sobolev space of functions u : Rn → Rm of
the form

u(x) =
∑
j∈Zn

cje
ij·x(2)

such that

‖u‖2r ≡
∑
j∈Zn

|cj |2 +
∑
j∈Zn

|j|2r|cj |2 <∞,(3)

where |(j1, . . . , jn)|2 = j2
1 + · · · + j2

n. Actually Hr is also defined for r < 0 provided
that the expression in (2) is understood in the sense of distributions and

‖u‖2r ≡ |c0|2 +
∑

j∈Zn−{0}
|j|2r|cj |2 <∞.(4)

For r ≥ 0 the inner product in Hr is given by〈∑
j∈Zn

cje
ij·x,

∑
j∈Zn

dje
ij·x
〉
r

=
∑
j∈Zn

(1 + |j|2r)cj d̄j .(5)

Let ε > 0 and F : {x ∈ C1; |x|1 < ε} → C0 be a continuous function such that
F (0) = 0. Typically F is a first order differential operator. We assume that for
u, v ∈ C1, with |u|1 < ε, the limit

lim
t→0

F (u+ tv)− F (u)

t
≡ F ′(u)v(6)

exists and is a continuous function of v and that F ′(·)v defines a continuous function
from C1 into C0, for each v ∈ C1. We also assume that there exist λ ∈ R, positive
constants k1, k2, k3, and l > (n/2) + 1 with

〈F ′(u)v, v〉0 ≥ k1‖v‖20(7)

for all u, v ∈ C1;

〈F ′(u)v, v〉l ≥ k2‖v‖2λ − k3‖v‖20(8)

for u ∈ C1, |u|l ≤ ε, v ∈ H l; and for each positive integer ρ there exists Mρ such that

‖F (u)‖ρ ≤Mρ‖u‖ρ+1 for |u|1 < ε.(9)

Without loss of generality we may assume that k1 < k2.
In [6], it is shown that the equation F (u) = g has a solution when the operators

F ′(u) have approximate inverses, and

‖F (u+ v)− F (u)− F ′(u)v‖0 ≤M‖v‖2−β0 ‖v‖βl for |u|1 < ε, |u+ v|1 < ε,(10)

where M is a constant independent of u, v and 0 ≤ β < 1. In addition, it is shown
that (7) and (8) with l = λ are sufficient for F ′(u) to have an approximate inverse.

Here we prove the following theorem.
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Theorem 2.1. If (6)–(9) hold and l > (n/2) + 1, then there exist δ > 0 such
that, if ‖g‖l < δ, then the equation

F (y) = g(11)

has a solution.
Proof. For each positive integer k, let Xk denote the linear subspace of H l of

functions of the form

u(x) =
∑

‖j‖2≤k2

cje
ij·x.(12)

Let Pk ≡ P denote the orthogonal projection of H l onto Xk. An elementary Fourier
series argument shows that P is also an orthogonal projection of H0 onto Xk and

〈Pu, v〉0 = 〈u, Pv〉0 for all u, v ∈ H l.(13)

Now let Λ ∈ (n/2+1, l). Since Xk is finite dimensional and a subset of C1, by (6)
there exists a bounded differentiable function F̃ : Xk → Xk such that PF (u) = F̃ (u)
if ‖u‖Λ < ε/2, u ∈ Xk. Hence the initial value problem

z′(t) = −F̃ (z(t)) + P (g), t ≥ 0, z(0) = 0,(14)

has a solution defined on [0,∞).
Let us see that, for ‖g‖l small enough, |z(t)|1 < ε/2 for all t ≥ 0. In fact, let

w(t) = P (F̃ (z(t))− g). Thus

(‖w(t)‖20)′ = 2〈w(t), P F̃ ′(z(t))z′(t)〉0

= −2〈Pw(t), F̃ ′(z(t))(P (w(t))〉0

≤ −2k1‖w(t)‖20.

(15)

In particular we see that the quantity ‖w(t)‖0 is a decreasing function of t. In
addition, from (15) we have

‖w(t)‖0 ≤ ‖w(0)‖0e−k1t = ‖g‖0e−k1t.(16)

Now we estimate the H l norm of w(t). In order to do so we observe that for each
(k, λ) there exists a positive constant C(k, λ) such that

‖x‖2λ ≥ C(k, λ)‖x‖2l for all x ∈ Xk.(17)

We note that C(k, λ) → 0 as k → ∞ when λ < l; otherwise C(k, λ) can be taken to
be equal to 1. From now on we restrict ourselves to the case λ < l; the case λ ≥ l is
simpler. Thus we may assume that

C(k, λ)→ 0 as k →∞.(18)

From (8), (13), (16), (17), and (18) we infer that for k sufficiently large

(‖w(t)‖2l )′ = 2〈w(t), P F̃ ′(z(t))z′(t)〉l

= −2〈Pw(t), F̃ ′(z(t))(P (w(t))〉l

≤ −2(k2‖w(t)‖2λ − k3‖w(t)‖20)

≤ −2(k2C(k, λ)‖w(t)‖2l − k3‖g‖20e−2k1t).

(19)
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Thus for k sufficiently large

‖w(t)‖2l ≤ (‖g‖2l + k3‖g‖20/(k1 − k2C(k, λ)))e
−2k2C(k,λ)t

≤ (‖g‖2l + 2k3‖g‖20/k1)e
−2k2C(k,λ)t

≡M(‖g‖l)e−2k2C(k,λ)t,

(20)

where M(‖g‖l) → 0 as ‖g‖l → 0. By interpolation properties of Sobolev space (see
section I.2 in [6]) one has

‖w(t)‖Λ ≤ ‖w(t)‖(1−Λ/l)
0 ‖w(t)‖Λ/ll ≤M(‖g‖l)Λ/(2l)‖g‖(1−Λ/l)

0 e−k1(1−Λ/l)t.(21)

Integrating (14) by (20) and (21), we see that there exist δ > 0 such that if ‖g‖l ≤ δ,
then

‖z(t)‖Λ < ε/3 for all t ≥ 0.(22)

Now letting xk ∈ Xk be an element in the w-limit set of the orbit defined by z,
we see that ‖xk‖Λ ≤ ε/3 and F̃ (xk) = PF (xk) = P (g). Therefore by the Sobolev
imbedding theorem we may assume that it converges to some element x ∈ Hλ1 , with
λ1 ∈ ((N/2) + 1, l). By (9), F (xk) is bounded in Hλ1−1. Using again that bounded
sequences in Hs have converging subsequences in Ht if s > t, we may further assume
that {F (xk)} converges in Hλ2 with λ2 ∈ (n/2, λ1− 1). Recalling that, by Poincaré’s
inequality,

‖z‖λ2−1 ≤ Ck‖z‖λ2 for all z ∈ X⊥
k ,(23)

with Ck converging to zero as k →∞, we conclude that ‖(I − P )F (xk)‖λ2−1 → 0 as
k → ∞. This and the fact that {F (xk)} converges to F (x) imply that {P (F (xk))}
converges to F (x) in Hλ2 . Hence in Hλ2 we have

g = limPk(g) = limPk(F (xk)) = F (x),(24)

and this proves the theorem.
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1. Introduction. The question of existence of global L2 weak solutions in R3

to the initial boundary value problem for inviscid, incompressible fluids, governed by
Euler equations

ρ
∂vi
∂t

+ ρvj
∂vi
∂xj

+
∂p

∂xi
= 0 in (0, T )× Ω, i = 1, 2, 3,(1.1)

div v = 0 in (0, T )× Ω,(1.2)

v · ν = 0 in (0, T )× ∂Ω,(1.3)

with initial condition

v(0,x) = v0(x), x ∈ Ω,(1.4)

where ρ is a positive constant (which will be assumed to be 1), is still open. A very
nice and informative discussion of this question and related issues can be found in [4].

A concept of measure-valued solutions was proposed by DiPerna, Majda, Tartar,
and others. See [4] and [5] and the references therein. This latter concept seems to be
much too large a class of solutions. To quote Lions in [4, p. 153], A very weak notion
(relying on relaxed Young measures or relaxed measure valued solutions) is proposed
by R.J. DiPerna and A. Majda [129] but the relevance of this notion is not entirely
clear since it is not known that “solutions” in the sense of [129] coincide with smooth
solutions as long as the latter do exist. Another concept of solutions, called dissipative
solutions, was introduced by Lions in [4].

For other results on this problem see also [1], [6], and the references therein.
We shall present here a straightforward concept, based on the fixed point for the

map γ : u→ v, where u and γ(u) = v are related by the Oseen equations

∂vi
∂t

+ uj
∂vi
∂xj

+
∂p

∂xi
= 0 in (0, T )× Ω, i = 1, 2, 3,(1.5)
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where the fixed point is understood in the sense of the closure of the graph (u,v) in
the topology of L∞

weak−star((0, T );L2
weak(Ω)3). Obviously any L2 weak solution is a

very weak solution in our sense.
We would like to make a few comments on the relation between the very weak

solutions we introduce and other concepts of solutions.
1. It is not excluded that nonsmooth, very weak solutions coexist with classical

solutions.
2. If a smooth classical solution exists on a time interval [0, Tc), then the very

weak solution provided by our method of construction will coincide with this
classical solution over the time interval [0, Tc).

3. If a very weak solution is known to be smooth in a time interval [0, Tw), it
will coincide with the classical solution over the time interval [0, Tw).

4. Our very weak solutions and the dissipative solutions of Lions are in L2, a
space strictly smaller than the set where Young-measure solutions, whose
existence was proved by Diperna and Majda, live.

We will prove items 2 and 3. In the proof of item 3 we will show that if an element
(u,u) is in the closure of the graph for the topology of L∞

weak−star((0, T );L2
weak(Ω)3)

and u is smooth, then, in fact, (u,u) will be in the smaller set, which is the closure
of the graph for the strong topology of L∞((0, T );L2(Ω)3).

At this stage the possible relations between Young-measure solutions, dissipative
solutions, or our very weak solutions remain an open question.

2. Main results. Let 0 < T < ∞. We assume that Ω is a smooth bounded
domain in R3, and Ωt = {t} × Ω. We will denote by ν the outward unit normal
vector to Ω.

We introduce the spaces V and V defined by

V =

{
v ∈ L2(Ω)3 :

∂vi
∂xi

= 0 in Ω, v · ν = 0 on ∂Ω

}
(2.1)

and

V = L∞((0, T );V).(2.2)

Let v0 ∈ V. We recall the definition of a weak solution.
Definition 1. A v ∈ V is a weak solution to (1.1)–(1.4) with ρ = 1 if

−
∫ ∫

Q

vi
∂φi
∂t

dtdx−
∫ ∫

Q

vjvi
∂φi
∂xj

dtdx−
∫

Ω

v0
i φi dx = 0(2.3)

for all φ ∈ C1([0, T ];W 3,2(Ω)3) ∩ V with φ(T, · ) = 0, where Q = (0, T )× Ω.
Let u ∈ V be given. We are looking for a function v ∈ V such that for any φ as

described above

−
∫ ∫

Q

vi
∂φi
∂t

dtdx−
∫ ∫

Q

ujvi
∂φi
∂xj

dtdx−
∫

Ω

v0
i φi dx = 0.(2.4)

Proposition 1. For any given u ∈ V and any given v0 ∈ V there exists a weak
solution to Oseen equation (2.4).

Proof. We will use the Galerkin method to show existence. Since V is separable,
there exists a basis {wk}k≥1 of V. It is well known that {wk}k≥1 can be chosen to be
an orthonormal basis in V. Also, since D(Ω) is dense in V, we can assume that this
basis is made of smooth functions (C∞, for example; cf. [3]).
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We look for a function vn(t,x) =
∑

1≤k≤n ak(t)w
k(x), such that ak(· ) ∈ C1([0, T ]),

and ∫
Ωt

∂vni
∂t

wk
i dx+

∫
Ωt

uj
∂vni
∂xj

wk
i dx = 0(2.5)

and ∫
Ω

vni (0)w
k
i dx =

∫
Ω

v0
iw

k
i dx(2.6)

for all 1 ≤ k ≤ n.
Putting vn in (2.5), we get

1

2

∫
Ω

∂

∂t
|vn|2dx = 0;(2.7)

hence

1

2

∫
Ω

|vn|2 dx =
1

2

∫
Ω

|vn(0)|2 dx.(2.8)

Since the functions
∑

1≤k≤m bk(t)w
k(x), with bk(t) ∈ C1([0, T ]) and bk(T ) = 0,

are dense in C1([0, T ];W 3,2(Ω)3)∩V (with φ(T, · ) = 0), the L∞
weak−star((0, T );L2

weak(Ω)3)
limit v of (a subsequence of) vn satisfies (2.4) and div v = 0. We also note that
vn · ν = 0 on the boundary Ωt for all t ≥ 0. Since vn converges in the topol-
ogy of L∞

weak−star((0, T );L2
weak(Ω)3), it follows by the trace theorem that v · ν =

limn→∞ vn · ν = 0, where the convergence is taking place within the topology of

L∞
weak−star((0, T );W

−1/2,2
weak (∂Ω)3) (e.g., see Temam [7, p. 9]). Therefore, v ∈ V , and

so v is a weak solution to (2.4).
Remark 1. It is easy to prove that, if u ∈ L∞((0, T );W 3,2(Ω)3), then so is v,

and the solution is unique, assuming that v0 ∈W 3,2(Ω)3.
Definition 2. Let un ∈ V be given, and let vn ∈ V be the corresponding solution

to the Oseen problem (2.4). If un converges to a function u and vn converges to a
function v in the topology of L∞

weak−star((0, T );L2
weak(Ω)3) and u = v, then u is

called a very weak solution to the problem (1.1)–(1.4).
Remark 2. Obviously, a weak solution is a very weak solution.

2.1. Existence of very weak solutions to the Dirichlet problem for Eu-
ler’s equations on bounded domains. Let Ω be a bounded domain in R3 with
smooth boundary. Let ω ∈ D(R3), ω(x) ≥ 0,

∫
ω(x) dx = 1, ω(x) = ω(−x). This

is a classical mollifier whose existence can be found in most textbooks. We define
ωh(x) := h−3ω(x/h), h > 0, and

uh(t,x) := (ωh ∗ u(t, · ))(x) =
1

h3

∫
Ω

ω

(
x− y

h

)
u(t,y) dy.(2.9)

Clearly, if u is divergence-free, then so is uh. Also,
∫
Ω
|uh|2dx ≤ c

∫
Ω
|u|2dx, where c

is a constant independent of h.
We choose the same basis, {wk}k≥1, of V as before. They are orthogonal functions

in L2(Ω)3, and they are smooth (cf. [3]). We denote by P the L2-orthogonal projection
onto V, En := span{w1, . . . ,wn}, and we denote by Pn the L2-orthogonal projection
onto En.
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Theorem 1. Let Ω be a bounded domain in R3 with smooth boundary. For any
v0 ∈ V there exists a very weak solution to the problem (1.1)–(1.4).

Proof. For a fixed h > 0, let us first look for a solution to the problem v ∈ V ,
and

−
∫
Q

vi
∂φi
∂t

dtdx−
∫
Q

P(vh)jvi
∂φi
∂xj

dtdx−
∫

Ω

v0
i φi dx = 0(2.10)

for all φ ∈ C1([0, T ];W 3,2(Ω)3) ∩ V with φ(T, · ) = 0. Here P(vh)(t, · ) means
P(vh(t, · )).

As in the above, we will use the Galerkin method to show the existence of solutions
to (2.10). Let vn be the Galerkin approximation to (2.10). That is, vn(t,x) =∑

1≤k≤n ak(t)w
k(x) ∈ En with ak(· ) ∈ C1([0, T ]), and vn satisfies∫

Ωt

∂vni
∂t

wk
i dx+

∫
Ωt

P(vh,n)j
∂vni
∂xj

wk
i dx = 0(2.11)

and ∫
Ω

vni (0)w
k
i dx =

∫
Ω

v0
iw

k
i dx(2.12)

for all 1 ≤ k ≤ n. Since P(vh,n) is linear in a1, a2, . . . , an, the second term in the
left-hand side of (2.11) is quadratic in a1, a2, . . . , an. Therefore, the existence and
uniqueness of vn follows immediately from the Picard theorem. Clearly, we have∫

Ω

|vn(t,x)|2 dx ≤ c <∞ ∀t ∈ [0, T ].(2.13)

We remark that

vh,n(t,x) :=
1

h3

∫
R3

ω

(
x− y

h

)
vn(t,y)dy, x ∈ R3,(2.14)

where vn(t, · ) is extended by 0 outside of Ω. From (2.13) and properties of the
mollifiers, it follows that vh,n(t, · ) ∈ C∞(R3)3, and for all r ≥ 0

||vh,n(t, · )||Cr(R3) ≤ c <∞, t ∈ [0, T ],(2.15)

where c = c(r) is a constant.
In order to estimate ∂vn

∂t , we need the following technical lemma.
Lemma 1.1 Let s ≥ 1 and p ≥ 2. Assume that ∂Ω is of class C∞. Every function

φ ∈W s,p(Ω)3 has the L2(Ω)3-orthogonal decomposition

φ = ψ + grad(q),(2.16)

where ψ ∈W s,p(Ω)3 ∩ V, q ∈W s+1,p(Ω)/R. Moreover,

||ψ||W s,p(Ω)3 ≤ C ||φ||W s,p(Ω)3 ,(2.17)

where C = C(s, p,Ω) is a constant independent of φ.

1This should be a well-known classical result about the Helmholtz decomposition. But since we
were unable to find a easy source to reference, we decided to provide a quick proof for the reader’s
convenience.
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Proof of Lemma 1. Let φ ∈W s,p(Ω)3. As p ≥ 2, φ ∈ L2(Ω)3, and the Helmholtz
decomposition yields (2.16), where ψ ∈ L2(Ω)3, divψ = 0 in Ω, ψ ·ν = 0 on ∂Ω (i.e.,
ψ ∈ V), q ∈ W 1,2(Ω)/R, and ψ, grad(q) are mutually orthogonal in L2(Ω)3 (cf. [7,
Theorem 1.4., p. 15] or [2, Corollary 3.4, p. 50]). As φ ∈W s,p(Ω)3, with s ≥ 1, we have
φ · ν ∈W s−1/p,p(∂Ω). It then follows that ∆q = div(φ−ψ) = divφ ∈W s−1,p(Ω) and
∂q
∂ν = grad(q)·ν = (φ−ψ)·ν = φ · ν ∈W s−1/p,p(∂Ω). The regularity of the solution
to the Neumann problem for the Laplace equation implies (cf. [2, Theorem 1.10,
p. 15]) that q ∈ W s+1,p(Ω)/R and there is a constant C = C(s, p,Ω) (independent
of φ) such that ||q||W s+1,p(Ω)3/R ≤ C

(||divφ||W s−1,p(Ω) + ||φ · ν||W s−1/p,p(∂Ω)

) ≤
C ||φ||W s,p(Ω)3 . Thus ψ = φ−grad(q) ∈W s,p(Ω)3 and ||ψ||W s,p(Ω)3 ≤ ||φ||W s,p(Ω)3 +
||q||W s+1,p(Ω)3/R, which yields (2.17).

Corollary 1. If s, p,Ω,φ, and ψ are as in Lemma 1, then ψ = P(φ). There-
fore, the operator P maps W s,p(Ω)3 onto W s,p(Ω)3∩V, and P is a bounded operator.

Proof of Corollary 1. In (2.16) ψ ∈ V and grad(q) is in the L2(Ω)3-orthogonal of
V, so P(φ) = ψ. Equation (2.17) implies that P is a bounded operator.

Proof of Theorem 1 (cont.). Let φ ∈ W 1,2
0 (Ω)3 and ψ be as in (2.16). That is,

ψ = P(φ). Since vn(t, · ) ∈ En, and so ∂vn

∂t (t, · ) ∈ En, using (2.11), we have∫
Ωt

∂vni
∂t

φi dx =

∫
Ωt

∂vni
∂t

ψi dx =

∫
Ωt

∂vni
∂t
Pn(ψ)i dx

=

∫
Ωt

P(vh,n)jv
n
i

∂

∂xj
(Pn (ψ)i) dx.(2.18)

As vh,n ∈ C∞(R3), then vh,n ∈W 1,4(Ω) . The embedding theorem, Corollary 1,
(2.15), and the properties of mollifiers imply that∣∣∣∣P(vh,n)

∣∣∣∣
L∞(Ω)3

≤ c
∣∣∣∣P(vh,n)

∣∣∣∣
W 1,4(Ω)3

≤ c
∣∣∣∣vh,n∣∣∣∣

W 1,4(Ω)3
≤ c ||vn||L2(Ω)3 ≤ c.(2.19)

Since En ⊂ V, it follows that Pn(ψ) = Pn(φ). However, φ ∈ W 1,2
0 (Ω)3, and (for an

appropriate choice of the basis {wk}k≥1 of V) a direct calculation yields that Pn(φ)
is also the W 1,2(Ω)3-orthogonal projection of φ on En. Therefore,

||Pn(ψ)||W 1,2(Ω)3 = ||Pn(φ)||W 1,2(Ω)3 ≤ c ||φ||W 1,2
0 (Ω)3 .(2.20)

Using (2.19), (2.13), and (2.20) in (2.18), we obtain∣∣∣∣
∫

Ωt

∂vni
∂t

φi dx

∣∣∣∣ ≤ c ||φ||W 1,2
0 (Ω)3(2.21)

for any φ ∈W 1,2
0 (Ω)3. Thus∣∣∣∣

∣∣∣∣∂vn∂t

∣∣∣∣
∣∣∣∣
L∞((0,T );W−1,2(Ω)3)

≤ c.(2.22)

From (2.14) and (2.22), it follows from classical properties of mollifiers that∣∣∣∣
∣∣∣∣∂vh,n∂t

∣∣∣∣
∣∣∣∣
L∞((0,T );W 1,2(Ω)3)

≤ c.(2.23)

Note that in (2.19)–(2.23) the constant c depends on h.
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Let h > 0 be fixed. From (2.13) and classical compactness arguments it follows
that there exist a subsequence nk and a function v ∈ V such that v = limnk→∞ vnk

in the topology of L∞
weak−star((0, T );L2

weak(Ω)3). It then follows from (2.23) and

(2.15) that vh,nk converges strongly in L2((0, T );L2(Ω)3) to vh as k → ∞, and so
P(vh,nk)→ P(vh) strongly in L2((0, T );L2(Ω)3). Therefore, P(vh,nk)jv

nk
i converges

in the topology of L∞
weak−star((0, T );L2

weak(Ω)) to P(vh)jvi. Hence v is a solution to
the problem (2.10).

We will now let h go to zero and finish the proof of the theorem.
Let us consider a subsequence hm → 0, and let vm be the corresponding so-

lution to (2.10) with h = hm. It can easily be seen that vm and vhm,m are uni-
formly bounded in L∞((0, T );L2(Ω)). Therefore, without loss of generality, we can
assume that vm → v and vhm,m → w, and so P(vhm,m)→ P(w), in the topology of
L∞
weak−star((0, T );L2

weak(Ω)3). Clearly, we will have that v ∈ V . To finish the proof
of the theorem we need simply to show that P(w) = v.

First we will show that w = v. Letting χ ∈ C(Ī;L2(Ω)3), we have

∫ T

0

∫
Ω

vhm,m
i (t,x)χi(t,x) dx dt

=

∫ T

0

dt

∫
Ω

χi(t,x)dx

∫
R3

ω

(
x− y
hm

)
vmi (t,y) dy

=

∫ T

0

dt

∫
R3

vmi (t,y)
dy

h3
m

∫
R3

ω

(
x− y
hm

)
χi(t,x) dx

(2.24)

(with χi(t, · ) = 0 on R3 \ Ω). Since

1

h3

∫
R3

ω

(
y − x

h

)
χi(t,x) dx→ χi(t,y) in C(Ī × Ω)

as h→ 0 and ω(x) = ω(−x), we get from (2.24) that

∫ T

0

∫
Ω

vhm,m
i (t,x)χi(t,x) dx dt→

∫ T

0

∫
Ω

vi(t,y)χi(t,y) dy dt.(2.25)

It follows that w = v.
Since v ∈ V , it follows that w ∈ V , and therefore P(w) = w. Hence P(w) = v,

and so v is a very weak solution.

2.2. Existence of space-periodic very weak solutions to Euler’s equa-
tion. We shall now consider the space-periodic solutions to (1.1)–(1.4). The proof
here is similar to that of the previous subsection. But since in the periodic case we
can work with an explicit basis and an explicit decomposition (2.16), we will present
some of the details.

We set Ω = (−π, π)3 and Q = (0, T ) × (−π, π)3. There is an obvious identifica-
tion between functions on Ω and the functions 2π-periodic in each variable on R3.
Throughout this subsection we will use this identification. We consider the spaces
Vper and Vper defined by

Vper = Vper(R3) =

{
v ∈ L2((−π, π)3)3 :

∂vi
∂xi

= 0 in (−π, π)3,

∫
(−π,π)3

v dx = 0

}
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and

Vper = L∞((0, T );Vper).(2.26)

We set wk = cke
I(x·k) + c̄ke

−I(x·k) with cjkkj = 0, k �= (0, 0, 0), where I2 = −1,

c̄k = (c̄1k, c̄
2
k, c̄

3
k), and c̄jk is the complex conjugate of cjk.

Thus {wk}|k|>0 is an orthogonal basis in Vper, where |k| = maxi |ki|. We denote

En := span{wk : 0 < |k| ≤ n}.
A function v ∈ Vper is a space-periodic weak solution to (1.1)–(1.4), with ρ = 1,

if v satisfies (2.3) for all φ as above with φ 2π-periodic in each spatial variable.
Proposition 2. For any u ∈ Vper and any given v0 ∈ Vper, there exists a

space-periodic weak solution to Oseen equation (2.4).
Proof. The proof is similar to that of Proposition 1.
A function u ∈ Vper is called a space-periodic very weak solution to the problem

(1.1), (1.2), and (1.4) if Definition 2 holds for u with un,vn ∈ Vper.
Theorem 2. For any v0 ∈ Vper there exists a space-periodic very weak solution

to the problem (1.1), (1.2), and (1.4).
Proof. As in the proof of Theorem 1, for a fixed h > 0, we consider the equation

for v ∈ Vper

−
∫
Q

vi
∂φi
∂t

dt dx−
∫
Q

vhj vi
∂φi
∂xj

dt dx−
∫

Ω

v0
i φi dx = 0(2.27)

for all φ ∈ C1([0, T ];W 3,2(Ω)3) ∩ Vper, φ 2π-periodic in each spatial variable, with
φ(T, · ) = 0. Note that vh(t, · ) ∈ C∞(R3) ∩ Vper, 2π-periodic function in each spatial
variable, with

∫
Ωt
vh dx = 0, for all t. That is, vh ∈ Vper.

As above, let vn(t, x) =
∑

0<|k|≤n ak(t)w
k(x) be the Galerkin approximation

in En to (2.27), and let vh,n be defined by (2.14), where vn is considered as a 2π-
periodic function on R3. Clearly, vh,n ∈ C∞(R3)3, and vh,n is 2π-periodic in each
spatial variable. The function vn satisfies∫

Ωt

∂vni
∂t

wk
i dx+

∫
Ωt

vh,nj

∂vni
∂xj

wk
i dx = 0(2.28)

and ∫
Ω

vni (0)w
k
i dx =

∫
Ω

v0
iw

k
i dx(2.29)

for all 1 ≤ k ≤ n. The existence and uniqueness of such a function follows immediately
from the Picard theorem. We have

||vn||L∞((0,T ),L2(Ω)3) ≤ c.(2.30)

Let φ = (φ1, φ2, φ3) ∈W 1,2(Ω)3 be a 2π-periodic function in each variable. Thus
φi(x) =

∑
� φi,�e

I(�,x) with
∑

� |φi,�|2||22 <∞ and ||22 = )21 + )31 + )23. We define

q� = −I )i φi,�||22
, ψi,� = φi,� − I)i q�

and set ψi(x) =
∑

� ψi,�e
I(�,x), ψ = (ψ1, ψ2, ψ3), and q(x) =

∑
� q�e

I(�,x). It is easy
to verify that ψ ∈ W 1,2(Ω)3, divψ = 0 in Ω, ||grad(q)||W 1,2(Ω)3 ≤ c ||φ||W 1,2(Ω)3 ,
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ψ,grad(q) are orthogonal in both L2(Ω)3 and φ = ψ + grad(q). This is exactly the
analogue of (2.16). Using this decomposition and (2.28), we immediately get (2.21)
and then ∣∣∣∣

∣∣∣∣∂vn∂t

∣∣∣∣
∣∣∣∣
L∞((0,T );W−1,2(Ω)3)

≤ c.(2.31)

Let h > 0 be fixed. It follows from (2.30) that there exist a subsequence vnk and
a function v ∈ Vper such that vnk → v in L∞

weak−star((0, T );L2
weak(Ω)3). Since

L2(Ω)3 ⊂⊂W−1,2(Ω)3 ⊂W−1,2(Ω)3, using (2.30) and (2.31), the convergence vnk →
v holds in L2((0, T );W−1,2(Ω)3) (cf. [3, Theorem 5.1, p. 58] or [7, Theorem 2.1,
p. 271]). Using properties of mollifiers, it then follows that vh,nk → vh strongly in

L2((0, T );W 2,2(Ω)3). For a function χ ∈ L2((0, T );W 2,2(Ω)3), vh,nk

j
∂χi

∂xj
→ vhj

∂χi

∂xj

in L2((0, T );W 1,2(Ω)), and so
∫ T
0

∫
Ω
vh,nk

j vnk
i

∂χi

∂xj
dxdt→ ∫ T

0

∫
Ω
vhj vi

∂χi

∂xj
dxdt. There-

fore, v is a solution to the problem (2.27).
Proceeding as in the last part of the proof of Theorem 1, by letting h go to zero,

we obtain (2.25). Therefore, v is a space-periodic very weak solution, and the proof
is complete.

3. Regularity. Here we state some regularity results and shed some light on
the relation between very weak solutions and traditional classical solutions. The first
result we prove is that if a smooth solution exists, which implicitly assumes that the
initial condition is smooth, then the very weak solution constructed by our method
will coincide with the classical solution. This does not preclude the existence of other,
nonsmooth, very weak solutions.

The second theorem we prove in this section is less obvious and is more significant.
We prove that any smooth very weak solution is actually a classical solution. This is
achieved by showing that smooth elements of the form (u,u), which are in the closure,
for the weak topology, of the graph of the map γ described in the introduction are in
fact in the smaller set, which is the closure for the strong topology of the same set.

For simplicity of notation we prove these results in the space-periodic case. The
generalization to the other case is immediate.

We begin by clarifying our terminology.
Definition 3. A function u ∈ Vper is said to be a smooth classical solution to the

problem (1.1), (1.2), and (1.4) in [0, T ) × Ω if it is in the space C0([0, T );W 3,2(Ω)3)
and it satisfies (1.1), (1.2), and (1.4).

Lemma 2. Assume that v0 ∈ V ∩W 3,2(Ω)3 and h > 0 is a fixed number. Then
there exist a time T > 0 and a constant C, both independent of h, such that the
solution v(t,x, h) of problem (2.27) satisfies

||v(·, ·, h)||C0([0,T ),W 3,2(Ω)3) ≤ C.(3.1)

Proof. This proof follows the same outline as the existence proof used in [6]. Using
φ = Dlvn for all |l| ≤ 3 as a test function in (2.28), we deduce as in [6, section 2.1]
that

d

dt
||vn(t, ·)||2W 3,2(Ω)3 ≤ c||vn(t, ·)||3W 3,2(Ω)3 ,(3.2)

where c is a constant independent of n and h. It then easily follows that by letting
n→∞, we get that the solution v(t,x, h) of problem (2.27) satisfies

d

dt
||v(t, ·, h)||2W 3,2(Ω)3 ≤ c||v(t, ·, h)||3W 3,2(Ω)3(3.3)

for all t ≥ 0 and all h.
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Choose T such that 0 < T < 2
c·||v0||W3,2(Ω)3

. From the previous estimate it easily

follows (see [6, Appendix 2.1], for example) that for 0 ≤ t ≤ T

||v(·, ·, h)||C0([0,T );W 3,2(Ω)3) ≤
2||v0||W 3,2(Ω)3

2− T · c · ||v0||W 3,2(Ω)3
,(3.4)

where c (the same constant as in the estimate (3.3)) is independent of h and of the
initial condition.

Proposition 3. Assume that v0 ∈ Vper ∩W 3,2(Ω)3. Then there exists a time
T > 0 such that the space-periodic very weak solution v(t,x) to problem (1.1), (1.2),
(1.4) obtained as a limit of solutions v(t,x, h) to the problem (2.27) is a smooth
classical solution on [0, T )× Ω, and it satisfies estimates (3.3)–(3.4).

Proof. Let T > 0 be small enough so that the right-hand side of (3.4) is finite.
Since the very weak solution v is the weak limit in L2 of a sequence of functions
which satisfy the estimates (3.3)–(3.4) uniformly, it easily follows that this sequence
of functions converges strongly to the weak solution v. It follows from this and the
Oseen equation that such a limit is a weak solution of the Euler system of equations.

From (3.3)–(3.4) it follows that this weak solution satisfies the same estimates,
and we can then deduce that such a weak solution is in fact a classical solution on
[0, T )× Ω.

Next we prove a continuation-type technical lemma.
Lemma 3. Let M > 0 be a given number, and let v(t,x) be the space-periodic very

weak solutions to problem (1.1), (1.2), (1.4) obtained as a limit of solutions v(t,x, h)
to the problem (2.27). Assume that v0 ∈ Vper∩W 3,2(Ω)3 and that there exists a finite
time TM > 0 such that ||v(t, ·)||W 3,2(Ω)3 ≤ M for all t ≤ TM . Then there exists a
number α > 0 such that v(t,x) is a smooth classical solution on [0, TM + α)× Ω.

Proof. Here c is the same constant as in estimate (3.3). We have already proved
in the proposition above that this very weak solution is a smooth classical solution in
the region [0, σ)× Ω with σ = 2

c·||v0||W3,2(Ω)3
.

Now we will consider the remaining case TM ≥ σ. Let σM+1 = 2
c·(M+1) > σM+2 =

2
c·(M+2) . Assume that 0 < t0 < TM is such that v(t,x) is a smooth classical solution

on [0, t0]×Ω and that v(t0,x, h) converges weakly in W 3,2(Ω)3 to v(t0,x) as h→ 0.
From the previous proposition it follows that the set of such t0 is not empty.

We will show that in fact v(t,x) is a smooth classical solution on [0, t0+σM+2]×Ω
and that v(t0 + σM+2,x, h) converges weakly in W 3,2(Ω)3 to v(t0 + σM+2,x).

Since ||v(t0, ·)||W 3,2(Ω)3 ≤ M , it follows from the weak convergence that for
h small enough ||v(t0, ·, h)||W 3,2(Ω)3 ≤ (M + 1). Dividing both sides of (3.3) by
||v(t, ·, h)||3W 3,2(Ω)3 and integrating with respect to time from t0 to t0 +s, we find that

||v(t0 + s, ·, h)||W 3,2(Ω)3 ≤
2||v(t0, ·, h)||W 3,2(Ω)3

2− s · c · ||v(t0, ·, h)||W 3,2(Ω)3
,(3.5)

from which it easily follows that

sup
s≤σM+2

||v(t0 + s, ·, h)||W 3,2(Ω)3 ≤ 2(M + 1)

2− σM+2 · c · (M + 1)
.(3.6)

This, in conjunction with (3.3), will allow us to conclude that the sequence v(t,x, h)
converges weakly in W 1,2((t0, t0 + σM+2);W

3,2(Ω)3) to v(t,x). It then holds that
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v(t,x) is now a smooth classical solution on [0, t0 + σM+2] × Ω. We also have that
v(t0 + σM+2,x, h) converges weakly in W 3,2(Ω)3 to v(t0 + σM+2,x).

The procedure described above can be repeated as long as t0 + σM+2 ≤ TM .
Repeating the previous procedures enough times, we will, in a finite number of steps,
reach the time TM + σM+2

2 . We can then take α = σM+2

2 .
Next we will prove the uniqueness result we alluded to in point 2 of the introduc-

tion.
Theorem 3. Assume that v0 ∈ Vper ∩W 3,2(Ω)3 and that v(t,x) is the space-

periodic very weak solution to problem (1.1), (1.2), (1.4) obtained as a limit of solutions
v(t,x, h) to the problem (2.27). Assume that there exist a positive time Tc and a
function u which is a smooth classical solution on [0, Tc) × Ω to the problem (1.1),
(1.2), and (1.4) in the sense of the Definition 3. Assume also that v(0,x) = u(0,x).
Then v(t,x) ∈ C0([0, Tc);W

3,2(Ω)3). Moreover, v(t,x) = u(t,x) for all t ∈ [0, Tc).
Proof. Let T ∗ be a positive finite number such that T ∗ < Tc. Assume that

v(t,x) ∈ C0([0, T ∗];W 3,2(Ω)3). It then follows from Lemma 3 that v(t,x) is a smooth
classical solution over the region [0, T ∗] × Ω. In this case, it is an easy exercise (see
[6, p. 78], for example) to show that v(t,x) = u(t,x) for all t ∈ [0, T∗). If this can
be done for all T ∗ < Tc, then the solutions coincide for all t ∈ [0, Tc).

Alternatively, there exists a Tb < Tc such that v(t,x) /∈ C0([0, Tb];W
3,2(Ω)3).

In this case it can easily be seen, using Lemma 3, that there exists a positive time
Tcr ≤ Tb such that v(t,x) ∈ C0([0, Tcr);W

3,2(Ω)3) and such that

lim
t→Tcr

−
||v(t, ·)||W 3,2(Ω)3 =∞.(3.7)

From the discussion above we will have that v(t,x) = u(t,x) for all t ∈ [0, Tcr). This
with (3.7) would contradict the fact that u(t,x) ∈ C0([0, Tc);W

3,2(Ω)3).
Theorem 4. Let w ∈ Vper ∩ C0([0, Tw);W 3,2(Ω)3) be any space-periodic very

weak solution. Then w is a classical solution over the time interval [0, Tw).
Proof. Letw be a very weak smooth solution. Then, by definition, there exist a se-

quence un ∈ V and a sequence vn ∈ V such that
∂vni
∂t +unj

∂vni
∂xj

+ ∂pn

∂xi
= 0 in (0, Tw)×Ω,

i = 1, 2, 3, and such that vn and un converge to w in L∞
weak−star((0, Tw);L2

weak(Ω)3).
Fix T such that 0 < T < Tw. We will show next that w is a classical solution in

[0, T )× Ω in the sense of Definition 3.
Now we introduce the sequence of functions uh,n defined by mollifying the se-

quence un as in (2.14), we let ψh,n ∈ V be the unique solution of the Oseen problem
obtained by taking u = uh,n in (2.4), and we let the initial condition vh,n(0,x) be
the mollification of vn(0,x). Taking the difference of the equations satisfied by ψh,n

and vn, multiplying by ψh,n − vn, and integrating by parts in space, we find

1

2

∫
Ω

∂

∂t
|ψh,n − vn|2dx =

∫
Ω

(un − uh,n)j

(
∂

∂xj
ψh,ni

)
(ψh,ni − vni )dx.

From this, we deduce in a standard fashion that∫
Ωt

|ψh,n − vn|2dx ≤ c1

∫
Ω0

|ψh,n − vn|2dx

+ c2

∫ T

0

∫
Ω

|un − uh,n|2
∣∣∣∣ ∂∂xψh,n

∣∣∣∣
2

dxdt,(3.8)

where c1 and c2 are independent of h and n.
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For a fixed h > 0, uh,n ∈ L∞((0, T );C∞(Ω)3), ψh,n(0,x) ∈ W 4,2(Ω)3, and their
norms in these spaces are bounded independently of n. From this and the fact that
ψh,n is a solution of a linear partial differential equation with smooth coefficients, we
deduce in a standard way that ψh,n is bounded uniformly in W 1,2((0, T );W 4,2(Ω)3).
Therefore, we have that for h fixed and n → ∞ the sequence ψh,n will converge in
C0([0, T ];W 4,2(Ω)3) to a function ψh. From this and the weak convergence in L2 of
the sequence |un − uh,n| to |w −wh|, it follows that

lim
n→∞

∫ T

0

∫
Ω

|un − uh,n|2
∣∣∣∣ ∂∂xψh,n

∣∣∣∣
2

dxdt ≤
∫ T

0

∫
Ω

|w −wh|2
∣∣∣∣ ∂∂xψh

∣∣∣∣
2

dxdt,

where wh is the mollification of w.
This, together with (3.8), yields in the limit that∫

Ωt

|ψh −w|2dx ≤ c1

∫
Ω0

|ψh −w|2dx

+ c2

∫ T

0

∫
Ω

|w −wh|2
∣∣∣∣ ∂∂xψh

∣∣∣∣
2

dxdt.(3.9)

From the definition of ψh,n and the fact that uh,n converges strongly to wh as
n → ∞, it is easy to see that ψh ≡ limn→∞ψh,n is the solution to the problem
∂ψh

i

∂t + wh
j
∂ψh

i

∂xj
+ ∂ph

∂xi
= 0 in (0, T )× Ω, i = 1, 2, 3, and satisfies ψh(0,x) = wh(0,x).

From the uniform regularity of wh, it can be deduced in a standard way that
ψh, the solutions of the associated Oseen equation, will also be uniformly bounded in
W 1,2((0, T );W 3,2(Ω)3), for example.

It can then easily be seen that at least for a subsequence of the sequence, ψh will
converge in W 1,2((0, T );W 3,2(Ω)3) when h → 0. Since the right-hand side of (3.9)
goes to zero as h→ 0, it follows that, in fact, ψh converges to w as h→ 0.

Therefore, the sequence (wh,ψh), which is in the graph of the map γ, converges
strongly in C0([0, T ];W 3,2(Ω)3) to (w,w). Hence (w,w) is in the strong closure of
the graph.

Also, it follows from
∂ψh

i

∂t + wh
j
∂ψh

i

∂xj
+ ∂ph

∂xi
= 0 and the strong convergence of

(wh,ψh) that w is a classical solution of (1.1) in [0, T )× Ω.
Since T was a generic number less than Tw, it follows that w is a smooth classical

solution in [0, Tw)× Ω.
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[2] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory

and Algorithms, Springer Ser. Comput. Math. 5, Springer-Verlag, Berlin, 1986.
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Gauthier-Villars, Paris, 1969.
[4] P. L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 1: Incompressible Models, Oxford

Lecture Ser. Math. Appl. 3, Clarendon Press, Oxford, UK, 1996.



1006 HAMID BELLOUT, EMIL CORNEA, AND JINDŘICH NEČAS
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Abstract. Let (R,µ) be a nonatomic finite measure space, and let E = Lr(R,µ) be a Lebesgue
space over R. Then we consider tempered distributions f and g (depending on x ∈ R

n and
v ∈ R), for which divx(af) = g in S′(Rn, E). Here a : R −→ R

n is a bounded function of v
(a velocity field) satisfying a nondegeneracy condition. We study the regularity of the average

f̄ =
∫
R
f(·, v)ψ(v) dµ(v) ∈ S′(Rn) (with ψ ∈ Lr′ (R,µ) a suitable weight function) when f and g

are bounded in Banach space valued Besov spaces. We also present some compactness results for
sequences of averages.
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1. Introduction. The subject of velocity averaging is the regularity of moments
of solutions of transport equations. Let us consider a typical situation: Assume
functions f and g are given, depending on x ∈ R

n (space) and v ∈ R
n (velocity), for

which the relation

v · ∇xf = g in D′(Rn × R
n)(1.1)

holds. Assume further that we know the regularity of the two functions, e.g., f and
g bounded in Lp(R

n × R
n). What can be said about the velocity average

f̄(x) =

∫
Rn

f(x, v)ψ(v) dv?

Here ψ ∈ D(Rn) is a suitable weight function. It turns out that f̄ is somewhat
smoother than f and g. Agoshkov [1] showed that if f and g are in L2(R

n×R
n) and

if the weight function is chosen suitably, then the average is bounded in the Sobolev
space W 1/2,2(Rn). Hence we have a gain of one half derivative here. Golse, Lions,
Perthame, and Sentis [13] proved that f̄ ∈W 1/2,2(Rn) for all ψ ∈ D(Rn). Their proof
is based on a v-dependent decomposition of the Fourier space. Using interpolation, the
authors also obtain a result for 1 < p <∞: If f, g ∈ Lp(R

n×R
n), then f̄ ∈W s,p(Rn)

for all s strictly less than min{1/p, 1/p′}.
DiPerna, Lions, and Meyer [10] gave a further improvement. They proved that

f̄ ∈ Bsp,max{p,2}(R
n) with s = min{1/p, 1/p′}. Here Bsp,q(R

n) is a Besov space (cf.

section 3.3). Bézard [3] showed that for 1 < p ≤ 2 the average is contained in the
(slightly smaller) generalized Sobolev space Hs

p(R
n). Finally, DeVore and Petrova [7]

made clear that f̄ ∈ Bsp,p(R
n). They also proved that no further improvement with

respect to the secondary index q of the Besov norm is possible.
There are several generalizations to the results given. One can assume different

integrability for f and g, i.e., f ∈ Lp(R
n×R

n) and g ∈ Lq(R
n×R

n) for suitable p, q.
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DiPerna, Lions, and Meyer [10] show for this case that the average is contained in
a Besov space built on Lorentz spaces instead of Lp(R

n)-spaces as usual. Bézard [3]
claims that f̄ is even contained in some Sobolev space Hs

r (R
n), but there is a mistake

in his proof.
One can consider also the situation f, g ∈ Lq(R

n
v , Lp(R

n
x)) with 1 < q ≤ p. Then

it is shown in [10] that f̄ ∈ Bsp,t(R
n) with s = min{1/q, 1/q′} and suitable t. Note

that s depends only on q and that the integrability of f̄ is the same as that of f and
g, namely, Lp(R

n). Bézard [3] also studies this situation for q ≤ 2 and claims that
f̄ ∈ Hs

q (R
n) with s = 1/p′; i.e., the roles of p and q are exchanged. But his proof is

incorrect.
One can admit derivatives in v or even in x on the right-hand side (RHS) of the

transport equation. This was first studied by DiPerna and Lions [9]. But consult also
DiPerna, Lions, and Meyer [10]. More general transport operators such as the rela-
tivistic streaming operator or transport equations arising from a kinetic formulation
of scalar conservation laws can also be considered, cf. Golse, Lions, Perthame, and
Sentis [13], DiPerna and Lions [8, 9], Gérard [12], DiPerna, Lions, and Meyer [10],
and Lions, Perthame, and Tadmor [16].

The velocity averaging technique can also be used to study compactness. Assume
that sequences f (k), g(k) that satisfy the transport equation (1.1) and are uniformly
bounded or precompact in some function space are given; what can be said about the
convergence of the sequence f̄ (k)? It is clear that the regularity results given above
imply compactness. However, we refer also to Golse, Perthame, and Sentis [14],
Golse, Lions, Perthame, and Sentis [13], DiPerna and Lions [8], Lions, Perthame, and
Tadmor [16], Perthame and Souganidis [18], Bouchut [5], and Westdickenberg and
Noelle [23].

Finally, let us mention that there is also a relationship between velocity averaging
and results known as moments lemmas or dispersion lemmas. Here one considers
solutions of the free transport equation ∂tf + v · ∇xf = 0 for suitable initial data
f(0, ·) = f0 with given integrability with respect to x and v. Then one asks what
integrability f has in t, x, and v. In particular, one is interested to find decay estimates
for f in time. We refer to Perthame [17], Castella and Perthame [6], Bouchut [5], and
the references given there.

In this paper, we present some new velocity averaging results. The starting point
of our investigation was the question of whether one can gain more than half a deriva-
tive in regularity by assuming more integrability in the kinetic variable v. In a sense,
our results give an affirmative answer to this question, cf. section 2. We were also
interested to find out what the weakest assumptions on f and g are that would still
guarantee strong precompactness. We give some answers to that question below.

This paper is organized as follows: In section 2 we first develop a new view on
velocity averaging and state our regularity and compactness results. In section 3 we
then collect some facts from the theory of Banach space valued tempered distributions.
Sections 4 and 5 contain the proofs of our results.

We will assume in the following the space dimension n ≥ 2. We denote by D(Rn)
the space of C∞-functions with compact support, equipped with the usual topology
of test functions. D′(Rn) is the corresponding dual, the space of distributions.

2. Main results. We want to make an attempt here to develop a somewhat
different, less pragmatic view on velocity averaging than is usual in the literature.
Therefore, we go back to the transport equation divx(af) = g and make precise in
what sense this equation should hold. We will use notions and results from the theory
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of Banach space valued tempered distributions. The reader is referred to section 3,
where we put together some information relevant to our discussion.

Let (R,µ) be a nonatomic finite measure space, and let E = Lr(R,µ), 1 ≤ r ≤
∞, be a Lebesgue space over (R,µ). Then we consider distributions f and g in
S ′(Rn, E), i.e., linear mappings of the Schwartz class S(Rn) (x-dependance) into E
(v-dependance), that are continuous with respect to the Fréchet topology of S(Rn).
We assume that a function a:R −→ R

n (velocity field) in L∞(R,µ) is given and that
the following relation holds for f and g:

divx(af) = g in S ′(Rn, E).(2.1)

By the definition of S ′(Rn, E), this means that for all test functions ϕ ∈ S(Rn)

−
n∑
j=1

aj 〈f, ∂jϕ〉 = 〈g, ϕ〉 in E,(2.2)

i.e., µ-almost everywhere (µ-a.e.). We use brackets to denote the dual pairing of
distributions and test functions. Note that multiplication with a ∈ L∞(R,µ) maps E
continuously into itself. If both f and g are regular, we may also write

−
n∑
j=1

aj

∫
Rn

f(x, ·)∂jϕ(x) dx =
∫

Rn

g(x, ·)ϕ(x) dx in E.

Now let ψ be an element of the conjugate space E′ = Lr′(R,µ) with 1/r + 1/r′ = 1.
Then we can define the average f̄ to be that distribution in S ′(Rn) for which

〈f̄ , ϕ〉 =
∫
R

〈f(·, v), ϕ〉ψ(v) dµ(v) ∀ϕ ∈ S(Rn).(2.3)

Hence the average is the pairing of f ∈ S ′(Rn, E) with some ψ ∈ E′. Assume now
that boundedness of f and g in suitable function spaces is given. Then we may ask
for the regularity of f̄ .

2.1. Regularity. We will use Banach space valued Besov spaces Bsp,q(R
n, E)

with s ∈ R and 0 < p, q ≤ ∞. Assume that we are given two tempered distributions
f ∈ Bsp,q(R

n, E1) and g ∈ Bs−τp,q (R
n, E2)

for suitable numbers s, τ ∈ R and spaces E1 = Lr1(R,µ) and E2 = Lr2(R,µ). We
will consider two different cases: 0 < p ≤ 1 (Case I) and 1 < p < n

n−1 (Case II). We
put E = Lr(R,µ) with r = min{r1, r2} and assume that (2.1) holds.

Now let F = Lr(R,µ) be another Lebesgue space with 1/r ≤ min{1/r′1, 1/r′2}.
Then multiplication by some ψ ∈ F maps E1 continuously into Lρ1(R,µ), where
1/ρ1 = 1/r + 1/r1, and analogously maps E2 into some Lρ2(R,µ). We fix a weight
ψ ∈ F and define the average f̄ as in (2.3).

We will assume further that the velocity field a is nondegenerate in the following
sense: There are numbers C > 0 and α ∈ (0, 1] s.t. for all δ ∈ (0, 1]

sup
ξ∈Rn

µ {v ∈ R: |a(v) · ξ/|ξ|| ≤ δ} ≤ Cδα.(2.4)

Remark 2.1. This condition was first used in [16]. Let us give an example. If R
is a compact subset of R

n and µ is the Lebesgue measure, then, for a(v) = v, (2.4) is
satisfied with α = 1. This velocity field appears, e.g., in the Boltzmann equations.

Theorem 2.2. Let 0 < q ≤ ∞, 0 < τ ≤ 1, and α/ρ′2 < 1. With the assumptions
above, f̄ is bounded in BSP,q(R

n) for numbers P and S = s− κ+∆S given by
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Case I 0 < p ≤ 1 P = 2 κ = n
(

1
p − 1

2

)
Case II 1 < p < n

n−1 P =
[

1
p − n−1

n

]−1

κ = n− 1

and

∆S = (1− τ)
α

ρ′1

[
1 + α

(
1

ρ2
− 1

ρ1

)]−1

.(2.5)

More precisely, there exists some constant C > 0 s.t. for all f , g, and ψ in the
respective function spaces the following inequality holds:

‖f̄‖BS
P,q

(Rn) ≤ C‖ψ‖F
{
‖f‖Bs

p,q(R
n,E1) + ‖g‖Bs−τ

p,q (Rn,E2)

}
(2.6)

whenever f and g satisfy the transport equation (2.1).
Remark 2.3. The regularity of the average differs from that of f (i.e., s) by two

terms. First, we lose n( 1p − 1
P ) derivatives. More precisely, we change regularity for

integrability: Instead of Lp(R
n)-boundedness we now have LP (R

n). This is simply
a Sobolev imbedding. Second, we gain some regularity ∆S, which is a nonnegative
number. This regularizing effect is an outcome of the nondegeneracy of a. Note that
∆S does not depend on p and q. It is a function of α, τ, ρ1, and ρ2 only.

Let us discuss a few special cases. If α = 1, τ = 0, and r =∞, then ∆S → 1 for
r1 and r2 getting large. In other words, we gain almost a full derivative if we have
much integrability with respect to the kinetic variable v. (Remember that (R,µ) is a
finite measure space.) For r1 = r2 = 2 we find ∆S = 1/2. Now suppose that g is a
full derivative less regular than f , i.e., τ = 1; then ∆S = 0. This is obvious since in
that case the transport equation contains no nontrivial regularity information. Note
also that ∆S is getting smaller if r is chosen small: For more general (less integrable)
weights ψ ∈ Lr(R,µ) we pay with a smaller gain of regularity.

Here is an example: If we consider the transport equation v · ∇xf = g, for which
the nondegeneracy condition (2.4) holds with α = 1, and if both f and g are contained
in B0

1,1(R
n, L∞(R,µ)), then for ψ ∈ L∞(R,µ) the average f̄ is in the negative Sobolev

space Hε
2(R

n) for all ε < −n2 + 1. In the particular case n = 2, this means that the
average is almost in L2(R

n). We cannot reach ε = 0 because α/ρ′2 has to be strictly
less than 1 (i.e., although the velocity field a would admit α = 1, in our estimates
we have to use an α < 1). This is an improvement over the results mentioned in
section 1 since in section 1 at most quadratic integrability in v could be handled,
giving a maximal gain of regularity of one half derivative. Note that for an arbitrary
Banach space E the following embedding holds:

B0
1,1(R

n, E) ↪→ L1(R
n, E) ↪→ B0

1,∞(R
n, E).(2.7)

(This follows immediately from the definitions.) Therefore, if we start with f and g
in L1(R

n, L∞(R,µ)), we obtain f̄ ∈ Bε2,∞(R
n) with ε as above. The latter space is

slightly larger than the corresponding Sobolev space Hε
2(R

n).
Remark 2.4. Clearly, it would be nice to get rid of the Sobolev embedding at

least partially. And it is also a little bit disappointing that the two cases do not
match for p = 1 unless n = 2: The P for p > 1 is considerably larger than that for
p ≤ 1. (Hence we lose more derivatives in the Sobolev embedding.) The reason for
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this discrepancy is that we employ different methods of proof for the two cases of our
theorem: for the first case we use a decomposition of f and g into simple building
blocks, which gives a decoupling of the x- and v-dependance; for the second case we
use the Radon transform and its regularizing properties (cf. section 4). We are not
aware of a straightforward way to connect these two methods and thereby fill the gap
in P mentioned above. Nevertheless, we hope that our methods are interesting for
their own sake.

2.2. Compactness. We now want to discuss a few compactness results and start
with a generalization of what was said in section 2.1. Let (R,µ) again be a nonatomic
finite measure space, and let E1 and E2 be two arbitrary rearrangement-invariant
Banach function spaces (cf. section 5.1). Then we consider sequences of distributions
bounded in Banach space valued Besov spaces,

f (k) ∈ Bsp,q(R
n, E1) and g(k) ∈ Bs−τp,q (R

n, E2),(2.8)

that satisfy the transport equation (2.1) in S ′(Rn, E) with E = E1+E2. Assume there
exists a subset F of the associated space E′ of E and two further Banach function
spaces G1 and G2 such that multiplication with ψ ∈ F maps E1 continuously into G1,
and E2 into G2. We are interested in the precompactness of the sequence of averages
f̄ (k) (cf. definition (2.3)) in local Besov spaces BS,loc

P,q (R
n).

More precisely, we want to identify circumstances under which the sequence of
products χf̄ (k) contains a subsequence converging in BSP,q(R

n), where χ ∈ D(Rn) is an
arbitrary test function with compact support. Again we must assume nondegeneracy
of the velocity field a, which now takes the form

lim
δ→0

η(δ) = 0, where η(δ) = sup
ξ∈Rn

µ {v ∈ R: |a(v) · ξ/|ξ|| ≤ δ} .(2.9)

Note that this assumption is weaker than condition (2.4). Again we consider two
different situations: 0 < p ≤ 1 and 1 < p < n

n−1 . Then we have the following
theorem.

Theorem 2.5. Let 0 < q ≤ ∞ and 0 < τ < 1. Assume that the fundamental
function of the associated space G′

1 of G1 is continuous at zero. Then the sequence of

averages f̄ (k) is precompact in BS,loc
P,q (R

n), where S = s1 − κ with the following.

Case I 0 < p ≤ 1 P = 2 κ = n
(

1
p − 1

2

)
Case II 1 < p < n

n−1 P =
[

1
p − n−1

n

]−1

κ = n− 1

If τ = 1, we still have precompactness if we assume that the sequence g(k) is not only
bounded in Bs−τp,q (R

n, E2) but strongly precompact.
For the definition of the fundamental function we refer to section 5.1.
Remark 2.6. The gain of regularity due to the averaging process depends primar-

ily on the nondegeneracy of the velocity field a and the integrability of f with respect
to the kinetic variable v: the higher α and ρ1 are in Theorem 2.2, the bigger ∆S
becomes. Here we consider a situation where a is only weakly nondegenerate (i.e., we
assume only that η(δ) → 0 for δ → 0; nothing is said about a polynomial rate) and
where also the v-integrability of f (k) is only slightly better than L1(R,µ). Then we
still have precompactness, but there is no gain of regularity at all. Of course, if we



1012 MICHAEL WESTDICKENBERG

strengthen our assumptions, we will get more: If instead of (2.9) we have (2.4) and if
E1, E2 are Lebesgue spaces as above, then we can combine the proofs of Theorems
2.2 and 2.5 to show precompactness in BS,loc

P,q (R
n) with regularity S strictly less than

s− n( 1p − 1
P ) + ∆S and ∆S given by (2.5).

Remark 2.7. Let us discuss a few examples. The choice E1 = L1(R,µ) forces
F = L∞(R,µ) and hence G1 = L1(R,µ) because L1(R,µ) is the largest of all
rearrangement-invariant Banach function spaces over (R,µ). The fundamental func-
tion of the corresponding associated space G′

1 = L∞(R,µ) is discontinuous at zero
(cf. section 5.1). Therefore, Theorem 2.5 does not apply: You need more than simple
L1-integrability in the kinetic variable v to obtain strong compactness.

A sufficient condition would be, for example, E1 = L logL(R,µ) and F = L∞(R,µ).
Then G1 = L logL(R,µ), and the fundamental function of G′

1 = expL(R,µ) is con-
tinuous at zero. L logL-integrability plays an important role for the Boltzmann equa-
tions: If f is a solution of this system, then f log f is the entropy density, and the
famous H-theorem tells us that the global entropy does not increase in time.

Note, finally, that the choice F = E′
1 does not work either, since from the Hölder

inequality (5.1) we again obtain only L1-integrability for the product.
Concretely, if f (k) and g(k) are bounded in the Besov spacesB0

1,1(R
n, L logL(R,µ))

and B−τ
1,1 (R

n, L1(R,µ)) with τ < 1, then for ψ ∈ L∞(R,µ) the average f̄ (k) is locally
precompact in the Sobolev space Hε

2(R
n) with ε = −n2 . We can admit τ = 1 if we

assume strong precompactness instead of mere boundedness for g(k). If f (k) is only
bounded in L1(R

n, L logL(R,µ)) instead, then we can use the embedding (2.7) to
obtain local precompactness of f̄ (k) in Bε2,∞(R

n) with ε as above.

Remark 2.8. To prove precompactness of f̄ (k) it is sufficient to have boundedness
of f (k) and g(k) in local Besov spaces only, cf. Remark 5.9.

3. Preliminaries. We collect here some results we will need later in the proofs.
We start with a few remarks about Banach space valued distributions.

3.1. Banach space valued tempered distributions. If E is some arbitrary
Banach space, we define the Schwartz class S(Rn, E) to be the space of infinitely
differentiable, rapidly decreasing functions on R

n taking their values in E. This space
is locally convex and complete with respect to the Fréchet topology defined by the
family of seminorms

pN (ϕ) = sup
|α|≤N

sup
x∈Rn

(1 + |x|)N‖∂αϕ(x)‖E with N ∈ N0.

We abbreviate S(Rn) = S(Rn,C). Now let OM (Rn, E) be the space of smooth E-
valued functions with at most polynomial growth at infinity (also called slowly in-
creasing). Again the topology is defined by a family of seminorms

ψ �−→ sup
x∈Rn

‖ϕ(x)∂αψ(x)‖E for ϕ ∈ S(Rn), α ∈ N
n
0 .(3.1)

We denote by S ′(Rn, E) the space of linear mappings from S(Rn) into E that are
continuous with respect to the strong topology of the Schwartz class. The dual pairing
of some f ∈ S ′(Rn, E) with a test function ϕ ∈ S(Rn) is expressed using brackets:
〈f, ϕ〉. Note that this quantity is an element of E. Therefore, equality in S ′(Rn, E)
means equality in E after testing against ϕ ∈ S(Rn). If f ∈ L1

loc(R
n, E), the pairing

is just an integral. As we did for S(Rn), we will simply write OM (Rn) and S ′(Rn)
whenever E = C.
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Exactly as in the scalar case, we can define derivatives of E-valued tempered
distributions f ∈ S ′(Rn, E) or the product of f with a slowly increasing function in
OM (Rn). Additionally, the notions of support supp f of f , Fourier transform f̂ = Ff
and its inverse f̌ = F−1f , and convolution f + ρ for ρ ∈ S(Rn) can be carried over
from the scalar theory. Again we have the identity f + ρ = F−1[ρ̂Ff ] in S ′(Rn, E).
Instead of going into details here, we refer to Amann [2] or Hörmander [15].

Let us assume now that besides E there exist two more Banach spaces F and
G and a bilinear continuous mapping ·:F × E −→ G with a norm not bigger than
one. We call this mapping a multiplication. Then we can define the product a • f of
some E-valued tempered distribution f ∈ S ′(Rn, E) with a function a = ψ⊗χ, where
ψ ∈ OM (Rn) and χ ∈ F , to be that distribution in S ′(Rn, G) for which

〈a • f, ϕ〉 = χ · 〈f, ψϕ〉 ∀ϕ ∈ S(Rn).(3.2)

Note that 〈f, ψϕ〉 ∈ E. Then we can ask whether that definition can be extended to
a class of functions more general than a = ψ ⊗ χ.

Theorem 3.1. There exists a uniquely defined bilinear mapping

•:OM (Rn, F )× S ′(Rn, E) −→ S ′(Rn, G),
(a, f) �−→ a • f,

with (3.2) for all a = ψ ⊗ χ. The mapping • is uniformly continuous with respect to
each variable if the respective other one is confined to bounded subsets.

Remark 3.2. This is a special case of the Schwartz kernel theorem (cf. Theorem 2.1
in Amann [2]). The idea of the proof is the following: Choose some test function
η ∈ D(Rn) with η ≥ 0 and ∫

Rn η(x) dx = 1. For ε > 0 define

ηε(x) = ε−nη(x/ε) ∀x ∈ R
n.

Then the convolution fε = f + ηε is a function in OM (Rn, E) with limε→0 fε = f in
S ′(Rn, E). If a ∈ OM (Rn, F ) is given, we can define the product a • fε pointwise by
a • fε(x) = a(x) · fε(x) ∈ G for all x ∈ R

n. Then we put

a • f = lim
ε→0

a • fε in S ′(Rn, G).

Of course, a little work is necessary to show that this definition makes sense. If there
is no danger of confusion, we will abbreviate a • f by af .

Remark 3.3. We also need the following fact. Assume there exist Banach spaces
E,F1, F2, G,H1, H2 and multiplications (all denoted by ·)

F1 × F2 F2 × E� �
H1 × E −→ G ←− F1 × H2

that are associative; i.e., (χ1 ·χ2) ·e = χ1 ·(χ2 ·e) in G for all χj ∈ Fj and e ∈ E. Then
the pointwise multiplication of Theorem 3.1 is associative as well. More precisely,

(M1 •M2) • f =M1 • (M2 • f) in S ′(Rn, G)

for all Mj ∈ OM (R, Fj) and f ∈ S ′(Rn, E) (cf. Amann [2]).
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3.2. Lp-spaces of Banach space valued entire functions. Let f ∈ S ′(Rn, E)
be a distribution with the property that the support of its Fourier transform Ff is
contained in a compact subset K ⊂ R

n. If ρ ∈ S(Rn) with supp ρ̂ compact and
ρ̂(ξ) = 1 for all ξ ∈ K, then the identity f = F−1[ρ̂Ff ] = f + ρ in S ′(Rn, E) follows
immediately from the definitions. Now ρ is an entire analytic function on R

n that can
be extended to C

n. This is the famous Payley–Wiener–Schwartz theorem. For any
N ∈ N there exists some constant CN > 0 s.t.

|ρ(z)| ≤ CN (1 + |z|)−Nec|Imz| ∀z ∈ C
n.(3.3)

From this estimate one derives, completely analogous to the scalar valued case, that
f ∈ S ′(Rn, E) with suppFf compact is an entire analytic E-valued function too. We
refer to [15, Theorem 7.3.1] for the argument with E = C.

Definition 3.4. Let E be some Banach space with K ⊂ R
n compact and 0 <

p ≤ ∞. Then we define the Lp-space of E-valued entire analytic functions

Lp,K(R
n, E) =

{
f ∈ S ′(Rn, E): supp f̂ ⊂ K, ‖f‖Lp(Rn,E) <∞

}

with ‖f‖Lp(Rn,E) =

(∫
Rn

‖f(x)‖pE dx

)1/p

.

The space Lp,K(R
n, E) is complete with respect to ‖ · ‖Lp(Rn,E).

Theorem 3.5. Let E be some Banach space with K ⊂ R
n compact, 0 < p ≤ ∞,

and 0 < w <∞. Then there exists a constant C > 0 s.t. for all f ∈ Lp,K(R
n, E)

sup
y∈Rn

‖f(x− y)‖E (1 + |y|)−n/w ≤ C (M‖f‖wE)1/w (x) ∀x ∈ R
n.

Here M is the usual Hardy–Littlewood maximal operator

Mg(x) = sup

{
1

|Q|
∫
Q

|g(y)| dy: all cubes Q containing x

}
.

Now if 0 < w < p (hence p/w > 1), we obtain as an immediate consequence of
the Hardy–Littlewood maximal inequality (cf. Stein [20])∥∥∥∥∥ supy∈Rn

‖f(· − y)‖E
(1 + |y|)n/w

∥∥∥∥∥
Lp(Rn)

≤ C ‖M‖f‖wE‖1/wLp/w(Rn)

≤ C ‖‖f‖wE‖1/wLp/w(Rn)
= C‖f‖Lp(Rn,E).

The constant C = C(n, p,K,w) does not depend on f .
Theorem 3.6 (Nikol’skij inequality). Let E and K be as above with 0 < p ≤

q ≤ ∞ and α ∈ N
n
0 . Then there exists a constant C > 0 s.t. for all f ∈ Lp,K(R

n, E)

‖∂αf‖Lq(Rn,E) ≤ C‖f‖Lp(Rn,E).(3.4)

We refer to Triebel [22, Chapter III/15] and to the literature cited there.

3.3. Banach space valued Besov spaces. Let ϕ0 be a radially symmetric
test function in S(Rn) supported in B2(0) ⊂ R

n with ϕ0(ξ) = 1 for all |ξ| ≤ 1. Then
define ϕ1(ξ) = ϕ0(2

−1ξ) − ϕ0(ξ) and ϕν(ξ) = ϕ1(2
−ν+1ξ) for ν ∈ N. We obtain a

dyadic decomposition of unity
∑
ν∈N0

ϕν(ξ) = 1 for all ξ ∈ R
n.
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Definition 3.7. Let E be an arbitrary Banach space with 0 < p, q ≤ ∞, and
s ∈ R. Then the Banach space valued Besov space Bsp,q(R

n, E) is defined as the space
of all E-valued distributions f ∈ S ′(Rn, E) for which the Besov (quasi) norm

‖f‖Bs
p,q(R

n,E) =
∥∥∥{2νs‖fν‖Lp(Rn,E)

}
ν

∥∥∥
#q(N0)

(3.5)

is finite. Here fν = F−1[ϕν f̂ ] in S ′(Rn, E). For 1 ≤ p, q ≤ ∞, (3.5) is a norm.
Remark 3.8. We stress that the Banach space is completely arbitrary. Assump-

tions like the unconditionality of Martingale differences (UMD) property, separability,
or reflexivity are not necessary. If E = C, we will simply write Bsp,q(R

n).
Remark 3.9. Assume t ∈ R, 0 < r ≤ ∞, and let F be a second Banach space

continuously embedded into E. As an immediate consequence of definition (3.5), the
following inclusions hold:

Bsp,q(R
n, E) ↪→ Bsp,r(R

n, E) if q ≤ r,

Bsp,q(R
n, E) ↪→ Btp,q(R

n, E) if t ≤ s, and

Bsp,q(R
n, E) ↪→ Bsp,q(R

n, F ).

For any σ ∈ R the operator Jσ, defined by

Ĵσϕ(ξ) =
(
1 + |ξ|2)σ/2 ϕ̂(ξ) ∀ξ ∈ R

n,

maps the Schwartz class S(Rn) injectively onto itself. A posteriori then, the same is
true for the space S ′(Rn, E) because the product of Ff ∈ S ′(Rn, E) with a function
(1 + | · |2)σ/2 ∈ OM (Rn) is well defined. We have Jσ ◦ J−σ = Id in S ′(Rn, E).

Theorem 3.10. For numbers s ∈ R and 0 < p, q ≤ ∞, the two spaces Bpqs−σ(R
n, E)

and JσBsp,q(Rn, E) =
{Jσf : f ∈ Bsp,q(R

n, E)
}

coincide. The quantity

‖f‖∗Bs
p,q(R

n,E) = ‖Jσf‖Bs−σ
p,q (Rn,E)

is an equivalent (quasi) norm on Bsp,q(R
n, E).

Remark 3.11. So Besov spaces of different regularity (with the same p, q, of
course) are isomorphic to each other. The mapping Jσ is called a lifting. Let us also
recall the closely related estimate

‖∂αf‖Bs
p,q(R

n,E) ≤ C‖f‖
B

s+|α|
p,q (Rn,E)

∀α ∈ N
n
0 .

We will not give here the proof of Theorem 3.10 nor that of the next one, Theorem 3.12.
In both cases, it is an easy adaptation of the corresponding result for the scalar case.
We refer to Triebel [21].

Theorem 3.12. Let s ∈ R, 0 < p, q ≤ ∞, and ψ ∈ OM (Rn). Then for large M

‖ψf‖Bs
p,q(R

n,E) ≤ C
∑

|α|≤M
‖∂αψ‖L∞(Rn)‖f‖Bs

p,q(R
n,E) ∀f ∈ S ′(Rn, E).(3.6)

4. Proofs—regularity. We briefly repeat the assumptions made in section 2.1.
Let (R,µ) be a nonatomic finite measure space, and fix Lebesgue spaces E1 =
Lr1(R,µ) and E2 = Lr2(R,µ) with 1 ≤ r1, r2 ≤ ∞. Assume we are given f ∈
Bsp,q(R

n, E1) and g ∈ Bs−τp,q (R
n, E2) for some 0 < p, q ≤ ∞ and s, τ ∈ R satis-

fying a transport equation divx(af) = g in S ′(Rn, E), where E = Lr(R,µ) and
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r = min{r1, r2}. For an arbitrary ψ ∈ F = Lr(R,µ) with 1/r ≤ min{1/r′1, 1/r′2}
define the average f̄ ∈ S ′(Rn) by

〈f̄ , φ〉 =
∫
R

〈f(·, v), φ〉ψ(v) dµ(v) ∀φ ∈ S(Rn).

We will prove that if the velocity field a satisfies a nondegeneracy condition (2.4), and
provided that suitable assumptions on the various parameters hold (which we will
repeat in the course of the proof as they are needed), then the average f̄ is bounded
in the Besov space f̄ ∈ BSP,q(R

n) for numbers P, S given in section 2.1.
Without restriction of generality we may fix some s large because of a simple

lifting argument: The operator Jσ introduced in section 3.3 is an isomorphism between
Banach space valued Besov spaces, JσBsp,q(Rn, E) ≈ Bs−σp,q (R

n, E), and it commutes
with the transport operator. We may therefore consider the distributions F = Jσf ,
respectively, G = Jσg. They satisfy the same transport equation divx(aF ) = G.
Then F̄ is equal to Jσ f̄ , which means that the regularity is simply shifted by σ.

The average f̄ is a tempered distribution and can therefore be decomposed into
its dyadic components f̄ =

∑∞
ν=0 f̄ν in S ′(Rn) with f̄ν = F−1[ϕνFf̄ ] as usual. It is

then sufficient to estimate each block separately: We will show that there exists a
constant C > 0 independent of f and g s.t. for all ν ≥ 0

2νS‖f̄ν‖LP (Rn) ≤ C‖ψ‖F
{
2νs‖fν‖Lp(Rn,E1) + 2

ν(s−τ)‖gν‖Lp(Rn,E2)

}
.(4.1)

Here fν and gν are the dyadic components of f and g. We take the 7q(N0)-norm of
the sequence

{
2νS‖f̄ν‖LP (Rn)

}∞
ν=0
, use the q-triangle inequality, and are done.

To prove inequality (4.1) for ν = 0 is a simple matter. Note that for all ν ≥ 0
〈
f̄ν , φ

〉
=

∫
R

〈fν(·, v), φ〉ψ(v) dµ(v) ∀φ ∈ S(Rn).

This follows easily from the definitions. Now each fν is an entire analytic function
because of the Payley–Wiener–Schwartz theorem (cf. section 3.1). We estimate

‖f̄0‖LP (Rn) =

∥∥∥∥
∫
R

f0(·, v)ψ(v) dµ(v)
∥∥∥∥
LP (Rn)

≤ µ(R)1/ρ
′
1‖ψ‖F ‖f0‖LP (Rn,E1)(4.2)

and then use the Nikol’skij inequality (3.4) with α = 0 and q = P . Recall that R has
finite µ-measure and that the exponent ρ1 was defined by 1/ρ1 = 1/r + 1/r1. This
gives (4.1) for ν = 0. So we will assume in the following that ν ≥ 1. Then both fν
and gν are smooth functions, and the support of their Fourier transforms lies in a
compact set strictly bounded away from the origin.

Since f and g satisfy the transport equation (2.1), the following identity holds:

(ia(v) · ξ) f̂(ξ, v) = ĝ(ξ, v) in S ′(Rn, E).(4.3)

As explained in Theorem 3.1, the left-hand side (LHS) must be understood as a
product of the symbol ia · ξ ∈ OM (Rn, L∞(R,µ)) with the tempered distribution

f̂ ∈ S ′(Rn, E). More precisely, the LHS is that distribution for which
〈
(ia · ξ) f̂ , φ

〉
=

n∑
j=1

aj

〈
f̂ , iξjφ

〉
∀φ ∈ S(Rn).
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Note that multiplication with a ∈ L∞(R,µ) maps E continuously into itself. Then
identity (4.3) follows immediately from the definitions, and it still holds when we

multiply both sides with ϕν . So we may replace f̂ and ĝ with f̂ν and ĝν .
One might be tempted to divide by the symbol ia · ξ and express f̂ν by ĝν .

However, products of distributions are defined only for smooth functions. And since
(ia · ξ)−1 becomes unbounded for all ξ ∈ R

n orthogonal to a(v), we must be a little
more careful. We introduce a splitting and use (4.3) only for that part of Fourier
space that is bounded away from the set of points where the symbol vanishes. This is
the classical approach. We choose an arbitrary nonnegative test function Π ∈ D(R),
vanishing outside the interval [−1, 1], with Π(ξ) = 1 for all |ξ| ≤ 1

2 . Then we can
define functions

χs(ξ, v) = Π
(
δ−1a(v) · ξ/|ξ|) and χr(ξ, v) = 1− χs(ξ, v)(4.4)

for (ξ, v) ∈ R
n ×R and δ ≥ 0. Note that the support of χs is contained in the set

Aδ = {(ξ, v) ∈ R
n ×R: |a(v) · ξ/|ξ|| ≤ δ} .(4.5)

We claim now that both ϕνχs and ϕνχr(ia · ξ)−1 are bounded in OM (Rn, L∞(R,µ))
for any ν ≥ 1. If that is true, we obtain an identity

f̂ν(ξ, v) = χs(ξ, v)f̂ν(ξ, v) + χr(ξ, v)
ĝν(ξ, v)

ia(v) · ξ in S ′(Rn, E)(4.6)

for ν ≥ 1. In fact, note that the second term on the RHS of (4.6) is well defined in
S ′(Rn, E) because of Theorem 3.1. Then we may use the relation (4.3) together with
Remark 3.3 to eliminate ĝν , and (4.6) follows from the definition of χs and χr.

To prove our claim, let us start with χs. This function is homogeneous of degree
zero in ξ. Hence ξ-derivatives of it of order k are homogeneous in ξ of degree −k
for k ≥ 0. More precisely, if α ∈ N

n
0 is some multi-index, |ξ||α|∂αξ χs(ξ) is a linear

combination of products of the following terms:
• derivatives of Π taken at δ−1a(v) · ξ/|ξ|,
• powers of δ−1a(v) · ξ/|ξ| with positive exponent,
• polynomials in a(v) ∈ R

n, and
• polynomials in ξ/|ξ| ∈ R

n.
This follows easily from an induction argument. We assumed that a ∈ L∞(R,µ).
Therefore, all of these terms are uniformly bounded with respect to v for any ξ ∈ R

n

fixed. And since ϕν vanishes in a neighborhood of zero for ν ≥ 1, the functions ϕνχs

are bounded in OM (Rn, L∞(R,µ)). We can proceed in the same manner for ϕνχr.
To prove that even ϕνχr(ia · ξ)−1 is bounded in OM (Rn, L∞(R,µ)), note first

that this function is homogeneous of degree −1 in ξ. Taking derivatives with respect
to ξ, we obtain the same terms we already had for χs, but now there are also powers
of a(v) · ξ/|ξ| with negative exponent. Still, these terms are uniformly bounded in v
because χr vanishes in Aδ/2 by construction. This proves our claim.

Summing up, we have a decomposition f̄ν = f̄s,ν + f̄r,ν for ν ≥ 1 with〈
f̄s,ν , φ

〉
=

∫
R

〈[
χsf̂ν

]
(·, v), φ̌

〉
ψ(v) dµ(v) and(4.7)

〈
f̄r,ν , φ

〉
=

∫
R

〈[| · |−1χ̄rĝν
]
(·, v), φ̌〉ψ(v) dµ(v) ∀φ ∈ S(Rn).(4.8)

We put χ̄r(ξ, v) = χr(ξ, v) (ia(v) · ξ/|ξ|)−1
. While up to now the argument was the

same for both cases of Theorem 2.2, we must now specialize a bit.
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4.1. Regularity—Case I. We will use the fact that each f ∈ Bsp,q(R
n, E) can

be decomposed into an infinite sum of simple building blocks of the form λQ, where
Q is a scalar function with nice properties and λ is an element of E.

4.1.1. The subatomic decomposition. Let Qνm be a cube in R
n centered at

2−νm with sides parallel to the coordinate axes and side length 2−ν , where m ∈ Z
n

and ν ∈ N0. If Q is a cube in R
n and c > 1 is a number, we will write cQ for the

cube concentric with Q but with sides c times as long as those of Q. Now choose a
nonnegative function ψ ∈ S(Rn) with compact support in some cQ00 and∑

m∈Zn

ψ(x−m) = 1 ∀x ∈ R
n.(4.9)

Let s ∈ R, 0 < p ≤ ∞, L+1
2 ∈ N0, γ ∈ N

n
0 , and ψγ(x) = xγψ(x). Then the function

(γqu)Lνm(x) = 2
−ν(s−n

p )
(
(−∆)L+1

2 ψγ
)
(2νx−m)(4.10)

is called an (s, p)L − γ-quark over the cube Qνm.
Remark 4.1. This definition is taken from [22, section 14.1]. In the following, we

will need only the case L = −1. Then the Laplace operator in (4.10) drops out.
Before stating the subatomic decomposition for Bsp,q(R

n, E), we show the follow-
ing.

Theorem 4.2. Let K ⊂ R
n be a compact set, and let 0 < p ≤ ∞. Then there

exists a number κ > 0 with the following property: for any µ ∈ N with µ > κ the
entire analytic function g ∈ Lp,K(R

n, E) can be written as

g(x) =
∑
m∈Zn

∑
γ∈Nn

0

λγmψγ(2µx−m),(4.11)

where the sum converges in Lq(R
n, E) for all q ∈ [p,∞] with λγm ∈ E s.t.

sup
γ∈Nn

0

2µ|γ|
( ∑
m∈Zn

‖λγm‖pE
)1/p

≤ C‖g‖Lp(Rn,E).(4.12)

The constant C = C(K,µ, n, p) does not depend on g.
Proof. Our proof somewhat simplifies a similar argument in Triebel [22, sec-

tion 14.15]. Choose ρ ∈ S(Rn) with supp ρ̂ contained in some compact neighborhood
of K and ρ̂(ξ) = 1 for all ξ ∈ K. From the Paley–Wiener–Schwartz theorem we infer
that ρ is an entire analytic function. Moreover,

g(x) =

∫
Rn

g(y)ρ(x− y) dy ∀x ∈ R
n(4.13)

(cf. section 3.2). Note that as a consequence of the Nikol’skij inequality (3.4) the
function g is bounded and hence locally integrable. We now expand ρ(· − y) into a
Taylor series around the point 2−µm with m ∈ Z

n and µ ∈ N fixed. Then

ψ(2µx−m)ρ(x− y) = ψ(2µx−m)
∑
γ∈Nn

0

Dγρ(2−µm− y)

γ!

(
x− 2−µm)γ

=
∑
γ∈Nn

0

2−µ|γ|
Dγρ(2−µm− y)

γ!
ψγ(2µx−m).(4.14)
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Since suppψ ⊂ cQ00 with c > 1, we have |ψγ(2µx −m)| ≤ ( c2
√
2
n
)|γ|. We apply the

Cauchy integral formula componentwise to ρ. Then we obtain for all z ∈ C
n

ρ(z1, . . . , zn) = (2πi)
−n
∫
|w1−z1|=1

· · ·
∫
|wn−zn|=1

ρ(w1, . . . , wn) dw1 · · · dwn
(z1 − w1) · · · (zn − wn)

(integration over C
n). Differentiation gives

Dγρ(z1, . . . , zn)

= (−1)|γ|γ!(2πi)−n
∫
|w1−z1|=1

· · ·
∫
|wn−zn|=1

ρ(w1, . . . , wn) dw1 · · · dwn
(z1 − w1)γ1+1 · · · (zn − wn)γn+1

for z ∈ C
n and γ ∈ N

n
0 . Using (3.3), we now obtain for arbitrary N ∈ N the estimate

|Dγρ(z)| ≤ CNγ!(2π)−n
∫
|w1−z1|=1

· · ·
∫
|wn−zn|=1

(1 + |w|)−Nec|Imw| dw1 · · · dwn.

If z ∈ R
n, then |Imw| ≤ 1 in the domain of integration. Using

1 + |z| ≤ (1 + |w|)(1 + |z − w|) ≤ (1 + |w|)(1 + |z1 − w1|+ · · ·+ |zn − wn|),

we can find some constant C = C(K,N, n) s.t.

|Dγρ(z)| ≤ Cγ!(1 + |z|)−N ∀z ∈ R
n, γ ∈ N

n
0 .(4.15)

The number of multi-indices γ ∈ N
n
0 with |γ| = k grows polynomially in k. We

conclude that the expansion (4.14) is absolutely convergent for µ large enough:∣∣∣∣∣∣ψ(2µx−m)ρ(x− y)−
∑

|γ|≤K
2−µ|γ|

Dγρ(2−µm− y)

γ!
ψγ(2µx−m)

∣∣∣∣∣∣
≤ C1cQµm(x)

(
1 + |2−µm− y|)−N ∞∑

k=K+1

kn2−µk
( c
2

√
2
n
)k

︸ ︷︷ ︸
cK

(4.16)

and cK → 0 for K →∞. This estimate implies (4.11) with

λγm = 2
−µ|γ|

∫
Rn

g(y)
(Dγρ) (2−µm− y)

γ!
dy ∈ E.(4.17)

To see that, note first that the sum in m does not cause any harm: For x ∈ R
n fixed

only finitely, many terms contribute to the sum because ψ is compactly supported.
Using (4.9), we can write for any x ∈ R

n

∥∥∥∥∥∥g(x)−
∑
m∈Zn

∑
|γ|≤K

λγmψγ(2µx−m)

∥∥∥∥∥∥
E

≤
∑
m∈Zn

∥∥∥∥∥∥ψ(2µx−m)g(x)−
∑

|γ|≤K
λγmψγ(2µx−m)

∥∥∥∥∥∥
E

.
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Consider one single term of this sum. If g(x) is replaced with (4.13) and λγm with
(4.17), then we obtain the following:∥∥∥∥∥∥

∫
Rn

g(y)


ψ(2µx−m)ρ(x− y)

−
∑

|γ|≤K
2−µ|γ|

(Dγρ) (2−µm− y)

γ!
ψγ(2µx−m)


 dy

∥∥∥∥∥∥
E

.

The integrand is smooth and hence strongly measurable: g is an entire analytic func-
tion, and the terms in brackets are in S(Rn). Note that the sum in γ is finite here.
Then the Bochner theorem allows us to push the E-norm inside the integral. We
apply (4.16) and estimate

∫
Rn

‖g(y)‖E

∣∣∣∣∣∣ψ(2µx−m)ρ(x− y)

−
∑

|γ|≤K
2−µ|γ|

(Dγρ) (2−µm− y)

γ!
ψγ(2µx−m)

∣∣∣∣∣∣ dy
≤ CcK1cQµm(x)

∫
Rn

‖g(y)‖E
(
1 + |2−µm− y|)−N dy.

Recall that N can be made arbitrarily large. Moreover,

1 + |x− y| ≤ (1 + |x− 2−µm|) (1 + |2−µm− y|) ≤ (1 + c2−µ)
(
1 + |2−µm− y|)

for all x ∈ cQµm. Using Theorem 3.5, we find some constant C > 0 s.t. for w < p∫
Rn

‖g(y)‖E
(
1 + |2−µm− y|)−N dy

≤ C sup
y∈Rn

‖g(y)‖E (1 + |x− y|)− n
w ·
∫

Rn

(1 + |x− y|)−N+ n
w dy

≤ C (M‖g‖wE)1/w (x) ∀x ∈ cQµm.(4.18)

The constant C = C(µ, n, p, w,K,N) does not depend on g. We obtain∥∥∥∥∥∥g(x)−
∑
m∈Zn

∑
|γ|≤K

λγmψγ(2µx−m)

∥∥∥∥∥∥
E

≤ CcK (M‖g‖wE)1/w (x) ·
∑
m∈Zn

1cQµm(x)

for all x ∈ R
n. Note that the m-sum on the RHS is uniformly bounded because only

finitely many cubes cQµm overlap. Now we take Lq(R
n) (quasi) norms on both sides.

Since w < p ≤ q (hence q/w > 1) we apply the Hardy–Littlewood maximal inequality
(cf. Stein [20]) and obtain∥∥∥∥∥∥g(x)−

∑
m∈Zn

∑
|γ|≤K

λγmψγ(2µx−m)

∥∥∥∥∥∥
Lq(Rn,E)

≤ CcK ‖M‖g‖wE‖1/wLq/w(Rn)

and ‖M‖g‖wE‖1/wLq/w(Rn) ≤ C‖g‖Lq(Rn,E) ≤ C‖g‖Lp(Rn,E).
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In the last step we used the Nikol’skij inequality (3.4). Now cK vanishes if K → ∞.
Therefore, (4.11) converges strongly in Lq(R

n, E) for any q ≥ p as claimed.
To prove (4.12) we need only to modify this argument a little. Note first that the

7p(Z
n) (quasi) norm in m can also be realized like this:

∑
m∈Zn

‖λγm‖pE =
∑
m∈Zn

‖λγm‖pE · 2µn
∫

Rn

1Qµm
(x) dx

= 2µn
∫

Rn

∑
m∈Zn

‖λγm‖pE1Qµm(x) dx

= 2µn
∫

Rn

( ∑
m∈Zn

‖λγm‖E1Qµm(x)

)p
dx

because the Qµm are pairwise disjoint. On the other hand, we find with (4.15)

2µ|γ|‖λγm‖E ≤ C

∫
Rn

‖g(y)‖E
(
1 + |2−µm− y|)−N dy.

If we now continue with (4.18), we obtain (4.12). The proof is complete.
Now we can present the subatomic decomposition for Bsp,q(R

n, E).
Theorem 4.3. Let 0 < p, q ≤ ∞, and s > σp = max{n (1/p− 1) , 0}. Then there

exists a number κ > 0 s.t. for any µ ∈ N with µ > κ any f ∈ Bsp,q(R
n, E) can be

decomposed into an infinite sum

f(x) =

∞∑
ν=0

∑
m∈Zn

∑
γ∈Nn

0

λγνmQ
γ
νm(x) in S ′(Rn, E).(4.19)

The Qγνm are (s, p)−1 − γ-quarks and the λγνm ∈ E coefficients with

sup
γ∈Nn

0

2µ|γ|


 ∞∑
ν=0

( ∑
m∈Zn

‖λγνm‖pE
)q/p

1/q

<∞.(4.20)

Vice versa, if coefficients λγνm ∈ E are given with (4.20), then the sum (4.19) con-
verges in S ′(Rn, E) and defines an element in Bsp,q(R

n, E). The inf in (4.20) over all
admissible representations (4.19) is an equivalent (quasi) norm in Bsp,q(R

n, E).
Remark 4.4. This is Corollary 15.9 in Triebel [22].
One direction of the proof is straightforward: For f ∈ S ′(Rn, E) we apply Theo-

rem 4.2 to the dyadic parts fν . Let us consider the family gν(y) = fν(2
−νy) for y ∈ R

n.
From the definition of the Fourier transform we easily find that supp ĝν ⊂ B2(0) for
all ν ∈ N0. Hence the supports of ĝν are all contained in one single fixed compact
subset K ⊂ R

n. Then there exists some κ > 0 s.t. for each µ > κ and all ν ∈ N0 the
entire analytic function gν can be decomposed into

gν(y) =
∑
m∈Zn

∑
γ∈Nn

0

λ̃γνmψγ(2µy −m),

with strong convergence in Lq(Rn, E) for all q ≥ p, and coefficients λ̃γνm ∈ E with

sup
γ∈Nn

0

2µ|γ|
( ∑
m∈Zn

‖λ̃γνm‖pE
)1/p

≤ C‖gν‖Lp(Rn,E) = C2ν
n
p ‖fν‖Lp(Rn,E).(4.21)
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The constant C can be chosen independent of ν. Renormalizing, we can write

fν(x) = gν(2
νx) = 2µ(s−n

p )
∑
m∈Zn

∑
γ∈Nn

0

2ν(s−
n
p )λ̃γνm︸ ︷︷ ︸

=λγ
νm

(γqu)−1
µ+ν,m(x)︸ ︷︷ ︸

=Qγ
νm(x)

(4.22)

for x ∈ R
n. This is (4.19). Now the proof of (4.20) is easy. From (4.21) we obtain

sup
γ∈Nn

0

2µ|γ|


 ∞∑
ν=0

( ∑
m∈Zn

‖λγνm‖pE
)q/p

1/q

≤ C


 ∞∑
ν=0


2νs2−ν n

p sup
γ∈Nn

0

2µ|γ|
( ∑
m∈Zn

‖λ̃γνm‖pE
)1/p



q


1/q

≤ C

( ∞∑
ν=0

2νsq‖fν‖qLp(Rn,E)

)1/q

= C‖f‖Bs
p,q(R

n,E).

We used the Minkowski inequality. Proving the reverse direction is more elaborate,
and we do not want to give the details here. We refer again to Triebel [22].

4.1.2. Proof of Theorem 2.2, Case I. Let us consider first the term f̄s,ν in
(4.7). If we assume for the moment that fν(x, v) = λ(v)Q(x) for suitable Q ∈ L2(R

n)

and λ ∈ E1, then f̂ν = λQ̂ is a measurable function, and we find

〈
f̄s,ν , φ

〉
=

∫
Rn

M(ξ)Q̂(ξ)φ̌(ξ) dξ with M(ξ) =

∫
R

χs(ξ, v) (ψλ) (v) dµ(v).

In that situation, we obtain f̄s,ν by simply applying the Fourier multiplier operator
M to Q. We can use Plancherel’s theorem to estimate∣∣〈f̄s,ν , φ〉∣∣ ≤ ‖M‖L∞(Rn)‖Q‖L2(Rn)‖φ‖L2(Rn).

By assumption, the product ψλ is bounded in Lρ1(R,µ). Therefore, we may use the
Hölder inequality to estimate

‖M‖L∞(Rn) = sup
ξ∈Rn

∣∣∣∣
∫
R

χs(ξ, v) (ψλ) (v) dµ(v)

∣∣∣∣ ≤ ‖ψ‖F ‖λ‖E1 sup
ξ∈Rn

‖1Aδ(ξ)‖Lρ′
1
(R,µ),

where Aδ(ξ) = {v ∈ R: (ξ, v) ∈ Aδ}. However, the nondegeneracy condition (2.4) for
the velocity field a bounds the measure of the set Aδ uniformly in ξ ∈ R

n. Therefore,

‖f̄s,ν‖L2(Rn) = sup
φ∈S(Rn)

‖φ‖−1
L2(Rn)

∣∣〈f̄s,ν , φ〉∣∣ ≤ Cδα/ρ
′
1‖ψ‖F ‖λ‖E1

‖Q‖L2(Rn).(4.23)

The conclusion is that f̄s,ν becomes small in L2(R
n) for δ → 0 if Q ∈ L2(R

n), λ ∈ E1,
and ρ1 > 1. If ρ1 = 1, the estimate does not depend on δ anymore.

We now consider the second term f̄r,ν in (4.8). If we assume again for the moment

that gν(x, v) = λ(v)Q(x) for suitable Q ∈ L2(R
n) and λ ∈ E2, then ĝν = λQ̂ is a

measurable function, and we can write

〈
f̄r,ν , φ

〉
=

∫
suppϕν

|ξ|−1M̄(ξ)Q̂(ξ)φ̌(ξ) dξ with M̄(ξ) =

∫
R

χ̄r(ξ, v) (ψλ) (v) dµ(v).
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To estimate f̄r,ν in L2(R
n), we need to find an L∞-bound for the multiplier. We have

|ξ|−1 ≤ c2−ν in the domain of integration by the construction of ϕν . Moreover,

‖M̄‖L∞(Rn) ≤ ‖ψ‖F ‖λ‖E2 sup
ξ∈Rn

∥∥∥(ia · ξ/|ξ|)−1
1R\Aδ/2(ξ)

∥∥∥
Lρ′

2
(R,µ)

.

Now we can use the following result.
Lemma 4.5. Assume (2.4). Then for every ρ ≥ 1 with α < ρ

sup
ξ∈Rn

∫
R\Aδ(ξ)

|ia(v) · ξ/|ξ||−ρ dµ(v) ≤ Cδα−ρ.

Remark 4.6. Here C = C(α, ρ) does not depend on δ. Estimates of this kind
appear in many papers on velocity averaging, e.g., in [13], [16], [5].

We use Lemma 4.5 with ρ = ρ′2 under the assumption that α/ρ
′
2 < 1. By testing

f̄r,ν against all functions φ ∈ S(Rn), we obtain
‖f̄r,ν‖L2(Rn) ≤ C2−νδ−1+α/ρ′2‖ψ‖F ‖λ‖E2‖Q‖L2(Rn).

We conclude that the dyadic elements f̄r,ν of the average vanish in L2(R
n) like 2−ν if

ν →∞. This corresponds to a gain of regularity of one derivative (cf. Definition 3.7).
Note, however, that δ−1+α/ρ′2 becomes large as δ → 0.

Now we use Theorem 4.2, which tells us that the dyadic blocks of fν and gν can be
realized as tensor products. Recall (4.22) from section 4.1.1: For suitable coefficients
λγνm ∈ E1 and (s1, p)−1 − γ-quarks Qγνm, we have

fν(x, v) = 2
µ(s−n

p )
∑
m∈Zn

∑
γ∈Nn

0

λγνm(v)Q
γ
νm(x).

To control f̄s,ν in L2(R
n), we can now use the triangle inequality and obtain

‖f̄s,ν‖L2(Rn) ≤ Cδα/ρ
′
1‖ψ‖F

∑
m∈Zn

∑
γ∈Nn

0

‖λγνm‖E1‖Qγνm‖L2(Rn).(4.24)

Here the constant C = C(µ, n, p) does not depend on f or ν. Note now that quarks
are normalized, i.e., there exists a constant C = C(µ) s.t.

‖Qγνm‖L2(Rn) ≤ C2σ|γ|2−νs1+νn( 1
p− 1

2 ) for some σ > 0 and γ ∈ N
n
0 ,m ∈ Z

n.

One nice feature of the subatomic decomposition in Theorem 4.2 is that we can choose
the parameter µ ∈ N as large as we want (at the expense of enlarging the constants,
of course). For suitable µ and with κ = n( 1p − 1

2 ), we therefore obtain the following
estimate:

‖f̄s,ν‖L2(Rn) ≤ Cδα/ρ
′
12−νs12νκ‖ψ‖F

· sup
γ∈Nn

0

2µ|γ|
( ∑
m∈Zn

‖λγνm‖pE1

)1/p

·
∑
γ∈Nn

0

2−(µ−σ)|γ|

≤ Cδα/ρ
′
12νκ‖ψ‖F ‖fν‖Lp(Rn,E1).(4.25)

Consult (4.21)–(4.22). Here we used the fact that 7p(Z
n) ↪→ 71(Z

n) if p ≤ 1. A similar
argument works for f̄r,ν with ν ≥ 1. We have

‖f̄r,ν‖L2(Rn) ≤ Cδ−1+α/ρ′22−ν2νκ‖ψ‖F ‖gν‖Lp(Rn,E2).
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The rest of the proof is only a matter of matching: For all ν ≥ 1, we want

2νS‖f̄s,ν‖L2(Rn) ≤ C‖ψ‖F · 2νs‖fν‖Lp(Rn,E1) and

2νS‖f̄r,ν‖L2(Rn) ≤ C‖ψ‖F · 2ν(s−τ)‖gν‖Lp(Rn,E2).(4.26)

To provide this, we choose the ansatz δ = 2−νσ and solve the system of equations

S − σ
α

ρ′1
= s− κ,

S − σ

(
−1 + α

ρ′2

)
= 1 + s− τ − κ

for (σ, S). We find

σ = (1− τ)

[
1 + α

(
1

ρ2
− 1

ρ1

)]−1

and

S = s− n

(
1

p
− 1
2

)
+ (1− τ)

α

ρ′1

[
1 + α

(
1

ρ2
− 1

ρ1

)]−1

.

S is just the regularity of the average f̄ we seek. Note also that σ ≥ 0 and hence
δ ≤ 1 because τ ≤ 1. Using (4.26), we obtain the estimate (4.1) for all ν ≥ 1.

4.2. Regularity—Case II. To prove estimate (4.1) for 1 < p < n
n−1 , we use

the fact that the action of some homogeneous Fourier multiplier operator on smooth
functions can be rewritten in terms of the well-known Radon transform.

4.2.1. Some remarks on the Radon transform. The Radon transform R
maps a function Φ ∈ S(Rn) to the average of Φ over all n−1-dimensional hyperplanes
in R

n. Every such hyperplane is characterized by (1) the unit normal vector ω ∈ Sn−1

and (2) the distance r ≥ 0 between hyperplane and origin. We therefore define

RΦ(ω, r) =

∫
ω·x=r

Φ(x) dS(x) for (ω, r) ∈ Sn−1 × [0,∞).(4.27)

Here dS is the induced Lebesgue measure. As a synonym we will also write Φ̃ = RΦ.
Putting Φ̃(ω, r) = Φ̃(−ω,−r), the Radon transform can be extended to a function on
Sn−1 × R. We have the following relationship with the Fourier transform:

(2π)nΦ̌(sω) =

∫
Rn

eisω·xΦ(x) dx =
∫

R

eisr
(∫

ω·x=r
Φ(x) dS(x)

)
dr

=

∫
R

eisrΦ̃(ω, r) dr = 2πF−1Φ̃(ω, s) for (ω, s) ∈ Sn−1 × R.(4.28)

Let m ∈ L∞(Rn) be an even homogeneous function of degree zero. For simplicity we
assume m ∈ C∞(Sn−1). Choose ϕ ∈ S(Rn) with supp ϕ̌ ⊂ R

n\B1(0). Then

F[mϕ̌](x) =

∫
Rn

e−ix·ξm(ξ)ϕ̌(ξ) dξ

=

∫
Sn−1

m(ω)

∫ ∞

0

e−ix·sωsn−1ϕ̌(sω) ds dω.(4.29)
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Note that mϕ̌ ∈ S(Rn). Now we define Φ ∈ S(Rn) by Φ̌(ξ) = |ξ|n−1ϕ̌(ξ) for all
ξ ∈ R

n. Since m is even, we obtain after a substitution t = −s and σ = −ω∫
Sn−1

m(ω)

∫ ∞

0

e−ix·sωΦ̌(sω) ds dω =
∫
Sn−1

m(σ)

∫ 0

−∞
e−ix·tσΦ̌(tσ) dt dσ.

We may therefore extend the s-integral in (4.29) to the whole real line if we allow for
an extra factor 1/2. If we now use equality (4.28), we find

F[mϕ̌](x) =
1

2(2π)n−1

∫
Sn−1

m(ω)

∫
R

e−isx·ωF−1Φ̃(ω, s) ds dω

=
1

2(2π)n−1

∫
Sn−1

m(ω)Φ̃(ω, x · ω) dω.(4.30)

The RHS is simply the average of Φ̃ over all hyperplanes containing a given point

x ∈ R
n. Now F[| · |n−1ϕ̌] is just a power of the Laplacian, ∆

n−1
2 ϕ, times some

constant (cf. Stein [20]). Hence we obtain for m(ξ) = 1 the following identity:

ϕ(x) = c∆
n−1

2

∫
Sn−1

ϕ̃(ω, x · ω) dω.

This gives an inversion formula for the Radon transform.

4.2.2. Proof of Theorem 2.2, Case II. Consider first f̂s,ν in (4.7). Following

the proof of Theorem 3.1, we obtain for χsf̂ν ∈ S ′(Rn, E) and φ ∈ S(Rn)〈
χsf̂ν , φ̌

〉
= lim
ε→0

〈
χsf̂ν,ε, φ̌

〉
with f̂ν,ε = f̂ν + ηε,

with ηε as in section 3.1. Since f̂ν = ϕν f̂ is compactly supported, f̂ν,ε ∈ S(Rn, E).
We choose now some ρ1 ∈ S(Rn) with supp ρ1 ⊂ B5(0)\B1/5(0) and ρ1(ξ) = 1 for
ξ ∈ suppϕ1, and we put ρν(ξ) = ρ1(2

−ν+1ξ) for ν ≥ 1. Then we have for all ε > 0〈
χsf̂ν,ε, φ̌

〉
=

∫
Rn

(
χsρν φ̌

)
(ξ) · f̂ν,ε(ξ) dξ =

∫
Rn

F[χsρν φ̌](x) · η̌(εx)fν(x) dx

in E. Note here that fν ∈ OM (Rn, E) and F[χsρν φ̌] ∈ S(Rn, L∞(R,µ)). Using the
dominated convergence theorem, we may let ε→ 0 to find〈

χsf̂ν , φ̌
〉
=

∫
Rn

F[χsρν φ̌](x) · fν(x) dx ∀φ ∈ S(Rn).

Now let us consider averages again. Since χs(ξ, v) for fixed v ∈ R is even and homo-
geneous in ξ, we can use (4.30). We obtain with Φν = F[| · |n−1ρν φ̌], ν ≥ 1,
〈
f̄s,ν , φ

〉
=

1

2(2π)n−1

∫
R

∫
Rn

(∫
Sn−1

χs(ω, v)Φ̃ν(ω, x · ω) dω
)
fν(x, v)ψ(v) dx dµ(v).

(4.31)
We must show that the integral exists (absolute integrability). We first do the inte-
gration in v. Then the Hölder inequality and our assumptions give us an estimate∫

R

|ψ(v)fν(x, v)χs(ω, v)| dµ(v) ≤ ‖ψ‖F ‖fν(x)‖E1‖χs(ω)‖Lρ′
1
(R,µ)(4.32)

for (x, ω) ∈ R
n × Sn−1.
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Since χs(ω, v) ≤ 1Aδ(ω)(v) for all v ∈ R, where

Aδ(ω) = {v ∈ R: |a(v) · ω| ≤ δ} with ω ∈ Sn−1,

assumption (2.4) on the nondegeneracy of the velocity field yields a bound Cδα/ρ
′
1

uniformly in ω for the last term on the RHS of (4.32). Now we integrate over the sphere
Sn−1. Recall that the Radon transform is defined as an integral over hyperplanes.
Therefore, we may write

|RΦν(ω, r)| =
∣∣∣∣
∫
ω·x=r

Φν(x) dS(x)

∣∣∣∣ ≤
∫
ω·x=r

|Φν(x)| dS(x) = R|Φν |(ω, r)

for (ω, r) ∈ Sn−1×R. That is, the Radon transform of some function can be estimated
in absolute value by the Radon transform of the absolute value of that function. Now
we use the following result (cf. Ramm and Katsevich [19, Lemma 2.1.1]):∫

Sn−1

R|Φν |(ω, x · ω) dω = 2π
n−1

2

Γ(n−1
2 )

∫
Rn

|Φν(y)|
|x− y| dy

for all x ∈ R
n. The operator on the RHS is a fractional integration of order n − 1.

We refer to Stein [20, Kapitel VIII/4.2]. Finally, we do the integration in x and use
the Hölder inequality again. Then we can estimate

∣∣〈f̄s,ν , φ〉∣∣ ≤ Cδα/ρ
′
1‖ψ‖F ‖fν‖Lp(Rn,E1)

∥∥∥∥
∫

Rn

|Φν(y)|
| · −y| dy

∥∥∥∥
Lp′ (Rn)

.

Let 1 < P <∞ be given with 1
P =

1
p − n−1

n . Then (cf. Stein [20])∥∥∥∥
∫

Rn

|Φν(y)|
| · −y| dy

∥∥∥∥
Lp′ (Rn)

≤ C‖Φν‖LP ′ (Rn).

The constant does not depend on Φν . Since | · |n−1ρν = 2
(ν−1)(n−1)[| · |n−1ρ1](2

−ν+1·),
‖Φν‖LP ′ (Rn) ≤ C2(ν−1)(n−1)‖φ‖LP ′ (Rn)

for ν ≥ 1 with C = ‖F[| · |n−1ρ1]‖L1(Rn) (the Young inequality). This proves absolute
integrability for (4.31). We test f̄s,ν against all φ ∈ S(Rn) and use the fact that the
Schwartz class is dense in LP ′(Rn). We obtain the following estimate:

‖f̄s,ν‖LP (Rn) = sup
φ∈S(Rn)

‖φ‖−1
LP ′ (Rn)

∣∣〈f̄s,ν , φ〉∣∣(4.33)

≤ C2ν(n−1)δα/ρ
′
1‖ψ‖F ‖fν‖Lp(Rn,E1).

Of course, we now want to apply a similar argument to gν . As above, we obtain

〈
χrĝν/(ia · ξ), φ̌

〉
= 2−ν+1

∫
Rn

F[χ̄rρ̄ν φ̌](x) · gν(x) dx ∀ϕ ∈ S(Rn).

Here, ρ̄1(ξ) = ρ1(ξ)/|ξ| and ρ̄ν(ξ) = ρ̄1(2
−ν+1ξ) for all ξ ∈ R

n and ν ∈ N. But now
we have a problem: for v fixed the function χ̄r is homogeneous but not even in ξ. To
circumvent this difficulty we use the Riesz transforms Rj with j = 1, . . . , n. These
mappings are defined, e.g., for all φ ∈ S(Rn) s.t. supp φ̌ ⊂ R

n\B1(0) by

F−1[Rjφ](ξ) = iξj |ξ|−1φ̌(ξ) ∀ξ ∈ R
n.
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Applying these operators twice gives the following identity: φ = −∑n
j=1R2

jφ. The
Rj are Lp(R

n)-continuous for 1 < p < ∞. We refer again to Stein [20] for more
information and proofs. Let us define now Φν,j ∈ S(Rn) and χ̄r,j as follows:

Φ̌ν,j(ξ) = iξj |ξ|n−2ρ̄ν(ξ)φ̌(ξ) and χ̄r,j(ξ, v) = iξj |ξ|−1χ̄r(ξ, v)

for all (ξ, v) ∈ R
n ×R, j = 1, . . . , n, and ν ≥ 1. Then we obtain

〈
f̄r,ν , φ

〉
= C

n∑
j=1

∫
R

∫
Rn

(∫
Sn−1

χ̄r,j(ω, v)Φ̃ν,j(ω, x · ω) dω
)

gν(x, v)ψ(v) dx dµ(v).

Note that χ̄r,j for v ∈ R fixed is an even function in ξ. Again, we do the integration
in v first and obtain for all (x, ω) ∈ R

n × Sn−1 the following estimate:

∫
R

|ψ(v)gν(x, v)χ̄r(ω, v)| dµ(v) ≤ ‖ψ‖F ‖gν(x)‖E2

(∫
R

1R\Aδ/2(ω)(v)

|ia(v) · ω|ρ′2 dµ(v)

)1/ρ′2

.

Using the nondegeneracy of the velocity field and Lemma 4.5 again, it is easy to show
that the last factor is bounded by Cδ−1+α/ρ′2 uniformly in ω. Proceeding as we did
above, we find a constant C s.t.

‖f̄r,ν‖LP (Rn) ≤ C2ν(n−2)δ−1+α/ρ′2‖ψ‖F ‖gν‖Lp(Rn,E2)(4.34)

for ν ≥ 1. We used ‖Rjφ‖LP ′ (Rn) ≤ C‖φ‖LP ′ (Rn) for all φ ∈ S(Rn) and j.

5. Proofs—compactness. First we must introduce some terminology.

5.1. Rearrangement-invariant Banach function spaces. The Lebesgue spaces
Lp(R,µ) over the finite measure space (R,µ) are just instances of more general so-
called rearrangement-invariant Banach function spaces. We collect here some basic
facts about these spaces but refer to Bennett and Sharpley [4] for more details.

Consider the vector space M(R,µ) of µ-measurable mappings from R into R

(or C), where, as usual, functions which coincide µ-a.e. are identified. Denote by
M+(R,µ) the set of all f ∈ M(R,µ) with f ≥ 0, and for some µ-measurable subset
A ⊂ R let 1A be its characteristic function.

Definition 5.1. A mapping ρ:M+(R,µ) → [0,∞] is called a Banach function
norm if for all f, fn ∈M+(R,µ), a ≥ 0, and µ-measurable sets A ⊂ R we have

(P1) ρ(f) = 0⇔ f = 0 µ-a.e.,
ρ(af) = aρ(f), and
ρ(f1 + f2) ≤ ρ(f1) + ρ(f2);

(P2) 0 ≤ f1 ≤ f2 µ-a.e.⇒ ρ(f1) ≤ ρ(f2);
(P3) 0 ≤ fn ↗ f0 µ-a.e.⇒ ρ(fn)↗ ρ(f0);
(P4) µ(A) <∞⇒ ρ(1A) <∞;
(P5) µ(A) <∞⇒ ∫

A
f dµ < Cρ(f).

Here C = C(ρ,A) is a constant not depending on f .
Definition 5.2. Let ρ be a Banach function norm. Then the Banach function

space E = E(ρ) is defined as the space of all f ∈M(R,µ) s.t. ‖f‖E = ρ(|f |) <∞.
For each Banach function norm ρ we can define an associated norm ρ′ via

ρ′(g) = sup
{∫

R

fg dµ: f ∈M+(R,µ), ρ(f) ≤ 1
}
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for all g ∈M+(R,µ). The associated norm ρ′ also has all the properties (P1)–(P5) in
Definition 5.1 and therefore generates a Banach function space E′ = E(ρ′) associated
to E. The generalized Hölder inequality holds.

Theorem 5.3. Let E be a Banach function space, and let E′ be the space asso-
ciated to E. If f ∈ E and g ∈ E′, then the product fg is absolutely integrable, and
we have ∫

R

|fg| dµ ≤ ‖f‖E‖g‖E′ .(5.1)

Definition 5.4. The distribution function µf of f ∈M(R,µ) is defined by

µf (λ) = µ {x ∈ R: |f(x)| > λ} ∀λ ≥ 0.

Note that µf depends only on |f |. If a second finite measure space (S, ν) is given,
then two functions f ∈ M(R,µ) and g ∈ M(S, ν) are called equimeasurable if their
distribution functions are identical, i.e., if µf (λ) = νg(λ) for all λ ≥ 0.

Definition 5.5. For f ∈M(R,µ) let f∗ be the function on [0,∞) defined by

f∗(t) = inf {λ:µf (λ) ≤ t} ∀t ≥ 0.

f∗ is called the decreasing rearrangement of f .
In other words, f∗ is a decreasing function on [0,∞) with the same distribution

function as f itself. Here we use the convention inf ∅ = ∞; i.e., if µf (λ) > t for all
λ ≥ 0, then f∗(t) = ∞. For a finite measure space (R,µ) the distribution function
µf is always bounded. Then f∗ is a function on the interval [0, µ(R)].

Definition 5.6. Let ρ be a Banach function norm over some finite measure
space (R,µ). Then ρ is called rearrangement-invariant if ρ(f) = ρ(g) for all pairs
of equimeasurable functions f, g ∈ M(R,µ). In that case we also call the Banach
function space E = E(ρ) defined by ρ rearrangement-invariant.

Let us now assume that the finite measure space (R,µ) is also nonatomic, i.e., no
single point carries a positive measure. This excludes Dirac measures.

Definition 5.7. Let E be a rearrangement-invariant Banach function space over
some finite nonatomic measure space (R,µ). For every t inside the interval [0, µ(R)]
let A be a µ-measurable subset of R with µ(A) = t. Then the function

ϕE : t �→ ‖1A‖E(5.2)

is called the fundamental function of E.
Since for every B ⊂ R with µ(B) = t the functions 1A and 1B are equimeasurable,

and since E is assumed rearrangement-invariant, ϕE is well defined.
The fundamental function ϕE of a rearrangement-invariant Banach function space

E is quasi-concave, i.e., ϕE is increasing, ϕE(t) = 0 iff t = 0, and ϕE(t)/t is decreasing.
From the quasi concavity of the function, continuity in (0, µ(R)] follows. Nevertheless,
a discontinuity at zero is still possible.

Theorem 5.8. Let E be a rearrangement-invariant Banach function space over
the finite nonatomic measure space (R,µ), and let E′ be the associated space. Then

ϕE(t)ϕE′(t) = t ∀t ∈ [0, µ(R)].

We refer to section II.5 in [4]. Let us discuss two examples. The fundamental
function of the Lebesgue space Lp(R,µ) with 1 ≤ p <∞ is given by ϕLp(t) = t1/p for
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t ∈ [0, µ(R)]. However, if p =∞, then

ϕL∞(t) =

{
0 for t = 0,
1 for t ∈ (0, µ(R)],

since the characteristic function of a null set is equivalent to the zero function. In
that case, the fundamental function is discontinuous at zero.

In applications, the Orlicz space L logL(R,µ) plays an important role. That is
the rearrangement-invariant Banach function space defined by the norm

‖f‖L logL(R,µ) = −
∫ µ(R)

0

f∗(t) log (t/µ(R)) dt.

For the fundamental function we have

ϕL logL(t) = t (1− log (t/µ(R))) ∀t ∈ [0, µ(R)].

The space associated to L logL(R,µ) is the space expL(R,µ) of exponentially inte-
grable functions. The corresponding fundamental function is given by

ϕexpL(t) =
1

1− log (t/µ(R)) ∀t ∈ [0, µ(R)].

Note that ϕexpL is continuous at zero (but not differentiable). That is remarkable
because for all 1 < p <∞ the following inclusions hold (since µ(R) <∞):

L∞(R,µ) ↪→ expL(R,µ) ↪→ Lp(R,µ) ↪→ L logL(R,µ) ↪→ L1(R,µ).

Although expL and L∞ are so close that no other Lp-space fits between them, there
is a considerable difference in their respective fundamental functions.

5.2. Proof of Theorem 2.5. Again, we briefly recall our assumptions. Let E1

and E2 be two rearrangement-invariant Banach function spaces over some nonatomic
finite measure space. Assume we are given a sequence of pairs

f (k) ∈ Bsp,q(R
n, E1) and g(k) ∈ Bs−τp,q (R

n, E2)

satisfying the transport equation (2.1) in S ′(Rn, E) for E = E1+E2. We fix a weight
ψ in some subset F ⊂ E′ s.t. multiplication with ψ maps E1 continuously into some
rearrangement-invariant Banach function space G1 and, similarly, E2 into some G2.
If the velocity field now satisfies a nondegeneracy condition and if the fundamental
function of G′

1 is continuous at zero, we will show that the sequence of averages f̄
(k)

is precompact in a suitable local Besov space BS,loc
P,q (R

n).

To simplify notation, we will drop the index k in the following. We already know
that there exists a decomposition of the average f̄ into f̄ =

∑∞
ν=0 f̄ν in S ′(Rn) and

f̄ν = f̄s,ν+ f̄r,ν for ν ≥ 1. In contrast to our approach in section 4, we will now choose
the splitting parameter δ independent of ν. Then we can write f̄ = f̄0+ F̄s+ F̄r with
F̄s =

∑∞
ν=1 f̄s,ν and F̄r =

∑∞
ν=1 f̄r,ν . We claim that f̄0 ∈ BσP,q(R

n) for arbitrary
σ ∈ R and P as given above. Moreover,

F̄s ∈ BSP,q(R
n) and F̄r ∈ BS+ε

P,q (R
n)
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with the S from above and ε = 1 − τ > 0. To see that, let us first consider the
dyadic components F̄s,ν . As an immediate consequence of the support properties of
the family ϕν with ν ≥ 0, we realize that

F̄s,ν = F−1[ϕνFF̄s] =




F−1[ϕ0Ff̄s,1] if ν = 0,
F−1[ϕ1F(f̄s,1 + f̄s,2)] if ν = 1,
f̄s,ν ∀ν ≥ 2.

Since P ≥ 1, we can now apply the Young inequality to obtain the estimates

‖F̄s,0‖LP (Rn) ≤ C‖f̄s,1‖LP (Rn),

‖F̄s,1‖LP (Rn) ≤ C
{‖f̄s,1‖LP (Rn) + ‖f̄s,2‖LP (Rn)

}
, and

‖F̄s,ν‖LP (Rn) = ‖f̄s,ν‖LP (Rn) ∀ν ≥ 2.

However, the LP -norm of f̄s,ν has already been estimated in the last sections. Using
the generalized Hölder inequality for the Banach function space G1, we obtain the
following analogue of the estimates (4.25) and (4.33):

‖f̄s,ν‖LP (Rn) ≤ C2ν(
1
p− 1

P ) sup
ξ∈Rn

‖1Aδ(ξ)‖G′
1
‖ψ‖F ‖fν‖Lp(Rn,E1).

The constant does not depend on f or ν. But the G′
1-norm of the characteristic

function of some set A with measure s ≥ 0 is just the fundamental function ϕG′
1
(s).

And since this function is increasing, we can use the nondegeneracy condition for a
to obtain the following estimate (cf. (2.9)):

‖F̄s‖BS
P,q

(Rn) ≤ CϕG′
1
(η(δ)) ‖ψ‖F ‖f‖Bs

p,q(R
n,E1).(5.3)

Again, the constant C does not depend on f or δ. In the same way, we can find
a bound for the second term F̄r. We use the generalized Hölder inequality for G2,
estimate |ia · ω|−11R\Aδ/2(ω) by Cδ−1, and obtain

‖F̄r‖BS+ε
P,q

(Rn) ≤ Cδ−1‖ψ‖F ‖g‖Bs−τ
p,q (Rn,E2)

.(5.4)

Finally, note that most dyadic parts of f̄0 vanish by the construction of ϕν . Using
the Young, the Nikol’skij, and the Hölder inequalities (3.4)–(5.1), we then obtain

‖f̄0‖Bσ
P,q

(Rn) ≤ C‖ψ‖F ‖f‖Bs
p,q(R

n,E1) ∀σ ∈ R.

Let us now consider sequences f (k), g(k) with (2.8), satisfying a transport equation
(2.1). Let χ ∈ D(Rn) be some test function with compact support. Then we may
decompose χf̄ (k) into three parts, χF̄

(k)
s , χF̄

(k)
r , and χf̄

(k)
0 , and estimate as follows.

I. By assumption, the fundamental function of the rearrangement-invariant Ba-
nach function space G′

1 is continuous at zero, and limδ→0 η(δ) = 0. Therefore,

‖χF̄ (k)
s ‖BS

P,q
(Rn) ≤ C‖F̄ (k)

s ‖BS
P,q

(Rn) ≤ CϕG′
1
(η(δ)) ‖ψ‖F ‖f (k)‖Bs

p,q(R
n,E1) −→ 0

uniformly in k if δ → 0: The sequence f (k) is uniformly bounded, and the constants
are independent of k and δ. We also used Theorem 3.12 and (5.3). We conclude that
the first part of f̄ (k) becomes small, choosing the parameter δ suitably.
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II. Because of Theorem 3.12 and (5.4), there exists a number C > 0 s.t.

‖χF̄ (k)
r ‖BS+ε

P,q
(Rn) ≤ C‖F̄ (k)

r ‖BS+ε
P,q

(Rn) ≤ Cδ−1‖ψ‖F ‖g(k)‖Bs−τ
p,q (Rn,E2)

(5.5)

with C independent of δ, k and g(k). Therefore, for every fixed δ > 0, the sequence

χF̄
(k)
r is uniformly bounded in BS+ε

P,q (R
n) for some ε > 0. And since the supports of

all functions of the sequence are contained in one single compact subset of R
n, we

can use, e.g., Theorem 3.3.2/1 in Edmunds and Triebel [11] to conclude that χF̄
(k)
r is

precompactly contained in BSP,q(R
n). Similarly, we proceed for χf̄

(k)
0 .

Therefore, the sequence of averages χf̄ (k) can be decomposed into three parts,
two of which are precompact in BSP,q(R

n), while the third goes to zero uniformly with

respect to k, as δ → 0. Hence χf̄ (k) itself is precompact as claimed. The proof is
complete.

Remark 5.9. Note that the fine structure of G2 plays no role in the proof of

Theorem 2.5. If ε = 0, precompactness of χF̄
(k)
r in BSP,q(R

n) follows from estimate

(5.5) and the assumed precompactness of g(k) in Bs−1
p,q (R

n, E2).
Remark 5.10. We return to Remark 2.8. Assume that

f (k) ∈ Bs,loc
p,q (R

n, E1) and g(k) ∈ Bs−τ,loc
p,q (Rn, E2)

are uniformly bounded; i.e., for all test functions χ ∈ D(Rn) the sequence χf (k) is
bounded in Bsp,q(R

n, E1), etc. Then we have the following equality:

divx(aχf
(k)) = χg(k) − f (k)divx(aχ).

The RHS is uniformly bounded in Bs−τp,q (R
n, E) with E = E1 + E2. From Theorem

2.5 we therefore conclude that the sequence χf̄ (k) is precompact in BSP,q(R
n). Hence

it is also possible to choose f (k) and g(k) in local Besov spaces only.
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Abstract. We consider an evolution system, describing the time-dependent behavior of nematic
liquid crystals with variable degree of orientation within the continuum model of Ericksen. We
establish a dissipation relation and prove both the global existence of weak solutions and the local
existence of classical solutions. Furthermore, we investigate the stability and long-time behavior of
solutions and obtain an exact solution of the corresponding stationary system in a one-dimensional
case.
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1. Introduction. In this paper, we study the system of partial differential equa-
tions governing the evolution of uniaxially nematic liquid crystals with variable degree
of orientation in the absence of either flow or electromagnetic field.

A typical nematic liquid crystal consists of the rigid, rodlike molecules with one
molecular axis being much longer than the other two. As a consequence of the highly
anisotropic molecular shape, there is a higher probability that the axes of any two
neighboring molecules point in a similar direction. The resulting molecular structure
is then commonly characterized as having some orientational order.

Within the standard continuum theory of Ericksen [4], the local molecular orien-
tation is described through the second moments of the appropriate local orientational
distribution functions. For a uniaxial nematic, the second moment is fully specified
by a unit vector n, called the director, and a scalar s, called the order parameter.
Given a point x, a simple interpretation of these characteristics is that, on average,
the molecules tend to be oriented along the director n(x) in a vicinity of x. Since the
majority of the molecules actually point in the directions close to, but different than
n(x), the quality of the intermolecular alignment has to be described by an additional
parameter s(x). It can be shown that the values of s are restricted to the interval
(− 1

2 , 1), where all molecules align perfectly with the director as s approaches 1 and
align perpendicular to it as s approaches − 1

2 . The special case of s = 0 corresponds
to the isotropic state with randomly oriented molecules in which the director n is
meaningless. The important consequence of the isotropy for the analysis of the Erick-
sen model is that the underlying partial differential equations become singular when
s = 0.
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The two-parameter approach of Ericksen is a generalization of the earlier Oseen–
Frank theory in which a liquid crystal configuration is described by the director field
alone. The well-known flaw of the Oseen–Frank approach is its inability to predict
some observable liquid crystal configurations. In particular, for the appropriately
chosen material constants, the energy minimizing configuration n is a harmonic map
into S2 with a singular set consisting at most of isolated points [13]. This, however,
contradicts the experimental observations [8] of both line and surface defects in various
materials, including liquid crystals. The Ericksen model was introduced, in part, in
order to address this deficiency of the Oseen–Frank theory.

When s is bounded away from zero and the gradient of the director can be
controlled, the evolution equation for the order parameter (2.9) exhibits a reaction-
diffusion mechanism normally responsible for the dynamics of the domain structures.
This mechanism, however, might be suppressed when s is small and, therefore, the
size of the term involving the gradient of the director is very large. The evolution and
the interactions of the structural defects corresponding to vanishing s constitutes, in
fact, a difficult mathematical problem, especially for the defects of codimension one
or two (surface and line defects). From the practical point of view, the understanding
of the defect dynamics plays an important role in the industrial applications of liquid
crystals, such as the design of efficient display devices.

The main goal of this paper is to establish both the existence and the regu-
larity results for the system of partial differential equations comprising the Ericksen
model. Here, the biggest challenge is to find the framework within which a degenerate
parabolic equation is guaranteed to have a solution. Our approach is to approximate
the set of the governing equations by a system of nonsingular PDEs and to show that
the approximate solutions converge, in a weak sense, to a solution of the Ericksen
system.

Following [4] and [10], we consider a free energy functional with the density having
a quadratic dependence on both s∇n and ∇s. Furthermore, we assume that the free
energy density depends on the order parameter through the double-well potential
W (s). The locations of the extrema for W and their corresponding energy values
are physically determined by the temperature in thermotropic liquid crystals and by
the concentration in lyotropic liquid crystals. In particular, a minimum of W can be
moved into the isotropic state s = 0 either by raising the temperature, or by lowering
the concentration of a polymer in a given solvent.

In the stationary case, the model for nematic liquid crystals with variable degree
of orientation was studied by Leslie [10] and by Virga [15]. Some aspects of the time
dependent behavior in modeling of patterns, associated with flow relaxation, have
been investigated by Calderer [1]. Recently, the plane Poiseuille flow was considered
by Calderer and Liu [2] to show that the order parameter allows for the modeling of
new types of defects.

The outline of the paper is as follows. The governing equations and the con-
stitutive properties of the model are outlined in section 2. In section 3 we use the
dissipative relation to obtain some a priori estimates. These relations, in turn, allow
us to prove the global existence of weak solutions in section 4. Next, using the semi-
group methods, we prove the local in time existence of classical solutions (section 5)
and then, in section 6, discuss both the stability and the long time behavior of solu-
tions. Finally, an exact solution of the corresponding stationary system is obtained
in section 7 in order to illustrate the singular behavior of the Ericksen system in the
one-dimensional case.



TIME EVOLUTION OF NEMATIC LIQUID CRYSTALS 1035

2. Governing equations. In the absence of a flow, the evolution for s and n is
governed by the following system of partial differential equations [4]:

β(s)ṡ = div

{
∂W1

∂∇s
}
− ∂W1

∂s
−W ′(s),(2.1)

γ(s)ṅ× n =

(
div

{
∂W1

∂∇n
}
− ∂W1

∂n

)
× n,(2.2)

|n|2 = 1,(2.3)

whereW(s,n,∇s,∇n) = W (s)+W1(s,n,∇s,∇n) denotes the Helmholtz free energy.
As in the Oseen–Frank theory [16], the termW1 is a quadratic function of the gradients
of n and s. The absence of the first order term in free energy is due to the invariance
of W with respect to the transformation n→ −n. From now on we will assume that

W 1 =
1

2
k1|∇s|2 + 1

2
k2s

2|∇n|2 , where k1 and k2 are positive constants,(2.4)

W (s) is a smooth double-well potential satisfying lim
s→− 1

2 ,1
W (s) =∞.(2.5)

Using the molecular theory predictions [4] on the asymptotic behavior of the consti-
tutive functions near s = 0 and rescaling we set

γ(s) =
k2

k3
s2,(2.6)

β(s) ≡ 1,(2.7)

where k3 is a positive constant.
Suppose that the material occupies a bounded domain Ω ∈ Rn with the smooth

boundary ∂Ω, where n ≤ 3 . We denote the points in Ω by x = (x1, . . . , xn) and
consider the planar director configurations

n = (cosφ, sinφ, 0).(2.8)

Then (2.1)–(2.2) reduce to

st= k1�s− k2s|∇φ|2 −W ′(s),(2.9)

s2φt = k3 div
(
s2∇φ) ,(2.10)

where x ∈ Ω and t > 0. This system will be supplemented by the following initial
and boundary data:

s(x, 0) = g(x), φ(x, 0) = h(x), x ∈ Ω,(2.11)

s(x, t) = g(x), φ(x, t) = h(x), x ∈ ∂Ω, t ≥ 0,(2.12)

where g and h are the given smooth functions of x.
Remark 2.1. It has been shown by several authors [11], [15] that, in the stationary

case, the introduction of s into the energy allows for the modeling of new types of
defects. Consider, for example, the Oseen–Frank free energy for n(x) with x ∈ R.
Then the corresponding Euler–Lagrange equation is

−n′′ = |n′|2n.
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Multiplying this equation by n′ and using the fact that |n| = 1, we have

(|n′|2)′ = 0, and − n′′ = an,

where a ≥ 0 is a constant. Therefore, n is a smooth, defect-free vector field. On the
other hand, when the order parameter and the corresponding energy contribution are
included into the model, the defects can exist in one-dimensional geometries [2].

3. A priori estimates and the Lyapunov function. In this section we con-
struct a Lyapunov function and obtain some a priori estimates on the solutions of
(2.9)–(2.10).

Theorem 3.1. Suppose that the pair (s(x , t), φ(x , t)) is a classical solution of
the system (2.9)–(2.10) for x ∈ Ω and t ∈ (0 , T ). Set

E(t) := E[s(·, t), φ(·, t)] =
∫

Ω

[
k1

2
|∇s|2 + k2

2
s2|∇φ|2 +W (s)

]
dx.(3.1)

Then E(t) is a Lyapunov function for the system (2.9)–(2.10), that is,

E(t) ≥ m |Ω| > −∞,(3.2)

E ′(t) ≤ 0 for all t ∈ (0, T ),(3.3)

where |Ω| denotes the Lebesgue measure of Ω and m := mins∈(− 1
2 ,1)

W (s).
Proof. First, we calculate

E ′(t) =
∫

Ω

[(
k2s|∇φ|2 +W ′(s)

)
st + k1∇s · ∇st + k2s

2∇φ · ∇φt
]
dx.(3.4)

Integrating the mixed derivatives terms in (3.4) by parts and using the boundary
conditions (2.12) along with the governing equations (2.9)–(2.10), we have

E ′(t) =
∫

Ω

{(
−k1∆s+ k2s|∇φ|2 +W ′(s)

)
st − k2φt div

(
s2∇φ)} dx(3.5)

= −
∫

Ω

{
s2
t +

k2

k3
s2φt

2

}
dx ≤ 0 .

Therefore, E(t) ≤ E(0) for all t ∈ [0, T ]. The proof of the assertion (3.2) follows
immediately from nonnegativity of the gradient terms in (3.1).

Note that, from the previous theorem, one can obtain the following bound on the
gradient of the director:∫

Ω

s2|∇φ|2 dx ≤ 2k−1
2 {E(0)−m |Ω|}(3.6)

for all t ∈ [0, T ].
Lemma 3.2. Let Ω be a domain with the smooth boundary and (s, φ) be a smooth

solution of the system (2.9)–(2.10). Suppose that g(x) ∈ (− 1
2 , 1
)
for all x ∈ Ω̄;

then there exist two constants, s− and s+, such that − 1
2 < s− < 0 < s+ < 1 and

s(x, t) ∈ (s−, s+) for all x ∈ Ω and t > 0 .
Proof. This result follows from the maximum principle [12] by taking into account

the property (2.5) of the function W . By our assumptions on the function g, there
exist

g− := min
x∈Ω̄

g(x) and g+ := max
x∈Ω̄

g(x),
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where − 1
2 < g− ≤ g+ < 1. Moreover, since W ′ is continuous and lims→− 1

2 ,1
W (s) =

∞, we can find

s− ∈ (−1/2, min {0 , g−}) ,
such that W ′(s−) < 0, and

s+ ∈ (max {0, g+}, 1) ,
such that W ′(s+) > 0.

Next, suppose that t∗ > 0 is the smallest time for which s(x∗, t∗) = s+ for some
x∗ ∈ Ω. Then W ′(s(x∗, t∗)) = W ′(s+) > 0, st(x

∗, t∗) ≥ 0 , and �s(x∗, t∗) ≤ 0 . This,
however, contradicts (2.9); hence s(x, t) < s+ for all x ∈ Ω and t > 0. A similar
argument can be used to show that s > s− as well.

By slightly modifying the proof of the previous lemma one can also prove the
following lemma.

Lemma 3.3. Suppose that s1 and s2 are the wells of the potential W ; that is,
both s1 and s2 are the strict local minima of W . Let Ω be a domain with the smooth
boundary and (s, φ) be the smooth solution of the system (2.9)–(2.10). Suppose that
g(x) ∈ (s1, s2) for all x ∈ Ω̄; then s(x, t) ∈ (s1, s2) for all x ∈ Ω and t > 0.

In the next two sections we discuss the solvability of the problem (2.9)–(2.10).

4. Global existence of weak solutions. The system (2.9)–(2.10) for the ne-
matic liquid crystals with variable degree of orientation was originally introduced by
Ericksen to model the line singularities. However, the obvious drawback of (2.9)–
(2.10) is that the problem loses its parabolicity whenever the order parameter s is
allowed to vanish. In order to overcome the degeneracy in the stationary version of
(2.9)–(2.10), Lin [11] introduced a variable u = sn and recast the problem in terms of

s and u. Within the new formulation, the constraint |n|2 = 1 has to be replaced by

s2 = |u|2, and the flow for (s, u) is from Ω into a circular cone. The corresponding
problem is then nonsingular, but since the target manifold itself is not smooth, the
solution of the reformulated problem is, in general, only Lipschitz continuous.

Here, in order to overcome the degeneracy in (2.10) at s = 0, we introduce the
modified system of equations

sεt = k1�sε − k2sε|∇φε|2 −W ′ (sε) ,(4.1) (
s2
ε + ε2

)
φεt = k3 div

((
s2
ε + ε2

)∇φε) ,(4.2)

where ε > 0 is small. Suppose that (sε, φε) satisfy the initial and boundary data
(2.11)–(2.12). Then the proof of the following lemma is the same as that of Theorem
3.1.

Lemma 4.1. Suppose that (sε, φε) is a smooth solution of (4.1)–(4.2). Then it
satisfies the following dissipative relation:

E′
ε(t) = −

∫
Ω

[(
s2
εt +

k2

k3

(
s2
ε + ε2

)
φ2
εt

)]
dx ≤ 0,(4.3)

where

Eε (t) =

∫
Ω

[
k1

2
|∇sε|2 + k2

2

(
s2
ε + ε2

) |∇φε|2 +W (sε)

]
dx.(4.4)
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Theorem 4.2. There exists a unique global classical solution (sε, φε) of the system
(4.1)–(4.2), corresponding to the initial and boundary data (2.11)–(2.12).

Here the existence follows from the standard results for parabolic systems, along
with a priori estimates derived in Lemma 4.1 [9, Chapter 10], [5, Chapter 3]. The reg-
ularity of solutions follows from Sobolev imbedding result, combined with a bootstrap
argument.

Note that, for any ε > 0, the conclusion of the Lemma 3.2 can be applied to
the solutions of (4.1)–(4.2), since (4.1) for sε is the same as (2.9) for s. Then sε is
bounded in L∞ (ΩT ) uniformly in ε, where ΩT = Ω× (0, T ) . Moreover, for any ε > 0
and 0 < T <∞, the solutions of (4.1)–(4.2) belong to the following functional spaces:

sε ∈ L∞ (0, T ;H1 (Ω)
) ∩H1

(
0, T ;L2 (Ω)

)
,

sε∇φε ∈ L∞ (0, T ;L2 (Ω)
)
,

sεφεt ∈ L2
(
0, T ;L2 (Ω)

)
.

In particular, sε is uniformly bounded with respect to ε in L∞ (0, T ;H1 (Ω)
)
, while

sε∇φε is uniformly bounded with respect to ε in L∞ (0, T ;L2 (Ω)
)
, and sεt is uniformly

bounded with respect to ε in L2
(
0, T ;L2 (Ω)

)
. Furthermore, φε is uniformly bounded

with respect to ε in L∞ (ΩT ) by the standard version of the maximum principle [12]
for (4.2) and the assumptions on h in (2.11)–(2.12).

Theorem 4.3. There exists a global weak solution, (s, φ), of the system

1

2

(
s2
)
t
=

k1

2
� (s2

)− k1|∇s|2 − k2s
2|∇φ|2 −W ′ (s) s,(4.5)

s2φt = k3 div
(
s2∇φ) .(4.6)

Moreover,

s ∈ L∞ (0, T ;H1 (Ω)
) ∩H1

(
0, T ;L2 (Ω)

)
,

s∇φ ∈ L∞ (0, T ;L2 (Ω)
)
,

s, φ ∈ L∞(ΩT ).

Proof. We multiply (4.1) and (4.2) by smooth test functions, sεξ1 (t) ξ2 (x) and
η1 (t) η2 (x), respectively, and pass to the limit as ε → 0. First, we carry out several
integrations by parts:

−
∫ T

0

∫
Ω

1

2
s2
εξ1t (t) ξ2 (x) dx dt

=

∫ T

0

∫
Ω

{
k1

2
s2
εξ1 (t)�ξ2 (x)− k1|∇sε|2ξ1 (t) ξ2 (x)(4.7)

− k2s
2
ε |∇φε|2ξ1 (t) ξ2 (x)−W ′ (sε) sεξ1 (t) ξ2 (x)

}
dx dt

and

−
∫ T

0

∫
Ω

{ (
s2
ε + ε2

)
φεη1t (t) η2 (x) + 2sεφεsεtη1 (t) η2 (x)

}
dx dt

=

∫ T

0

∫
Ω

−k3

(
s2
ε + ε2

)∇φε · ∇η2 (x) η1 (t) dx dt(4.8)

=

∫ T

0

∫
Ω

{−k3s
2
ε∇φε · ∇η2 (x) η1 (t) + k3ε

2φεη1 (t)�η2 (x)
}
dx dt.
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By letting ε → 0, we can find a subsequence, {εj}j∈N, such that sεj converges to s

weakly in H1
(
0, T ;L2 (Ω)

)
, weakly-∗ in L∞ (0, T ;H1 (Ω)

)
and in L∞ (ΩT ), while φεj

converges to a limit φ weakly- ∗ in L∞ (ΩT ). Moreover, on the same subsequence,
sεj∇φεj converges to s∇φ weakly- ∗ in L∞ (0, T ;L2 (Ω)

)
.

Now, by the uniform bounds on sεj , φεj , and sεj∇φεj , every term in (4.7)–(4.8)
converges to the corresponding term for s and φ. Note that, by Lemma 3.2, the term
sεW

′ (sε) is bounded uniformly in ε in L∞ (ΩT ). Then, since the terms involving ε2

all vanish in the limit ε → 0, the resulting limiting equations are the weak forms of
(4.5) and (4.6).

Remark 4.4. The equation (4.5) for the order parameter s can be obtained by
multiplying the governing equation (2.9) by s. Hence, when s �= 0, (2.9) and (4.5) are
equivalent. On the other hand, s ≡ 0 is a solution of both equations.

Remark 4.5. The energy law (3.5) holds in a form of the inequality

E(t) +

∫ t

0

∫
Ω

{(
s2
t +

k2

k3
s2φt

2

)}
dx dt ≤ E(0)(4.9)

for the weak solutions of (4.5)–(4.6) constructed in this section.
Remark 4.6. Let s ≥ 0 (or s ≤ 0) and 0 < k2 < k1. As in [11], the target space for

(2.9)–(2.10) (a half of a metric cone over S2) can be approximated by nonpositively
curved smooth manifolds. Following the arguments of [3] and taking the appropriate
limit we find that the solutions of (2.9)–(2.10) are Lipschitz continuous.

5. Local existence of strong solutions. In this section we will use the semi-
group approach to study the existence of strong solutions of the governing system of
equations (2.9)–(2.10). Assuming that f = (f1, f2) and u = (s, φ) we introduce the
notation

f1(s, φ) = −k2s|∇φ|2 −W ′(s),
f2(s, φ) = 2k3s

−1∇s · ∇φ.(5.1)

In addition, we define the functional space

X = L2(Ω)× L2(Ω),

with the norm

‖f‖2X = ‖f1‖2L2(Ω) + ‖f2‖2L2(Ω).

We begin by rewriting the system (2.9)–(2.10) in the form

ut +Au = f(u,∇u), u = (s, φ),(5.2)

where f is given by (5.1) and A represents the linear operator

(Au, v) =
∫

Ω

(k1∇s · ∇v1 + k2∇φ · ∇v2) dx .

Here v = (v1, v2) ∈ H1(Ω) × H1(Ω) satisfies the same boundary conditions as in
(2.12). Clearly, A is a self-adjoint and positive definite operator. If u ∈ C2(Ω) and
u = u0 on ∂Ω, then Au = −div (K∇u), where K = (k10

0
k2
). Therefore,

D(A) = {u ∈W 2,2(Ω)×W 2,2(Ω) : u(x) = u0, x ∈ ∂Ω
}
.
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For α ≥ 0, we define

Xα = D(Aα), ‖u‖α = ‖Aαu‖, u ∈ Xα.

Then we have the following lemma.
Lemma 5.1. Suppose that ∂Ω is a C2-hypersurface separating Ω ⊂ Rn from

Rn\Ω̄. For 0 ≤ α ≤ 1, the following continuous imbedding results hold [6]:
(1) Xα ⊂W k,q, k − n

q < 2α− n
2 , q ≥ 2,

(2) Xα ⊂ Cν , 0 ≤ ν < 2α− n
2 ,

(3) Xα ⊂ Lq, 1
q > 1

2 − 2α
n , q ≥ 2.

For α ≥ n
4 and ε > 0, let

Uε = {u ∈ Xα : ε < s < 1} .(5.3)

For a given u0 ∈ Uε, set
Vδ = {u ∈ Uε : ‖u− u0‖α ≤ δ}

to be a δ-neighborhood of u0 where δ > 0 is fixed.
Remark 5.2. Suppose that u ∈ Vδ for a given u0. It follows from part (2) of

Lemma 5.1 that

max
x∈Ω∪∂Ω

|s(x)− s0(x)| ≤ C(δ),

where C(δ) → 0 as δ → 0. Therefore, s(x) > s0(x) − C(δ) > ε − C(δ) > 0 holds for
a sufficiently small δ > 0; that is, the order parameter s is uniformly bounded away
from zero.

Define

µ = µ(u0) = ε− C(δ) > 0, a = sup(s,φ)∈Vδ
|W ′′(s)| ;

then we have the following lemma.
Lemma 5.3. Suppose that n and α satisfy one of the following three conditions:

n = 3, α >
7

8
, or n = 2, α >

3

4
, or n = 1, α >

5

8
.

Then F (u) = f(u,∇u) is locally Lipschitz continuous in Uε; that is, there exists a
δ > 0 such that

‖F (u1)− F (u2)‖X ≤ K(δ)‖u1 − u2‖α(5.4)

for every u0 ∈ Uε and u1, u2∈ Vδ.
Proof. For n and α satisfying the conditions of the lemma, the imbedding results

of Lemma 5.1 imply

Xα ⊂W 1,4 ∪ L∞ and Xα ∈ Cν ,

where

0 < ν < 2α− 1

2
if n = 1,

0 < ν < 2α− 1 if n = 2,

0 < ν < 2α− 3

2
if n = 3.
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Then the following estimates on (f1, f2) hold for every u1, u2 ∈ Vδ:∥∥∥s1|∇φ1|2 − s2|∇φ2|2
∥∥∥
L2

≤
∥∥∥(s1 − s2) |∇φ1|2

∥∥∥
L2

+
∥∥∥s2

(
|∇φ1|2 − |∇φ2|2

)∥∥∥
L2

≤ ‖∇φ1‖2L4‖s1 − s2‖∞ + K ′‖s2‖∞(‖∇φ1‖L4 + ‖∇φ2‖L4)‖∇φ1 −∇φ2‖L4

≤ K‖u1 − u2‖α
for some constant K = K (δ, u0) and K ′ = K ′ (δ, u0). Moreover,

‖W ′ (s1)−W ′ (s2)‖L2 ≤ a‖u1 − u2‖α
and∥∥s−1

1 ∇s1 · ∇φ1− s−1
2 ∇s2 · ∇φ2

∥∥
L2

≤ ∥∥s−1
1 ∇s1 · (∇φ1 −∇φ2)

∥∥
L2 +

∥∥∇φ2 ·
(
s−1
1 ∇s1 − s−1

2 ∇s2

)∥∥
L2 .

Finally, we observe that∥∥s−1
1 ∇s1 · (∇φ1 −∇φ2)

∥∥
L2 ≤ µ−1‖s1‖W 1,4‖∇φ1 −∇φ2‖W 1,4

≤ µ−1K‖u1 − u2‖α
and ∥∥∇φ2 ·

(
s−1
1 ∇s1 − s−1

2 ∇s2

)∥∥
L2 ≤ µ−2‖∇φ2‖L4‖s2∇s1 − s1∇s2‖L4

≤ Kµ−2‖u2 − u1‖α.
Hence we conclude that (5.4) holds.

Remark 5.4. The estimates, similar to the ones in the proof of the previous
lemma, can be used to show that

‖F (u)‖X ≤ K(‖u‖∞)‖u‖kW 1,2k , k ≥ 2,(5.5)

where u ∈ Uε and ‖ · ‖∞ is the L∞-norm in Ω.
Theorem 5.5. Let ε > 0 and α < 1 be as in Lemma 5.3. For any u0 =

(s0, φ0) ∈ Uε there exists Tε = Tε(u0) > 0 such that the boundary-value problem
(2.9)–(2.12) has a unique, maximally defined solution u(t) = (s(t), φ(t)) ∈ D(A), as
long as t ∈ (0, Tε). The solution u(t) satisfies the initial conditions s(x, 0) = s0 and
φ(x, 0) = φ0 for every x ∈ Ω and ui(t) ∈W 2,2(Ω)∩W 1,4(Ω)∩L∞(Ω) for i = 1, 2 and
t ∈ (0, Tε). Furthermore, either Tε = ∞ or there exists a sequence {tn} → Tε such
that s(tn)→ sε∈ ∂Uε as tn → Tε.

Remark 5.6. It follows from the definition of Uε in (5.3) that the condition
sε ∈ ∂Uε corresponds to either limtn→Tε

sε(x0, tn) = ε or limtn→Tε
sε(x0, tn) = 1 for

some x0 ∈ Ω.
Remark 5.7. The preceding existence results are also valid for the initial data

s0 ∈ (− 1
2 , 0). However, they do not apply in the case when s0(x) → 0 as x → x̄,

where x̄ ∈ Ω̄ := Ω ∪ ∂ Ω.
Remark 5.8. Additional regularity properties of a solution of the abstract equa-

tion (5.2) can be inferred from its definition [6]. In particular, one can show that
the original equation is satisfied by this solution in a classical sense. In fact, since
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u ∈ D(A) and ut(·, t) ∈ Xα is locally Hölder continuous for t > 0 [6, Theorem 3.5.2],
the functions u and ut are continuous on (0, Tε) × Ω̄. The inclusion u ∈ D(A) guar-
antees that ∇ui ∈ W 1,2(Ω) ⊂ L6(Ω); hence Au ∈ L3(Ω). Therefore, ui ∈ W 2,3(Ω)
and ∇ui ∈ W 1,3(Ω) ⊂ Lq for all q > 3. By repeating this argument, we conclude
that ui ∈ W 2,q for q > 3 and ∇u(t, ·) is Hölder continuous. Then Fi(u) ∈ Cβ(Ω)
and ui(t, ·) ∈ C2+β(Ω) for some β > 0. Moreover, for t > 0, the function u(x, t) is
continuously differentiable in t and twice continuously differentiable in x; hence u(x, t)
is a classical solution of the governing system (2.9)–(2.10).

6. Long-time behavior and stability of solutions. Suppose that a solution
(s, φ) of (2.9)–(2.10) is sufficiently smooth to satisfy the energy law (cf. Theorem 3.1)

E ′(t) +
∫

Ω

{(
s2
t +

k2

k3
s2φt

2

)}
dx = 0(6.1)

or, in a more general case, the energy inequality (4.9)

E(t) +

∫ t

0

∫
Ω

{(
s2
t +

k2

k3
s2φt

2

)}
dx dt ≤ E(0)(6.2)

for every t ∈ (0, ∞). Then both terms st = k1�s − k2s|∇φ|2 −W ′(s) and sφt =
k3s

−1div
(
s2∇φ) are in the space L2

(
0,∞;L2(Ω)

)
. By using Fubini’s theorem we

can prove the following.
Theorem 6.1. Suppose that (s, φ) is a weak solution of (2.9)–(2.12) obtained in

Theorem 4.3. Given any sequence {ti}i∈N such that ti →∞, there exists a subsequence

{tij}j∈N satisfying s(tij , ·)→ s∗ in H1(Ω) and φ(tij , ·) ∗
⇀ φ∗ in L∞(Ω) weak-∗, where

(s∗, φ∗) is a solution of the stationary problem

k1�s− k2s|∇φ|2 −W ′(s) = 0,(6.3)

k3div
(
s2∇φ) = 0,(6.4)

with (2.12) as the boundary condition.
Remark 6.2. When 0 < k2 < k1 and W ≡ 0, one can apply the argument of R.

Schoen [7], [14], [11] to show the uniqueness of the stationary minimizing solution.
Then, the result of Theorem 6.1 holds not just on a subsequence but as t→∞. The
same conclusion is valid when W �= 0 is small in comparison with the size of the
domain.

Note that there is no global (up to the boundary) uniqueness of the stationary
solution when k2 > k1.

7. The exact solution in the one-dimensional case. We now restrict Ω to
lie in R and suppose that Ω := [−a, a]. Then the system (6.3)–(6.4) can be written
as

K2 sxx−sφ2
x −

1

κ2
W ′(s) = 0,(7.1)

(s2φx)x= 0.(7.2)

Here K =
√

k1/k2 and κ =
√
K2. The system (7.1)–(7.2) can be decoupled by

setting the angle φ to a constant value in Ω. Then the second equation is satisfied
automatically and the first one reduces to a stationary Ginzburg–Landau equation in
one dimension. We, however, will be interested in solutions of the full system with
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a nonconstant angular part. Therefore, we will require that φ(−a) < φ(a). We will
not impose any additional boundary conditions on s and φ, except for the technical
restriction that s(−a) = s(a). Note that, lacking uniqueness, we do not claim that
we can identify the exact asymptotic limit of (2.9)–(2.10) as t → ∞. In this section
we will merely be interested in discussing the possible features of such a limit.

By integrating (7.2), substituting the result into (7.1), and integrating once, we
obtain

K2 S2
x + 4α2 − 8

κ2
SW1(S) = βS,(7.3)

φx=
α

S
,(7.4)

where S := s2, the function W1(S) := W (
√
S), and both α and β are the constants of

integration. For the remainder of this section we will also assume that the potential

function has a special form W (s) =
(
1− s2

)2
/8 and, hence, W1(S) = (1− S)

2
/8.

This apparent relaxation of the assumptions on W from section 2 can be justified on
the basis of the maximum principle result of Lemma 3.2. Then

(κK Sx)
2
= S3 − 2S2 +

(
1 + κ2β

)
S − 4κ2α2.(7.5)

The general solution of this ODE can be expressed in terms of elliptic integrals.
However, for a certain combination of the constants β and α, there is a particular
explicit solution of (7.5) in terms of elementary functions. To find this solution we
will suppose that

κ2α2 =
1

54

[
1 + 9κ2β − (1− 3κ2β

) 3
2

]
.(7.6)

Then (7.5) transforms into

(κK Sx)
2
= (S − S0(λ))

2
(S − S1(λ)) ,(7.7)

where

S0(λ) =
2 + λ

3
, S1(λ) =

2(1− λ)

3
,

and

λ =
√
1− 3κ2β.(7.8)

Integrating (7.7) and using the restriction on the boundary values of s, we obtain

S(x) = S1(λ) + λ tanh2

(√
2λx

κK

)
.(7.9)

We can now use (7.9) to solve (7.4):

φ(x) = φ(−a) + α

∫ x

−a

1

S(p)
dp

= φ(−a) + κK α

S0(λ)
√
2S1(λ)

[
arctan

{√
λ

S1(λ)
tanh

(√
2λx

κK

)}

+ arctan

{√
λ

S1(λ)
tanh

(√
2λa

κK

)}]
+

α

S0(λ)
(x+ a)(7.10)
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for every λ ∈ (0 , 1). Moreover, (7.6) can be rewritten in terms of α and λ:

α =
2

3
√
3κ

(2 + λ)
√
1− λ =

S0(λ)
√
2S1(λ)

κ
.(7.11)

Then (7.10) simplifies to

φ(x) = φ(−a) +K

[
arctan

{√
λ

S1(λ)
tanh

(√
2λx

κK

)}

+ arctan

{√
λ

S1(λ)
tanh

(√
2λa

κK

)}]
+

√
2S1(λ)

κ
(x+ a).(7.12)

Finally, introducing a new parameter µ2 = λ, assuming that

ν2(µ) =
S1(µ

2)

µ2
=

2 (1− µ2)

3µ2
,(7.13)

and using the definition of S, we have for every µ ∈ (0 , 1) that

s(x) = µ

√√√√ν2 + tanh2

(√
2µx

κK

)
,(7.14)

φ(x) = φ(−a) +K

[
arctan

{
1

ν
tanh

(√
2µx

κK

)}

+ arctan

{
1

ν
tanh

(√
2µa

κK

)}]
+

√
2 ν µ

κ
(x+ a).(7.15)

The only remaining free parameter in these equations is µ, and it can be determined
by imposing the boundary conditions either on s or on φ. The former boundary-
value problem would have a solution in the form (7.14) only if s(−a) = s(a). If the
boundary conditions on φ are given, φ(−a) = φ0 and φ(a) = φ1, for example, then µ
can be determined from the equation

φ1 − φ0 = 2K arctan

{
1

ν(µ)
tanh

(√
2µa

κK

)}
+

2
√
2 ν(µ)µa

κ
.(7.16)

We do not claim that (7.16) would always have a solution—indeed, (7.14)–(7.15)
represent a one-parameter family of solutions of the system (7.1)–(7.2) and not its
general solution. However, (7.14)–(7.15) can still be used to describe some of the basic
types of solutions of (7.1)–(7.2).

First, we observe that, by the definitions of λ and µ, the inequality 0 ≤ µ ≤ 1
always holds. Using the Maple computer algebra system [17], we will illustrate four
different cases of possible singular behavior of the liquid crystal system.

(1) Suppose that µ = 0. Then (7.9) and (7.12) reduce to

s(x) =

√
2

3
,(7.17)

φ(x) = φ(−a) + 2√
3κ

(x+ a).(7.18)
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Fig. 7.1. The graphs of s and φ when K = 1, µ = 0, κ = 0.04, and a = 1.
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Fig. 7.2. The graphs of s and φ when K = 1, µ = 1, κ = 0.04, and a = 1.

This solution (Figure 7.1) is independent of K and corresponds to a rotation of the
director vector of a constant length. No structural defects are observed in this state.

(2) Now let µ = 1. Then λ = 1, and by (7.11), one can see that α = 0 holds.
It follows as a consequence of (7.4) that φ(x) is constant on (−a , a). In addition, by
(7.9), we have that

s(x) = tanh

(√
2x

κK

)
(7.19)

is a solution of a stationary Ginzburg–Landau equation. Typical profiles of the angle
and order parameter for small values of κ are shown on Figure 7.2. Here the value of
the order parameter abruptly changes at x = 0, while the director remains constant
throughout the domain. This picture corresponds to an interface between two regions
with different degrees of orientation.

(3) Here we suppose that κ is large and µ→ 1. As one can observe on Figure 7.3,
the corresponding physical situation can be described as a combination of the defect
(wall) at x = 0 and the gradually changing order parameter in the bulk.

(4) We now let µ → 1 and κ be small. As µ approaches 1, the structure of the
solutions changes as shown on Figures 7.4 and 7.5. The situation on Figure 7.4 can
be characterized as a combination of the defect (wall) at x = 0 and some additional
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Fig. 7.3. The graphs of s and φ when K = 1, µ = 0.8, κ = 10, and a = 1.
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Fig. 7.5. The graphs of s and φ when K = 1, µ = 99.9999 × 10−2, κ = 0.04, and a = 1.

rotation of the director in the bulk. When µ is closer to 1 (Figure 7.5), almost all of
the director rotation is concentrated exclusively within the core of the defect.

We conclude, therefore, that for µ ∈ [0 , 1), the solution (6.14)–(6.15) is similar to
a twisted nematic in which the director rotates either in the bulk or inside the defect
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(wall) at the center of the domain. The smallness of parameters κ
µ and ν

κ induces
sharp interfaces and defects inside the domain, respectively.

8. Conclusion. We have presented the analysis of the evolution system mod-
eling the behavior of nematic liquid crystals with variable degree of orientation. By
introducing the order parameter, the system allows for the presence of structural de-
fects in a material. This, however, creates mathematical difficulties and leads to a
degenerate problem when the liquid crystal is in an isotropic state. The existence
of weak solutions of the governing equations has been shown in a general case; their
regularity can be established subject to certain restrictions on the order parameter.
In particular, the regularity of solutions when the minima of the potential function lie
on both sides of zero is still open. Using the appropriate smoothness of the director-
order parameter configuration, one can then determine its asymptotic behavior and,
therefore, describe the dynamics of new types of defects.
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[8] M. Kléman, Points, Lines, and Walls, John Wiley and Sons, New York, 1983.
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Abstract. Let F 1, . . . , Fk be k dissipative vector fields on finite dimensional Euclidean spaces
that preserve the skeleton of the positive orthant. Permanence of all sufficiently weak couplings of
these vector fields corresponds to robust permanence of the uncoupled vector field F 1 × · · · ×Fk. A
sufficient condition for robust permanence of F 1× · · ·×Fk involving unsaturated Morse decomposi-
tions is provided. In the case of coupled food chain vector fields and coupled two-dimensional vector
fields, this sufficient condition is shown to be necessary. As an illustration, these results are applied
to weakly coupled logistic-Holling predator-prey systems.
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1. Introduction. Ecological communities are bound together by a web of com-
plex relationships. Data on interaction strengths between species in natural food
webs indicate that these interaction strengths are characterized by many weak in-
teractions and a few strong interactions [2, 19, 21, 30]. Consequently, food webs
are often viewed as modular [22] in which modules of strongly interacting species
are weakly interconnected. Because of this modularity, theoretical ecologists often
develop ordinary differential equation models that include strong interactions and ig-
nore weak interactions [11, 24, 25]. One justification for this approach is the belief
that weak interactions play a small role on the models dynamics and therefore can be
ignored. More recently, however, theoretical ecologists have considered the effects of
weak interactions and have found that weak interactions can play important stabiliz-
ing and “noise” dampening roles [2, 19, 21] and can magnify spatiotemporal variation
in community structure [2]. Furthermore, weak couplings of predator-prey systems
with periodic orbits exhibit phase locking and entrainment [28]. To better understand
their global dynamics, we investigate permanence of weakly coupled systems.

Population dynamics are frequently modeled by vector fields on the positive or-
thant of Euclidean space that leave the boundary of this orthant invariant. Stated
loosely, such a vector field is permanent provided that the boundary of the positive or-
thant is repelling [3, 4, 9, 13, 14, 27]. Ecologically this is interpreted as the long-term
coexistence of the interacting populations. Reviews of the mathematical progress on
studying permanence and its applications can be found in [10, 15, 29]. If we have k-
vector fields F 1, . . . , F k representing k uncoupled systems of interacting populations,
then weak couplings of these vector fields correspond to vector fields that are close to
the product vector field F 1×· · ·×F k. The goal of this article is to find conditions that
ensure all vector fields sufficiently close to the uncoupled vector field F 1×· · ·×F k are
permanent. In other words, determine under what conditions F 1×· · ·×F k is robustly
permanent. After defining these concepts more precisely in section 2, we conjecture
that F 1 × · · · × F k is robustly permanent if and only if for each 1 ≤ i ≤ k the vector
field F i is robustly permanent. If this conjecture is indeed true, then it reduces a
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potentially high-dimensional problem (i.e., determining whether F 1 × · · · × F k has a
robustly repelling boundary) to k lower-dimensional problems (i.e., determining for
each 1 ≤ i ≤ k whether F i has a robustly repelling boundary). To prove such a con-
jecture requires an appropriate characterization of robust permanence and extending
it to product vector fields. Results in this direction include the recent work of the
author [26] in which it is shown that a vector field is robustly permanent provided
that it admits an unsaturated Morse decomposition of its boundary dynamics, and
a generalization of this criterion by Hirsch, Smith, and Zhao [8] to semiflows. Recall
that a Morse decomposition of an invariant set K is a collection of isolated invariant
subsets of K such that collapsing these sets to distinct points results in a gradient-like
quotient flow on K. On the other hand, an unsaturated equilibrium in a population
model is in effect one which can be invaded by some population entering the system at
low density. Thus an unsaturated Morse decomposition is one in which the invariant
subsets in the decomposition, which may be more complicated than just equilibria,
have the analogous property of invasibility by at least one population not already
present. In section 3, we discuss these results and prove that if F 1, . . . , F k are vector
fields that admit an unsaturated Morse decomposition, then F 1 × · · · × F k admits
an unsaturated Morse decomposition and, consequently, is robustly permanent. In
section 4, we use the main result of section 3 to prove our conjecture for couplings of
two-dimensional vector fields and for couplings of food chain vector fields. In section
5, we prove a technical proposition to make our results more applicable and illustrate
our approach with coupled predator-prey systems of the logistic-Holling type.

2. Preliminaries and a conjecture.
Definition 2.1. Let Pr(n) be the space of Cr vector fields F = (F1, . . . , Fn) :

Rn
+ → Rn that satisfy Fi(x) = 0 whenever xi = 0.
The extra condition on F corresponds to the fact that in the absence of population

i, the growth rate of population i is zero. We view Pr(n) as the space of all possible
models of n-interacting populations and endow Pr(n) with the Cr Whitney topology
[7, Chapter 2].

Definition 2.2. Let F = (F1, . . . , Fn) ∈ Pr(n) with r ≥ 1. The per capita
growth functions f = (f1, . . . , fn) : Rn

+ → Rn associated with F are the continuous
functions defined by

fi(x) =

{
Fi(x)
xi

if xi �= 0,
∂Fi

∂xi
(x) if xi = 0

(2.1)

for any x = (x1, . . . , xn) ∈ Rn
+.

We recall several definitions from dynamical systems theory. Assume F : Rn
+ →

Rn is C1 and that ẋ = F (x) generates a global flow φ : R × Rn
+ → Rn

+. Let
φtx = φ(t, x). Given sets I ⊆ R and K ⊆ Rn

+, let φIK = {φtx : t ∈ I, x ∈ K}. A set
K ⊆ Rn

+ is called invariant if φtK = K for all t ∈ R. The omega limit set of a set

K ⊆ Rn
+ equals ω(F,K) = ∩t≥0φ[t,∞)K. The alpha limit set of a set K ⊆ Rn

+ equals

α(F,K) = ∩t≤0φ(−∞,t]K. A ⊂ Rn
+ is called an attractor for φ provided there exists

an open neighborhood U ⊆ Rn
+ of A such that ω(F,U) = A. The basin of attraction

of A is the set of points x ∈ Rn
+ such that ω(F, x) ⊆ A. The flow φ is dissipative if

there exists a compact attractor A ⊂ Rn
+ for φ whose basin of attraction is Rn

+.
Definition 2.3. F ∈ Pr(n) is permanent provided that ẋ = F (x) generates a

dissipative flow φ and there exists a compact attractor A ⊂ intRn
+ for φ whose basin

of attraction is intRn
+.
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Permanence was originally introduced in [27] and for dissipative vector fields is
equivalent to uniform persistence [4]. To talk about permanence of weakly coupled
vector fields, the following definition is useful.

Definition 2.4. F ∈ Pr(n) is Cr robustly permanent if there exists a neighbor-
hood N ⊆ Pr(n) of F such that every vector field G ∈ N is permanent.

Now suppose that F 1 ∈ Pr(n1), . . . , F
k ∈ Pr(nk) are vector fields. Define the

product vector field F 1 × · · · × F k ∈ Pr(n1 + · · ·+ nk) by

F 1 × · · · × F k(x1, . . . , xk) = (F 1(x1), . . . , F k(xk)),

where x1 ∈ Rn1
+ , . . . , xk ∈ Rnk

+ . If F 1 × · · · × F k is Cr robustly permanent, then all
sufficiently weak Cr couplings of F 1, . . . , F k are permanent.

We make the following conjecture.
Conjecture 1. Let F 1 ∈ Pr(n1), . . . , F

k ∈ Pr(nk) with r ≥ 1 be vector fields
that generate dissipative flows. If F i is Cr robustly permanent for each 1 ≤ i ≤ k,
then F 1 × · · · × F k is Cr robustly permanent.

The converse of this conjecture—namely, robust permanence of F 1 × · · · × F k

implies robust permanence of F i for each 1 ≤ i ≤ k—follows immediately from the
definitions. The utility of this conjecture, provided that it is true, is that it reduces
checking robust permanence of a n1 + · · · + nk-dimensional vector field to checking
robust permanence of ni-dimensional vector fields for 1 ≤ i ≤ k.

3. Unsaturated Morse decompositions. In previous work [26], the author
developed a sufficient condition for robust permanence. This condition involves the
notion of unsaturated Morse decompositions that we discuss now. Let F ∈ Pr(n)
with r ≥ 1 generate the dissipative flow φ and let f = (f1, . . . , fn) denote the per
capita growth rate functions associated with F . Given a compact invariant set K, let
Minv(F,K) denote the set of φ-invariant Borel probability measures with support in
K. A compact invariant set K for φ is unsaturated if

min
µ∈Minv(F,K)

max
1≤i≤n

∫
K

fi dµ > 0.

Recall that a compact invariant set K is isolated if there exists a neighborhood
V of K such that K is the maximal compact invariant set in V . A collection of sets
{M1, . . . ,Mk} is a Morse decomposition for a compact invariant set K if M1, . . . ,Mk

are pairwise disjoint, compact isolated invariant sets for φ|K with the property that
for each x ∈ K there are integers l = l(x) ≤ m = m(x) such that α(F, x) ⊆ Mm and
ω(F, x) ⊆Ml and if l = m, then x ∈Ml = Mm. Let K be a compact invariant set. We
say that {M1, . . . ,Mk} is an unsaturated Morse decomposition for K if {M1, . . . ,Mk}
is a Morse decomposition for K and each Mj is unsaturated. The following sufficient
condition for Cr robust permanence was proven by the author.

Theorem 3.1 (Schreiber [26]). Let F ∈ Pr(n) with r ≥ 1 be such that ẋ = F (x)
generates a dissipative flow φ. Let Λ ⊂ ∂Rn

+ be the maximal compact invariant set
for φ|∂Rn

+. If Λ admits an unsaturated Morse decomposition, then F is Cr robustly
permanent.

As a step toward our conjecture, we prove a direct product of flows that admit
unsaturated Morse decompositions admits an unsaturated Morse decomposition.

Theorem 3.2. If F 1 ∈ Pr(n1), . . . , F
k ∈ Pr(nk) with r ≥ 1 are vector fields

such that for each 1 ≤ i ≤ k
1. F i generates a dissipative flow,
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2. F i admits an unsaturated Morse decomposition of the maximal compact in-
variant set of ∂Rni

+ ,
then F 1 × · · · × F k is Cr robustly permanent.

The proof of this theorem follows from induction, the following proposition, and
the fact that dissipative vector fields are open in the C1 Whitney topology.

Proposition 3.3. Let F ∈ Pr(n) and G ∈ Pr(m) with r ≥ 1 generate dissipative
flows φt and ψt, respectively. Let Λ1 ⊂ Rn

+ and Λ2 ⊂ Rm
+ be the maximal compact

invariant sets for φ and ψ, respectively. If Λ1 ∩ ∂Rn
+ admits an unsaturated Morse

decomposition for φ and Λ2 ∩ ∂Rm
+ admits an unsaturated Morse decomposition for

ψ, then Λ1 × Λ2 ∩ ∂Rn+m
+ admits an unsaturated Morse decomposition for φ× ψ.

Proof. Let {N1, . . . , Nk} and {M1, . . . ,Ml} be unsaturated Morse decompositions
for φ|Λ1 ∩ ∂Rn

+ and ψ|Λ2 ∩ ∂Rm
+ , respectively. Theorem 3.1 implies that φ and ψ are

permanent. Hence there exist compact attractors N0 ⊂ intRn
+ and M0 ⊂ intRm

+ for
φ and ψ, respectively, whose basins of attraction are intRn

+ and intRm
+ , respectively.

Hence {N0, . . . , Nk} and {M0, . . . ,Ml} define Morse decompositions for φ|Λ1 and
ψ|Λ2, respectively.

Define the collection of sets {Vi}l(k+1)+k
i=0 by

Vj(k+1)+i = Ni ×Mj , i = 0, . . . , k, j = 0, . . . , l.

We claim that this collection of sets is a Morse decomposition for φ × ψ restricted
to Λ1 × Λ2. Given any 1 ≤ i ≤ k and 1 ≤ j ≤ k, Ni and Mj have isolating
neighborhoods for φ|Λ1 and ψ|Λ2. The product of these isolating neighborhoods is

an isolating neighborhood of Ni ×Mj for φ × ψ|Λ1 × Λ2. Hence, {Vi}l(k+1)+k
i=0 is a

collection of isolated invariant sets for φ × ψ|Λ1 × Λ2. Given z = (x, y) ∈ Λ1 × Λ2,
there exist 0 ≤ i ≤ k and 0 ≤ j ≤ l such that α(F, x) ⊂ Ni and α(G, y) ⊂ Mj .
Hence, α(F × G, z) ⊂ Vj(k+1)+i. Since {N1, . . . , Nk} and {M1, . . . ,Ml} are Morse
decompositions for F and G, respectively, there exist i′ ≤ i and j′ ≤ j such that
ω(F, x) ⊂Mi′ and ω(G, y) ⊂ Nj′ . Furthermore, i′ = i only if x ∈ Ni and j′ = j only
if y ∈Mj . Consequently, ω(F ×G, z) ⊂ Ni′ ×Mj′ = Vj′(k+1)+i′ with j′(k + 1) + i′ ≤
j(k + 1) + i. Furthermore, j′(k + 1) + i′ = j(k + 1) + i only if z ∈ Vj(k+1)+i. Hence,

{Vi}l(k+1)+k
i=0 is a Morse decomposition for φ× ψ|Λ1 × Λ2.
Since V0 ⊂ intRn+m

+ is an attractor for φ× ψ with basin of attraction intRn+m
+ ,

{Vi}l(k+1)+k
i=1 defines a Morse decomposition for φ × ψ restricted to Λ = (Λ1 × Λ2) ∩

∂Rn+m
+ . We claim that this Morse decomposition is unsaturated. Let (f1, . . . , fn)

and (g1, . . . , gl) be the per capita growth rate functions of F and G, respectively. The
per capita growth rate functions for H = F ×G are given by

(h1(x, y), . . . , hn(x, y), hn+1(x, y), . . . , hn+m(x, y)) = (f1(x), . . . , fn(x), g1(y), . . . , gm(y)).

Let Vj(k+1)+i = Ni ×Mj with 0 ≤ i ≤ k and 0 ≤ j ≤ l be a component of this Morse
decomposition. Due to the fact that j(k+1)+i ≥ 1, we have that either i �= 0 or j �= 0.
Assume that i �= 0 as the case j �= 0 can be treated similarly. SinceMinv(H,Ni×Mj)
is compact in the weak* topology, to show that Vj(k+1)+i is unsaturated reduces to
verifying that

max
1≤l≤n+m

∫
Ni×Mj

hl dµ > 0

for every µ ∈Minv(H,Ni×Mj). Let µ ∈Minv(H,Ni×Mj). Define π : Rn×Rm →
Rn by π(x, y) = x. Let π∗µ be the Borel probability measure on Ni defined by
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π∗µ(A) = µ(π−1(A)) for all Borel sets A ⊂ Ni. π∗µ is invariant for φ as for any
continuous function c : Ni → R and t ∈ R,∫

Ni

c ◦ φt dπ∗µ =

∫
Ni×Mj

c ◦ φt ◦ π dµ =

∫
Ni×Mj

c ◦ π ◦ φt × ψt dµ

=

∫
Ni×Mj

c ◦ π dµ =

∫
Ni

c dπ∗µ

where the third equality is given by the invariance of µ. Since Mi is unsaturated for
φ,

max
1≤l≤n

∫
Ni

fl dπ∗µ > 0.(3.1)

Since
∫
Ni×Mj

hl dµ =
∫
Ni

fl dπ∗µ for 1 ≤ l ≤ n, (3.1) implies that

max
1≤l≤n+m

∫
Ni×Mj

hl dµ > 0.

Hence Ni ×Mj is unsaturated for φ× ψ.

4. Two corollaries. In the next two subsections, we derive two corollaries of
Theorem 3.2.

4.1. Weakly coupled two-dimensional systems. The basic building blocks
of ecological theory are two-species interactions that include competition, mutualism,
and predator-prey interactions [1]. The following corollary of Theorem 3.2 implies
that our conjecture is true for couplings of two-dimensional vector fields.

Corollary 4.1. Let F 1 ∈ Pr(2), . . . , F k ∈ Pr(2) with r ≥ 1 be vector fields
that generate dissipative flows. If (f i1, f

i
2) denote the per capita growth rates of F

i for
1 ≤ i ≤ k, then F 1 × · · · × F k is robustly permanent if and only if for each 1 ≤ i ≤ k

1. f i1(0) > 0 or f i2(0) > 0,
2. f i2(x) > 0 for all x = (x1, 0) ∈ R2

+\{0} such that f i1(x) = 0, and

3. f i1(x) > 0 for all x = (0, x2) ∈ R2
+\{0} such that f i2(x) = 0.

Remark. Since two-dimensional vector fields can exhibit periodic orbits as well
as equilibria, the boundary dynamics of the direct product of several two-dimensional
vector fields may exhibit periodic and quasi-periodic orbits. Despite these compli-
cations, the corollary implies that robust permanence of uncoupled two-dimensional
vector fields is determined by easily verified conditions at equilibria.

Proof. First, suppose that each F i for 1 ≤ i ≤ k satisfies the three conditions of
the corollary. For each 1 ≤ i ≤ k, we will show that F i admits an unsaturated Morse
decomposition. Let Λi be the global attractor for F i. Condition 1 implies that either
f i1(0) > 0 or f i2(0) > 0. Without loss of generality, assume that f i1(0) > 0. Define
M1 = Λi ∩ {(x1, 0) : x1 > 0} and M2 = Λi ∩ {(0, x2) : x2 ≥ 0}. Since f i1(0) > 0, M1

and M2 are disjoint isolated invariant sets for ∂R2
+. Invariance of {(0, x2) : x2 ≥ 0}

implies that every point x = (0, x2) ∈ Λi satisfies α(F i, x)∪ω(F i, x) ⊂M2. Invariance
of {(x1, 0) : x1 ≥ 0} and the fact that f i1(0) > 0 implies that every point x = (x1, 0) ∈
R2

+ with x1 > 0 satisfies ω(F i, x) ⊂M1. Hence, {M1,M2} is a Morse decomposition

for F i restricted to Λi ∩ ∂R2
+. Since all invariant measures for F i restricted to ∂R2

+

are convex combinations of Dirac measures based at equilibria, conditions 1–3 imply
that {M1,M2} is an unsaturated Morse decomposition for F i restricted to Λi ∩ ∂R2

+.
Theorem 3.2 implies that F1 × · · · × Fk is Cr robustly permanent.
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On the other hand, suppose that one of the conditions is not met for one of the
vector fields F i. We will show that for every Cr neighborhood N ⊂ Pr(2) of F i

contains a vector field that is not permanent. It follows that F 1 × · · · × F k is not Cr

robustly permanent. If condition 1 is not met for F i, then there is a G ∈ N such
that the origin is linearly stable for G. If condition 2 is not met for F i, then there
is an equilibrium x∗ = (x∗

1, 0) such that f i2(x
∗) ≤ 0. An appropriate perturbation of

F i yields a G ∈ Pr(2) such that x∗ is an equilibrium for G and g2(x
∗) < 0, where

(g1, g2) are the per capita growth rate functions for G. The stable manifold theorem
implies there is a point y ∈ intR2

+ such that ω(y) = x∗. Hence G is not permanent.
Similarly, if condition 3 is not met for F i, then we can find G ∈ N such that G is not
permanent.

4.2. Weakly coupled food chains. Using Theorem 3.2, we can prove our
conjecture for food chain vector fields that represent a collection of populations where
the ith population consumes the (i−1)st population and is consumed by the (i+1)st
population [1]. Food chain models represent a fundamental ecological unit whose
dynamics have been studied extensively [5, 6, 16, 17, 18, 20, 23].

Definition 4.2. Let F ∈ Pr(n) with r ≥ 1 and f = (f1, . . . , fn) denote the per
capita growth rate functions. F is a food chain vector field provided that F generates
a dissipative flow and for all 2 ≤ i ≤ n, fi(x) < 0 whenever xi−1 = 0.

The definition of a food chain vector field asserts that in the absence of the (i−1)st
population for i ≥ 2, the ith population has a negative per capita growth rate and
is doomed to extinction. Population 1 plays a special role under this assumption
as f1(0) is permitted to be positive. Population 1 in food chain models typically
represents an auto-trophic population (e.g., a population of plants) whose resources
are not explicitly modeled.

Given a vector field F , recall a point x ∈ Rn
+ is recurrent if x ∈ ω(F, x). The

Birkhoff center for a compact invariant set K, denoted BC(F,K), is the closure of
the recurrent points of K. The following characterization of Cr robust permanence
for food chain models was proven by the author.

Theorem 4.3 (Schreiber [26]). Let F ∈ Pr(n) with r ≥ 1 be a food chain vector
field with r ≥ 1 that generates a dissipative flow φ. Let Λ be the maximal compact
invariant set for φ|∂Rn

+. Then the following are equivalent:

1. F is Cr robustly permanent.
2. There exist compact sets A0 = {0} = R0

+, A1 ⊂ intR1
+, . . . , An−1 ⊂ intRn−1

+

and t > 0 such that for each m ∈ {0, 1, . . . , n − 1}, Am is an attractor for
φ|Rm

+ with basin of attraction intRm
+ and

min
x∈BC(F,Am)

∫ t

0

fm+1(φsx)ds > 0,(4.1)

where BC(F,Am) is the Birkhoff center of φ|Am. In particular, {A0, . . . , An−1}
defines an unsaturated Morse decomposition for φ|Λ.

With this characterization in hand, we immediately get the following corollary.

Corollary 4.4. If F 1 ∈ Pr(n1), . . . , F
k ∈ Pr(nk) are food chain vector fields

with r ≥ 1, then F 1 × · · · × F k is Cr robustly permanent if and only if F i is robustly
permanent for each 1 ≤ i ≤ k.

5. Using the results. Although the Cr Whitney topology on Pr(n) is natural
from a theoretical perspective, the perturbations considered in most models are not
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Cr close in this strong sense. Fortunately, a means to bypass this issue is contained
in the following proposition.

Proposition 5.1. Let F ∈ Pr(n) with r ≥ 1 be Cr robustly permanent. Let
Λ ⊂ Rn

+ be the maximal compact invariant set for F . Let V1 be a compact neighborhood
of Λ and V2 a compact neighborhood of V1. Then there exists ε > 0 such that if
G ∈ Pr(n) satisfies

1. G generates a dissipative flow,
2. the maximal compact invariant set for G is contained in V1, and
3. ‖G(x)− F (x)‖+ ‖DG(x)−DF (x)‖+ · · ·+ ‖DrG(x)−DrF (x)‖ ≤ ε for all

x ∈ V2,

then G is permanent.

Proof. Let F be Cr robustly permanent and have maximal compact invariant set
Λ. Since F is Cr robustly permanent, there exists a Cr neighborhood N ⊂ Pr(n) of
F such that every G ∈ N is permanent. Without loss of generality, we may assume
that this neighborhood is given by

{G ∈ Pr(n) : ‖G(x)− F (x)‖r < c(x) for all x ∈ Rn
+},

where c : Rn
+ → (0, 1] is a continuous function and

‖G(x)− F (x)‖r = ‖G(x)− F (x)‖+ ‖DG(x)−DF (x)‖+ · · ·+ ‖DrG(x)−DrF (x)‖.

Let ρ : Rn
+ → [0, 1] be a smooth function such that ρ(x) = 1 for all x ∈ V1 and

ρ(x) = 0 for all x ∈ Rn
+\V2. Define

ε = min
x∈V2

c(x)

(r + 2)!(1 + ‖ρ(x)‖r) .

Let G ∈ Pr(n) be a vector field that satisfies conditions in the statement of the
proposition. Define G̃(x) = F (x)+ρ(x)(G(x)−F (x)). We claim that G̃ lies in N . To
this end, we need to make estimates for ‖DiG̃(x)−DiF (x)‖ = ‖Di(ρ(x)(G(x)−F (x))‖
for all x ∈ Rn

+ and 0 ≤ i ≤ r. The product rule implies that for x ∈ V2 and 0 ≤ i ≤ r,

‖Di (ρ(x)(G(x)− F (x))) ‖ ≤ i!

i∑
j=0

‖Dj−iρ(x)Dj(G(x)− F (x))‖

≤ (i+ 1)!‖ρ(x)‖r ε.

Consequently, for x ∈ V2,

‖G̃(x)− F (x)‖r ≤ (r + 2)!‖ρ(x)‖r ε ≤ c(x).

On the other hand, for x ∈ Rn
+\V2, ‖F (x) − G̃(x)‖r = 0. Hence G̃ lies in N and is

permanent. Since G̃ = G on the maximal compact invariant set for G, it follows that
G is permanent.

Now we illustrate how these results can be used for coupled predator-prey sys-
tems similar to those considered by Vandermeer [28]. Vandermeer used MacArthur
predator-prey equations, but we choose not to use these equations as they exhibit
some pathological properties (i.e., the equations are not continuous on the boundary
of phase space). Instead we assume that the prey exhibits logistic dynamics in the
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absence of the predator, and the predator has a Holling type II function response [1].
Coupling these equations only through the predators, we get

dxi
dt

= rixi

(
1− xi

Ki

)
− aixiyi

1 + bixi + εcixj
− εdjyjxi

1 + bjxj + εcjxi
,

dyi
dt

=
eixiyi

1 + bixi + εcixj
+

εfiyixj
1 + bixi + εcixj

−miyi,(5.1)

i, j ∈ {1, 2}, i �= j,

where xi and yi are the densities of prey species i and predator species i, respectively.
The parameters have the following interpretation: ri is the intrinsic rate of growth of
prey species i; Ki is the carrying capacity of prey species i; ai and εdi correspond to
the rates at which the predators encounter prey species; biai and ci

di
correspond to prey

handling times for predator species i; eiai ,
fi
di

correspond to the conversion rate of prey
numbers to predator numbers; and mi is the per capita mortality rate of predator
species i. ε = 0 corresponds to the uncoupled system. The fact that this coupling is
somewhat complex follows from the fact that the predators are handling both prey
species when ε > 0.

Theorem 5.2. Let ri,Ki, ai, bi, ci, di, ei, fi, and mi be positive reals. There exists
an ε̃ > 0 such that (5.1) is permanent for all 0 ≤ ε < ε̃ if and only if Ki >

mi

ei−bimi
> 0

for i = 1, 2.
Proof. Consider the uncoupled system (i.e., ε = 0 in (5.1)) that is given by

dxi
dt

= rixi

(
1− xi

Ki

)
− aixiyi

1 + bixi
,

dyi
dt

=
eixiyi
1 + bixi

−miyi, i = 1, 2.(5.2)

The only boundary equilibria for the predator-prey subsystem xi − yi of (5.2) are
given by the origin (xi, yi) = (0, 0) and (xi, yi) = (Ki, 0). These equilibria satisfy
the conditions of Corollary 4.1 if and only if Ki > mi

ei−bimi
> 0. Alternatively, if

Ki ≤ mi

ei−bimi
or mi

ei−bimi
≤ 0 for some i ∈ {1, 2}, it can be shown [12, Lemma

3.2] that predator i is driven to extinction in the uncoupled system and (5.2) is not
permanent. Hence (5.2) is C1 robustly permanent if and only if Ki >

mi

ei−bimi
> 0 for

i = 1, 2.
To deduce that (5.1) is permanent for sufficiently small ε ≥ 0 when (5.2) is C1 ro-

bustly permanent, we invoke Proposition 5.1. To this end, let α = min{a1

e1
, a2

e2
, d1f1 ,

d2
f2
}

and β = min{m1,m2}. Define S : R4
+ → R by S(x1, y1, x2, y2) = x1+αy1+x2+αy2.

Our choice of α and β imply that any solution (x1(t), y1(t), x2(t), y2(t)) to (5.1) with
xi(0) ≥ 0, yi(0) ≥ 0, and ε ≥ 0 satisfies

d

dt
S(x1(t), y1(t), x2(t), y2(t)) + βS(x1(t), y1(t), x2(t), y2(t))

≤ r1x1(t)

(
1− x1(t)

K1

)
+ r2x2(t)

(
1− x2(t)

K2

)
+ β(x1(t) + x2(t)) ≤ C,

where C = (r1+β)2K1

4r1
+ (r2+β)2K2

4r2
. It follows that

lim sup
t→∞

S(x1(t), y1(t), x2(t), y2(t)) ≤ C

β
.
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Therefore, the maximal compact invariant set of (5.1) restricted to R4
+ for any ε ≥ 0

lies in the compact set

V1 =

{
(x1, y1, x2, y2) ∈ R4

+ : S(x1, x2, x3, x4) ≤ C

β

}
.

Choosing any compact neighborhood V2 of V1, Proposition 5.1 implies that whenever
(5.2) is C1 robustly permanent, there exists a ε̃ > 0 such that (5.1) is permanent for
all 0 ≤ ε ≤ ε̃.
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Abstract. We study a large reaction-diffusion system which arises in the modeling of catalytic
networks and describes the emerging of cluster states. We construct single cluster solutions on the
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1. Introduction: The model. In this paper, we continue our study [61] on
the cluster solutions for large reaction-diffusion systems. A typical example is the
hypercyclical reaction-diffusion system which arises as a spatial model concerning the
origin of life similar to the one introduced by Eigen and Schuster [18], [19], [20],
[21]. For more background on the concept of the hypercycle, see also [35], [36]. It
arises in the modeling of catalytic networks in the case that a number of RNA-
like polymers (“components”) catalyze the replication of each other in a cyclic way.
Examples in nature include the Krebs cycle for biosynthesis in the living cell and the
Bethe–Weizsäcker cycle for high rate energy production in massive stars. Eigen and
Schuster argue that the hypercycle satisfies important criteria of natural selection: (1)
selective stability of each component due to favorable competition with error copies,
(2) cooperative behavior of the components integrated into the hypercycle, and (3)
favorable competition of the hypercycle unit with other less efficient systems.

We show rigorously that this may lead to compartmentation (i.e., the build-up
of spatially small and essentially closed subsystems) due to spontaneous formation of
clusters (also called “spots” or “spikes”).

We first study a general system of N + 1 equations, where N may be any fixed
positive integer representing the number of components. For this general system we
first prove the existence of solutions with clusters which, for the different components,
have the same location and different heights.

Then we study the stability question for some particularly important examples.
At this point, we should like to emphasize that we provide a rigorous analysis around
cluster solutions—not around constant states. We also establish a threshold size for
the system such that smaller systems are stable and larger ones are unstable. This
type of result is new for the kind of (N + 1)-systems under investigation.
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Now we proceed to write down the reaction-diffusion system explicitly and define
the biological terms in a mathematically rigorous way. As suggested in [8], [9] we
study the following:{

∂Xi

∂t = DX∆Xi − gXXi +M
∑N

j=1 kijXiXj , i = 1, 2, . . . , N, x ∈ R,
∂M
∂t = DM∆M + kM − gMM − LM

∑N
i,j=1 kijXiXj , x ∈ R,

(1.1)

where N is the number of different polymer species, Xi denotes the concentration of
the polymers, and M is the concentration of activated monomers. The replication of
each polymer Xi is catalyzed by each Xj at a nonnegative rate constant kij . Linear
(noncatalytic) growth terms are neglected. The activated monomers are produced
at a constant rate kM ; gX and gM are decay rate constants. L is the number of
monomers in each polymer, and DX and DM are constant diffusion coefficients.

A typical example of the matrix kij is a hypercyclical N ×N matrix, namely

(khyperij ) =




0 0 0 ... k0

k0 0 0 ... 0
0 k0 0 ... 0
... ... ... ... 0
0 0 ... k0 0




N×N

, k0 > 0.(1.2)

The system (1.1) with the matrix (khyperij ) is called “elementary hypercycle” by
Eigen and Schuster [21] as the polymers interact in pairs only. There are more com-
plex hypercycles if the polymers interact in triples, quadruples, etc. However, more
complex hypercycles are likely to be of less importance for an efficient start of evo-
lution than elementary hypercycles since they are more difficult to form in the first
place.

While Eigen and Schuster [21] use an assumption of constant organization, mean-
ing that the total sum of all polymer concentrations is kept constant, in system (1.1)
another mechanism for bounding the polymer concentrations is present: Since each
polymer consists of L monomers, the polymer concentrations are bounded by the
limited supply of activated monomers. This is a nonlocal coupling in contrast to the
local coupling in the model of Eigen and Schuster.

We pose the problem in one-dimensional space, which, on the one hand, allows a
rigorous analysis and, on the other hand, is relevant if the early biochemical reactions
take place in very thin lines, like, for example, on the edges of rocks.

A cluster may loosely be defined as a region of high concentrations Xi of the
polymers and low concentration M of the monomer, as monomers are consumed by
the replication of polymers. A rigorous definition of a cluster is given by the solution
in the existence theorem (Theorem 2.1).

In this paper, we study the existence and stability of a single-cluster solution in
R1. Let us first reduce the system (1.1) to standard form. Dividing by gX and gM ,
respectively, gives

1

gX
∂tXi =

DX

gX
∆Xi −Xi +

M

gX

N∑
j=1

kijXiXj ,

1

gM
∂tM =

DM

gM
∆M +

kM
gM
−M − LM

gM

N∑
ji,=1

kijXiXj .
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Rescaling M = (kM/gM )M̂, Xi =
√

gM/LX̂i, we get

1

gX
∂tX̂i =

DX

gX
∆X̂i − X̂i +

1

gX

kM
gM

M̂

√
gM
L

N∑
j=1

kijX̂iX̂j ,

1

gM
∂tM̂ =

DM

gM
∆M̂ + 1− M̂ − M̂

N∑
i,j=1

kijX̂iX̂j .

Rescaling space variables x and time variable t:

x =

√
DM

gM
x̂, t =

1

gX
t̂,

renaming constants:

A =
kM

gXgM

√
gM
L

, ε2 =
DX

DM

gM
gX

, τ =
gX
gM

,

and dropping the hats, we finally arrive at the following standard form:{
∂tXi = ε2∆Xi −Xi +AM

∑N
i=1 kijXiXj ,

τ∂tM = ∆M + 1−M −M
∑N

i,j=1 kijXiXj .
(1.3)

We shall study (1.3) on the real line R for ε > 0 small. Different choices of A and τ
might distinguish between stability and instability. Therefore, we will treat them as
parameters. We look for solutions of (1.3) which are even:

Xi = Xi(|x|) ∈ H1(R), i = 1, . . . , N,

1−M = 1−M(|x|) ∈ H1(R).

The stationary equation corresponding to (1.3) becomes


ε2∆Xi −Xi +AM
∑N

j=1 kijXiXj = 0, i = 1, . . . , N,

∆M + 1−M −M
∑N

i,j=1 kijXiXj = 0,

Xi(|x|) > 0, 0 < M(|x|) < 1, x ∈ R.

(1.4)

From now on, we shall concentrate on (1.3) and (1.4).

2. Main results: Existence and stability. Now we state our main results
of this paper. First we construct cluster solutions to (1.4). To this end, we need to
introduce some assumptions and notation.

Let w be the unique solution [26], [31] of the following problem:{
∆w − w + w2 = 0, w > 0 in R,
w(0) = maxy∈R w(y), w(y)→ 0 as |y| → +∞.

(2.1)

Since (2.1) is an ODE, we can write w explicitly:

w(y) =
3

2 cosh2 y
2

.(2.2)
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Now we state the existence result. In fact, this is quite easy. We search for
solutions of the following type:

Xi = ξiX0, ξi > 0, i = 1, . . . , N,(2.3)

where ξi are positive constants which satisfy

N∑
j=1

kijξj = 1, i = 1, . . . , N.(2.4)

Our first assumption is that

(H1) there exists a unique solution (ξ1, . . . , ξN ) of (2.4).

Suppose (H1) holds true. Substituting (2.3) into (1.4), we see that (X0,M) must
satisfy {

ε2∆X0 −X0 +AMX2
0 = 0 in R,

∆M + 1−M −M(
∑N

i=1 ξi)X
2
0 = 0 in R.

(2.5)

In the case in which N = 1, (2.5) becomes the standard Gray–Scott model [23],
[24], [58]. The existence of single-pulse solutions for the Gray–Scott model in one
dimension has been studied in [14] and in two dimensions in [58].

Following the same proof as in Theorem 2.1 of [58], we define

L = L(A, ε) :=
1

2A2
∑N

i=1 ξi
ε

∫
R

(w(y))2dy.(2.6)

If 0 < L < 1
4 , then the following equation has two solutions:

η(1− η) = L.(2.7)

We denote the smaller one by ηs, where 0 < ηs < 1
2 , and the larger one by ηl, where

1 > ηl > 1
2 .

Now we have the following theorem.
Theorem 2.1. Suppose that (H1) holds.
Assume that

ε << 1(2.8)

and

ε << L <
1

4
− δ0;(2.9)

more precisely, for L = L(A, ε) there are positive numbers δ0, δ1, and ε0 such that,
for all ε and A with 0 < ε < ε0, we have L < 1

4 − δ0 and ε/L(A, ε) < δ1.
Then (1.4) admits two “single-cluster” solutions (Xs

ε ,M
s
ε ) = (Xs

ε,1, . . . , X
s
ε,N , Ms

ε )

and (X l
ε,M

l
ε) = (X l

ε,1 . . . , X
l
ε,N , M l

ε) with the following properties:
(1) All components are even functions.

(2) Xs
ε,i =

ξi
AMs

ε (0) (1 + o(1))w( |x|ε ), X
l
ε,i =

ξi
AM l

ε(0)
(1 + o(1))w( |x|ε ), i = 1, . . . , N,

where w is the unique solution of (2.1).
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(3) Ms
ε (x)→ 1 M l

ε(x)→ 1 for all x �= 0 and Ms
ε (0), M

l
ε(0) satisfy

Ms
ε (0) ∼ ηs, M l

ε(0) ∼ ηl,
0 < Ms

ε (0) < M l
ε(0) < 1.

(2.10)

(4) There exist a > 0, b > 0 such that

0 < 1−Ms
ε (x) ≤ Ce−a|x|, 0 < 1−M l

ε(x) ≤ Ce−a|x|,
0 < Xs

ε,i(x) ≤ C(AMs
ε (0))

−1e−b
|x|
ε , 0 < X l

ε,i(x) ≤ C(AM l
ε(0))

−1e−b
|x|
ε .

(2.11)

Finally, if ε is small enough and L > 1
4 + δ0 (in the same sense as in (2.9)), then

there are no single-cluster solutions.
The proof of Theorem 2.1 is exactly the same as the proof of Theorem 2.1 of [58]

or Theorem 1.1 of [61]. We omit the details here.
The main goal of this paper is to study the stability and instability of the cluster

solution constructed in Theorem 2.1. To this end, we first linearize (1.3) around
(Xs

ε ,M
s
ε ) or (X

l
ε,M

l
ε), respectively. From now on, we omit the superscripts s or l

where this is possible without confusing the reader. The linearized operator is as
follows:

Lε

 φε,i

ψε


 =




ε2∆φε,i − φε,i +AMε

∑N
j=1 kij(φε,jXε,i +Xε,jφε,i)

+Aψε

∑N
j=1 kijXε,iXε,j ,

∆ψε − ψε − ψε

∑N
i,j=1 kijXε,iXε,j

−Mε

∑N
i,j=1 kij(φε,jXε,i + φε,iXε,j)


 ,(2.12)

where i = 1, . . . , N . The eigenvalue problem becomes

Lε
(

φε,i

ψε

)
=

(
λεφε,i

τλεψε

)
, i = 1, . . . , N.(2.13)

We assume that the domain of Lε is (H2(R))N and λε ∈ C is the set of complex
numbers.

Certainly 0 is an eigenvalue of Lε. We say that a cluster solution is linearly stable if
the spectrum σ(Lε) of Lε (except for 0) lies in a left half-plane {λ ∈ C : Re (λ) < −c0},
where c0 > 0, and that 0 is a simple eigenvalue. A cluster solution is called linearly
unstable if there exists an eigenvalue λε of Lε with Re (λε) > 0. (From now on, we
use the terms linearly stable and linearly unstable as defined above.)

Before we state our results on the stability, we introduce two more assumptions
on the connection matrix (kij).

The second assumption is the following:

(H2)
N∑
i=1

kijξi = 1, j = 1, . . . , N ,

where ξj is given (2.4).
Note that assumption (H2) imposes a certain symmetry on the connection matrix

(kij).
The last assumption concerns the following eigenvalue problem:

(EVP)

{
∆φ− φ+ µwφ = 0,

φ ∈ H1(R).
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By Lemma 4.1 of [51], (EVP) admits the following set of eigenvalues:

µ1 = 1, µ2 = 2, 2 < µ3 ≤ µ4 ≤ · · · .(2.14)

(In fact, we have the following explicit values of µn (see Appendix A):

µn =
(1 + n)(2 + n)

6
, n = 1, 2, 3, . . . , .

)
(2.15)

Put

B = (bij), where bij = (ξikij).(2.16)

Observe that by (2.4) and (H1) the matrix B has an eigenvalue 1, and the asso-
ciated eigenvector is ξ = (ξ1, ξ2, . . . , ξN )

τ ; i.e., we have Bξ = ξ.
We take the Jordan decomposition of B,

B = PDP−1,(2.17)

where P is an invertible matrix and D is the Jordan form. Namely, we have

bij =

N∑
k,l=1

pikdklp
−1
lj ,

where dkl has Jordan form (i.e., it is composed of Jordan blocks


σk 1 0 · · · 0
0 σk 1 · · · 0

0 0 σk · · · ...
...

...
...

... 1
0 0 0 · · · σk




with eigenvalues σk ∈ C) and
∑N

k=1 pikpkj = δij .
We now assume that

{
[1 + spec(B)] ∩ spec(EVP) = {2},
1 is a simple eigenvalue of B.(H3)

Assumption (H3) means the following: Let us denote the eigenvalues of B by
σ1 = 1, σ2, . . . , σN ,(2.18)

where σj may be complex. Then assumption (H3) is equivalent to

σj �= (1 + n)(2 + n)

6
− 1 for j ≥ 2, n = 1, 2, . . . .(2.19)

Since ξ = (ξ1, . . . , ξN )
τ is an eigenvector of B with eigenvalue 1, by assumption

(H3) we may assume that

P = (p1, . . . ,pN ), p1 =
1

‖ξ‖ξ, ‖ξ‖ =
√√√√ N∑

i=1

ξ2
i .(2.20)
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The following is our main result on stability.

Theorem 2.2. Suppose that the matrix (kij) satisfies (H1), (H2), and (H3).

Assume that

ε << 1, ε << L <
1

4
− δ0,(2.21)

in the same sense as in (2.9).

Let (Xs
ε ,M

s
ε ) and (X

l
ε, X

l
ε) be the solutions constructed in Theorem 2.1.

Let σ = σR + iσI be an eigenvalue of B, and let

f(σ) := (12σR + 5)
2(3σ2

R + 2σR)− 3σ2
I .(2.22)

Then we have the following:

(1) (Stability) Suppose that 0 ≤ τ < τ0, where τ0 > 0 may be chosen independent
of ε. Assume that for all eigenvalues σ of B with σ �= 1 and σR > 0, we have f(σ) < 0.
Then (Xs

ε ,M
s
ε ) is linearly stable.

(2) (Instability) Assume that there exists an eigenvalue σ of B with σ �= 1 and
σR > 0 such that f(σ) > 0. Then (Xs

ε ,M
s
ε ) is linearly unstable for all τ > 0.

(3) (Instability) (X l
ε,M

l
ε) is linearly unstable for all τ > 0.

Theorem 2.2 applies to many matrices. In section 4, we shall apply Theorem 2.2 to
some specific examples which include the N -hypercycle case, (kij) = (khyperij ), where

(khyperij ) is given by (1.2). In this case, we have the following theorem.

Theorem 2.3. Consider the hypercycle case, i.e., let (kij) be given in (1.2).

Assume that (2.21) holds. Let (Xs
ε ,M

s
ε ) and (X

l
ε, X

l
ε) be the solutions constructed

in Theorem 2.1.

Then we have the following:

(1) (Stability) Assume that N ≤ 4 and 0 < τ < τ0 for some small τ0 > 0 which
is independent of ε. Then (Xs

ε ,M
s
ε ) is linearly stable.

(2) (Instability) Assume that N > 4. Then (Xs
ε ,M

s
ε ) is linearly unstable for all

τ > 0.

(3) (Instability) (X l
ε,M

l
ε) is linearly unstable for all τ > 0.

The proof of Theorem 2.3 is based on Theorem 2.2 and will be given in section 4.

Some remarks on the stability results—Theorems 2.2 and 2.3—are in order.

Remarks.

(1) For existence (Theorem 2.1), only assumption (H1) is needed. For the stability
results (Theorem 2.2), we need all three assumptions (H1)–(H3). Conditions (H2) and
(H3) are needed in the reduction process (section 6, Lemma 6.4) and in the study
of the vectorial nonlocal eigenvalue problem (NLEP) (section 7). These conditions
enable us to decouple the system. It is an interesting open problem to study the case
when assumptions (H2) and (H3) are dropped.

Note also that it is allowed that ξi �= ξj for i �= j. So we may have clusters with
different heights.

(2) In (1) of Theorem 2.2, we have assumed that τ is small. In the case in which τ
is large, we can show that the stability of (Xs

ε ,M
s
ε ) can be reduced to the study of an

algebraic equation (section 5). More precisely, one can use hypergeometric functions
and generalized hypergeometric functions to reduce the stability of the NLEP given
in (5.2) to the algebraic equation which is given in Lemma 5.4 and derived in
Appendix B.
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(3) The threshold of stability at N = 4 for the hypercycle system (Theorem 2.3)
has far-reaching consequences for biological applications. It implies that the under-
lying biological system can be stable only if it does not have too many constituents.
This shows that prebiotic evolution might fail if the system becomes too large.

This is qualitatively the same result as has been established by the authors in the
two-dimensional system. However, in two dimensions we were not able to establish
the exact threshold [61].

Knowing the exact threshold size for stability is also important in verifying the
validity of our model by experiments: Now the question can be studied of whether
the thresholds given by theory and the one determined by experiments are the same.
Furthermore, the agreement between theoretical values and numerically calculated
ones for related models plays an important role in deciding which model to choose.
(We refer to the works quoted at the end of the introduction for related numerical
investigations, in particular in [7], where, among others, multicluster states in one
space dimension have been computed numerically.)

Our critical threshold is in correspondence with the result of Eigen and Schuster
[21] that the constant nontrivial steady state for the hypercycle is stable if and only
if N ≤ 4.

To see quickly how the magic number 4 comes into play, we have to study an
eigenvalue problem with complex coefficients:

∆φ− φ+ (1 + e
√−1θ)wφ = λφ, φ ∈ H2(R),(2.23)

where θ = 2π
N . By using hypergeometric functions, we show (in section 5) that problem

(2.23) is stable if and only if θ > θh ∼ arccos(0.0455). Substituting the expression for
θ = 2π

N , we see that N ≤ 4.
Let us conclude this section by mentioning some related results.
In [8] the parameter dependence of the stability of clusters and spirals against

parasites (i.e., rival polymers which receive catalytic support from the hypercycle
but do not contribute to the catalysis of any other polymer) is studied numerically.
Mathematically speaking, the occurrence of a parasite means that there exists i0 ∈
{1, 2, . . . , N} such that ki0,j > 0 for some j �= i0 but kj,i0 = 0 for all j. A parasite may
or may not destroy the hypercycle depending on the rate constants. In [9] clusters
(for N = 5) are established numerically for the elementary N -hypercycle system in
two space dimensions.

It is known numerically [8], [9] that parasites may destroy stable cluster states.
Our results complement the picture by the rigorously proved fact that even pure
cluster states may turn unstable if they become too large. This implies that the
hypercycle, although it has some very preferable properties (see the beginning of the
introduction), it has an inherent instability behavior which may act as an obstruction
to the evolution of large biological systems.

In [7], for a closely related reaction-diffusion model in one and two space dimen-
sions, the dependence of various properties of cluster states on diffusivities is shown
numerically, including the cluster size, their shape, and the distance between different
clusters.

The effect of faulty replication on the hypercycle has been studied by an analysis
of the geometry of bifurcations around steady states and numerical computations in
the framework of an ODE reaction model [1].

For a cellular automata model it was shown numerically that a spiral wave struc-
ture may be stable against parasites [5]. The chaotic dynamics for this type of model
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has been investigated numerically in [34], [46].
There are many recent results on the Gray–Scott model which we would like to

recall here. In [14], by using the Mel’nikov method, Doelman, Kaper, and Zegeling
constructed single- and multiple-pulse solutions for (1.1) in the one-dimensional case
with DM = 1, DX = δ2 << 1, where Xi = X. In their paper [14], it is assumed that
kM = gM = δ2, gX = δ2α/3, k11 = 1, L = 1, where α ∈ [0, 3

2 ). In this case, they
showed that M = O(δα), X = O(δ−

α
3 ). Later the stability of single- and multiple-

pulse solutions in one dimension are obtained in [12], [13]. (The techniques are ex-
tended to other reaction-diffusion equations in [15].) We note that, in their scaling,

τ = δ
2α
3 −2. Their scaling is chosen in order to obtain X = O(1),M = O(1). Since

they choose two scaling parameters accordingly, they can achieve their goal. In our
standard formulation of the system (1.3), we have only the scaling parameter A so
that we cannot obtain X = O(1),M = O(1). On the other hand, the homoclinic
solution in their scaling corresponds exactly to our cluster solution in (1.3), which is
given in Theorem 1.1. For the stability results it is important to notice that the re-
sults of the system for the general N case are much more complicated than for N = 1.
The main reason is that the behavior for the N -system cannot be reduced to the case
N = 1 in contrast to the existence issue, and therefore a new analysis is needed.

Some related results on the existence and stability of solutions to the Gray–Scott
model in one dimension can be found in [16], [29], [30], [42], [43], [47], and [48].

In R2 and R3, Muratov and Osipov [37] have given some formal asymptotic
analysis on the construction and stability of spiky solution. In [57], the system (1.1)
for N = 1 is studied on the real axis in the shadow system case, namely, DM >>
1, DX << 1, and kM = gM = O(1), gX = O(1), k11 = 1, L = 1. The shadow system
can be reduced to a single equation. For spike solutions for single equations as well
as other systems, please see [3], [4], [11], [22], [25], [27], [28], [32], [33], [38], [39], [40],
[41], [44], [45], [50], [51], [52], [53], [54], [55], [56], [59], [60], and the references therein.

In the two-dimensional case, rigorous existence and stability results on the Gray–
Scott system have been established in [58]. The existence of one-spike solutions is
proved. Their stability is established and rests upon the derivation and analysis of a
related NLEP.

3. Outline of the proof of Theorem 2.2. We outline the proof of Theorem
2.2, which is our main theorem. It is divided into four steps. We need to analyze the
eigenvalue problem (2.12). We consider two cases: small eigenvalues (λε = o(1)) and
large eigenvalues (|λε| ≥ C > 0 for some positive constant C > 0).

Step 1 (small eigenvalue case). We show that in the small eigenvalue case, λε

must be zero, and the corresponding eigenfunction must be translations of (Xε,Mε).
This is done in Theorem 6.1 (1).

Step 2 (large eigenvalue case). We show that in the large eigenvalue case, (2.12)
can be reduced to a vectorial NLEP. This is done in Theorem 6.1 (2) and (3).

Step 3 (study of the vectorial NLEP). We show, under the assumptions (H2)
and (H3), that the study of the vectorial NLEP can be decoupled to the study of two
eigenvalue problems—one is a scalar eigenvalue problem but with complex coefficients,
and the other one is a scalar NLEP. This is done in section 7.

Step 4 (study of two eigenvalue problems). We study the two reduced eigenvalue
problems in section 5. This analysis provides the key estimates in this paper.

The structure of the paper is as follows.
In section 4, we consider the applications of Theorem 2.2. In particular, we con-

sider several interesting matrices (kij), including the hypercycle matrix and symmetric
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matrices.
In section 5, we study some scalar local and nonlocal eigenvalue problems associ-

ated with w.
In section 6, we separate the eigenvalue problem into two cases: small eigenvalues

and large eigenvalues. The case of large eigenvalues is then linked to a vectorial NLEP
given in (6.9).

In section 7, we reduce the vectorial NLEP given in (6.9) to a local eigenvalue
problem with complex coefficients given in (5.1) and a scalar NLEP given in (5.2).

Throughout this paper, the letter C will always denote various generic constants
which are independent of ε for ε sufficiently small. The notation A ∼ B means that
limε→0

A
B = 1, and A = O(B) is defined as |A| ≤ C|B| for some C > 0.

4. Effect of the connection matrix (kij). In this section, we apply the sta-
bility results of Theorem 2.2 to some specific examples. We would like to point out
that there are many matrices which satisfy assumptions (H1)–(H3) in Theorem 2.2.

Example 1 (proof of Theorem 2.3). For the hypercyclical network, we have

ξ1 = · · · = ξN =
1

k0
,

bhyperij = δi,j+1 modulo N.

The eigenvalues are σ = e2πj
√−1/N , j = 1, . . . , N, and they are all simple. In this

case, it is easy to see that (H1)—(H3) are satisfied. By Theorem 2.2, we just need to
find the zeroes of the following function:

f(σ) := (12σR + 5)
2(3σ2

R + 2σR)− 3σ2
I , σ2

R + σ2
I = 1, 0 < σR < 1.(4.1)

It is easy to check that the solution to (4.1) is

σ0
R = 0.0455 . . . .

Note that cos( 2π
5 ) > σ0

R.
By Theorem 2.2 (1), we obtain the stability of the small cluster solution for

N = 1, 2, 3, 4. By Theorem 2.2 (2), we obtain the instability of small solutions for
N ≥ 5.

We conclude that the critical threshold size for the hypercycle system is 4. When
the system size exceeds 4, then a parasite appears: there is an eigenvector c =
(c1, . . . , cN )

τ of (kij) such that
∑N

j=1 cjXj vanishes quickly.
Example 2. We consider the case when the connection matrix (kij) is symmetric,

i.e.,

kij = kji.

In this case, it is easy to see that the matrix B = (kijξi) has only real eigenvalues.
Let the eigenvalues of B be

σ1 = 1, σ2, . . . , σN .

The first eigenvalue σ1 = 1 is guaranteed by (2.4).
Assumption (H2) is satisfied if we further assume that ξ1 = · · · = ξN .
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Assumption (H3) says that

σj �= (1 + k)(2 + k)

6
− 1, j = 2, . . . , N, k = 1, 2, . . . .(4.2)

Since f(σ) > 0 if σ = σR > 0, Theorem 2.2 shows that (Xs
ε ,M

s
ε ) is linearly stable

if

σj < 0, j = 2, . . . , N.(4.3)

On the other hand, if there exists σj > 0 for some j ≥ 2, we have instability. (As-
sumption (H3) implies that σj �= 0.)

Example 3. For the (cyclical) bidiagonal matrix

(kij) = k0




1− α α 0 ... 0
0 1− α α ... 0
0 0 1− α ... 0
... ... ... ... α
α 0 ... 0 1− α




N×N

, k0 > 0,

with 0 ≤ α < 1, it is easy to see that conditions (H1)–(H3) are satisfied. In this case,

ξ1 = · · · = ξN = 1
k0
. The eigenvalues are computed as σ = 1−α(1− e2πj

√−1/N ), j =
1, . . . , N , and are all simple.

We substitute σ into the polynomial and compute the critical threshold Ncritical.
It turns out that Ncritical depends on the value of α: Ncritical will increase of the
order α as α increases. The following is a table of Ncritical for small α:

α Ncritical

0.5 3
1 4
1.5 5
2 6

From all of the previous examples, we see as a general trend that, if the system is
not dominated too much by diagonal terms, we have stability. Otherwise, a parasite
emerges. This means that cooperative behavior and not self-enhancement is needed
to stabilize the cluster.

We point to the last example, where the stability is especially strong if the pa-
rameter α gets large. In the case in which α > 1 (which means that the diagonal
becomes negative and the off-diagonal elements are positive and bigger than the diag-
onal), this describes self-inhibition coupled with cooperative enhancement and leads
to particularly good stability.

5. Two eigenvalue problems. In this section, we study two eigenvalue prob-
lems. The first is a local eigenvalue problem with complex coefficients{

∆φ− φ+ wφ+ σwφ = λφ,
σ = σR + iσI = |σ|eiθ, |σ| > 0, θ ∈ (−π, π], φ ∈ H1(R),

(5.1)

where w is defined by (2.1).
The second is a scalar NLEP

∆φ− φ+ 2wφ− 2(1− η)

η
√
1 + τλ+ 1− η

∫
R
wφ∫

R
w2

w2 = λφ, φ ∈ H2(R),(5.2)
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where

0 < η < 1, τ ≥ 0, λ ∈ C, λ = λR + iλI , λR ≥ 0,

and we take the principal branch for
√
1 + τλ.

The analysis presented in this section provides the key estimates for this paper.
To study (5.1) and (5.2), we first collect some important properties associated

with the function w.
Lemma 5.1. (1) The linear operator{

L0φ := ∆φ− φ+ 2wφ,
φ ∈ H1(R),

has the kernel

Ker (L0) = span
{
w

′
(y)

}
.

(2) The eigenvalue problem

(EV P )

{
∆φ− φ+ µwφ = 0,

φ ∈ H1(R),

admits the following set of eigenvalues:

µ1 = 1, v1 = span {w},

µ2 = 2, v2 = Ker (L0),

µn =
(1 + n)(2 + n)

6
> 2 for n ≥ 3.

(3) If µR > 0, then the eigenvalue problem{
∆φ− φ+ wφ+ µRwφ = λφ,

µR > 0, φ ∈ H1(R),

admits a positive (principal) eigenvalue λ1 such that

−λ1 = inf
φ∈H1(R)\{0}

∫
R
(φ′)2 + φ2 − (1 + µR)wφ2∫

R
φ2

< 0.

Moreover, when µR = 1, there is only one positive eigenvalue (which is the principal
one).

(4) Let φ (complex-valued) satisfy the following eigenvalue problem:{
∆φ− φ+ wφ+ σwφ = λφ,

Re (σ) ≤ 0, φ ∈ H1(R), λ �= 0.

Then

Re (λ) ≤ −c0 < 0.
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Proof. The proof will be given in Appendix A. The proof of (2) follows the
method of Lemma 5.2. Some of the results have been proved in previous work. For
the convenience of the reader we recall the proofs of (3) and (4).

We are ready to study the first eigenvalue problem (5.1). By symmetry, we may
assume that θ ∈ [0, π

2 ]. We consider θ as a parameter. By Lemma 5.1 (3) and a
perturbation argument, for |θ| near 0, there is an unstable eigenvalue λ for (5.1), i.e.,
λ = λR+ iλI , where λR > 0. On the other hand, by Lemma 5.1 (4), for |θ| ≥ π

2 , (5.1)
has only stable eigenvalues, i.e., λ = λR+ iλI , where λR < 0. Now, if we vary θ, then
there must be a point θh ∈ (0, π

2 ) such that, for θ = θh, (5.1) has a Hopf bifurcation,

i.e., there is an eigenvalue λ =
√−1λI . Let us now compute θh. It turns out that,

unlike in the two-dimensional case [61], we can now obtain the exact value for θh in
one domension.

Lemma 5.2. Let φ (complex-valued) satisfy the eigenvalue problem (5.1) with
σ = σR +

√−1σI , σR > 0. Then the following hold.
(1) If f(σ) < 0, then (5.1) is stable.
(2) If f(σ) > 0, then (5.1) is unstable.
(3) If f(σ) = 0, then there exists an eigenvalue λ with λ =

√−1λI .
Here f(σ) := (12σR + 5)

2(3σ2
R + 2σR)− 3σ2

I .
Proof. We are looking for a Hopf bifurcation for (5.1). Therefore, we have to

solve

∆φ− φ+ (1 + σ)wφ = λφ(5.3)

with

λ =
√−1λI

(i.e., the real part λR of λ vanishes) and

σ = σR + iσI .

As in [12], let

γ =
√
1 + λ, µ = 1 + σ, φ = wγF.

Then F satisfies

F
′′
+ 2γ

w
′

w
F

′
+

(
µ−

(
γ +

2

3
γ(γ − 1)

))
wp−1F = 0.(5.4)

Next we introduce the following new variable:

z =
1

2

(
1− w

′

w

)
.(5.5)

Then

w
′

w
= 1− 2z, w = 6z(1− z),

dz

dx
= z(1− z).

This yields the following equation for F as a function of z:

z(1− z)F
′′
+ (c− (a+ b+ 1)z)F

′ − abF = 0,(5.6)



LARGE REACTION-DIFFUSION SYSTEMS 1071

where

a+ b+ 1 = 2 + 4γ, ab = 2(2γ(γ − 1)− 3(µ− γ)), c = 1 + 2γ.(5.7)

The solutions to (5.6) are standard hypergeometric functions. See [49] for more details.
Now there are two solutions to (5.6):

F (a, b; c; z), z1−cF (a− c+ 1, b− c+ 1; 2− c; z).

By our construction F is regular at z = 0. At z = 1, F (a, b; c; z) has a singularity

lim
z→1

(1− z)−(c−a−b)F (a, b; c; z) =
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
,

where c − a − b = −2γ < 0. Note that since γ =
√
1 +
√−1λI , the real part of γ is

positive. So a solution that is regular at both z = 0 and z = 1 can exist only if Γ(x)
has a pole at a or b, respectively. In other words, a, b = 0,−1,−2, . . ..

From (5.7), we compute that

a = 2γ − α or b = 2γ − α,

where α satisfies

α2 + α− 6µ = 0.(5.8)

By symmetry we may assume that a = 2γ−α = −l, l ≥ 0, and α = αR+
√−1αI .

So we have to solve the system{
α2
R + αR − α2

I − 6(1 + σR) = 0,
2γ = α− l, l = 0, 1, 2, . . . .

(5.9)

Since we take the principal branch for γ =
√
1 +
√−1λI , it follows that

αR > l.

Moreover, we have

4 = (αR − l)2 − α2
I ,

which implies that

αR ≥ l + 2.(5.10)

On the other hand, we have

4 = (αR − l)2 − α2
I = α2

R − α2
I − 2lαR + l2

= −(2l + 1)αR + l2 + 6(1 + σR).

So we obtain

αR =
1

2l + 1
(l2 + 2 + 6σR).
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By (5.10), we have

1

2l + 1
(l2 + 2 + 6σR) ≥ l + 2,

which is impossible unless l = 0 or l = 1. For l = 1 we just recover the case λ = 0
with the eigenfunction w′ given by Lemma 5.1 (1). This clearly does not correspond
to a Hopf bifurcation.

In conclusion, for a Hopf bifurcation we must have a = 0 or b = 0. In this case,
we have

αR = 2 + 6σR, αI =
6

(2αR + 1)
σI .(5.11)

Substituting this relation into (5.9), we obtain that (σR, σI) must be a zero of the
polynomial f defined by (2.22).

In summary, a Hopf bifurcation can occur only at the point (σh
R, σ

h
I ) such that

f(σ) = 0.
Note that the set {f(σ) = 0} defines a monotone curve within the set {(σR, σI)|σR >

0, σI > 0}. Since f(0, σI) < 0 for σI > 0 and f(σR, 0) > 0 for σR > 0, we see that if
f(σ) < 0, then (5.1) is stable, and if f(σ) > 0, then (5.1) is unstable.

Next we study the scalar NLEP (5.2). First we state the following lemma.
Lemma 5.3. Consider the NLEP (5.2).
(1) Suppose that 0 ≤ τ < τ0, where τ0 is sufficiently small and 0 < η < 1

2 . Let
λ0 �= 0 be an eigenvalue of (5.2). Then we have Re(λ0) ≤ −c1 for some c1 > 0.

(2) Suppose that τ > 0 and 1
2 < η < 1; then (5.2) admits a real eigenvalue λ0

with λ0 ≥ c2 > 0 for some c2 > 0.
Proof. (1) When τ = 0, we have

2(1− η)

η
√
1 + τλ+ 1− η

= 2(1− η) > 1

if 0 < η < 1
2 . By Theorem 2.1 of [57], we have that λR < −c1 < 0.

To show that the same thing is true when τ is small, we have to show that if
λR ≥ 0 and 0 < τ < 1, then |λ| ≤ C, where C is a generic constant (independent of
τ). In fact, multiplying (5.2) by φ̄, the conjugate of φ, and integrating by parts, we
obtain that∫

R

(|∇φ|2 + |φ|2 − 2w|φ|2) = −λ
∫
R

|φ|2 − f(τλ)

∫
R
wφ∫

R
w2

∫
R

w2φ̄,(5.12)

where f(τλ) = 2(1−η)

η
√

1+τλ+1−η
. From the imaginary part of (5.12), we obtain that

|λI | ≤ C1|f(τλ)|,
where λ = λR +

√−1λI and C1 is a positive constant (independent of τ). Note that
the real part of

√
1 + τλ is positive. Hence |f(τλ)| ≤ 2, and so |λI | ≤ 2C1. Taking

the real part of (5.12), we obtain that λR ≤ C2, where C2 is a positive constant
(independent of τ > 0). Therefore, we have that |λ| is uniformly bounded, and hence
a perturbation argument gives the desired conclusion.

(2) Assume that 1
2 < η < 1. Now we show that (5.2) admits a positive eigenvalue

for all τ > 0.
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By Lemma 5.1 (3), L0 has only one positive eigenvalue λ1 > 0. Consider the
following function:

h(α) =

∫
R

((L0 − α)−1w)w, 0 < α < λ1.(5.13)

It is easy to see that

h
′
(α) =

∫
R

((L0 − α)−2w)w =

∫
R

[(L0 − α)−1w]2 > 0,

and

lim
α→λ1

h(α) = +∞.

Next we consider the following function:

ρ(λ) =
η
√
1 + τλ+ 1− η

2(1− η)
− 1−

(∫
R

w2

)−1

λh(λ).(5.14)

Note that

ρ(0) =
1

2(1− η)
− 1 > 0

since 1
2 < η < 1. On the other hand,

lim
λ→λ1−

ρ(λ) = −∞.

Hence there must exist an λ0 ∈ (0, λ1) such that ρ(λ0) = 0. It is easy to see that
this λ0 > 0 is an eigenvalue of (5.2), which proves (2) of Lemma 5.3.

In the general case when τ is large and 0 < η < 1
2 , there are no analytic results

for (5.2) available. Fortunately, we can use hypergeometric functions and generalized
hypergeometric functions to reduce (5.2) to a computable problem. Such an idea has
already been used in [12]. However, our transformation is different, and the eigenvalue
problem becomes computable more easily. We recall that by Lemma 5.3 (1) for τ = 0
all eigenvalues are stable. So, if we vary τ , we obtain either stability or a Hopf
bifurcation. All we need is to compute when a Hopf bifurcation occurs.

Let us first introduce the so-called generalized Gauss function. Let a1, a2, . . . , aA
and b1, b2, . . . , bB be two sequences of numbers. Consider the following series:

1 +
a1a2 · · · aA
b1b2 · · · bB

z

1!
+
(a1 + 1)(a2 + 1) · · · (aA + 1)
(b1 + 1)(b2 + 1) · · · (bB + 1)

z2

2!
+ · · ·(5.15)

≡ AFB




a1, a2, . . . , aA ;
z

b1, b2, . . . , bB ;


 .

AFB is called a generalized Gauss function or a generalized hypergeometric function.
For more details on such functions, we refer to [49].

Now we have the following lemma, whose proof is technical and is thus delayed
to Appendix B.
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Lemma 5.4. Let λ =
√−1λI be an eigenvalue of (5.2). Then λ is a solution of

the following algebraic equation:

5

6
(3− λ)

η
√
1 + τλ+ 1− η

2(1− η)

= 4F3




1, 1
2 , 4, 3 ;

1

3−√1 + λ, 3 +
√
1 + λ, 7

2 ;


 .(5.16)

By Lemma 5.4, (5.2) can be solved by using Mathematica. We will not produce
any numerical results here. The readers are referred to [12] for some numerical results
for the case in which N = 1.

6. Derivation of the vectorial NLEP and reduction process. In this sec-
tion, we study the eigenvalue problem (2.12) and show that it can be reduced to a
vectorial NLEP.

Let (Xε,Mε) be one of the two solutions constructed in section 2. Now we study
the eigenvalue problem associated with (Xε,Mε). We assume that

ε << L <
1

4
− δ0

(in the same sense as in (2.9)), where δ0 > 0 is a small but fixed constant, and that
0 ≤ τ < τ0, where τ0 is given by Lemma 5.3 and is independent of ε.

We need to analyze the following eigenvalue problem (letting x = εy):




∆yφε,i − φε,i +AMε

∑N
j=1 kij(Xε,jφε,i + φε,jXε,i)

+Aψε

∑N
j=1 kijXε,iXε,j = λεφε,i, y ∈ R, i = 1, . . . , N,

∆xψε − ψε − ψε

∑N
i,j=1 kijXε,iXε,j

−Mε

∑N
i,j=1 kij(Xε,jφε,i +Xε,iφε,j) = τλεψε, x ∈ R,

λε ∈ C.

(6.1)

We assume that (φε,1, . . . , φε,N , ψε) ∈ (H2(R))N⊕H2(R). Here we equip (H2(R))N⊕
H2(R) with the following norm:

‖(X,u)‖2(H2(R))N⊕H2(R) = ‖X(y)‖2(H2(R))N + ‖u(x)‖2H2(R).

Since Xε,i = ξiX0,ε, (6.1) becomes


∆yφε,i − φε,i +AMεX0,ε

∑N
j=1 kij(ξiφε,j + ξjφε,i)

+AψεξiX
2
0,ε = λεφε,i,

∆ψε − ψε − ψε(
∑N

i=1 ξi)X
2
0,ε

−Mε

∑N
i,j=1 kij(ξiφε,j + ξjφε,i)X0,ε = τλεψε.

(6.2)

First let us formally derive the limiting eigenvalue problems.
Since (X0,ε,Mε) satisfies (2.5), we have

X0,ε(y) ∼ (AMε(0))
−1(1 + o(1))w(y)(6.3)
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and

Mε(0)(1−Mε(0)) ∼ L :=
1

2A2(
∑N

i=1 ξi)
ε

∫
R

w(y)2dy.(6.4)

By the assumptions (H1) and (H2),
∑N

j=1 kijξj =
∑N

i=1 kijξi = 1, the eigenvalue
problem is changed into



∆yφε,i − φε,i + wφε,i + w
∑N

j=1 bijφε,j

+ 1
AMε(0)2

ξiψεw
2 = λεφε,i, i = 1, . . . , N,

∆xψε − ψε − 1

A2Mε(0)2(
∑N

i=1
ξi)

ψεw
2

− Mε

AMε(0)
2
∑N

j=1 φε,jw = τλεψε.

(6.5)

Let βε =
√
1 + τλε. Here we take the principal branch of 1 + τλε. Since we

are interested only in the unstable eigenvalues of λε (otherwise it is stable), we may
assume that Re(λε) ≥ −a0 for some small number a0 > 0 so that 1 + τa0 > 1

2 .
Following the same proof as for (1) of Lemma 5.3 (that is, multiplying the equations
for φε,i by φ̄ε,i, integrating by parts, and summing up), we see that

|λε| ≤ C if Re(λε) ≥ −a0,(6.6)

where C > 0 is a positive constant (independent of ε > 0).
From the second equation in (6.5), we calculate using the fact that Green’s func-

tion of

∆G(x, ξ)− β2G(x, ξ) + δ(ξ) = 0 in R

is

G(x, ξ) =
1

2β
e−β|x−ξ|,

the relation

ψε(0) =
1

2βε

∫
R

e−βε|x|

×
(
− 1

A2Mε(0)2(
∑N

i=1 ξi)
ψεw

2 − Mε

AMε(0)
2

N∑
j=1

φε,jw

)
dx

=
1

2βε
ε

[
− ψε(0)

A2Mε(0)2(
∑N

i=1 ξi)

∫
R

w2(y) dy

− 1
A

N∑
j=1

∫
R


 N∑

j=1

φj


w dy + o(ε)

]
,(6.7)

where

φε,i(x) = φi

(x
ε

)
, x = εy, i = 1, . . . , N.(6.8)
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By (6.4) and (6.7), we have

ψε(0)

AM2
ε (0)

= − ε

βεA2Mε(0)2

∫
R


 N∑

j=1

φj


w

[
1 +

ε

2βε(
∑N

i=1 ξi)A
2Mε(0)2

∫
R

w2(y) dy

]−1

= −
∫
R


 N∑

j=1

φj


w

[
βεA

2Mε(0)
2

ε
+

1

2(
∑N

i=1 ξi)

∫
R

w2(y) dy

]−1

= −
∫
R


 N∑

j=1

φj


w

[
βεMε(0)(

∑N
i=1 ξi)

2(1−Mε(0))

∫
R

w2(y) dy +
(
∑N

i=1 ξi)

2

∫
R

w2(y) dy

]−1

= − 2(1−Mε(0))

1−Mε(0) + βεMε(0)

∫
R
(
∑N

j=1 φj)w

(
∑N

i=1 ξi)
∫
R
w2(y) dy

.

Substituting this relation into the first equation in (6.5) and taking the limit
ε→ 0, we obtain the following NLEP:

∆φi − φi + φiw +

N∑
j=1

bijφj − ξi
2(1− η)

ηβ0 + 1− η

∑N
j=1

∫
R
φjw

(
∑N

i=1 ξi)
∫
R
w2

w2(6.9)

= λ0φi, φi ∈ H2(R), i = 1, . . . , N,

where η = limε→0 Mε(0), λ0 = limε→0 λε, β0 = limε→0 βε =
√
1 + τλ0. (Here, we have

assumed that all the limits exist. Otherwise, we take a subsequence εn → 0.)
Though the derivations above are formal, we can rigorously prove the following

separation of eigenvalues.
Theorem 6.1. Suppose that the assumptions (H1)–(H3) are satisfied.
Let λε be an eigenvalue of (6.2) such that Re(λε) > −a0.
(1) Suppose that (for suitable sequences εn → 0) we have λεn → 0 as n → ∞.

Then for n sufficiently large, it follows that λεn = 0 and

(φεn,1, . . . , φεn,N , ψεn) ∈ span {(X
′
εn ,M

′
εn)}.

(2) Suppose that (for suitable sequences εn → 0) we have λεn → λ0 �= 0. Then λ0

is an eigenvalue of the NLEP given in (6.9).
(3) Let λ0 �= 0 be an eigenvalue of the NLEP given in (6.9). Then for ε sufficiently

small, there is an eigenvalue λε of (6.2) with λε → λ0 as ε→ 0.
From Theorem 6.1 (1) and (3), we see that (6.2) is reduced to the study of the

vectorial NLEP (6.9).
In the rest of this section, we prove Theorem 6.1.
Proof of Theorem 6.1. For (1), the proof is very delicate. We can proceed as in

the proof of Theorem 2.2 (3) in section 6 of [58], where existence and stability of a
single-cluster state for the Gray–Scott system in two dimensions are studied. First we
prove the analogies of Lemmas 3.1 and 3.2 of [58] in one dimension. We begin with
the following lemma.

Lemma 6.2. Let g(y) be a function in L2(R1) such that

|g(y)| ≤ Ce−c|y|,
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where c is a positive constant. Then we have∣∣∣∣
∫
R

(|y − z| − |z|)|g(z)|dz
∣∣∣∣ ≤ C|y|,(6.10)

where C depends on
∫
R
|z||g(z)|dz.

Proof. This follows from standard potential analysis.
Next we study the asymptotic behavior of ψε. We have the following lemma.
Lemma 6.3. Let (φε,1, . . . , φε,N , ψε) satisfy (6.5). Then we have

1

AMε(0)2
ψε(0) = − 1−Mε(0)

βεMε(0) + 1−Mε(0)

2
∑N

j=1

∫
R

∑N
j=1 φε,jw

(
∑N

i=1 ξi)
∫
R
w2

+ o(1)(6.11)

and

1

AMε(0)2(
∑N

i=1 ξi)
(ψε(x)− ψε(0))

= O

(
2

ε(1−√1− 4L)

(
1 +

N∑
i=1

‖φε,i‖L2
y

)(
1 +
|x|
ε

))
,(6.12)

where x = εy and

‖φ‖2L2
y
=

∫
R

φ2(y)dy.

Proof. Relation (6.11) follows from the representation formula. To prove (6.12),
we note that by the representation formula we calculate

ψε(x)− ψε(0) =
1

2β

∫
R

(e−βε|z−x| − e−βε|z|)

×
(
− ψεX

2
0,ε

(
∑N

i=1 ξi)
− 2Mε


 N∑

j=1

φε,j


X0,ε

)
dz.

Let x = εy and z = εz̃. It is easy to see that

e−βε|z−x| − e−βε|z| = e−βεε|y−z̃| − e−βεε|z̃|

= −βεε(|y − z̃| − |z̃|) +O(β2
ε ε

2(|y|2 + |z̃|2)).
Equation (6.12) now follows from Lemma 6.2.

Finally, we need the analogue of Lemma 4.2 of [58].
Let us denote the linear operator on the left-hand side of (6.9) as L, where L :

(H2(R))N → (L2(R))N . Then we have the following lemma.
Lemma 6.4. Assume that assumptions (H1)–(H3) hold true.
(1) Let φ be an eigenfunction of (6.9) with λ0 = 0. Then we have

φ ∈ K0 := span {w′
(y)>e0},(6.13)
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where >e0 = (1, . . . , 1)τ . (This implies that Ker (L) = K0.)
(2) The operator L is an invertible operator if restricted as follows:

L : K⊥,1
0 → K⊥,2

0 ,

where

K⊥,1
0 =

{
u ∈ (H2(R))N |

∫
R

uw
′
(y)>e0 = 0

}
,

K⊥,2
0 =

{
u ∈ (L2(R))N |

∫
R

uw
′
(y)>e0 = 0

}
.

The proof of Lemma 6.4 is technical and is delayed to Appendix C.
Now Theorem 6.1 (1) follows from Lemma 6.4 by the same proof as for Theorem

2.2 (3) of [58].
Item (2) of Theorem 6.1 follows the asymptotic analysis done at the beginning of

this section.
To prove (3) of Theorem 6.1, we use the same argument as given in section 2 of

[10], where the following eigenvalue problem was studied:
 ε2∆h− h+ pup−1

ε h− qr
s+1+τλε

∫
Ω
ur−1
ε h∫

Ω
ur
ε

up
ε = λεh in Ω,

h = 0 on ∂Ω,
(6.14)

where uε is a solution of the single equation{
ε2∆uε − uε + up

ε = 0 in Ω,
uε > 0 in Ω, uε = 0 on ∂Ω.

Here 1 < p < n+2
n−2 if n ≥ 3, and 1 < p < +∞ if n = 1, 2, qr

(s+1)(p−1) > 1, and Ω ⊂ Rn

is a smooth bounded domain. If uε is a single interior peak solution, then it can be
shown [56] that the limiting eigenvalue problem is an NLEP

∆φ− φ+ pwp−1φ− qr

s+ 1 + τλ0

∫
RN wr−1φ∫

RN wr
wp = λ0φ,(6.15)

where w is the corresponding ground state solution in Rn:

∆w − w + wp = 0, w > 0 in Rn, w = w(|y|) ∈ H1(Rn).

Dancer in [10] showed that if λ0 �= 0, Re(λ0) > 0 is an unstable eigenvalue of
(6.15), then there exists an eigenvalue λε of (6.14) such that λε → λ0.

Now we follow his idea. Let λ0 �= 0 be an eigenvalue of (6.9) with Re(λ0) >
0. First we note that, from the equation for ψε, we can express ψε in terms of
(φε,1, . . . , φε,N ). Now we write the first equation for (φε,1, φε,2, . . . , φε,N ) as follows:

φε,i = −Rε(λε)

[
AMε

N∑
j=1

kij(Xε,jφε,i + φε,jXε,i) +Aψε

N∑
j=1

kijXε,iXε,j

]
,(6.16)

i = 1, . . . , N,

where Rε(λ) is the inverse of −∆ + (1 + λε) in H2(R) (which exists if Re(λε) > −1
or Im(λε) �= 0). The important thing is that Rε(λε) is a compact operator if ε is
sufficiently small. The rest of the argument exactly follows that in [10]. For the sake
of limited space, we omit the details here.
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7. Analysis of the vectorial NLEP and the proof of Theorem 2.2. In
this section, we analyze the vectorial NLEP which we have obtained in (6.9):

∆φi − φi + φiw +

N∑
j=1

bijφj − ξi∑N
i=1 ξi

2(1− η)

1− η + ηβ0

∑N
j=1

∫
R
φjw∫

R
w2

w2(7.1)

= λ0φi, i = 1, . . . , N, φi ∈ H2(R).

We will decouple it to a local eigenvalue problem with complex coefficients given
in (5.1) and a scalar NLEP given in (5.2). Here assumptions (H2) and (H3) play
a very important role. By Lemma 5.2, Lemma 5.3, and Theorem 6.1, we finish the
proof of Theorem 2.2.

Proof of (1) of Theorem 2.2. Consider the case for (Xs
ε ,M

s
ε ) and τ small. In this

case, 0 ≤ η = limε→0 Mε(0) <
1
2 . By Theorem 6.1 (1), if λε = o(1), then λε = 0 and 0

is a simple eigenvalue. (The eigenspace is one-dimensional.) We need only to consider
large eigenvalues. Let us assume that for a subsequence εn → 0 we have λεn → λ0,
where Re(λ0) ≥ 0 and λ0 �= 0. We shall derive a contradiction.

By Theorem 6.1 (2), λ0 is an eigenvalue of (7.1). First we take care of the nonlocal
terms in (7.1). Adding the equations for i = 1, . . . , N (using the assumption (H2)),
we get

∆

(
N∑
i=1

φi

)
−
(

N∑
i=1

φi

)
+ 2w

(
N∑
i=1

φi

)

− 2(1− η)

β0η + 1− η

∫
R
(
∑N

i=1 φi)w∫
R
w2

w2 = λ0

N∑
i=1

φi.

From Lemma 5.3 (1) we know that for 0 < η = limε→0 Mε(0) < 1
2 and τ small we

have

N∑
i=1

φi = 0 if Re (λ0) ≥ 0, λ0 �= 0.(7.2)

Therefore, the nonlocal terms in (7.1) all vanish, and (7.1) reduces to the following
vectorial local eigenvalue problem:

∆φi − φi + wφi + w

N∑
j=1

bijφj = λ0φi, φi ∈ H1(R), i = 1, . . . , N.(7.3)

To finish the proof, we have to transform this to Jordan form; we decompose

bij =

N∑
k,l=1

pikdklp
−1
lj ,

as in (2.17) of section 2, where dkl has Jordan form.
Set

Φi =

N∑
j=1

p−1
ij φj .(7.4)
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Then (7.3) can be expressed in terms of Φ as follows:

∆Φi − Φi + wΦi +

N∑
j=1

dijΦjw = λ0Φi, i = 1, . . . , N.(7.5)

We have to study the eigenvalue problems for each Jordan block separately.
Let σ be an eigenvalue of B. By assumption (H3), σ = 1 is a simple eigenvalue of

B. Assume also that for those σ �= 1 with σR > 0, it holds that f(σ) < 0.
For those eigenvalues σk �= 1, k > 1, the corresponding ith component Φi of the

eigenfunction satisfies

∆Φi − Φi + (1 + σk)wΦi = λ0Φi(7.6)

with Re (λ0) ≥ 0.
By Lemma 5.2 (1), Φi = 0 by our assumption on σk. Substituting this into the

(i− 1)th equation, we get (for the eigenfunction Φi−1)

∆Φi−1 − Φi−1 + (1 + σk)wΦi−1 = λ0Φi−1,(7.7)

and by Lemma 5.2 (1) again we conclude that Φi−1 = 0. Continuing in this way, we
see that those components of Φ corresponding to the Jordan block of σk all vanish.

Since σ1 = 1 is a simple eigenvalue, we are left with the only possibility that
Φ1 �= 0. On the other hand, we have that

N∑
j=1

φj =

N∑
j=1

cjΦj ,(7.8)

where cj = 〈>e0,pj〉, where >e0 = (1, . . . , 1)τ and pj is the jth column of P. Note that
c1 =

∑N

i=1
ξi

‖ξ‖ > 0.

Since
∑N

j=1 φj = 0 and Φj = 0, j = 2, . . . , N , we conclude from (7.8) that∑N
j=1 φj = c1Φ1 = 0, and hence Φ1 = · · · = ΦN = 0, which is a contradiction.
Therefore, Re (λ0) ≥ 0 is not possible. Thus we have Re (λ0) ≤ −c0 < 0.
This proves (1) of Theorem 2.2.
Proofs of (2) and (3) of Theorem 2.2. As before, we decompose B = PDP−1 and

let φ = PΦ. The problem (7.1) is equivalent to the following:

∆Φ− Φ+ wΦ+ wDΦ− P−1ξ
2(1− η)

(β0η + 1− η)(
∑N

i=1 ξi)

∑N
i=1

∫
R
wφi∫

R
w2

w2 = λ0Φ.(7.9)

Note that

P−1ξ = ‖ξ‖>e1(7.10)

since ξ is the first eigenvector of B, where >e1 = (1, 0, . . . , 0)τ .
Therefore, (7.9) is decoupled into

∆Φ1 − Φ1 + 2wΦ1 − 2‖ξ‖(1− η)

(β0η + 1− η)(
∑N

i=1 ξi)

∑N
i=1

∫
R
wφi∫

R
w2

w2 = λ0Φ1,(7.11)
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and

∆Φi − Φi + wΦi +

N∑
j=1

dijΦjw = λ0Φi, i = 2, . . . ,K.(7.12)

By (7.8) we have that

∫
R

N∑
i=1

wφi =

N∑
j=1

cj

∫
R

wΦj .(7.13)

We first prove (3) of Theorem 2.2. We consider (X l
ε,M

l
ε). In this case, 2(1−η) < 1.

By Lemma 5.3 (2), for any τ > 0, there exist an eigenvalue λ0 > 0 and an eigenfunction
Φ0 such that

∆Φ0 − Φ0 + 2wΦ0 − 2(1− η)

(β0η + 1− η)

∫
R
wΦ0∫

R
w2

w2 = λ0Φ0, λ0 > 0.

Now we choose

Φ1 = Φ0, Φj = 0, j = 2, . . . ,K.(7.14)

Then Φ = (Φ1, . . . ,ΦN ) is a solution of (7.9) with λ0 > 0. The corresponding φ = PΦ
is a solution of (7.1) with λ0 > 0. By Theorem 6.1 (3), we have the instability of
(X l

ε,M
l
ε) for any τ > 0.

This proves (3) of Theorem 2.2.
Finally, we prove (2) of Theorem 2.2. Consider (Xs

ε ,M
s
ε ). Assume that there

exist σk �= 1 with Re(σk) > 0 such that f(σk) > 0. By Lemma 5.2 (2), there exist an
eigenvalue λ0 with Re(λ0) > 0 and an eigenfunction Φ0 such that

∆Φ0 − Φ0 + (1 + σk)wΦ0 = λ0Φ0.(7.15)

If σk is positive, we may choose λ0 to be the principal eigenvalue given by Lemma 5.1
(3).

We choose Φk = Φ0 and Φj = 0 for j �= k, j �= 1. To choose Φ1, we see that we
have to solve (7.11), which becomes

∆Φ1 − Φ1 + 2wΦ1 − 2(1− η)

(β0η + 1− η)

∫
R
wΦ1∫

R
w2

w2 − λ0Φ1(7.16)

= ck
2‖ξ‖(1− η)

(β0η + 1− η)(
∑N

i=1 ξi)

∫
R
wΦ0∫

R
w2

w2.

To see that (7.16) is solvable, we note that (7.16) is equivalent to

∆Φ̃1 − Φ̃1 + 2wΦ̃1 − λ0Φ̃1 = −Λλ0w,(7.17)

where

Φ̃1 = Φ1 − Λw,
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Λ =
2(1− η)

(β0η + 1− η)

∫
R
wΦ1∫

R
w2

+ ck
2‖ξ‖(1− η)

(β0η + 1− η)(
∑N

i=1 ξi)

∫
R
wΦ0∫

R
w2

.

If σk is not real, then Im(λ0) �= 0, and so L0 − λ0 is invertible, where L0 =
∆ − 1 + 2w. If σk is positive, then σk �= 1 and L0 − λ0 is invertible. Thus (7.17)
is solvable, and hence (7.16) is solvable. Going backward, we see that there exists a
solution to (7.1) with Φ = (Φ1, 0, . . . , 0,Φ0, 0, . . . , 0) and Re(λ0) > 0. Hence (Xs

ε ,M
s
ε )

is unstable.
Item (2) of Theorem 2.2 is thus proved.

Appendix A. Proof of Lemma 5.1. For (1), please see Lemma 4.1 of [51].
For (2), the fact that µ1 = 1, µ2 = 2 has already been proved in Lemma 4.1 of

[51]. The exact value of µn can be computed using the same method as in the proof
of Lemma 5.2. In fact, in this case, λ = 0, γ = 1, and hence the eigenvalues are given
by

a = 2γ − α = −(n− 1), n = 1, 2, 3 . . . ,

where α2 + α− 6µ = 0. Thus µn =
α2+α

6 , α = n+ 1.
Item (3) follows by the variational characterization of the eigenvalues:

−λ1 = inf
φ∈H1(R),φ �≡0

∫
R
(φ′)2 + φ2 − (1 + µR)wφ2∫

R
φ2

< 0

since by the last inequality for φ = w

−λ1 ≤ −µR

∫
R
w3∫

R
w2

< 0.

This is the same analysis as in [61].
When µR = 1, there exists only one positive eigenvalue (which is the principal

one). See Lemma 1.2 of [56].
To prove (4), note that

σ = σR + iσI , φ = φR + iφI , λ = λR + iλI ,

and write the eigenvalue problem for real and imaginary parts separately:

∆φR − φR + (1 + σR)wφR − σIwφI = λRφR − λIφI ,(A.1)

∆φR − φI + (1 + σR)wφI + σIwφR = λRφI + λIφR.(A.2)

Multiplying (A.1) by φR and (A.2) by φI , integrating over R, and adding, we get∫
R

[−(φR
′)2 − φ2

R + (1 + σR)wφ2
R] +

∫
R

[−|φI
′|2 − φ2

I + (1 + σR)wφ2
I ]

= λR

∫
R

φ2
R + φ2

I .

Since, in the last equation, the left-hand side is ≤ 0, we also get that the right-hand
side is ≤ 0. Therefore, λR ≤ 0. Now assume that λR = 0. Then by (2) we get
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φR = c1w, φI = c2w (with c1, c2 ∈ R), and σR = 0. But this implies λI = 0, σI = 0,
and we get λ = 0, contrary to what we assumed. Therefore, λR cannot be zero, and
we conclude that Re (λ) ≤ −c0 < 0.

Appendix B. Proof of Lemma 5.4. In this appendix, we show how problem
(5.2) can be reduced to (5.16).

Let AFB be defined by (5.15). An important property of AFB is the following
integral property, whose proof can be found in [49]:

A+1FB+1




a1, a2, . . . , aA, c, ;
z

b1, b2, . . . , bB , d ;


(B.1)

=
Γ(d)

Γ(c)Γ(d− c)

∫ 1

0

tc−1(1− t)d−c−1
AFB




a1, a2, . . . , aA ;
tz

b1, b2, . . . , bB ;


 dt.

Let

f(λ) =
2(1− η)

η
√
1 + τλ+ 1− η

,

and let w be the unique solution of (2.1). Integrating (2.1), we have that

w
′
= −

√
w2 − 2

3
w3.

First let us solve the following problem:

∆φ0 − φ0 + 2wφ0 = w2 + λφ0, φ0 ∈ H2(R).(B.2)

Since w is an even function, we may assume that φ0 is also an even function. Let us
denote the variable by t. Note that φ0 is unique.

Set

γ =
√
1 + λ,

where we take the principal branch of
√
1 + λ.

Then it is easy to see that problem (5.2) becomes

1

f(λ)
=

∫
R
wφ0∫

R
w2

=

∫ +∞
0

wφ0dt∫ +∞
0

w2dt
.(B.3)

First let us set

φ0 = wγG.

Then, by some simple computations, G satisfies

d2G

dt2
+ 2γ

w
′

w

dG

dt
+
(
2− γ

3
(1 + 2γ)

)
wG = w1−γ .(B.4)
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Next we perform the following change of variables:

z =
2

3
w.(B.5)

Note that w(0) = 3
2 , and so z is a homeomorphism from [0,+∞] to [0, 1].

(We remark that here we take a different transformation as in [12]. Our transfor-
mation can be considered as a quadratic transformation for hypergeometric functions.)

By some lengthy computations, we obtain the following equation for G(z):

z(1− z)G
′′
+ (c− (a+ b+ 1)z)G

′ − abG =

(
3

2

)2−γ

z1−γ ,(B.6)

where

a = 2 + γ, b = γ − 3

2
, c = 1 + 2γ.(B.7)

To solve (B.6), we take a power series

G(z) = zs
+∞∑
k=0

ckz
k,

and, substituting it into (B.6), we obtain that

+∞∑
k=0

ckz
s+k−1(s+ k)(s+ k− 1+ c)−

+∞∑
k=1

ckz
s+k(s+ k+ a)(s+ k+ b) =

(
3

2

)2−γ

z1−γ .

So

s− 1 = 1− γ, c0s(s− 1 + c) =

(
3

2

)2−γ

,

ck(s+ k)(s+ k − 1 + c) = ck−1(s+ k − 1 + a)(s+ k − 1 + b).

By regrouping the coefficients, we have that

G(z) =

(
3

2

)2−γ

(4− γ2)−1z2−γ
3F2




1, 1
2 , 4 ;

z
3− γ, 3 + γ ;


 .(B.8)

Now we can compute

∫ +∞

0

wφ0dt =
3

2

∫ 1

0

w1+γG(z)
dz

−w′

=

(
3

2

)1+γ ∫ 1

0

zγ(1− z)−
1
2G(z)dz

=

(
3

2

)3

(4− γ2)−1

∫ 1

0

z2(1− z)−
1
2 3F2




1, 1
2 , 4 ;

z
3− γ, 3 + γ ;


 dz.
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By (B.1), we obtain that ∫ +∞

0

wφ0dt

=

(
3

2

)3

(4− γ2)−1Γ(3)Γ(
1
2 )

Γ( 7
2 )

4F3




1, 1
2 , 4, 3 ;

1
3− γ, 3 + γ, 7

2 ;


 .(B.9)

On the other hand, it is easy to compute that∫ +∞

0

w2dt =

(
3

2

)2 ∫ 1

0

z2(1− z)−
1
2 dz =

(
3

2

)2 Γ(2)Γ( 1
2 )

Γ(2 + 1
2 )

.(B.10)

By (B.9), (B.10), and (B.3), we obtain (5.16).

Appendix C. Proof of Lemma 6.4. We prove Lemma 6.4 in this appendix.
We assume that the assumptions (H1)–(H3) are satisfied.

Proof of Lemma 6.4 (1). Recall that L0 = ∆ − 1 + 2w. It is easy to check that
w

′
>e0 ∈ Ker (L). All we need to show is that the dimension of Ker (L) is at most 1.

To this end, let φ ∈ Ker (L). We first show that the nonlocal term vanishes. In fact,
summing up all the equations and using the assumptions (H1) and (H2), we obtain

∆


 N∑

j=1

φj


−


 N∑

j=1

φj


+ 2w


 N∑

j=1

φj


− 2(1− η)

∫
R
w(
∑N

j=1 φj)∫
R
w2

w2 = 0

since β0 =
√
1 + τλ0 = 1.

That is,

∆


 N∑

j=1

φj − cw


−


 N∑

j=1

φj − cw


+ 2w


 N∑

j=1

φj − cw


 = 0,(C.1)

where

c = 2(1− η)

∫
R
w(
∑N

j=1 φj)∫
R
w2

.(C.2)

By Lemma 5.1 (1)

N∑
j=1

φj − cw ∈ Ker (L0) = span{w′}.

So we have

∫
R

w


 N∑

j=1

φj − cw


 = 0.

Substituting this relation into (C.2), we get

∫
R

w

N∑
j=1

φj = 0
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since

2(1− η) �= 1.

Thus in L the nonlocal term vanishes, and we obtain the following system of
equations:

∆φi − φi + wφi +

N∑
j=1

bijwφj = 0, i = 1, . . . , N.

We decompose

B = PDP−1

as in (2.17) of section 2.
Set

Φi =

N∑
j=1

p−1
ij φj .

Then the operator L can be expressed in terms of Φ as follows:

∆Φi − Φi + wΦi +

N∑
j=1

dijΦjw = 0.

If 1+σ �∈ spec (EVP) (recall that (EVP) was defined in Lemma 5.1 (2)), then by
the last line of the Jordan block corresponding to σ we get Φi = 0 using Lemma 5.1.
Using this in the previous line, we get Φi−1 = 0, etc. This implies that all components
of Φ in the Jordan block corresponding to σ vanish.

If 1 + σ ∈ spec (EVP), then by hypothesis (H3) we have σ = 1. By assumption
(H3), the eigenvalue σ = 1 is simple. Since Φj = 0, j = 2, . . . ,K, we are left with Φ1

only.
Now by Lemma 5.1 (1) we get Φ1 ∈ Ker (L0) = span{w′}.
In conclusion, we have proved that except for i = 1, where Φ1 = cw′, c ∈ R, for

all other i = 2, . . . , N , it holds that Φi = 0. This implies that the dimension of KerL
is at most 1.

This finishes the proof of Lemma 6.4 (1).

Proof of Lemma 6.4 (2). To show that L is invertible from K⊥,1
0 → K⊥,2

0 , we need
only to show that the conjugate operator of L, denoted by L∗, has the kernel K0. In
fact, let φ ∈ Ker(L∗). Then we have

∆φi − φi + φiw +

N∑
j=1

bjiφjw

−2(1− η)

∫
R
w2

∑N
i=1 ξiφi∫

R
w2(

∑N
i=1 ξi)

w = 0, i = 1, . . . , N.

Multiplying the ith equation by ξi and summing up all the equations, by (H1) we
have the following:

∆

(
N∑
i=1

ξiφi

)
−
(

N∑
i=1

ξiφi

)
+2w

(
N∑
i=1

ξiφi

)
−2(1−η)

∫
R
w2(

∑N
i=1 ξiφi)∫

R
w2

w = 0.(C.3)
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Multiplying (C.3) by w and then integrating over R, we obtain

(1− 2(1− η))

∫
R

w2
N∑
i=1

ξiφi = 0.

Since 2(1− η) �= 1, it is easy to deduce that

∫
R

w2
N∑
i=1

ξiφi = 0.

This means that the nonlocal term vanishes. The rest of the proof of Lemma 6.4
(2) is similar to that of Lemma 6.4 (1), since spec (B) = spec (Bτ ), and may be
omitted.
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Abstract. We consider the n-dimensional version of a model proposed by Olmstead et al.
[SIAM J. Appl. Math., 46 (1986), pp. 171–188] for the flow of a non-Newtonian fluid in the presence
of memory. We prove the existence of a global attractor and obtain conditions for the existence of a
Lyapunov functional, which allows us to give a full description of this attractor in a certain region of
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reduction.

Key words. parabolic systems, memory effects, non-Newtonian fluids

AMS subject classifications. 35B40, 35K55, 76E30

PII. S0036141001388592

1. Introduction. In [14] Olmstead et al. studied the following equation as a
model for the flow of a viscoelastic fluid:

ut =

∫ t

−∞
K(t, s)uxx(x, s)ds+Rf(u),(1.1)

on x ∈ I = (0, π) and t > 0, subject to the Dirichlet boundary conditions

u(0, t) = u(π, t) = 0

and the initial condition u(x, s) = u0(x, s), s ≤ 0. Here u(x, t) is the velocity of the
fluid, R is a Rayleigh-type number, and f is taken to be cubic-like.

It is not hard to see (consulting [15], for example) that this equation cannot
realistically describe the behavior of viscoelastic fluids. However, it is worth studying
as it describes a reaction-diffusion process in a medium with memory (see [16] for a
discussion of the diffusion processes in such media). In addition, it turns out to be an
interesting mathematical object.

The bulk of [14] considers the case of the Jeffreys kernel

K(t, s) =
1− α

λ
e−(t−s)/λ + 2αδ(t− s),

with α ∈ [0, 1] and where δ denotes the Dirac delta function. Here λ has the physical
meaning of relaxation time, and α is the ratio of retardation to relaxation times. If
α = 0, we have the Maxwell kernel, while if α = 1 we recover the standard reaction-
diffusion case. This case is also recovered in the limit λ → 0, as is easily seen, for
example, from (2.2).
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One of the characteristics of the Jeffreys kernel is that the stationary solutions
depend only on the Rayleigh number. However, their stability does depend on the
values taken by α and λ as well as R. This is, of course, due to the existence of
other solutions, such as periodic solutions, which may bifurcate from the stationary
solutions.

The stability and bifurcation analysis carried out in [14] was mainly based on
the study of a set of ordinary differential equations obtained by a truncated Fourier
series expansion. It is known that systems obtained by such procedures may display
a behavior which is different from that of the original equation.

The purpose of the present paper is to carry out, in a rigorous way, the same type
of study as in [14], but now for the n-dimensional version of (1.1), that is,

ut =

∫ t

−∞
K(t, s)∆u(x, s)ds+Rf(u), x ∈ Ω.(1.2)

HereK is as before, Ω is a bounded domain in R
n, and we consider Dirichlet boundary

conditions. The function f is typically cubic-like, and whenever it will be necessary
to be specific we will take f to be u(1 − u2), although most of the results hold for
more general classes of functions.

We begin by rewriting (1.2) as a strongly damped wave equation and then go
on to show the existence of a Lyapunov functional for a certain region in parameter
space. We then prove the existence of a global attractor with the help of invariant
rectangles. This allows us to completely describe the attractor in the case where the
Lyapunov functional exists, provided a bistable bifurcation diagram is assumed.

We then consider the stability and bifurcation of stationary solutions in terms of
the parameters α, λ, and R. We relate the stability of the stationary solutions to
that of the stationary solutions of a scalar parabolic equation and then go on to prove
that there exist unbounded regions Q1 and Q2 in parameter space such that stable
solutions of the parabolic equation remain stable in Q1, while in Q2 all stationary
solutions of (1.1) become unstable. In particular, Q2 allows for R to be unbounded,
which means that for certain values of α and λ it is not possible to stabilize the
stationary solutions by increasing the value of the Rayleigh-type parameter R.

We remark that the results obtained in [14] for the finite-dimensional approxima-
tion actually state that for all positive α there exists a value of R, say R∗, such that
for all R > R∗ there exists a nontrivial stable stationary solution. Thus, apart from
the interest of this result as far as the behavior of solutions of (1.2) is concerned—
large Rayleigh numbers do not necessarily stabilize the flow—it also illustrates the
fact that finite-dimensional approximations, such as those considered in [14], may not
represent the behavior of the infinite-dimensional system faithfully in this case. See
section 7 for details.

The proof of these results relies on a careful analysis of the spectrum of the
linearized operator around the stationary solutions and is based on the methods de-
veloped in [2, 3] and on the asymptotics of the stationary solution for large R. This
enables us to reduce the problem to the study of a simpler self-adjoint operator, and
we actually show that under certain conditions the linearization of (1.2) around a sta-
tionary solution always has positive real eigenvalues. This analysis also enables us to
show that, by decreasing α and increasing λ, stationary solutions undergo a series of
bifurcations due to pairs of complex eigenvalues crossing the imaginary axis from left
to right, thus increasing the instability indices of these solutions; for a more precise
statement, see Proposition 5.3.
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Regarding the study of the bifurcations occurring in (1.2), we finally consider
the linearized operator around the trivial solution for the values of the parameters for
which there exists a double zero eigenvalue, and we make a center manifold reduction.
This enables us to make a rigorous study of the behavior of solutions near that point.
In particular, we show that this double zero eigenvalue corresponds to a Bogdanov–
Takens singularity of the type studied in [7], and we obtain a complete description
of the bifurcations occurring near this point. In the last section, the results obtained
are then compared with those from [14].

2. The associated wave equation. As in [14], we begin by transforming the
integro-differential equation (1.2) into a pair of coupled partial differential equations
by introducing the auxiliary variable

v(x, t) =
1− α

λ

∫ t

−∞
e−(t−s)/λu(x, s) ds.(2.1)

This leads to the following system of equations:{
ut = α∆u+∆v +Rf(u),

λvt = (1− α)u− v,
(2.2)

subject to homogeneous Dirichlet conditions in Ω and initial conditions at t = 0
derived from u0(x, s) in an obvious way. Note that, except in the case where α is one,
we have from

v(x, 0) =
1− α

λ

∫ 0

−∞
es/λu(x, s) ds

that by taking

u(x, t) = et/λ
[(
1 +

2t

λ

)
u0(x)− 4t

(1− α)λ
v0(x)

]
, t ≤ 0,

for instance, it is possible to choose the initial conditions at t = 0 to be any given
pair (u0, v0).

For the study below, it is convenient to rewrite (2.2) as a scalar equation

λutt + [1− λRf ′(u)]ut = ∆u+ αλ∆ut +Rf(u),(2.3)

together with Dirichlet boundary conditions and initial conditions of the form u(x, 0) =
u0(x) and ut(x, 0) = u1(x). In particular, keeping in mind that when α is one v van-
ishes identically, we now see that, as the parameter α goes from 0 to 1, we go from a
damped wave equation to a reaction-diffusion equation, namely,

ut = ∆u+Rf(u).(2.4)

It now becomes relatively simple to obtain conditions for the existence of a Lyapunov
functional, and it will also be possible to apply the results from [3] directly—see
sections 3 and 5, respectively.

This form of the equation also shows that nonzero values of α actually have the
effect of adding a strong damping term to the wave equation corresponding to the
Maxwell kernel (α = 0).

Existence, uniqueness, and continuous dependence of solutions for (2.2) in the
space Z =

[
H2(Ω) ∩H1

0 (Ω)
] × L2(Ω) now follow from standard results—see [12, 8],

for instance.
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3. Existence of a Lyapunov functional. Multiplying (2.3) by ut and inte-
grating over Ω gives

d
dt

∫
Ω

λ
2u

2
tdx = −

∫
Ω

[1− λRf ′(u)]u2
tdx+

∫
Ω

ut∆udx

+αλ

∫
Ω

ut∆utdx+R

∫
Ω

f(u)utdx

= −
∫

Ω

[1− λRf ′(u)]u2
tdx−

∫
Ω

∇u · ∇utdx

−αλ

∫
Ω

|∇ut|2dx+R d
dt

∫
Ω

F (u)dx,

where F is a primitive of f and we have used integration by parts. By Poincaré’s
inequality, we thus have

d
dt

∫
Ω

λ
2u

2
t +

1
2 |∇u|2 −RF (u)dx = −

∫
Ω

[1− λRf ′(u)]u2
tdx− αλ

∫
Ω

|∇ut|2dx

≤ −
∫

Ω

[1− λRf ′(u) + αλσp]u
2
tdx,

where σp is the principal eigenvalue of the Dirichlet Laplacian for the domain Ω.
Defining

M = sup
u∈R

[f ′(u)] and Θ = λ(ασp −MR) + 1,

we have proven the following theorem.
Theorem 3.1. If Θ is positive, then the functional

L(u) =
∫

Ω

λ

2
u2
t +

1

2
|∇u|2 −RF (u)dx

is strictly decreasing along trajectories of (2.3), except at stationary solutions.
If, for instance, F is bounded from above, then L is bounded from below, and,

provided that all equilibria are isolated, we have that solutions converge to an equi-
librium as t goes to infinity. In particular, this gives the following corollary.

Corollary 3.2. Assume that f(0) is zero, F is bounded from above, and both
σp −MR and Θ are positive. Then all solutions of (2.3) converge to zero.

Proof. Since Θ is assumed to be positive and F is bounded from above, if we
prove that there are no stationary solutions other than the trivial solution, we must
have all solutions converging to zero.

The stationary solutions satisfy{
∆u+Rf(u) = 0,
v = (1− α)u,

(3.1)

together with Dirichlet boundary conditions. If we multiply the first of these equations
by ∆u and integrate over Ω, we obtain∫

Ω

(∆u)2dx = −R

∫
Ω

f(u)∆udx = R

∫
Ω

f ′(u)|∇u|2dx,
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where in the integration by parts it was taken into account that f(0) vanishes. We
thus have that ∫

Ω

(∆u)2dx−MR

∫
Ω

|∇u|2dx ≤ 0.

On the other hand, using an argument similar to that used in [4] for the case of a
compact manifold, we have that the functional∫

Ω

(∆u)2dx− ξ

∫
Ω

|∇u|2dx

is nonnegative for ξ less than or equal to σp. Hence, if MR < σp, it follows that u
must vanish.

4. Existence and structure of the attractor. In this section, we assume for
simplicity that f(u) = u(1 − u2), but clearly the results described are true for more
general functions, as long as the necessary dissipativity conditions hold. We begin by
showing the existence of invariant rectangles for α in (0, 1]. This together with the
results from [11] imply the existence of a compact connected attractor in L2 ×L2 for
(2.2). For the parameter region where a Lyapunov functional exists, it is then possible
to apply Mischaikow’s results [13] to obtain the following theorem.

Theorem 4.1. The semigroup associated with (2.3) (and hence that associated
with (1.2)) has a global attractor AR,λ,α in L2 for α in (0, 1]. Furthermore, if Θ is
positive and the bifurcation diagram of stationary solutions is bistable, the flow on the
attractor is semiconjugate to the flow on the Chaffee–Infante attractor AR,λ,1.

Proof. We begin by rewriting system (2.2) so that the diffusion matrix is in
diagonal form. For α in (0, 1], let[

u
v

]
=

[
1 1
0 −α

] [
w
z

]
.

This yields {
wt = α∆w + h(w, z),

zt = − 1
αλ
[(1− α)w + z] ,

where

h(w, z) = g(w + z) +
1

λ
z and g(t) = Rf(t) +

1− α

αλ
t.

Now consider the “kinetic equations” associated to this system, that is,{
w′ = h(w, z),

z′ = − 1
αλ
[(1− α)w + z] .

(4.1)

To prove the existence of invariant rectangles, we now proceed as in [18] and show
that there are arbitrarily large rectangles in the (w, z) plane on the boundary of which
the vector field of the “kinetic system” (4.1) points inward.

Let  1,  2, and  3 denote the lines in the plane wz defined by (see Figure 4.1)

z = (α− 1)w, z = −w −
√
1

3
+

1

3αλR
, and z = −w +

√
1

3
+

1

3αλR
.
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w

z

γ
1

γ
3

γ
2

Q1

Q2

Q4

Q3

h<0

h>0

Fig. 4.1. Invariant rectangles.

First, note that for α in (0, 1), γ1 always intersects γ2 and γ3 and that z
′ is positive

below γ1 and negative above this line.

We have that

∂h(w, z)

∂z
= g′(w + z) +

1

λ
= R(1− 3(w + z)2) +

1

αλ

is positive between γ2 and γ3 and negative otherwise. Furthermore, note that on
γ1 we have that wh(w, z) = wh(w, (α − 1)w) = Rwf(αw) is negative for |w| large
enough. It is thus possible to pick a point slightly above γ1 (but still below γ2) with
negative w coordinate and such that h is positive at this point. In a similar way, it is
possible to pick a point slightly below γ1 (but above γ3) with positive w coordinate
and such that h is negative there. Denote these points by Q1 and Q3, respectively.

Now choose a point Q2 = −(w1, z1) in the third quadrant such that −w1 is equal
to the w coordinate of Q1 and −z1 is less than the z coordinate of Q3. Then h(Q2)
is positive on the segment Q1Q2 since ∂h/∂z is negative on that segment.

Now let Q4 be a point in the first quadrant with z coordinate equal to that of
Q1 and w coordinate equal to that of Q3. Then, since h(Q3) is negative and ∂h/∂z
is negative above γ3, it follows that h remains negative on the line segment Q3Q4.

In this way, we have that the rectangle R = Q1Q2Q3Q4 is such that w′ = h
is positive on the left vertical side and negative on the right vertical side, and z′ is
positive on the lower horizontal side and negative on the upper horizontal side. Since
the same construction starting from points Q1 and Q3 with more negative and more
positive w coordinates, respectively, will still give a rectangle with these properties,
we have shown the existence of arbitrarily large invariant rectangles for this equation.
Verification of conditions (4.5)–(4.7) of [11] is now immediate, and we obtain the
existence of a compact attractor in the space H of L2 functions u and v taking almost
all values in the invariant rectangle.

Hence, if the bifurcation diagram is bistable, as in the case considered in [14],
under the conditions of Theorem 3.1 we can apply Mischaikow’s results to conclude
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that the dynamics on the attractor of (2.3) (and thus of (1.2)) is semiconjugate to
that of the Chaffee–Infante attractor corresponding to α = 1.

5. Stability of stationary solutions. In the specific case of a cubic-like func-
tion, such as that described in the introduction, the stationary problem (3.1) has been
exhaustively studied in the literature—see, for instance, [10] for a survey of results
regarding the existence of positive solutions for the elliptic problem associated with
(2.4). In particular, we have that for f(u) = u(1 − u2) there is a branch of stable
positive solutions bifurcating from the trivial solution and existing for all R larger
than σp.

Linearizing (2.3) around a stationary solution corresponding to (ū, (1− α)ū), we
obtain the following eigenvalue problem in µ:

(1 + αλµ)∆φ+R(λµ+ 1)a(x)φ = µ(λµ+ 1)φ(5.1)

in Ω with Dirichlet boundary conditions and where a(x) = f ′(ū). Methods that enable
us to deal with problems of this type have been considered by the second author in [3].
From the results there, we immediately obtain the following proposition.

Proposition 5.1. Let T be the operator obtained by linearizing (2.2) around a
stationary solution. Then the spectrum of T consists of eigenvalues of finite multi-
plicity and exactly one point of the essential spectrum, µ = −1/(αλ). Furthermore,
there exist real numbers ρ0 > 0 and π/2 < θ0 < π such that the whole spectrum is
contained inside a sector of the form {λ ∈ C : λ = ρ0 + ρeiθ, |θ| > θ0}.

The idea behind the methods used in [3]—see also [2]—is to relate the eigenvalue
problem (5.1) to a simpler self-adjoint problem. In order to do this, we rewrite (5.1)
in the more familiar form

Lpφ := ∆φ+ pRa(x)φ = γφ(5.2)

by letting

γ =
µ(λµ+ 1)

λαµ+ 1
and p =

λµ+ 1

λαµ+ 1
.

Consequently, we have that a real number µ �= −1/(αλ) will be a real eigenvalue
of (5.1) provided that 


µ =

p− 1
λ(1− αp)

,

γ =
p(p− 1)
λ(1− αp)

.
(5.3)

From the first of these equations we see that the values of the auxiliary parameter p
that correspond to positive values of µ are p ∈ (1, 1/α). We thus look for intersections
of the curve Γ defined by the second equation with the eigencurves of Lp, γk(p), for
p ∈ (1, 1/α). Note that, in particular, γk(1) are the eigenvalues of the linearization of
the reaction-diffusion equation (2.4).

A straightforward result is that for each positive eigenvalue γj(1) of the operator
L1 there must exist at least one intersection between Γ and γj(p) for p in (1, 1/α),
and thus there corresponds at least a positive eigenvalue of problem (5.1). By noting
that L1 is precisely the operator associated with the linearization of (2.4) around the
same stationary solution, we have the following theorem.
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Theorem 5.2. Let (u, v) be a stationary solution of (2.2). Then the dimension
of the unstable manifold of (u, v) as a solution of this equation is greater than or equal
to the dimension of the unstable manifold of u as a solution of (2.4). In particular, in
the case where Ω is a ball, the only stationary solutions that may be stable are those
which do not change sign.

If Θ is positive, then the stability of the stationary solution is the same in both
cases.

Proof. The first part is a simple consequence of the results in [3]. For the second
part, multiply (5.1) by φ, and integrate by parts to obtain

−(1 + αλµ)

∫
Ω

|∇φ|2dx+R(λµ+ 1)

∫
Ω

a(x)|φ|2dx = µ(λµ+ 1),(5.4)

where it is assumed that φ has been normalized. Now separating µ into real and
imaginary parts, we have from the equation for the imaginary parts that

−αλIm(µ)

∫
Ω

|∇φ|2dx+ λRIm(µ)

∫
Ω

a(x)|φ|2dx = Im(µ) [2λRe(µ) + 1] .

It thus follows that either

−αλ

∫
Ω

|∇φ|2dx+ λR

∫
Ω

a(x)|φ|2dx = 2λRe(µ) + 1

or Im(µ) is zero. In the first case, we have that

2λRe(µ) = −αλ

∫
Ω

|∇φ|2dx+ λR

∫
Ω

a(x)|φ|2dx− 1 ≤ −Θ,

and thus there are no nonreal eigenvalues with nonnegative real part when Θ is posi-
tive. This means that in this case the instability of a solution is determined only by
the real eigenvalues.

Now assume that Im(µ) = 0. Then, for any positive eigenvalue of the linearization
of the scalar parabolic equation (2.4) around the stationary solution, we have that
the eigencurve γ of Lp passes through that point when p equals one. By continuity
it must intersect the curve Γ defined by the second equation in (5.3) at some point
p ∈ (1, 1/α). This shows that the same stationary solution is also unstable as a
stationary solution of (2.3).

If, on the other hand, the stationary solution is asymptotically stable when con-
sidered as a stationary solution of (2.4), while it is unstable as a solution of (2.3),
this means that there are at least two intersection points (counting multiplicities)
of the eigencurve with the curve Γ from (5.3) for p ∈ [1, 1/α). There are now two
cases to consider. First assume that the two intersections take place for p strictly
larger than one. Since changing either of the two parameters α or λ does not affect
the stationary solutions (and hence does not affect the eigencurve), it would now be
possible, by making λ sufficiently small, or α sufficiently close to one, to change the
curve Γ without changing the sign of Θ in such a way that no intersection takes place.
This implies that the real eigenvalues have come together and become complex, which
is not possible since we have seen that for positive values of Θ there are no nonreal
eigenvalues with nonnegative real parts.

Now assume that one of the intersections takes place when p equals one. Then,
again making λ sufficiently small or α sufficiently close to one, it is possible to make
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the positive eigenvalue cross zero and become negative, which would imply the exis-
tence of a bifurcation from a real eigenvalue giving rise to a stationary solution and
contradicting the fact that the existence of stationary solutions does not depend on
the parameters α or λ.

Finally, note that zero eigenvalues can occur only for intersections at p equal to
one, and thus there exists a zero eigenvalue for (2.3) if and only if there exists one for
(2.4). Also, if the stationary solution is stable for (2.4), then a zero eigenvalue must
be simple as it is the first eigenvalue. Thus if there existed a zero eigenvalue with a
higher multiplicity for (2.3), this would mean that a slight increase of the parameter λ
would cause an eigenvalue to cross zero and become positive, while keeping Θ positive.
This would again imply the existence of a bifurcation from a real eigenvalue, giving a
contradiction.

From what has been seen, it seems likely that increasing λ and picking α close to
zero will have a destabilizing effect on stationary solutions. This is indeed the case,
as the following result shows.

Proposition 5.3. Fix R, and let (ū, (1−α)ū) be a stationary solution of (2.2).
There exists a decreasing sequence of positive numbers αk, k = 1, . . . , with α1 < 1, and
an increasing sequence λk, k = 1, . . . , depending on α, such that for all α ∈ (αk+1, αk),
if λ > λk, then there are at least 2k positive real eigenvalues of the linearized operator
around the stationary solution (ū, (1− α)ū).

Proof. Denote by p∗k the intersection point of the kth eigencurve for Lp with the
positive part of the horizontal axis. From Proposition 2.3 in [2] we have that

γk(p) ≥ γk(p
∗
k)− γ1(0)

p∗k
p+ γ1(0) = −γ1(0)

p∗k
p+ γ1(0) (p > p∗k),

as γk(p) > 0 for all p > p∗k. Thus, if 1/αk > p∗k, it follows that the eigencurve γk
will have a portion above a straight line with positive inclination which is also above
the p-axis on some subinterval of (1, 1/αk). If we now take λk to be large enough, it
follows that the graphs of γk and Γ must intersect at least twice for p ∈ (1, 1/αk),
giving rise to at least one pair of real positive eigenvalues.

Since, for α equal to one, the point spectrum coincides with that of the reaction-
diffusion equation and the point of the essential spectrum is situated at −1/λ, we
might expect that by making α close to one, solutions which are stable for the scalar
equation (2.4) will remain stable.

Theorem 5.4. Assume that ū is a stable stationary solution of (2.4), and define

α∗ =
RM − 1/λ
RM − γ1(1)

.

If α > α∗, then (ū, (1− α)ū) is a stable stationary solution of (2.3).
Proof. From (5.4) we have that µ satisfies the quadratic equation

λµ2 +

(
1 + αλ

∫
Ω

|∇φ|2dx− λR

∫
Ω

a(x)|φ|2dx
)

µ

+

∫
Ω

|∇φ|2dx−R

∫
Ω

a(x)|φ|2dx = 0,

and thus the stationary solution will be stable if and only if∫
Ω

|∇φ|2dx−R

∫
Ω

a(x)|φ|2dx > 0(5.5)
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and

1 + αλ

∫
Ω

|∇φ|2dx− λR

∫
Ω

a(x)|φ|2dx > 0.(5.6)

Since ū is a stable solution of (2.4), we have that

γ1(1) = sup

[
−
∫

Ω

|∇u|2dx+R

∫
Ω

a(x)|u|2dx
]
< 0,

where the supremum is taken over all functions u in H1
0 (Ω) with L2(Ω) norm 1. In

particular, ∫
Ω

|∇φ|2dx−R

∫
Ω

a(x)|φ|2dx ≥ −γ1(1) > 0,

showing that (5.5) is satisfied.
On the other hand, multiplying this last inequality by λ and adding 1 to both

sides give

1 + λ

∫
Ω

|∇φ|2dx− λR

∫
Ω

a(x)|φ|2dx ≥ 1− γ1(1)λ,

and so

1 + αλ

∫
Ω

|∇φ|2dx− λR

∫
Ω

a(x)|φ|2dx ≥ 1− γ1(1)λ+ λ(α− 1)
∫

Ω

|∇φ|2dx.(5.7)

There are now two cases to consider. If∫
Ω

|∇φ|2dx <
1− λγ1(1)

(1− α)λ
,

then the right-hand side of (5.7) is positive for all values of α, and we are done.
Assume thus that ∫

Ω

|∇φ|2dx ≥ 1− λγ1(1)

(1− α)λ
.

Then

1 + αλ

∫
Ω

|∇φ|2dx− λR

∫
Ω

a(x)|φ|2dx ≥ 1 + α(1− λγ1(1))

1− α
− λRM,

and this last expression is positive for α in (α∗, 1).
A straightforward consequence of this result is that for each stable solution of (2.4)

there exists a value of α strictly smaller than 1, say α∗∗, such that the corresponding
solution of (2.3) is stable for all α in (α∗∗, 1] and all λ. The following corollary gives
precise details.

Corollary 5.5. If ū is as above and α is larger than RM/(RM − γ1(1)), then
(ū, (1− α)ū) is stable for all positive values of λ.

Note that both here and in Theorem 5.4 the term γ1(1) depends on the
parameter R.
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5.1. Positive solutions in balls. Theorem 5.2 states that only stationary so-
lutions which are stable for the reaction-diffusion equation (2.4) may be stable for the
wave equation (2.3). In this section, we show that there are regions in parameter space
(α, λ) for which there are no stable solutions for any values of the parameter R. The
proof uses estimates for the first eigencurve γ1(p) for large values of the parameter R.

In order to be able to obtain these estimates, we now restrict ourselves to the
case where Ω is a ball and consider the specific case of f(u) = u(1 − u2), although
similar results could be obtained by the same methods for other types of functions,
such as f(u) = u(1− up−1) for other values of p larger than one. Because Ω is a ball,
only solutions which do not change sign can be stable when considered as stationary
solutions of (2.4), and thus we now concentrate on branches of positive solutions. For
this type of function, it is known that there exists a value of R, say R∗, such that
for all R larger than R∗ there exists one (and only one) positive stationary solution
which is stable for (2.4).

Theorem 5.6. Assume that Ω is a ball. There exists α0 in (0, 1), such that for
all 0 ≤ α < α0 there exists λ0, depending on α, with the property that for all λ > λ0

all stationary solutions of (2.3) are unstable for all values of R.
By looking at the second equation in (5.3), we see that solutions (in p) corre-

sponding to positive eigenvalues µ can exist only if the eigencurve γk(p) is positive for
some p ∈ (1, 1/α). As, in this case, all eigencurves are below the p-axis for p ∈ (0, 1),
it becomes important to study the point p∗1(R) where the eigencurve γ1(p) intersects
the real axis for positive p. Regarding this, we have the following lemma.

Lemma 5.7. Let Ω be the unit ball in R
n. For each k = 1, . . . , there exists a

unique positive value p∗k, depending on R, such that γk(p
∗
k) = 0 and γk(p) > 0 for all

p > p∗k. Furthermore, there exists an increasing sequence Pk, such that p∗k(R) < Pk for
all R > 1. Furthermore, these values Pk can be chosen to be independent of n ≥ 1.

To establish the existence of, say, a value P1 such that for all R the first eigencurve
γ1(p) crosses the p-axis at values of p < P1 requires two different pieces of information.
The first ingredient is a uniformly valid matched asymptotics approximation of the
(positive) solution uR of the boundary value problem

∆u+Rf(u) = 0, x ∈ Ω, u = 0 on ∂Ω,(5.8)

where f(u) = u − u3. Note that by results of [10] such a positive solution exists for
all n ≥ 1 for sufficiently large R; furthermore, by the results of [5] this solution is
radially symmetric.

The second ingredient of the proof is just the classical variational characterization
of eigenvalues.

Matched asymptotics [9] give us the following representation:

uR(r) ∼ tanh
(√

R

2
(1− r)

)
+O(1/

√
R).(5.9)

As R → ∞, this solution is asymptotically equal to one everywhere in the ball far
from the boundary, and it has a boundary layer close to r = 1 required to meet
the boundary condition at r = 1. Note that the radially symmetric solution of (5.8)
satisfies the boundary value problem

urr +
n− 1

r
ur +Rf(u) = 0, ur(0) = u(1) = 0,(5.10)
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and thus the term involving (n− 1) plays no role in the principal terms of either the
outer or the inner expansions.

Now, by the variational characterization of eigenvalues, the eigenvalue γ1(p) of
the problem

∆φ+ pRf ′(uR)φ = γφ, x ∈ Ω, φ = 0 on ∂Ω,(5.11)

satisfies

γ1(p) = sup

{
−
∫

Ω

|∇ψ|2dx+ pR

∫
Ω

f ′(uR)ψ2dx

}
,

where the supremum is taken over all functions ψ in H1
0 (Ω) with L2(Ω) norm 1. Hence

if we show that for all arbitrarily large R there exist a function ψR and a value p∗

independent of R such that

A = −
∫

Ω

|∇ψR|2dx+ p∗R
∫

Ω

f ′(uR)ψ2
Rdx > 0,

we have established the existence of P1 and moreover P1 ≤ p∗.
Consider the solution uR with the asymptotic representation (5.9). Clearly, the

function f ′(uR) changes sign when uR = 1/
√
3, that is, at the point

r = 1−
√
2

R
tanh−1

(
1/
√
3
)
+O(1/R).

Consider the function vR(r) defined for r ∈ [0, 1] as follows:

vR(r) =

{
sin π(1−r)

1−r if r ∈ [r, 1],
0 otherwise.

Now let ψR(r) = vR(r)/‖vR‖2.
Denoting by σn the surface area of the unit sphere, we have then

1

σn
‖vR‖2A = − π2

(1− r)2

∫ 1

r

cos2
[
π(1− r)

1− r

]
rn−1dr

+pR

∫ 1

r

[
1− 3 tanh2

(√
R

2
(1− r)

)
+O

(
1√
R

)]
sin2

[
π(1− r)

1− r

]
rn−1dr.

This can be rewritten as follows:

1

σn
‖vR‖2A = − π2

1− r

∫ 1

0

cos2(πy)(r + y(1− r))n−1dy + pR(1− r)

×
∫ 1

0

[
1− 3 tanh2

(
(1− y) tanh−1(1/

√
3)
)
+O(1/

√
R)
]
(r + y(1− r))n−1 sin2(πy)dy.

Since 1− r = O(1/
√
R), this means that

1

σn
‖vR‖2A =

√
R

[
− π2

2
√
2 tanh−1(1/

√
3)
+ p
√
2 tanh−1(1/

√
3)β +O(1/

√
R)

]
,



1102 B. R. DUFFY, P. FREITAS, AND M. GRINFELD

where

β =

∫ 1

0

[
1− 3 tanh2

(
(1− y) tanh−1(1/

√
3)
)]
sin2(πy)dy ≈ 0.3353.

Hence, if we choose p > p∗ = π2/(4β(tanh−1(1/
√
3))2) ≈ 16.972, we are guaranteed

that, for all R sufficiently large, A is positive and so will be the eigenvalue γ1(p) for
that value of p.

For Pk, k > 1, we use the same argument but employ functions

vkR(r) =


 sin

[
kπ(1− r)
1− r

]
if r ∈ [r, 1],

0 otherwise.

Clearly, vkR and vlR are orthogonal if k �= l.
Remark 5.1. Numerically, the limiting value P1 is approximately 10.8 in the

one-dimensional case. We present a rough argument to approximate this value. By
WKB reasoning we expect for large R the nonnegative eigenfunction to behave as
our functions ψR(v) above. In fact, we expect the sinusoidal part to be of the form
sin
[√

pR(1− r)
]
. On the other hand, we also expect from the variational formulation

the sinusoidal part to be sin [π(1− r)/(1− r)]. Thus in the limit we should have√
P1R = π/(1 − r) as R → ∞. But this implies that P1 = π2/(2 tanh−1(1/

√
3)2) ≈

11.38.
Proof of Theorem 5.6. Let uR be a stable stationary solution of the system (2.3).

By Lemma 5.7 we have that, for any value of R on the interval (R∗,+∞), there exists
a value P1 such that the eigencurve γ1(p) intersects the horizontal axis at a value p∗1
smaller than P1 and becomes positive for all values of p larger than p∗1. This means
that it is always possible to choose α1

0 sufficiently small such that 1/α is larger than
p∗1, independently of R, for α smaller than α1

0. From the proof of Proposition 5.3, we
know that the eigencurve is above the straight line joining γ1(0) and P1. We may
then pick λ1

0 sufficiently large (and again independently of R) such that the curves γ1

and Γ intersect at a point (p, γ1) with p in the interval (1, 1/α). This implies that the
solution uR is unstable.

Since the number of stable stationary solutions for the parabolic problem (2.4)
with the nonlinearity f considered is finite for each value of R, we may now apply the
above argument to all of these solutions and obtain values of α0 and λ0 for which all
solutions are unstable when α ≤ α0 and λ ≥ λ0.

6. The double zero eigenvalue. In this section, we consider a center manifold
reduction for the double zero eigenvalue of the linearized equations around the trivial
solution. We take f(u) = u(1 − u2), but again it is clear that the argument holds
for a much more general class of functions. In order to obtain a projection on the
center manifold corresponding to a known form for the Bogdanov–Takens singularity,
we rewrite (2.3) as{

ut = w,

wt =
1
λ
∆u+ α∆w + R

λ
f(u) +

[
Rf ′(u)− 1

λ

]
w.

This is equivalent to [
ut
wt

]
= C

[
u
w

]
+ N(u,w),(6.1)
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where

C =

[
0 1

1
λ
(∆ +R) α∆+

(
R− 1

λ

) ]
and N(u,w) =

[
0

−R
λ
u3 − 3Ru2w

]
.

The eigenvalue problem corresponding to the linearization around the trivial solution,
which corresponds to the eigenvalues of the operator C, is given by{

ψ = µφ,

1
λ
∆φ+ R

λ
φ+ α∆ψ +

(
R− 1

λ

)
ψ = µψ.

In this case, it is possible to obtain an explicit expression for the eigenvalues, namely,

µ±
k =

−αλσk +Rλ− 1±
√
(1−Rλ+ αλσk)2 + 4(R− σk)λ

2λ
,(6.2)

where, as before, σk denotes an eigenvalue of the Dirichlet Laplacian in Ω, that is,{ −∆vk = σkvk, x ∈ Ω,
vk = 0, x ∈ ∂Ω.

As before, we shall denote the principal eigenvalue by σp and the corresponding nor-
malized eigenfunction by vp. It follows that there exists a double zero eigenvalue if
and only if {

R = σk, k = 1, 2, . . . ,

α = 1− 1
λσk

.

Note that if α is 1, then it is not possible to satisfy the second equation, and thus
there is no double zero eigenvalue in this case. On the other hand, for any α on [0, 1)
it is possible to choose the remaining parameters R and λ so that zero is, in fact, a
double eigenvalue.

Because of stability, we are interested in the case in which k = 1, which corre-
sponds to

C1 =

[
0 1

1
λ
(∆ + σp) α∆+

(
σp − 1λ

) ]
.

An eigenfunction for this operator and which corresponds to the zero eigenvalue is
given by ψ1 = (vp, 0). The other (generalized) eigenfunction is a solution of

C1

[
u
w

]
=

[
vp
0

]
.

We thus obtain ψ2 = (0, vp).
We now make the decomposition of the phase space Z into

X = {rvp, r = (r1, r2) ∈ R
2}

and Y = X⊥. The linear space X is invariant by C, and, with respect to the canonical
basis, it can be represented in X by

C =

[
0 1
ε1 ε2

]
,
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where {
ε1 =

R− σp
λ

,

ε2 = R− 1
λ
− ασp.

(6.3)

In this case, M is equal to 1, and thus ε2 is equal to −Θ/λ. To see that it is possible
to unfold the singularity by means of the parameters R and λ, for any value of α
in [0, 1), we have to prove that the map taking (R, λ) to (ε1, ε2) is surjective near
(R∗, λ∗) = (σp, 1/(1− α)σp). This follows from the fact that the Jacobian matrix for
this map is given by 

 1
λ

σp −R

λ2

1 1
λ2


 ,

and thus its determinant at (R∗, λ∗) is equal to 1/λ3
∗, which is nonzero.

When ε ≡ (ε1, ε2) = 0, the invariant subspace corresponding to the double eigen-
value is spanned by ψ1 and ψ2. In this case, X = span{ψ1, ψ2}, and an element z of
Z can be decomposed as z = rvp + y, r ∈ R

2, y ∈ Y . Following [1], we write (6.1) as


ṙ = C(ε)r +N(rvp + y),

ẏ = D(ε)y + (I − P)N(rvp + y),

ε̇ = 0,

where P is the projection from Z on X, defined by

P
[

u
w

]
=



∫

Ω

uvpdx∫
Ω

wvpdx


 vp,

D = (I − P)C, and N : Z → R
2 is given by

N(u,w) = 〈PN(u,w), vp〉 =


 0

−R
λ

∫
Ω

(u3 + 3λu2w)vpdx


 .

The equation on the center manifold is given by

ṙ = C(ε)r +N(rvp + h(r, ε)),

where h(r, ε) = (h1(r, ε), h2(r, ε)) = O(r2 + |εr|). The nonzero term in N can then be
evaluated to give

−R

∫
Ω

v4
pdx

(
1

λ
r3
1 + 3r

2
1r2

)
+ h.o.t.

Hence

[
ṙ1

ṙ2

]
=

[
0 1
ε1 ε2

] [
r1

r2

]
+


 0

−R

∫
Ω

v4
pdx

(
1
λ
r3
1 + 3r

2
1r2

) + h.o.t.
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Comparing this with the case in section 7.3 of [7], we see that this situation corre-
sponds to having both parameters a3 and b3 in there equal to −1. The corresponding
behavior is shown in Figures 7.3.7 and 7.3.9 in that section.

We have thus shown the following theorem.
Theorem 6.1. In a neighborhood of the double zero eigenvalue of the linearization

of (2.2) around the trivial solution corresponding to (R∗, λ∗) = (σp, 1/((1 − α)σp)),
the parameters R and λ unfold a Bogdanov–Takens singularity of the type{

ẋ = y,

ẏ = µ1x+ µ2y − x3 − x2y

for (µ1, µ2) in a neighborhood of (0, 0). In particular, in a neighborhood of (R∗, λ∗),
there are curves of homoclinic solutions of (2.2) and of blue sky bifurcations of periodic
solutions.

7. Conclusions. It remains to compare our results with those from [14] and the
conclusions derived there.

First, note that the mechanism of restabilization of convection by increasing R, as
seen in Figures 5 and 6 of [14, p. 185], cannot be correct, as the branches of stationary
solutions that are stable for large R are spurious: these are branches of secondary
bifurcations, which do not exist in the infinite-dimensional problem. Furthermore,
Theorem 5.6 shows that there are values of λ and α for which there are no stable
stationary solutions, independently of the value of R.

On the other hand, we have shown in Theorem 6.1 that the progression (as we
increase R) of (a) Hopf bifurcation from the (stable) trivial (conduction) state followed
by (b) a pitchfork bifurcation of unstable nontrivial (convection) states, (c) Hopf
bifurcation from these nontrivial states (which leads the states without internal zeros
to become stable), and (d) the blue sky annihilation of periodic solutions, which is
clearly seen in Figures 5 and 6 of [14], persists in the infinite-dimensional system as
well. This progression is consistent with the observations of [17] on the transition
from conduction to steady convection in viscoelastic fluids via oscillatory convection.

The methods used in this paper were not able to determine whether or not another
feature of the truncated dynamics of [14] persists in (2.2), namely, the loss of stability
of a stable branch of equilibria due to an increase in R. This feature of the truncated
dynamics leads to a conjecture that is stronger than the statement of Theorem 5.6,
namely, that for any λ and α < 1, increasing R will destabilize convection. Clearly,
increasing R would eventually make Θ negative. Such a conjecture is also consistent
with (again, finite-dimensional) numerics of [6].

Finally, we point out that the case corresponding to the Maxwell kernel (α = 0)
poses some interesting open problems. In particular, we see from (6.2) that along the
line defined by λR = 1 there is an infinite-dimensional center manifold.
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1. Introduction. Suppose that Q is a convex quadrilateral and that �Q is
the triangulation obtained by splitting Q into four triangles by drawing in the two
diagonals. Let vQ be the intersection of the diagonals.

The first macroelement on �Q was the C1 piecewise cubic macroelement con-
structed in [8, 17]; see also [6]. Later, a class of Cr macroelements on �Q was
constructed in [14, 15]; see also [5]. The aim of this paper is to improve these higher
smoothness macroelements by removing unnatural degrees of freedom.

The macroelements in [15] are based on the superspline spaces

S2m+1,3m
6m+1 (�Q), r = 2m,

S2m+1,3m+1
6m+3 (�Q), r = 2m + 1,

(1.1)

where, in general, if � is a triangulation of a domain Ω,

Sr,ρd (�) := {s ∈ Cr(Ω) : s is a piecewise polynomial of degree d on �,
s ∈ Cρ(v) for all vertices v}.(1.2)

As usual, Cρ(v) means that all polynomials on triangles sharing the vertex v have
common derivatives up to order ρ at that vertex.

In this paper, we will make use of certain subspaces of the superspline spaces
(1.1) which satisfy additional supersmoothness at the vertex vQ as well as some other
special smoothness conditions.

The paper is organized as follows. In section 2, we review some well-known
Bernstein–Bézier notation and state a key lemma. In section 3, we discuss the case
where r is even, and in section 4, we illustrate it with several examples. The case
where r is odd is treated in section 5 and illustrated in section 6. Section 7 contains
results on the corresponding global spline spaces, including their approximation power.
Concluding remarks can be found in section 8.
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2. Notation and preliminaries. We make use of standard Bernstein–Bézier
techniques. Given a triangle T := 〈u1, u2, u3〉 and an integer d, let

ξTijk :=
(iu1 + ju2 + ku3)

d
, i + j + k = d,

be the corresponding domain points. We will work with the usual rings and disks of
domain points defined by

RTn (u1) := {ξTijk : i = d− n},
DT
n (u1) := {ξTijk : i ≥ d− n},

with similar definitions at the other vertices of T . It is well known (see [10] for explicit
formulae) that specifying the B-coefficients in the disk DT

n (u1) of a polynomial p is
equivalent to specifying the derivatives Dν

xD
µ
y p(u1) for 0 ≤ ν + µ ≤ n.

Given a triangulation �, we are interested in spline spaces which are subsets of
the space S0

d(�) of splines which are globally C0 and are piecewise polynomials of
degree d. The corresponding set of domain points is defined to be the union of the
{ξTijk} as T runs over the triangles of �, where points on edges are not repeated.

We recall that a minimal determining set (MDS) for a spline space S ⊆ S0
d(�) is a

subsetM of the domain points associated with S0
d(�) such that every spline s ∈ S is

uniquely determined by the set of B-coefficients which are identified with the points
of M.

We shall make extensive use of certain linear functionals defined by smoothness
conditions between polynomials of degree d on adjoining triangles. These were in-
troduced in [2], but we repeat their definition here for convenience. Suppose that
T := 〈u1, u2, u3〉 and T̃ := 〈u4, u3, u2〉 are two adjoining triangles which share the
edge e := 〈u2, u3〉. Let s be a function whose restrictions to T and T̃ are polynomials
of degree d. Let cijk and c̃ijk be the coefficients of the B-representations of sT and
sT̃ , respectively. Then, for any n ≤ m ≤ d, we define

τnm,es := c̃n,m−n,d−m −
∑

i+j+k=n

ci,j+d−m,k+m−nBn
ijk(u4),(2.1)

where Bn
ijk are the Bernstein polynomials of degree n on the triangle T .

The following lemma [2] can be used to compute certain coefficients of s on the
ring Rm(u2) assuming that an appropriate set of smoothness conditions across the
edge e is satisfied.

Lemma 2.1. Suppose s is a piecewise polynomial of degree d defined on T ∪ T̃
and that d,m, p, q, q̃ are integers with 0 ≤ q, q̃, −1 ≤ p ≤ q, q̃, and q + q̃ − p ≤ m ≤ d.
Suppose that

τnm,es = 0, p + 1 ≤ n ≤ q + q̃ − p,(2.2)

and that all of the coefficients cijk involved in these smoothness conditions are known
except for

cν := cν,d−r,r−ν , ν = p + 1, . . . , q,

c̃ν := c̃ν,r−ν,d−r, ν = p + 1, . . . , q̃.
(2.3)

Then the coefficients (2.3) are uniquely determined by (2.2).
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3. The case r = 2m. Let Q be a quadrilateral with vertices v1, . . . , v4 in
counterclockwise order. We define the triangles T [i] := 〈vQ, vi, vi+1〉 and edges ei :=
〈vi, vQ〉 for i = 1, 2, 3, 4, where v5 = v1 and vQ is the point where the two diagonals
of Q intersect.

Theorem 3.1. Given r = 2m, let Sr(�Q) be the linear subspace of all splines s

in S2m+1,3m
6m+1 (�Q) that satisfy the following set of additional smoothness conditions:

s ∈ C4m(vQ),(3.1)

τ2m+1+j
3m+i+1,el

s = 0, 1 ≤ j ≤ 2i, 1 ≤ i ≤ m− 1, l = 1, 2, 3, 4,(3.2)

and

τ2m+1+j
4m+1,e1

s = 0, 1 ≤ j ≤ 2m.(3.3)

Then

dimSr(�Q) = 26m2 + 22m + 4.

Moreover, the following setMr of domain points is an MDS:

(1) DT [i]

3m (vi) for i = 1, 2, 3, 4,

(2) {ξT [i]

j,3m,3m−j+1, . . . , ξ
T [i]

j,3m−j+1,3m} for j = 1, . . . , 2m and i = 1, 2, 3, 4.
Proof. First, we show that Mr is a determining set. Suppose that s ∈ Sr(�Q)

and that we have set the coefficients of s corresponding to all domain points in Mr.
Then, using the usual smoothness conditions, we solve for the unset coefficients cor-
responding to domain points in the disks D3m(vi) for i = 1, 2, 3, 4.

We now make use of Lemma 2.1. First, we compute the coefficients on the rings
R3m+i+1(vl) for i = 0, . . . ,m − 1 and l = 1, 2, 3, 4. On the ring R3m+i+1(vl), this
involves solving a system of 2(m + i) + 1 linear equations. Note that the spline
satisfies all of the smoothness conditions required for the lemma since they either are
already implicit in the supersmoothness of the space or have been explicitly enforced
in the definition of Sr(�Q).

Using the lemma, we now compute the coefficients on R4m+1(v1). We now start a
sequence of calculations. First, we compute the 4m unset coefficients corresponding to
points on the edge E0, where, in general, Ei is the set of domain points in T [1]∪T [2] at a
distance i from the edge 〈v1, v3〉. Then we compute the 4m coefficients corresponding
to points in the set Ẽ0, where Ẽi is the set of domain points in T [2]∪T [3] at a distance
i from the edge 〈v2, v4〉. The remaining coefficients in T [1] ∪ T [2] ∪ T [3] are computed
by alternately working on the sets Ei and Ẽi for i = 1, . . . , r. Finally, we compute
the remaining coefficients in T [4] from the Cr smoothness conditions.

We have shown that all coefficients of s are determined by those corresponding
to the domain points in the set Mr. This shows that Mr is a determining set.

To see thatMr is an MDS, we consider S2m+1
6m+1 (�Q)∩C4m(vQ). By Theorem 2.2

in [18] the dimension of this space is 32m2+18m+4. Our space Sr(�Q) is the subspace
which satisfies the 4m2 − 2m special conditions (3.2)–(3.3) and the supersmoothness
C3m(vi) for i = 1, 2, 3, 4. Enforcing the supersmoothness requires an additional 2m2−
2m conditions. Thus

(32m2 + 18m + 4)− (4m2 − 2m)− (2m2 − 2m)

≤ dimSr(�Q) ≤ #Mr = 26m2 + 22m + 4.

Since the expression on the left equals the one on the right, we conclude that it is
equal to the dimension of Sr(�Q), and Mr is an MDS.
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v1

v2

v3

v4

Fig. 1. The C2 macroelement.

v1

v2

v3

v4

Fig. 2. Domain points for the C2 macroelement.

4. Examples. In this section, we illustrate the construction of section 3.

Example 4.1. The space S2(�Q) is the subspace of S3
7 (�Q) ∩ C4(vQ) that

satisfies the two special smoothness conditions corresponding to τ4
5,e1 and τ5

5,e1 .

Discussion. The dimension of S2(�Q) is 52, and the MDS for this macroelement
is shown in Figure 1. It consists of 10 points in each of the disks D3(vi) (marked with
crosses) and 3 points corresponding to item (2) of Theorem 3.1 for each edge of Q
(marked with triangles). After setting the coefficients in the MDS, the remaining coef-
ficients are computed in the following order. First, we use C3 smoothness to compute
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v1

v2

v3

v4

Fig. 3. The C4 macroelement.

the coefficients numbered 80,81,95 in Figure 2, followed by those numbered 106,43,42,
then 18,4,11, and 37,38,67. Using the two special smoothness conditions, we can now
compute the coefficients numbered 74,75,76,96,101. Then, using C4 smoothness, we
compute the coefficients numbered 70,7,6,5 (lying in the set E0) and 33,21,14,27 (lying
in the set Ẽ0). Next we compute coefficients numbered 97,20,19, then 32,13,26, then
102,31, and 12,25. Finally, the coefficients numbered 68,69 are computed by standard
smoothness conditions.

Example 4.2. The space S4(�Q) is the subspace of S5,6
13 (�Q) ∩ C8(vQ) that

satisfies the twelve special smoothness conditions corresponding to {τ6
8,ei , τ

7
8,ei}4i=1 and

τ6
9,e1 , τ

7
9,e1 , τ

8
9,e1 , τ

9
9,e1 .

Discussion. The dimension of S4(�Q) is 152, and the MDS for this macroelement
is shown in Figure 3. It consists of 28 points in each of the disks D3(vi) (marked with
crosses) and 10 points corresponding to item (2) of Theorem 3.1 for each edge of Q
(marked with triangles).

5. The case r = 2m + 1.
Theorem 5.1. Given r = 2m + 1, let Sr(�Q) be the linear subspace of all

splines s in S2m+1,3m+1
6m+3 (�Q) that satisfy the following set of additional smoothness

conditions:

s ∈ C4m+1(vQ),(5.1)

τ2m+1+j
3m+i+2,el

s = 0, 1 ≤ j ≤ 2i, 1 ≤ i ≤ m− 1, l = 1, 2, 3, 4,(5.2)

τ2m+1+j
4m+2,el

s = 0, 1 ≤ j ≤ 2m, l = 1, 2, 3.(5.3)

Then

dimSr(�Q) = 26m2 + 42m + 16.
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Moreover, the following setMr of domain points is an MDS:

(1) DT [i]

3m+1(vi) for i = 1, 2, 3, 4,

(2) {ξT [i]

j,3m+1,3m−j+2, . . . , ξ
T [i]

j,3m−j+2,3m+1} for j = 1, . . . , 2m+ 1 and i = 1, 2, 3, 4.
Proof. First, we show that Mr is a determining set. Suppose that s ∈ Sr(�Q)

and that we have set the coefficients of s corresponding to all domain points in Mr.
Then, using the usual smoothness conditions, we solve for the unset coefficients cor-
responding to domain points in the disks D3m+1(vi) for i = 1, 2, 3, 4.

Next we use Lemma 2.1 to compute the coefficients corresponding to points on
the rings R3m+i+2(vl) for i = 0, . . . ,m−1 and l = 1, 2, 3, 4. On the ring R3m+i+2(vl),
this involves solving a system of 2(m + i) + 1 linear equations. Then we compute
coefficients on the rings R4m+2(vl) for l = 1, 2, 3.

Using the lemma, we now compute the 4m+1 unset coefficients corresponding to
the sets E0 and Ẽ0 defined in the proof of Theorem 3.1. The remaining coefficients
in T [1] ∪ T [2] ∪ T [3] are computed by alternately working on the sets Ei and Ẽi for
i = 1, . . . , r − 1. Finally, we compute the remaining coefficients in T [4] from the Cr

smoothness conditions.
We have shown that all coefficients of s are determined by those corresponding

to the domain points in the set Mr. This shows that Mr is a determining set.
To see thatMr is an MDS, consider S2m+1

6m+3 (�Q)∩C4m+1(vQ). By Theorem 2.2 in
[18] the dimension of this space is 32m2+46m+16. Our space Sr(�Q) is the subspace
which satisfies the 4m2 + 2m special conditions (5.2)–(5.3) and the supersmoothness
C3m+1(vi) for i = 1, 2, 3, 4. Enforcing the supersmoothness requires an additional
2m2 + 2m conditions. Thus

(32m2 + 46m + 16)− (4m2 + 2m)− (2m2 + 2m)

≤ dimSr(�Q) ≤ #Mr = 26m2 + 42m + 16.

Since the expression on the left equals the one on the right, we conclude that it is
equal to the dimension of Sr(�Q), and Mr is an MDS.

6. Examples. In this section, we illustrate the construction of section 5.
Example 6.1. The space S3(�Q) is the subspace of S3,4

9 (�Q)∩C5(vQ) that sat-
isfies the six special smoothness conditions corresponding to τ4

6,ei , τ
5
6,ei for i = 1, 2, 3.

Discussion. The dimension of S3(�Q) is 84, and the MDS for this macroelement
is shown in Figure 4. It consists of 15 points in each of the disks D4(vi) (marked with
crosses) and 6 points corresponding to item (2) of Theorem 5.1 along each edge of Q
(marked with triangles).

Example 6.2. The space S5(�Q) is the subspace of S5,7
15 (�Q) ∩ C9(vQ) that

satisfies the twenty special smoothness conditions corresponding to {τ6
9,ei , τ

7
9,ei}4i=1 and

{τ6
10,ei , τ

7
10,ei , τ

8
10,ei , τ

9
10,ei}3i=1.

Discussion. The space S5(�Q) has dimension 204, and the MDS for this macroele-
ment is shown in Figure 5. It consists of 36 points in each of the disks D5(vi) (marked
with crosses) and 15 points corresponding to item (2) in Theorem 5.1 along each edge
of Q (marked with triangles).

7. Superspline spaces with stable bases. Let ♦ be a quadrangulation of a
domain Ω with vertices {vi}Vi=1. Suppose E is the number of edges. Let ♦+ be the
triangulation obtained by inserting both diagonals in each quadrilateral Q in ♦. Let

Sr(♦+) := {s ∈ Cr(Ω) : s|Q ∈ Sr(�Q) for all Q ∈ ♦},(7.1)
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Fig. 4. The C3 macroelement.

v1

v2

v3

v4

Fig. 5. The C5 macroelement.

where Sr(�Q) are the spaces defined in Theorems 3.1 and 5.1. Let

dr =

{
6m + 1, r = 2m,

6m + 3, r = 2m + 1,
(7.2)

and

ρr =

{
3m, r = 2m,

3m + 1, r = 2m + 1.
(7.3)
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Theorem 7.1. For all r ≥ 1,

dimSr(♦+) =

(
ρr + 2

2

)
V +

(
r + 1

2

)
E.(7.4)

Moreover, the following setMr of domain points forms an MDS:
(1) For each vertex v ∈ ♦, choose DT

ρr (v), where T is some triangle in ♦+ with
vertex at v;

(2) for each edge e ∈ ♦, choose {ξTj,ρr,dr−ρr−j , . . . , ξTj,dr−ρr−j,ρr} for j = 1, . . . , r,
where T is some triangle in ♦+ sharing the edge e.

Proof. First, we show that Mr is a determining set. For each vertex v ∈ ♦,
using the smoothness conditions, item (1) determines all coefficients corresponding to
points in the disk Dρr (v). Similarly, if T̃ is a second triangle sharing the edge e, then

item (2) determines the corresponding coefficients in both T and T̃ . The claim then
follows from Theorems 3.1 and 5.1.

To show that Mr is an MDS, we now construct the dual basis corresponding to
Mr. For each ξ ∈Mr, let Bξ be the unique spline in Sr(♦+) such that

ληBξ = δξ,η, η ∈Mr,(7.5)

where λη is the linear functional which picks off the B-coefficient corresponding to the
domain point η.

In view of (7.5), the splines in B := {Bξ}ξ∈Mr are linearly independent, and thus
B forms a basis for Sr(♦+). It follows that dimSr(♦+) = #Mr, which is the number in
(7.4).

It is easy to see that the dual basis functions constructed in the above proof have
local support. In particular,

(1) if ξ is a point as in item (1) of Theorem 7.1, then supp(Bξ) is contained in
the union of all quadrilaterals of ♦+ sharing the vertex v;

(2) if ξ is a point as in item (2) of Theorem 7.1, then supp(Bξ) is contained in

Q∪Q̃, where e is the edge between Q and Q̃. (If e is a boundary edge of a quadrilateral
Q, then the support is simply Q.)

Lemma 7.2. Let {Bξ}ξ∈M be the set of dual basis splines constructed in the proof
of Theorem 7.1. Then there exists a constant K depending only on the smallest angle
in ♦+ such that ‖Bξ‖ ≤ K for all ξ ∈Mr.

Proof. Fix ξ ∈ Mr, and let Bξ be the corresponding dual basis spline. We
examine the size of its B-coefficients. By definition, cξ = 1 and cη = 0 for all other
η ∈ Mr. The remaining B-coefficients of Bξ are computed by using smoothness
conditions or solving the linear systems of equations appearing in Lemma 2.1 of [2].
These involve matrices whose inverses are bounded in norm by a constant depending
only on the smallest angle in ♦+. This shows that all of the B-coefficients of Bξ are
bounded by a constant K, and the result follows.

Theorem 7.3. The dual basis {Bξ}ξ∈Mr
is a stable basis in the sense that there

exist constants K1,K2 depending only on the smallest angle in ♦+ such that, for all
choices of the coefficient vector c = (cξ)ξ∈Mr ,

K1‖c‖∞ ≤ ‖
∑
ξ∈Mr

cξBξ‖∞ ≤ K2‖c‖∞.(7.6)

Proof. The proof follows in the same way as the proof of Theorem 2.3 of
[7].
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We conclude this section with an approximation result. Given a function f in
L1(Ω) and an integer 0 ≤ k ≤ dr, let

Qkf :=
∑
ξ∈Mr

λξ,kf Bξ,

where λξ,k is the linear functional defined in section 10 of [11].
Theorem 7.4. Fix 1 ≤ p ≤ ∞. Suppose f lies in the Sobolev space W k+1

p (Ω) for
some 0 ≤ k ≤ dr. Then

‖Dα
xD

β
y (f −Qkf)‖p ≤ K|♦+|k+1−α−β |f |k+1,p(7.7)

for 0 ≤ α + β ≤ k, where |♦+| is the mesh size of ♦+ (i.e., the diameter of the largest
triangle), and |f |k+1,p is the usual Sobolev seminorm. If Ω is convex, then the constant
K depends only on dr, p, k, and the smallest angle in ♦+. If Ω is nonconvex, it also
depends on the Lipschitz constant L∂Ω associated with the boundary of Ω.

Proof. The proof follows in the same way as the proof of Theorem 1.1 of
[11].

8. Remarks.
Remark 8.1. We used the java code described in [1] to check the macroelements

described in this paper and to generate the figures. The code can be used or down-
loaded from http://www.math.utah.edu/∼alfeld.

Remark 8.2. Theorem 10.1 of [13] implies that, in order to obtain macroele-
ments on �Q which will join with Cr smoothness when constructed on the individual
quadrilaterals of a quadrangulation, we must require supersmoothness of order ρr
at the vertices of Q, where ρr is defined in (7.3). This implies that we cannot use
polynomials of degree lower than the dr given in (7.2).

Remark 8.3. While there is a unique choice of minimal degree and minimal
supersmoothness at the vertices of Q, our choice of extra smoothness conditions is
not the only choice which leads to macroelements based on the natural set of degrees
of freedom, i.e., other sets of τ ’s will also work.

Remark 8.4. In view of the connection between derivatives and B-coefficients,
Theorem 7.1 immediately implies that, given f ∈ Cρr (Ω), there exists a unique spline
s ∈ Sr(♦+) which solves the Hermite interpolation problem

Dν
xD

µ
y s(v) = Dν

xD
µ
y f(v), 0 ≤ ν + µ ≤ ρr, v ∈ ♦,(8.1)

and

Dj
es(ηje,i) = Dj

ef(ηje,i), 1 ≤ i ≤ j, 1 ≤ j ≤ r,(8.2)

for all edges e of ♦. Here De denotes the perpendicular derivative to the edge e :=
〈u1, u2〉, and

ηje,is :=
(j + 1− i)u1 + iu2

j + 1
, i = 1, . . . , j.

A simple application of the Bramble–Hilbert lemma shows that this interpolant satis-
fies the error bounds of Theorem 7.4 with p =∞. For error bounds for other bivariate
spline spaces, see [4].

Remark 8.5. In view of Remark 8.2, it is clear that the natural set of degrees
of freedom for a Cr macroelement on �Q are precisely the derivative information
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described in (8.1)–(8.2). For a comparison with the natural degrees of freedom for
smooth macroelements defined on Clough–Tocher and Powell–Sabin splits, see [2, 3,
12, 13].
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Cr, C. R. Acad. Sci. Paris Sér. I Math., 316 (1993), pp. 503–508.

[17] G. Sander, Bornes supérieures et inférieures dans l’analyse matricielle des plaques en flexion-
torsion, Bull. Soc. Roy. Sci. Liège, 33 (1964), pp. 456–494.
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EDGE BIFURCATIONS FOR NEAR INTEGRABLE SYSTEMS VIA
EVANS FUNCTION TECHNIQUES∗
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Abstract. When studying the linear stability of waves for near integrable systems, a funda-
mental problem is the location of the point spectrum of the linearized operator. Internal modes may
be created upon the perturbation, i.e., eigenvalues may bifurcate out of the continuous spectrum,
even if the corresponding eigenfunction is not initially localized. This phenomenon is also known
as an edge bifurcation. It has recently been shown that the Evans function is a powerful tool when
one wishes to detect an edge bifurcation and track the resulting eigenvalues. It has been an open
question as to the role played by the solutions to the Lax pair, associated with the integrable prob-
lem, in the construction of the Evans function and the detection of edge bifurcations. Using the
Zakharov–Shabat eigenvalue problem and the massive Thirring model as illustrations, we show the
connection between the inverse scattering formalism and the linear stability analysis of waves. In
particular, we show a direct connection between the scattering coefficients and the Evans function.
Last, using perturbations of the massive Thirring model, we show how the Evans function can be
used to predict the location of bifurcating edge eigenvalues.

Key words. travelling waves, stability, Evans function, inverse scattering theory

AMS subject classifications. 35P05, 37K10, 35P25
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1. Introduction. Much work has been done recently on the detection of edge
bifurcations, or internal modes, for perturbed integrable systems (see, for instance,
[15, 16, 17, 25, 27, 31]). When considering the stability of solitons for an integrable
system, it is typically a straightforward problem to locate the spectrum associated
with the operator which arises from linearizing about the soliton. This is possible
primarily due to the fact that the integrable problem has so much structure. The
basic issue is then to try to determine the spectrum for the perturbed problem when
this structure is no longer available.

In order to illustrate the issues involved, consider the following well-studied ex-
ample, the perturbed focusing nonlinear Schrödinger equation (NLS):

iqt +
1

2
qxx − ωq + |q|2q = iεR(q, q∗) (+complex conjugate (c.c.)),

where q(x, t) ∈ C for any (x, t) ∈ R × R
+ and where ω ∈ R

+ and 0 ≤ ε ≤ 1. When
ε = 0, the NLS has the soliton solution

φ(x, ω) =
√

2ω sech(
√

2ω x).

After linearizing the unperturbed NLS about φ, we obtain

iqt +
1

2
qxx − ωq + φ2(2q + q∗) = 0 (+c.c.),
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and the associated eigenvalue problem is therefore

iλq +
1

2
qxx − ωq + φ2(2q + q∗) = 0. (+c.c.)

Upon computing the spectrum of the linearized operator, one finds that λ = 0 is an
isolated eigenvalue of geometric multiplicity two and algebraic multiplicity four, and
the rest of the spectrum is a continuous spectrum which resides on the imaginary axis
in the bands | Imλ| ≥ ω [21, 39]. Thus, when ε = 0, the wave is linearly stable in that
there exists no unstable spectrum (i.e., no spectral elements λ with Reλ > 0). Here,
to fix notation, we divide the spectrum of a given operator into two disjoint sets. The
point spectrum consists of all isolated eigenvalues with finite multiplicity, while the
essential (or continuous) spectrum is the complement of the point spectrum in the
spectrum.

A fundamental question is: If the wave persists, what happens to its linear sta-
bility for ε > 0? There are two issues to consider. The first is the fate of the point
eigenvalues at λ = 0. Depending on the type of perturbation and what invariances of
the NLS are preserved under the perturbation, some of these eigenvalues will generally
move. This issue comes up in general in the study of perturbed Hamiltonian systems
(see [14] and references therein). The perturbed eigenvalues can be tracked, for in-
stance, by using the Evans function [13, 14] or via a Lyapunov-Schmidt reduction.
There has also been a great deal of formal work using adiabatic and variational ideas.
(A small subset is [3, 21, 40, 26, 35].) The idea behind these methods is that the
effect of radiation on the evolution of the perturbed wave is of higher order and can
thus be neglected at first order in a perturbation expansion. For the focusing NLS,
the rigorous eigenvalue analysis and formal work are in agreement; however, this is
not always the case, for it has recently been shown in [15] that the results disagree
for the defocusing NLS.

The second issue, and the primary focus of this paper, is to locate the rest of the
spectrum. The location of the continuous spectrum is straightforward (see Henry [11]),
and one typically assumes that the perturbation is such that the continuous spectrum
remains in the closed left-half plane. A more troublesome problem is determining
the location of the rest of the point spectrum. Under the perturbation of the PDE,
it is possible for point eigenvalues to move out of the continuous spectrum. If this
occurs, then one says that an edge bifurcation has occurred or an internal mode has
been created. It must be emphasized that an edge bifurcation can happen even if the
corresponding eigenfunctions for the unperturbed problem are not localized. Indeed,
the recent work of [16, 17, 25, 31] has shown this to be the case for the perturbed
NLS. For the NLS, it turns out that an edge bifurcation can happen only at the
edge of the continuous spectrum, i.e., at the points λ = ±iω; furthermore, at most
one eigenvalue can pop out of the continuous spectrum at each of these two points.
A priori, however, this fact is not obvious, as it appears to be possible for an edge
bifurcation to occur along any point in the continuous spectrum: since it is known
that the eigenfunctions associated with the continuous spectrum are all bounded but
nondecaying, it seems to be plausible that a small perturbation of the PDE can cause
these bounded eigenfunctions to decay as |x| → ∞ and therefore to become true
eigenfunctions.

This idea naturally leads to the question: What is the underlying mechanism that
determines where an edge bifurcation may take place? We investigate this question
for integrable PDEs. Thus consider a Lax pair

vx = Lv, vt = Mv,
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where v ∈ C
n, and L and M are 2× 2 matrices that depend on (x, t). The associated

integrable PDE

ut = K(u)(1.1)

is derived from the compatibility condition vxt = vtx, i.e., from Lt−Mx+[L,M ] = 0.
The direct scattering problem consists of finding the solutions to vx = Lv that are
oscillatory as |x| → ∞. These solutions are called Jost functions, and they can be
parametrized by their asymptotic spatial wavenumber, or frequency, k for x → −∞.
Associated with the Jost function with wavenumber k is the transmission coefficient
a(k), which measures the amplitude of the Fourier mode with wavenumber k as x→
∞. Roughly speaking,

φ(k, x) ∼ e−ikx as x→ −∞, φ(k, x) ∼ a(k)e−ikx as x→∞,

where φ(k, x) is the Jost function with wavenumber k.
We are interested in finding solutions to the eigenvalue problem which arises from

linearizing (1.1) about the soliton. It turns out that certain quadratic combinations
of the Jost functions, the so-called adjoint squared eigenfunctions, satisfy this lin-
earized problem [21, 22]. Thus one can recover asymptotically oscillatory solutions to
the linearized problem which correspond to eigenmodes in the continuous spectrum.
Furthermore, if one knows the transmission coefficient a(k), then one can determine
the precise behavior of these solutions as |x| → ∞. Of course, not all of the solutions
here will be known; however, as will be seen, this will be unimportant as long as one
has sufficient information about a(k). As we shall see, the transmission coefficient
actually encodes all the information needed to predict edge bifurcations.

We use the Evans function, E(λ), to study edge bifurcations. The Evans function
E(λ) is an analytic function of the spectral parameter λ which has the property that
E(λ) = 0 if and only if λ is a point eigenvalue; furthermore, the order of the zero is
the algebraic multiplicity of the eigenvalue [4, 6, 7, 8, 9, 30]. Originally, the Evans
function was defined only away from the continuous spectrum. We showed in [16, 17]
(see also [10]) that the Evans function can actually be extended across the essential
spectrum. Edge bifurcations manifest themselves as zeros of the Evans function that
move out of the continuous spectrum. Thus, by locating the zeros of E(λ) embedded
in the continuous spectrum, one can determine where an edge bifurcation will take
place and can also track these zeros under the perturbation.

In order to finish the problem, one must then be able to calculate the Evans
function on the continuous spectrum. For the class of problems under consideration
in this paper, this calculation is possible. It is found that for integrable PDEs aris-
ing from the Zakharov–Shabat eigenvalue problem, the Evans function restricted to
the continuous spectrum vanishes precisely at branch points of the continuous spec-
trum and at points where the transmission coefficient a(k) vanishes for some real k
(see section 3.3 for details). For simplicity, we exclude the second possibility (see
Assumption 2.1) and focus instead on edge bifurcations at branch points. In this
situation, the total number of bifurcating eigenvalues depends on the order of the
branch point (see section 3 for details). To illustrate the effects of perturbations, we
consider the massive Thirring model, where an edge bifurcation can happen at four
branch points—two are at the edge of the continuous spectrum, and two are contained
within the continuous spectrum. The reason for this phenomenon is that the massive
Thirring model possesses two dispersion relationships which are used to describe the
continuous spectrum, while the PDEs arising from the Zakharov–Shabat eigenvalue
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problem contain only one. We then utilize the resulting Evans function to present a
perturbation expansion for the bifurcating eigenvalues.

Pelinovsky and Sulem [32, 33] have recently considered a problem which is com-
plementary to that presented herein. They consider an integrable PDE (such as the
focusing NLS) which possesses a soliton solution and ask the question about the
evolution of small perturbations of this soliton. Since the system is integrable, the
question can be answered by performing a detailed analysis of the associated scat-
tering problem. Using a different technique than that presented herein, they study
edge bifurcations of simple eigenvalues for the scattering problem (and not for the
integrable PDE itself as we do). They show that if an edge bifurcation occurs, then a
certain matching condition must hold. (Note, however, that their approach does not
appear to prove the converse.) In addition, they show that an edge bifurcation leads
to the creation of new solitons.

The paper is organized as follows. In section 2, we discuss the Zakharov–Shabat
eigenvalue problem as the prototypical example. In section 3, we show how the squared
eigenfunctions of the scattering problem are related to the linear stability problem of
the underlying integrable PDE. Furthermore, we calculate the Evans function for the
integrable PDE. Last, in section 4, we use the massive Thirring model to illustrate
what happens when several branch points collide and to present a perturbation anal-
ysis of the Evans function that predicts the location of eigenvalues that move out of
the continuous spectrum upon adding perturbation to the PDE.

Notation 1.1. Throughout this paper, we denote the complex conjugate of a
complex number q by q∗; we emphasize that q̄ does not denote the complex conjugate
of q.

2. Direct and inverse scattering for the Zakharov–Shabat problem.
Much of the following discussion follows that given in [2, 24] (see also [1]) and is
included to set up the notation and for the sake of completeness.

2.1. The evolution equation. We begin by choosing complex-valued functions
r and q that depend on (x, t) such that u(x, t) = (r, q)(x, t) decays to zero exponen-
tially as |x| → ∞ for every t. Consider the 2× 2 scattering problem given by

vx =

( −ik q(x, t)
r(x, t) ik

)
v,(2.1)

where v = (v1, v2) again depends on (x, t). We assume that the time-dependence of
v is governed by the linear equation

vt =

(
A B
C D

)
v,(2.2)

where A, B, C, and D are complex-valued functions that depend on u = (r, q) and on
k. The compatibility condition vtx = vxt is satisfied provided we have that D = −A
and

Ax + rB − qC = 0,

Bx − qt + 2Aq + 2ikB = 0,(2.3)

Cx − rt − 2Ar − 2ikC = 0.
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One way of solving the compatibility condition (2.3) is to assume an ansatz of the
form

A = Ω(k) +

n−1∑
j=0

Ajk
j , B =

n−1∑
j=0

Bjk
j , C =

n−1∑
j=0

Cjk
j ,

so that A, B, and C are polynomial functions of the eigenvalue parameter k for a
given dispersion relation

Ω(k) =
n∑
j=0

djk
j .(2.4)

Here the coefficients dj are given complex numbers, while the coefficients Aj , Bj , and
Cj depend on (r, q) in such a fashion that they decay to zero as |x| → ∞. Substituting
the above ansatz into (2.3), solving recursively starting at j = n − 1, and working
down to j = 0, we obtain

Aj =

∫ x

−∞
(qCj − rBj) dy,

(
Cj
Bj

)
=

n∑
�=j+1

id�(LA(u))�−1−ju(2.5)

for j = 0, . . . , n− 1. The operator LA(u) that appears in (2.5) arises naturally when
solving (2.3) inductively and is given by

LA(u)v := −1

2
iσ3∂xv + iu

∫ x

−∞
(qv1 − rv2) dy,(2.6)

where u = (r, q), v = (v1, v2), and σ3 is the Pauli spin matrix

σ3 =

(
1 0
0 −1

)
.

In addition, as part of the compatibility condition on the level j = 0, we obtain the
evolution equation

σ3ut + 2Ω(LA(u))u = 0(2.7)

for u(x, t) = (r, q)(x, t).
In summary, for any given polynomial dispersion relation Ω(k), we can construct

the evolution equation (2.7) by means of the Zakharov–Shabat scattering problem
(2.1) and (2.2). The class of equations that can be realized by (2.7), upon using an
appropriate dispersion relation Ω(k), includes KdV, mKdV, and NLS (see [2, p. 258]).
Direct and inverse scattering theory allow us to actually solve (2.7).

2.2. The direct scattering problem. First, we describe how the scattering
data are obtained from the functions (r, q). This map involves certain solutions, the
so-called Jost functions, to (2.1). For any k with Im k > 0, there are unique solutions
φ(k, x) and ψ(k, x) to (2.1) that satisfy

lim
x→−∞φ(k, x)eikx =

(
1

0

)
, lim

x→∞ψ(k, x)e−ikx =

(
0

1

)
.

The solutions eikxφ(k, x) and e−ikxψ(k, x) are analytic in k for Im k > 0. We empha-
size that these solutions also depend on t; we will, however, suppress this dependence
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in our notation. The first piece of the scattering data, the transmission coefficient
a(k), is given by

a(k) := φ(k, x) ∧ ψ(k, x) := det

(
φ1(k, x) ψ1(k, x)
φ2(k, x) ψ2(k, x)

)
.

Note that we have

lim
x→∞φ(k, x)eikx = a(k)

(
1

0

)

for Im k > 0 since the trace of the matrix in (2.1) is zero. It is desirable to analytically
extend the transmission coefficient a(k) across the real axis Im k = 0. This extension
has been carried out in [2, p. 268] under the assumption that the potentials (r, q)(x, t)
decay exponentially to zero as |x| → ∞. The gap lemma [10, 17] deals with this issue
in more generality. Roughly speaking, in this context, it states that if the system (2.1)
approaches a constant system exponentially fast as |x| → ∞, which is guaranteed by
the assumption on r and q, then the solutions φ and ψ can be analytically extended.
After extending the coefficient a(k), we have that, when k ∈ R,

lim
x→∞

[
φ(k, x)− a(k)e−ikx

(
1

0

)
− b(k)eikx

(
0

1

)]
= 0

for some function b(k), the so-called reflection coefficient, which may not be analytic
in k. In a similar fashion, one can construct solutions φ̄(k, x) and ψ̄(k, x) to (2.1) for
Im k < 0 that satisfy

lim
x→−∞ φ̄(k, x)e−ikx =

(
0

−1

)
, lim

x→∞ ψ̄(k, x)eikx =

(
1

0

)
.

Recall that φ̄ does not denote the complex conjugate of φ. The above solutions are
analytic in k for Im k < 0 and can again be extended across Im k = 0 in an analytic
fashion. The associated transmission coefficient ā(k) is given by

ā(k) = φ̄(k, x) ∧ ψ̄(k, x)

and is analytic for Im k ≤ 0. For Im k < 0, we have

lim
x→∞ φ̄(k, x)e−ikx = ā(k)

(
0

−1

)
,

while, for Im k = 0, we have

lim
x→∞

[
φ̄(k, x)− ā(k)eikx

(
0

−1

)
− b̄(k)e−ikx

(
1

0

)]
= 0

for some function b̄(k) that may not be analytic.

2.3. The adjoint squared eigenfunctions. Next we use the Jost functions to
define the squared eigenfunctions Ψ(k, x) and Ψ̄(k, x) as well as the adjoint squared
eigenfunctions ΨA(k, x) and Ψ̄A(k, x). The functions Ψ and Ψ̄ are given by

Ψ(k, x) =

(
ψ1(k, x)2

ψ2(k, x)2

)
, Ψ̄(k, x) =

(
ψ̄1(k, x)2

ψ̄2(k, x)2

)
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for Im k ≥ 0 and Im k ≤ 0, respectively, while ΨA and Ψ̄A are defined via

ΨA(k, x) =

(
φ2(k, x)2

−φ1(k, x)2

)
, Ψ̄A(k, x) =

(
φ̄2(k, x)2

−φ̄1(k, x)2

)

again for Im k ≥ 0 and Im k ≤ 0, respectively. All of these functions are analytic in k
in their domain of definition. The adjoint squared eigenfunctions satisfy

lim
x→−∞ ΨA(k, x)e2ikx =

(
0

−1

)
, lim

x→∞ ΨA(k, x)e2ikx = a(k)2
(

0

−1

)
,

(2.8)

lim
x→−∞ Ψ̄A(k, x)e−2ikx =

(
1

0

)
, lim

x→∞ Ψ̄A(k, x)e−2ikx = ā(k)2
(

1

0

)

for Im k > 0 and Im k < 0, respectively. If b(k) = b̄(k) = 0 for all k ∈ R, then
(2.8) is also true for Im k = 0; otherwise, additional terms that involve the reflection
coefficients have to be added in a straightforward fashion using the asymptotics of
the Jost functions. We remark that the (adjoint) squared eigenfunctions also depend
on t. A straightforward computation that uses (2.1) shows that

(LA(u)− k)ΨA(k, x) = (LA(u)− k)Ψ̄A(k, x) = 0

for any k ∈ R. For 1-soliton solutions with r = −q∗, the adjoint squared eigenfunctions
can be calculated explicitly (see [20, section 3]).

2.4. The inverse scattering problem. In the previous sections, we started
with a solution (r, q)(x, t) to (2.7) and then associated with that solution the scat-
tering data, the Jost functions, and eventually the squared eigenfunctions. Inverse
scattering allows us to, at least in principle, find solutions to (2.7) for a given set of
scattering data. In other words, the inverse scattering problem consists of mapping
given scattering data to solutions u = (r, q) of (2.7). We briefly describe the procedure
and refer to [2, section IV.B and Appendix 5] and [20, p. 124] for more details and
proofs.

Recall that Ω(k) denotes the polynomial dispersion relation that we chose earlier.
We begin with the so-called primordial scattering data{

b̄0(k)

a0(k)
,
b0(k)

ā0(k)
; k ∈ R

}
,

{
(kj , βj)j=1,N , (k̄j , β̄j)j=1,N̄

}
(2.9)

consisting of the functions a0, ā0, b0, and b̄0, where we assume that the fractions
appearing in (2.9) are bounded uniformly in k ∈ R and pairs of complex numbers with
Ω(kj) = 0 = Ω(k̄j) for all j. Thus the primordial scattering data involve fractions of
the scattering data. We remark that the scattering data can be reconstructed from
the primordial scattering data [2, Appendix 5]. We evolve the primordial scattering
data by defining

b̄(k, t)

a(k, t)
= e2Ω(k)t b̄0(k)

a0(k)
,

b(k, t)

ā(k, t)
= e−2Ω(k)t b0(k)

ā0(k)
.(2.10)

Using these data, one can, at least in principle, reconstruct the Jost functions φ(k, x)
and φ̄(k, x) by solving certain integral equations [2, section IV.B]. Using the Jost
functions, we obtain the adjoint squared eigenfunctions and from these a solution
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(r, q)(x, t) of (2.7) via(
r

q

)
=

1

π

∫ ∞

−∞

[
b̄(k)

a(k)
ΨA(k, x) +

b(k)

ā(k)
Ψ̄A(k, x)

]
dk

−2i

N∑
j=1

βjΨ
A(kj , x) + 2i

N̄∑
j=1

β̄jΨ̄
A(k̄j , x).

In the next section, we restrict our analysis to transmission coefficients a(k) and
ā(k) that are nonzero for k ∈ R and that have a finite number of zeros off the real
axis Im k = 0. For transmission coefficients with these properties, it was shown by
Kaup [19] that the adjoint squared eigenfunctions formed by the Jost functions φ and
φ̄ form a basis for L2(R,C) ∩ L1(R,C).

2.5. Spectral stability of 1-solitons. We consider 1-solitons which are solu-
tions to (2.7) whose scattering data are rather simple [1, 2]. The precise requirements
on the scattering data of 1-solitons are summarized in the following assumption.

Assumption 2.1. Assume that u0 is a stationary, i.e., time-independent, 1-soliton.
More precisely, we assume that the following is true: we have N = N̄ = 1 in (2.9),
the associated reflection coefficients b(k) and b̄(k) are identically zero for k ∈ R, and
the associated transmission coefficients a(k) and ā(k) are nonzero for any k ∈ R and
have each precisely one simple zero off the real axis Im k = 0.

We remark that the simple zeros of a(k) and ā(k) are given by k = k1 and k = k̄1,
respectively, which are defined in (2.9) [2, Appendix 5].

Note that 1-solitons typically arise as rotating waves u(x, t) = eiωtu0(x) or as
travelling waves u(x, t) = u0(x − ct) (or a combination of both) for suitable real
numbers ω and c. Upon changing the coefficients d0 and d1 of the dispersion relation
Ω(k) in (2.4), we can always arrange to have ω = 0 and c = 0. The change in the
dispersion relation amounts to transforming (2.7) into a corotating and comoving
coordinate frame (see [2, (2.7)] for an explicit example).

We are interested in the stability of soliton solutions to (2.7) upon adding per-
turbations that destroy the integrability of (2.7). To investigate this question, we
need to have information about the spectrum and the associated eigenfunctions of
the integrable PDE (2.7) linearized about a soliton. Thus define

K(u) := −2σ3Ω(LA(u))u(2.11)

so that (2.7) is given by ut = K(u) and such that its linearization about the soliton
u0 is

vt = K′(u0)v.(2.12)

Upon seeking solutions to (2.12) of the form v(x, t) = eλtv(x), we get the associated
eigenvalue problem

[K′(u0)− λ]v = 0.(2.13)

We then have the following lemma.
Lemma 2.2. Suppose that Assumption 2.1 is met. The adjoint squared eigen-

functions ΨA(k, x) and Ψ̄A(k, x) then satisfy

[K′(u0)− 2Ω(k)]σ3ΨA(k, x) = 0 for any k with Im k ≥ 0,
(2.14)

[K′(u0) + 2Ω(k)]σ3Ψ̄A(k, x) = 0 for any k with Im k ≤ 0.
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In other words, σ3ΨA(k, x) and σ3Ψ̄A(k, x) are eigenfunctions of the linear oper-
ator K′(u0). We remark that the adjoint squared eigenfunctions do not depend on t,
since we assumed that the underlying solution u0 = (r0, q0) is time-independent.

Proof. The claim is a consequence of results by Kaup and Newell (see [24, Ap-
pendix B] or [29, section 6.4]). The idea is to compute the variation of (2.7) with
respect to one of the primordial scattering data. Hence we fix $ ∈ R and replace the
original scattering data by the fractions

(1 + εδ(k − $))
b̄(k)

a(k)
,

where δ denotes the δ-distribution and ε is a small perturbation parameter. The
following arguments are formal but can be made rigorous by approximating the δ-
distribution with localized bump functions. Upon calculating the derivative of (2.7)
with respect to ε, we conclude that

d

dε

(
rt
qt

)
= K′(u0)

d

dε

(
r

q

)

so that

σ3
d

dε

(
rt
−qt

)
= K′(u0)σ3

d

dε

(
r

−q
)
.(2.15)

From [29, (6.55)], we know that

d

dε

(
r

−q
)

= − 1

π

∫ ∞

−∞

[
d

dε

(
b̄(k)

a(k)

)
ΨA(k, x)− d

dε

(
b(k)

ā(k)

)
Ψ̄A(k, x)

]
dk

+2i
dβ1

dε
ΨA(k1, x) + 2i

dβ̄1

dε
Ψ̄A(k̄1, x).

Upon taking the time derivative of this expression and using (2.10), we obtain

d

dε

(
rt
−qt

)
= − 1

π

∫ ∞

−∞

[
d

dε

(
b̄(k)

a(k)

)
(2Ω(k)ΨA(k, x) + ∂tΨ

A(k, x))

− d

dε

(
b(k)

ā(k)

)
(−2Ω(k)Ψ̄A(k, x) + ∂tΨ̄

A(k, x))

]
dk

+2i
dβ1

dε
∂tΨ

A(k1, x) + 2i
dβ̄1

dε
∂tΨ̄

A(k̄1, x).

Evaluating these expressions at b = b̄ = 0 and using that the adjoint squared eigen-
functions of the 1-soliton do not depend on time, we get

d

dε

(
r

−q
)

= − 1

π
ΨA($, x),

d

dε

(
rt
−qt

)
= −2Ω($)

π
ΨA($, x).

Substituting this result into (2.15), we obtain

2Ω($)σ3ΨA($, x) = K′(u0)σ3ΨA($, x),

which is the desired result. Using (1 + εδ(k − $))b(k)/ā(k) and following the steps
above, we see that

−2Ω($)σ3Ψ̄A($, x) = K′(u0)σ3Ψ̄A($, x)
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for any $ ∈ R. Since the adjoint squared eigenfunctions ΨA and the dispersion relation
are analytic in $, we conclude that ΨA satisfies the above equation for any $ with
Im $ ≥ 0. This completes the argument.

The following lemma shows that the only element in the point spectrum Σpt of
the linearized operator K′(u0) is λ = 0.

Lemma 2.3. Suppose that Assumption 2.1 is met. If v(x) is a solution of (2.13)
such that v(x) decays to zero exponentially as |x| → ∞, then λ = 0 or v = 0.

Proof. Suppose that v(x) is a solution of (2.13) such that v(x) decays to zero
exponentially as |x| → ∞. Owing to the completeness result in [19], we then have

σ3v(x) =

∫ ∞

−∞

[
α(k)ΨA(k, x) + ᾱ(k)Ψ̄A(k, x)

]
dk(2.16)

+βΨA(k1, x) + β̄Ψ̄A(k̄1, x) + γ
d

dk
ΨA(k1, x) + γ̄

d

dk
Ψ̄A(k̄1, x)

for certain exponentially decaying functions α(k), ᾱ(k) and complex numbers β, β̄, γ,
and γ̄. Here, the derivatives of ΨA and Ψ̄A with respect to k, evaluated at k1, are
generalized eigenfunctions of K′(u0), belonging to the eigenvalue λ = 0, that need to
be added to the set introduced in section 2.3 to make it complete [19]. Multiplying
(2.16) by σ3, applying the operator [K′(u0)− λ] to both sides of the above equation,
and exploiting the properties of the adjoint squared eigenfunctions established in [19]
and in Lemma 2.2, we obtain

0 =

∫ ∞

−∞

[
(2Ω(k)− λ)α(k)ΨA(k, x)− (2Ω(k) + λ)ᾱ(k)Ψ̄A(k, x)

]
dk

+λ(γ − β)ΨA(k1, x) + λ(γ̄ − β̄)Ψ̄A(k̄1, x)− λγ
dΨA

dk
(k1, x)− λγ̄

dΨ̄A

dk
(k̄1, x).

We conclude that necessarily α(k) = ᾱ(k) = 0 for all k. Furthermore, we have either
λ = 0 or the coefficients β, β̄, γ, and γ̄ vanish. In the latter case, we have v = 0.

Note that, as a consequence of the results in [19], λ = 0 has geometric multiplicity
two, and each of the geometric eigenvalues admits a maximal Jordan block of length
two. In fact, the eigenfunctions are given by ΨA(k1, x) and Ψ̄A(k̄1, x), where k1 and
k̄1 are defined in (2.9), and the associated generalized eigenfunctions are d

dkΨA(k1, x)

and d
dk Ψ̄A(k̄1, x), respectively. This can be confirmed by taking derivatives of (2.14)

with respect to k, evaluated at k = k1 and k = k̄1, using that Ω(k1) = Ω(k̄1) = 0,
and exploiting (2.8) together with the assumption that k = k1 and k = k̄1 are simple
zeros of a(k) and ā(k), respectively.

It is straightforward to compute the essential spectrum Σess of K′(u0). The
operator K′(u0) is a relatively compact perturbation of the linearization K′(0) about
the asymptotic rest state u = 0 which is given by

K′(0) = −2σ3Ω

(
−1

2
iσ3∂x

)

on account of (2.6) and (2.11). As a consequence, the essential spectrum of K′(u0) is

Σess = {λ ∈ C; λ = ±2Ω(k) for some k ∈ R}.(2.17)

More precisely, the radiation modes are given by exp(λt+ ikx)v0, where λ and k are
related via λ = 2Ω(−k/2) for v0 = (1, 0) and λ = −2Ω(k/2) for v0 = (0, 1). In
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particular, the essential spectrum is (marginally) stable, i.e., lies on the imaginary
axis, if and only if the coefficients in (2.7) are purely imaginary. Since the soliton is
certainly unstable if the essential spectrum is unstable, we assume henceforth that
the above condition on the coefficients is met.

Assumption 2.4. We assume that the coefficients dj of the dispersion relation
Ω(k), introduced in (2.4), are purely imaginary; i.e., we have dj ∈ iR for j = 0, . . . , n.

3. The Evans function. Now that those aspects of the inverse scattering for-
malism that will be necessary for the following analysis have been addressed, we will
proceed to show how Assumption 2.1 yields precise information as to how one can lo-
cate those points in the continuous spectrum at which discrete eigenvalues may move
out upon adding a perturbation to the integrable PDE (2.7). The tool we choose to
use is the Evans function, E(λ). Thus, consider the eigenvalue problem (2.13)

[K′(u0)− λ]v = 0.(3.1)

We assume that this eigenvalue problem can be rewritten as the first-order system

d

dx
Y = [M(λ) + R(x)]Y, Y(x) ∈ C

2n,(3.2)

where n is the degree of the polynomial dispersion relation (2.4) and therefore of
the linearized PDE (3.1). The matrix R(x) converges to zero exponentially fast as

|x| → ∞. Note that v satisfies (3.1) if and only if Y = (1, d
dx , . . . ,

dn−1

dxn−1 )v satisfies
(3.2).

3.1. The construction of the Evans function. We briefly recall the construc-
tion of the Evans function following the approach in [36] that avoids differential forms
and refer to [4] for the original approach via differential forms. We begin by defining
the Evans function for values of λ ∈ C such that λ is not in the essential spectrum
given in (2.17). For such values of λ, the matrix M(λ) is hyperbolic, i.e., its spectrum
contains no points on the imaginary axis. We are interested in locating isolated eigen-
values which correspond to those values of λ for which (3.2) or, equivalently, (3.1) has
a nonzero localized solution. We accomplish this by constructing all solutions to (3.2)
that decay as x→ −∞ and all solutions that decay as x→∞. The associated initial
data at a given value of x then define two subspaces such that λ is an eigenvalue if
and only if those two subspaces have a nontrivial intersection, leading to a solution
of (3.2) that decays as x→ ±∞. Therefore, assuming that M(λ) has nu eigenvalues
with positive real part and ns = 2n− nu eigenvalues with negative real part, choose
two sets {Yj(λ, x)}j=1,...,nu

and {Yj(λ, x)}j=nu+1,...,2n of linearly independent solu-
tions of (3.2) with the following properties: the above solutions depend analytically
on λ, Yj(λ, x) converges to zero exponentially as x → −∞ for j = 1, . . . , nu, and
Yj(λ, x) converges to zero exponentially as x → ∞ for j = nu + 1, . . . , 2n. Note
that such a choice is always possible (see, e.g., [36]). The Evans function E(λ) is the
complex-valued function defined by

E(λ) = exp

(
−
∫ x

0

tr[M(λ) + R(s)] ds

)
det(Y1(λ, x) . . .Y2n(λ, x)),

where we consider the 2n vectors Yj(λ, x) as column vectors in a 2n × 2n matrix.
By construction, λ is in the point spectrum Σpt if and only if E(λ) = 0, as this then
leads to a solution (the eigenfunction) of (3.2) that decays exponentially as |x| → ∞.
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In fact, the algebraic multiplicity of λ, considered as an eigenvalue of K′(u0), is equal
to the order of λ, considered as a zero of E(λ); see [4]. As we shall see now, the
set {Yj(λ, x)}j=1,...,nu can be constructed from the adjoint squared eigenfunctions
σ3ΨA(k, x) and σ3Ψ̄A(k, x).

To see this, fix again λ with Reλ ≥ 0 such that λ /∈ Σess. For any such fixed
λ, solve the equation λ = 2Ω(k) subject to the constraint Im k > 0, and denote
the corresponding roots by k1, . . . , k�, counted with their order.1 Analogously, solve
λ = −2Ω(k) subject to the constraint Im k < 0, and denote the solutions by k̄1, . . . , k̄�̄,
again counted with their order. Note that $ and $̄ are independent of λ, since $ and $̄
can change only when one of the k’s becomes real, which can happen only for λ ∈ Σess.
We exclude those values of λ, however. We remark that the solutions k1, . . . , k� and
k̄1, . . . , k̄�̄ depend continuously on λ.

The roots kj and k̄j of the dispersion relation and the eigenvalues νj and ν̄j of
the matrix M(λ) are related via

νj = −2ikj , ν̄j = 2ik̄j(3.3)

for j = 1, . . . , n. Note that the unstable eigenvalues of M(λ) are those that correspond
to k1, . . . , k� and k̄1, . . . , k̄�̄, so that $ + $̄ = nu.

Consider the eigenvalue problem (3.1). Suppose first that λ is such that k1, . . . , k�
are $ distinct numbers, while k̄1, . . . , k̄�̄ are $̄ distinct numbers. As a consequence of
Lemma 2.2, σ3ΨA(kj , x) for j = 1, . . . , $ and σ3Ψ̄A(k̄j , x) for j = 1, . . . , $̄ are solutions
to the eigenvalue problem (3.1). Furthermore, on account of (2.8) and the above
discussion, these solutions are linearly independent, they decay exponentially as x→
−∞, and any solution to (3.1) with this property is, in fact, a linear combination of
the above adjoint squared eigenfunctions. Again, due to (2.8), any linear combination
of the ΨA(k1, x), . . . ,ΨA(k�, x) and Ψ̄A(k̄1, x), . . . , Ψ̄A(k̄�̄, x) grows exponentially as
x→∞ except for those λ for which a(kj) or ā(k̄j) vanishes for some j. Assumption 2.1
precludes this except when λ = 0.

Next suppose that one of the k1, . . . , k� has order m > 1 as a zero of λ = 2Ω(k).
In other words, assume that, possibly after relabeling the roots, k1 = · · · = km and
kj �= k1 for j = m + 1, . . . , $, so that

dj

dkj
Ω(k)

∣∣∣
k=k1,j=1,...,m−1

= 0,
dm

dkm
Ω(k)

∣∣∣
k=k1

�= 0.

Differentiating (2.14) and (2.8) with respect to k shows that σ3
dj

dkj ΨA(k1, x) satisfies
(3.1) with

lim
x→−∞

e2ik1x

(−2ix)j
djΨA

dkj
(k1, x) =

(
0

−1

)
, lim

x→∞
e2ik1x

(−2ix)j
djΨA

dkj
(k1, x) = a(k1)2

(
0

−1

)

for j = 0, . . . ,m− 1. Furthermore, these solutions together with the remaining func-
tions ΨA(km+1, x), . . . ,ΨA(k�, x) and Ψ̄A(k̄1, x), . . . , Ψ̄A(k̄�̄, x) form a linearly inde-
pendent set of solutions upon multiplying them by σ3. Again, linear combinations of
these functions generate all solutions to (3.1) that decay as x → −∞, and any such
combination grows exponentially as x→∞ except when λ = 0.

The above discussion provides a different proof of Lemma 2.2. The crucial as-
sumption is that a(k)ā(k) �= 0 except for those k for which Ω(k) = 0 so that λ = 0.

1Note that we abuse notation: the roots k1, . . . , k� are not related to the numbers appearing in
(2.9).
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Fig. 3.1. The leftmost plot shows the spectrum of the integrable PDE in the complex λ-plane
with the upper bullet labeled 4 being the branch point λ∗. The other four plots, numbered 1–4, show
the eigenvalues ν and ν̄ (related via (3.3) to the roots k and k̄ of the dispersion relation) of the
matrix M(λ) for λ to the right (1), on (2), and to the left (3) of the essential spectrum. The inset
with label 4 shows these eigenvalues at the branch point, where the three spatial eigenvalues ν inside
the circle collapse. In the plots labeled 1–4, bullets and crosses denote the eigenvalues in the stable
and unstable sets.

An extension of the above calculation will allow us to address the issue of locating
edge-bifurcation points.

In the last step, we concentrate on the essential spectrum. The idea is to analyt-
ically extend the solutions Yj(λ, x) that we constructed above for λ /∈ Σess into the
essential spectrum. Hence again fix λ with Reλ ≥ 0 such that λ /∈ Σess. Define the
sets

Ku(λ) := {k1(λ), . . . , k�(λ)}, K̄u(λ) := {k̄1(λ), . . . , k̄�̄(λ)},
which depend continuously on λ. Analogously, denote by k�+1, . . . , kn the roots of
λ = 2Ω(k) that satisfy Im k < 0 and by k̄�̄+1, . . . , k̄n the roots of λ = −2Ω(k) with
Im k > 0, and define

Ks(λ) := {k�+1(λ), . . . , kn(λ)}, K̄s(λ) := {k̄�̄+1(λ), . . . , k̄n(λ)}.
We then continue these sets of roots into the essential spectrum, which is possible
since the roots k of λ = 2Ω(k) and λ = −2Ω(k) depend continuously on λ. Note that
the sets Ku(λ) and Ks(λ) have a nonempty intersection precisely when λ = 2Ω(k)
and Ω′(k) = 0 for some k ∈ R. In fact, Ku(λ)∩Ks(λ) consists exactly of all elements
k with the above property. The analogous statement is, of course, true for K̄u(λ) and
K̄s(λ). We say that λ is a branch point of the essential spectrum if Ku(λ) ∩Ks(λ)
or K̄u(λ) ∩ K̄s(λ) are nonempty. This is also illustrated in Figure 3.1.

On account of [17] and the above discussion, the Evans function E(λ) vanishes
for λ ∈ Σess if and only if there are coefficients bj , b̄j ∈ C, with j = 1, . . . , n such that
the function

v(x) =
�∑
j=1

bjΨ
A(kj(λ), x) +

�̄∑
j=1

b̄jΨ̄
A(k̄j(λ), x)(3.4)

has the asymptotic behavior

v(x) =

n∑
j=�+1

bje
−2ikj(λ)x

(
0

1

)
+

n∑
j=�̄+1

b̄je
−2ik̄j(λ)x

(
1

0

)
+ O(x−1)(3.5)

as x→∞. Of course, at least one of the coefficients bj and b̄j has to be nonzero. In
other words, we seek solutions to (3.1) or, equivalently, (3.2) that have wavenumbers
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in Ku or K̄u as x → −∞ and wavenumbers in Ks or K̄s as x → ∞. Comparing
(3.4) and (3.5) with (2.8), we see that this occurs exactly when a(k)ā(k) = 0 for some
k ∈ C with λ = 2Ω(k) or λ = −2Ω(k) or else if λ is a branch point of the essential
spectrum. Indeed, if k ∈ Ku(λ) ∩ Ks(λ), then k = k1(λ) = k�+1(λ), possibly after
relabeling the roots, and v(x) = ΨA(k, x) satisfies (3.5).

In summary, we have proved the following theorem.
Theorem 3.1. Assume that Assumptions 2.1 and 2.4 are met. The Evans func-

tion E(λ) vanishes only at λ = 0 and at points λ for which there is a k ∈ R such that
λ = 2Ω(k) (or λ = −2Ω(k)) and Ω′(k) = 0.

Recall our original motivation: we wanted to locate all points in the essential
spectrum where discrete eigenvalues may move out upon adding a perturbation to
the original PDE. Any such point corresponds to a zero of the Evans function, and
the above theorem indeed gives all zeros of the Evans function: apart from λ = 0,
these zeros are in one-to-one correspondence with the branch points of the essential
spectrum, i.e., with any point λ such that there is a k ∈ R with λ = 2Ω(k), or
λ = −2Ω(k) and Ω′(k) = 0. The remaining issues are to predict how many eigenvalues
may move out of the essential spectrum and to locate those eigenvalues for a given
perturbation. In the next section, we discuss the first issue.

3.2. The Evans function at branch points. We want to compute the Evans
function E(λ) for λ close to a fixed branch point λ∗ ∈ Σess. We assume that λ∗ is a
branch point of λ = 2Ω(k); the case of branch points of λ = −2Ω(k) can, of course,
be handled in the same fashion. Thus we assume that there is a number k∗ ∈ R

such that λ∗ = 2Ω(k∗) and Ω′(k∗) = 0. In addition, we assume that the following
nondegeneracy condition is met. At the end of this section, we shall comment on the
situation where the following assumption is not met.

Assumption 3.2. Assume that λ∗ is a nondegenerate branch point, i.e., we have
Ω′(k) �= 0 for any k ∈ R such that λ∗ = −2Ω(k), or else λ∗ = 2Ω(k) with k �= k∗.

Throughout this section, we assume that λ is close to λ∗. Denote by m ∈ N

the order of k∗ as a root of λ∗ = 2Ω(k). Note that m > 1. As a consequence of
Assumption 3.2, we therefore have

λ = 2Ω(k) = λ∗ + (k − k∗)mΩ̃(k), Ω̃(k∗) ∈ iR \ {0}.(3.6)

In particular, if we continue the m roots of (3.6) near k∗, then, upon tracing out
one revolution on a circle in λ that is centered at λ∗, these roots undergo a cyclic
permutation of length m. After m full revolutions, the roots are labeled as before [18,
section II.1.2]. Following [15, 16, 17], we will wish to define the Evans function on an
appropriate Riemann surface. We therefore set

λ = λ∗ + γm,(3.7)

so that arg(γ) ∈ [−π/2m,π/2m) corresponds to the principal sheet of the Riemann
surface. The m roots of (3.6) near k∗ are then given by

k∗ + γ exp

(
2πij

m

)
(Ω̃(k∗)

1
m + O(γ)), j = 0, . . . ,m− 1.(3.8)

For Reλ > 0, i.e., for arg(γ) ∈ (−π/2m,π/2m), none of the roots in (3.8) is real.
(Otherwise, λ would be in the continuous spectrum.) Thus there are numbers mu

and ms = m−mu such that mu of the roots k in (3.8) have Im k > 0 and ms of them
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have Im k < 0. We denote these roots by k1(γ), . . . , kmu
(γ) and k�+1(γ), . . . , k�+ms

(γ),
where $ is as in section 3.1. Note that these roots are analytic in γ.

The remaining n−m roots k of (3.6) that are not close to k∗ can also be divided
into roots with Im k > 0 and Im k < 0. We denote those roots by kmu+1(γ), . . . , k�(γ)
and k�+ms+1(γ), . . . , kn(γ), respectively. The roots k̄1, . . . , k̄�̄ and k̄�̄+1, . . . , k̄n of λ =
−2Ω(k) with Im k < 0 and Im k > 0, respectively, are defined as in section 3.1. As
before, the collections of stable and unstable roots define the sets Ku(γ) and Ks(γ)
as well as K̄u(γ) and K̄s(γ).

The key is that these sets are well defined for any γ close to zero. Indeed, we had
seen earlier that the sets Ku and Ks (or K̄u and K̄s) have a nonempty intersection
only at branch points with the elements in the intersection given by the roots of the
dispersion relation that cause the branch points. Due to Assumption 3.2, those roots
are the ones of (3.6) near k∗. These critical roots, however, depend analytically on
the new spectral parameter γ.

Figure 3.1 illustrates the situation. Plotted there is the spectrum of the operator
K′(u0) and the spectra of the matrix M(λ) that appears in (3.2). Note that the
eigenvalues of M(λ) are related via (3.3) to the roots of the dispersion relation.

The Evans function E(γ) is now defined as before except that we count the
eigenspaces associated with the roots k1(γ), . . . , k�(γ) and k̄1(γ), . . . , k̄�̄(γ) as un-
stable and the eigenvalues associated with k�+1, . . . , kn and k̄�̄+1, . . . , k̄n as stable.
Again, linearly independent solutions to (3.1) and (3.2) can be computed as in the
previous section using the adjoint squared eigenfunctions. The crucial contribution
comes from the critical roots k1(γ), . . . , kmu(γ) and k�+1(γ), . . . , k�+ms(γ). First,
note that the adjoint squared eigenfunctions ΨA(k1(γ), x), . . . ,ΨA(kmu(γ), x) and
ΨA(k�+1(γ), x), . . . ,ΨA(k�+ms

(γ), x) are well defined and analytic in γ due to the
analytic extension of the Jost function φ across Im k = 0. We can therefore use
the adjoint squared eigenfunctions to construct solutions of (3.2) in the unstable and
stable eigenspaces via

Yj(x) =

(
1,

d

dx
, . . . ,

dn−1

dxn−1

)
ΨA(kj(γ), x).

Note, however, that the functions Y1, . . . ,Ymu
, and likewise Y�+1, . . . ,Y�+ms

, are
linearly independent only for γ �= 0. At γ = 0, all of these functions coincide. It is
certainly possible to construct from the Yj a set of linearly independent solutions.
Before we do that, note that, due to (3.8), we have

det




1 . . . 1 1 . . . 1
k1 . . . kmu k�+1 . . . k�+ms

... . . .
...

... . . .
...

km−1
1 . . . km−1

mu
km−1
�+1 . . . km−1

�+ms


 = Cvmdγ

m(m−1)/2(1 + O(γ)),

where

Cvmd = Ω̃(k∗)
m−1

2

∏
j>l

[
exp

(
2πij

m

)
− exp

(
2πil

m

)]
�= 0

is a nonzero Vandermonde determinant. Thus, upon exploiting once more the asymp-
totics (2.8) of the squared eigenfunctions together with the expression (3.8), we see
that the minor of the determinant of the matrix with columns Y1(x), . . . ,Ymu(x) is
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given by Cuγ
mu(mu−1)/2 as x → ∞ for some nonzero number Cu. Analogously, the

minor of the determinant of the matrix with columns Y�+1(x), . . . ,Y�+ms(x) is given
by Csγ

ms(ms−1)/2 as x → ∞ for some Cs �= 0. Thus we may still use the solutions
Y1, . . . ,Ymu and Y�+1, . . . ,Y�+ms but must divide the determinant in the definition
of the Evans function by the product CuCsγ

mu(mu−1)/2γms(ms−1)/2 to account for
the degeneracy of these solutions. Thus we can finally calculate the Evans function.
We obtain

E(γ) = exp

(
−
∫ x

0

tr[M(λ) + R(s)] ds

)
det(Y1(γ, x) . . .Y2n(γ, x))

= C̃∗(1 + O(γ))γ−mu(mu−1)/2γ−ms(ms−1)/2(3.9)

×det




1 . . . 1 1 . . . 1
k1 . . . kmu k�+1 . . . k�+ms

... . . .
...

... . . .
...

km−1
1 . . . km−1

mu
km−1
�+1 . . . km−1

�+ms




= C∗(1 + O(γ))γ−mu(mu−1)/2γ−ms(ms−1)/2γm(m−1)/2

= C∗(1 + O(γ))γmums ,

where the coefficient C∗ ∈ C is a nonzero number that involves a product of trans-
mission coefficients. Note that we used in (3.9) that the only nonzero contribution to
the determinant is from the critical solutions that we constructed above. Indeed, the
analysis in section 3.1 applies to all the other solutions. Thus we proved the following
theorem.

Theorem 3.3. Suppose that Assumptions 2.1, 2.4, and 3.2 are met. Recall the
definitions of mu and ms = m−mu introduced after (3.8). The Evans function E(γ)
is then given by

E(γ) = C∗γmums + O(γmums+1),

where C∗ �= 0 and λ = λ∗ + γm. Only roots of the Evans function E(γ) that satisfy
−π/2m < arg(γ) < π/2m correspond to eigenvalues of the operator K′(u0).

As a consequence of Theorem 3.3, upon adding a perturbation of the integrable
PDE, there will be mums zeros of the Evans function near λ = λ∗ on the Riemann
surface. It is then of interest to understand how many of these zeros correspond to
true eigenvalues of the linearized PDE operator and if any oscillatory instabilities
arise as a result of the perturbation. This computation involves a Taylor expansion of
the Evans function with respect to γ and the perturbation parameter ε. The generic
case m = 2 (with mu = ms = 1) was considered by Kivshar et al. [25] for conservative
perturbations and independently by Kapitula and Sandstede [16, 17] for arbitrary
perturbations. Additional applications can be found [27]. Combining the results in
[13] and [36], one can derive Taylor expansions of the Evans function also for m > 1.
Since the expansion depends strongly on m and mu, we decided not to give any details
pertaining to the Zakharov–Shabat problem, and we refer instead to section 4 for an
example that involves a branch point of higher order for the massive Thirring model.

3.3. Discussion. We briefly comment on degenerate branch points that violate

Assumption 3.2. In this case, there would be several wavenumbers k
(1)
∗ , . . . , k

(l)
∗ ∈ R

with associated orders m(1), . . . ,m(l) for some l > 1. It is then tempting to guess

that E(γ) ∼ ∏l
j=1 γ

m(j)
u m(j)

s . This is not the case, however. The reason is that we
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need to find the correct scaling for γ in (3.7) that allows us to extend the Evans

function to an appropriate Riemann surface. The m(j) roots associated with k
(j)
∗

form a permutation cycle of length m(j). Thus, in (3.7), we need to choose m to
be the least common multiple of the numbers m(1), . . . ,m(l). Proceeding as in this
section, we see that the order of the Evans functions at degenerate branch points is
typically larger than our guess predicts. On the other hand, since only zeros with
−π/2m < arg(γ) < π/2m correspond to true eigenvalues, we also see that less of
these zeros are actually meaningful for the original eigenvalue problem.

Last, note that the proof of Theorem 3.1 uses, in a crucial way, the hypothesis
that the transmission coefficients a(k) and ā(k) do not vanish for k ∈ R (see Assump-
tion 2.1). In fact, if this assumption is violated so that a(k∗) = 0 for some k∗ ∈ R,
then the Evans function E(λ) vanishes also for λ = 2Ω(k∗) ∈ Σess, which may not be
a branch point.

4. The massive Thirring model. In the previous two sections, a class of
problems was considered in which the PDE had a single dispersion relation associated
with it. In this section, a PDE which has two dispersion relations will be discussed.
Each will generate a single branch point of the Evans function; furthermore, near
each branch point, E(γ) ∼ γ on the appropriate Riemann surface. As a consequence,
when doing perturbation expansions, the work presented in [15, 17] will directly apply.
However, as a certain parameter is varied, the two branch points will collide so that
now E(γ) ∼ γ2. We will perform a perturbation expansion in this case and show
that the collision of the branch points can induce an oscillatory instability for the
underlying wave.

A light pulse that propagates in a nonlinear grating with a quadratic nonlinearity
may generate pulses at higher frequencies via second-harmonic generation. In the
case of a longitudinal periodic variation of the linear susceptibility which couples two
linearly polarized envelopes at the fundamental frequency, a second-harmonic field
is generated through type II second-harmonic generation. The normalized equations
which describe this phenomenon are given by

i∂ta1 + i∂xa1 − βa1 + a2 + a3a
∗
2 = 0,

i∂ta2 − i∂xa2 + a1 + βa2 + a3a
∗
1 = 0,(4.1)

i∂ta3 + iv∂xa3 + δk a3 + a1a2 = 0

(see Trillo [38]). In the above equation, aj represents the normalized polarized enve-
lope, δk is the second-harmonic generation wave-vector mismatch, and β represents
the coupling of the grating to the second-harmonic beam. In the derivation of (4.1),
|β| � 1 has been assumed. The parameter v represents the walk-off of the gener-
ated second harmonic: when v = 0, the second-harmonic velocity is identical with
the group velocity, at the fundamental frequency, of the material. Here, we consider
only the case v = 0 that occurs when the second-harmonic velocity is close to the
fundamental frequency of the material [38].

Note that (4.1) is equivariant with respect to phase rotations

(a1, a2, a3) �−→ (a1eiα, a2eiα, a3e2iα), α ∈ R.

Thus we seek rotating waves of the form

a1 = ã1e−iβx, a2 = ã2e−iβx, a3 = ã3e−2iβx.

Substituting this ansatz into (4.1) and dropping the tildes, we obtain
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i(∂t + ∂x)a1 + a2 + a3a
∗
2 = 0,

i(∂t − ∂x)a2 + a1 + a3a
∗
1 = 0,(4.2)

i∂ta3 + δk a3 + a1a2 = 0.

(Recall that we set v = 0.) Note that (4.2) is Hamiltonian

i∂ξaj =
δH

δa∗j
(j = 1, 2, 3),

where the Hamiltonian is given by [37]

H =

∫ ∞

−∞

[
i

2
(a2∂xa

∗
2 − a1∂xa

∗
1) + c.c.

−δk|a3|2 − a1a
∗
2 − a∗1a2 − a∗1a

∗
2a3 − a1a2a

∗
3

]
dx.

We assume that the mismatch is large and negative, i.e., that |δk| � 1 and δk < 0.
Let ε = −1/δk so that 0 < ε � 1. Upon defining uj = aj/

√
ε for j = 1, 2, (4.2)

becomes

i(∂t + ∂x)u1 + u2 + a3u
∗
2 = 0,

i(∂t − ∂x)u2 + u1 + a3u
∗
1 = 0,

iε∂ta3 − a3 + u1u2 = 0.

We are interested in stationary solutions of the above PDE. For 0 < Q < π, we set

uj = ũj
√

1− 2ε cosQ exp(−2i cos(Q)t), j = 1, 2,

a3 = ã3

√
1− 2ε cosQ exp(−4i cos(Q)t).

Upon substituting and dropping the tildes, we get

i∂tu1 + i∂xu1 + u2 + cos(Q)u1 + a3u
∗
2 = 0,

i∂tu2 − i∂xu2 + u1 + cos(Q)u2 + a3u
∗
1 = 0,(4.3)

iε∂ta3 − (1− 2ε cosQ)(a3 − u1u2) = 0.

4.1. Existence of pulses. We seek localized steady-states of (4.3), i.e., solutions
to the ODE

u′1 = i[u2 + cos(Q)u1 + a3u
∗
2],

u′2 = −i[u1 + cos(Q)u2 + a3u
∗
1],

0 = −i(1− 2ε cosQ)(a3 − u1u2),

where ′ = d/dx. In particular, a3 is slaved to the other two variables via a3 = u1u2,
and we arrive at the reduced equation

u′1 = i[u2 + cos(Q)u1 + u1|u2|2],
(4.4)

u′2 = −i[u1 + cos(Q)u2 + u2|u1|2].

It is important to note that (4.4) is the steady-state problem associated with the
massive Thirring model, which after suitable scalings is given by

i∂tu1 + i∂xu1 + u2 + (cosQ + |u2|2)u1 = 0,
(4.5)

i∂tu2 − i∂xu2 + u1 + (cosQ + |u1|2)u2 = 0.
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The massive Thirring model is an integrable PDE that describes the propagation of
optical gap solitons in a periodically modulated nonlinear fiber [5, 22, 23, 28, 34, 38],
and its steady-states are known.

Lemma 4.1. With Φ(x) = sin(Q) sech(x sinQ− iQ/2), the function (u1, u2, a3) =
(Φ,−Φ∗,−|Φ|2) is a stationary solitary pulse to (4.3) for each |v| < 1.

4.2. The reduced eigenvalue problem. Now that the existence question has
been settled, it is desirable to determine the stability of the pulse found in Lemma 4.1.
Recall that the pulse is that of the massive Thirring model. In fact, comparing (4.3)
and (4.5), we might expect that the linear stability problem associated with (4.3) can
be thought of as a perturbation of that associated with the massive Thirring model
(4.5). This will be seen to indeed be the case. As a consequence, much of the theory
developed in [12, 13, 15, 16, 17] will be applicable. However, as shall be seen, some
extensions of the theory are necessary in order to fully understand the problem.

We wish to linearize (4.3) about the wave given in Lemma 4.1. Thus, denoting
the perturbation by Y = (u1, u

∗
1, u2, u

∗
2, a3, a

∗
3)T ∈ C

6 and using the ansatz Y(x, t) =
Y(x)eiλt (so that the wave is unstable for Imλ < 0), we obtain the eigenvalue problem

i∂xu1 + u2 − (λ− cosQ)u1 − |Φ|2u∗2 − Φa3 = 0,

i∂xu
∗
1 − u∗2 − (λ + cosQ)u∗1 + |Φ|2u2 + Φ∗a∗3 = 0,

−i∂xu2 + u1 − |Φ|2u∗1 − (λ− cosQ)u2 + Φ∗a3 = 0,
(4.6) −i∂xu

∗
2 − u∗1 + |Φ|2u1 − (λ + cosQ)u∗2 − Φa∗3 = 0,

−(1− 2ε cosQ)(Φ∗u1 − Φu2)− (1 + ε(λ− 2 cosQ))a3 = 0,

(1− 2ε cosQ)(Φu∗1 − Φ∗u∗2) + (1− ε(λ + 2 cosQ))a∗3 = 0.

Lemma 4.2. If λ is an eigenvalue, then so is −λ and ±λ∗.
Proof. The statement is a consequence of the fact that the system is Hamiltonian,

which implies that eigenvalues appear as quadruples. A direct proof goes as follows:
(4.6) is invariant under (u1, u

∗
1, u2, u

∗
2, a3, a

∗
3) �→ (u∗1, u1, u

∗
2, u2, a

∗
3, a3) and λ → −λ.

Furthermore, these equations are invariant after taking the complex conjugate and
then setting λ→ −λ.

We investigate eigenvalues λ in bounded regions of C that are chosen indepen-
dently of ε. For such λ, we can solve (4.6) directly for a3 and a∗3. Upon substituting
the resulting expressions

a3 = − 1− 2ε cosQ

1 + ε(λ− 2 cosQ)
(Φ∗u1 − Φu2), a∗3 = − 1− 2ε cosQ

1− ε(λ + 2 cosQ)
(Φu∗1 − Φ∗u∗2)

into the first four equations in (4.6), one gets the reduced eigenvalue problem

∂xu1 = i
[
(cosQ− λ + |Φ|2)u1 + (1− Φ2)u2 − |Φ|2u∗2

]
+ iελ

[−|Φ|2u1 + Φ2u2

]
+ O(ε2),

∂xu
∗
1 = i

[−(cosQ + λ + |Φ|2)u∗1 + |Φ|2u2 − (1− (Φ∗)2)u∗2
]

+ iελ
[−|Φ|2u∗1 + (Φ∗)2u∗2

]
+ O(ε2),

(4.7)
∂xu2 = i

[−(1− (Φ∗)2)u1 + |Φ|2u∗1 − (cosQ− λ + |Φ|2)u2

]
+ iελ

[−(Φ∗)2u1 + |Φ|2u2

]
+ O(ε2),

∂xu
∗
2 = i

[−|Φ|2u1 + (1− Φ2)u∗1 + (cosQ + λ + |Φ|2)u∗2
]

+ iελ
[−Φ2u∗1 + |Φ|2u∗2

]
+ O(ε2).
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Resetting Y = (u1, u
∗
1, u2, u

∗
2)T ∈ C

4, we use the shortcut

dY

dx
= M0(λ, x)Y + εMε(λ, x)Y(4.8)

for the above system. Alternatively, we may write (4.7) in operator form as

[L0 + εLε]Y = λY,(4.9)

where Lε depends on λ.

4.3. The adjoint squared eigenfunctions of the massive Thirring model.
The first step is to understand the eigenvalue problem for ε = 0. Note that, when ε =
0, the eigenvalue problem (4.9) is exactly that associated with the massive Thirring
model. When ε = 0, by exploiting integrability, we can conclude that the spectrum
consists of an isolated eigenvalue at λ = 0 of geometric multiplicity two and algebraic
multiplicity four, and continuous spectrum on the real axis with branch points at
λ = −1 ± cosQ and λ = 1 ± cosQ (see [22, 23]). Since the spatial and rotational
invariance associated with (4.3) persists under the perturbation, and since the problem
is Hamiltonian, the eigenvalue at λ = 0 continues to have geometric multiplicity two
and algebraic multiplicity four, even for ε �= 0. Any unstable eigenvalue must therefore
bifurcate out of the continuous spectrum. The purpose of the rest of this section is
to locate all bifurcating eigenvalues satisfying |λ| � 1/ε.

The proof of the following lemma will be left to the interested reader, as it can
easily be verified.

Lemma 4.3. Let

Y(λ, x) = [p1(λ, x), p2(λ, x), p3(λ, x), p4(λ, x)]T

be a solution of (4.8) for ε = 0. Another solution is then given by

Ỹ(λ, x) = [p∗2(−λ, x), p∗1(−λ, x), p∗4(−λ, x), p∗3(−λ, x)]T .

Furthermore, if λ ∈ R, then

Z(λ, x) = [p1(λ, x),−p2(λ, x),−p3(λ, x), p4(λ, x)]T

is a solution to the adjoint equation Z′ = −M∗
0 (λ, x)Z.

Edge bifurcations for the perturbed problem can be located by computing the
Evans function for the unperturbed eigenvalue problem (4.8). Thus, as in section 3,
we need to find solutions to the eigenvalue problem of the integrable massive Thirring
model, i.e., to (4.8) or, equivalently, to (4.9). As shown in [22, 23], these solutions
are given by the adjoint squared eigenfunctions of the scattering problem that is
associated with the massive Thirring model. Hence we state only the result proved
in [22, 23]. We emphasize, however, that it is again inverse scattering theory as
outlined in section 2 that provides these solutions via the scattering problem, the
Jost functions, and eventually the adjoint squared eigenfunctions.

Proposition 4.4. Let

Ωf (k) = cosQ +
√

1 + k2, Ωs(k) = cosQ−
√

1 + k2.

When ε = 0, the eigenvalue problem (4.9) has two linearly independent solutions
ΨA
s (k, x) and ΨA

f (k, x) such that

L0ΨA
s (k, x) = Ωs(k)ΨA

s (k, x), L0ΨA
f (k, x) = −Ωf (k)ΨA

f (k, x).
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Furthermore, these eigenfunctions have the asymptotics

ΨA
s (k, x)e−ikx −→

{
[1, 0,−r(−k), 0]T , x→ −∞,

a2
s(k)[1, 0,−r(−k), 0]T , x→∞,

ΨA
f (k, x)eik∗x −→

{
[0, 1, 0, r(k)∗]T , x→ −∞,

a2
f (k)[0, 1, 0, r(k)∗]T , x→∞,

where the transmission coefficients

as(k) =
r(−k)− eiQ

r(−k)− e−iQ
e−iQ, af (k) =

r(k)∗ + e−iQ

r(k)∗ + eiQ
eiQ,

with r(k) = k +
√

1 + k2, are such that |as(k)| = |af (k)| = 1 for real k.
Due to the simple relationship between (4.9) and (4.8), these eigenfunctions are

also solutions to (4.8). Note that, as a consequence of Lemma 4.3, one also has
eigenfunctions for λ = −Ωf (k) and λ = −Ωs(k). One should also note that the
fact that there are two transmission coefficients for this problem is a reflection of the
existence of two dispersion relationships λ = ±Ωs(k) and λ = ±Ωf (k).

4.4. Edge bifurcations for Q �= π/2. In this section, it will be shown that
the perturbed wave is linearly stable for cosQ �= 0. If cosQ = 0, then additional
technical difficulties are introduced which will be handled in the next section. Thus,
throughout this section, we assume that cosQ �= 0. Let

M∞(λ) = lim
|x|→∞

(M0(λ, x) + εMε(λ, x)).

A routine calculation shows that the eigenvalues of M∞(λ) are given by

µ±
s (λ) = ±

√
1− (λ− cosQ)2, µ±

f (λ) = ±
√

1− (λ + cosQ)2,(4.10)

and the associated eigenvectors are

v±
s (λ) = [1, 0, (λ− cosQ) + iµ±

s (λ), 0]T(4.11)

v±
f (λ) = [0, 1, 0,−(λ + cosQ) + iµ±

f (λ)]T .(4.12)

The branch cuts for µ±
s,f (λ) are taken so that the functions are analytic in the region

Imλ ≤ 0 except at the branch points λ = ±1± cosQ. For example, if Reλ < 0, then

arg(1− (λ− cosQ)2) ∈ (−π, π],(4.13)

arg(1− (λ + cosQ)2) ∈ (−π, π].(4.14)

Define solutions Y+
s,f (λ, x) and Y−

s,f (λ, x) such that

lim
x→∞Y+

s,f (λ, x)e−µ
−
s,f

(λ)x = v−
s,f (λ), lim

x→−∞Y−
s,f (λ, x)e−µ

+
s,f

(λ)x = v+
s,f (λ).(4.15)

Note that, for Imλ < 0, Y−
s,f (λ, x) decays exponentially fast as x → −∞, while

Y+
s,f (λ, x) decays exponentially fast as x→∞. The Evans function is then given by

E(λ) = (Y−
s ∧Y−

f ∧Y+
s ∧Y+

f )(λ, x).(4.16)
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To calculate the Evans function explicitly, we have to relate the information given
in Proposition 4.4 to the solutions Y±

s,f (λ, x). First consider the solution ΨA
s (k, x).

Inverting the relation λ = Ωs(k) yields that Proposition 4.4 applies when k = ks(λ),
where

ks(λ) =
√

(λ− cosQ)2 − 1, arg((λ− cosQ)2 − 1) ∈ (−2π, 0].

The restriction on the argument is so that the above expressions are consistent with
(4.13). Note that, since Ωs(k) is even in k, ΨA

s (−k, x) is also a solution to the eigen-
value problem. An examination of the relations (4.10) and (4.11), as well as of the
asymptotics given in (4.15), then reveals that

Y−
s (λ, x) = ΨA

s (ks(λ), x), Y+
s (λ, x) =

1

a2
s(−ks(λ))

ΨA
s (−ks(λ), x).

Now consider the solution ΨA
f (k, x). As before, upon inverting λ = Ωs(k), we see that

Proposition 4.4 applies when k = kf (λ), where

kf (λ) =
√

(λ + cosQ)2 − 1, arg((λ + cosQ)2 − 1) ∈ (−2π, 0],

to make it consistent with (4.14). As above, ΨA
f (−k, x) is also a solution to the

eigenvalue problem since Ωf (k) is even is k. Inspecting (4.10), (4.12), and (4.15), we
obtain

Y−
f (λ, x) = ΨA

f (kf (λ), x), Y+
f (λ, x) =

1

a2
f (−kf (λ))

ΨA
f (−kf (λ), x).

We now have the following lemma, which follows immediately from the definition of
the Evans function and the asymptotics of the squared eigenfunctions.

Lemma 4.5. Assume that cosQ �= 0. The Evans function of (4.8) with ε = 0 is
given by

E(λ) = −4ks(λ)kf (λ)

[
as(ks(λ))

as(−ks(λ))

]2 [
af (kf (λ))

af (−kf (λ))

]2

.

Since as(ks(0)) = af (kf (0)) = 0, with each zero being simple, λ = 0 is a zero of
multiplicity four for the Evans function. Furthermore, note that the Evans function
has zeros at the branch points λ = ±1 ± cosQ. Assume that cosQ �= 0 so that the
branch points of the Evans function do not coincide. As in [15], the Evans function
can then be defined on a Riemann surface by setting

γ2
s (λ) = 1− (λ− cosQ)2 or γ2

f (λ) = 1− (λ + cosQ)2.(4.17)

On each of these surfaces, the Evans function is analytic, and its zero at the branch
point is simple. Therefore, the zero remains simple under perturbation. However,
since the zero is simple and the system is Hamiltonian, the perturbed zero must either
lie on the real axis or not correspond to an eigenvalue (i.e., it lies on the wrong sheet
of the Riemann surface). In either case, it does not contribute to a linear instability.

4.5. Edge bifurcations for Q = π/2. The above conclusion of linear stability
was predicated upon the fact that the branch points of the Evans function were
separated. If Q = π/2, then the branch points, and hence the pair of simple zeros,
coincide. It is then possible that complex zeros exist on the appropriate Riemann
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surface, which will necessarily lead to an unstable wave. We show in this section that
the wave is indeed linearly unstable for 0 < Q − π/2 < 4ε2, with the location of the
unstable eigenvalues arising from the edge bifurcation being given by

λ = −1 + ε2
[
2−A− i

√
4A−A2

]
,(4.18)

where Q − π/2 = Aε2 with 0 < A < 4. Otherwise, the wave is linearly stable, and
only real eigenvalues arise from the edge bifurcation.

To calculate the Taylor expansion for the Evans function on the appropriate
Riemann surface, the theory presented in [15, 17] must be slightly modified. First,
rewrite the Evans function given in (4.16) as

E(λ) = ((Y−
s −Y+

s ) ∧ (Y−
f −Y+

f ) ∧Y+
s ∧Y+

f )(λ, 0).

We wish to write the Evans function on the Riemann surface. The idea will be to
look on the surface defined by γs(λ), which is defined in (4.17). As a consequence, all
expressions must be written in terms of this variable. Set

ν2 = 4 cosQ, arg(ν) ∈ (−π/2, π/2].

Expression (4.10) can now be rewritten as

µ±
s (γs) = ±γs, µ±

f (γs) = ±
√
γ2
s + ν2

√
1− γ2

s − ν4/4,

and expressions (4.11) and (4.12) have similar modifications. Note that when γs = 0
one has

µ±
f = ±ν

√
1− ν2/4, v±

f =
(

0, 1, 0,
√

1− (µ±
f )2 + iµ±

f

)T
,

and that the restriction on the argument of ν is consistent with that of (4.14).
We can now proceed to compute the Taylor expansion of the Evans function on

the Riemann surface and, in particular, to get exact expressions for the coefficients in
the expansion. The theory presented in [13, 15] will be heavily used and will not be
rederived here. However, we will give the most important intermediate calculations.
As an application of the gap lemma, the solutions Y±

s,f (λ, x) can be written on the
Riemann surface defined by γs(λ). This will now be done implicitly, with the obser-
vation that λ = −1 corresponds to γs = 0. Let uj(x), j = 1, . . . , 4 be solutions to
(4.8) with (ε, ν) = (0, 0) such that u1(x) = Y±

s (0, x), u2(x) = Y±
f (0, x), and u3(x)

and u4(x) are such that

(u1 ∧ · · · ∧ u4)(x) = 1.

Let the adjoint solutions uAj (x) satisfy uj(x) · uAk (x) = δjk. For (γs, ν) = (0, 0), the
relevant eigenfunctions are given by

Y±
s (0, x) =




tanh(2x) tanh(x− iπ/4)
i sech(2x) tanh(x + iπ/4)
− tanh(2x) tanh(x + iπ/4)
i sech(2x) tanh(x− iπ/4)


 ,

(4.19)

Y±
f (0, x) =




i sech(2x) tanh(x− iπ/4)
tanh(2x) tanh(x + iπ/4)

−i sech(2x) tanh(x + iπ/4)
tanh(2x) tanh(x− iπ/4)


 ,
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while the relevant adjoint eigenfunctions Zs,f (0, x) can be found by using the result
of Lemma 4.3. It is important to note that the adjoint eigenfunctions are orthogonal
to Y±

s,f (0, x). Thus there exist constants cjk such that

uA3 (x) = c11Zs(0, x) + c12Zf (0, x), uA4 (x) = c21Zs(0, x) + c22Zf (0, x).

Furthermore, the matrix C = [cjk] ∈ C
2×2 is invertible. As will be seen, the exact

values for the entries cjk are unimportant. The expressions in (4.19) will be implicitly
used in the subsequent calculations.

When performing the perturbation expansion on the Riemann surface, the pa-
rameters that will be varied are γs, ν, and ε. It is important to keep in mind that
γf = γs when ν = 0 so that in this case we will not distinguish between the two. For
j = 3, 4, set

αs,fj = ∂γsv
−
s,f · uAj (−∞)− ∂γsv

+
s,f · uAj (+∞).

Following [15], one has that

∂γs(Y−
s,f −Y+

s,f )(0, 0) =

4∑
j=3

αs,fj uj(0) +

2∑
j=1

cjs,fuj(0)

on the Riemann surface. Using the fact that

∂2
γsE(0) = 2(∂γs(Y−

s −Y+
s ) ∧ ∂γs(Y−

f −Y+
f ) ∧Y+

s ∧Y+
f )(0, 0)

at γs = 0 and also utilizing the definition of the solutions uj(0), we obtain

∂2
γsE(0) = 2

∣∣∣∣ αs3 αs4
αf3 αf4

∣∣∣∣ = 8 det(C).

We must now get expressions for the lower-order derivatives in the Taylor expansion
for E(γs). Following [13], we have

∂ε(Y
−
s,f −Y+

s,f )(0, 0) =

4∑
j=3

〈MεYs,f ,u
A
j 〉uj(0) +

2∑
j=1

cjs,fuj(0),

where 〈·, ·〉 represents that standard L2 inner product. Since

∂2
εE(0) = 2(∂ε(Y

−
s −Y+

s ) ∧ ∂ε(Y−
f −Y+

f ) ∧Y+
s ∧Y+

f )(0, 0),

this then yields that

∂2
εE(0) = 2

∣∣∣∣ 〈MεYs,u
A
3 〉 〈MεYs,u

A
4 〉

〈MεYf ,u
A
3 〉 〈MεYf ,u

A
4 〉

∣∣∣∣ = −32 det(C).

Also, Y−
s = Y+

s for all ν, while

∂ν(Y−
f −Y+

f )(0, 0) = βf3u3(0) + βf4u4(0) + c1fu1(0) + c2fu2(0),

where

βfj = ∂νv
−
f · uAj (−∞)− ∂νv

+
f · uAj (+∞).
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This yields that ∂kνE(0) = 0 for all k ≥ 0, while

∂2
εγsE(0) = (∂ε(Y

−
s −Y+

s ) ∧ ∂γs(Y−
f −Y+

f ) ∧Y+
s ∧Y+

f )(0, 0)

+ (∂γs(Y−
s −Y+

s ) ∧ ∂ε(Y−
f −Y+

f ) ∧Y+
s ∧Y+

f )(0, 0)

=

∣∣∣∣ 〈MεYs,u
A
3 〉 〈MεYs,u

A
4 〉

αf3 αf4

∣∣∣∣+

∣∣∣∣ αs3 αs4
〈MεYf ,u

A
3 〉 〈MεYf ,u

A
4 〉

∣∣∣∣ = 0,

∂2
ενE(0) = (∂ε(Y

−
s −Y+

s ) ∧ ∂ν(Y−
f −Y+

f ) ∧Y+
s ∧Y+

f )(0, 0)

=

∣∣∣∣ 〈MεYs,u
A
3 〉 〈MεYs,u

A
4 〉

βf3 βf4

∣∣∣∣ = 0,

∂2
γsνE(0) = (∂γs(Y−

s −Y+
s ) ∧ ∂ν(Y−

f −Y+
f ) ∧Y+

s ∧Y+
f )(0, 0)

=

∣∣∣∣ αs3 αs4
βf3 βf4

∣∣∣∣ = 4 det(C).

Thus, on the Riemann surface, the Evans function has the Taylor expansion

E(γs) = 4 det(C) (γ2
s + νγs − 4ε2),

and the zeros of the Evans function on the Riemann surface are given by

γs =
1

2

(
−ν ±

√
ν2 + 16ε2

)
.

Only zeros on the correct Riemann sheet, given by arg(γs) ∈ (−π/2, π/2], correspond
to eigenvalues. Suppose that ν = 2

√
cosQ, i.e., 0 < π/2−Q� 1. The zeros are then

real; furthermore, only one lies on the correct sheet. Upon inverting the relationship
in (4.17), i.e., by setting

λ = cosQ−
√

1− γ2
s ,

it is then seen that the real eigenvalue is, to lowest order, given by

λ = −1 + 2 cosQ + 2ε2 −
√

cos2 Q + 4ε2 cosQ.

Next suppose that 0 < Q−π/2� 1, i.e., ν = 2i
√− cosQ. The zeros on the Riemann

surface are then given by

γs = −i
√
− cosQ±

√
4ε2 + cosQ.

The root lies on the correct sheet only for 0 < − cosQ < 4ε2, in which case it is given
by

γs = −i
√
− cosQ +

√
4ε2 + cosQ.

Upon setting cosQ = −Aε2 for A > 0, i.e., Q = π/2 + Aε2, we see that the corre-
sponding complex eigenvalue is, to lowest order, given by

λ = −1 + ε2
[
2−A− i

√
4A−A2

]
.(4.20)

Thus the wave is unstable.
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π/2 Q

ε

Fig. 4.1. The insets show the eigenvalue structure near λ = −1 of the perturbed wave for
Q close to π/2. The thick solid line in each inset denotes the essential spectrum, while bullets
correspond to eigenvalues λ (i.e., to zeros of the Evans function on the correct Riemann sheet).
Note that eigenvalues λ with Imλ < 0 are unstable. The region of instability in the (Q, ε)-plane is
bounded, to leading order, by the line Q = π/2 and the parabola Q = π/2 + 4ε2.

In conclusion, the wave is linearly stable if cosQ < 0 or if cosQ > −4ε2. If
0 < − cosQ < 4ε2, then the wave is linearly unstable, and the location of the un-
stable eigenvalue is given to lowest order by (4.18). Note that, since the system is
Hamiltonian, there is another unstable eigenvalue at −λ∗ with λ given by (4.20). This
fact can be verified directly by computing the Taylor expansion of the Evans function
about γf = 0. Our results near Q = π/2 are summarized in Figure 4.1.

Remark 4.6. Barashenkov, Pelinovsky, and Zemlyanaya [5] analyzed a different
perturbation of the massive Thirring model and through the use of solvability condi-
tions realized a different type of edge-bifurcation scenario as Q passed through π/2.
(Compare Figure 4.1 with [5, Figure 1].) The results presented herein can be thought
of as a theoretical justification for the calculations in [5].

Acknowledgments. We thank Alejandro Aceves for asking the question which
led to this work and acknowledge helpful discussions with James Alexander in an
early stage of this work.
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Abstract. In most applications of delay differential equations in population dynamics, the need
of incorporation of time delays is often the result of the existence of some stage structure. Since
the through-stage survival rate is often a function of time delays, it is easy to conceive that these
models may involve some delay dependent parameters. The presence of such parameters often greatly
complicates the task of an analytical study of such models. The main objective of this paper is to
provide practical guidelines that combine graphical information with analytical work to effectively
study the local stability of some models involving delay dependent parameters. Specifically, we shall
show that the stability of a given steady state is simply determined by the graphs of some functions
of τ which can be expressed explicitly and thus can be easily depicted by Maple and other popular
software. In fact, for most application problems, we need only look at one such function and locate
its zeros. This function often has only two zeros, providing thresholds for stability switches. The
common scenario is that as time delay increases, stability changes from stable to unstable to stable,
implying that a large delay can be stabilizing. This scenario often contradicts the one provided by
similar models with only delay independent parameters.

Key words. delay differential equations, stability switch, characteristic equations, stage struc-
ture, population models
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1. Introduction. Due to the fact that actions and reactions take time to take
effect in real-life problems, one often introduces time delays in the variables being
modeled. This often yields delay differential and delay difference models [11], [21], [19].
Some of these models have delay dependent parameters (for example, [1], [2], [3],
[4], [9], [10], [22]), while most of them contain only parameters that are independent
of time delays.

In most applications of delay differential equations in population dynamics, the
need of incorporation of a time delay is often the result of the existence of some
stage structure [1], [3], [10], [11], [12], [15]. Indeed, just about every population goes
through some distinct life stages [23], [18]. Since the through-stage survival rate is
often a function of a time delay, it is thus easy to conceive that these models will
inevitably involve some delay dependent parameters.

In view of the fact that it is often difficult to analytically study models with delay
dependent parameters even if only a single discrete delay is present, it is natural to
resort to the help of computer programs. The main objective of this paper is to
provide practical guidelines that combine graphical information with analytical work
to effectively study the local stability of models involving delay dependent parameters.
To apply our results, one need only perform some routine computation (using our
analytical criteria) and generate some simple graphs which can be easily produced by
popular software such as Maple. The results also can be readily confirmed by some
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selective simulations using the freely available and user friendly software XPP. No
other programming skill is required.

Specifically, we shall show that the stability of a given steady state is simply
determined by the graphs of some functions of τ which can be expressed explicitly and
thus can be easily depicted by Maple and other popular software. In fact, for most
application problems, we need only look at one such function and locate its zeros.
This function often has only two zeros, providing thresholds for stability switches.
The common scenario is that as time delay increases, stability changes from stable
to unstable to stable. We hope this work will show that it is important and possible
to systematically study local stability aspects of some models with delay dependent
parameters.

In the next section, we present a general geometric criterion that, theoretically
speaking, can be applied to models with many delays, or even distributed delays [5], [7].
This is followed by a section dealing with the simple case of a first order characteristic
equation, providing more user friendly geometric and analytic criteria for stability
switches. In section 4, we accomplish the same for the second order case. The analyt-
ical criteria provided for the first and second order cases can be used to obtain some
insightful analytical statements and can be helpful for conducting simulations. Ex-
amples are provided for both first and second order cases to illustrate the applications
of our criteria. A discussion section concludes the paper.

2. A general geometric criterion. In this section we study the occurrence of
any possible stability switching resulting from the increase of value of the time delay
τ for the general characteristic equation

D(λ, τ) = 0.(2.1)

Here

D(λ, τ) = Pn(λ, τ) +Qm(λ, τ)e−λτ(2.2)

and

Pn(λ, τ) =

n∑
k=0

pk(τ)λ
k, Qm(λ, τ) =

m∑
k=0

qk(τ)λ
k.(2.3)

In (2.3), n,m ∈ N0, n > m, and pk(·), qk(·) : R+0→R are continuous and differen-
tiable functions of τ such that

Pn(0, τ) +Qm(0, τ) = p0(τ) + q0(τ) �= 0 ∀τ ∈ R+0,(2.4)

i.e., λ = 0 is not a characteristic root of (2.1).
In the following “—” denotes complex and conjugate. Pn(λ, τ), Qm(λ, τ) are

analytic functions in λ and differentiable in τ for which we assume ([21, p. 83]; see
also [8] and [6]) the following:

(i) If λ = iω, ω ∈ R, then Pn(iω, τ) +Qm(iω, τ) �= 0, τ ∈ R;
(ii) lim sup{|Qm(λ, τ)/Pn(λ, τ)| : |λ|→∞,Re λ ≥ 0} < 1 for any τ ;
(iii) F (ω, τ) := |Pn(iω, τ)|2 − |Qm(iω, τ)|2 for each τ has at most a finite number

of real zeros.
(iv) Each positive root ω(τ) of F (ω, τ) = 0 is continuous and differentiable in τ

whenever it exists.
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Assumption (i) implies that Pn(λ, τ) and Qm(λ, τ) have no common imaginary
roots. This is needed to ensure that threshold time delays can be explicitly expressed
(see the comment after (2.10)). Assumption (ii) is needed to ensure that there are
no roots bifurcating from infinity. Assumption (iii) is needed to ensure that there are
only finite “gates” for roots to cross the imaginary axis for any given τ. Assumption
(iv) is needed to compute the derivative of the imaginary roots with respect to τ. We
remark also that, since Pn, Qm have real coefficients, then

Pn(−iω, τ) = Pn(iω, τ), Qm(−iω, τ) = Qm(iω, τ)(2.5)

for each τ and any real ω, thus ensuring that if λ = iω for some real ω is a characteristic
root of (2.1), then also λ = −iω is a characteristic root. In the following, we will drop
the indices n,m from Pn, Qm. Furthermore, we will denote by PR, QR the real parts
of P and Q, respectively, and by PI , QI the imaginary parts of P and Q, respectively.
Hence, we can write

P (λ, τ) = PR(λ, τ) + iPI(λ, τ), Q(λ, τ) = QR(λ, τ) + iQI(λ, τ),(2.6)

where PR, PI , QR, QI are real functions. In the following we will use this nomen-
clature for derivatives. The total derivative, say of P (λ, τ), with respect to τ will be
denoted by

DτP (λ, τ) := P ′
λ(λ, τ)

dλ

dτ
+ P ′

τ (λ, τ),(2.7)

where P ′
λ(λ, τ) := ∂λP (λ, τ), P

′
τ (λ, τ) := ∂τP (λ, τ) are the partial derivatives with

respect to λ, τ , respectively. Of course, after the partial derivation of P (λ, τ) with
respect to λ, its real part can be separated from its imaginary one. We then have

P ′
λ(λ, τ) = P ′

Rλ
(λ, τ) + iP ′

Iλ
(λ, τ)(2.8)

and the same nomenclature applies for derivatives of Q(λ, τ). Similarly, F ′
ω(ω, τ) =

∂ωF (ω, τ) denotes the partial derivative of F (ω, τ) with respect to ω, and so on. This
stated, let us consider the general problem. Since for increasing τ the imaginary axis
cannot be crossed by λ(τ) = 0 for some τ > 0 (see (2.4)), we look for the occurrence
of a pair of simple and conjugate imaginary roots λ = ±iω(τ), ω(τ) real and positive,
which crosses the imaginary axis at some positive τ value, say τ∗. Because of (2.5),
without loss of generality, we can consider just λ = iω(τ), ω(τ) > 0, and the possibility
that it is a root of the characteristic equation (2.1). Then ω(τ) must satisfy the
following: {

QI(iω, τ) sinωτ +QR(iω, τ) cosωτ = −PR(iω, τ),
−QR(iω, τ) sinωτ +QI(iω, τ) cosωτ = −PI(iω, τ),(2.9)

which gives 


sinωτ =
−PR(iω, τ)QI(iω, τ) + PI(iω, τ)QR(iω, τ)

|Q(iω, τ)|2 ,

cosωτ = −PR(iω, τ)QR(iω, τ) + PI(iω, τ)QI(iω, τ)

|Q(iω, τ)|2 ,
(2.10)

where |Q(iω, τ)|2 �= 0 because of assumption (i) (since D(iω, τ) = Q(iω, τ) = 0
together imply P (iω, τ) = 0).



GEOMETRIC STABILITY SWITCH CRITERIA 1147

On the other hand, since (2.10) can be written as

sinωτ = Im

(
P (iω, τ)

Q(iω, τ)

)
, cosωτ = −Re

(
P (iω, τ)

Q(iω, τ)

)
,

if ω satisfies (2.10), then ω(τ) must satisfy that

|P (iω, τ)|2 = |Q(iω, τ)|2,(2.11)

i.e., ω(τ) must be a (positive) root of

F (ω, τ) := |P (iω, τ)|2 − |Q(iω, τ)|2.(2.12)

Assume that I ⊆ R+0 is the set where ω(τ) is a positive root of (2.12) and for τ /∈ I,
ω(τ) is not definite. Then for all τ in I, ω(τ) satisfies that

F (ω, τ) = 0.(2.13)

Hence, differentiating (2.13) with respect to τ we get

F ′
ω(ω, τ)ω

′ + F ′
τ (ω, τ) = 0, τ ∈ I,(2.14)

where {
F ′
ω = 2[(P ′

Rω
PR + P ′

Iω
PI)− (Q′

Rω
QR +Q′

Iω
QI)],

F ′
τ = 2[(P ′

Rτ
PR + P ′

Iτ
PI)− (Q′

Rτ
QR +Q′

Iτ
QI)].

(2.15)

Now it is important to notice that if τ /∈ I, then there are no positive ω(τ) solutions
of (2.13), and we cannot have stability switches. Furthermore, for any τ ∈ I where
ω(τ) is a positive solution of (2.13), we can define the angle θ(τ) ∈ [0, 2π] as the
solution of (2.10):


sin θ(τ) =

−PR(iω, τ)QI(iω, τ) + PI(iω, τ)QR(iω, τ)

|Q(iω, τ)|2 ,

cos θ(τ) = −PR(iω, τ)QR(iω, τ) + PI(iω, τ)QI(iω, τ)

|Q(iω, τ)|2 ,
(2.16)

and the relation between the arguments “θ(τ)” in (2.16) and “ω(τ)τ” in (2.10) for
τ ∈ I must be

ω(τ)τ = θ(τ) + n2π, n ∈ N0.(2.17)

Hence, we can define the maps τn : I→R+0 given by

τn(τ) :=
θ(τ) + n2π

ω(τ)
, n ∈ N0, τ ∈ I,(2.18)

where ω(τ) is a positive root of (2.13). Let us introduce the functions I→R,

Sn(τ) := τ − τn(τ), τ ∈ I, n ∈ N0,(2.19)

that are continuous and differentiable in τ as shown in the following lemma.
Lemma 2.1. Assume that ω(τ) is a positive real root of (2.13) defined for τ ∈ I,

which is continuous and differentiable. Assume further that (i) holds true. Then the
functions Sn(τ), n ∈ N0, are continuous and differentiable on I.
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Proof. Assume that θ(τ) is, for example, a monotone increasing function in a
neighborhood Iδ(τ

′) of τ ′ ∈ I, where θ(τ ′) = 2π. Since θ(τ) must belong to [0, 2π]
at τ ′, θ(τ) may have a jump of height 2π down to 0 at τ ′. This will give rise to the
first kind of discontinuity for τn(τ) and Sn(τ) with a jump of height 2π/ω(τ ′) at τ ′.
Without such a discontinuity, Remark 4.1 (see below) implies that θ(τ) is continuous
and differentiable on I and so are τn(τ) and Sn(τ). Thus it is enough to prove that
θ(τ) �= 0, 2π on I, and hence θ(τ) ∈ (0, 2π) on I. Assumption (i) implies that either

(a) PR(iω, τ) +QR(iω, τ) �= 0, or
(b) PI(iω, τ) +QI(iω, τ) �= 0.

Assume first that (a) holds true. Then either
(a1) PR(iω, τ) �= 0, or
(a2) QR(iω, τ) �= 0.

Assume now that (a1) is true. If θ(τ) = 0, 2π, then sin θ(τ) = 0 and cos θ(τ) = 1.
From the first of (4.16), we have

QI = PIQR/PR.

Substituting this into the second equation of (4.16) yields (since ω is a root of
F (ω, τ) = 0)

cos θ(τ) = −QR/PR.

Hence cos θ(τ) = 1 implies that PR + QR = 0, contradicting (a). The proof for case
(a2) is similar and so is the proof for (b). This proves the lemma.

We can also prove the following theorem.
Theorem 2.2. Assume that ω(τ) is a positive real root of (2.13) defined for

τ ∈ I, I ⊆ R+0, and at some τ∗ ∈ I,

Sn(τ
∗) = 0 for some n ∈ N0.(2.20)

Then a pair of simple conjugate pure imaginary roots λ+(τ
∗) = iω(τ∗), λ−(τ∗) =

−iω(τ∗) of (2.1) exists at τ = τ∗ which crosses the imaginary axis from left to right
if δ(τ∗) > 0 and crosses the imaginary axis from right to left if δ(τ∗) < 0, where

δ(τ∗) = sign

{
dRe λ

dτ

∣∣∣∣
λ=iω(τ∗)

}
= sign{F ′

ω(ω(τ
∗), τ∗)}sign

{
dSn(τ)

dτ

∣∣∣∣
τ=τ∗

}
.(2.21)

Proof. The existence part of the theorem follows from the requirement (2.17)
which ensures that if and only if τ∗ ∈ I is a zero of Sn(τ) for some n ∈ N0, λ =
±iω(τ∗) together with ω(τ∗) > 0, a solution of (2.13), are characteristic roots of (2.1).

To prove the geometric criterion (2.21) we remark that

sign

{
dReλ

dτ

}
= sign

{
Re

(
dλ

dτ

)−1}
.

Then differentiating (2.1) with respect to τ we obtain that(
dλ

dτ

)
[P ′
λ(λ, τ) + (Q′

λ(λ, τ)− τQ(λ, τ))e−λτ ]

= λQ(λ, τ)e−λτ − [P ′
τ (λ, τ) +Q′

τ (λ, τ)e
−λτ ].(2.22)
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From (2.2), we have

eλτ = −Q(λ, τ)
P (λ, τ)

.(2.23)

Hence, we obtain

(
dλ

dτ

)−1

=

(
−P

′
λ(λ, τ)

P (λ, τ)
+
Q′
λ(λ, τ)

Q(λ, τ)
− τ
)
/

(
λ+

P ′
τ (λ, τ)

P (λ, τ)
− Q′

τ (λ, τ)

Q(λ, τ)

)
,(2.24)

where P (iω, τ), Q(iω, τ) �= 0 due to assumption (i). Assume that λ = iω(τ), where
ω(τ) > 0 is a root of (2.13). Then from (2.24) we obtain

sign

{
dRe λ

dτ

∣∣∣∣
λ=iω

}

= sign Re

{−P ′
λ(iω, τ)P (iω, τ) +Q′

λ(iω, τ)Q(iω, τ)− τ |P (iω, τ)|2
P ′
τ (iω, τ)P (iω, τ)−Q′

τ (iω, τ)Q(iω, τ) + iω|P (iω, τ)|2
}
.(2.25)

Now we remark that

iP ′
λ(iω, τ) = P ′

ω(iω, τ), iQ′
λ(iω, τ) = Q′

ω(iω, τ).(2.26)

Hence, in (2.25) we have

−P ′
λ(iω, τ)P (iω, τ) +Q′

λ(iω, τ)Q(iω, τ)

= i[(P ′
Rω
PR + P ′

IωPI)− (Q′
Rω
QR +Q′

IωQI)]

−[(P ′
IωPR − PIP ′

Rω
)− (Q′

IωQR −QIQ′
Rω

)],(2.27)

which due to (2.15) becomes

−P ′
λ(iω, τ)P (iω, τ) +Q′

λ(iω, τ)Q(iω, τ)

= i
F ′
ω(ω, τ)

2
− [(PRP

′
Iω − PIP ′

Rω
)− (QRQ

′
Iω −QIQ′

Rω
)].(2.28)

Similarly, in (2.25) we have

P ′
τ (iω, τ)P (iω, τ)−Q′

τ (iω, τ)Q(iω, τ)

=
1

2
F ′
τ (ω, τ) + i[(PRP

′
Iτ − PIP ′

Rτ
)− (QRQ

′
Iτ −QIQ′

Rτ
)].(2.29)

Furthermore, remember that from (2.14)

F ′
τ (ω, τ) = −F ′

ω(ω, τ)ω
′.(2.30)

Hence, from (2.28)–(2.30) in (2.25) we obtain

sign

{
dRe λ

dτ

∣∣∣∣
λ=iω

}
= sign Re

{−2{U + τ |P (iω, τ)|2}+ iF ′
ω(ω, τ)

F ′
τ (ω, τ) + i2{V + ω|P (iω, τ)|2}

}
,

where

U := (PRP
′
Iω−PIP ′

Rω
)−(QRQ′

Iω−QIQ′
Rω

), V := (PRP
′
Iτ−PIP ′

Rτ
)−(QRQ′

Iτ−QIQ′
Rτ

).
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Simple computation yields

sign

{
dRe λ

dτ

∣∣∣∣
λ=iω

}
= sign {F ′

ω(ω, τ)} sign
{
τω′ + ω +

Uω′ + V

|P (iω, τ)|2
}
.(2.31)

Now observe that if Sn(τ
∗) = 0, then S′

n(τ
∗) = (ω(τ∗)+τ∗ω′(τ∗)−θ′(τ∗))/ω(τ∗),

which gives

sign {S′
n(τ

∗)} = sign {ω(τ∗) + τ∗ω′(τ∗)− θ′(τ∗)},(2.32)

where θ′(τ∗) can be computed with the help of (2.16). Let{
ψ(τ) = −PR(iω, τ)QI(iω, τ) + PI(iω, τ)QR(iω, τ),
ϕ(τ) = PR(iω, τ)QR(iω, τ) + PI(iω, τ)QI(iω, τ);

(2.33)

then for all τ ∈ I, θ′(τ) is defined as (see Remark 2.1)

θ′(τ) =
ψ(τ)ϕ′(τ)− ψ′(τ)ϕ(τ)

|P (iω, τ)|4 ,(2.34)

where 


ϕ′(τ) = (P ′
Rω
QR + PRQ

′
Rω

+ P ′
Iω
QI + PIQ

′
Iω
)ω′

+(P ′
Rτ
QR + PRQ

′
Rτ

+ P ′
Iτ
QI + PIQ

′
Iτ
),

ψ′(τ) = (−P ′
Rω
QI − PRQ′

Iω
+Q′

Rω
PI +QRP

′
Iω
)ω′

+(−P ′
Rτ
QI − PRQ′

Iτ
+Q′

Rτ
PI +QRP

′
Iτ
).

(2.35)

Hence, from (2.34), (2.35) we have

|P (iω, τ)|4θ′(τ) = ω′{(P ′
Rω
QR + PRQ

′
Rω

+ P ′
IωQI + PIQ

′
Iω )(−PRQI +QRPI)

(−P ′
Rω
QI − PRQ′

Iω +Q′
Rω
PI +QRP

′
Iω )(PRQR + PIQI)}

+(P ′
Rτ
QR + PRQ

′
Rτ

+ P ′
IτQI + PIQ

′
Iτ )(−PRQI +QRPI)

−(−P ′
Rτ
QI − PRQ′

Iτ +Q′
Rτ
PI +QRP

′
Iτ )(PRQR + PIQI)

≡ ω′A+B.(2.36)

It can be shown that

A = −(P 2
R + P 2

I )Q
′
Rω
QI − (Q2

R +Q2
I)PRP

′
Iω + P ′

Rω
PI(Q

2
R +Q2

I)

+(P 2
R + P 2

I )QRQ
′
ω

= (P ′
Rω
PI − PRP ′

Iω )|P (iω, τ)|2 − (Q′
Rω
QI −QRQ′

Iω )|P (iω, τ)|2(2.37)

and

B = −(P 2
R + P 2

I )(Q
′
Rτ
QI −QRQ′

Iτ ) + (Q2
R +Q2

I)(P
′
Rτ
PI − PRP ′

Iτ )

= |P (iω, τ)|2(QRQ′
Iτ −Q′

Rτ
QI)− |P (iω, τ)|2(PRP ′

Iτ − P ′
Rτ
PI).(2.38)

Hence, from (2.36)–(2.38) we obtain

θ′(τ) = −ω
′[(P ′

Iω
PR − P ′

Rω
PI)− (QRQ

′
Iω
−Q′

Rω
QI)]

|P (iω, τ)|2

− [(PRP
′
Iτ
− P ′

Rτ
PI)− (QRQ

′
Iτ
−Q′

Rτ
QI)]

|P (iω, τ)|2 = − Uω′ + V

|P (iω, τ)|2 .(2.39)
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Therefore, if we substitute (2.39) evaluated at τ∗ in (2.32), and we compare the result
with (2.31), we find that

sign

{
dRe λ

dτ

∣∣∣∣
λ=iω(τ∗)

}
= sign {F ′

ω(ω, τ
∗)}sign {S′

n(τ
∗)},

thus completing the proof.
Remark 2.1. Assume that θ(τ) ∈ (0, 2π), τ ∈ I, where θ(τ) is defined by (2.16).

According to (2.35), we can rewrite (2.16) as

sin θ(τ) =
ψ(τ)

|Q(iω, τ)|2 , cos θ(τ) = − ϕ(τ)

|Q(iω, τ)|2 , τ ∈ I,(2.40)

where ψ,ϕ are continuous and differentiable functions of τ such that ψ2 + ϕ2 =
|P (iω, τ)|4 and |Q(iω, τ)|2 = |P (iω, τ)|2 for τ ∈ I. Hence, we have

θ(τ) = arctan(−ψ(τ)/ϕ(τ)) if sin θ(τ) > 0, cos θ(τ) > 0;

θ(τ) = π/2 if sin θ(τ) = 1, cos θ(τ) = 0;

θ(τ) = π + arctan(−ψ(τ)/ϕ(τ)) if cos θ(τ) < 0;

θ(τ) = 3π/2 if sin θ(τ) = −1, cos θ(τ) = 0;

θ(τ) = 2π + arctan(−ψ(τ)/ϕ(τ)) if sin θ(τ) < 0, cos θ(τ) > 0.(2.41)

It is easy to see that the function θ(τ) defined above is continuous on I. Furthermore
θ′(τ) is well defined for θ(τ) ∈ (0, 2π) and it is indeed given by (2.34). Observe
that if θ(τ) �= π/2, 3π/2, then ϕ(τ) �= 0, and (2.34) simply follows from (2.41). When
θ(τ) = π/2, 3π/2, we have ϕ(τ) = 0. In this case, we compute θ′(τ) directly from (2.40)
and obtain

−(sin(θ(τ)))θ′(τ) = (−ϕ(τ)/(ψ2(τ) + ϕ2(τ))1/2)′.(2.42)

Since sin θ(τ) �= 0 (i.e., ψ(τ) �= 0), it is easy to see that (2.42) implies (2.34) as well.
Therefore, if θ(τ) ∈ (0, 2π), τ ∈ I, then θ(τ) is continuous and differentiable. If

in addition, ω(τ) is positive, continuous, and differentiable on I, then functions τn(τ)
and Sn(τ), n ∈ N0, are all continuous and differentiable.

Remark 2.2. Instead of looking for zeros of Sn, we can look for the zeros of, say,
Zn = ωSn = ωτ − θ(τ) − 2nπ = Z0 − 2nπ. Since ω > 0, they have the same zeros,
and all the functions Zn have the same shape as Z0 (they are simply shifted down
by 2nπ). Furthermore it is easy to check that sign(S′

n) = sign(Z ′
n) when considering

the derivative with respect to τ at the same zero as Sn and Zn. In most cases of
applications, we can assume that I = [0, τ1) with ω(0) > 0 and ω(τ) → 0 as τ → τ1.
Then clearly Zn(0) < 0 and Zn(τ) < 0 as τ → τ1. Hence either Zn is negative or it
has an even number of zeros (taking into account multiplicity of the zeros).

3. First order characteristic equation. In this section, we consider the first
order characteristic equation

D(λ, τ) = 0,(3.1)

where

D(λ, τ) = a(τ)λ+ b(τ) + c(τ)e−λτ ,(3.2)
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which belongs to the general class

D(λ, τ) = Pn(λ, τ) +Qm(λ, τ)e−λτ ,(3.3)

where Pn, Qm are polynomials in λ with n > m. In our case P (λ, τ) := Pn(λ, τ) =
a(τ)λ+ b(τ) is a first order polynomial in λ, Q(λ, τ) := Qm(λ, τ) = c(τ). The coeffi-
cients a, b, c are real smooth functions of τ assumed to have continuous derivatives in
τ and

b(τ) + c(τ) �= 0 ∀τ ≥ 0.(3.4)

Due to assumption (3.4), λ = 0 cannot be a root of (3.1) and a stability switch (or
a cross of the imaginary axis) necessarily occurs with λ = ±iω with ω > 0. Without
loss of generality assume λ = iω, ω > 0, as a root of (3.2). Hence at λ = iω we have

P (iω, τ) = b(τ) + iωa(τ), Q(iω, τ) = c(τ),(3.5)

i.e.,

F (ω, τ) = |P (iω, τ)|2 − |Q(iω, τ)|2 = ω2a2 + b2 − c2,(3.6)

from which F (ω, τ) = 0 gives a solution for ω(τ) > 0:

ω(τ) =

(
c2(τ)− b2(τ)

a2(τ)

)1/2

,(3.7)

which is defined if |c(τ)| > |b(τ)| and a(τ) �= 0. Furthermore, since PR(iω, τ) = b(τ),
PI(iω, τ) = ωa(τ), QR(iω, τ) = c(τ), QI(iω, τ) = 0, (2.16) give

sin θ(τ) =
ω(τ)a(τ)

c(τ)
, cos θ(τ) = −b(τ)

c(τ)
.(3.8)

Let

I = {τ : τ ≥ 0, a(τ) �= 0 and |b(τ)| < |c(τ)|}.
Let θ(τ) ∈ I be the solution of (3.8). Then a stability switch may occur, through the
roots λ = ±iω(τ), where ω(τ) > 0 is given by (3.7), at the τ values

τn =
θ(τ) + n2π

ω(τ)
(3.9)

for n ∈ N0 := {0, 1, 2, . . .}. Then for each n ∈ N0 (3.9) defines the maps τn : I→R+0,
and the stability switch may occur only for the τ values at which

τn(τ) = τ for some n ∈ N0.(3.10)

Hence (3.7), (3.8) define the maps (3.9), and the occurrence of stability switches takes
place at the zeros of the functions

Sn(τ) := τ − τn(τ), n ∈ N0.(3.11)

Remark 3.1. We remark here that for τ ∈ I, θ(τ) is continuous and differentiable
in τ. To see this, we observe that due to (3.4), we have cos θ(τ) �= 1 for τ ∈ I. Hence
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for τ ∈ I, θ(τ) �= 0, 2π. This shows that θ(τ) is continuous and differentiable. As a
result, we see that τn(τ) are also continuous and differentiable for τ ∈ I. Now we want
to see if it is possible to determine the direction in which the pair of imaginary roots
λ = ±iω(τ∗) (where τ∗ is such that Sn(τ

∗) = 0 for some n) crosses the imaginary axis
as τ increases. In view of the fact that it is now quite straightforward to generate the
graphs of Sn(τ) by popular software such as Maple, we want to connect the rather
abstract value of

R(τ) := sign

{
dReλ

dτ

∣∣∣∣
λ=iω(τ∗)

}

with the intuitive and easy to use one

S(τ) := sign

{
dSn(τ)

dτ

∣∣∣∣
τ=τ∗

}
= sign

{
1− dτn(τ)

dτ

∣∣∣∣
τ=τ∗

}
.(3.12)

Observe that

F ′
ω(ω, τ) = 2ωa2 > 0(3.13)

since ω(τ) > 0. Therefore, (2.21) in Theorem 2.2 becomes

sign

{
dRe λ

dτ

∣∣∣∣
λ=iω(τ∗)

}
= sign

{
dSn(τ)

dτ

∣∣∣∣
τ=τ∗

}
.(3.14)

Hence, we have the following.
Theorem 3.1. The characteristic equation (3.1) admits a pair of simple and

conjugate roots λ+(τ
∗) = iω(τ∗), λ−(τ∗) = −iω(τ∗), ω(τ∗) > 0, at τ∗ ∈ I if Sn(τ

∗) =
0, for some n ∈ N0. This pair of simple conjugate pure imaginary roots crosses the
imaginary axis from left to right if δ(τ∗) > 0 and crosses the imaginary axis from
right to left if δ(τ∗) < 0, where

δ(τ∗) = sign

{
dReλ

dτ

∣∣∣∣
λ=iω(τ∗)

}
= sign

{
dSn(τ)

dτ

∣∣∣∣
τ=τ∗

}
.(3.15)

The following analytical result on R(τ) is useful for determining analytically the
τ values at which a stability switch occurs.

Theorem 3.2. For the characteristic equation (3.1),

sign

{
dReλ

dτ

∣∣∣∣
λ=iω(τ∗)

}
= sign {a2(τ)ω(τ)ω′(τ)(a(τ)b(τ) + c(τ)2τ)(3.16)

+ω2(τ)a2(τ)(a′(τ)b(τ)− a(τ)b′(τ) + c2(τ))}.
Proof. Denote by a′, b′, c′ the derivatives of a(τ), b(τ), c(τ) with respect to τ .

Differentiating (3.1) with respect to τ we obtain

dλ

dτ
=
λc(τ)e−λτ − (a′(τ)λ+ b′(τ) + c′(τ)e−λτ )

a(τ)− c(τ)τe−λτ .(3.17)

It is convenient to consider (dλ/dτ)−1. Hence, from (3.17) we have(
dλ

dτ

)−1

=
a(τ)eλτ − c(τ)τ

λc(τ)− (a′(τ)λ+ b′(τ))eλτ − c′(τ) ,(3.18)
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where, due to (3.1)

eλτ = − c(τ)

a(τ)λ+ b(τ)
.(3.19)

Therefore, substituting (3.19) in (3.18), we have

(
dλ

dτ

)−1

=
− a(τ)c(τ)
a(τ)λ+b(τ) − c(τ)τ

λc(τ) + c(τ)(a′(τ)λ+b′(τ))
a(τ)λ+b(τ) − c′(τ)

.(3.20)

Now, we compute (3.20) at λ = iω(τ). We have

(
dλ

dτ

)−1∣∣∣∣
λ=iω(τ)

=
− ac(b−iωa)

(ω2a2+b2) − cτ
iωc+ c(iωa′+b′)(b−iωa)

ω2a2+b2 − c′
.(3.21)

Since ω2(τ)a2(τ) + b2(τ) = c2(τ) for any τ ∈ I, we obtain

(
dλ

dτ

)−1∣∣∣∣
λ=iω(τ)

=
−(ab+ c2τ) + iωa2

ω2aa′ + bb′ − cc′ + iω(a′b− ab′ + c2)
.(3.22)

Since F (ω, τ) = 0 for all τ ∈ I, we obtain

−ωω′a2 = ω2aa′ + bb′ − cc′(3.23)

for all τ ∈ I, which substituted in (3.22) provides

(
dλ

dτ

)−1∣∣∣∣
λ=iω(τ)

=
−(a(τ)b(τ) + c(τ)2τ) + iω(τ)a(τ)2

−a2(τ)ω(τ)ω′(τ) + iω(τ)(a′(τ)b(τ)− a(τ)b′(τ) + c2(τ))
.(3.24)

Therefore, we have

R(τ) = sign {a2(τ)ω(τ)ω′(τ)(a(τ)b(τ) + c(τ)2τ) + ω2(τ)a2(τ)(a′(τ)b(τ)
−a(τ)b′(τ) + c2(τ))},(3.25)

proving the theorem.
Example. As an example of first order characteristic equations with delay depen-

dent coefficients, we consider the first model with time delay (simpler one) introduced
by Bence and Nisbet [3] for a population of sessile invertebrates. (This population
was previously studied by Roughgarden, Iwasa, and Baxter [25] and Roughgarden
and Iwasa [24] in terms of different mathematical models.) This model is a two-stage
model in which the population is divided into an adult population, which is explicitly
modeled, and a juvenile population which is modeled implicitly. The model takes the
form

dA

dt
= se−mJτ max{0, 1− aAA(t− τ)} −mAA(t),(3.26)

where A(t) represents the adult population, s is the settlement rate of juveniles,
e−mJτ is the through-stage survival probability of juveniles, mA is the mortality rate
of adults, and τ is the fixed time delay between settlement and recruitment into
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the adult population. Finally aA > 0 is the amount of space occupied by an adult
individual. The characteristic equation at steady state takes the form (3.1) with

a(τ) = 1, b(τ) = mA, c(τ) = aAse
−mJτ ,(3.27)

and τ ∈ R+0. Furthermore,

b(0) + c(0) = mA + aAs > 0,

thus ensuring that at τ = 0 we have one negative eigenvalue.
Let ω(τ) be the positive solution of

ω2(τ) = a2
As

2e−2mJτ −m2
A(3.28)

which exists provided that

aAs > mA, τ < τ1 :=
1

mJ
log

(
aAs

mA

)
.(3.29)

Then, eigenvalues λ+ = iω(τ), λ− = −iω(τ), ω(τ) > 0, can only occur for delays τ in
the interval I = (0, τ1). No stability switches for τ ≥ τ1. It is interesting to determine
the values of τ at which R(τ) = 1 and those at which R(τ) = −1. To this end we can
use formula (3.16)

R(τ) = sign {a2ωω′(ab+ c2τ) + ω2a2(a′b− ab′) + ω2c2},
where a, b, c are coefficients in (3.27) and ω is defined by (3.28). From (3.27) we see
that a′ = b′ = 0, ab = mA,

ωω′ = −mJa
2
As

2e−2mJτ = −mJc
2.(3.30)

Substituting (3.30) in (3.16) we obtain

R(τ) = sign {−mJc
2(mA + c2τ) + ω2c2}

= sign {−mA(mJ +mA)− c2(mJτ − 1)}.(3.31)

Then if (1/mJ) < τ1, (3.31) shows that in the interval ((1/mJ), τ1) we have R(τ) =
−1, i.e., possible stability switches can only occur toward stability. Assume that
τ < min{(1/mJ), τ1}. Then (3.31) takes the form

R(τ) = sign {(1−mJτ)a
2
As

2e−2mJτ −mA(mJ +mA)},(3.32)

which yields the following conclusions:
(i) If the parameters satisfy

mA < aAs < mA

(
1 +

mJ

mA

)1/2

,(3.33)

then for all τ ∈ [0, τ1) we have R(τ) = −1. In such cases, a stability switch from
unstable to stable may occur. Since at τ = 0 the steady state is asymptotically
stable, then it remains asymptotically stable for all τ ∈ [0, τ1).

(ii) Assume that the parameters satisfy

aAs > mA

(
1 +

mJ

mA

)1/2

.(3.34)
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Fig. 1. Graph of stability switch in terms of time delay for the first model of Bence and
Nisbet [3]. The top curve is S0(τ).

Then there exists a τc, 0 < τc < τ1, such that

sign

{
dRe λ

dτ

∣∣∣∣
λ=iω(τ)

}
> 0

in (0, τc), vanishes at τc, and is negative in (τc, τ1). τc is the unique zero of

ϕ(τ) := (1−mJτ)a
2
As

2e−2mJτ −mA(mJ +mA), τ ∈ (0, τ1).(3.35)

The statements of (i), (ii) are helpful in choosing the parameters to perform
relevant numerical simulations. In Figure 1, we plot the graph of the map S0(τ)
versus τ in the interval I = [0, τ1) for the following set of parameters satisfying (3.34):

aA = 1, mA = 1, mJ = 0.5, s = 10,

with τ1 = 4.605. The graph of S0(τ) versus τ in Figure 1 shows that S0(τ) has
two zeros, the first at the value τ01 = 0.20, the second at the value τ02 = 4.24,
and S1(τ) < 0 on (0, τ1). According to Theorem 3.1 at τ01 a stability switch occurs
toward instability whereas at τ02 the stability switch occurs toward stability. Hence,
for the model by Bence and Nisbet [3], as confirmed by other computer simulations,
intermediate delays (τ ∈ (0.2, 4.24)) show a destabilizing effect on the steady state,
whereas large delays (τ > 4.24) have a stabilizing one. For τ ∈ (τ01, τ02), the steady
state is unstable whereas it is asymptotically stable for 0 ≤ τ < τ01 and for any
τ > τ02. These results are in agreement with our computer simulations using XPP.

4. Second order characteristic equation. In this section, we consider the
characteristic equation

D(λ, τ) := λ2 + a(τ)λ+ b(τ)λe−λτ + c(τ) + d(τ)e−λτ = 0;(4.1)
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τ ∈ R+0 and a(τ), b(τ), c(τ), d(τ) : R+0→R are differentiable functions of class
C1(R+0) such that c(τ) + d(τ) �= 0 for all τ ∈ R+0, and for any τ , b(τ), d(τ) are
not simultaneously zero. We have

P (λ, τ) := Pn(λ, τ) = λ2 + a(τ)λ+ c(τ), Q(λ, τ) := Qm(λ, τ) = b(τ)λ+ d(τ).

We assume that Pn(λ, τ) and Qm(λ, τ) cannot have common imaginary roots. That
is, for any real number ω,

Pn(iω, τ) +Qm(iω, τ) �= 0.(4.2)

We have

F (ω, τ) = |P (iω, τ)|2 − |Q(iω, τ)|2 = (c− ω2)2 + ω2a2 − (ω2b2 + d2).(4.3)

Hence, F (ω, τ) = 0 implies

ω4 − ω2(b2 + 2c− a2) + (c2 − d2) = 0,(4.4)

and its roots are given by

ω2
+ =

1

2
{(b2 + 2c− a2) + ∆1/2}, ω2

− =
1

2
{(b2 + 2c− a2)−∆1/2},(4.5)

where

∆ = (b2 + 2c− a2)2 − 4(c2 − d2).(4.6)

Therefore, the following holds:

2ω2
± − (b2 + 2c− a2) = ±∆1/2.(4.7)

Furthermore, PR(iω, τ) = c(τ) − ω2(τ), PI(iω, τ) = ω(τ)a(τ), QR(iω, τ) = d(τ),
QI(iω, τ) = ω(τ)b(τ). Hence (2.16) becomes

sin θ(τ) =
−(c− ω2)ωb+ ωad

ω2b2 + d2
, cos θ(τ) = − (c− ω2)d+ ω2ab

ω2b2 + d2
,(4.8)

which jointly with (4.4) defines the maps (2.19). Now, from (4.3) we have

F ′
ω(ω, τ) = 2(c− ω2)(−2ω) + 2ωa2 − 2ωb2

= 2ω[2ω2 − (b2 + 2c− a2)]

= 2ω±[±∆1/2],(4.9)

where ω±(τ) > 0. Hence (2.21) in Theorem 2.2 becomes

sign

{
dRe λ

dτ

∣∣∣∣
λ=iω±

}
= sign {±∆1/2}sign

{
dSn(τ)

dτ

∣∣∣∣
τ=τ∗

}
.(4.10)

This proves the following theorem.
Theorem 4.1. The characteristic equation (4.1) has a pair of simple and conju-

gate pure imaginary roots λ = ±iω(τ∗), ω(τ∗) real, at τ∗ ∈ I if Sn(τ
∗) = τ∗−τn(τ∗) =

0 for some n ∈ N0. If ω(τ∗) = ω+(τ
∗), this pair of simple conjugate pure imaginary
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roots crosses the imaginary axis from left to right if δ+(τ
∗) > 0 and crosses the imag-

inary axis from right to left if δ+(τ
∗) < 0, where

δ+(τ
∗) := sign

{
dRe λ

dτ

∣∣∣∣
λ=iω+(τ∗)

}
= sign

{
dSn(τ)

dτ

∣∣∣∣
τ=τ∗

}
.(4.11)

If ω(τ∗) = ω−(τ∗), this pair of simple conjugate pure imaginary roots crosses the
imaginary axis from left to right if δ−(τ∗) > 0 and crosses the imaginary axis from
right to left if δ−(τ∗) < 0, where

δ−(τ∗) := sign

{
dRe λ

dτ

∣∣∣∣
λ=iω−(τ∗)

}
= −sign

{
dSn(τ)

dτ

∣∣∣∣
τ=τ∗

}
.(4.12)

We remark that if ω+(τ
∗) = ω−(τ∗) = ω(τ∗), then ∆(τ∗) = 0 and

sign

{
dRe λ

dτ

∣∣∣∣
λ=iω(τ∗)

}
= 0.(4.13)

The same is true when S′
n(τ

∗) = 0. The following result can be useful in identifying
values of τ where stability switches may take place. (In using this theorem, the plus
or minus signs are to be used consistently on both sides of the equations.)

Theorem 4.2. Assume that for all τ ∈ I, ω(τ) is defined as a solution of (4.4).
Then

δ±(τ) = sign {±∆1/2(τ)}signD±(τ),(4.14)

where

D±(τ) = ω2
±[(ω

2
±b

2 + d2) + a′(c− ω2
±) + bd′ − b′d− ac′]

+ω±ω′
±[τ(ω

2
±b

2 + d2)− bd+ a(c− ω2
±) + 2ω2

±a]

for all τ ∈ I.
Proof. Let us differentiate with respect to τ the characteristic equation (4.1). We

obtain (
dλ

dτ

)−1

=
− 2λ+a
λ2+aλ+c +

b
bλ+d − τ

λ+ a′λ+c′
λ2+aλ+c − b′λ+d′

bλ+d

.(4.15)

Now, let λ = iω(τ) where ω(τ) > 0 satisfies (4.4). Hence, we have

Re

(
dλ

dτ

)−1∣∣∣∣
λ=iω

= Re

{ − (2iω+a)((c−ω2)−iωa)
(c−ω2)2+ω2a2 + b(d−iωb)

d2+ω2b2 − τ
iω + (iωa′+c′)((c−ω2)−iωa)

(c−ω2)2+ω2a2 − (iωb′+d′)(d−iωb)
d2+ω2b2

}

= Re

{
[bd−τ(d2+ω2b2)−2ω2a−a(c−ω2)]+i[ω(2ω2−(b2+2c−a2))]

[ω2aa′+c′(c−ω2)−ω2bb′−dd′]+i[ω((d2+ω2b2)+a′(c−ω2)−ac′+bd′−b′d)]

}
.(4.16)

Therefore, from (4.16) we have

sign

{
Re

(
dλ

dτ

)−1∣∣∣∣
λ=iω

}
= sign{[τ(d2 + ω2b2)− bd+ a(c− ω2) + 2ω2a]

×[−ω2aa′ − c′(c− ω2) + ω2bb′ + dd′]
+ω2[2ω2 − (b2 + 2c− a2)]

×[(ω2b2 + d2) + a′(c− ω2) + bd′ − b′d− ac′]}.(4.17)
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Differentiating both sides of (4.4) with respect to τ we obtain

ωω′[2ω2 − (b2 + 2c− a2)] = −ω2aa′ − c′(c− ω2) + ω2bb′ + dd′.(4.18)

Furthermore, ω(τ) must be one of the two roots ω±(τ) given by (4.5); therefore,

2ω2
± − (b2 + 2c− a2) = ±∆1/2.(4.19)

Combining (4.18) and (4.19) in (4.17), we obtain

sign

{
Re

(
dλ

dτ

)−1∣∣∣∣
λ=iω±(τ)

}

= sign {±∆1/2(τ)}
×sign {ω2

±[(ω
2
±b

2 + d2) + a′(c− ω2
±) + bd′ − b′d− ac′]

+ω±ω′
±[τ(ω

2
±b

2 + d2)− bd+ a(c− ω2
±) + 2ω2

±a]}.
Since

sign

{
dRe λ

dτ

}
= sign

{
Re

(
dλ

dτ

)−1}
,

the proof is completed.
Remark 4.1. In almost all the application problems that we have encountered

so far that have characteristic equations of the form (4.1), often only ω+ is feasible.
In these cases, stability switches occur only at the roots of S+

0 (τ) = τ − τ+
0 (τ) = 0,

where

τ+
0 (τ) = θ+(τ)/ω+(τ), τ ∈ I,(4.20)

and θ+(τ) is the solution of (4.8) when ω = ω+.
However, if both ω+ and ω− are feasible for τ ∈ I, then we have the following

two sequences of functions on I:

S+
n (τ) = τ − (θ+(τ) + 2nπ)/ω+(τ), S−

n (τ) = τ − (θ−(τ) + 2nπ)/ω−(τ),(4.21)

where the notations are self-evident. Clearly S+
n (τ) > S+

n+1(τ) and S
−
n (τ) > S−

n+1(τ)
for all n ∈ N0, τ ∈ I. In addition to this, we have the following simple statement.

Theorem 4.3. Assume that S+
0 (τ) > S−

0 (τ) on I. Then S+
n (τ) > S−

n (τ) on I
for all n ∈ N0.

Proof. It is easy to see that S+
0 (τ) > S−

0 (τ) on I implies that

θ+(τ)/ω+(τ) < θ−(τ)/ω−(τ), τ ∈ I.(4.22)

Note that ω+(τ) > ω−(τ) on I; the theorem follows from (4.21).
Remark 4.2. When both ω+ and ω− are feasible for τ ∈ I, it is easy to imagine

that the stability switches may depend on all real roots of S+
n (τ) = 0 and S−

n (τ) = 0. In
such situations, one must examine all these possible real roots in order to determine
the stability of the equilibrium. To illustrate this, let us consider such a scenario.
Assume that Theorem 4.3 holds true and the equilibrium is asymptotically stable when
τ = 0. Assume further that S+

0 (τ) = 0 at t1 = τ+
01 and t4 = τ+

02, S
−
0 (τ) = 0 at t2 = τ−01

and t3 = τ−02, and no real roots for S+
n (τ) = 0 and S−

n (τ) = 0 when n > 0. Then it is
easy to see (Figure 2) that t1 < t2 < t3 < t4. Careful but simple examination shows
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stable unstable stable stableunstable

S0
+

S0
−

S1
+

t01
+

t01
− t02

−
t02

+

Fig. 2. Illustration for Remark 4.2.

that the equilibrium is asymptotically stable for τ ∈ [0, t1)∪ (t2, t3)∪ ((t4,∞)∩I) and
is unstable for τ ∈ (t1, t2)∪(t3, t4).More complicated scenarios are clearly conceivable.

Example. As an example for the second order characteristic equations with de-
lay dependent coefficients, we consider the second model with time delay and stage
structure introduced by Bence and Nisbet [3] for a population of sessile invertebrates.
Again, the model is a two-stage model in which population is divided into adult and
juvenile populations, both of which are explicitly modeled. The model takes the form

J ′(t) = s[F (t)− e−mJτF (t− τ)]−mJJ(t),(4.23)

A′(t) = se−mJτF (t− τ)−mAA(t),(4.24)

F (t) = max{0, 1− aJJ(t)− aAA(t)},(4.25)

where sF (t) represents the newly settled juveniles and se−mJτF (t− τ) the ones that
become adults. When aJ = 0, this model reduces to (3.26). Here, s,mg,mA, aA are
positive constants and aJ is a nonnegative constant. This model was systematically
studied by Kuang and So in [22]. It should be mentioned here that the last statement
of their Theorem 4.1, which says that S+

0 (τ) > 0 (with respect to the positive steady
state) implies that the positive steady state is unstable, is not fully justified. To
be accurate, it requires the assumption that ω− is not feasible. The analysis and
simulation (with both Maple and XPP) we conducted so far, however, indeed suggest
that this assumption may in fact hold for all biologically meaningful parameters.

Let J∗, A∗, F ∗ denote equilibrium population sizes of juveniles, adults, and equi-
librium free space, respectively. We have

J∗ =
sF ∗

mJ
(1− e−mJτ ), A∗ =

sF ∗

mA
e−mJτ .(4.26)
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Fig. 3. Graph of stability switch in terms of time delay for the second model of Bence and
Nisbet [3]. The top curve is S0(τ).

It follows that F ∗ �= 0 and

F ∗ = 1− sF ∗
[
aJ
mJ

(1− e−mJτ ) +
aA
mA

e−mJτ

]
.(4.27)

Following the notation of Bence and Nisbet [3], σJ = saJ/mJ , σA = saA/mA, we
have

F ∗ = [1 + σJ + (σA − σJ)e−mJτ ]−1.

Thus, system (4.23)–(4.25) has a unique positive steady state (J∗, A∗) and F ∗ < 1.
Its characteristic equation at the positive steady state takes the form

λ2 + aλ+ bλe−λτ + c+ de−λτ = 0,(4.28)

where

a = mJ +mA + aJs, b = b(τ) = (aA − aJ)se−mJτ ,(4.29)

c = mAmJ + aJmAs, d = d(τ) = (aAmJ − aJmA)se
−mJτ .(4.30)

Clearly, c + d > 0, which implies λ = 0 can never be a root of (4.28). When τ =
0, (4.28) reduces to

λ2 + (a+ b)λ+ c+ d = 0,

which has roots with negative real parts, implying that (J∗, A∗) is locally asymptoti-
cally stable when τ = 0.

In Figure 3, we plot the graph of the map S+
0 (τ) versus τ in the interval I = [0, τ1)

for the set of parameters satisfying

aA = 1, mA = 1, aJ = 0.1, mJ = 1, s = 10,
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with τ1 = 1.49. It can be shown that for this set of parameters, ω− is not feasible for
τ ∈ I. The graph of S+

0 (τ) versus τ in Figure 3 shows that S+
0 (τ) has two zeros, the

first at the value τ01 = 0.29, the second at the value τ02 = 1.14, whereas S+
1 (τ) < 0

on I. According to Theorem 4.1 and Remark 4.1, we see that at τ01 a stability switch
occurs toward instability whereas at τ02 the stability switch occurs toward stability.
Again, we see that intermediate delays show a destabilizing effect on the steady state,
whereas large delays have a stabilizing one. For τ ∈ (τ01, τ02), the steady state is
unstable, whereas it is asymptotically stable for 0 ≤ τ < τ01 and for any τ > τ02.
These results are in agreement with our computer simulations using XPP.

5. Discussion. It is well known that for nonlinear delay systems (including many
neutral delay systems) the occurrence of characteristic roots crossing the imaginary
axis from left to right as the result of changing certain parameters often ensures the
emergence of nontrivial periodic solutions near the steady state as it becomes unstable
(Hale and Verduyn Lunel [17]). For well-constructed population models, this scenario
is to be expected. XPP simulation can easily confirm this.

We would like to stress here that the geometric criterion presented in the previous
section may also be applicable to models with several discrete delays or distributed
delays.

Consider, for an example, the following Lotka–Volterra predator prey model with
two discrete delays: {

x′(t) = x(t)[e1 − a1x(t)− a2y(t− σ)],
y′(t) = y(t)[−e2 + a3x(t− τ)− a4y(t)],

(5.1)

where all parameters are positive constants. Assume further that it has a positive
steady state E∗ = (x∗, y∗). Let r = σ/τ. The system can be reduced to the following
one with dimensionless time t/τ , which, for simplicity, we again denote by t:{

x′(t) = τx(t)[e1 − a1x(t)− a2y(t− r)],
y′(t) = τy(t)[−e2 + a3x(t− 1)− a4y(t)].

(5.2)

At E∗, the characteristic equation is

λ2 + λa∗τ + b∗τ2 + c∗τ2e−λ(r+1) = 0,(5.3)

where a∗ = a1x
∗ + a4y

∗, b∗ = a1a4x
∗y∗, c∗ = a2a3x

∗y∗. Since τ = σ/r, we see that
the characteristic equation takes the form

λ2 + λA(r, σ) +B(r, σ) + C(r, σ)e−λ(r+1) = 0,(5.4)

where A(r, σ) = a∗σ/r, B(r, σ) = b∗σ2/r2, C(r, σ) = c∗σ2/r2, and r may vary in
R+. Clearly, for each fixed value of delay σ, we have a characteristic equation with
parameters dependent on r. Notice that all coefficients of (5.4) are positive, and hence
all its real roots must be negative. Stability switching may occur when imaginary roots
λ = iω exist and cross the imaginary axis.

It is straightforward to find that ω must be the solution of

F (ω, r) := ω4 + ω2(A2(r)− 2B(r)) +B2(r)− C2(r).(5.5)

(For simplicity, we drop the dependence of σ.) This gives

ω2
± =

1

2
{2B(r)−A2(r)± [(2B(r)−A2(r))2 + 4(C2(r)−B2(r))]1/2}.(5.6)
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Let θ(r) ∈ [0, 2π] be the solution of

cos θ(r) =
ω2(r)−B(r)

C(r)
, sin θ(r) =

ω(r)A(r)

C(r)
.(5.7)

The imaginary roots λ = ±iω, ω(r) > 0 will appear at the r values which are zeros r∗

of

Sn(r) = r + 1− θ(r) + 2nπ

ω(r)
, n ∈ N0.(5.8)

Hence, once we know such r∗, we know τ∗ = σ/r∗. This will give us a pair of delay
values (τ∗, σ) at which the stability switch may be possible when increasing the value
of r = σ/τ while keeping σ fixed. Of course, such analysis can be performed for each
σ for which the solutions (5.6) are feasible. A similar procedure can be applied to σ
while keeping τ fixed.

As an example for the applicability of our geometric criterion to models with
distributed delays, we consider the following model of single species growth:

x′(t) = f

(∫ 0

−τ
edsx(t+ s)ds

)
− g(x(t)),(5.9)

where τ is the maximum stage delay and d is the through-stage death rate, both
positive constants. The first term accounts for the births due to all the age groups
and the second term represents the death rate. Typical assumptions on f and g are
given in [20]. This model can also be viewed as a direct extension of the models
studied in [10]. Assume that it admits a positive steady state of x(t) = x∗. Then

f

(
1

d
(1− e−dτ )x∗

)
= g(x∗).

Let

a := f ′
(
1

d
(1− e−dτ )x∗

)
, b := g′(x∗).

Then the linearized equation of (5.9) takes the form

u′(t) = a

∫ 0

−τ
edsu(t+ s)ds− bu(t).(5.10)

By differentiating the above equation one more time and making some simple substi-
tution, we have

u′′(t) + (b+ d)u′(t) + (db− a)u(t) + ae−dτu(t− τ) = 0.(5.11)

Clearly, this is a special case of (4.1) and our criteria are applicable.
There are several factors that may have contributed to the current prevalence of

models containing only delay independent parameters. These include the following:
(1) the authors fail to recognize the need to have some of the parameters become delay
dependent; (2) the authors think that delay independent parameters can provide a
good enough description or approximation of the dynamics; (3) there is simply a lack
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of mathematical results and methods to deal with models involving delay dependent
parameters.

To see why it is easy to overlook the need of introducing delay dependent param-
eters in a model, let us consider the well-studied Nicholson’s blowfly model proposed
in [16]:

N ′ = R−D = R(N(t− τ))− δN = pN(t− τ)e−N(t−τ) − δN,(5.12)

where N is the sexually mature adult blowfly population density, δ is its individual
death rate, and R is the recruitment rate. In arriving at the above form of R, Gurney,
Blythe, and Nisbet [16] argued that (1) the rate at which eggs are produced depends
only on the current size of adult population, (2) each egg takes about τ units of time to
become a sexually mature adult, and (3) the probability of a given egg maturing into
a viable adult depends only on the number of competitors of the same age. However,
since an individual larva will die at a constant or average rate of d, the through-stage
survival rate for a larva to adulthood is e−dτ . Thus a more plausible model should
take the form (Cooke et al. [10])

N ′ = e−dτR(N(t− τ))− δN = pe−dτN(t− τ) exp{−N(t− τ)} − δN.(5.13)

Now, this equation has a parameter e−dτ that depends on the time delay τ.
To see the importance of introducing delay dependent parameters, we again use

models (5.12) and (5.13). It is well known [21] that for (5.12), if a positive steady state
exists and this steady state is unstable for τ = τ0, then it remains unstable for τ > τ0.
That is, a large time delay plays a destabilizing role. However, for model (5.13), one
sees the opposite [10]. What is often observed (which can be easily verified by XPP) is
that there are two threshold values 0 < τ0 < τ1 such that the positive steady state is
unstable only when τ ∈ [τ0, τ1]. Dramatic differences in dynamics provided by models
with delay dependent parameters and models with delay independent parameters like
that above seem to be the rule rather than the exception. It is also worth mention-
ing here that applying existing criteria designed for models with delay independent
parameters can lead to speculative or even erroneous statements.

Acknowledgments. The authors would like to thank the two referees for their
constructive comments and suggestions.
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Abstract. The classical problem of homogenization of elliptic operators with periodically os-
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1. Introduction. In this paper, the classical problem of homogenization of el-
liptic operators with periodically oscillating coefficients is revisited. As is well known,
the homogenization process is concerned with the study of the behavior of solutions
uε of boundary value problems associated with such operators when the coefficients
are periodic with small period ε > 0. For an excellent introduction to this subject,
the reader is referred to the book of A. Bensoussan, J.-L. Lions, and G. Papanico-
laou [5]. In a previous work by C. Conca and M. Vanninathan [11], a new proof
of weak convergence of uε towards the homogenized solution u∗ was furnished using
Bloch wave decomposition. Following the same approach, we go further and introduce
what we call Bloch approximation of the solution uε. As a simple application of this
new object, we treat the problem of correctors in homogenization. At this point, it
is worthwhile to remark that the homogenized solution u∗ is merely the weak limit
of solutions uε as ε→ 0. The idea behind introducing correctors is to look for terms
(called first order correctors) which, when added to the homogenized solution, pro-
vide an approximation in the energy norm for all ε sufficiently small. Second order
correctors yield an error estimate in the energy norm of order O(ε). The main feature
of Bloch approximation is that it contains both the first and second order corrector
terms. Another important feature is that it is easily computable in principle.
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Historically, a classical way of obtaining such correctors is to work in the physical
space and use multiscale expansion of the solution, which was first introduced in the
basic book just cited. As we will see, the method of Bloch waves sheds new light
and offers an alternative for viewing the classical results. This method naturally
leads us to work in the Fourier space, and thus in a framework dual to the one
used in L. Tartar [21], whose method is very general and justifies, in particular, the
first term obtained via the multiscale expansion. (There are also other methods
of justification based on the analysis in physical space; cf. G. Nguetseng [17] and
G. Allaire [1].) However, it is important to mention that the Bloch wave method
does not presuppose any multiscale structure of the solution; on the contrary, such
a structure of the solution will be a consequence of the present method. Although
correctors are generally not unique, our approach yields a posteriori the same ones as
those obtained in [5].

Bloch waves and their applications are not by any means new. It is a classical tool
which has been in use in solid state physics since the pioneering paper of F. Bloch [6].
However, the basic idea was introduced in the mathematical literature much earlier
by G. Floquet [13]. For later developments, let us cite the works of F. Odeh and
J. Keller [18] and M. Reed and B. Simon [19]. A deep analysis concerning the par-
tial regularity of the spectrum of Schrödinger’s equation with periodic potential was
carried out by C. Wilcox [22]. Our point of view regards periodic medium as a per-
turbation of homogeneous ones. In this context, the book by T. Kato [15] provides
excellent analysis when the parameter of perturbation is a scalar. We end this rather
incomplete list by citing G. Allaire and C. Conca [2], [3], and P. Gérard et al. [14].
We feel it is also appropriate to cite a recent work by M. Avellaneda, L. Berlyand,
and J.-F. Clouet [4], in which the Bloch–Floquet approach is used to provide new ho-
mogenization results and handles the boundary layer terms for frequency dependent
problems. To conclude, let us refer the reader to C. Conca [8] for a more complete
general survey on Bloch waves.

Before proceeding further, we mention a word about the notations adopted in
what follows. Unless mentioned explicitly, the usual summation convention with
respect to the repeated indices is understood. The constants appearing in various
estimates independent of ε are generically denoted by c, c1, c2, etc. Apart from the
usual norms in Sobolev spaces H1, H2, we will also use the following seminorms:

|v|
H1

=




N∑
j=1

∥∥Djv
∥∥2

L2




1
2

, |v|
H2

=




N∑
j,k=1

∥∥D2
j,kv

∥∥2

L2




1
2

.

Now let us introduce the problem to be studied in this work. We consider the
operator

A
def
= − ∂

∂yk

(
ak�(y)

∂

∂y�

)
, y ∈ R

N ,(1.1)

where the coefficients satisfy


ak� ∈ L∞
# (Y ), where Y =]0, 2π[N , i.e., each ak� is a

Y -periodic bounded measurable function defined on R
N , and

∃α > 0 such that ak�(y)ηkη� ≥ α|η|2 ∀η ∈ R
N , y ∈ Y a.e.,

ak� = a�k ∀k, � = 1, . . . , N.

(1.2)
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For each ε > 0, we consider also the operator Aε, where

Aε
def
= − ∂

∂xk

(
aεk�(x)

∂

∂x�

)
with aεk�(x) = ak�

(x
ε

)
, x ∈ R

N .(1.3)

In homogenization theory, it is usual to refer to x and y, the slow and the fast variables,
respectively. They are related by y = x

ε . Associated with Aε, let us consider the
boundary value problem

Aεuε = f in Ω, uε ∈ H1
0 (Ω),(1.4)

which is posed in an arbitrary bounded domain Ω in R
N and where f is a given

element in L2(Ω). It is classical that the above problem admits one and only one
solution.

From the classical work [5], it is known that one can associate to Aε a homogenized
operator A∗ given by

A∗ def
= − ∂

∂xk

(
qk�

∂

∂x�

)
.(1.5)

The homogenized coefficients qk� are constants and their definition is given below.
The solution uε of (1.4) converges weakly in H1

0 (Ω) to the so-called homogenized
solution u∗ characterized by

A∗u∗ = f in Ω, u∗ ∈ H1
0 (Ω).(1.6)

In the present paper, we do not consider the effects of boundaries, postponing
them to a subsequent article [9]. In the case of R

N , it is natural to replace the
operator Aε by (Aε + I). In that case, if wε satisfies{

(Aε + I)wε = g in R
N ,

wε ⇀ w∗ in H1(RN )-weak,
(1.7)

where g is a given function in L2(RN ), then it can be seen that (see Proposition 6.1
below)

wε → w∗ in L2(RN )-strong.(1.8)

In view of the above result, there is no concentration of L2-energy at infinity, and
therefore throughout this paper we will consider a sequence uε and a function f ∈
L2(RN ) satisfying 


Aεuε = f in R

N ,

uε ⇀ u∗ in H1(RN )-weak,

uε → u∗ in L2(RN )-strong.

(1.9)

The central issue in the analysis of the first order correctors is to obtain functions
uε1 ∈ H1(RN ), which can be easily constructed and have the following characteristic
property:

‖uε − u∗ − εuε1‖H1(RN )
→ 0 as ε→ 0.(1.10)
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By definition, second order correctors uε2 ∈ H1(RN ) will enjoy the property

‖uε − u∗ − εuε1 − ε2uε2‖H1(RN )
≤ cε.(1.11)

One of the purposes of this article is to carry out a more general construction than
the classical one for correctors, namely, Bloch approximation θε, which contains all
the above correctors and justifies the procedure. Apart from this, θε contains a lot
of information about the periodic medium which will be amply demonstrated in this
paper.

1.1. Survey of the previous results. In the classical book [5] the authors
obtain an asymptotic expansion (with y = x

ε ) of the form

uε(x) = u∗(x) + ε

{
χ
k
(y)

∂u∗

∂xk
(x) + ũ1(x)

}

+ ε2
{
χ
k�
(y)

∂2u∗

∂xkx�
(x) + χ

�
(y)

∂ũ1

∂x�
(x) + ũ2(x)

}
+ · · · .

(1.12)

Here, χ
k
is the unique solution of the cell problem




Aχ
k
=

∂ak�
∂y�

in R
N ,

χ
k
∈ H1

#(Y ), MY (χk)
def
=

1

|Y |
∫
Y

χ
k
dy = 0.

(1.13)

The function χ
k�

is characterized as the unique solution of



Aχ

k�
=ak�+akm

∂χ�
∂ym

− ∂

∂ym
(amkχ�)−MY (ak�)−MY

(
akm

∂χ�
∂ym

)
in R

N ,

χ
k�
∈ H1

#(Y ), MY (χk�) = 0.

(1.14)

Further, ũ1(x), ũ2(x), . . . are independent of ε and satisfy equations of the typeA
∗ũj =

g̃j in R
N , where, for instance, g̃1(x) = bjk�D

3
jk�u

∗, where bjk� are constants:

bjk� = MY

(
ajm

∂χk�
∂ym

+ ak�χj

)
∀j, k, � = 1, . . . , N.

With these notations, the classical formula of the homogenized coefficients is as fol-
lows:

qk� = MY

(
ak� + akm

∂χ�
∂ym

)
∀k, � = 1, . . . , N.

(Another characterization of qk� is given in Proposition 1.5 below.) Using the above
expansion, the first order corrector term is obtained in [5]. More precisely, we have
the following.
Theorem 1.1. We assume that the coefficients ak� satisfy assumptions (1.2),

f ∈ L2(RN ), and the solution χ
k
∈W 1,∞(Y ), k = 1, . . . , N . Then the first order

corrector is defined by

uε1(x) = χ
k

(x
ε

) ∂u∗

∂xk
(x),
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which means that

‖uε − u∗ − εuε1‖H1(RN )
→ 0 as ε→ 0.

In this paper, we obtain a more general result using a different approach intro-
duced in [11]. The basic tool of this new approach is Bloch waves ψ associated with
A which we define now. Let us consider the following spectral problem parameterized
by η ∈ R

N : find λ = λ(η) ∈ R and ψ = ψ(y; η) (not identically zero) such that{
Aψ(·; η) = λ(η)ψ(·; η) in R

N , ψ(·; η) is (η;Y )-periodic, i.e.,

ψ(y + 2πm; η) = e2πim·ηψ(y; η) ∀m ∈ Z
N , y ∈ R

N .
(1.15)

Next, we define φ(y; η) = e−iy·ηψ(y; η), and (1.15) can be rewritten in terms of φ as
follows:

A(η)φ = λφ in R
N , φ is Y -periodic.(1.16)

Here, the operator A(η) is defined by

A(η)
def
= −

(
∂

∂yk
+ iηk

)[
ak�(y)

(
∂

∂y�
+ iη�

)]
,(1.17)

which can be rewritten as

A(η) = A+ iηkCk + ηkη�ak�(y)(1.18)

with

Ckφ
def
= − akj(y)

∂φ

∂yj
− ∂

∂yj
(akj(y)φ).(1.19)

It is clear from (1.15) that the (η, Y ) periodicity condition is unaltered if we
replace η by (η + q) with q ∈ Z

N , and η can therefore be confined to the dual
cell η ∈ Y ′ = [− 1

2 ,
1
2 [
N . It is well known (C. Conca, J. Planchard, and M. Van-

ninathan [10]) that for each η ∈ Y ′, the above spectral problem admits a discrete
sequence of eigenvalues with the following properties:{

0 ≤ λ1(η) ≤ · · · ≤ λm(η) ≤ · · · → ∞
∀m ≥ 1, λm(η) is a Lipschitz function of η ∈ Y ′.

Besides, the corresponding eigenfunctions denoted by ψm(·; η) and φm(·; η) form or-
thonormal bases in the spaces of all L2

loc(R
N )-functions which are (η;Y )-periodic and

Y -periodic, respectively; these spaces are denoted by L2
#(η;Y ) and L2

#(Y ). It is

worthwhile to remark that these eigenfunctions in fact belong to the spaces H1
#(η;Y )

and H1
#(Y ), respectively, where

H1
#(η;Y ) =

{
ψ ∈ L2

#(η;Y )
∣∣∣ ∂ψ

∂yk
∈ L2

#(η;Y ) ∀k = 1, . . . , N

}
,

H1
#(Y ) =

{
φ ∈ L2

#(Y )
∣∣∣ ∂φ

∂yk
∈ L2

#(Y ) ∀k = 1, . . . , N

}
.
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The functions ψm(·; η) and φm(·; η) (referred to as Bloch waves) introduced above
enable us to describe the spectral resolution of A (an unbounded self-adjoint operator
in L2(RN )) in the orthogonal basis {eiy·ηφm(y; η)|m ≥ 1, η ∈ Y ′}. More precisely, we
have the following.
Theorem 1.2. Let g ∈ L2(RN ). The mth Bloch coefficient of g is defined as

follows:

(Bmg)(η) =

∫
RN

g(y)e−iy·ηφ̄m(y; η)dy ∀m ≥ 1, η ∈ Y ′.

Then the following inverse formula holds:

g(y) =

∫
Y ′

∞∑
m=1

(Bmg)(η)e
iy·ηφm(y; η)dη.

Further, we have Parseval’s identity:∫
RN

|g(y)|2dy =

∫
Y ′

∞∑
m=1

|(Bmg)(η)|2dη.

Finally, for all g in the domain of A, we have

Ag(y) =

∫
Y ′

∞∑
m=1

λm(η)(Bmg)(η)e
iy·ηφm(y; η)dη.

To obtain the spectral resolution of Aε in an analogous manner, let us introduce
Bloch waves at the ε-scale:

λεm(ξ) = ε−2λm(η), φεm(x; ξ) = φm(y; η), ψεm(x; ξ) = ψm(y; η),

where the variables (x, ξ) and (y, η) are related by y = x
ε and η = εξ. Observe that

φεm(x; ξ) is εY -periodic (in x) and ε−1Y ′-periodic with respect to ξ. In the same
manner, ψεm(·; ξ) is (εξ; εY )-periodic because of the relation ψεm(x; ξ) = eix·ξφεm(x; ξ).
Note that the dual cell at ε-scale is ε−1Y ′ and hence we take ξ to vary in ε−1Y ′ in what
follows. With these notations, we have the following result analogous to Theorem 1.2.
Theorem 1.3. Let g ∈ L2(RN ). The mth Bloch coefficient of g at the ε-scale is

defined as follows:

(Bε
mg)(ξ) =

∫
RN

g(x)e−ix·ξφ̄εm(x; ξ)dx ∀m ≥ 1, ξ ∈ ε−1Y ′.

Then the following inverse formula and Parseval’s identity hold:

g(x) =

∫
ε−1Y ′

∞∑
m=1

(Bε
mg)(ξ)e

ix·ξφεm(x; ξ)dξ,

∫
RN

|g(x)|2dx =

∫
ε−1Y ′

∞∑
m=1

|(Bε
mg)(ξ)|2dξ.

Finally, for all g in the domain of Aε, we get

Aεg(x) =

∫
ε−1Y ′

∞∑
m=1

λεm(ξ)(B
ε
mg)(ξ)e

ix·ξφεm(x; ξ)dξ.
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Using the above theorem, the classical homogenization result was deduced in
[11]. Let us recall the main steps. The first one consists of considering a sequence
uε ∈ H1(RN ) satisfying (1.9). We can express the equation Aεuε = f in R

N in the
equivalent form

λεm(ξ)(B
ε
mu

ε)(ξ) = (Bε
mf)(ξ) ∀m ≥ 1, ξ ∈ ε−1Y ′.(1.20)

In the homogenization process, one can neglect all the relations for m ≥ 2. More
precisely, it is proved in [11] that the following result holds.
Proposition 1.4. Let

vε(x) =

∫
ε−1Y ′

∞∑
m=2

(Bε
mu

ε)(ξ)eix·ξφεm(x; ξ)dξ.(1.21)

Then ‖vε‖L2(RN ) ≤ cε.
Thus we can concentrate our attention only on the relation corresponding to the

first Bloch wave:

λε1(ξ)(B
ε
1u
ε)(ξ) = (Bε

1f)(ξ) ∀ξ ∈ ε−1Y ′.(1.22)

The homogenized equation in the Fourier space

qk�ξkξ�û∗(ξ) = f̂(ξ) ∀ξ ∈ R
N(1.23)

is obtained from (1.22) by passing to the limit as ε → 0. Here, the symbol ̂ stands
for the classical Fourier transformation

f̂(ξ) =
1

(2π)N/2

∫
RN

f(x)e−ix·ξdx.

To this end, the following results were established and applied in [11].
Proposition 1.5. We assume that ak� satisfies (1.2). Then there exists δ > 0

such that the first eigenvalue λ1(η) is an analytic function on Bδ
def
= {η | |η| < δ}, and

there is a choice of the first eigenvector φ1(y; η) satisfying{
η → φ1(·; η) ∈ H1

#(Y ) is analytic on Bδ,

φ1(y; 0) = p(0) (= |Y |−1/2 = 1
(2π)N/2 ).

Moreover, we have the relations

λ1(0) = 0, Dkλ1(0) =
∂λ1

∂ηk
(0) = 0 ∀k = 1, . . . , N,

1

2
D2
k�λ1(0) =

1

2

∂2λ1

∂ηk∂η�
(0) = qk� ∀k, � = 1, . . . , N,

and there exist constants c and c̃ such that

c|η|2 ≤λ1(η)≤ c̃|η|2 ∀η ∈ Y ′,(1.24)

0 <λ
(N)
2 ≤ λm(η) ∀m ≥ 2, η ∈ Y ′,(1.25)

where λ
(N)
2 is the second eigenvalue of the spectral problem for A in the cell Y with

Neumann boundary conditions on ∂Y .



BLOCH APPROXIMATION 1173

Apart from the above result of regularity on the Bloch spectrum, we need to
prove that the first Bloch transform is an approximation to the Fourier transform.
This result is naturally expected from the fact that φε1(x; ξ) → (2π)−N/2, as ε → 0,
∀ξ ∈ R

N .
Proposition 1.6. Let gε and g be in L2(RN ). Then
(i) if gε ⇀ g weakly in L2(RNx ), then χ

ε−1Y ′B
ε
1g
ε ⇀ ĝ weakly in L2

loc(R
N
ξ ) pro-

vided there is a fixed compact set K such that supp (gε) ⊂ K ∀ε;
(ii) if gε → g in L2(RNx ), then χ

ε−1Y ′B
ε
1g
ε → ĝ in L2

loc(R
N
ξ ).

These results easily lead us to the following homogenization theorem in R
N .

Theorem 1.7. We consider a sequence uε satisfying (1.9). Then

aεk�
∂uε

∂x�
⇀ qk�

∂u∗

∂x�
in L2(RN ) ∀k = 1, . . . , N.

In particular, u∗ satisfies A∗u∗ = f in R
N .

Once the homogenization result in R
N is established, it is an easy matter to

deduce the corresponding result in a bounded domain Ω by localization techniques
using a cut-off function φ ∈ D(Ω) (see [11]).

1.2. Presentation of new results: The Bloch approximation. Let us con-
sider the sequence uε satisfying hypotheses (1.9). The Bloch approximation of uε is
defined by the following formula:

θε(x)
def
=

∫
ε−1Y ′

û∗(ξ)eix·ξφε1(x; ξ)dξ, x ∈ R
N .(1.26)

First of all, let us remark that this object is not difficult to be computed in principle.
Our goal throughout this paper is to study properties of this function and particularly
its relations with various correctors terms. It is worth noticing that θε is defined only
in terms of the first Bloch mode φε1. We will see in section 3 that higher Bloch modes
φεm, m ≥ 2, do not contribute at all in the analysis of the correctors of first and
second order in the energy norm. (It will be interesting to know whether these higher
order modes play a part in the analysis of correctors in stronger norms H2, . . . , etc.
For H2-estimates, we refer to our work in [12].) Thus we are motivated to introduce
the projection onto the first Bloch mode: for all g ∈ L2(RN ), we define

P ε1 g(x) =

∫
ε−1Y ′

Bε
1g(ξ)e

ix·ξφε1(x; ξ)dξ, x ∈ R
N .(1.27)

We note by the item (ii) of Proposition 1.6 that the Fourier transform û∗ is an
approximation of Bε

1u
ε. Therefore, heuristically speaking, the Bloch approximation

θε is close to P ε1u
ε and hence to uε. With these notations, we will prove the following

theorem.
Theorem 1.8. Assume that the coefficients ak� satisfy (1.2). Let uε be the

sequence introduced in (1.9). Then if f ∈ L2(RN ), we have

(uε − θε)→ 0 in H1(RN ).(1.28)

Furthermore, we have the estimate

|uε − θε|
H1(RN )

≤ cε‖f‖
L2(RN )

.(1.29)
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It is worth remarking that even though error estimates of the type (1.29) are
sometimes found in the literature, they are usually obtained using the maximum
principle with more regularity hypotheses on ak� and f . Here, we obtain these natural
estimates under optimal hypotheses.

Thanks to the above result, we are reduced to expanding θε in terms of ε in order
to be able to compare it with the classical correctors for uε. To fulfill this task, it is
clear from the definition of θε that it is necessary to obtain asymptotic expansions
of the first eigenvalue λε1(ξ) and the first Bloch mode φε1(·; ξ). (In addition, for our
purposes below, we need an asymptotic expansion of the first Bloch transform Bε

1g(ξ)
for which we refer the reader to section 5. These results strengthen earlier results,
particularly those of Proposition 1.6.) We now state results in this direction, and their
proofs will be taken up in the following sections along with other auxiliary results.
First, we introduce some test functions χk�, χk�m, χk�mn defined by the following cell
problems (observe that the first ones are nothing but the functions already introduced
in (1.14)): 


Aχ

k�
= (ak� − qk�)− 1

2

(
Ckχ� + C�χk

)
in R

N ,

χ
k�
∈ H1

#(Y ), MY (χk�) = 0.
(1.30)




Aχ
k�m

=
1

3

[
(ak� − qk�)χm + (a�m − q�m)χk + (amk − qmk)χ�

−Ckχ�m − C�χmk − Cmχk�

]
in R

N ,

χ
k�m
∈ H1

#(Y ), MY (χk�m) = 0.

(1.31)




Aχ
k�mn

=
1

4!
D4
k�mnλ1(0)− 1

4

(
Cnχk�m + Ckχ�mn + C�χmnk + Cmχnk�

)

+
1

3!

[
(ak� − qk�)χmn + (a�m − q�m)χkn + (akm − qkm)χ�n

+ (amn − qmn)χk� + (a�n − q�n)χkm + (akn − qkn)χ�m

]
in R

N ,

χ
k�mn

∈ H1
#(Y ), MY (χk�mn) = 0.

(1.32)

Proposition 1.9. All odd order derivatives of λ1 at η = 0 vanish, i.e.,

Dβλ1(0) = 0 ∀β ∈ Z
N
+ , |β| odd.

All even order derivatives of λ1 at η = 0 can be calculated in a systematic fash-
ion. For instance, the fourth order derivatives have the following expressions: for all
k, �,m, n = 1, . . . , N

1

4!
D4
k�mnλ1(0) =

1

4

1

|Y |
∫
Y

{
Cnχk�m + Ckχ�mn + C�χmnk + Cmχnk�

}
dy
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− 1

3!

1

|Y |
∫
Y

{
(ak� − qk�)χmn + (a�m − q�m)χnk + (amn − qmn)χk�

+ (ank − qnk)χ�m + (akm − qkm)χ�n + (a�n − q�n)χkm

}
dy.

Various derivatives of φ1 at η = 0 can also be calculated in a systematic fashion.
Proposition 1.10. We have the following expressions:

Dkφ1(y; 0) = ip(0)χ
k
(y),

1

2!
D2
k�φ1(y; 0) = − p(0)χ

k�
(y)− β

(2)
k� p

(0),

1

3!
D3
k�mφ1(y; 0) = − ip(0)χ

k�m
(y)− i

3

(
β

(2)
k� χm(y) + β

(2)
�mχ

k
(y) + β

(2)
mkχ�(y)

)
p(0),

1

4!
D4
k�mnφ1(y; 0) = p(0)χ

k�mn
(y)− 1

3!

(
β

(2)
k� χmn(y) + β

(2)
�mχ

nk
(y) + β(2)

mnχk�

+ β
(2)
nk χ�m(y) + β

(2)
kmχn�(y) + β

(2)
�n χ

km
(y)
)
p(0) + β

(4)
k�mnp

(0)

with

β
(2)
k� =

1

2!

1

|Y |
∫
Y

χ
�
χ
k
dy,

β
(4)
k�mn =

1

|Y |
∫
Y

1

4

[
χ
�mn

χ
k
+ χ

kmn
χ
�
+ χ

n�k
χ
m
+ χ

k�n
χ
n

]
dy

− 1

|Y |
∫
Y

1

6

[
χ
�m

χ
kn

+ χ
km

χ
n�

+ χ
�k
χ
nm

]
dy

+
1

|Y |
1

2

(
β

(2)
k� β

(2)
mn + β

(2)
kmβ

(2)
n� + β

(2)
kn β

(2)
m�

)
.

We note that all odd order derivatives of φ1 at η = 0 are purely imaginary and
all even order derivatives are real.

Since φ1(·; η) is proved to be analytic for |η| ≤ δ, we can expand it and thus give
rise to an asymptotic expansion of θε which is as follows:

θε(x) = u∗(x) + εχ
k

(x
ε

) ∂u∗

∂xk
(x)− ε2

(
χ
k�

(x
ε

)
+ β

(2)
k�

)
∂2u∗

∂xk∂x�
(x) + · · · .(1.33)

This can be rigorously proved. Our next result is a sample where we specify the
precise hypotheses needed to justify the above expansion up to three terms.
Theorem 1.11. Assume that the hypotheses of Theorem 1.8 hold.
(i) If u∗ ∈ H1(RN ), then

‖θε − u∗‖
L2(RN )

≤ cε‖u∗‖
H1(RN )

.

(ii) If f ∈ L2(RN ) and χk ∈ W 1,∞
# (Y ), where χk is the solution of (1.13) and

χεk(x) = χk
(
x
ε

)
, then we have∥∥∥∥θε − u∗ − εχεk

∂u∗

∂xk

∥∥∥∥
H1(RN )

≤ cε‖f‖
L2(RN )

.
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(iii) If f ∈ H1(RN ) and χk, χk� ∈W 1,∞
# (Y ), where χk� is the solution of (1.30),

β
(2)
k� are constants defined in Proposition 1.10, and χεk�(x) = χk�

(
x
ε

)
, then

∥∥∥∥θε − u∗ − εχεk
∂u∗

∂xk
+ ε2

(
χεk� + β

(2)
k�

) ∂2u∗

∂xk∂x�

∥∥∥∥
H1(RN )

≤ cε2‖f‖
H1(RN )

.

It is important to note that these above expansions are of Taylor type owing to
the analyticity of λ1(η) and φ1(·; η). This is the main difference between this approach
and the classical one found in [5], where the expansion has a multiscale structure.

Concerning the hypotheses on the smoothness of functions χk and χk� in state-
ments (ii) and (iii), it is worth mentioning from regularity theory of elliptic boundary
value problems thatW 1,∞-estimates are hard to come by. This is why they are usually
assumed in homogenization theory. However, several numerical studies with simple
fibers show that these assumptions are valid. Thus they are reasonable hypotheses to
work with as far as certain applications are concerned.

The expansions of λ1(η), φ
ε
1(·; η), and Bε

1g(ξ) obtained in Propositions 1.5 and 1.9
and Propositions 5.1, 5.2, and 5.3 below have further interesting consequences which
will be developed in a forthcoming paper. For the time being, we will be content
with a few remarks. Since higher order modes can be neglected, the first eigenvalue
λ1(η) along with the first eigenvector φ1(·; η) represent the periodic medium under
consideration. Their contributions occur somewhat separately without interaction at
the levels of homogenized equation and correctors. More precisely, the first eigenvalue
λ1(η) contributes at various levels through its derivatives at η = 0. The first eigen-
vector φ1(·; η) and its first derivatives contribute through the first Bloch transform
Bε

1g(ξ) and its expansion described in Propositions 5.2 and 5.3.
In the homogenized equation, for instance, we see the product of the second order

derivatives of λ1(η) at η = 0 with the 0th order term of Bε
1g(ξ), namely, ĝ(ξ). We

see a similar structure in the correctors, too. There seem to be situations where both
interact and contribute jointly in a manner different from the above. One example
of such a situation is the study of the propagation of waves in a periodic medium.
It appears that the homogenized medium is not good enough to provide an approx-
imation to the propagation for large times because of the appearance of dispersion
effects shown numerically in F. Santosa and W. W. Symes [20]. We feel that this is an
appropriate place to highlight the improvements achieved in this work with respect
to [20]. Apart from the mathematical rigor, the main point is that the third order
derivatives of λ1(η) at η = 0 are shown to be zero even in the multidimensional case.
(In fact all odd order derivatives vanish.) Moreover, our arguments are more general
compared with the one-dimensional case covered in [20]. This will have consequences
in the propagation of waves in periodic media. We plan to cover these aspects in a
future publication.

We conclude this introduction by saying how the rest of this paper is organized.
Section 2 is devoted to certain fundamental lemmas which are indispensable. As an
immediate application, we prove in section 3 that the higher order Bloch modes are
negligible. Taylor expansions for λ1 and φ1 are obtained in section 4 which proves
Propositions 1.9 and 1.10. Section 5 is devoted to the description of the asymptotic
behavior of the first Bloch transform Bε

1 whose definition is given in Theorem 1.2.
Finally, in section 6, we present the proofs of the main results, namely, Theorems 1.8
and 1.11.
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2. Fundamental lemmas. In this section, we prove a series of results which
generalize Parseval’s identity stated in Theorem 1.3. These estimates will be useful
later for the analysis of correctors. The following two lemmas are easily seen to be
generalizations of well-known classical results for −∆.
Lemma 2.1. For all g ∈ H1(RN), we have

c1|g|2
H1(RN )

≤
∫
ε−1Y ′

∞∑
m=1

λεm(ξ)|Bε
mg(ξ)|2dξ ≤ c2|g|2

H1(RN )
,

where c1 and c2 are constants independent of ε and g.
Proof. First of all, by uniform ellipticity of Aε, we have

α

∫
RN

|∇g|2dx ≤
∫

RN

Aεgḡdx ≤ β

∫
RN

|∇g|2dx.

We can rewrite the middle term by applying the Plancherel identity:

∫
RN

g(x)h(x)dx =

∫
ε−1Y ′

∞∑
m=1

Bε
mg(ξ)B

ε
mh(ξ)dξ ∀g, h ∈ L2(RN ).(2.1)

Indeed, using the spectral resolution of Aε, we get

∫
RN

Aεgḡdx =

∫
ε−1Y ′

∞∑
m=1

λεm(ξ)|Bε
mg(ξ)|2dξ.

This completes the proof.
By using the duality between H1(RN ) and H−1(RN ), we deduce the following.
Lemma 2.2. For all g ∈ H−1(RN ), there exist c1 and c2 which are independent

of ε and g, such that

c1‖g‖2
H−1(RN )

≤
∫
ε−1Y ′

∞∑
m=1

1

1 + λεm(ξ)
|Bε
mg(ξ)|2dξ ≤ c2‖g‖2

H−1(RN )
.

Proof. It is well known that (Aε + I):H1(RN ) → H−1(RN ) is an isomorphism.
For every g ∈ H−1(RN ) there exists a unique solution u ∈ H1(RN ) of Aεu+ u = g in
R
N . We can express the previous equation in the equivalent form

(λεm(ξ) + 1)Bε
mu(ξ) = Bε

mg(ξ) ∀m ≥ 1, ξ ∈ ε−1Y ′.

Therefore, an application of the Cauchy–Schwarz inequality yields

〈g, v〉 =
∫
ε−1Y ′

∞∑
m=1

(λεm(ξ) + 1)Bε
muB

ε
mvdξ

≤
(∫

ε−1Y ′

∞∑
m=1

(λεm(ξ) + 1)|Bε
mu|2dξ

)1/2(∫
ε−1Y ′

∞∑
m=1

(λεm(ξ) + 1)|Bε
mv|2dξ

)1/2

≤
(∫

ε−1Y ′

∞∑
m=1

|Bε
mg|2

(λεm(ξ) + 1)
dξ

)1/2(∫
ε−1Y ′

∞∑
m=1

(λεm(ξ) + 1)|Bε
mv|2dξ

)1/2
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for all v ∈ H1(RN ), g ∈ H−1(RN ). Here, 〈·, ·〉 denotes the H1(RN ) and H−1(RN )
duality pairing. By virtue of Lemma 2.1 and Parseval’s identity, the second term in
the right-hand side is equivalent to the H1-norm of v. Thus we deduce the existence
of a constant c1 such that

c1‖g‖2
H−1(RN )

≤
∫
ε−1Y ′

∞∑
m=1

1

1 + λεm(ξ)
|Bε
mg(ξ)|2dξ,

which is the lower estimate in Lemma 2.2. To prove the upper estimate is enough
to use the continuity of the solution u ∈ H1(RN ) with respect to the right-hand side
g ∈ H−1(RN ).

In our next lemma, we consider gε = gε(ξ) a measurable function defined on
ε−1Y ′, and another function ρ = ρ(y; η) measurable with respect to (y; η) and Y -
periodic in y. We then introduce

Gε(x) =

∫
ε−1Y ′

gε(ξ)eix·ξρ
(x
ε
; εξ

)
dξ, x ∈ R

N .(2.2)

The following result estimates its L2(RN ) and H1(RN ) norms.
Lemma 2.3. We assume gε ∈ L2(ε−1Y ′) and ρ ∈ L∞(Y ′;H1

#(Y )). Then we
have

‖Gε‖2
L2(RN )

=

∫
ε−1Y ′

|gε(ξ)|2‖ρ(·; εξ)‖2
L2(Y )

dξ,

|Gε|2
H1(RN )

=

∫
ε−1Y ′

|gε(ξ)|2‖iξρ(·; εξ) + ε−1∇yρ(·; εξ)‖2
L2(Y )N

dξ.

Proof. We expand ρ(y; η) as a function of y in the orthonormal basis {φm(y; η)}∞m=1

where η is a parameter:

ρ(y; η) =

∞∑
m=1

am(η)φm(y; η).

Introducing this expression in (2.2), we get

Gε(x) =

∫
ε−1Y ′

gε(ξ)

∞∑
m=1

am(εξ)e
ix·ξφεm(x; ξ)dξ.

Applying Parseval’s identity of Theorem 1.3, we get

‖Gε‖2
L2(RN )

=

∫
ε−1Y ′

|gε(ξ)|2
∞∑
m=1

|am(εξ)|2dξ.

This completes the proof of the first part of the lemma if we use Parseval’s identity
in L2(Y ):

‖ρ(·; η)‖2
L2(Y )

=

∞∑
m=1

|am(η)|2 ∀η ∈ Y ′.(2.3)

For the second part of the lemma, we formally differentiate Gε(x) with respect
to x. We obtain

∇xGε(x) =
∫
ε−1Y ′

gε(ξ)eix·ξ
(
iξρ

(x
ε
; εξ

)
+ ε−1∇yρ

(x
ε
; εξ

))
dξ.
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We remark that the above integral is of the same type as the one analyzed in the first
part. This completes the proof.

The next lemma presents H1-estimates on the Bloch modes.
Lemma 2.4. We suppose that the coefficients ak� satisfy (1.2). Then there exists

a constant c depending on ‖ak�‖L∞(Y ) such that∥∥∥∂φm
∂yk

(·; η)
∥∥∥
L2(Y )

≤ c1λm(η)
1/2 ∀η ∈ Y ′, m ≥ 1, k = 1, . . . , N.(2.4)

To prove this, let us introduce the bilinear forms associated with the operators
A(η) and A, respectively.

a(η;φ, ψ) =

∫
Y

ak�(y)

(
∂φ

∂y�
+ iη�φ

)(
∂ψ

∂yk
+ iηkψ

)
dy,

a(φ, ψ) =

∫
Y

ak�(y)
∂φ

∂y�

∂ψ

∂yk
dy.

The basic estimates on them are obtained in [10, p. 190]: There exist constants c, c̃
which are independent of η ∈ Y ′ such that for all φ ∈ H1

#(Y ),

c (‖∇φ‖2
L2(Y )N

+ |η|2‖φ‖2
L2(Y )

) ≤ a(η;φ, φ) ≤ c̃ (‖∇φ‖2
L2(Y )N

+ |η|2‖φ‖2
L2(Y )

),(2.5)

c ‖∇φ‖2
L2(Y )N

≤ a(φ, φ) ≤ c̃ ‖∇φ‖2
L2(Y )N

.(2.6)

Proof of Lemma 2.4. For simplicity, we denote φm(·; η) by φm(η). We recall that
it satisfies

a(η;φm(η), ψ) = λm(η)(φm(η), ψ) ∀ψ ∈ H1
#(Y ).(2.7)

To deduce (2.4), it is enough to take ψ = φm(η) and use (2.5).
Our next result concerns the estimation of expressions which are inverse to (2.2).

We define

Jεg(ξ) =

∫
RN

g(x)e−ix·ξρ
(x
ε
; εξ

)
dx for ξ ∈ ε−1Y ′,(2.8)

where g = g(x) is a measurable function defined on R
N and ρ = ρ(y; η) is a measurable

function defined on Y × Y ′. We assume that ρ is Y -periodic in y. The required
hypotheses on these functions will depend on the estimate deduced on Jεg. This is
illustrated in the results that follow which are analogous to classical estimates on the
Fourier transform.
Lemma 2.5.
(i) If g ∈ L2(RN ) and ρ ∈ L∞(Y ′;L2

#(Y )), then we have

‖Jεg‖
L2(ε−1Y ′)

≤ ‖g‖
L2(RN )

‖ρ‖
L∞(Y ′;L2

#
(Y ))

.

(ii) If g ∈ H1(RN ) and ρ ∈ L∞(Y ′;H1
#(Y )), then we have

‖(1 + |ξ|2)1/2Jεg(ξ)‖
L2(ε−1Y ′)

≤ c

{
‖∇g‖

L2(RN )
‖ρ‖

L∞(Y ′;L2(Y ))

+ ε−1‖g‖
L2(RN )

‖∇yρ‖L∞(Y ′;L2(Y )N )

}
.
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Proof. The idea is to consider the product space L2(Y ′;L2
#(Y )) and expand

ρ(y; η) in two steps. First using the fact that {φ̄m(·; η)}∞m=1 is an orthonormal basis
in L2

#(Y ), we get

ρ(y; η) =
∞∑
m=1

am(η)φ̄m(y; η) ∀y ∈ Y, η ∈ Y ′.

Next, for each m, we can expand am(η) in the usual Fourier series:

am(η) =
∑
n∈ZN

amne
2πin·η ∀η ∈ Y ′.

The corresponding Parseval’s identities are as follows:

‖ρ(·; η)‖2
L2(Y )

=
∑
m

|am(η)|2 ∀η ∈ Y ′,

∫
Y ′
|am(η)|2dη =

∑
n∈ZN

|amn|2 ∀m ∈ N.

Using this expansion, we can rewrite Jεg as follows:

Jεg(ξ) =

∞∑
m=1

∑
n∈ZN

amne
2πiεn·ξ

∫
RN

g(x)e−ix·ξφ̄m
(x
ε
; εξ

)
dx,

which, according to the definition of Bε
mg(ξ), is equal to

Jεg(ξ) =

∞∑
m=1

∑
n∈ZN

amne
2πiεn·ξBε

mg(ξ) =

∞∑
m=1

am(εξ)B
ε
mg(ξ).

By the Cauchy–Schwarz inequality,

|Jεg(ξ)|2 ≤
( ∞∑
m=1

|am(εξ)|2
)( ∞∑

m=1

|Bε
mg(ξ)|2

)

= ‖ρ(·; εξ)‖2
L2(Y )

( ∞∑
m=1

|Bε
mg(ξ)|2

)

≤ ‖ρ‖2
L∞(Y ′;L2

#
(Y ))

( ∞∑
m=1

|Bε
mg(ξ)|2

)
.

The proof of (i) is complete if we integrate the above inequality with respect to
ξ ∈ ε−1Y ′ and apply Theorem 1.3. For the proof of (ii), we multiply (2.8) by (−iξk)
and obtain

(−iξk)Jεg(ξ) =
∫

RN

g(x)(−iξk)e−ix·ξρ
(x
ε
; εξ

)
dx,

which, by integration by parts, can be rewritten as

(−iξk)Jεg(ξ) = −
∫

RN

∂g

∂xk
(x)e−ix·ξρ

(x
ε
; εξ

)
dx− ε−1

∫
RN

g(x)e−ix·ξ
∂ρ

∂yk

(x
ε
; εξ

)
dx.
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It is now sufficient to apply (i) to each of the terms on the right-hand side of the
above relation.

Next, we will need some properties of the classical discrete Fourier transform
in our asymptotic description of the first Bloch transform. In particular, we are
interested in the relation between discrete and continuous Fourier transforms. To this
end, let us begin by introducing some necessary notations. Let {Y ε

� }�∈ZN be the mesh
of R

N generated by the cell εY . More precisely, Y ε
� = xε� + εY where xε� = 2πε� is

the origin of the cell Y ε
� . We recall the definition of the discrete Fourier transform of

a function corresponding to this mesh: Let p > N be given. For g ∈ W 1,p(RN ) with
compact support we define

F εg(ξ) =
∑
�∈ZN

g(xε�)e
−ixε

� ·ξ ∀ξ ∈ ε−1Y ′.(2.9)

It is worthwhile to recall that W 1,p(RN ) is embedded in C0(RN ) when p > N , and so
g(xε�) is well defined.
Lemma 2.6. For g ∈W 1,p(RN ) (p > N) with compact support K, we have
(i) εN (χ

ε−1Y ′F
εg)(ξ)→ 1

(2π)N/2 ĝ(ξ) for ξ ∈ R
N .

(ii) ‖εNF εg‖
L2(ε−1Y ′)

≤ c|K| p−2
2p {‖g‖

Lp(RN )
+ ε‖∇g‖

Lp(RN )N
}, |K| denotes the

measure of K.
(iii) εNχ

ε−1Y ′F
εg → 1

(2π)N/2 ĝ in L2(RN ).

Proof. To prove (i), we multiply (2.9) by εN to get

εNF εg(ξ) =
1

(2π)N

∑
�∈ZN

g(xε�)e
−ixε

� ·ξ|Y ε
� |.

We regard the right-hand side of the above equality as a Riemann sum of the integral

1

(2π)N

∫
RN

g(x)e−ix·ξdx

which converges to it as ε→ 0.
To prove (ii), we observe that the right-hand side of (2.9) is nothing but the

Fourier series in the variable ξ ∈ ε−1Y ′. Therefore, by Parseval’s identity, we get

εN
∫
ε−1Y ′

|F εg(ξ)|2dξ =
∑
�∈ZN

|g(xε�)|2.

We multiply this relation by εN and rewrite it as

ε2N
∫
ε−1Y ′

|F εg(ξ)|2dξ = 1

(2π)N

∑
�∈ZN

|g(xε�)|2|Y ε
� |.(2.10)

To estimate the right-hand side of the above equality, we integrate the inequality

|g(xε�)|2 ≤ 2
{|g(x)|2 + |g(x)− g(xε�)|2

}
, x ∈ Y ε

� ,

over Y ε
� to obtain

|g(xε�)|2|Y ε
� | ≤ 2

{∫
Y ε
�

|g(x)|2dx+

∫
Y ε
�

|g(x)− g(xε�)|2dx
}
.(2.11)
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Since p > N , we can use the classical Morrey’s inequality (see Brezis [7, p. 167]) to
deduce

|g(x)− g(xε�)| ≤ cε1−
N
p |∇g|

Lp(Y ε
�

)N
.

Using both the above estimate in (2.11) and the Hölder inequality and summing over
� ∈ Z

N , we complete the proof of (ii).
To prove the statement (iii) we first use (i) and (ii) to deduce that

εNχ
ε−1Y ′(ξ)F

εg(ξ) ⇀
1

(2π)N/2
ĝ(ξ) in L2(RN )-weak.

Let us now expand∥∥∥∥ εNχε−1Y ′F
εg − 1

(2π)N/2 ĝ

∥∥∥∥
2

L2(RN )

= ε2N‖F εg‖2
L2(RN )

− 2εN

(2π)N/2 (χε−1Y ′F
εg, ĝ)

+ 1
(2π)N

‖ĝ‖2
L2(RN )

.

Now relation (2.10) shows that

ε2N‖F εg‖2
L2(RN )

→ 1

(2π)N

∫
RN

|g|2dx =
1

(2π)N
‖ĝ‖2L2(RN ).

Thanks to the above weak convergence, the second term converges to

− 2

(2π)N/2
1

(2π)N/2
‖ĝ‖2

L2(RN )
.

This simple computation establishes the strong convergence in L2(RN ).

3. Higher Bloch modes are negligible. In this section, we consider a se-
quence of solutions uε of the equation with f ∈ H−1(RN ):

Aεuε = f in R
N , uε ∈ H1(RN ).(3.1)

Let us recall that the above equation is equivalent to (1.20) in the Bloch space. In
what follows, we present a systematic method of obtaining estimates on the solution
in Sobolev spaces L2 and H1. In particular, we show that the component of uε in the
higher Bloch modes does not play any role in the analysis of correctors of first and
second order provided f is sufficiently smooth. Thus we consider vε defined in (1.21),
which is nothing but the projection of uε corresponding to all higher Bloch modes.
Estimates on vε derived in this section improve Proposition 1.4.
Proposition 3.1. We have the following estimates for f ∈ L2(RN ):
(i) |vε|

H1(RN )
≤ cε‖f‖

L2(RN )
,

(ii) ‖vε‖
L2(RN )

≤ cε‖f‖
H−1(RN )

.

Proof. To show (i), we apply Lemma 2.1 with g = vε and use (1.20). We obtain

‖∇vε‖2
L2(RN )N

≤ c

∫
ε−1Y ′

∞∑
m=2

1

λεm(ξ)
|Bε
mf(ξ)|2dξ

≤ c sup
m≥2, ξ∈ε−1Y ′

1

λεm(ξ)
‖f‖2

L2(RN )
.



BLOCH APPROXIMATION 1183

Proof of (i) is complete since we have (cf. (1.25))

sup
m≥2, ξ∈ε−1Y ′

1

λεm(ξ)
≤ 1

λ
(N)
2

ε2.(3.2)

For the proof of (ii), we apply Lemma 2.2 with g = f and (1.20). We have

‖vε‖2
L2(RN )

=

∫
ε−1Y ′

∞∑
m=2

|Bε
mu

ε(ξ)|2dξ

=

∫
ε−1Y ′

∞∑
m=2

1

λεm(ξ)
2
|Bε
mf(ξ)|2dξ.

Writing

1

λεm(ξ)
2
|Bε
mf(ξ)|2 =

1 + λεm(ξ)

λεm(ξ)
2

|Bε
mf(ξ)|2

1 + λεm(ξ)

and using (3.2), we deduce that

1

λεm(ξ)
2
|Bε
mf(ξ)|2 ≤ cε2

|Bε
mf(ξ)|2

1 + λεm(ξ)
.

The proof is complete if we use Lemma 2.2.
While the above proposition shows that vε can be neglected at the level of the

first order correctors (cf. (1.10)), the next result will demonstrate that vε can be
neglected at the level of correctors of first and second order. These finer estimates
require naturally higher order regularity of f but not of the coefficients ak�(y). Let us
state the following proposition, whose proof is similar to the previous one and hence
will not be repeated.
Proposition 3.2. We have the following estimates for f ∈ H1(RN ):
(i) |vε|

H1(RN )
≤ cε2‖f‖

H1(RN )
,

(ii) ‖vε‖
L2(RN )

≤ cε2‖f‖
L2(RN )

.

Assuming ak� are in W 1,∞
# (Y ) and further assumptions, we can obtain H2-

estimates on the solution. This is difficult as it involves more subtleties (see [12]).

4. Taylor expansion of the first Bloch eigenvalue and eigenvector. The
purpose of this section is to indicate a systematic method to compute derivatives
of the first Bloch eigenvalue λ1(η) and the first Bloch eigenvector φ1(·; η) at η = 0.
In particular, we will prove Propositions 1.9 and 1.10. Recall that λ1(η) and φ1(·; η)
depend analytically on η in a small neighborhood Bδ of η = 0. At the cost of reducing
this neighborhood, we claim that the branch η �→ φ1(·; η) can be chosen so that the
following conditions are satisfied simultaneously:

η ∈ Bδ �→ φ1(·; η) ∈ H1
#(Y ) is analytic,(4.1)

‖φ1(·; η)‖L2(Y ) = 1 ∀η ∈ Bδ,(4.2)

Im

∫
Y

φ1(y; η)dy = 0 ∀η ∈ Bδ.(4.3)
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In what follows, we will see that the above conditions uniquely fix the eigenvector
φ1(·; η). We remark that the condition (4.2) is classical, whereas the condition (4.3)
is somewhat unusual and can be achieved as indicated below. The idea consists of
multiplying φ1(·; η) by a complex number (α1(η)+ iα2(η)) where α1(η) and α2(η) are
real analytic with respect to η and are chosen such that

Im

∫
Y

(α1(η) + iα2(η))φ1(y; η)dy = 0.

If we define

d(η) = (d1(η), d2(η))
def
=

(
Im

∫
Y

φ1(y; η)dy,Re

∫
Y

φ1(y; η)dy

)
,

then the above condition is equivalent to

α1(η)d1(η) + α2(η)d2(η) = 0 ∀η ∈ Bδ.

Obviously, one such choice which is analytic is as follows:

α1(η) = −d2(η), α2(η) = d1(η).

Of course, the above procedure has destroyed condition (4.2) (but not condition (4.1)).
However, it can be regained by dividing by |d(η)|. This is possible because d(0) �= 0
by our choice of φ1(·; 0) (see Proposition 1.5).

Thanks to our choice of the branch satisfying (4.1)–(4.3), we will now draw some
consequences which will simplify the computations below. In fact, differentiating (4.2)
with respect to η, we successively get for all k, �,m, n = 1, . . . , N

Re〈Dkφ1(·; η), φ1(·; η)〉 = 0,(4.4)

Re〈D2
k�φ1(·; η), φ1(·; η)〉+ Re〈Dkφ1(·; η), D�φ1(·; η)〉 = 0,(4.5)

{
Re〈D3

k�mφ1(·; η), φ1(·; η)〉+ Re〈D2
k�φ1(·; η), Dmφ1(·; η)〉

+ Re〈D2
kmφ1(·; η), D�φ1(·; η)〉+ Re〈Dkφ1(·; η), D2

�mφ1(·; η)〉 = 0,
(4.6)




Re〈D4
k�mnφ1(·; η), φ1(·; η)〉+ Re〈D3

k�mφ1(·; η), Dnφ1(·; η)〉
+ Re〈D3

k�nφ1(·; η), Dmφ1(·; η)〉+ Re〈D2
k�φ1(·; η), D2

mnφ1(·; η)〉
+ Re〈D3

kmnφ1(·; η), D�φ1(·; η)〉+ Re〈D2
kmφ1(·; η), D2

�nφ1(·; η)〉
+ Re〈D2

knφ1(·; η), D2
�mφ1(·; η)〉+ Re〈Dkφ1(·; η), D3

�mnφ1(·; η)〉 = 0,

(4.7)

where 〈·; ·〉 denotes the scalar product in L2
#(Y ). On the other hand, differentiation

of (4.3) yields

Im

∫
Y

Dβφ1(y; η)dy = 0 ∀ β ∈ Z
N
+ .(4.8)

From these sets of relations, it follows that∫
Y

Dβφ1(y; 0)dy = 0 ∀ β ∈ Z
N
+ with |β| odd.(4.9)
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4.1. First order derivatives. If we differentiate the eigenvalue equation
(A(η)− λ1(η))φ1(·; η) = 0 once with respect to ηk, we obtain

Dk(A(η)− λ1(η))φ1(·; η) + (A(η)− λ1(η))Dkφ1(·; η) = 0.(4.10)

Taking the scalar product with φ1(·; η), we get

〈[Dk(A− λ1)]φ1, φ1〉 = 0,(4.11)

where we have suppressed the dependence on η for ease of writing. We will continue
with this convention in what follows provided there is no ambiguity. It follows from
(1.18) that

DkA(0) = iCk ∀η ∈ Y ′,(4.12)

where the operator Ck is defined in (1.19).
If we evaluate the relation (4.11) at η = 0 and use the structure of Ck, we

immediately get that

Dkλ1(0) = 0 ∀k = 1, . . . , N.(4.13)

The next step is to compute the first order derivatives of φ1 at η = 0. To this end,
we go back to (4.10) and use (4.13). We obtain

ADkφ1(·; 0) = −DkA(0)φ1(·; 0) = −iCkφ1(·; 0).

Taking into account (4.9) and the above equation, we can solve for Dkφ1(y; 0) and
obtain

Dkφ1(y; 0) = iφ1(y; 0)χk(y) = ip(0)χ
k
(y),(4.14)

where, we recall, χk satisfies (1.13) and the constant p(0) was fixed in Proposition 1.5.
Thus, the first order derivative is completely determined and

Dkφ1(y; 0) is purely imaginary.(4.15)

4.2. Second order derivatives. Our starting point is the relation (4.10), which
we differentiate once with respect to η. We obtain

[D2
k�(A− λ1)]φ1 + [Dk(A− λ1)]D�φ1 + [D�(A− λ1)]Dkφ1 + (A− λ1)D

2
k�φ1 = 0.

(4.16)

Taking the scalar product with φ1, we get

〈[D2
k�(A− λ1)]φ1, φ1〉+ 〈[Dk(A− λ1)]D�φ1, φ1〉+ 〈[D�(A− λ1)]Dkφ1, φ1〉 = 0(4.17)

for all η ∈ Bδ. If we use the information obtained in section 4.1 onDkλ1(0),Dkφ1(·; 0),
DkA(0), and

D2
k�A(η) = 2ak�(y) ∀k, � = 1, . . . , N, η ∈ Y ′,(4.18)



1186 C. CONCA, R. ORIVE, AND M. VANNINATHAN

we obtain

1

2!
D2
k�λ1(0) =

1

|Y |
∫
Y

ak�(y)dy − 1

2|Y |
∫
Y

(Ckχ�(y) + C�χk(y))dy

=
1

2
(qk� + q�k) = qk� ∀k, � = 1, . . . , N.(4.19)

As before, the next step is to compute D2
k�φ1(·; 0). For this purpose, we go back to

(4.16) and rewrite it with η = 0 as follows:

AD2
k�φ1(·; 0) =

{
−2(ak� − qk�) + Ckχ� + C�χk

}
φ1(·; 0).

By comparing the above equation with (1.30) and using the simplicity of the eigenvalue
under consideration, we see that D2

k�φ1(·; 0) is of the form
1

2!
D2
k�φ1(y; 0) = −p(0)χ

k�
(y)− β

(2)
k� p

(0)

for some constant β
(2)
k� . Thanks to (4.5) and (4.8), we can infer that

β
(2)
k� and D2

k�φ1(·; 0) are real.(4.20)

Moreover, β
(2)
k� admits the expression given in Proposition 1.10.

4.3. Third order derivatives. From the calculations done so far, it is now
clear how to proceed further to calculate higher order derivatives. Therefore we will
be brief here. Differentiating (4.16), we get


[D3

k�m(A− λ1)]φ1 + [D2
k�(A− λ1)]Dmφ1 + [D2

�m(A− λ1)]Dkφ1

+ [D2
km(A− λ1)]D�φ1 + [Dk(A− λ1)]D

2
�mφ1 + [D�(A− λ1)]D

2
kmφ1

+ [Dm(A− λ1)]D
2
k�φ1 + (A− λ1)D

3
k�mφ1 = 0.

(4.21)

Taking the scalar product with φ1, we get


〈[D3
k�m(A− λ1)]φ1, φ1〉+ 〈[D2

k�(A− λ1)]Dmφ1, φ1〉+ 〈[D2
�m(A− λ1)]Dkφ1, φ1〉

+ 〈[D2
km(A− λ1)]D�φ1, φ1〉+ 〈[Dk(A− λ1)]D

2
�mφ1, φ1〉

+ 〈[D�(A− λ1)]D
2
kmφ1, φ1〉+ 〈[Dm(A− λ1)]D

2
k�φ1, φ1〉 = 0.

(4.22)
To conclude that D3

k�mλ1(0) = 0, it is enough to use the following information in the
above relation:{

DkA is purely imaginary, D2
k�A is real, D3

k�mA = 0,

φ1(0), D
2
k�φ1(0) are real, Dkφ1(0) is purely imaginary.

(4.23)

It is evident that the above argument is very general and so can be used to establish
that all odd order derivatives of λ1 at η = 0 vanish. This proves the first part of
Proposition 1.9.
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To find the third order derivatives of φ1 at η = 0, we realize that (4.21) defines
a periodic problem for D3

k�mφ1(·; 0) which can be compared with (1.31). Further, the
relation (4.9) says that its average vanishes. These observations are enough to get the
expression of D3

k�mφ1(·; 0) given in Proposition 1.10. We conclude by observing the
following important property:

D3
k�mφ1(y; 0) is purely imaginary.(4.24)

4.4. Fourth order derivatives. To arrive at the expressions for the fourth
order derivatives of λ1 and φ1 at η = 0 given in Propositions 1.9 and 1.10, we follow
the same arguments as in section 4.3.

5. Convergence of the first Bloch transform to the Fourier transform.
This section is devoted to the proof of the next proposition which shows the sense in
which the Fourier transform is approximated by the first Bloch transform.
Proposition 5.1.
(i) For every g ∈ L2(RN ) with compact support, we have

χ
ε−1Y ′(ξ)B

ε
1g(ξ)→ ĝ(ξ) in L∞

loc(R
N
ξ ).

(ii) If g ∈ L2(RN ), we have

χ
ε−1Y ′(ξ)B

ε
1g(ξ)→ ĝ(ξ) in L2(RNξ ).

This will be a consequence of a more general result. In order to state it, we need
to introduce some new notations. We associate with every function ρ = ρ(y; η) defined
on Y × Y ′ which is Y -periodic in y the following function:

ρ̃(0)(η) =
1

|Y |
∫
Y

ρ(y; η)e−iy·ηdy, η ∈ Y ′.(5.1)

With this notation, we have the following proposition.
Proposition 5.2. We suppose ρ ∈ L∞(Y ′;L2

#(Y )). Then for all g ∈W 1,p(RN )
with compact support K and with p > N , we have

χ
ε−1Y ′(ξ)

(
Jεg(ξ)− (2π)N/2ρ̃(0)(εξ)ĝ(ξ)

)
→ 0 in L2(RNξ ),(5.2)

where, we recall, Jεg was defined in (2.8).
The proof will be taken up later. Admitting it for the moment, we turn our

attention to the following proof.
Proof of Proposition 5.1. If g ∈ L2(RN ) with compact support K, we have for all

ξ ∈ R
N

|χ
ε−1Y ′(ξ)B

ε
1g(ξ) − ĝ(ξ)| ≤ |χ

ε−1Y ′(ξ)(B
ε
1g(ξ)− ĝ(ξ))|+ |(χ

ε−1Y ′(ξ)− 1)ĝ(ξ)|

≤ c|K|‖g‖L2(RN )‖φ1(·; εξ)− φ1(·; 0)‖L2(Y )
+ |(χ

ε−1Y ′(ξ)− 1)ĝ(ξ)|.

If |ξ| is bounded, then by using the fact that the map η �→ φ1(·; η) ∈ L2
#(Y ) is

Lipschitz near η = 0, we deduce

||φ1(·; εξ)− φ1(·; 0)‖L2(Y )
≤ cε.
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This completes the proof of (i).
The proof of (ii) is more involved. First, according to Theorem 1.3, we have the

uniform estimate ∫
ε−1Y ′

|Bε
1g(ξ)|2dξ ≤

∫
RN

|g(x)|2dx,

and so, by the usual density arguments, it is enough to prove (ii) with g ∈ D(RN ).
We can now complete the proof using Proposition 5.2. Indeed, with ρ = φ̄1, we see
that

ρ̃(0)(εξ)→ p(0) and Bε
1g(ξ) = Jεg(ξ) ∀ξ ∈ R

N ,

which implies, by Lebesgue’s dominated convergence theorem, that

(2π)N/2χ
ε−1Y ′(ξ)ρ̃

(0)(εξ)ĝ(ξ)→ ĝ(ξ) in L2(RNξ ).

Proof of Proposition 5.2. The key point is that the variation of ρ(xε ; εξ) with
respect to x is faster than that of g. To exploit this, we consider the ε-mesh {Y ε

� }�∈ZN

generated by the cell εY which was already introduced at the end of section 2. We
decompose

Jεg(ξ) =
∑
�∈ZN

∫
Y ε
�

g(x)e−ix·ξρ
(x
ε
; εξ

)
dx(5.3)

=
∑
�∈ZN

g(xε�)

∫
Y ε
�

e−ix·ξρ
(x
ε
; εξ

)
dx+ rε1(ξ),

where

rε1(ξ) =
∑
�∈ZN

∫
Y ε
�

(g(x)− g(xε�))e
−ix·ξρ

(x
ε
; εξ

)
dx.(5.4)

The first term on the right-hand side of (5.3) can be, by means of the change of
variables x = xε� + εy, transformed into

|Y |εNF εg(ξ)ρ̃(0)(εξ),

where F εg is the discrete Fourier transform of g and ρ̃(0) is defined in (5.1). Since
we know that χε−1Y ′(ξ)εNF εg(ξ) → 1

(2π)N/2 ĝ(ξ) in L2(RN ) (cf. Lemma 2.6), our

hypothesis on ρ ensures that∥∥∥χ
ε−1Y ′(ξ)

{
|Y |εNF εg(ξ)− (2π)N/2ĝ(ξ)

}
ρ̃(0)(εξ)

∥∥∥
L2(RN )

→ 0.(5.5)

Thus, to complete the proof, it is enough to show that

‖rε1‖L2(ε−1Y ′)
≤ c(K)

(1− N
p )

ε‖ρ‖
L∞(Y ′;L2

#
(Y ))
‖∇g‖

Lp(RN )
.(5.6)

To this end, we rewrite rε1 in a slightly different form, namely,

rε1(ξ) =

∫
RN

g̃ε1(x)e
−ix·ξρ

(x
ε
; εξ

)
dx,(5.7)
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where

g̃ε1(x) =
∑
�∈ZN

(g(x)− g(xε�))χY ε
�

(x).(5.8)

We already know how to estimate integrals of the type (5.7) in L2(RN ) (see Lemma
2.5), and so we can deduce (5.6) provided we have the estimate

‖g̃ε1‖L2(RN )
≤ c(K)

(1− N
p )

ε‖∇g‖
Lp(RN )

.(5.9)

Thanks to our hypothesis, we can deduce a stronger estimate, namely,

‖g̃ε1‖Lp(RN )
≤ c

(1− N
p )

ε‖∇g‖
Lp(RN )

,(5.10)

where c is a constant independent of K, the support of g. We note that (5.10) is a
simple consequence of Morrey’s estimate (see [7, p. 167]).

Finally, we note that (5.9) can be obtained from (5.10) with c(K) = c|K|1− 2
p and

a simple application of the Hölder inequality.
The proof of Proposition 5.2 shows that the result can be strengthened by as-

suming suitable smoothness on g. Our next result is an example in this direction. It
introduces naturally the following quantities:

ρ̃(k)(η) =
1

|Y |
∫
Y

ρ(y; η)yke
−iy·ηdy ∀k = 1, . . . , N, η ∈ Y ′.(5.11)

Then we have the following corrector result for Jεg.
Proposition 5.3. We suppose ρ ∈ L∞(Y ′;L2

#(Y )). Then for all g ∈W 2,p(RN )
with compact support K and with p > N , we have

χ
ε−1Y ′(ξ)

{
Jεg(ξ)− (2π)N/2

[
ρ̃(0)(εξ) + iεξkρ̃

(k)(εξ)
]
ĝ(ξ)

}
→ 0 in L2(RNξ ).

Proof. We follow the idea of the proof of Proposition 5.2. We decompose Jεg(ξ)
as

Jεg(ξ) =
∑
�∈ZN

∫
Y ε
�

{g(xε�) +∇g(xε�) · (x− xε�)} e−ix·ξρ
(x
ε
; εξ

)
dx+ rε2(ξ),(5.12)

where

rε2(ξ) =
∑
�∈ZN

∫
Y ε
�

{g(x)− g(xε�)−∇g(xε�) · (x− xε�)} e−ix·ξρ
(x
ε
; εξ

)
dx.(5.13)

We can estimate rε2(ξ) as follows:

‖rε2‖L2(ε−1Y ′)
≤ c(K)

(2− N
p )

ε2‖ρ‖
L∞(Y ′;L2

#
(Y ))
|g|

W 2,p(RN )
.(5.14)

This, in fact, will be a consequence of Lemma 2.5, because we can represent rε2 as
follows:

rε2(ξ) =

∫
RN

g̃ε2(x)e
−ix·ξρ

(x
ε
; εξ

)
dx(5.15)
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with

g̃ε2(x) =
∑
�∈ZN

(g(x)− g(xε�)−∇g(xε�) · (x− xε�))χY ε
�

(x),(5.16)

which admits the following estimates:

‖g̃ε2‖L2(RN )
≤ c(K)

(2− N
p )

ε2|g|
W 2,p(RN )

,(5.17)

‖g̃ε2‖Lp(RN )
≤ c

(2− N
p )

ε2|g|
W 2,p(RN )

.(5.18)

As before, (5.17) will be a consequence of (5.18) with c(K) = c|K|1− 2
p .

To establish (5.18), what we need is a generalization of Morrey’s inequality for
W 2,p functions, namely,

|g(x)−g(xε�)−∇g(xε�) · (x−xε�)|≤
c

(2−N
p )
|x−xε� |2−

N
p |g|

W 2,p(Y ε
�

)
∀x∈Y ε

� .(5.19)

Admitting the above estimate, it is an easy matter to prove (5.18). But the above
estimate is a consequence of Morrey’s inequality for the gradient ∇g ∈W 1,p(RN ) and
the following representation: for all x ∈ Y ε

� ,

g(x)− g(xε�)−∇g(xε�) · (x− xε�) =

∫ 1

0

{∇g((1− t)xε� + tx)−∇g(xε�)} · (x− xε�)dt.

This completes the proof of the estimate (5.14) on rε2. Thus, as expected, r
ε
2 tends to

zero more rapidly. The same cannot be said for the first term on the right-hand side
of (5.12). Indeed, it is equal to

|Y |
[
εN (F εg)(ξ)ρ̃(0)(εξ) + εN+1

(
F ε

∂g

∂xk

)
(ξ)ρ̃(k)(εξ)

]
.(5.20)

According to Lemma 2.6, we have the following convergence (apart from (5.5)):

χ
ε−1Y ′

{
|Y |

[
εN

(
F ε

∂g

∂xk

)
(ξ)− 1

(2π)N/2
iξkĝ(ξ)

]
ρ̃(k)(εξ)

}
→ 0 in L2(RNξ ).(5.21)

This clearly allows us to complete the proof.

6. Proof of the main convergence results. Applying the previously devel-
oped techniques and results, we are now in a position to prove the main convergence
results stated in section 1.2 of the introduction (namely, Theorems 1.8 and 1.11 and
the statement (1.8)). We begin by recalling briefly the set-up. We take f ∈ L2(RN )
and consider a sequence uε satisfying (1.9), i.e.,


Aεuε = f in R

N ,

uε ⇀ u∗ in H1(RN )-weak,

uε → u∗ in L2(RN )-strong.

(6.1)
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6.1. No concentration of energy at infinity. Our hypothesis that uε → u∗

in L2(RN )-strong may, at first sight, look artificial. But this in not the case. If Ω
is bounded and smooth, then it is classical that the weak convergence in H1(Ω) will
automatically imply the strong convergence in L2(Ω). This is not the case in R

N . To
make comparisons, the correct operator to consider is (Aε + I) instead of Aε in R

N .
In that case, we have the following.
Proposition 6.1. Assume that wε satisfies{

(Aε + I)wε = g in R
N ,

wε ⇀ w∗ in H1(RN )-weak,
(6.2)

where g is a given function in L2(RN ). Then

wε → w∗ in L2(RN )-strong.

Proof. First of all, following the idea of Proposition 3.1, we can neglect higher
Bloch modes of wε and w∗. More precisely, we can show

∫
ε−1Y ′

∞∑
m=2

|Bε
mw

ε(ξ)|2dξ ≤ cε4,

∫
ε−1Y ′

∞∑
m=2

|Bε
mw

∗(ξ)|2dξ ≤ cε2.

Therefore, it remains to prove∫
ε−1Y ′

|Bε
1w

ε(ξ)−Bε
1w

∗(ξ)|2dξ → 0.(6.3)

Equation (6.2) gives the relation

(1 + λε1(ξ))B
ε
1w

ε(ξ) = Bε
1g(ξ), ξ ∈ ε−1Y ′.

We use it to write

χ
ε−1Y ′(ξ)(B

ε
1w

ε(ξ)−Bε
1w

∗(ξ)) = χ
ε−1Y ′(ξ)

Bε
1g(ξ)

1 + λε1(ξ)

−ŵ∗(ξ)− (χ
ε−1Y ′(ξ)B

ε
1w

∗(ξ)− ŵ∗(ξ)).

According to Proposition 5.1, the last term tends to zero in L2(RN ). It suffices to
show

χ
ε−1Y ′(ξ)

Bε
1g(ξ)

1 + λε1(ξ)
− ŵ∗(ξ)→ 0 in L2(RNξ ).(6.4)

Note that w∗ satisfies the homogenized equation A∗w∗ + w∗ = g in R
N , which is

equivalent to (
1

2
D2
k�λ1(0)ξkξ� + 1

)
ŵ∗(ξ) = ĝ(ξ), ξ ∈ R

N .
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So, (6.4) is reduced to

χ
ε−1Y ′(ξ)

Bε
1g(ξ)

1 + λε1(ξ)
− ĝ(ξ)

1 + 1
2D

2
k�λ1(0)ξkξ�

→ 0 in L2(RNξ ).(6.5)

The above expression can be written in the form

aε + bε

cε
,

where

aε =

(
1 +

1

2
D2
k�λ1(0)ξkξ�

)[
χ
ε−1Y ′(ξ)B

ε
1g(ξ)− ĝ(ξ)

]
,

bε = −
(
λε1(ξ)−

1

2
D2
k�λ1(0)ξkξ�

)
ĝ(ξ),

cε = (1 + λε1(ξ))

(
1 +

1

2
D2
k�λ1(0)ξkξ�

)
.

Now we have the convergence

aε

cε
=

χ
ε−1Y ′(ξ)B

ε
1g(ξ)− ĝ(ξ)

1 + λε1(ξ)
→ 0 in L2(RNξ )

because [1 + λε1(ξ)] ≥ 1 and by the virtue of Proposition 5.1.
The convergence of bε

cε is not immediate. To show this, we split the energy into
three parts, taking γ > 0 as a fixed constant:∫

|ξ|≤δε−1

|ξ|≤γ

(
bε

cε

)2

dξ +

∫
|ξ|≤δε−1

|ξ|>γ

(
bε

cε

)2

dξ +

∫
|ξ|>δε−1

(
bε

cε

)2

dξ.

In the first two parts, we use the estimate∣∣∣∣λε1(ξ)− 1

2
D2
k�λ1(0)ξkξ�

∣∣∣∣ ≤ c|ξ|3ε for |ξ| ≤ δε−1,(6.6)

which holds since λ1(0) = Dλ1(0) = 0 (see Proposition 1.5). In the first integral, we
have cε ≥ 1 and |bε(ξ)| ≤ cγ3ε|ĝ(ξ)|, and consequently it is less than

cε2
∫

RN

|ĝ(ξ)|2dξ

and hence converges to zero. In the second integral, we have

cε ≥ 1

2
λε1(ξ)D

2
k�λ1(0)ξkξ� ≥ c|ξ|4 ≥ cγ|ξ|3 since |ξ| ≥ γ > 0.

With regards to bε, we still have |bε(ξ)| ≤ c|ξ|3ε|ĝ(ξ)|, and so the second integral also
converges to zero.

In the third integral, we use the bounds

|bε| ≤
(
λε1(ξ) +

1

2
D2
k�λ1(0)ξkξ�

)
|ĝ(ξ)|,

cε ≥ λε1(ξ) +
1

2
D2
k�λ1(0)ξkξ�.
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Thus the third integral is estimated from above by∫
|ξ|>δε−1

|ĝ(ξ)|2dξ.

Obviously, this tends to zero as ε→ 0 since g ∈ L2(RN ).

6.2. Corrector result in R
N . This section is devoted to the proof of Theo-

rem 1.8 concerning the Bloch approximation θε. The proof consists of several steps
which correspond to estimations of the required energy in different regions in the
Fourier space (in a neighborhood of the origin |η| ≤ δ and in its complement |η| > δ).

Step 1. We decompose uε as follows:

uε = vε + P ε1u
ε,

where vε and P ε1u
ε are defined in (1.21) and (1.27), respectively. Thanks to Proposi-

tion 3.1, it is enough to prove

‖P ε1uε − θε‖
L2(RN )

→ 0,(6.7)

|P ε1uε − θε|
H1(RN )

≤ cε‖f‖L2(RN ).(6.8)

Step 2. We estimate the energies in the region |ξ| > δε−1. To this end, we
introduce the quantities

θε,δ(x) =

∫
ξ∈ε−1Y ′
|ξ|>δε−1

û∗(ξ)eix·ξφε1(x; ξ)dξ,(6.9)

P ε,δ1 uε(x) =

∫
ξ∈ε−1Y ′
|ξ|>δε−1

Bε
1u
ε(ξ)eix·ξφε1(x; ξ)dξ.(6.10)

We will obtain the estimates

‖θε,δ‖
L2(RN )

≤ cε‖f‖
H−1(RN )

,(6.11)

|θε,δ|
H1(RN )

≤ cε‖f‖
L2(RN )

,(6.12)

‖P ε,δ1 uε‖
L2(RN )

≤ cε‖f‖
H−1(RN )

,(6.13)

|P ε,δ1 uε|
H1(RN )

≤ cε‖f‖
L2(RN )

.(6.14)

We start with (6.14). Using Lemma 2.3 with ρ = φ1 and inequalities (2.5), we get

|P ε,δ1 uε|2
H1(RN )

≤ c

∫
ξ∈ε−1Y ′
|ξ|>δε−1

|Bε
1u
ε(ξ)|2λε1(ξ)dξ.

Now (6.14) easily follows if we use (1.22) and (1.24). Next, we prove (6.12). Following
the above procedure, we get

|θε,δ|2
H1(RN )

≤ c

∫
ξ∈ε−1Y ′
|ξ|>δε−1

|û∗(ξ)|2|ξ|2dξ.(6.15)
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If f ∈ L2(RN ), then it is well known that u∗ ∈ H2(RN ) and∫
RN

|ξ|4|û∗(ξ)|2dξ ≤ c

∫
RN

|f̂(ξ)|2dξ.(6.16)

Combining (6.15) and (6.16), we easily get (6.12). We now show (6.11). By Parseval’s
identity, we have

‖θε,δ‖2
L2(RN )

=

∫
ξ∈ε−1Y ′
|ξ|>δε−1

|û∗(ξ)|2dξ ≤ cδε
2

∫
ξ∈ε−1Y ′
|ξ|>δε−1

|ξ|−2|f̂(ξ)|2dξ,

since u∗ and f are related by the homogenized equation A∗u∗ = f in R
N . This clearly

implies

‖θε,δ‖2
L2(RN )

≤ cδε
2

∫
ξ∈ε−1Y ′
|ξ|>δε−1

(1 + |ξ|2)−1|f̂(ξ)|2dξ = cδε
2‖f‖2

H−1(RN )
.

The proof of (6.13) is completely analogous.
Step 3. Now, we consider the energies in |ξ| ≤ δε−1. To this end, let us define

ωε(x) =

∫
|ξ|≤δε−1

(Bε
1u
ε(ξ)− û∗(ξ))eix·ξφε1(x; ξ)dξ(6.17)

and show that

‖ωε‖
L2(RN )

→ 0,(6.18)

|ωε|
H1(RN )

≤ cε‖f‖
L2(RN )

.(6.19)

To prove (6.18), we decompose the integrand as follows:

Bε
1u
ε − û∗ = Bε

1(u
ε − u∗) + (Bε

1u
∗ − û∗).

By Parseval’s equality, the first term in the L2-norm is bounded above by ‖uε −
u∗‖L2(RN ) which, by our hypothesis, converges to zero. That the second term con-

verges to zero in L2(RN ) is proved in Proposition 5.1.
Next, we turn are attention to the proof of (6.19). By Lemma 2.1, we have

|ωε|2H1(RN ) ≤ c

∫
|ξ|≤δε−1

λε1(ξ)|Bε
1u
ε(ξ)− û∗(ξ)|2dξ.(6.20)

To estimate the above integral, we write the integrand as

Bε
1u
ε(ξ)− û∗(ξ) = λε1(ξ)

−1(Bε
1f(ξ)− f̂(ξ)) +

[
λε1(ξ)

−1 −
(1
2
D2
k�λ1(0)ξk ξ�

)−1]
f̂(ξ).

Thus we get, using (1.24), that

|ωε|2

H1(RN )
≤ c

∫
|ξ|≤δε−1

|Bε
1f(ξ)− f̂(ξ)|2
|ξ|2 dξ

+ c

∫
|ξ|≤δε−1

λε1(ξ)
∣∣∣λε1(ξ)−1−

(1
2
D2
k�λ1(0)ξkξ�

)−1∣∣∣2|f̂(ξ)|2dξ.
(6.21)
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To estimate the first term on the right-hand side of (6.21), we represent the integrand
as

Bε
1f(ξ)− f̂(ξ)

|ξ| =

∫
RN

f(x)e−ix·ξ
(φε1(x; ξ)− φε1(x; 0))

|ξ| dx.

Applying Lemma 2.5 and using ‖φ1(·; η)− φ1(·; 0)‖L2(Y ) ≤ c|η| for |η| ≤ δ, we get

∫
|ξ|≤δε−1

|Bε
1f(ξ)− f̂(ξ)|2
|ξ|2 dξ ≤ cε2‖f‖2

L2(RN )
.

The second term on the right-hand side of (6.21) can be rewritten, using the homog-
enized equation, as ∫

|ξ|≤δε−1

|λε1(ξ)− 1
2D

2
k�λ1(0)ξkξ�|2

λε1(ξ)
|û∗(ξ)|2dξ.

Using (6.6) and (1.24), we see that the above integral is estimated from above by

cε2
∫
|ξ|≤δε−1

|ξ|4|û∗(ξ)|2dξ ≤ cε2‖f‖2
L2(RN )

.

This establishes (6.19) and hence the result.

6.3. Asymptotic expansion of the Bloch approximation. In this conclud-
ing section, we prove Theorem 1.11.

Proof of (i). We have the following decomposition:

θε(x)− u∗(x) = zε(x) + θε,δ(x) + u∗,δ(x),(6.22)

where

zε(x) =

∫
ξ∈ε−1Y ′
|ξ|≤δε−1

û∗(ξ)eix·ξ(φε1(x; ξ)− φε1(x; 0))dξ,(6.23)

u∗,δ(x) =
1

(2π)N/2

∫
|ξ|>δε−1

û∗(ξ)eix·ξdξ,(6.24)

and θε,δ is defined in (6.9).
The second term has already been estimated in the L2-norm (see (6.11)). The

same proof shows that the third term admits a bound

‖u∗,δ‖
L2(RN )

≤ cε‖f‖
H−1(RN )

≤ cε‖u∗‖
H1(RN )

.(6.25)

To estimate the first term on the right-hand side of (6.22), we must proceed
differently. In fact, it is essential to use Lemma 2.3. We see then that

‖zε‖2
L2(RN )

=

∫
ξ∈ε−1Y ′
|ξ|≤δε−1

|û∗(ξ)|2‖φε1(·; ξ)− φε1(·; 0)‖2L2(Y )
dξ.

Using the Lipschitz continuity of the map η �→ φ1(·; η) ∈ L2(Y ) for |η| ≤ δ, we see
that the above integral can be majorized, and we obtain

‖zε‖2
L2(RN )

≤ cε2
∫
|ξ|≤δε−1

|û∗(ξ)|2|ξ|2dξ ≤ cε2|u∗|2
H1(RN )

.(6.26)
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This finishes the proof of (i). We note that we cannot, in general, assert that

|u∗|
H1(RN )

≤ c‖f‖
H−1(RN )

as we are working on the entire space R
N .

Proof of (ii). Because of (i), it suffices to prove∣∣∣θε − u∗ − εχε
k

∂u∗

∂xk

∣∣∣
H1(RN )

≤ cε‖f‖
L2(RN )

.(6.27)

To this end, we use once again the decomposition (6.22) for (θε − u∗) in terms of zε,
θε,δ, and u∗,δ. For θε,δ, we have the estimate (6.12). For u∗,δ, we can easily derive
the estimate

|u∗,δ|2
H1(RN )

≤ c

∫
|ξ|>δε−1

|ξ|2|û∗(ξ)|2dξ ≤ cδε
2‖f‖2

L2(RN )
.(6.28)

Thus, we are reduced to obtaining the estimate∣∣∣zε − εχε
k

∂u∗

∂xk

∣∣∣
H1(RN )

≤ cε‖f‖
L2(RN )

.(6.29)

To this end, we use the representation

∂u∗

∂xk
(x) =

1

(2π)N/2

∫
RN

(iξk)û
∗(ξ)eix·ξdξ,

and combine it with the representation (6.23) for zε. We get

zε(x)− εχε
k
(x)

∂u∗

∂xk
(x) =

∫
|ξ|≤δε−1

û∗(ξ)eix·ξ
(
φε1(x; ξ)− φε1(x; 0)− ip(0)χε

k
(x)εξk

)
dξ

−
∫
|ξ|>δε−1

ip(0)χε
k
(x)εξkû

∗(ξ)eix·ξdξ.(6.30)

To estimate the first term on the right-hand side of (6.30), we appeal to Lemma 2.3.
Further, we use∥∥∥φ1(·; η)− φ1(·; 0)− ip(0)χ

k
(·)ηk

∥∥∥
H1(Y )

≤ c|η|2 for |η| ≤ δ.(6.31)

The estimate on the second term on the right-hand side of (6.30) is more straightfor-
ward. We finally get∣∣∣∣zε − εχε

k

∂u∗

∂xk

∣∣∣∣
2

H1(RN )

≤ cε2
∫

RN

|ξ|4|û∗(ξ)|2dξ.

This completes the proof of (6.29) and hence (ii).
Proof of (iii). Consider again the decomposition (6.22). Thanks to (6.9) and

(6.15), we have the estimates

‖θε,δ‖
L2(RN )

≤ cε2‖f‖
L2(RN )

,(6.32)

|θε,δ|
H1(RN )

≤ cε2|f |
H1(RN )

.(6.33)
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Similar techniques imply

‖u∗,δ‖
L2(RN )

≤ cε2‖f‖
L2(RN )

,(6.34)

|u∗,δ|
H1(RN )

≤ cε2|f |
H1(RN )

.(6.35)

On the other hand, it is clear from the representation (6.30) that

∥∥∥zε − εχε
k

∂u∗

∂xk

∥∥∥
L2(RN )

≤ cε2‖f‖
L2(RN )

.(6.36)

Thus, it is enough to obtain the estimate∣∣∣∣θε − u∗ − εχε
k

∂u∗

∂xk
+ ε2(χε

k�
+ β

(2)
k� )

∂2u∗

∂xk∂x�

∣∣∣∣
H1(RN )

≤ cε2|f |
H1(RN )

.(6.37)

Thanks to (6.33) and (6.35), we are reduced to showing that∣∣∣∣zε − εχε
k

∂u∗

∂xk
+ ε2(χε

k�
+ β

(2)
k� )

∂2u∗

∂xk∂x�

∣∣∣∣
H1(RN )

≤ cε2|f |
H1(RN )

.(6.38)

We can write

zε(x)− εχε
k
(x)

∂u∗

∂xk
(x) + ε2(χε

k�
(x) + β

(2)
k� )

∂2u∗

∂xk∂x�
(x)

=

∫
|ξ|≤δε−1

û∗(ξ)eix·ξ[φε1(x; ξ)− φε1(x; 0)− ip(0)χε
k
(x)εξki

+ p(0)(χε
k�
(x) + β

(2)
k� )ε

2ξkξ�]dξ

−
∫
|ξ|>δε−1

ip(0)χε
k
(x)εξkû

∗(ξ)eix·ξdξ

+

∫
|ξ|>δε−1

p(0)(χε
k�
(x) + β

(2)
k� )ε

2ξkξ�û
∗(ξ)eix·ξdξ.(6.39)

The analysis of the right-hand side of (6.39) is similar to that of (6.30). The new
information needed is the following:∥∥∥φ1(·; η)− φ1(·; 0)− ip(0)χ

k
(·)ηk + p(0)(χ

k�
(·) + β

(2)
k� )ηkη�

∥∥∥
H1(Y )

≤ c|η|3(6.40)

for |η| ≤ δ, which is a simple consequence of Proposition 1.10. The proof is concluded
via a simple application of Lemma 2.3.
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1. Introduction. In this paper we will point out a fundamental property of
functions of bounded variation (in the classical sense of C. Jordan [15], [16]) which
has apparently not been noticed in the well-developed theory of such functions. We
recall that f : [ a, b ] → R is of bounded (or finite) variation on the interval [ a, b ],
written f ∈ BV(a, b), if its total variation given by

TV [ f ; a, b ] = sup
π

n∑
i= 1

| f(x
i
) − f(x

i−1
) |(1.1)

is finite, where the supremum is taken over all possible partitions π = {x0 < x
1
<

· · · < xn } of [ a, b ]. Given f ∈ BV(a, b), its positive and negative variations are
similarly defined by

PV [ f ; a, b ] = sup
π

n∑
i= 1

( f(x
i
) − f(x

i−1
) )

+
,(1.2a)

NV [ f ; a, b ] = sup
π

n∑
i= 1

( f(x
i
) − f(x

i−1
) )

−
,(1.2b)

where, for an arbitrary θ ∈ R, θ
+ and θ− denote the positive and negative parts of

θ, i.e.,

θ+ =
1

2
( | θ | + θ ), θ− =

1

2
( | θ | − θ ).(1.3)

The concept of bounded variation plays a key role in many important topics in the
theory of functions [14], [22], [35], measure and integration [5], [6], [14], [26], partial
differential equations [10], [20], [28], [29], numerical analysis [10], [11], [19], applied
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mathematics [3], [18], [27], and other disciplines. It has been generalized with many
fruitful applications to higher dimensions [9], [14], [20], [28], [33], [34], functions with
values in normed or metric spaces and set-valued functions [1], [23], [24], [26], and
more general notions such as pth-variations [31], [32], harmonic and Λ-variations [30],
Φ-variations [21], [30], [32], and other classes of functions; see, e.g., [2], [7], and the
recent literature. In this respect, e.g., we should observe that, taking into account
[5, section 2.9], the results of the present paper can be carried over to mappings of
bounded variation with values in a reflexive Banach space.

Our concern here is certain equivalent characterizations for the space BV(a, b). It
is well known that any f ∈ BV(a, b) is bounded and has finite side limits f(x−), f(x+)
at every x ∈ ] a, b [ ; also, f(a+), f(b−) are well defined so that all discontinuities of f
(if any) are simple and, by the finiteness of (1.1), are at most denumerable. Changing
the value of f ∈ BV(a, b) at a single point may change its total variation; by the
remarks just made, it is natural to assume that f has no external saltus, i.e., one has
f(a) = f(a+), f(b) = f(b−), and

f(x) ∈ |[ f(x−) , f(x+) ]| ∀ x ∈ ] a, b [,(1.4)

where, for real α , β, |[α, β ]| denotes the smallest closed interval containing the points
α, β, that is, |[α, β ]| = [min(α, β),max(α, β) ]. Following [22], we call f ∈ BV(a, b)
normal if it has no external saltus on [ a, b ]. It is easy to see that if f, g ∈ BV(a, b)
are equal a.e. and f is normal in the sense just given, then

TV [ f ; a, b ] ≤ TV [ g ; a, b ](1.5)

and similarly for the positive and negative variations; moreover, if g is also normal
on [ a, b ], then these quantities are the same. This motivates the following definition:
given an arbitrary f in the space L1(a, b) of Lebesgue measurable functions which are
integrable on [ a, b ], we say that f is of (essential) bounded variation on [ a, b ] when
there exists some g ∈ BV(a, b) such that f = g a.e., and, modifying g if necessary so
as to make g normal, the quantities TV [ g ; a, b ], PV [ g ; a, b ], NV [ g ; a, b ] are said
to be the essential variations of f , so that

TVess [ f ; a, b ] = TV [ g ; a, b ](1.6)

when f = g a.e. with g ∈ BV(a, b) normal; likewise, one has PVess [ f ; a, b ] =
PV [ g ; a, b ] and NVess [ f ; a, b ] = NV [ g ; a, b ] in this case. This is equivalent to
setting

TVess [ f ; a, b ] = inf
u∈BV(a,b)

u= f a.e.

TV [u ; a, b ](1.7)

and similarly for the essential positive and negative variations; other slightly different
(but equivalent) characterizations are given in [2], [4], [12], [23]. Clearly, (1.6), (1.7)
provide the appropriate notions when we do not want to distinguish functions which
are equal a.e., as in the case of Lp spaces. In particular, it is convenient for the
following well-known result. Given f ∈ L1(a, b), the statements below are equivalent
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to one another:

TVess [ f ; a, b ] = C,(1.8a)

sup
h> 0

1

h

∫ b−h

a

| f(x + h)− f(x) | dx = C,(1.8b)

lim sup
h→ 0+

1

h

∫ b−h

a

| f(x + h)− f(x) | dx = C,(1.8c)

where C stands for a nonnegative quantity (possibly infinite). Other equivalent as-
sertions can be found in, e.g., [4], [9], [20], [25], [26], [28], [34], but there will be no
need of them here. The equivalence of (1.8a) and (1.8c) is the essence of the Hardy–
Littlewood theorem [13]; see also [2], [23], [35], and section 3 below. It readily gives
(1.8b) once we observe that

1

h

∫ b−h

a

| f(x + h)− f(x) | dx ≤ TVess [ f ; a, b ] ∀ h > 0.(1.9)

We now state our main result: when C is finite, another statement equivalent to
(1.8a), (1.8c) above is that

lim
h→ 0+

1

h

∫ b−h

a

| f(x + h)− f(x) | dx = C.(1.10)

In other words, given f ∈ L1(a, b), whenever the limit superior given in (1.8c) is finite,
the corresponding limit inferior has necessarily the same value, so that the limit (1.10)
is well defined. This will be established in section 3, along with other results which
come naturally in the analysis. When f is absolutely continuous on [ a, b ], these
properties are easily obtained (see, e.g., [5], [25], [26]), and we find it convenient to
review this case first, which forms the subject of section 2.

2. Absolutely continuous functions. We start the analysis with an important
subclass of the space BV(a, b), namely, the space AC(a, b) of absolutely continuous
functions on [ a, b ], i.e., integrals of functions in L1(a, b). These functions share a
number of properties which are well known for mappings in C1([ a, b ]), the space of
continuously differentiable functions, as the following result illustrates. One should
recall that an (arbitrary) function ϕ ∈ BV(a, b) of bounded variation has a finite
derivative at almost every point in the interval concerned; moreover, its derivative ϕ′

belongs to L1(a, b); see, e.g., [5], [6], [14], [17].
Theorem 2.1. Let ϕ ∈ AC(a, b). Then ϕ ∈ BV(a, b) and its total, positive, and

negative variations on [ a, b ] are given by

TV [ϕ ; a, b ] =

∫ b

a

|ϕ′(x) | dx,(2.1a)

PV [ϕ ; a, b ] =

∫ b

a

(ϕ′(x) )
+
dx,(2.1b)

NV [ϕ ; a, b ] =

∫ b

a

(ϕ′(x) )
−
dx,(2.1c)
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where ϕ′ ∈ L1(a, b) is the a.e. derivative of ϕ, and (·)
+
, (·)− denote the positive and

negative parts of (·); cf. (1.3).
Proof. For any partition {x

0 < x
1 < · · · < xn } of [ a, b ], we have

n∑
i= 1

| ϕ(x
i
) − ϕ(x

i−1
) | =

n∑
i= 1

∣∣∣∣∣
∫ x

i

x
i−1

ϕ′(x) dx

∣∣∣∣∣ ≤
∫ b

a

|ϕ′(x) | dx

so that ϕ ∈ BV(a, b) and

TV [ϕ ; a, b ] ≤
∫ b

a

|ϕ′(x) | dx.(2.2)

Similarly, using (1.3), we obtain

PV [ϕ ; a, b ] ≤
∫ b

a

(ϕ′(x) )
+

dx, NV [ϕ ; a, b ] ≤
∫ b

a

(ϕ′(x) )
−

dx.

To show that equality holds, let (ψ

) be a sequence of smooth (C1) functions com-

pactly supported in ] a, b [ ( i.e., ψ

∈ C1

0 (a, b) ) and such that

‖ψ

− ϕ′ ‖

L1(a,b)
→ 0 as �→∞.

For each �, we set

ϕ

(x) = ϕ(a) +

∫ x

a

ψ

(s) ds, x ∈ [ a, b ].

Now, given ε > 0, let L(ε) > 0 be such that ‖ψ

− ϕ′ ‖

L1(a,b)
≤ ε

2 for all � ≥ L(ε)

and, for each �, let a = x()
0

< x()
1

< · · · < x()
n
�

= b be chosen so that

n
�∑

i= 1

| ϕ

(x()

i
) − ϕ


(x()

i−1
) | ≥ TV [ϕ


; a, b ] − ε

2
.

Then, for each � ≥ L(ε), we have

TV [ϕ

; a, b ] − ε

2
≤

n
�∑

i= 1

∣∣∣∣∣∣∣
∫ x(�)

i

x(�)

i−1

ϕ′

(s) ds

∣∣∣∣∣∣∣

≤
n
�∑

i= 1

∣∣∣∣∣∣∣
∫ x(�)

i

x(�)

i−1

ϕ′(s) ds

∣∣∣∣∣∣∣ +

n
�∑

i= 1

∣∣∣∣∣∣∣
∫ x(�)

i

x(�)

i−1

(ψ

(s) − ϕ′(s) ) ds

∣∣∣∣∣∣∣
≤

n
�∑

i= 1

| ϕ(x()

i
) − ϕ(x()

i−1
) | +

n
�∑

i= 1

∫ x(�)

i

x(�)

i−1

|ψ

(s) − ϕ′(s) | ds

≤ TV [ϕ ; a, b ] + ‖ψ

− ϕ′ ‖

L1(a,b)
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so that

TV [ϕ

; a, b ] − ε

2
≤ TV [ϕ ; a, b ] + ‖ψ


− ϕ′ ‖

L1(a,b)
.

Hence, for every � ≥ L(ε), we have

TV [ϕ ; a, b ] ≥ TV [ϕ

; a, b ] − ε,(2.3)

and, because

TV [ϕ

; a, b ]→

∫ b

a

|ϕ′(s) | ds

as �→∞, in view of the fact that, due to the smoothness of ϕ

,

TV [ϕ

; a, b ] =

∫ b

a

|ϕ′

(s) | ds =

∫ b

a

|ψ

(s) | ds,

we then obtain from (2.3) that

TV [ϕ ; a, b ] ≥
∫ b

a

|ϕ′(s) | ds − ε.

Since ε > 0 is arbitrary, this gives (2.1a) if we recall (2.2). Finally, using (1.3), we
derive (2.1b) and (2.1c) in an entirely similar way.

It is interesting to note that the converse to Theorem 2.1 is also true, that is,
given ϕ ∈ BV(a, b) such that (2.1a) holds, then ϕ must be absolutely continuous on
[ a, b ]; see [5, p. 165]. To complete this section, we will now derive the property (1.10)
for functions in AC(a, b). Clearly, it will be sufficient to establish the following result.

Theorem 2.2. Let ϕ ∈ AC(a, b + h
0
) for some h

0
> 0. Then

TV [ϕ ; a, b ] = lim
h→ 0+

1

h

∫ b

a

|ϕ(x + h) − ϕ(x) | dx,(2.4a)

PV [ϕ ; a, b ] = lim
h→ 0+

1

h

∫ b

a

(ϕ(x + h) − ϕ(x) )
+

dx,(2.4b)

NV [ϕ ; a, b ] = lim
h→ 0+

1

h

∫ b

a

(ϕ(x + h) − ϕ(x) )
−

dx.(2.4c)

Proof. By Fatou’s lemma [5], [6], we have

lim inf
h→ 0

+

1

h

∫ b

a

|ϕ(x + h) − ϕ(x) | dx ≥
∫ b

a

|ϕ′(x) | dx

so that, by (2.1a) of the previous result, we obtain

lim inf
h→ 0+

1

h

∫ b

a

|ϕ(x + h) − ϕ(x) | dx ≥ TV [ϕ ; a, b ].(2.5)
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On the other hand, since∫ b

a

|ϕ(x + h) − ϕ(x) | dx ≤
∫ b

a

TV [ϕ ; x, x + h ] dx

=

∫ b

a

( TV [ϕ ; a, x + h ] − TV [ϕ ; a, x ] ) dx

=

∫ b+h

b

TV [ϕ ; a, x ] dx −
∫ a+h

a

TV [ϕ ; a, x ] dx,

we obtain ∫ b

a

|ϕ(x + h) − ϕ(x) | dx ≤
∫ b+h

b

TV [ϕ ; a, x ] dx

so that

lim sup
h→ 0+

1

h

∫ b

a

|ϕ(x + h) − ϕ(x) | dx ≤ TV [ϕ ; a, b ].(2.6)

This, together with (2.5) above, gives (2.4a). Recalling (1.3), we obtain (2.4b), (2.4c)
in a completely similar way.

In what follows, we will show that (2.4a), (2.4c) are also valid for (normal) func-
tions of bounded variation on some interval [ a, b + h

0 ] containing [ a, b ]. Note that
this clearly gives (1.10) for functions in BV(a, b), as stated in the introduction.

3. Functions with bounded variation: General case. We now turn to the
main results. Let f ∈ BV(a, b+ h

0
) for some h

0
> 0 be given, which we assume to be

normal on every point of [ a, b ], and let TV [ f ; a, b+ ] denote the right-side limit

TV [ f ; a, b+ ] = lim
ε→ 0+

TV [ f ; a, b + ε ],(3.1)

and similarly for PV [ f ; a, b+ ] and NV [ f ; a, b+ ]; these limiting quantities are
simply TV [ f ; a, b ], PV [ f ; a, b ], and NV [ f ; a, b ], respectively, when f is right-
continuous at the point b. With this notation, we now give the following generalization
of Theorem 2.2 above.

Theorem 3.1. Let f ∈ BV(a, b + h
0
) for some h

0
> 0 with f normal on [ a, b ].

Then

lim
h→ 0+

1

h

∫ b

a

| f(x + h) − f(x) | dx = TV [ f ; a, b+ ],(3.2a)

lim
h→ 0+

1

h

∫ b

a

( f(x + h) − f(x) )
+

dx = PV [ f ; a, b+ ],(3.2b)

lim
h→ 0+

1

h

∫ b

a

( f(x + h) − f(x) )
−

dx = NV [ f ; a, b+ ].(3.2c)

Proof. Starting with (3.2a), we have, as observed above,

∫ b

a

| f(x + h)− f(x) | dx ≤ h TV [ f ; a, b + h ]
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for all h > 0, h < h
0
, so that we obtain

lim sup
h→ 0+

1

h

∫ b

a

| f(x + h)− f(x) | dx ≤ TV [ f ; a, b+ ].(3.3)

To finish the argument, it remains to show that

lim inf
h→ 0+

1

h

∫ b

a

| f(x + h)− f(x) | dx ≥ TV [ f ; a, b+ ].(3.4)

For convenience, let us assume from now on that f is right-continuous at b, since
setting f(b) = f(b

+

) does not change the values of the integrals above or the normality
of f on [ a, b ]. We may then proceed as follows. Given h > 0, h < h

0 , set ahj ≡ a+ jh

for each j = 0, 1, 2, . . . , and let J = J
h

be the value of j such that ah
J−1

< b and

ah
J
≥ b. For every j = 1, 2, . . . , J

h
, we divide the interval [ ahj−1, a

h
j ] in K ≥ 1

subintervals [xk−1
j , xkj ], 1 ≤ k ≤ K, where

xkj = ahj−1 + k
h

K
.

We then have, as K →∞,

J
h∑

j= 1

1

K

K∑
k=1

| f(xk
j
+ h)− f(xk

j
) | K→∞

−→ 1

h

∫ ah
J
h

a

| f(x + h)− f(x) | dx.

On the other hand,

1

h

∫ ah
J
h

a

| f(x + h)− f(x) | dx =

J
h∑

j= 1

lim
K→∞

1

K

K∑
k= 1

| f(xk
j+1

)− f(xk
j
) |

≥
J
h∑

j= 1

lim
K→∞

∣∣∣∣∣ 1

K

K∑
k= 1

f(xk
j+1

) − 1

K

K∑
k= 1

f(xk
j
)

∣∣∣∣∣

=

J
h∑

j= 1

∣∣∣Mh

j+1 −M
h

j

∣∣∣ ,
where, for each j = 1, 2, . . . , J

h
, J
h

+ 1, . . . , we set M
h

j to be the average values

M
h

j ≡
1

h

∫ ahj

ahj−1

f(x) dx .

In particular, defining M
h
[ f ] : [ a, b + h0 − h ] �→ R by putting, for j = 1, 2, . . . , J

h
,

J
h

+ 1, . . . , the values

M
h
[ f ] (x) =




M
h

j if ahj−1 < x < ahj ,

M
h

j +M
h

j+1

2
if x = ahj
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andM
h
[ f ] (a) = M

h

1 , we get

1

h

∫ ah
J
h

a

| f(x + h)− f(x) | dx ≥ TV [M
h
[ f ] ; a, ah

J
h

+ ].(3.5)

Thus, (3.4) will be obtained if we show that

lim inf
h→ 0+

TV [M
h
[ f ] ; a, ah

J
h

+ ] ≥ TV [ f ; a, b+ ],(3.6)

and this can be done as follows. Given η > 0 arbitrary, let a = x0 < x1 < · · · <
xN−1 < xN = b be such that

(i)
N∑
j= 1

| f(xj)− f(xj−1) | ≥ TV [ f ; a, b ] − η,

(ii) f(b−) − η ≤ f(x) ≤ f(b−) + η ∀ x ∈ [xN−1, b [ .

Since f is normal on [ a, b ], we may also assume that

(iii) f is continuous at x1, x2, . . . , xN−1.

Let then δ > 0 be such that

(iv) f(xj) − η

N
≤ f(x) ≤ f(xj) +

η

N
for each x ∈ [xj−δ, xj+δ ]

for every j = 1, 2, . . . , N − 1, and

(v) f(a) − η

N
≤ f(x) ≤ f(a) +

η

N
for every x ∈ ] a, a + δ ],

(vi) f(b) − η

N
≤ f(x) ≤ f(b) +

η

N
for every x ∈ ] b, b + 2 δ ],

(vii) δ ≤ b− xN−1

2
.

In particular, we get

(a) M
h
[ f ] (xj) ∈

[
f(xj)− η

N
, f(xj) +

η

N

]
for j = 1, 2, . . . , N − 1,

(b) M
h
[ f ] (a) ∈

[
f(a)− η

N
, f(a) +

η

N

]
,

(c) M
h
[ f ]

(
ah
J
h

+
h

2

)
∈
[
f(b)− η

N
, f(b) +

η

N

]
,

and, by (ii), (iv), and (vi),

(d) M
h
[ f ] (xN−1) ∈

[
f(b−)− η − η

N
, f(b−) + η +

η

N

]
,
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so that, for each j = 1, 2, . . . , N − 1,

|M
h
[ f ] (xj) − Mh

[ f ] (xj−1) | ≥ | f(xj) − f(xj−1) | − 2 η

N
and∣∣∣∣Mh

[ f ]

(
ah
J
h

+
h

2

)
− M

h
[ f ](xN−1)

∣∣∣∣ ≥ | f(xN) − f(xN−1) | − 2 η

N
− η.

Hence, we obtain

TV [M
h
[ f ] ; a, ah

J
h

+ ]

≥
∣∣∣∣Mh

[ f ]

(
ah
J
h

+
h

2

)
− M

h
[ f ] (xN−1)

∣∣∣∣ +

N−1∑
j= 1

|M
h
[ f ] (xj) − Mh

[ f ] (xj−1) |

≥
N∑
j= 1

| f(xj) − f(xj−1) | − 3 η ,

so that

TV [M
h
[ f ] ; a, ah

J
h

+ ] ≥ TV [ f ; a, b ] − 4 η

in view of (i). Since η > 0 is arbitrary, we then obtain

lim inf
h→ 0+

TV [M
h
[ f ] ; a, ah

J
h

+ ] ≥ TV [ f ; a, b ],

which concludes the derivation of (3.6). Recalling (3.5), this gives (3.4). Finally,
using (1.3), the inequalities (3.2b), (3.2c) are proved in a similar way.

Clearly, this result establishes (1.10) at once. An easy way to see this is as follows:

Given f ∈ BV(a, b), we extend it to [ a,+∞ [ by setting f(x) = f(b
−
) for all x > b,

and we redefine f on [ a, b ] if necessary so that it be normal everywhere. Writing the
integral in (3.2a) as a sum of two integrals corresponding to the intervals [ a, b − h ]
and [ b− h, b ], we immediately get (1.10) from the limit (3.2a) and the fact that

1

h

∫ b

b−h
| f(x + h)− f(x) | dx → 0 as h → 0

due to the continuity of f at the point b. Doing the same with the integrals (3.2b)
and (3.2c), we then obtain the following result.

Theorem 3.2. Let f ∈ BV(a, b) be normal on [ a, b ]. Then

lim
h→ 0+

1

h

∫ b−h

a

| f(x + h) − f(x) | dx = TV [ f ; a, b ],(3.7a)

lim
h→ 0+

1

h

∫ b−h

a

( f(x + h) − f(x) )
+

dx = PV [ f ; a, b ],(3.7b)

lim
h→ 0+

1

h

∫ b−h

a

( f(x + h) − f(x) )
−

dx = NV [ f ; a, b ].(3.7c)

As stated in the introduction, there is a converse to the result above, which we
formulate as the following well-known property; see, e.g., [2], [13], [23], [35].
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Theorem 3.3. Let f ∈ L1(a, b) be such that

lim sup
h→ 0+

1

h

∫ b−h

a

| f(x + h)− f(x) | dx = C < ∞.(3.8)

Then f is of essential bounded variation on [ a, b ] and TVess [ f ; a, b ] = C.

Proof. For the sake of completeness, we will provide a quick derivation of this
result along the lines of the proof given in [2]; see also [ 8 ] for an alternative argument.

For each integer n ≥ 1, let h = (b − a)/n and ahj = a + jh, 0 ≤ j ≤ n. We then
construct the step function M

h
[ f ] ∈ BV(a, b) as in the proof of Theorem 3.1, i.e.,

we set

M
h
[ f ] (x) = M

h

j =
1

h

∫ ahj

ahj−1

f(s) ds if ahj−1 < x < ahj

for j = 1, 2, . . . , n, extending it to the nodal points { ah0 , ah1 , . . . , ahn } in any way so
as to become normal everywhere on [ a, b ]. Then

TV [M
h
[ f ] ; a, b ] =

n∑
j= 1

|Mh

j −M
h

j−1 | ≤ 1

h

∫ b

a

| f(x + h)− f(x) | dx

so that, by (3.8), we obtain

lim sup
h→ 0+

TV [M
h
[ f ] ; a, b ] ≤ C,(3.9)

from which we get that the total variation on [ a, b ] of the family of functionsM
h
[ f ]

is uniformly bounded as h → 0
+

. Moreover, it is well known that

‖M
h
[ f ] − f ‖

L1(a,b)
→ 0(3.10)

as h → 0
+

; see, e.g., [2, Lemma 1.2.2]. This implies that some subsequence of

the functions M
h
[ f ] must converge pointwise to f a.e. on [ a, b ] as h → 0

+

, say
the sequence M

h′ [ f ], and, because of (3.9), these functions M
h′ [ f ] are then uni-

formly bounded on [ a, b ]. Thus, we can apply Helly’s principle [22] and select a
subsequence of M

h′ [ f ], say M
h′′ [ f ], which converges pointwise to some function

g ∈ TV(a, b) everywhere on [ a, b ] as h→ 0
+

. From (3.9), we immediately obtain that
TV [ g ; a, b ] ≤ C, while we also have f = g a.e. on [ a, b ] because of (3.10)—in fact,

f is the a.e. pointwise limit of the whole sequence M
h′ [ f ] as h → 0

+

. This is still

true if we redefine g on [ a, b ] so that it be normal everywhere on this interval. Now,
from Theorem 3.2 and (3.8), we then have

TV [ g ; a, b ] = lim
h→ 0+

1

h

∫ b−h

a

| g(x + h)− g(x) | dx = C,

since g = f a.e. on [ a, b ]. This gives TVess [ f ; a, b ] = C, as stated.
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In fact, the proof given above establishes more, if we only recall Theorem 3.2.
Given f ∈ L1(a, b) satisfying the condition (3.8), it follows that

TVess [ f ; a, b ] = lim
h→ 0+

1

h

∫ b−h

a

| f(x + h)− f(x) | dx,(3.11a)

PVess [ f ; a, b ] = lim
h→ 0+

1

h

∫ b−h

a

( f(x + h)− f(x) )
+

dx,(3.11b)

NVess [ f ; a, b ] = lim
h→ 0+

1

h

∫ b−h

a

( f(x + h)− f(x) )
−

dx.(3.11c)

A note of caution should be given here. Given f ∈ L1(a, b+ h0) for some h0 > 0,
we observe that the property

lim sup
h→ 0+

1

h

∫ b

a

| f(x + h)− f(x) | dx = C < ∞(3.12)

does not imply that TVess [ f ; a, b+ ] = C or the existence of the limit

lim
h→ 0+

1

h

∫ b

a

| f(x + h)− f(x) | dx = C.(3.13)

We can ascertain from (3.12) only that f is of essential bounded variation on [ a, b ] and
that (3.11a), (3.11c) hold. In fact, the following example will illustrate this. Taking
0 < ε < 1 and setting

f(x) =




1 if εn
1 + ε

1− ε
≤ x ≤ εn

2

1− ε
for some n ≥ 1,

0 otherwise,

(3.14a)

we obtain f ∈ L1(−1, 1) ∩ BV(−1, 0) with TVess [ f ; −1 , 0 + ] =∞ , and

lim sup
h→ 0+

1

h

∫ 0

− 1

| f(x + h)− f(x) | dx =
1

2
(3.14b)

while

lim inf
h→ 0+

1

h

∫ 0

− 1

| f(x + h)− f(x) | dx =
ε

1 + ε
<

1

2
.(3.14c)

We conclude this discussion with one final remark. The results given above have
been stated in terms of the differences f(x+h)− f(x), but of course could have been
written in terms of f(x) − f(x − h) instead, with only some minor obvious changes
in the statements or the analysis. Thus, for example, Theorem 3.1 could have been
given as follows: given f ∈ BV(a− h0 , b) for some h0 > 0,

lim
h→ 0+

1

h

∫ b

a

| f(x)− f(x− h) | dx = TVess [ f ; a− , b ],(3.15)

where

TVess [ f ; a− , b ] = lim
ε→ 0+

TVess [ f ; a− ε , b ]

and similarly for the other left-side limits PVess [ f ; a− , b ] and NVess [ f ; a− , b ].
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ON THE STOCHASTIC EULER EQUATIONS IN A
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Abstract. In this paper, we discuss an initial-boundary value problem associated with the Euler
equations with a random noise in a simply connected two-dimensional bounded domain. We present
two different results according to the space regularity of the random noise. When the random noise is
regular in the space variables, we prove the existence of a unique solution as a Banach space-valued
continuous stochastic process. If the noise is less regular in the space variables, we establish the
existence of solutions defined over a given probability space under the assumption that the noise is
given in terms of a standard Brownian motion.

Key words. Euler equations, vorticity, existence, pathwise solutions, measurability, Brownian
motion
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Introduction. In this paper we will discuss an initial-boundary value problem
for the Euler equations with a random noise in a two-dimensional simply connected
domain. The problem is formulated as follows:

∂u

∂t
+ u · ∇u+∇p =

∂W

∂t
for (t, x) ∈ (0, T )×G,(0.1)

∇ · u = 0 for (t, x) ∈ (0, T )×G,(0.2)

u · n = 0 for (t, x) ∈ [0, T ]× ∂G,(0.3)

u(0, x) = u0(x) for x ∈ G,(0.4)

where u = (u1, u2) is the velocity vector, p is the pressure, G is a simply connected
bounded domain in R2 with smooth boundary ∂G, and u · n stands for the normal
component of u on ∂G. The right-hand side of (0.1) represents an external random
noise. A Wiener process with values in a Hilbert space is a typical example for W.

The deterministic Euler equations have been extensively investigated. For a com-
plete survey of known results for the deterministic Euler equations, see Lions [8] and
references therein. We will recall only the results on the existence of solutions that
are directly relevant to our investigation. The fundamental result on the existence
and uniqueness of solutions for a two-dimensional domain is due to Yudovich [12].
The approach in [12] is to start with the vorticity equation in terms of the stream
function. By the method of parabolic regularization, the existence of vorticity was
established with the L∞-estimate. This leads to the existence and uniqueness of the
velocity vector. The case of a simply connected domain was analyzed first, and the
analysis was extended to a multiply connected domain by introducing some auxiliary
functions. Bardos [1] employed a different approach for a similar result. The method
of [1] is to approximate the Euler equations directly by the Navier–Stokes equations
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with special boundary conditions. The solution of the Euler equations was obtained
as the zero viscosity limit. The method does not require geometric conditions on the
space domain other than some smoothness of the boundary.

For the stochastic Euler equations, there are rather a limited number of results
that include Bessaih [3], Bessaih and Flandoli [4], Brzezniak and Peszat [5], Capinski
and Cutland [6], and Mikulevicius and Valiukevicius [9]. These works present results
on the existence of solutions, which are different from each other. In particular, the
issues raised in [4] have motivated our work. They [4] used the same approximation
scheme as in [1] for the proof of existence. In fact, they could have relaxed regularity
conditions on W in the space variables for the uniqueness of solutions if the viscosity
term had been modified to contain W. But the boundary conditions are still required.
This is due to the introduction of the viscosity term in (0.1). Here we propose to
use a different method in the case of a simply connected domain. We will mainly
work with the vorticity equation as in [12], but our approximation scheme is different.
By virtue of this new scheme, we cannot only relax conditions on the regularity of
W (t, x) in the space variables x but also dispense with any boundary condition on W
for the existence and uniqueness of solutions. One could imitate the procedure in [12]
with some modification for the existence of solutions. But then the measurability of
solutions as random variables is difficult to come by because a fixed point theorem was
used. For a multiply connected domain, we can modify the system of approximate
equations to include several unknown scalar functions corresponding to the inner
boundaries following the idea of [12], and proceed in the same way as in the case of a
simply connected domain. But the analysis will be far more lengthy, and we will not
pursue this.

We will also discuss the case where W is less regular in the space variables and
the solution is not known to be unique. This is the case where martingale solutions
were obtained in [3]. Our goal is to find solutions over a given probability space with
less regular W. We will show that this is possible if W is given in terms of a standard
Brownian motion. When W is less regular in the space variables, we can still obtain
pathwise solutions. But the uniqueness of solution is not known, and this causes
difficulty in the measurability of pathwise solutions. For the stochastic Navier–Stokes
equations, Bensoussan and Temam [2] overcame this difficulty by making a special
assumption on the probability space and using a selection theorem. Here we use a
general probability space, but W has to be expressed in terms of a Brownian motion.
We will first work on the completion of the canonical probability space, from which the
general case follows. Our crucial tool is a selection theorem proved in [2]. However,
our approach is quite different because of insufficient regularity of W in the space
variables. In fact, our procedure can relax the regularity condition on the example
(3.38) in [2].

Our results are stated in section 1 and proved in sections 2 and 3.

1. Notation and statement of the results. Throughout this paper, T > 0 is
a given positive number, G is a simply connected bounded domain in R2 with smooth
boundary ∂G, and Hα(G) denotes the usual Sobolev space of order α ∈ R. We
will use the same notation for both vector-valued function classes and scalar-valued
function classes. The function spaces V and H are defined by

V =
{
f = (f1, f2)

∣∣ f ∈ H1(G), ∇ · f = 0 in G, and f · n = 0 on ∂G
}
,

H =
{
f = (f1, f2)

∣∣ f ∈ L2(G), ∇ · f = 0 in G, and f · n = 0 on ∂G
}
.

We will also use the notation ∇× f = ∂f2/∂x1 − ∂f1/∂x2.
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(Ω,F ,Ft, P ) is a given stochastic basis, where P is a probability measure, F is a
σ-algebra, and {Ft}t≥0 is a right-continuous filtration on (Ω,F) such that F0 contains
all P -negligible subsets. When X is a metric space, the mapping f : Ω → X is said
to be X -valued F-measurable if f−1(O) ∈ F for every open subset O ⊂ X .

We will present two results under different assumptions.

1.1. The first result. We suppose that the random vector function W =
(W1(t, x;ω),W2(t, x;ω)) satisfies the following conditions:

For P -almost all ω ∈ Ω, W (·, · ;ω) ∈ C([0, T ];H3+α(G)) for some α > 0.(1.1)

For each t ∈ [0, T ], W (t, · ; ·) is H3+α(G)-valued Ft-measurable.(1.2)

Definition 1.1. A random function u(t, x;ω) is said to be a solution of (0.1)–
(0.4) if u is a V-valued continuous stochastic process adapted to {Ft}0≤t≤T , and for
P -almost all ω, (0.1) is satisfied with some distribution p in the sense of distribution
over (0, T )×G and (0.4) holds.

Under the above assumptions, our result is the following.
Theorem 1.2. Suppose u0 is V-valued F0-measurable such that ∇ × u0(· ;ω) ∈

L∞(G) for P -almost all ω. Then, there is a unique solution to (0.1)–(0.4).
Here uniqueness means pathwise uniqueness, and Definition 1.1 is used only for

Theorem 1.2.

1.2. The second result.

1.2.1. A general probability space. We assume that W is given by

W (t, x;ω) = g(x)Bt(ω),(1.3)

where g is R2-valued and belongs to H1(G), and Bt(·) is a standard one-dimensional
Brownian motion over (Ω,F ,Ft, P ).

Theorem 1.3. Suppose u0 is deterministic and belongs to V. Let δ ∈ (1/2, 0).
Then, there is a random function u defined over Ω such that u is L2(0, T ;V) ∩
C([0, T ];H∩Hδ(G))-valued F-measurable and such that (0.1)–(0.4) are satisfied with
some distribution p for P -almost all ω.

This result will be first proved in the following special case.

1.2.2. The canonical probability space. Here we choose Ω = C([0,∞)),
which is a Polish space under a standard metric. Let B(Ω) be the σ-algebra of all
Borel subsets of C([0,∞)). Let P be the Wiener measure on (Ω,B(Ω)) such that the
coordinate mapping process

Xt : ω �→ ω(t)(1.4)

is the standard Brownian motion under P. Then,
(
Ω, B(Ω), P ) is called the canonical

probability space. Following Karatzas and Shreve [7], we define

N =

{
A ⊂ Ω

∣∣∣∣ there is a B ∈ B(Ω) with A ⊂ B and P (B) = 0

}
,(1.5)

Ft = the σ-algebra generated by Xs, 0 ≤ s ≤ t, and N ,(1.6)

F = the completion of B(Ω) under P.(1.7)



1214 JONG UHN KIM

Then, {Ft} is a right-continuous filtration on (Ω,F) (see [7, p. 90]), and F0 con-
tains all P -negligible subsets. Furthermore, Xt is again a Brownian motion on
(Ω,F ,Ft, P ). We assume that

W (t, x;ω) = g(x)Xt(ω),(1.8)

where g is R2-valued and belongs to H1(G).

2. Proof of Theorem 1.2. We first choose a F0-measurable set Ω̃ ⊂ Ω with
P (Ω̃) = 1 such that for each ω ∈ Ω̃, W (·, ·;ω) ∈ C([0, T ];H3+α(G)), ∇× u0(· ;ω) ∈
L∞(G), and u0(· ;ω) ∈ V hold. We consider the following initial-boundary value
problem for a scalar random function ζε(t, x;ω) with parameter ε > 0:

∂ζε
∂t

+ (∇⊥Ψε) · ∇ζε = −(∇⊥Ψε) · ∇(∇×Wε(t, x;ω)) for (t, x) ∈ (0, T )×G,(2.1)

ζε(0, x;ω) = ∇× u0,ε(x;ω)−∇×Wε(0, x;ω) for x ∈ G,(2.2)

where ∇⊥ = (∂/∂x2,−∂/∂x1), and Ψε is the solution of{−(1− ε∆)∆Ψε = ζε +∇×Wε(t, ·;ω) in G,
Ψε = ∆Ψε = 0, on ∂G.

(2.3)

Equation (2.1) is a regularized vorticity equation. Here Wε is defined by

Wε = rG
(
(LW )  ρε

)
,(2.4)

where rG denotes restriction toG, L is a continuous extension: H3+α(G)→ H3+α(R2)
such that rG Lh = h for all h ∈ H3+α(G), and ρε is the Friedrichs mollifier. For L,
it is sufficient that ∂G is Cm-smooth with m ≥ 3 + α. The convolution is taken with
respect to the space variables x ∈ R2. Then, for each ω ∈ Ω̃, Wε ∈ C([0, T ];C3(G))
and

Wε → W strongly in C([0, T ];H3+α(G)) as ε→ 0.(2.5)

In the meantime, u0,ε in (2.2) is an approximation of u0 such that u0,ε ∈ C2(G) ∩ V
and, for each ω ∈ Ω̃, as ε→ 0,

∇× u0,ε → ∇× u0

{
weak-star in L∞(G),
strongly in L2(G).

(2.6)

We will sketch a procedure to construct such approximations. Let us define

h(x;ω) =

{
∇× u0(x;ω) for x ∈ G,

0 for x /∈ G
(2.7)

and

hε = ρε  h.(2.8)

Then hε ∈ C∞(R2), and as ε → 0, hε → h weak-star in L∞(G) and strongly in
L2(R2) for each ω ∈ Ω̃. We then find Φε satisfying{

−∆Φε = hε in G,

Φε = 0 on ∂G.
(2.9)
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We now choose u0,ε = ∇⊥Φε. Since hε ∈ C∞(G), it follows that Φε ∈ C∞(G). We
also note that ∇× (∇⊥Φε) = −∆Φε = hε in G and that n · ∇⊥Φε = ∂Φε/∂s = 0 on
∂G. Here n is a normal vector and ∂/∂s is tangential differentiation on ∂G. Hence,
u0,ε satisfies all the required properties.

Lemma 2.1. For each ω ∈ Ω̃, there is a unique solution ζε(· , · ;ω) ∈ C1([0, T ]×
G) of (2.1)–(2.3). Furthermore, for each 0 < s ≤ T, ζε(s, ·) is L2(G)-valued Fs-
measurable, and it holds that

‖ζε‖C([0,T ]×G) ≤M(ω),(2.10)

∥∥∥∥∂ζε∂t

∥∥∥∥
C([0,T ];H−1(G))

≤M(ω)(2.11)

for some positive constants M(ω) independent of ε.
Proof. For approximate solutions, we use a complete orthonormal system of the

eigenfunctions {em}∞m=1 of {
−∆em = λmem in G,

em = 0 on ∂G.
(2.12)

Let us write

ζε,m(t, x;ω) =

m∑
k=1

cm,k(t;ω)ek(x)(2.13)

and define Ψε,m to be the solution of

−(1− ε∆)∆Ψε,m = ζε,m +

m∑
k=1

〈∇ ×Wε(t, · ;ω), ek〉L2(G) ek in G,

Ψε,m = ∆Ψε,m = 0, on ∂G,

(2.14)

where 〈· , ·〉L2(G) is the inner product in L2(G). We then consider the following system
of ordinary differential equations:

dcm,k
dt

+ 〈(∇⊥Ψε,m) · ∇ζε,m, ek〉L2(G)(2.15)

= 〈−(∇⊥Ψε,m) · ∇(∇×Wε(t, · ;ω)), ek〉L2(G), k = 1, . . . ,m,

cm,k(0;ω) = 〈∇ × u0,ε(· ;ω)−∇×Wε(0, · ;ω), ek〉L2(G), k = 1, . . . ,m.(2.16)

The system (2.15) can be put in the form

dz

dt
= h(t, z;ω),(2.17)

where z = (cm,1, . . . , cm,m), and all the components of the vector function h are

polynomials in cm,k’s with coefficients depending on t, ω. For each ω ∈ Ω̃, the co-
efficients belong to C([0, T ]). Thus, the existence and uniqueness of local solutions
follow immediately. For the existence on the whole interval [0, T ], we need some a
priori estimates. We first note that, for each t,

〈(∇⊥Ψε,m) · ∇ζε,m, ζε,m〉L2(G) = 0(2.18)
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and

‖∇⊥Ψε,m‖L2(G) ≤M

(
‖ζε,m‖L2(G) + ‖∇ ×Wε‖L2(G)

)
,(2.19)

which implies ∣∣∣∣〈−(∇⊥Ψε,m) · ∇(∇×Wε), ζε,m〉L2(G)

∣∣∣∣(2.20)

≤M‖∇⊥Ψε,m‖L2(G)‖ζε,m‖L2(G)‖∇(∇×Wε)‖L∞(G)

≤M

(
‖ζε,m‖2L2(G) + ‖∇ ×Wε‖2L2(G)

)
‖Wε‖H3+α(G),

where M denotes positive constants independent of t,m, and ε. We multiply (2.15)
by cm,k, sum over 1 ≤ k ≤ m, and apply Gronwall’s inequality to obtain bounds for

cm,k’s. It follows that for each ω ∈ Ω̃, the above system has a unique solution in
C1([0, T ]), and

sup
0≤t≤T

‖ζε,m(t)‖L2(G) ≤M(ω),(2.21)

where M(ω) is a positive constant independent of ε and m. Later, we will need the
estimates of the time derivative of ζε,m. For this, we note that

∥∥∥∥
m∑
k=1

〈(∇⊥Ψε,m) · ∇ζε,m, ek〉L2(G) ek

∥∥∥∥
L∞(0,T ;H−1(G))

(2.22)

≤ K‖(∇⊥Ψε,m) · ∇ζε,m‖L∞(0,T ;H−1(G)) = K‖∇ · ((∇⊥Ψε,m)ζε,m
)‖L∞(0,T ;H−1(G))

≤ K‖(∇⊥Ψε,m)ζε,m‖L∞(0,T ;L2(G)) ≤M(ε, ω),

where K denotes a positive constant depending only on G, and M(ε, ω) is a posi-
tive constant independent of m. Here we have used the fact that H−1(G) can be
characterized by

H−1(G) =

{ ∞∑
k=1

akek

∣∣∣∣
∞∑
k=1

|ak|2/λk <∞
}
.

We also find that∥∥∥∥
m∑
k=1

〈(∇⊥Ψε,m) · ∇(∇×Wε), ek〉L2(G) ek

∥∥∥∥
L∞(0,T ;L2(G))

(2.23)

≤ K‖∇⊥Ψε,m‖L2(G)‖Wε‖H3+α(G) ≤M(ω),

where K and M(ω) are positive constants independent of ε and m. It follows from
(2.15) and the above estimates that∥∥∥∥∂ζε,m∂t

∥∥∥∥
L∞(0,T ;H−1(G))

≤M(ε, ω).(2.24)

For the measurability of cm,k’s, we recall that the components of h in (2.17) are

polynomials in cm,k’s, where all the coefficients belong to C([0, T ]) for each ω ∈ Ω̃, and
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depend continuously onWε in the sense that the mappingWε(·, ·;ω) �→ each coefficient
is continuous from C

(
[0, T ];H3+α(G)

)
to C([0, T ]) for each ω ∈ Ω̃. Since Wε(s, ·; ·) is

H3+α(G)-valued Fs-measurable, it follows that cm,k(s; ·)’s are Fs-measurable for each

s ∈ (0, T ]. Now we proceed to construct pathwise solutions. Let us fix ω ∈ Ω̃. By
virtue of (2.21) and (2.24), we can extract a subsequence still denoted by {ζε,m}∞m=1

such that as m→∞,

ζε,m → ζε weak-star in L∞(0, T ;L2(G)),(2.25)

and

ζε,m → ζε strongly in C([0, T ];H−β(G)) for any β ∈ (0, 1/2)(2.26)

for some ζε ∈ L∞(0, T ;L2(G)) with ∂ζε/∂t ∈ L∞(0, T ;H−1(G)). For compactness in
C
(
[0, T ];H−β(G)

)
, see Corollary 8 of Simon [10]. This together with (2.14) yields

Ψε,m → Ψε strongly in C([0, T ];H−β+4(G)),(2.27)

where Ψε satisfies{
−(1− ε∆)∆Ψε = ζε +∇×Wε(t, · ;ω) in G,

Ψε = ∆Ψε = 0 on ∂G.
(2.28)

It is easy to see that as m→∞,

(∇⊥Ψε,m) · ∇ζε,m → ∇⊥Ψε · ∇ζε weak-star in L∞(0, T ;H−1(G)).(2.29)

Hence, ζε is a solution of (2.1) and (2.2) for each ω ∈ Ω̃. We now show that this ζε is
necessarily in C1([0, T ]×G). For this, we consider the following linear deterministic
problem:

∂ζ

∂t
+Φ · ∇ζ = F,(2.30)

ζ(0, ·) = ζ0.(2.31)

Here Φ, F, and ζ0 are given functions that satisfy the following conditions:

(i) Φ is R2-valued and belongs to C
(
[0, T ];C1(G)

)
.

(ii) Φ is tangential on the boundary ∂G for all t, and ∇ · Φ = 0 for all (t, x).

(iii) F ∈ C
(
[0, T ];C1(G)

)
and ζ0 ∈ C1(G).

Under these conditions, we have the following lemma.

Lemma 2.2. Suppose that ζ ∈ L∞(0, T ;L2(G)) is a solution of (2.30)–(2.31).
Then ζ ∈ C1([0, T ]×G).

Proof. Since ζ ∈ L∞(0, T ;L2(G)) satisfies (2.30) in the sense of distribution over
(0, T ) × G, it holds that ζ ∈ C([0, T ];H−γ(G)) for any γ > 0. Thus, (2.31) makes
sense. By virtue of the conditions (i) and (ii), the flow associated with


dx

dt
= Φ(t, x),

x(0) = y ∈ G
(2.32)
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exists on [0, T ] and gives rise to a volume preserving C1-diffeomorphism y �→ x =
η(t, y) for each t ∈ [0, T ]. Choose any arbitrary φ ∈ C1

0 ((0, T ) × G). It follows from
(2.30) and the divergence-free condition of Φ that

∫ T

0

∫
G

ζ

(
∂φ

∂t
+Φ · ∇φ

)
dx dt = −

∫ T

0

∫
G

Fφdx dt.(2.33)

We now express the integrals in terms of the new variables (s, y), where t = s and
x = η(s, y):

∫ T

0

∫
G

ζ(t, x)

(
∂φ

∂t
(t, x) + Φ(t, x) · ∇φ(t, x)

)
dx dt(2.34)

=

∫ T

0

∫
G

ζ(s, η(s, y))
∂φ

∂s
(s, η(s, y)) dy ds,

∫ T

0

∫
G

F (t, x)φ(t, x) dx dt =

∫ T

0

∫
G

F (s, η(s, y))φ(s, η(s, y)) dy ds.(2.35)

Thus, it holds that

∂ζ

∂s
(s, η(s, y)) = F (s, η(s, y))(2.36)

in the sense of distribution over (0, T ) × G. We note that as a function of (s, y),
ζ(s, η(s, y)) belongs to L∞(0, T ;L2(G)

)
because y �→ η(s, y) is volume preserving for

each s. Meanwhile,

ζ(0, η(0, y)) = ζ(0, y) = ζ0(y).(2.37)

Since the initial value problem


∂z

∂s
(s, y) = F (s, η(s, y)), (s, y) ∈ (0, T )×G,

z(0, y) = ζ0(y), y ∈ G,

has at most one solution in the space of distributions over (0, T )×G, ζ is necessarily
represented by

ζ(t, x) = ζ0(y) +

∫ t

0

F (s, η(s, y)) ds(2.38)

for each (t, x) ∈ (0, T ) × G, where x = η(t, y). Since the right-hand side belongs to
C1([0, T ]×G), so does ζ. This completes the proof of the lemma.

For each fixed ω ∈ Ω̃, we set Φ(t, x) = ∇⊥Ψε(t, x;ω), F (t, x) = −(∇⊥Ψε)·∇(∇×
Wε(t, x;ω)), and ζ0(x) = ∇×u0,ε(x;ω)−∇×Wε(0, x;ω). Then, the above conditions
(i), (ii), and (iii) are satisfied, and ζε ∈ L∞(0, T ;L2(G)) is a solution of (2.30)–(2.31).
By Lemma 2.2, ζε is necessarily in C1([0, T ]×G).

Next we will show that ζε is a unique solution of (2.1)–(2.3). Fix ε > 0, and let
ζ and ζ̃ be two weak solutions in C([0, T ];L2(G)) of (2.1)–(2.3), and let Ψ and Ψ̃ be
associated with ζ and ζ̃, respectively, through (2.3). Then, both ζ and ζ̃ belong to
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C1([0, T ] × G) by the same argument as above. We denote the right-hand side of
(2.1) by F and F̃ associated with Ψ and Ψ̃, respectively. We then have

∂(ζ − ζ̃)

∂t
+ (∇⊥Ψ) · ∇(ζ − ζ̃) +∇⊥(Ψ− Ψ̃) · ∇ζ̃ = F − F̃(2.39)

and

‖∇⊥(Ψ− Ψ̃)‖C(G) ≤M(ε, ω)‖ζ − ζ̃‖L2(G) for all t.(2.40)

By multiplying (2.39) by ζ − ζ̃ and integrating over G, we can easily find

ζ ≡ ζ̃,(2.41)

which shows the uniqueness. Hence ζε is determined independently of any subsequence
{ζε,m}∞m=1. Consequently, the whole sequence {ζε,m}∞m=1 converges to ζε for each

ω ∈ Ω̃. Next we will establish the measurability of ζε as a random function. Fix any
0 < s ≤ T. Each ζε,m(s, ·) is Hµ(G)-valued Fs-measurable for each µ ∈ R, which
follows from the measurability of cm,k’s and the structure of ζε,m. By virtue of (2.26),
ζε(s, ·) is H−β(G)-valued Fs-measurable for β ∈ (0, 1/2). But each closed ball in
L2(G) is a Borel subset of H−β(G), and thus ζε(s, ·) is L2(G)-valued Fs-measurable.

Next we will obtain a priori estimates independent of ε. By multiplying (2.1) by
ζ3
ε and integrating over G, we find

d

dt

∫
G

ζ4
ε dx =

1

4

∫
G

Fε ζ
3
ε dx for all ω ∈ Ω̃.(2.42)

It follows from (2.3) that

‖∆Ψε‖L4(G) ≤M
(‖ζε‖L4(G) + ‖∇ ×Wε‖L4(G)

)
,(2.43)

which yields

‖∇⊥Ψε‖C(G) ≤M
(‖ζε‖L4(G) + ‖∇ ×Wε‖L4(G)

)
,(2.44)

where M denotes positive constants independent of t and ε. We can derive from
(2.42) with help of (2.5) and (2.44):

d

dt

∫
G

ζ4
ε dx ≤M(ω)

∫
G

ζ4
ε dx+M(ω),(2.45)

which, together with (2.6), implies

‖ζε‖C([0,T ];L4(G)) ≤M(ω),(2.46)

where, here and below, M(ω) stands for positive constants independent of ε. It now
follows from (2.5) and (2.44) that

‖Fε‖C([0,T ]×G) ≤M(ω),(2.47)

which, combined with (2.6) and (2.38), yields

‖ζε‖C([0,T ]×G) ≤M(ω).(2.48)
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We can also derive from (2.1) that∥∥∥∥∂ζε∂t

∥∥∥∥
C([0,T ];H−1(G))

≤M(ω).(2.49)

This ends the proof of Lemma 2.1.
We now proceed to obtain a solution of

∂ζ

∂t
+ (∇⊥Ψ) · ∇ζ = −(∇⊥Ψ) · ∇(∇×W (t, x;ω)) for (t, x) ∈ (0, T )×G,(2.50)

ζ(0, x;ω) = ∇× u0(x;ω)−∇×W (0, x;ω) for x ∈ G,(2.51)

where Ψ is the solution of{
−∆Ψ = ζ +∇×W (t, · ;ω) in G,

Ψ = 0 on ∂G.
(2.52)

For the time being, we establish only the existence of a solution for each ω ∈ Ω̃.
Lemma 2.3. For each ω ∈ Ω̃, there is a solution ζ of (2.50)–(2.52) such that

ζ ∈ L∞((0, T )×G) ∩ C([0, T ];H−β(G)) for any β ∈ (0, 1/2).
Proof. Let us fix ω ∈ Ω̃. By virtue of (2.48) and (2.49), we can use Corollary 8 of

[10] to extract a subsequence still denoted by {ζε} and its companion {Ψε} through
(2.3) such that as ε→ 0,

ζε → ζ weak-star in L∞(0, T ;L∞(G)),(2.53)

ζε → ζ strongly in C([0, T ];H−β(G)) for any β ∈ (0, 1/2),(2.54)

and

Ψε → Ψ strongly in C([0, T ];H2−β(G))(2.55)

for some ζ and Ψ which satisfy{
−∆Ψ = ζ +∇×W in G,

Ψ = 0 on ∂G.
(2.56)

Since ∇⊥Ψε is divergence-free, (∇⊥Ψε) · ∇ζε = ∇ · (ζε∇⊥Ψε) holds. Meanwhile, we
use (2.53) and (2.55) to find that as ε→ 0,

∇ · (ζε∇⊥Ψε) → ∇ · (ζ∇⊥Ψ) weak-star in L∞(0, T ;H−1(G)).(2.57)

It follows that ζ satisfies (2.50)–(2.52), and the proof of Lemma 2.3 is complete.
For each ω ∈ Ω̃, we use the above Ψ to set

v = ∇⊥Ψ(2.58)

so that

∇× v = −∆Ψ = ζ +∇×W,(2.59)
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and (2.50) can be written as

∂

∂t
(∇× v) +∇ · ((∇× v)v

)
=

∂

∂t
∇×W.(2.60)

By straightforward differentiation, it is easy to see

∇× ((v · ∇)v) = ∇ · ((∇× v)v
)
,(2.61)

and thus (2.60) reduces to

∇×
(
∂v

∂t
+ (v · ∇)v − ∂W

∂t

)
= 0.(2.62)

Since G is a simply connected domain, there is a scalar distribution p over (0, T )×G
such that

∂v

∂t
+ (v · ∇)v +∇p =

∂W

∂t
.(2.63)

In the meantime, (2.51) and (2.59) yield

∇× v(0, ·) = ∇× u0(· ;ω),(2.64)

which implies

v(0, ·) = u0(· ;ω) +∇q(2.65)

for some scalar distribution q over G. Since v(0, ·) ∈ H and u0(· ;ω) ∈ V, it holds
that ∇q ∈ H, which implies ∇q ≡ 0. Hence, we have shown that for fixed ω ∈ Ω̃,
v satisfies (0.1)–(0.4). It follows from (2.53), (2.55), (2.56), and (2.58) that for each
ω ∈ Ω̃, v ∈ C([0, T ];H) ∩ L∞(0, T ;V) and, by a result in [12],∥∥∥∥ ∂v

∂xi

∥∥∥∥
L∞(0,T ;Lr(G))

≤ rM(ω), i = 1, 2,(2.66)

for all 2 ≤ r < ∞. If there is another function u ∈ C([0, T ];H) ∩ L∞(0, T ;V) that
satisfies (0.1)–(0.4) for fixed ω ∈ Ω̃, then ∂(v − u)/∂t ∈ L∞(0, T ;V ′), where V ′ is
the dual of V, and we can use the same argument as in [4, pp. 50–51] with the help
of (2.66) to find v ≡ u. Hence the above v is unique, and ζ is also unique. Thus,
ζ is determined independently of any choice of the subsequence {ζε}. Next we will
show that ζ ∈ C([0, T ];L2(G)). For this, one could follow the argument in [12], but
there seems to be a gap in the argument because of some missing details. We proceed
differently. It is already known that ζ ∈ L∞(0, T ;L∞(G)) ∩ C([0, T ];H−β(G)) for
any β ∈ (0, 1/2). Thus, ζ(t) is L2(G)-weakly continuous on [0, T ]; see Theorem 2.1
of Strauss [11]. Let us recall how ζ was constructed. The approximation ζε satisfies
the energy identity

‖ζε(t)‖2L2(G) = ‖ζε(0)‖2L2(G) + 2

∫ t

0

∫
G

Fεζε dx ds,(2.67)

where Fε converges to −(∇⊥Ψ) ·∇(∇×W ) strongly in C([0, T ];L2(G)) as ε→ 0. We
pause to emphasize that a formal computation such as multiplying (2.50) by ζ and
integrating over G cannot be justified because ζ is only known to be in L∞((0, T )×G).
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For each t ∈ [0, T ], ζε(t) converges to ζ(t) strongly in H−β(G) for any β ∈ (0, 1/2)
and ζ(t) ∈ L2(G). Hence, ζε(t) converges to ζ(t) weakly in L2(G). By (2.6), we pass
ε→ 0 to arrive at

‖ζ(t)‖2L2(G) ≤ ‖ζ(0)‖2L2(G) − 2

∫ t

0

∫
G

(∇⊥Ψ) · ∇(∇×W )ζ dx ds,(2.68)

from which it follows that

lim
t→0
‖ζ(t)‖2L2(G) ≤ ‖ζ(0)‖2L2(G).(2.69)

Consequently, we find that ζ(t) is right-continuous at t = 0 strongly in L2(G).
Since ζ ∈ L∞(0, T ;L∞(G)) ∩ C([0, T ];H−β(G)) for any β ∈ (0, 1/2) implies that
ζ(t) ∈ L∞(G) and v(t) ∈ V for every t ∈ [0, T ], we can take any 0 < t < T as
the initial time to repeat the above result. By virtue of the uniqueness of solutions,
ζ(t) is right-continuous at each t ∈ [0, T ) strongly in L2(G). By change of variables
ζ �→ −ζ, W �→ −W, and t �→ T − t and applying the above result, we find that
ζ(t) is also left-continuous, and ζ ∈ C([0, T ];L2(G)). Thus, v(t) ∈ C([0, T ];V). By
the same argument as in the proof of measurability of ζε, we can easily find that for
each 0 < s ≤ T, ζ(s, ·) is L2(G)-valued Fs-measurable. Therefore, v(s, ·) is V-valued
Fs-measurable. Now the proof of Theorem 1.2 is complete.

3. Proof of Theorem 1.3. We proceed under the assumptions made in section
1.2.2. Let us define

Wε(t, x;ω) = gε(x)Xt(ω),(3.1)

where each gε ∈ C4(G) and, as ε→ 0,

gε → g strongly in H1(G).(3.2)

Let Ω̃ ∈ F0 with P (Ω̃) = 1 such that for each ω ∈ Ω̃, X(·)(ω) ∈ C([0, T ]).

As in section 2, we choose u0,ε ∈ C2(G) ∩ V such that

∇× u0,ε → ∇× u0 strongly in L2(G).(3.3)

According to Lemma 2.1, for each ω ∈ Ω̃ there is a unique ξε(·, · ;ω) ∈ C
(
[0, T ];C1(G)

)
that satisfies

ξε(t) = ∇× u0,ε −
∫ t

0

(∇⊥Ψε) · ∇ξε ds+∇×Wε(t) for all (t, x) ∈ [0, T ]×G.

(3.4)

Here we have set ξε = ζε + ∇ × Wε, where ζε satisfies (2.1)–(2.3). Next we need
the fact that H1(G) is a Borel subset of L2(G). This follows easily from the fact
that each closed ball of H1(G) of finite radius is a closed subset of L2(G). It is
already known that ξε(s, ·) is L2(G)-valued Fs-measurable for each s ∈ [0, T ]. Since
ξε ∈ C([0, T ];C1(G)), for each ω ∈ Ω̃, ξε(t, ·) isH1(G)-valued continuous and adapted
to {Ft}. In the same way, ∇⊥Ψε is H3(G)-valued continuous and adapted to {Ft}.
We now apply Ito’s formula to find that, for P -almost all ω,

‖ξε(t)‖2L2(G) = ‖∇ × u0,ε‖2L2(G) − 2

∫ t

0

〈(∇⊥Ψε · ∇)ξε, ξε〉L2(G) ds(3.5)

+ 2

∫ t

0

〈ξε, ∇× gε〉L2(G) dXs +

∫ t

0

‖∇ × gε‖2L2(G) ds
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for all 0 ≤ t ≤ T, where the second term in the right-hand side vanishes. By the
Burkholder–Davis–Gundy inequality, it holds that, for all t ∈ [0, T ],

E

(
sup

0≤η≤t

∣∣∣∣
∫ η

0

〈ξε, ∇× gε〉L2(G) dXs

∣∣∣∣
)

(3.6)

≤M E

((∫ t

0

|〈ξε, ∇× gε〉L2(G)|2 ds
)1/2)

≤M‖∇ × gε‖L2(G)E

((∫ t

0

‖ξε‖2L2(G) ds

)1/2)
.

Here and below, E(·) is the expectation with respect to P, and M denotes positive
constants independent of ε. We can infer from (3.5) and (3.6) that

E
(‖ξε‖2C([0,T ];L2(G))

) ≤M(3.7)

and

E
(‖∇⊥Ψε‖2C([0,T ];H1(G))

) ≤M.(3.8)

Consequently,

E

(
‖(∇⊥Ψε) · ∇ξε‖C([0,T ];H−1−δ(G))

)
(3.9)

= E

(
‖∇ · ((∇⊥Ψε)ξε)‖C([0,T ];H−1−δ(G))

)
≤M

for any δ ∈ (0, 1/2). From now on, we fix a given δ ∈ (0, 1/2). In the meantime, we
find from the well-known property of the Brownian motion

E
(‖Wε‖2Cγ([0,T ];H1(G))

) ≤M(3.10)

for some 0 < γ < 1/2. It now follows from (3.4) and the above estimates that

E
(‖ξε‖Cγ([0,T ];H−1−δ(G))

) ≤M.(3.11)

Since it holds that, for all t1, t2 ∈ [0, T ] and all φ ∈ C([0, T ];L2(G))∩Cγ([0, T ];H−1−δ(G)),

‖φ(t2)− φ(t1)‖H−δ(G)(3.12)

≤M‖φ(t2)− φ(t1)‖1/(1+δ)L2(G) ‖φ(t2)− φ(t1)‖δ/(1+δ)H−1−δ(G)
,

we can apply the Ascoli theorem to conclude that the injection

C([0, T ];L2(G)) ∩ Cγ([0, T ];H−1−δ(G)) → C([0, T ];H−δ(G))(3.13)

is compact. Combining all these, we are now ready to extract a suitably convergent
subsequence.

Since the injection

Lp
(
Ω;

[
C([0, T ];L2(G)) ∩ Cγ([0, T ];H−1−δ(G))

])
→ Lp

(
Ω;

[
C([0, T ];H−δ(G))

])(3.14)
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is not compact for any 1 ≤ p ≤ ∞, we will use a measure-theoretic argument. Let us
set ε = 1/k, k = 1, 2, . . . . It follows from (3.7) and (3.11) that

P

(
‖ξ1/k‖C([0,T ];L2(G)) + ‖ξ1/k‖Cγ([0,T ];H−1−δ(G)) ≥ L

)
≤M/L for all k,(3.15)

which yields

P

( ∞⋃
L=1

∞⋂
m=1

∞⋃
k=m

{‖ξ1/k‖C([0,T ];L2(G)) + ‖ξ1/k‖Cγ([0,T ];H−1−δ(G)) ≤ L}
)

= 1.(3.16)

Hence there is a subset Ω† ⊂ Ω̃ such that P (Ω†) = 1 and, for each ω ∈ Ω†, there is a
positive integer L and a subsequence {ξ1/kj}∞j=1 satisfying

‖ξ1/kj‖C([0,T ];L2(G)) + ‖ξ1/kj‖Cγ([0,T ];H−1−δ(G)) ≤ L for all j.(3.17)

We now fix ω ∈ Ω†, and make a choice of L and a subsequence satisfying (3.17). By
virtue of (3.13) and (3.17), we can further extract a subsequence {ξν} such that, as
ν → 0,

ξν → ξ weak-star in L∞(0, T ;L2(G)),(3.18)

ξν → ξ strongly in C([0, T ];H−δ(G))(3.19)

for some function ξ. It follows from (2.3) and (3.19) that, as ν → 0,

Ψν → Ψ strongly in C([0, T ];H2−δ(G)),(3.20)

where Ψ satisfies {
−∆Ψ = ξ in G,

Ψ = 0 on ∂G.
(3.21)

Hence, ξ satisfies, for each t ∈ [0, T ],

ξ(t) = ∇× u0 −
∫ t

0

(∇⊥Ψ) · ∇ξ ds+∇×W(3.22)

in the sense of distribution over G. Hence, for each ω ∈ Ω†, we have constructed a
function ξ ∈ L∞(0, T ;L2(G)) ∩ C([0, T ];H−δ(G)) that satisfies (3.22). We will use
the following result of Bensoussan and Temam [2, pp. 220–221].

THEOREM. Let X be a Polish space and Y be a separable Banach space. Suppose
that Λ is a multivalued mapping from X to the set of nonempty closed subsets of Y
such that its graph is closed. Then, Λ admits a universally Radon measurable selection;
i.e., there is a mapping L from X to Y such that L(x) ∈ Λ(x) for all x ∈ X, and L
is measurable for any Radon measure defined on the Borel sets of X.

Since Ω is a Polish space and F is the completion of B(Ω) under P, P is inner
regular. Thus, there is a compact subset K1 ⊂ Ω† such that P (Ω† \K1) < 1/2. Let
us define a separable Banach space S = L2(0, T ;L2(G)) ∩ C

(
[0, T ];H−δ(G)

)
and a

multivalued mapping

Λ : K1 → S,(3.23)
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where

Λ(ω) =
{
ξ ∈ S ∣∣ ξ satisfies (3.22) with W = g(x)ω(t) for all t ∈ [0, T ]

}
.(3.24)

We will show that the graph of Λ is closed in K1 × S. Let ωn ∈ K1 and ξn ∈ Λ(ωn)
for n = 1, 2, . . . such that, as n→∞,

(ωn, ξn) → (ω�, ξ�) in K1 × S.(3.25)

For each n, it holds that

ξn(t) = ∇× u0 −
∫ t

0

(∇⊥Ψn) · ∇ξn ds+∇× g(x)ωn(t)(3.26)

in the sense of distribution over G for all t ∈ [0, T ]. Here, Ψn is determined from{
−∆Ψn = ξn in G,

Ψn = 0 on ∂G.
(3.27)

Since ξn converges to ξ� in S, and ωn converges to ω� in C([0, T ]), it is apparent that
ξ� satisfies (3.22) with ω�. Hence, ξ� ∈ Λ(ω�). By the same argument, the set Λ(ω)
is a nonempty closed subset of S for each ω ∈ K1.

Since K1 is also a Polish space, we apply the above theorem to find a function

Ξ1 : K1 → S(3.28)

such that

Ξ1(ω) ∈ Λ(ω) for each ω ∈ K1(3.29)

and Ξ1 is measurable for every radon measure defined on the Borel subsets of K1.
Since K1 is a compact subset of Ω, it is apparent that

Ξ−1
1 (O) ∈ F for every open subset O of S.(3.30)

Let us proceed by induction. After K1, . . . ,Km and Ξ1, . . . ,Ξm have been chosen, we
choose a compact subset Km+1 ⊂ Ω†\⋃mj=1 Kj such that P (Ω†\⋃m+1

j=1 Kj) < 1/2m+1

and the corresponding Ξm+1 as above. By piecing up all Ξj ’s, we can construct a
S-valued F-measurable function Ξ such that for P -almost all ω, Ξ(ω) satisfies, for all
t ∈ [0, T ],

Ξ(t, · ;ω) = ∇× u0 −
∫ t

0

(∇⊥Ψ) · ∇Ξ ds+∇×W(3.31)

in the sense of distribution over G, where Ψ is obtained from (3.21) with ξ replaced
by Ξ. By setting v = ∇⊥Ψ, we repeat the same argument as before to arrive at

∂v

∂t
+ (v · ∇)v +∇p =

∂W

∂t
(3.32)

in the sense of distribution over (0, T ) × G with some scalar distribution p, for P -
almost all ω, and

v(0, · ;ω) = u0 for P -almost all ω.(3.33)
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From the regularity of Ξ, we have

v ∈ L2(0, T ;V) ∩ C
(
[0, T ];H1−δ(G) ∩H), for P -almost all ω,(3.34)

and the measurability of v also follows from that of Ξ. This completes the proof of
Theorem 1.3 under the assumptions in section 1.2.2.

It remains to link this special case to a general case. Let Bt(·) be a given standard
Brownian motion over (Ω,F ,Ft, P ). Let Ω̃ be a subset of Ω with P (Ω̃) = 1 such that
for each ω ∈ Ω̃, B(·)(ω) ∈ C([0,∞)). We consider a mapping Θ from Ω̃ into C([0,∞))
defined by

Θ : ω �→ B(·)(ω).(3.35)

Then Θ is C([0,∞))-valued F-measurable, and Θ induces a probability measure P ∗

on
(
C([0,∞)),B(C([0,∞))

))
such that

P ∗(G) = P (Θ−1(G)) for each G ∈ B(C([0,∞))
)
.(3.36)

Then the coordinate mapping process Xt becomes a standard Brownian motion over(
C([0,∞)),B(C([0,∞))

)
, P ∗), and
Xt(Θ(ω)) = Bt(ω) for all ω ∈ Ω̃.(3.37)

We now set Ω∗ = C([0,∞)) and define F∗
t , F∗ by (1.6) and (1.7) with P ∗. We note

that if G is a P ∗-negligible set, then Θ−1(G) is P -negligible set and belongs to F since
F is complete under P. Meanwhile, W is given by

W (t, x;ω) = g(x)Bt(ω).(3.38)

We define

W ∗(t, x;ω∗) = g(x)Xt(ω
∗)(3.39)

so that, for all (t, x) ∈ [0, T ]×G and all ω ∈ Ω̃,

W ∗(t, x; Θ(ω)) = W (t, x;ω).(3.40)

Then, we have a random function u∗ that is L2(0, T ;V) ∩ C
(
[0, T ];H ∩ H1−δ(G)

)
-

valued F∗-measurable and satisfies (0.1)–(0.4) with W replaced by W ∗ for P ∗-almost
all ω∗. For the solution defined over Ω, we simply set

u(t, x;ω) = u∗(t, x; Θ(ω)).(3.41)

This completes the proof of Theorem 1.3.

Note added in proof. One can easily show that the last term of (3.6) is finite
by using a stopping time in (3.5).
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Abstract. We consider curves in R
n moving by the gradient flow for elastic energy, i.e., the
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the lifespan of solutions to the curve diffusion flow is observed. We derive algorithms for both the
elastic flows and the curve diffusion equation. After a numerical test we compute several examples,
including cases of curve diffusion in which a singularity develops.
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1. Introduction. In the Bernoulli model of an elastic rod [13] described by a
closed curve f : I = R/Z→ R

n, the elastic energy is the curvature integral

E(f) =
1

2

∫
I

|κ|2 ds.(1.1)

Here, putting γ = |∂xf |, we denote by ds = γ dx the arclength element and by
∂s = γ−1∂x the arclength derivative; thus τ = ∂sf is the unit tangent and κ = ∂2

sf is
the curvature vector. The Euler–Lagrange operator for E is given by

gradL2E(f) = ∇2
s κ +

1

2
|κ|2κ,(1.2)

where ∇sφ denotes the normal component of ∂sφ, i.e., ∇sφ = ∂sφ−〈∂sφ, τ〉τ . Critical
points of E subject to fixed length are called elasticae. In R

3 the only stable elastica
is the simply covered round circle, while in R

2 multiple coverings of the circle and a
figure eight solution are also stable [9]. However, there are unstable critical points in
R

3 [8].
For any λ > 0 the elasticae are (up to homothety) exactly the critical points of

the energy

Eλ(f) = E(f) + λL(f).(1.3)

Thus one may expect that the gradient flow for Eλ, defined by the equation

∂tf = −∇2
s κ − 1

2
|κ|2κ + λκ,(1.4)
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deforms a given curve into an elastica. Alternatively, one may consider the gradient
flow for E subject to fixed length. This again leads to (1.4), but now the parameter
λ is not constant and depends on the map via

λ =

∫
I
〈∇2

s κ + 1
2 |κ|2κ,κ〉 ds∫

I
|κ|2 ds .(1.5)

For n = 2, long-time existence and subconvergence up to translations are due to
Polden [10, 11] for (1.4) with λ > 0 fixed and due to Wen [14] when coupled with
(1.5); the result in [14] is obtained only for curves with a nonzero rotation index.
Flows approaching elasticae but geometrically different from the above have been
investigated by Langer and Singer [9], Koiso [7], and other authors. Here we also
briefly consider the equation

∂tf = −∇2
s κ;(1.6)

for n = 2, this is the one-dimensional analogue of surface diffusion [3]. Along the
evolution (1.6) the length decreases and, for n = 2, the enclosed area is preserved.
However, the L2-norm of κ need not remain bounded, and the solutions may develop
singularities [11].

Our analytic results for these evolution problems are presented in section 3. For
the curve diffusion flow (1.6), we prove a lower bound on the existence time in terms
of the L2-norm of κ, which may be useful when rescaling the flow at a singularity.
In case of the elastic flows, where the energy E(f) = 1

2 ||κ||2L2 is bounded a priori, we
show long-time existence and subconvergence up to translations. This generalizes the
results of Polden and Wen to an arbitrary dimension and covers the open case of zero
rotation number for the length-constrained flow in R

2. Our method, which essentially
follows [10, 11, 14], is based on L2 curvature estimates combined with Gagliardo–
Nirenberg-type inequalities. This technique has also been employed by other authors;
see for example [1]. For the length-constrained flow, a little extra argument is needed
since one of the terms is critical for the interpolation.

The second aspect we address is the problem of numerically computing solutions,
guided by ideas which have been developed for the isotropic and anisotropic curve
shortening flow in [4, 5]. Based on the variational form of the problems, we shall derive
numerical algorithms which will lead to suitable difference schemes with respect to
space and time. The schemes are based on a discretization with piecewise linear finite
elements for a mixed method. The fourth order problem will be written as a system
of second order problems, and so we can avoid the discretization with C1-elements.
The time discretization will be done in a semi-implicit way. The scheme then requires
the solution of a system of nearly tridiagonal linear equations in each time step. We
provide test computations for the elastic flow in two and three dimensions with and
without fixed length of the curve. The curve diffusion case is numerically quite close to
the elastic flow problem and so is technically solved in a similar way. We show results
for examples with singularities. We do not prove the convergence of the algorithms.
This will be a topic of future research.

The graphics were done with the use of the visualization package GRAPE [12].

2. Equations of evolution and inequalities. We start by considering a time-
dependent curve f : [0, T )× I → R

n and put

∂tf = V + ϕ τ,(2.1)
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where V is the normal velocity and ϕ = 〈∂tf, τ〉. As 〈∂sφ, τ〉 = −〈φ, ∂sτ〉 = −〈φ,κ〉
for any normal field φ along f , we have

∇sφ = ∂sφ+ 〈φ,κ〉τ (φ normal).(2.2)

The first lemma expresses the time derivative of various geometric quantities associ-
ated to f in terms of V and ϕ.

Lemma 2.1. The following formulae follow from (2.1):

∂t(ds) = (∂sϕ− 〈κ, V 〉)ds,(2.3)

∂t∂s − ∂s∂t = (〈κ, V 〉 − ∂sϕ)∂s,(2.4)

∂tτ = ∇sV + ϕκ,(2.5)

∂tφ = ∇tφ− 〈∇sV + ϕκ, φ〉 τ,(2.6)

∇tκ = ∇2
s V + 〈κ , V 〉κ + ϕ∇sκ,(2.7)

(∇t∇s −∇s∇t)φ = (〈κ, V 〉 − ∂sϕ)∇sφ+ 〈κ, φ〉∇sV − 〈∇sV, φ〉κ.(2.8)

Here in (2.6) and (2.8) the vectorfield φ is assumed to be normal, i.e., 〈φ, τ〉 ≡ 0.
Proof. Equations (2.3) and (2.4) follow from

1

γ
∂tγ =

1

γ
〈τ, ∂t ∂xf〉 = 〈τ, ∂s(V + ϕτ)〉 = ∂sϕ− 〈κ, V 〉.

Writing τ = ∂sf , (2.5) is obtained from (2.4) and (2.2), and (2.6) follows because
〈∂tφ, τ〉 = −〈φ, ∂tτ〉. The equation for κ combines (2.4) and (2.5), substituting κ =
∂sτ . Finally, we have, for any normal field ψ using successively (2.2), (2.4), (2.5), and
(2.6),

〈∇t∇sφ, ψ〉 = 〈∂t(∂sφ+ 〈φ, κ〉τ), ψ〉
= 〈∂s ∂tφ, ψ〉+ (〈κ, V 〉 − ∂sϕ)〈∇sφ, ψ〉+ 〈φ, κ〉〈∇sV + ϕκ, ψ〉
= 〈∂s(∇tφ− 〈∇sV + ϕκ, φ〉τ), ψ〉

+ (〈κ, V 〉 − ∂sϕ)〈∇sφ, ψ〉+ 〈φ, κ〉〈∇sV + ϕκ, ψ〉
= 〈∇s∇tφ, ψ〉+ (〈κ, V 〉 − ∂sϕ)〈∇sφ, ψ〉

+ 〈κ , φ〉〈∇sV, ψ〉 − 〈∇sV, φ〉〈κ, ψ〉,
which proves formula (2.8).

In the following, we often use integration by parts for ∇s, which is possible since

∂s〈φ, ψ〉 = 〈∇sφ, ψ〉+ 〈φ,∇sψ〉 (φ, ψ normal).(2.9)

For any (not necessarily normal) variation fε(x) = f(x) + εφ(x), one has, by passing
to components as in (2.1) and using (2.3), (2.7), and (2.9),

d

dε
L(fε)|ε=0 = −

∫
I

〈κ, φ〉ds, d

dε
E(fε)|ε=0 =

∫
I

〈
∇2
s κ +

1

2
|κ|2κ, φ

〉
ds.

This justifies the formulae (1.2) for the L2 gradient of E and (1.5) for the Lagrange
multiplier in the length-constrained flow. For the curve diffusion (1.6), we observe

d

dt
L(f) =

∫
I

〈κ,∇2
s κ〉ds = −

∫
I

|∇sκ|2ds ≤ 0.(2.10)
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Furthermore, in the n = 2 case, the enclosed area will be preserved since, if ν denotes
the exterior unit normal,∫

I

〈∂tf, ν〉ds = −
∫
I

〈∇2
s κ, ν〉ds = −

∫
I

∂s〈∇sκ, ν〉ds = 0.

Lemma 2.2. Suppose f : [0, T ) × I → R
n moves in a normal direction with

velocity ∂tf = V , φ is a normal vector field along f , and ∇tφ+∇4
s φ = Y . Then

d

dt

1

2

∫
I

|φ|2ds+

∫
I

|∇2
s φ|2ds =

∫
I

〈Y, φ〉ds− 1

2

∫
I

|φ|2〈κ, V 〉ds.(2.11)

Furthermore ψ = ∇sφ satisfies the equation
∇tψ +∇4

s ψ = ∇sY + 〈φ,κ〉∇sV − 〈φ,∇sV 〉κ + 〈κ, V 〉ψ.(2.12)

Proof. Equation (2.11) follows from the definitions, using (2.3) and (2.9); and
(2.12) is a consequence of (2.8).

Before the next lemma we need to explain some notation. For normal vector fields
φ1, . . . , φk along f we denote by φ1 ∗ · · · ∗ φk a term of the type

φ1 ∗ . . . ∗ φk =

{
〈φi1 , φi2〉 · · · 〈φik−1

, φik〉 for k even,

〈φi1 , φi2〉 · · · 〈φik−2
, φik−1

〉φik for k odd,

where i1, . . . , ik is any permutation of 1, . . . , k. Slightly more generally, we also allow
that some of the φi are functions, in which case the ∗-product reduces to multiplica-
tion. For a normal vectorfield φ along f , we denote by Pµν (φ) any linear combination
of terms of the type ∇i1s φ ∗ · · · ∗ ∇iνs φ with universal, constant coefficients, where
µ = i1 + · · ·+ iν is the total number of derivatives. We observe the two properties:

Pµν (φ) ∗ Pαβ (φ) = Pµ+α
ν+β (φ), ∇sPµν (φ) = Pµ+1

ν (φ).

Lemma 2.3. Suppose ∂tf = −∇2
s κ + λκ + σ|κ|2κ, where λ, σ ∈ R. Then for

m ≥ 0 the derivatives of the curvature φm = ∇ms κ satisfy

∇tφm +∇4
s φm = Pm+2

3 (κ) + λ(∇m+2
s κ + Pm3 (κ)) + σ(Pm+2

3 (κ) + Pm5 (κ)).

The statement is also true when λ = λ(t) depends on time.
Proof. For m = 0 this follows from (2.7). For m ≥ 1 we inductively obtain using

(2.12)

∇tφm +∇4
s φm = ∇s

[
Pm+1

3 (κ) + λ(∇m+1
s κ + Pm−1

3 (κ)) + σ(Pm+1
3 (κ) + Pm−1

5 (κ))
]

+∇m−1
s κ ∗ κ ∗ ∇s(−∇2

s κ + λκ + σ|κ|2κ)

+ κ ∗ (−∇2
s κ + λκ + σ|κ|2κ) ∗ ∇ms κ,

and the claim of the lemma follows.
Next we derive some estimates for curvature integrals, employing as in [10, 11, 14]

a variant of the Gagliardo–Nirenberg interpolation inequalities. For this we introduce
the scale invariant norms ‖κ‖k,p =

∑k
i=0 ‖∇isκ‖p, where

‖∇isκ‖p = L(f)i+1− 1
p

(∫
I

∣∣∇isκ∣∣p ds
) 1

p

.(2.13)
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Lemma 2.4. Let f : I → R
n be a smooth closed curve. Then for any k ∈ N,

p ≥ 2, and 0 ≤ i < k we have
‖∇isκ‖p ≤ c ‖κ‖1−α2 ‖κ‖αk,2,(2.14)

where α = (i+ 1
2 − 1

p )/k and c = c(n, k, p).

Proof. Assuming L(f) = 1 and using the inequality
∣∣∂s|φ|∣∣ ≤ |∇sφ| for normal

vector fields φ which follows from (2.9), the standard proof as in [2] applies.
Proposition 2.5. Let f be as in the previous lemma. Then for any term Pµν (κ)

with ν ≥ 2 which contains only derivatives of κ of order at most k − 1, we have∫
I

|Pµν (κ)| ds ≤ cL1−µ−ν‖κ‖ν−γ2 ‖κ‖γk,2,(2.15)

where γ = (µ + 1
2ν − 1)/k, and c = c(n, k, µ, ν). Moreover if µ + 1

2ν < 2k + 1, then
γ < 2 and we have for any ε > 0

∫
I

|Pµν (κ)| ds ≤ ε
∫
I

|∇ks κ|2ds+ c ε−
γ

2−γ

(∫
I

|κ|2 ds
)ν−γ

2−γ

+ c

(∫
I

|κ|2 ds
)µ+ν−1

.(2.16)

Proof. By Hölder’s inequality and Lemma 2.4 with p = ν, we obtain, if i1 + · · ·+
iν = µ and L = L(f),

∫
I

|∇i1s κ ∗ · · · ∗ ∇iνs κ| ds ≤ L1−µ−ν
ν∏
j=1

‖∇ijs κ‖ν ≤ cL1−µ−ν
ν∏
j=1

‖κ‖1−αj

2 ‖κ‖αj

k,2.

Here αj = (ij + 1
2 − 1

ν )/k and thus α1 + · · · + αν = γ, which proves (2.15). Now a
standard interpolation inequality (see [2]) yields

‖κ‖2k,2 ≤ c(k) (‖∇ks κ‖22 + ‖κ‖22).(2.17)

Therefore we obtain, assuming γ < 2,

L1−µ−ν‖κ‖ν−γ2 ‖κ‖γk,2 ≤ cL1−µ−ν(‖κ‖ν−γ2 ‖∇ks κ‖γ2 + ‖κ‖ν2)

≤ c ‖κ‖ν−γL2 ‖∇ks κ‖γL2 + cL1−µ−ν/2‖κ‖νL2

≤ ε ‖∇ks κ‖2L2 + c ε−
γ

2−γ ‖κ‖2
ν−γ
2−γ

L2 + cL1−µ−ν‖κ‖νL2 .

Finally, the Poincaré inequality for ∂sf implies

L ‖κ‖2L2 ≥ 4π2,(2.18)

and inserting this into the last term on the right yields inequality (2.16).
The following lemma compares the ∇ms κ to the full derivatives ∂ms κ.
Lemma 2.6. We have the identities

∇sκ − ∂sκ = |κ|2τ,(2.19)

∇ms κ − ∂ms κ =

[m
2 ]∑
i=1

Qm−2i
2i+1 (κ) +

[m+1
2 ]∑
i=1

Qm+1−2i
2i (κ) τ.(2.20)
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Here Qµν (κ) denotes a linear combination of terms ∂i1s κ∗· · ·∗∂iνs κ with i1+· · ·+iν = µ.
Proof. Equation (2.19) is (2.2) for V = κ. For m ≥ 2 we inductively compute

∇ms κ − ∂ms κ = ∂s(∇m−1
s κ) + 〈∇m−1

s κ,κ〉τ − ∂ms κ

= ∂s


[m−1

2 ]∑
i=1

Qm−1−2i
2i+1 (κ) +

[m
2 ]∑
i=1

Qm−2i
2i (κ) τ




+ 〈∂m−1
s κ,κ〉 τ +

[m−1
2 ]∑
i=1

〈Qm−1−2i
2i+1 (κ),κ〉 τ,

and the claim follows.
Lemma 2.7. Assume the bounds ‖κ‖L2 ≤ Λ0 and ‖∇ms κ‖L1 ≤ Λm for m ≥ 1.

Then for any m ≥ 1 one has

‖∂m−1
s κ‖L∞ + ‖∂ms κ‖L1 ≤ cm(Λ0, . . . ,Λm).(2.21)

Proof. Clearly ‖∂m−1
s κ‖L∞ ≤ c(n) ‖∂ms κ‖L1 , and (2.19) implies ‖∂sκ‖L1 ≤

‖∇sκ‖L1 + ‖κ‖2L2 ≤ Λ1 + Λ2
0. For m ≥ 2 we obtain from (2.20)

‖∂ms κ‖L1 ≤ ‖∇ms κ‖L1 +

m−1∑
µ=0

‖Qµm+1−µ(κ)‖L1

≤ ‖∇ms κ‖L1 + c (‖κ‖L∞ , . . . , ‖∂m−2
s κ‖L∞)

m−1∑
µ=0

‖∂µs κ‖L1 .

The claim follows by induction on m.

3. Estimates and long-time existence. For the flows considered in this paper,
short-time existence is a standard matter, and we only briefly sketch the argument for
the case of (1.6). It is sufficient to solve the initial value problem up to a tangential

term, i.e., to find a solution f̃ : I × [0, ε) −→ R
n of

∂tf̃ +∇2
s κ̃ = σ ∂xf̃ , f̃(0, · ) = f0,

where σ : [0, ε) × I −→ R
n is an arbitrary function. Namely, in solving the ODE

initial value problem ∂tϕ = σ(t, ϕ) with ϕ(0, · ) = id, one easily verifies that f(t, x) =

f̃
(
t, ϕ(t, x)

)
satisfies ∂tf +∇2

s κ = 0. Now from ∂s = 1
γ ∂x and ∇sφ = ∂sφ + 〈κ, φ〉τ ,

one infers

∇2
s κ = γ−4(∂4

xf − 〈∂4
xf, τ〉τ) + lower order terms.

Thus one can apply standard theory to the equation ∂tf̃ = −∇2
s κ̃ + γ̃−4〈∂4

xf̃ , τ̃〉τ̃ and
proceed as indicated. The argument applies as it stands to (1.4) when λ is constant;
if λ is given by (1.5), one observes that the nonlocal term in the linearization is a
compact operator between the relevant parabolic Hölder spaces and argues as before.

We now start with an estimate for the curve diffusion flow (1.6). Recall from
[10, 6] that there are examples of finite time singularities in this case.
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Theorem 3.1. Let f : [0, T ) × I → R
n be a maximal solution of the curve

diffusion equation ∂tf = −∇2
s κ. If T <∞, then∫

I

|κ|2 ds ≥ c (T − t)−1/4.

Proof. Combining Lemma 2.3 and (2.11) yields for m ≥ 0

d

dt

1

2

∫
I

|∇ms κ|2 ds+

∫
I

|∇m+2
s κ|2 ds =

∫
I

〈Pm+2
3 (κ),∇ms κ〉 ds.

The terms of type Pm+2
3 (κ) that contain the (m + 2)nd derivative have the form

κ ∗κ ∗∇m+2
s κ. Integrating by parts, we achieve that only derivatives of order m+ 1

or less occur on the right-hand side. Using (2.16) with k = m+ 2, µ = 2m+ 2, ν = 4,
and γ = 2− 1

m+2 we have

∫
I

〈Pm+2
3 (κ),∇ms κ〉 ds ≤ ε

∫
I

|∇m+2
s κ|2 ds+ cm(ε)

(∫
I

|κ|2 ds
)2m+5

,(3.1)

which yields, after absorbing for ε = 1
2 ,

d

dt

∫
I

|∇ms κ|2 ds+

∫
I

|∇m+2
s κ|2 ds ≤ cm

(∫
I

|κ|2 ds
)2m+5

.(3.2)

Now we prove by contradiction that lim supt↗T ‖κ‖L2 = ∞. Instead, assuming

‖κ‖L2 ≤ Λ for all t < T , we have ‖∇ms κ‖2L2(t) ≤ ‖∇ms κ‖2L2(0) + cm(Λ)T by esti-

mate (3.2). Since ‖∇ms κ‖L1 ≤ L(f)
1
2 ‖∇ms κ‖L2 and L(f) ≤ L(f0) by (2.10), Lemma

2.7 implies

‖∂ms κ‖L∞ ≤ cm(Λ, f0, T ) for all m ∈ N0.(3.3)

By the differential equation, we further have

‖∂ms V ‖L∞ ≤ cm(Λ, f0, T ) for all m ∈ N0, ‖f‖L∞ ≤ c (Λ, f0, T ).(3.4)

Now γ = |∂xf | satisfies ∂tγ = −〈κ, V 〉 γ by (2.3), so that by (3.3) and (3.4) with
m = 0

c−1 ≤ γ ≤ c with c = c (Λ, f0, T ) > 0.(3.5)

For any function h : I → R we have ∂mx h−γm∂ms h = Pm(γ, . . . , ∂m−1
x γ, h, . . . , ∂m−1

s h),
where Pm is a polynomial. Thus inductively assuming ‖∂jxγ‖L∞ ≤ c (j,Λ, f0, T ) for
0 ≤ j ≤ m−1, we apply this for h = 〈κ, V 〉 and obtain ‖∂mx 〈κ, V 〉‖L∞ ≤ cm(Λ, f0, T ),
using (3.3), (3.4), and (3.5). But differentiating the ODE for γ yields ∂t(∂

m
x γ) +

〈κ, V 〉(∂mx γ) ≤ cm(Λ, f0, T ), which in turn implies

‖∂mx γ‖L∞ ≤ cm(Λ, f0, T ).(3.6)

Then by (3.4), from the equations |∂sf | = 1 and ∂2
sf = κ and from the estimates (3.3)

and (3.6), we conclude ‖∂mx f‖L∞ ≤ cm(Λ, f0, T ). Together with (3.4) and (3.5), this
means that f extends smoothly to [0, T ]× I, and in fact even beyond T by short-time
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existence, which contradicts the maximality of T and therefore proves that κ cannot
be uniformly bounded in L2 on [0, T ). Now (3.2) for m = 0 means

d

dt

∫
I

|κ|2 ds ≤ c
(∫

I

|κ|2 ds
)5

,

and the theorem follows by integrating on [t, tl], where tl ↗ T with ‖κ‖L2

→∞.
We next turn our attention to the elastic flows where the L2 integral of κ is

bounded a priori.
Theorem 3.2. For any λ ∈ [0,∞) and smooth initial data f0, the L

2 gradient
flow (1.4) for Eλ(f) =

∫
I

(
1
2 |κ|2 + λ

)
ds has a global solution. If λ > 0, then as

ti →∞ the curves f(ti, ·) subconverge, when reparametrized by arclength and suitably
translated, to an elastica.

Proof. By (2.11) and Lemma 2.3 we have

d

dt

1

2

∫
I

|∇ms κ|2 ds+

∫
I

|∇m+2
s κ|2 ds+ λ

∫
I

|∇m+1
s κ|2 ds(3.7)

= λ

∫
I

〈Pm3 (κ),∇ms κ〉ds+

∫
I

〈Pm+2
3 (κ) + Pm5 (κ),∇ms κ〉ds.

Recalling (3.1) and using (2.16) for k = m + 2, µ = 2m, and ν = 6, the last integral
is estimated under an assumed bound E(f) ≤ Λ by∫

I

〈Pm+2
3 (κ) + Pm5 (κ),∇ms κ〉ds ≤ ε

∫
I

|∇m+2
s κ|2ds+ cm(Λ, ε).(3.8)

Again by (2.16) but now for k = m+ 2, µ = 2m, and ν = 4 we infer∫
I

〈Pm3 (κ),∇ms κ〉ds ≤ ε
∫
I

|∇m+2
s κ|2ds+ cm(Λ) (ε−

2m+1
3 + 1).

Multiplying by λ and replacing ε with ε/|λ| yield

λ

∫
I

〈Pm3 (κ),∇ms κ〉ds ≤ ε
∫
I

|∇m+2
s κ|2ds+ cm(Λ, ε) (|λ| 2(m+2)

3 + 1).(3.9)

Now if Eλ(f0) ≤ Λ, we obtain, by combining (3.7), (3.8), and (3.9),

d

dt

∫
I

|∇ms κ|2ds+

∫
I

|∇m+2
s κ|2ds ≤ cm(λ,Λ).(3.10)

On the other hand (2.3) yields

d

dt
L(f) +

∫
I

|∇sκ|2ds+ λ

∫
I

|κ|2ds =
1

2

∫
I

|κ|4ds,

and (2.16) with k = 1, µ = 0, and ν = 4 implies

d

dt
L(f) +

1

2

∫
I

|∇sκ|2ds ≤ c (Λ).(3.11)
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Together with (3.10) and (3.11) the argument in the proof of Theorem 3.1 yields long-
time existence. Now if λ > 0, then by (2.18) and the energy bound we have a length
bound

2π2/Λ ≤ L(f) ≤ Λ/λ.(3.12)

Taking k = m+ 2 in (2.17) and inserting into (3.10) therefore imply

d

dt

∫
I

|∇ms κ|2ds+ c0

∫
I

|∇ms κ|2ds ≤ cm(λ,Λ),

where c0 = c0(λ,Λ) > 0. This yields a bound ‖∇ms κ‖2L2(t) ≤ ‖∇ms κ‖2L2(0)+cm(λ,Λ),
and by (3.12) and Lemma 2.7 one concludes

‖∂ms κ‖L∞ + ‖∇ms κ‖L∞ ≤ cm(λ, f0).(3.13)

Thus if f̃(t, ·) is the reparametrization of f(t, ·) by arclength, then as t → ∞, subse-

quences f̃(ti, ·)−pi converge smoothly to a limit curve f∞ for an appropriate choice of
pi. Lemma 2.3 and the estimate (3.13) imply ‖∇t (∇ms κ)‖L∞ ≤ cm(λ, f0). From this

and (3.12), (3.13) one sees that the function u(t) = ‖V ‖2L2(t) satisfies |u̇(t)| ≤ c (λ, f0),
where on the other hand u ∈ L1((0,∞)) by the energy identity. Therefore u(t) → 0
as t→∞ which means that f∞ is an elastica.

As one readily checks, the interpolation argument breaks down exactly for a
quintic term |κ|4κ on the right-hand side of the evolution equation for f , since then
equality holds in the condition µ + 1

2ν < 2k + 1 of Proposition 2.5 as µ = 2m + 2,
ν = 6, and k = m+ 2. Let us finally consider the length-constrained flow.

Theorem 3.3. The gradient flow for E(f) = 1
2

∫
I
|κ|2ds subject to fixed length

L(f) = L0 has a global solution for any smooth initial curve f0. As t→∞, the curves
subconverge, after reparametrization by arclength and translation, to an elastica.

Proof. One again has (3.7) where now λ = λ(t) is given by (1.5). Choosing Λ
with E(f0) + L(f0) ≤ Λ, we estimate using (2.18) and (2.16) with k = 1, µ = 0, and
ν = 4

|λ| ≤ c (Λ) (‖∇sκ‖2L2 + ‖κ‖4L4) ≤ c (Λ)(‖∇sκ‖2L2 + 1).

Using (2.14) with k = m + 2, p = 2, i = 1, and α = 1
m+2 , followed by (2.17) and

Young’s inequality, we obtain

|λ| ≤ cm(Λ) (‖∇m+2
s κ‖

2
m+2

L2 + 1).

Combination with (3.9) further implies, as 2
m+2 · 2(m+2)

3 = 4
3 < 2,

λ

∫
I

〈Pm3 (κ),∇ms κ〉 ds ≤ ε
∫
I

|∇m+2
s κ|2ds+ cm(Λ, ε).(3.14)

As to the other term in (3.7) which contains λ, note that (2.14) only gives an inequality
‖∇m+1

s κ‖L2 ≤ cm(Λ)‖κ‖αm+2,2 where α = m+1
m+2 , which means that the term has

critical scaling and the interpolation technique used up to now fails. Instead we
employ the scaling properties of E and L: under a dilation f → fα = p+ α(f − p) =
f + (α− 1)(f − p) centered at some point p ∈ R

n, the energy multiplies by 1/α while
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the length goes like α. Taking the derivative at α = 1 and using the definition (1.4)
of the gradient flow we see that

E(f)− λL(f) = − d
dα

(E(fα) + λL(fα)) |α=1 =

∫
I

〈∂tf, f − p〉 ds.

Since |f − p| ≤ L0 for appropriate p = p(t), for example taking p(t) =
∫
I
f ds/L,

this implies −λ ≤ L1/2
0 ‖∂tf‖L2 . For λ−(t) = −min{λ(t), 0}, one thus gets from the

energy identity the estimate ∫ t

0

λ−(τ)2dτ ≤ c(Λ).(3.15)

Now the integral in (3.7) is bounded by

−λ
∫
I

|∇m+1
s κ|2ds ≤ ε

∫
I

|∇m+2
s κ|2ds+ c(ε)λ−(t)2

∫
I

|∇ms κ|2ds.(3.16)

From (3.7), (3.8), (3.14), and (3.16) we conclude

d

dt

∫
I

|∇ms κ|2 ds+ c0

∫
I

|∇ms κ|2 ds ≤ cm(Λ)

(
1 + λ−(t)2

∫
I

|∇ms κ|2 ds
)
,

where c0 = c0(Λ) > 0 and the Poincaré inequality (2.17) was used. Defining the func-

tion um(t) = exp(c0t) ‖∇ms κ‖2L2 , we have u̇m(t) ≤ cm(Λ) [ exp(c0t) + λ−(t)2 um(t) ],
and the Gronwall lemma implies

um(t) ≤ eam(t)

(
um(0) + cm(Λ)

∫ t

0

ec0τdτ

)
.

Here am(t) = cm(Λ)
∫ t
0
λ−(τ)2 dτ ≤ cm(Λ) by (3.15), and we finally obtain

‖∇ms κ‖2L2 ≤ cm(Λ)
(
1 + e−c0t‖∇ms κ‖2L2(0)

) ≤ cm(f0);

in particular |λ| ≤ cm(f0). From here the proof proceeds as in Theorem 3.2.

4. Numerical algorithm. The numerical algorithm we propose is based on the
fact that the evolution equations have a weak formulation. In fact (2.2) implies

∇2
s κ +

1

2
|κ|2κ = ∂s

(
∂sκ +

3

2
|κ|2τ

)
,(4.1)

which reveals the divergence form of the main part. In order to avoid C1-elements
for the discretization of (1.4), we rewrite that equation as a system of second order
problems for the position vector f and the curvature vector κ. It is important to use
the mean curvature vector and not the curvature as an additional variable, because we
shall work with piecewise affine functions, and the discrete position vector then will
be a parametrization of a polygon with piecewise constant and discontinuous normal.

We shall describe the development of the numerical algorithm for the main prob-
lem (1.4). It is equivalent to the system

∂tf + ∂2
sκ +

3

2
∂s(|κ|2∂sf)− λκ = 0,(4.2)

κ − ∂2
sf = 0.(4.3)
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Because of ∂s = ∂x/|∂xf |, a variational formulation of (4.2), (4.3) is given by

(4.4)∫
I

∂tf |∂xf |ϕdx−
∫
I

∂xκ

|∂xf |∂xϕdx−
3

2

∫
I

|κ|2 ∂xf|∂xf |∂xϕdx− λ
∫
I

κϕ|∂xf | dx = 0,

∫
I

κ|∂xf |ψ dx+

∫
I

∂xf

|∂xf |∂xψ dx = 0(4.5)

for all test functions ϕ,ψ ∈ H1(R/Z,Rn). We use this weak form of our problem
for a finite element discretization in space, which in one space dimension will lead to
a suitable difference scheme. Let I =

⋃N
j=1 Ij be a decomposition of I = R/Z into

intervals given by the nodes xj , Ij = [xj−1, xj ]. Let hj = |Ij | and h = maxj=1,...,N hj
be the maximal diameter of a grid element. For a discretization of (4.4), (4.5) we
replace the continuous space X = H1(R/Z,Rn) by the discrete finite-dimensional
space

Xh =
{
w ∈ C0(R/Z,Rn)| w|Ij ∈ P1(Ij), j = 1, . . . , N

}
= Y nh

of continuous (periodic) piecewise affine functions on the grid. Here Yh is the space
of scalar piecewise affine functions. We use the scalar nodal basis functions ϕj ∈ Yh,
ϕj(xi) = δij .

Xh = Y nh = (span{ϕ1, . . . , ϕN})n .

We shall use the pointwise interpolation Ihw of a suitable function w ∈ C0(R/Z,Rn)
which is uniquely defined by Ihw ∈ Xh and Ihw(xj) = w(xj) (j = 1, . . . , N).

A spatially discrete solution of (4.4), (4.5) will be a pair of functions fh : [0, T ]→
Xh, κh : [0, T ]→ Xh,

fh(x, t) =

N∑
j=1

fj(t)ϕj(x), κh(x, t) =

N∑
j=1

κj(t)ϕj(x).

Note that each fj or κj is a vector in R
n. It is also worth noticing that κh cannot be

the second derivative of the piecewise linear position vector fh.
We look for fh(·, t),κh(·, t) ∈ Xh, t ∈ [0, T ], such that

fh(·, 0) = fh0 = Ihf0

and, for all discrete test functions ϕh, ψh ∈ Xh,∫
I

Ih (∂tfhϕh) |∂xfh| dx−
∫
I

∂xκh
|∂xfh|∂xϕh dx−

3

2

∫
I

|κh|2 ∂xfh|∂xfh|∂xϕh dx(4.6)

− λ
∫
I

Ih (κhϕh) |∂xfh| dx = 0,

∫
I

Ih (κhψh) |∂xfh| dx+

∫
I

∂xfh
|∂xfh|∂xψh dx = 0.(4.7)

We have used the lumping of masses for practical reasons in both equations. The
first equation holds for all t ∈ (0, T ] and the second for all t ∈ [0, T ], and so gives
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the initial data for κh. We insert ϕh = ϕj , and ψh = ϕj (j = 1, . . . , N) separately
for each component into these equations and integrate. The discrete weak equations
(4.6), (4.7) are equivalent to the following system of nN ODEs:

1

2
(|fj − fj−1|+ |fj+1 − fj |) (∂tfj − λκj)−

(
κj − κj−1

|fj − fj−1| −
κj+1 − κj

|fj+1 − fj |
)

(4.8)

− 1

2

(|κj−1|2 + κj−1κj + |κj |2
) fj − fj−1

|fj − fj−1|

+
1

2

(|κj |2 + κjκj+1 + |κj+1|2
) fj+1 − fj
|fj+1 − fj | = 0,

1

2
(|fj − fj−1|+ |fj+1 − fj |) κj +

fj − fj−1

|fj − fj−1| −
fj+1 − fj
|fj+1 − fj | = 0(4.9)

(j = 1, . . . , N), where f0 = fN , fN+1 = f1,κ0 = κN ,κN+1 = κ1, and the initial
values are given by fj(0) = f0(xj) (j = 1, . . . , N).

We discretize the scheme (4.8), (4.9) with respect to time in a semi-implicit
way, which is similar to the time discretization used for the curve shortening flow
in isotropic or anisotropic form in [4, 5]. We use the notation

wm = w(·,mτ)
for the evaluation of a generic function on the mth time level. τ is the chosen time
step size with τM = T . Let us formulate the algorithm for the elastic flow with fixed
parameter λ for curves in R

n.
Algorithm 1 (elastic flow with fixed parameter). For j = 1, . . . , N let f0

j =

f0(xj), h
0
j = |f0

j − f0
j−1|, and

κ
0
j =

2

h0
j+1(h0

j + h0
j+1)

f0
j+1 −

2

h0
jh

0
j+1

f0
j +

2

h0
j (h

0
j + hj+1)

f0
j−1.

For m = 0, . . . ,M − 1 compute the quantities

hmj = |fmj − fmj−1|,
βmj = |κmj−1|2 + κ

m
j−1κ

m
j + |κmj |2,

λmj = λ,(4.10)

and determine fm+1
j ∈ R

n and κ
m+1
j ∈ R

n (j = 1, . . . , N) from the linear system

βmj
2hmj

fm+1
j−1 +

(
hmj + hmj+1

2τ
− βmj

2hmj
− βmj+1

2hmj+1

)
fm+1
j +

βmj+1

2hmj+1

fm+1
j+1(4.11)

+
1

hmj
κ
m+1
j−1 −

(
1

hmj
+

1

hmj+1

+
λmj
2

(hmj + hmj+1)

)
κ
m+1
j +

1

hmj+1

κ
m+1
j+1

=
hmj + hmj+1

2τ
fmj ,

(4.12)
1

2
(hmj + hmj+1) κ

m+1
j − 1

hmj
fm+1
j−1 +

(
1

hmj
+

1

hmj+1

)
fm+1
j − 1

hmj+1

fm+1
j+1 = 0
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(j = 1, . . . , N) with the periodic boundary conditions fi+N = fi, κi+N = κi (i ∈ Z).
The algorithm for elastic flow with fixed length requires a slight change of the

above algorithm. We have to compute the parameter λ in each time step according to
a discrete version of (1.5). From the time continuous weak form (4.6) with ϕh = κh

and (4.6) with ψh = fht, we can compute the (time-dependent) parameter λ as follows:

0 =
d

dt

∫
I

|fhx| dx =

∫
I

fhx
|fhx|fhxt dx = −

∫
I

Ih(fhtκh)|fhx| dx

= −
∫
I

|κhx|2
|fhx| −

3

2

∫
I

|κh|2 fhx|fhx|κhx dx− λ
∫
I

Ih(|κh|2)|fhx| dx.

This gives

λ = −
(∫

I

|κhx|2
|fhx| dx+

3

2

∫
I

|κh|2 fhx|fhx|κhx dx
)/∫

I

Ih(|κh|2)|fhx| dx.

After evaluation of the integrals, we can formulate the algorithm for the length pre-
serving elastic flow. Because of the explicit time discretization of λ, the length of the
polygon is conserved only up to an additional error of size τ .

Algorithm 2 (length preserving elastic flow). Replace (4.10) in Algorithm 1
with

λmj = −3

(
N∑
i=1

|κmi − κ
m
i−1|2

hmi
+

1

2

N∑
i=1

(fmi − fmi−1)(κmi − κ
m
i−1)

βmi
hmi

)/ N∑
i=1

hmi β
m
i .

The curve diffusion problem (1.6) is equivalent to the system

∂tf + ∂2
sκ +

3

2
∂s(|κ|2∂sf)− 1

2
|κ|2κ = 0,

κ − ∂2
sf = 0.

The discretization procedure is analogous to the previous ones for the elastic flow with
fixed parameter and for elastic flow with fixed length. We just give the algorithm here.

Algorithm 3 (curve diffusion). Replace (4.10) in Algorithm 1 with

λmj =
1

2
|κmj |2.

Obviously the discrete system (4.11), (4.12) does not contain the grid parameter
h and thus is an intrinsic algorithm for an intrinsic problem. The grid size of the
parametrization enters only via the initial condition for fh. The linear system (4.10),
(4.11), (4.12) has the form(

1

τ
Dm +Am(βm)

)
fm+1 − (Am + λDm)κm+1 =

1

τ
Dmf

m,(4.13)

Dmκ
m+1 +Amf

m+1 = 0,(4.14)

where fm+1 stands for the N -vector which consists of the kth components (k ∈
{1, . . . , n}) of fm+1

j (j = 1, . . . , N), and similarly for κ
m+1. This means that the

system decouples with respect to the components of the position vector and of the
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Table 4.1
Absolute errors and experimental orders of convergence for the test problem with τ = 0.5h2.

N h ‖f − fh‖L∞ eoc ‖κ − κh‖L∞ eoc

10 6.2832e-1 1.8943e-2 - 3.6890e-2 -
20 3.1416e-1 3.8717e-3 2.29 8.8264e-3 2.06
40 1.5708e-1 9.2403e-4 2.07 2.1864e-3 2.01
80 7.8540e-2 2.2837e-4 2.02 5.4654e-4 2.00
160 3.9270e-2 5.7121e-5 2.00 1.3665e-4 2.00
320 1.9635e-2 1.4388e-5 1.99 3.4160e-5 2.00
640 9.8175e-3 3.7278e-6 1.95 8.6187e-6 1.99

Fig. 4.1. Length preserving elastic flow for a nonsymmetric lemniscate.

curvature vector. Dm is a diagonal matrix and Am(βm) and Am are tridiagonal
matrices depending on the results of the previous time step. Because of the periodicity
assumption, the tridiagonality is true only up to two entries in the upper right and
lower left corner of the matrix. But this is not a difficulty for the implementation of
the linear solver.

We performed test computations for a problem with λ = 0, for which we know
the exact solution of the elastic flow problem. The exact solution is given by

f(x, t) = (1 + 2t)
1
4 (cos g(x), sin g(x)), κ(x, t) = − (1 + 2t)

− 1
4 (cos g(x), sin g(x)),

and we have chosen g(x) = x + 0.1 sinx in order to create a nonsymmetric distribu-
tion of the nodes. We used a uniform grid in the parameter domain I. In Table 4.1
we give the errors in L∞((0, 1)× I) between the continuous and the discrete position
vector and between the continuous and the discrete curvature vector. We have used
τ = 0.5h2 for the time step size. The experimental order of convergence between two
successive grids with grid sizes h1 and h2 with respect to the error E(h) is defined by

eoc = log
E(h1)

E(h2)

/
log
h1

h2
.

The results show convergence of second order for the position vector and for the
curvature vector in the maximum norm. Let us mention that for the choice τ = 0.5h
one obtains linear convergence.

Figures 4.1 and 4.2 show the evolution of the same initial nonsymmetric lem-
niscate under length preserving elastic flow and under curve diffusion. Elastic flow
converges to a symmetric figure eight curve as a stationary solution while curve dif-
fusion produces a singularity in finite time. Curve diffusion reduces the length of the
curve but keeps the enclosed (signed) area constant. The enclosed area in Figure 4.4
is zero, and this leads to a singularity in finite time. The curve “disappears.”

In Figure 4.3 we show results of the computation of the evolution of a plane curve
under the length preserving elastic flow (1.4).
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Fig. 4.2. Curve diffusion for a nonsymmetric lemniscate; development of a singularity.

Fig. 4.3. Time series of the two-dimensional length preserving elastic flow (scaled).
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Fig. 4.4. Curve diffusion for a symmetric lemniscate; development of a singularity.

 y

 xz  x

 y

z

 x

z

 y

Fig. 4.5. Three projections of the initial space curve.

Fig. 4.6. Elastic flow of the space curve from Figure 4.5. From the initial knot to two double
circles: t = 0.0, 0.0197, 0.0394, 0.0788, 0.118, 0.158, 0.177, 0.394.

An example for the elastic flow of a curve in three space dimensions with a
fixed parameter λ exhibits an interesting dynamical behavior. In Figure 4.5 we show
projections of the three-dimensional initial curve. The results of the evolution are
shown in Figures 4.6–4.9. Because of the high symmetry of the initial curve, the
evolution gets near the two-dimensional stable elastica, like the multiply covered circle
or the figure eight curve, and stays there for a fairly long time before it continues to
unravel.

To finish, let us mention some practical features of our algorithms for the elastic
flow of curves. The conditioning of the linear system (4.13), (4.14) should be improved
by a diagonal preconditioning process. Instead of the original system for fm+1 and
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Fig. 4.7. Continuation of the flow from Figure 4.6. From two double circles to one double
circle: t = 0.611, 1.01, 1.40, 1.60, 1.79, 1.97, 2.17, 2.37.

Fig. 4.8. Continuation of the flow from Figure 4.7. From double circle to a figure eight curve:
t = 3.35, 3.94, 4.34, 5.13, 5.72, 6.11, 6.31, 6.90.

κ
m+1, one solves the linear system(

1

τ
I +D

− 1
2

m Am(βm)D
− 1

2
m

)
f̃m+1 − (D

− 1
2

m AmD
− 1

2
m + λI)κ̃m+1 =

1

τ
f̃m,

κ̃
m+1 +D

− 1
2

m AmD
− 1

2
m f̃m+1 = 0
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Fig. 4.9. Continuation of the flow from Figure 4.8. From figure eight curve to the final circle:
t = 11.6, 12.4, 14.2, 16.2.

for the vectors f̃m+1 = D
1
2
mfm+1, f̃m = D

1
2
mfm, and κ̃

m+1 = D
1
2
mκ

m+1. For practical
purposes it has proved to be of some advantage to redistribute the nodes tangentially
along the polygon according to arc length after each time step and thus change the
polygon slightly.
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Abstract. We consider the problem of determining, within an elastic isotropic body Ω, the
possible presence of an inclusion D made of different elastic material from boundary measurements
of traction and displacement. We prove that the volume of D can be estimated, from above and
below, by an easily expressed quantity related to work depending only on the boundary traction and
displacement.
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1. Introduction. In this paper we address the following problem of nondestruc-
tive testing: To determine, within an elastic body Ω, the possible presence of an inclu-
sion D made of a different elastic material (i.e., harder or softer) from measurements
of traction and displacement taken at the exterior boundary of Ω.

In mathematical terms, if u denotes the displacement field in Ω, one wishes to
recover D ⊂⊂ Ω in the system of linearized elasticity,

div ((χΩ\DC + χDC̃)∇u) = 0 in Ω,(1.1)

from the knowledge of one pair of Cauchy data on ∂Ω,

(C∇u)ν = ϕ on ∂Ω,(1.2)

u = g on ∂Ω.(1.3)

Here C and C̃ denote the elasticity tensor fields in Ω \D and in D, respectively; ν is
the unit exterior normal to ∂Ω; and χE denotes the characteristic function of E.

This appears to be an extremely difficult inverse problem. A similar problem in
electrical impedance tomography (for which the direct problem involves a single scalar
elliptic partial differential equation, rather than a system) has received a great deal of
attention in recent years. (See, for instance, Friedman [Fr87], Friedman and Gustafs-
son [FrG87], Friedman and Isakov [FrI89], Alessandrini, Rosset, and Seo [ARS00] as
well as Alessandrini and Isakov [AI96], and Alessandrini [Al99] for an extensive refer-
ence list.) Even so, many fundamental questions remain unanswered. One might also
consult Ikehata [I98] for previous results on this problem.

Here, following the line of research initiated in Alessandrini and Rosset [AR98],
Kang, Seo, and Sheen [KSS97], and Alessandrini, Rosset, and Seo [ARS00] in the elec-
trostatic setting, we pose a relatively modest but realistic goal: Can we estimate the
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size (i.e., volume) of the unknown inclusion D from one set of boundary measurements
of traction and displacement?

In the present paper we restrict our attention to the Lamé system of linearized
elasticity, corresponding to the system (1.1) when the material is isotropic.

In order to illustrate our main results it is convenient to consider the solution u0

to the Neumann problem (1.1)–(1.2) when D is the empty set.
Theorem 2.3 below states that if, for a given h1 > 0, the “fatness-condition”

| {x ∈ D | dist(x, ∂D) > h1} |≥ 1

2
|D|(1.4)

is satisfied, then

C1

∣∣∣∣W −W0

W0

∣∣∣∣ � |D| � C2

∣∣∣∣W −W0

W0

∣∣∣∣ ,(1.5)

where C1, C2 are estimated in terms of the data. Here, the quantities W =
∫
∂Ω

g · ϕ
and W0 =

∫
∂Ω

g0 · ϕ represent the work exerted by the surface forces ϕ when the
boundary displacement fields are g and g0 = u0|∂Ω, respectively. See Remark 2.5 for
a discussion of the “fatness-condition” (1.4).

In Theorem 2.4 we treat the case when no a priori assumption is made on D. We
find that for a suitable p > 1, we have

C1

∣∣∣∣W −W0

W0

∣∣∣∣ � |D| � C2

∣∣∣∣W −W0

W0

∣∣∣∣
1
p

.(1.6)

(See section 2 below for the precise statements.)
We believe that these estimates should be useful in practice as a decision tool

in quality control tests. Namely, one can fix experimentally a threshold parameter
T > 0 in such a way to say that D is absent or negligible if |W−W0

W0
| ≤ T , whereas D

is significant if |W−W0

W0
| ≥ T .

The main underlying idea in these estimates is that the integral∫
D

|∇̂u0|2 is comparable to |W −W0|,(1.7)

where ∇̂u0 = 1
2 (∇u0 + (∇u0)

T ) is the strain tensor field; see Ikehata [I98].
The next point is to control the above integral in terms of the measure (volume)

of D. On the one hand, this task involves upper bounds on |∇̂u0|2, which is standard
in the regularity theory of elliptic systems like (1.1). On the other hand, it involves

local lower bounds on |∇̂u0|2. Rather than regularity theory, this task is more strictly
related to the issue of unique continuation, namely, the study of the character of
zeros (i.e., order of vanishing and size of the zero sets) of nontrivial solutions to
system (1.1). Unique continuation is very well studied and understood for the case
of linear elliptic equations. (See, for instance, Aronszajn, Krzywicki, and Szarski
[AKS62], Garofalo and Lin [GL86], [GL87], and Koch and Tataru [KT01].) However,
until recently, only results of weak unique continuation for the elasticity system were
known; see Weck [W69], [W01], Leis [L86], Dehman and Robbiano [DR93], Ang et
al. [AITY98], and Eller et al. [EINT00]. In this paper we apply some of the estimates
of unique continuation found in [AM01] (three spheres inequalities [AM01, (5.2)] and
especially doubling inequalities yielding strong unique continuation [AM01, (5.5)])
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and we further elaborate on this topic. The main result in this direction here are
new doubling inequalities for the reference solution u0 (see Theorem 3.9) and for its

symmetrized gradient ∇̂u0 (see Corollary 3.10). Such an inequality allows us to prove

for |∇̂u0|2 the property of being a Muckenhoupt weight (Coifman and Fefferman
[CF74], Garcia-Cuerva and Rubio de Francia [GCRDF85]). This is a property of
homogeneity in the average at all scales which was first proved for solutions of scalar
elliptic equations by Garofalo and Lin [GL86].

The plan of the paper is as follows. In section 2 we introduce some notation and
state our main results (Theorems 2.3 and 2.4). Section 3 is devoted to the derivation
of quantitative estimates of unique continuation for solutions to the Lamé system,
following ideas introduced in Alessandrini and Morassi [AM01]. In section 4 we first

derive an interior average lower bound on |∇̂u0|2 on small balls contained inside Ω
(see Proposition 4.1). Moreover, we rephrase the doubling inequalities obtained in the
previous section in terms of the boundary data (see Proposition 4.3), and we show

that |∇̂u0|2 is a Muckenhoupt weight (see Proposition 4.4). Finally, section 5 contains
the proofs of the main theorems.

2. Main results. Let us introduce some notation which will be useful in what
follows. We restrict our attention to the dimensions n = 2, 3, which are those physi-
cally relevant for elasticity.

Given a bounded domain Ω ⊂ R
n, n = 2, 3, for any h > 0 we shall denote

Ωh = {x ∈ Ω | dist(x, ∂Ω) > h}.(2.1)

When locally representing a boundary as a graph, it will be convenient to use the
following notation. For every x ∈ R

n we shall set x = (x′, xn), where x′ ∈ R
n−1,

xn ∈ R.
Definition 2.1. Given a bounded domain Ω ⊂ R

n, we shall say that ∂Ω is
of class C1,1 with constants r0,M0 > 0 if, for any x0 ∈ ∂Ω, there exists a rigid
transformation of coordinates under which we have x0 = 0 and

Ω ∩Br0(0) = {x ∈ Br0(0) | xn > ϕ(x′)},

where ϕ is a C1,1 function on Br0(0) ⊂ R
n−1 satisfying

ϕ(0) = |∇ϕ(0)| = 0

and

‖ϕ‖C1,1(Br0 (0)) ≤M0r0.

Notice that this quantitative formulation of the smoothness of the boundary also
involves the introduction of the dimensional parameter r0, which gives us the scale at
which the boundary is representable as a graph.

Remark 2.1. We have chosen to normalize all norms in such a way that their
terms are dimensionally homogeneous and coincide with the standard definition when
the dimensional parameter equals one. For instance, the norm appearing above is
meant as follows:

(2.2) ‖φ‖C1,1(Br0 (0)) = ‖φ‖L∞(Br0
(0)) + r0‖∇φ‖L∞(Br0

(0)) + r0
2‖∇2φ‖L∞(Br0

(0)).
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Similarly, given a function f : Ω �→ R, where ∂Ω satisfies Definition 2.1, we shall
denote

‖f‖C1,1(Ω) = ‖f‖L∞(Ω) + r0‖∇f‖L∞(Ω) + r0
2‖∇2f‖L∞(Ω).(2.3)

Notice also that when Ω = BR(0), Ω then satisfies Definition 2.1 with r0 = R.
We consider weak solutions u ∈ H1(Ω,Rn) to the displacement equation of equi-

librium when body forces are absent:

div (C(x)(∇u(x))) = 0 in Ω;(2.4)

see Gurtin [Gur72].
We shall assume throughout that the elasticity tensor field C = C(x) of the mate-

rials under consideration have components Cijkl which satisfy the following conditions:

Cijkl ∈ L∞(Ω,R) ∀i, j, k, l = 1, . . . , n,(2.5)

Cijkl = Cklij = Cklji ∀i, j, k, l = 1, . . . , n, a.e. in Ω.(2.6)

We recall that the symmetry conditions (2.6) are equivalent to

CA = CÂ,(2.7)

CA is symmetric,(2.8)

CA ·B = CB ·A(2.9)

for every pair of n× n matrices A,B.
Here, and in what follows, the following notation has been used:

(CA)ij =

n∑
k,l=1

CijklAkl,(2.10)

A ·B =
n∑

i,j=1

AijBij ,(2.11)

|A| = (A ·A) 1
2 ,(2.12)

Â =
1

2
(A+AT ),(2.13)

for every pair of n× n matrices A,B.
We shall also use the following conventions for inequalities. Given C, C̃ satisfying

(2.5), (2.6) we shall say that

C̃ ≤ C(2.14)
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if and only if

C̃A ·A ≤ CA ·A(2.15)

for every symmetric n× n matrix A.
We shall say that C is strongly convex in Ω if there exists a positive constant ξ0

such that

C(x)A ·A ≥ ξ0|A|2 for a.e. x ∈ Ω,(2.16)

for any symmetric n× n matrix A.
C is said to be strongly elliptic in Ω if there exists a positive constant κ0 such

that

C(x)A ·A ≥ κ0|A|2 for a.e. x ∈ Ω,(2.17)

for any matrix A of the form Aij = aibj , where a and b are n-vectors. It is well known
that if C is strongly convex, then it is also strongly elliptic.

When the elastic material is isotropic, then the elasticity tensor C takes the
following form:

Cijkl(x) = λ(x)δijδkl + µ(x)(δkiδlj + δliδkj),(2.18)

where λ = λ(x) and µ = µ(x) ∈ L∞(Ω,R) are the Lamé moduli. Hence, in this case,
denoting by In the n× n identity matrix, we have

C(x)A = λ(x)(A · In)In + 2µ(x)Â,(2.19)

and the displacement equation of equilibrium (2.4) becomes the Lamé system

div (2µ∇̂u) +∇(λdivu) = 0 in Ω.(2.20)

In the isotropic case, the strong convexity condition takes the form

µ(x) ≥ α0, 2µ(x) + nλ(x) ≥ γ0 for a.e. x ∈ Ω(2.21)

and the strong ellipticity condition is expressed by

µ(x) ≥ α0, 2µ(x) + λ(x) ≥ β0 for a.e. x ∈ Ω,(2.22)

where α0, β0, γ0 are positive constants.
Let Ω be a bounded domain whose boundary is of class C1,1 with given constants

r0,M0 > 0. Let D be a measurable, possibly disconnected, subset of Ω such that,
given d0 > 0,

dist(D, ∂Ω) ≥ d0.(2.23)

Given elasticity tensors C, C̃ satisfying (2.5), (2.6) we shall consider traction problems

in Ω when the elasticity tensor is either χΩ\DC + χDC̃ or C.
We shall prescribe a boundary traction field ϕ ∈ L2(∂Ω,Rn) satisfying the com-

patibility conditions ∫
∂Ω

ϕ · r = 0(2.24)
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for every infinitesimal rigid displacement r, that is, r(x) = c + Wx, where c is any
constant n-vector and W is any constant skew n×n matrix. Namely we shall consider
weak solutions u, u0 ∈ H1(Ω,Rn) of the following problems:

div ((χΩ\DC + χDC̃)∇u) = 0 in Ω,(2.25)

(C∇u)ν = ϕ on ∂Ω;(2.26)

div (C∇u0) = 0 in Ω,(2.27)

(C∇u0)ν = ϕ on ∂Ω.(2.28)

Regarding existence, we recall that, provided the compatibility condition (2.24) is
satisfied, a solution of the traction problem exists as long as the involved elasticity
tensor either satisfies the strong convexity condition or is continuous and satisfies the
strong ellipticity condition; see, for instance, Valent [V88, section III].

With respect to uniqueness we recall that it is well known that solutions u, u0 to
the above problems are uniquely determined up to an infinitesimal rigid displacement.
In order to uniquely identify such solutions, we shall assume from now on that both
u and u0 satisfy the following normalization conditions:∫

Ω

u = 0,

∫
Ω

(∇u− (∇u)T ) = 0.(2.29)

We set g, g0 ∈ H1/2(∂Ω,Rn) to be the traces of u, u0, respectively, on ∂Ω.
Now we are in position to state our main result on the estimates for the size of

the inclusion.
We shall use the following assumptions on the elasticity tensors C, C̃:
(i) C satisfies the isotropy condition (2.18) and the strong convexity (2.21);

(ii) (bounds on the jump and uniform strong convexity for C̃)
either there exist η > 0 and δ > 1 such that

ηC ≤ C̃− C ≤ (δ − 1)C a.e. in Ω(2.30)

or there exist η > 0 and 0 < δ < 1 such that

−(1− δ)C ≤ C̃− C ≤ −ηC a.e. in Ω;(2.31)

(iii) (C1,1 regularity for C)
there exists M > 0 such that

‖µ‖C1,1(Ω) + ‖λ‖C1,1(Ω) ≤M.(2.32)

Remark 2.2. It is worth noticing that very mild assumptions are made on the
unknown inclusion; namely, the inclusion D may consist of an anisotropic material
which is either harder (case (2.30)) or softer (case (2.31)) than the surrounding mate-
rial in Ω, and no additional regularity assumption is required on the elasticity tensor
inside D.
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Theorem 2.3. Let Ω be a bounded domain in R
n such that ∂Ω is of class C1,1

with constants r0,M0. Let D be a measurable subset of Ω satisfying (2.23) and

|Dh1
| ≥ 1

2
|D|(2.33)

for a given positive constant h1. Let C, C̃ satisfy (i), (ii), (iii). If (2.30) holds, then
we have

1

δ − 1
C+

1

∫
∂Ω

(g0 − g) · ϕ∫
∂Ω

g0 · ϕ ≤ |D| ≤ δ

η
C+

2

∫
∂Ω

(g0 − g) · ϕ∫
∂Ω

g0 · ϕ .(2.34)

If, conversely, (2.31) holds, then we have

δ

1− δ
C−

1

∫
∂Ω

(g − g0) · ϕ∫
∂Ω

g0 · ϕ ≤ |D| ≤ 1

η
C−

2

∫
∂Ω

(g − g0) · ϕ∫
∂Ω

g0 · ϕ ,(2.35)

where C+
1 , C−

1 depend only on the geometrical parameters |Ω|, r0, M0 (see Definition
2.1), d0 (see (2.23)) and on the bounds on the Lamé moduli α0, γ0 (see (2.21)), M
(see (2.32)), and C+

2 , C−
2 depend only on the same quantities and also on h1 and on

the ratio ‖ϕ‖L2(∂Ω)/‖ϕ‖H−1/2(∂Ω).
Theorem 2.4. Let Ω be as in Theorem 2.3 and let D be any measurable subset

of Ω satisfying (2.23). Let C, C̃ satisfy (i), (ii), (iii). If (2.30) holds, then we have

1

δ − 1
C+

1

∫
∂Ω

(g0 − g) · ϕ∫
∂Ω

g0 · ϕ ≤ |D| ≤
(
δ

η

) 1
p

C+
2

(∫
∂Ω

(g0 − g) · ϕ∫
∂Ω

g0 · ϕ
) 1

p

.(2.36)

If, conversely, (2.31) holds, then we have

δ

1− δ
C−

1

∫
∂Ω

(g − g0) · ϕ∫
∂Ω

g0 · ϕ ≤ |D| ≤
(
1

η

) 1
p

C−
2

(∫
∂Ω

(g − g0) · ϕ∫
∂Ω

g0 · ϕ
) 1

p

,(2.37)

where C+
1 , C−

1 are the same as in Theorem 2.3, whereas p > 1, C+
2 , C−

2 depend only
on |Ω|, r0, M0, d0, α0, γ0, M , and ‖ϕ‖L2(∂Ω)/‖ϕ‖H−1/2(∂Ω).

Remark 2.5. Let us notice that the “fatness-condition” (2.33) is satisfied when
mild a priori regularity assumptions are made on D. For instance, the constant h1 can
be easily estimated when D is a priori known to be Lipschitz; we refer to Alessandrini
and Rosset [AR98, Lemma 2.8] for related calculations. See also Alessandrini, Rosset,
and Seo [ARS00] for comments on the optimality of this kind of results in the case of
a scalar elliptic equation.

3. Quantitative estimates of unique continuation. In this section we shall
prove quantitative estimates of unique continuation in the form of three spheres in-
equalities and doubling inequalities for solutions u ∈ H1(Ω,Rn) to the Lamé system
of linearized elasticity (2.20) in a bounded domain Ω satisfying Definition 2.1 with
constants r0, M0. Throughout this section the Lamé moduli µ = µ(x), λ = λ(x) are
assumed to satisfy the strong ellipticity condition (2.22) and the regularity assump-
tion (2.32). Following ideas introduced in [AM01], the first step consists of reducing
the Lamé system (2.20) to a weakly coupled elliptic system with Laplacian principal
part. We denote by M

m×n the space of m× n real valued matrices.
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Proposition 3.1. Under the above assumptions, there exist B ∈ L∞(Ω,
L(M(n+1)×n,Rn+1)) and V ∈ L∞(Ω, L(Rn+1,Rn+1)) such that, for every weak so-
lution u ∈ H1(Ω,Rn) to (2.20), the R

n+1-valued function U given by

U =

(
u

r0 div u

)
(3.1)

belongs to W 2,p
loc (Ω,R

n+1) for every p <∞ and satisfies

−∆U +B(∇U) + V (U) = 0 in Ω.(3.2)

Moreover

r0‖B‖L∞(Ω,L(M(n+1)×n,Rn+1)) + r2
0‖V ‖L∞(Ω,L(Rn+1,Rn+1)) � CM,(3.3)

where C > 0 depends only on α0 and β0.
Proof. The proof is essentially contained in [AM01, Theorem 2.1]. Here the

statement is slightly modified in order to encompass the scaling invariance of the
norms introduced in the present paper.

Three spheres inequalities and doubling inequalities for solutions u to systems of
the form (3.2), under the assumption (3.3), were derived in [AM01, Theorems 3.1 and
4.1]. Next, one can obtain analogous estimates for solutions u to the Lamé system
(2.20) via the reduction described in Proposition 3.1.

Proposition 3.2 (see [AM01, Theorem 5.1]). Let Ω = BR = {x ∈ R
n | |x| < R}.

Under the above assumptions, there exists θ, 0 < θ � 1, depending only on α0, β0,
M , such that for every weak solution u ∈ H1(BR,R

n) to (2.20) and for every r1, r2,
r3, 0 < r1 < r2 < r3 � θR, we have

∫
Br2

|u|2 � C

(∫
Br1

|u|2
)δ (∫

Br3

|u|2
)1−δ

,(3.4)

where C > 0, 0 < δ < 1, depend only on α0, β0,M, r1
r3
, and r2

r3
.

Proof. The proof can be found in [AM01]. We notice that here, in view of our
scaling on the norms (see Remark 2.1), the constant C does not explicitly depend on
R.

In view of the applications in section 5, we need the analogous result for ∇̂u.
Corollary 3.3. Under the same hypotheses of Proposition 3.2, for every weak

solution u ∈ H1(BR,R
n) to (2.20) and for every r1, r2, r3, 0 < r1 < r2 < r3 � θR,

we have

∫
Br2

|∇̂u|2 � C

(∫
Br1

|∇̂u|2
)δ (∫

Br3

|∇̂u|2
)1−δ

,(3.5)

where θ, 0 < θ � 1, is the same as in Proposition 3.2 and C > 0, 0 < δ < 1 depend
only on α0, β0, M , r1

r3
, and r2

r3
.

In order to prove Corollary 3.3 it is convenient to recall the following two inequal-
ities.

Lemma 3.4 (Caccioppoli-type inequality). If C satisfies (2.18), (2.22), and
(2.32), then for every solution u ∈ H1(BR,R

n) to (2.4) and for every r, 0 < r < R,
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we have ∫
Br

|∇u|2 � C

(R− r)2

∫
BR

|u|2,(3.6)

where C > 0 depends only on α0, β0,M.

Proof. The proof follows by a standard cut-off argument from Gärding’s inequality
[V88].

Given u ∈ H1(BR,R
n) and r, 0 < r < R, set

ur =
1

|Br|
∫
Br

u,(3.7)

Wr =
1

2|Br|
∫
Br

(∇u− (∇u)T ).(3.8)

Lemma 3.5 (Korn inequality). There exists an absolute constant C > 0 such
that for every u ∈ H1(BR,R

n) and every r, 0 < r < R, we have

∫
BR

|∇u−Wr|2 + 1

R2
|u− ur −Wrx|2 � C

(
R

r

)4n−2 ∫
BR

|∇̂u|2.(3.9)

Remark 3.6. When r = R this is the well-known second Korn inequality, which
is known to hold in every sufficiently regular domain Ω (see [Fi72], [T99]). Here we
introduce a minor variant, in which the averages of u and of the skew part of ∇u are
taken on the smaller ball Br. For the convenience of the reader, a sketch of the main
arguments of a proof is outlined at the end of this section.

Proof of Corollary 3.3. The function v defined in BR by

v = u− ur1 −Wr1x(3.10)

satisfies (2.20) and 1
|Br1

|
∫
Br1

v = 0, 1
2|Br1 |

∫
Br1
∇v− (∇v)T = 0. By applying to v the

Caccioppoli-type inequality (3.6) and the three spheres inequality (3.4) and using the
Korn inequality (3.9) twice, we have

(3.11)

∫
Br2

|∇̂u|2 =

∫
Br2

|∇̂v|2 � C1

(r3 − r2)2

∫
B r2+r3

2

|v|2

� C2

(r3 − r2)2

(∫
Br1

|v|2
)δ (∫

Br3

|v|2
)1−δ

� C3

(∫
Br1

|∇̂u|2
)δ (∫

Br3

|∇̂u|2
)1−δ

,

where C1, C2, C3 are constants depending only on α0, β0,M, r1
r3
, and r2

r3
.

In order to obtain the doubling inequality for solutions to the Lamé system (2.20),
we need to state a slightly modified version of the doubling inequality for solutions U
to (3.2) contained in [AM01, Theorem 4.1].
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Proposition 3.7. Let Ω = BR and let R‖B‖∞ + R2‖V ‖∞ � E. There exists
θ∗, 0 < θ∗ � 1, depending only on E, such that for every nonzero solution U ∈
H1(BR,R

n+1) to (3.2) we have∫
B2r

|U |2 � C

∫
Br

|U |2 for every r, 0 < r � θ∗R
2

,(3.12)

where C depends only on E and N0(θ
∗R), where

N0(r) = N0(U ; r) =
r
∫
Br
|∇U |2∫

∂Br
|U |2 , 0 < r � R.(3.13)

Moreover C is increasing with N0(θ
∗R).

Proof. By Theorem 4.1 in [AM01] and by a rescaling argument, it easily follows
that (3.12) holds, with C depending only on E and on N(θ∗R), where

N(r) = N(U ; r) =
r
∫
Br
|∇U |2 +B(∇U) · U + V (U) · U∫

∂Br
|U |2 , 0 < r � R,(3.14)

the dependence on this last variable being monotonically increasing. Hence, we have
to show that N(r) can be bounded from above in terms of N0(r). It is convenient to
recall the following notation introduced in [AM01]:

G(r) =

∫
Br

|U |2,(3.15)

H(r) =

∫
∂Br

|U |2,(3.16)

I(r) =

∫
Br

|∇U |2 +B(∇U) · U + V (U) · U,(3.17)

D(r) =

∫
Br

|∇U |2(3.18)

for 0 < r � R. We easily have

I(r) � D(r) +
E

R
(D(r)G(r))

1
2 +

E

R2
G(r) � C

(
D(r) +

G(r)

R2

)
,(3.19)

with C depending only on E. Moreover, from Lemma 3.3 in [AM01] we have

G(r) � rH(r) for r � θ∗R.(3.20)

Hence, for r � θ∗R we have

N(r) =
rI(r)

H(r)
� C

(
N0(r) +

r2

R2

)
� C(N0(r) + 1),(3.21)

where C depends only on E.
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Remark 3.8. Let us notice that analogously to (3.21) we also have

N0(r) � C(N(r) + 1), for r � θ∗R,(3.22)

where C depends only on E.
Theorem 3.9. Let Ω = BR. There exists θ∗, 0 < θ∗ � 1, depending only on

α0, β0,M , such that for every nonzero weak solution u ∈ H1(BR,R
n) to (2.20) we

have ∫
B2r

|u|2 � K

∫
Br

|u|2 for every r, 0 < r � θ∗R
2

,(3.23)

where K > 0 depends only on α0, β0,M and on Ñ0(θ
∗R), where

Ñ0(r) =
r2
∫
Br
|∇u|2 +R2|∇(divu)|2∫

Br
|u|2 +R2|divu|2 , 0 < r � R.(3.24)

Moreover K is increasing with Ñ0(θ
∗R).

Proof. By applying (3.12) of Proposition 3.7 to the solution U to (3.2) given by
the position (3.1), and recalling (3.3), we have∫

B2r

|u|2 +R2|divu|2 � C

∫
Br

|u|2 +R2|divu|2 for every r, 0 < r � θ∗R
2

,(3.25)

where C depends only on α0, β0,M and on N0(θ
∗R), with N0(r) given by (3.13),

the dependence on this last variable being monotonically increasing. By an iterated
application of (3.25) and by the Caccioppoli-type inequality (3.6), we have∫

B2r

|u|2 � C

(
1 +

R2

r2

)∫
Br

|u|2 for every r, 0 < r � θ∗R
2

.(3.26)

Let ρ be such that 0 < ρ � 1, and let

uρ(x) = u(ρx) in BR
ρ
.

We have that uρ is a solution in BR
ρ
to the Lamé system (2.20) with Lamé moduli

satisfying uniformly the bounds (2.22), (2.32). Therefore, by (3.26) we have that∫
B2r

|uρ|2 � Cρ

(
1 +

R2

ρ2r2

)∫
Br

|uρ|2 for every r, 0 < r � θ∗R
2ρ

,(3.27)

where Cρ depends only on α0, β0,M , and N0(Uρ;
θ∗R
ρ ), where Uρ is given by (3.1)

when u, r0 are replaced with uρ,
R
ρ , respectively. Here, again, Cρ is increasing with

N0(Uρ;
θ∗R
ρ ). We have for any r, 0 < r � θ∗R

2ρ ,

(3.28) N0(Uρ; r) =
r
∫
Br
|∇uρ|2 + R2

ρ2 |∇divuρ|2∫
∂Br
|uρ|2 + R2

ρ2 |divuρ|2

=
r
∫
Br

ρ2|∇u(ρx)|2 + R2

ρ2 · ρ4|∇divu(ρx)|2∫
∂Br
|u(ρx)|2 + R2

ρ2 · ρ2|divu(ρx)|2

=
ρr
∫
Bρr
|∇u|2 +R2|∇divu|2∫

∂Bρr
|u|2 +R2|divu|2 = N0(U ; ρr).
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Hence, in particular,

N0

(
Uρ;

θ∗R
ρ

)
= N0(U ; θ∗R).(3.29)

Consequently, the quantity Cρ appearing in (3.27) is uniformly bounded from above

with respect to ρ ∈ (0, 1]. Taking r = θ∗R
2ρ in (3.27) and setting s = rρ, we obtain∫

B2s

|u|2 � K

∫
Bs

|u|2 for every s, 0 < s � θ∗R
2

,(3.30)

where K depends only on α0, β0,M and on N0(U ; θ∗R), the dependence on this last
variable being monotonically increasing. Recalling (3.13), (3.20), (3.24), we have that
N0(U ; θ∗R) � Ñ0(θ

∗R).
From Theorem 3.9, by using arguments analogous to those employed in the proof

of Corollary 3.3, the following doubling inequality for ∇̂u follows.
Corollary 3.10. Let Ω = BR. There exists θ∗, 0 < θ∗ � 1, depending only

on α0, β0,M , such that for every nonzero weak solution u ∈ H1(BR,R
n) to (2.20) we

have ∫
B2r

|∇̂u|2 � Kr

∫
Br

|∇̂u|2 for every r, 0 < r � θ∗R
4

,(3.31)

where Kr > 0 depends only on α0, β0,M , and Ñ0(v; θ
∗R) given by (3.24), where

v = u− ur −Wrx, with ur and Wr defined by (3.7) and (3.8), respectively. Moreover
Kr is increasing with Ñ0(v; θ

∗R).
Proof of Lemma 3.5. We adapt arguments from Tiero [T99]. Inequality (3.9)

follows, through the introduction of the axial vector ω associated with the skew matrix

W = ∇u−(∇u)T

2 , from the two scalar inequalities

∫
BR

(ψ − ψr)
2 � C

(
R

r

)2(n−1)

R2

∫
BR

|∇ψ|2 for every ψ ∈ H1(BR),(3.32)

∫
BR

(ψ − ψr)
2 � C

(
R

r

)2n

‖∇ψ‖2H−1(BR) for every ψ ∈ L2(BR).(3.33)

Here C > 0 is an absolute constant and theH−1(BR)-norm above is defined as follows:

‖F‖H−1(BR) = sup

{∫
BR

FG | G ∈ H1(BR,R
n),

∫
BR

|∇G|2 = 1

}
.

It suffices to prove (3.32), (3.33) when R = 1 and ψ ∈ C1(B1) by usual scaling and
density arguments. We recall that (3.32), (3.33) are well known when r = 1; see, for
instance, [MS58]. Let us estimate ψ1 − ψr for 0 < r < 1. We easily obtain

ψ1 − ψr =
1

nωn

∫ 1

r

ds

∫
B1

∇ψ(sx) · xdx,

and then, by changing variables and reversing the order of integration, we find

ψ1 − ψr =
1

nωn

∫
B1

∇ψ · z,
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where

z(x) =
1

n
{max{r, |x|}−n − 1}x.

We have ∫
B1

|z|2 � Cr1−n,

∫
B1

|∇z|2 � Cr−n.

Hence

|ψ1 − ψr|2 � Cr2−2n

∫
B1

|∇ψ|2,

|ψ1 − ψr|2 � Cr−2n‖∇ψ‖2H−1(B1)
,

and (3.32), (3.33) follow.

4. Estimates in terms of the boundary data. In this section we shall con-
sider the traction problem (2.27), (2.28) for a given ϕ ∈ L2(∂Ω,Rn) satisfying (2.24).
For simplicity of notation we shall denote by u the solution (instead of u0). The
normalization (2.29) is understood throughout.

Regarding the elasticity tensor C we assume the isotropy condition (2.18), the
strong ellipticity (2.22), and the C1,1 regularity (2.32).

Proposition 4.1 (Lipschitz propagation of smallness). For every ρ > 0 and for
every x ∈ Ω 4ρ

θ
, we have

∫
Bρ(x)

|∇̂u|2 � Cρ

∫
Ω

|∇̂u|2,(4.1)

where θ, 0 < θ < 1, depends only on α0, β0,M and Cρ depends only on α0, β0, M ,
|Ω|, r0, M0, ‖ϕ‖L2(∂Ω)/‖ϕ‖H−1/2(∂Ω), and ρ.

We adapt arguments from [ARS00, Theorem 2.2]. We start with the following
auxiliary lemma.

Lemma 4.2. ∫
Ω\Ω 5ρ

θ

|∇̂u|2 � Cρ1/n‖ϕ‖2L2(∂Ω),(4.2)

where C depends only on α0, β0,M, r0,M0, |Ω|.
Proof of Lemma 4.2. By Hölder’s inequality

‖∇̂u‖2L2(Ω\Ω 5ρ
θ

) � |Ω \ Ω 5ρ

θ
|1/n‖∇̂u‖2L2n/(n−1)(Ω\Ω 5ρ

θ

),(4.3)

and by the Sobolev inequality (see, for instance, [Ad75])

‖∇̂u‖2L2n/(n−1)(Ω) � C‖∇̂u‖2H1/2(Ω),(4.4)
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we have

‖∇̂u‖2L2(Ω\Ω 5ρ
θ

) � C|Ω \ Ω 5ρ

θ
|1/n‖u‖2H3/2(Ω),(4.5)

where C depends only on r0, M0, |Ω|.
Moreover, we have

‖u‖H3/2(Ω) � C‖ϕ‖L2(∂Ω),(4.6)

where C depends only on α0, β0,M, r0,M0, |Ω|. Inequality (4.6) follows, by interpo-
lation (see [LM72]), from the global estimates for the Neumann problem

‖u‖H1(Ω) � C1‖ϕ‖H−1/2(∂Ω),(4.7)

‖u‖H2(Ω) � C2‖ϕ‖H1/2(∂Ω),(4.8)

where C1 and C2 depend only on α0, β0, M , r0, M0, |Ω| (see [ADN64]).
Moreover,

|Ω \ Ω 5ρ

θ
| � Cρ,(4.9)

where C depends only on r0, M0, |Ω|. (See (A.3) in [AR98] for details.) From (4.5),
(4.6), and (4.9) the thesis follows.

Proof of Proposition 4.1. Let us fix ρ0, depending only on r0, M0, such that Ω 4ρ

θ
is

connected for every ρ � ρ0. Without loss of generality, we may assume ρ � ρ0 for this
proof. Given any y ∈ Ω 4ρ

θ
, let γ be an arc in Ω 4ρ

θ
joining x and y. Let us define {xi},

i = 1, . . . , L, as follows: x1 = x, xi+1 = γ(ti), where ti = max{t | |γ(t)− xi| = 2ρ} if
|xi − y| > 2ρ; otherwise let i = L and stop the process. Then, by construction, the
balls Bρ(xi) are pairwise disjoint, |xi+1− xi| = 2ρ for i = 1, . . . , L− 1, |xL− y| � 2ρ.

Since xi ∈ Ω 4ρ

θ
, we may apply (3.5) for x = xi, r1 = ρ, r2 = 3ρ, r3 = 4ρ, for

i = 1, . . . , L− 1, obtaining

‖∇̂u‖L2(Bρ(xi+1))

‖∇̂u‖L2(Ω)

� C

(
‖∇̂u‖L2(Bρ(xi))

‖∇̂u‖L2(Ω)

)δ

,(4.10)

where C > 0 and δ, 0 < δ < 1, depend only on α0, β0, and M . By induction we have

‖∇̂u‖L2(Bρ(y))

‖∇̂u‖L2(Ω)

� C1/(1−δ)

(
‖∇̂u‖L2(Bρ(x))

‖∇̂u‖L2(Ω)

)δL

.(4.11)

Let us notice that L � |Ω|
ωnρn

.

Let us cover Ω 5ρ

θ
with internally nonoverlapping closed cubes of side l = 2ρ/

√
nθ.

Clearly, any such cube is contained in a ball of radius ρ and center in Ω 4ρ

θ
and the

number of such cubes is controlled by N = |Ω|nn/2θ
n

2nρn . Therefore, from (4.11) we have

‖∇̂u‖L2(Ω 5ρ
θ

)

‖∇̂u‖L2(Ω)

� C

ρn/2

(
‖∇̂u‖L2(Bρ(x))

‖∇̂u‖L2(Ω)

)δL

,(4.12)
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where C depends only on α0, β0,M, |Ω|.
Now, let us estimate from below the left-hand side of (4.12) by means of a positive

constant. Let us set

‖∇̂u‖2L2(Ω 5ρ
θ

)

‖∇̂u‖2L2(Ω)

= 1−

∫
Ω\Ω 5ρ

θ

|∇̂u|2∫
Ω
|∇̂u|2 .(4.13)

By a trace inequality (see, for instance, [LM72]) and by the Korn inequality (3.9), we
have

‖ϕ‖H−1/2(∂Ω) � C‖∇̂u‖L2(Ω),(4.14)

where C depends only on α0, β0, r0,M0, |Ω|. Hence, by (4.2) and (4.14), we have that
there exists ρ > 0, depending only on α0, β0,M, r0,M0, |Ω|, and ‖ϕ‖L2(∂Ω)/‖ϕ‖H−1/2(∂Ω),
such that

‖∇̂u‖2L2(Ω 5ρ
θ

)

‖∇̂u‖2L2(Ω)

� 1

2
(4.15)

for every ρ, 0 < ρ � ρ.
Finally, from (4.12) and (4.15) the thesis follows when 0 < ρ � ρ; for larger values

of ρ, inequality (4.1) is trivial.
Proposition 4.3. There exists θ∗, 0 < θ∗ � 1, depending only on α0, β0,M ,

such that for every r > 0 and every x0 ∈ Ωr we have∫
B2r(x0)

|u|2 � K

∫
Br(x0)

|u|2 for every r, 0 < r � θ∗r
2

,(4.16)

∫
B2r(x0)

|∇̂u|2 � K

∫
Br(x0)

|∇̂u|2 for every r, 0 < r � θ∗r
4

,(4.17)

where K > 0 depends only on α0, β0,M , r0, M0, |Ω|, r, and ‖ϕ‖L2(∂Ω)/‖ϕ‖H−1/2(∂Ω),
and θ∗ is the quantity introduced in Corollary 3.10.

Proof. The proofs of (4.16) and (4.17) are similar. Let us prove (4.17), which
takes a little bit more work. Given x0 ∈ Ωr and r, 0 < r < θ∗r

4 , we may apply
Corollary 3.10 with R = r, obtaining (4.17) with K depending only on α0, β0,M ,
and

Ñ0(v; θ
∗r) =

(θ∗r)2
∫
Bθ∗r(x0)

|∇v|2 + r2|∇(div v)|2∫
Bθ∗r(x0)

|v|2 + r2|div v|2 ,(4.18)

the dependence on this last variable being monotonically increasing and where v is
defined in Br(x0) by

v = u− c−W (x− x0),(4.19)

with

c =
1

|Br(x0)|
∫
Br(x0)

u, W =
1

2|Br(x0)|
∫
Br(x0)

∇u− (∇u)T .(4.20)
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We have that ∇v = ∇u −W , ∇̂v = ∇̂u, and div v = divu. Moreover, by interior
regularity estimates (see [ADN64]), we have

(4.21) |W | � 1

|Br(x0)|
∫
Br(x0)

|∇u| � ‖∇u‖L∞(Br(x0))

� C‖u‖H1(Ω) � C‖ϕ‖H−1/2(∂Ω),

where C depends only on α0, β0, M , r0, and r. Hence∫
Bθ∗r(x0)

|∇v|2 � 2

∫
Bθ∗r(x0)

|∇u|2 + |W |2 � C‖ϕ‖2H−1/2(∂Ω),(4.22)

where C depends only on α0, β0, M , r0, and r. By the Caccioppoli-type inequality
(3.6) we have ∫

Bθ∗r(x0)

|v|2 � C

∫
B θ∗r

2
(x0)

|∇v|2 � C

∫
B θ∗r

2
(x0)

|∇̂u|2,(4.23)

where C depends only on α0, β0, M , r. If θ∗
2 � θ

4 , we may apply Proposition 4.1 with

ρ = θ∗r
2 , whereas if θ∗

2 � θ
4 , we may apply Proposition 4.1 with ρ = θr

4 . In both cases
by trace theorems and the standard Korn inequality we obtain∫

B θ∗r
2

(x0)

|∇̂u|2 � C

∫
Ω

|∇̂u|2 � C‖ϕ‖2H−1/2(∂Ω),(4.24)

where C depends only on α0, β0, M , r0, M0, |Ω|, r, and ‖ϕ‖L2(∂Ω)/‖ϕ‖H−1/2(∂Ω). By
(4.22)–(4.24) and interior regularity estimates (see [ADN64]) we have

Ñ0(v; θ
∗r) � C,(4.25)

where C depends only on α0, β0, M , r0 M0,|Ω|, r, and ‖ϕ‖L2(∂Ω)/‖ϕ‖H−1/2(∂Ω).
Hence the thesis follows.

Proposition 4.4 (Ap property). For every r > 0 there exist B > 0 and p > 1
such that for every x0 ∈ Ωr we have

(4.26)

(
1

|Br(x0)|
∫
Br(x0)

|∇̂u|2
)(

1

|Br(x0)|
∫
Br(x0)

|∇̂u|−2/(p−1)

)p−1

� B

for every r, 0 < r � θ∗r
4

,

where θ∗ is the quantity introduced in Corollary 3.10 and where B, p depend only on
α0, β0, M , r0, M0,|Ω|, r, and ‖ϕ‖L2(∂Ω)/‖ϕ‖H−1/2(∂Ω).

Proof. In view of the results in [CF74] it is enough to prove a reverse Hölder’s

inequality for |∇̂u|2. Let v = u − c −W (x − x0), with c = 1
|B2r(x0)|

∫
B2r(x0)

u, W =
1

2|B2r(x0)|
∫
B2r(x0)

∇u − (∇u)T . By interior regularity estimates, the Korn inequality

(3.9), and Proposition 4.3 we have

(4.27) ‖∇̂u‖L∞(Br(x0)) = ‖∇̂v‖L∞(Br(x0)) � C

r(n+2)/2
‖v‖H1(B2r(x0))

� C

rn/2
‖∇̂u‖L2(B2r(x0)) � C

rn/2
‖∇̂u‖L2(Br(x0)),

where C depends only on α0, β0, M , r0, M0,|Ω|, r, and ‖ϕ‖L2(∂Ω)/‖ϕ‖H−1/2(∂Ω).
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5. Proofs of Theorems 2.3 and 2.4. We base the proof of our main theorems
on two auxiliary lemmas.

Lemma 5.1. Let the elasticity tensor fields C(x) and C̃(x) satisfy (2.5), (2.6) in
Ω. Suppose that weak solutions u, u0 ∈ H1(Ω,Rn) to the traction problems (2.25)–
(2.26), (2.27)–(2.28) exist. The following identities hold:

(5.1)

∫
Ω

(χΩ\DC + χDC̃)∇(u− u0) · ∇(u− u0)

−
∫
D

(C̃− C)∇u0 · ∇u0 =

∫
∂Ω

(g − g0) · ϕ,

∫
Ω

C∇(u− u0) · ∇(u− u0) +

∫
D

(C̃− C)∇u · ∇u =

∫
∂Ω

(g0 − g) · ϕ,(5.2)

∫
D

(C̃− C)∇u · ∇u0 =

∫
∂Ω

(g0 − g) · ϕ,(5.3)

where g,g0 ∈ H1/2(∂Ω,Rn) are the traces of u,u0, respectively, on ∂Ω.

Proof of Lemma 5.1. Let us denote H = (C̃−C) in Ω. From the weak formulation
of the problem (2.25)–(2.26) with D = D1 and D = D2 we get the identity

(5.4)

∫
Ω

(C + χD1H)∇u1 · ∇w

=

∫
Ω

(C + χD2H)∇u2 · ∇w for every w ∈ H1(Ω,Rn),

where ui is the solution to (2.25)–(2.26) with D = Di, i = 1, 2, respectively. Sub-
tracting the quantity

∫
Ω
(C + χD1

H)∇u2 · ∇w from both sides of (5.4) we have

(5.5)

∫
Ω

(C + χD1H)∇(u1 − u2) · ∇w

=

∫
Ω

(χD2
− χD1

)H∇u2 · ∇w for every w ∈ H1(Ω,Rn).

Choosing w = u1 into (5.5) we get∫
Ω

(C + χD1H)∇(u1 − u2) · ∇u1 =

∫
Ω

(χD2 − χD1)H∇u2 · ∇u1.(5.6)

By using the weak formulation of the traction problems for u1 and u2, the left-hand
side of (5.6) can be rewritten as follows:∫

Ω

(C + χD1
H)∇(u1 − u2) · ∇u1 =

∫
∂Ω

(g1 − g2) · ϕ,(5.7)

where gi = ui |∂Ω, i = 1, 2, and therefore (5.6) becomes∫
∂Ω

(g1 − g2) · ϕ =

∫
Ω

(χD2
− χD1

)H∇u2 · ∇u1.(5.8)
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Choosing w = u1 − u2 into (5.5) and using (5.8) we get

(5.9)

∫
Ω

(C + χD1
H)∇(u1 − u2) · ∇(u1 − u2)

=

∫
Ω

(χD1 − χD2)H∇u2 · ∇u2 +

∫
∂Ω

(g1 − g2) · ϕ,

and finally we obtain the fundamental identity

(5.10)

∫
Ω

(C + χD1
H)∇(u1 − u2) · ∇(u1 − u2) +

∫
D2\D1

H∇u2 · ∇u2

=

∫
∂Ω

(g1 − g2) · ϕ+

∫
D1\D2

H∇u2 · ∇u2,

which is the analogue to the identity found in Kang, Seo, and Sheen [KSS97] for the
inverse conductivity problem.

By choosing D1 = D and D2 = ∅ we obtain the first identity (5.1) of the lemma.
The second identity (5.2) follows from (5.10) for D1 = ∅ and D2 = D.

To get the third identity (5.3), we choose w = u0 and w = u in the weak formu-
lation of the traction problem (2.25)–(2.26) for D = D1 and D = ∅, respectively:∫

Ω

(C + χDH)∇u · ∇u0 =

∫
∂Ω

g0 · ϕ,(5.11)

∫
Ω

C∇u0 · ∇u =

∫
∂Ω

g · ϕ.(5.12)

Subtracting (5.12) from (5.11) we obtain identity (5.3).

Lemma 5.2. Let C(x) and C̃(x) satisfy (2.5), (2.6) in Ω. Let ξ0, ξ1, 0 < ξ0 < ξ1,
be such that

ξ0|A|2 ≤ C(x)A ·A ≤ ξ1|A|2 for a.e. x ∈ Ω,(5.13)

for any symmetric n × n matrix A, and let the jump (C̃(x) − C(x)) satisfy either
(2.30) or (2.31). Let u, u0 ∈ H1(Ω,Rn) be the weak solutions to the traction problems
(2.25)–(2.26), (2.27)–(2.28), respectively.

If (2.30) holds, then we have

ηξ0
δ

∫
D

|∇̂u0|2 ≤
∫
∂Ω

(g0 − g) · ϕ ≤ (δ − 1)ξ1

∫
D

|∇̂u0|2.(5.14)

If instead (2.31) holds, then we have

ηξ0

∫
D

|∇̂u0|2 ≤
∫
∂Ω

(g − g0) · ϕ ≤ 1− δ

δ
ξ1

∫
D

|∇̂u0|2.(5.15)

Proof of Lemma 5.2. Suppose that (2.30) holds. Then, from identity (5.1) we
have ∫

∂Ω

(g0 − g) · ϕ ≤
∫
D

H∇u0 · ∇u0,(5.16)
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where H = (C̃ − C) in Ω. The inequality below follows by the symmetry properties
(2.7), (2.8), (2.9) and the positivity condition (2.30):

(5.17)

∫
D

H∇u0 · ∇u0 ≤ (1 + ε)

∫
D

H∇(u− u0) · ∇(u− u0)

+
(
1 +

1

ε

)∫
D

H∇u · ∇u for every ε > 0.

Then, from (2.30) we have

(5.18)

∫
D

H∇u0 · ∇u0

≤ (1 + ε)(δ − 1)

[∫
D

C∇(u− u0) · ∇(u− u0) +
1

ε(δ − 1)

∫
D

H∇u · ∇u
]
.

Choosing ε = 1
δ−1 in (5.18) and by employing identity (5.2) we get

∫
D

H∇u0 · ∇u0 ≤ δ

∫
∂Ω

(g0 − g) · ϕ.(5.19)

The double inequality (5.14) follows from (5.16), (5.19) and (5.13), (2.30).
In the case where (2.31) holds, from (5.1) we have∫

∂Ω

(g − g0) · ϕ ≥
∫
D

−H∇u0 · ∇u0.(5.20)

From (5.3) we obtain
∫
∂Ω

(g − g0) · ϕ =
∫
D
−H∇u · ∇u0, and then, reasoning as in

(5.17), we find

(5.21)

∫
∂Ω

(g − g0) · ϕ ≤ ε

2

∫
D

−H∇u · ∇u

+
1

2ε

∫
D

−H∇u0 · ∇u0 for every ε > 0.

By using (5.2), (2.31), and (5.1) we have

(5.22)

∫
D

−H∇u · ∇u =

∫
∂Ω

(g − g0) · ϕ+

∫
Ω

C∇(u− u0) · ∇(u− u0)

≤
∫
∂Ω

(g − g0) · ϕ+
1

δ

∫
Ω

(C + H)∇(u− u0) · ∇(u− u0)

=

∫
∂Ω

(g − g0) · ϕ+
1

δ

[∫
∂Ω

(g − g0) · ϕ+

∫
Ω

H∇u0 · ∇u0

]

=
δ + 1

δ

∫
∂Ω

(g − g0) · ϕ+
1

δ

∫
D

H∇u0 · ∇u0.

Inserting inequality (5.22) into (5.21), we obtain∫
∂Ω

(g − g0) · ϕ ≤ α(ε)

∫
D

−H∇u0 · ∇u0,(5.23)
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where α(ε) = δ−ε2

ε(2δ−εδ−ε) . The minimum of α(ε) occurs when ε = δ and in this case we

have ∫
∂Ω

(g − g0) · ϕ ≤ 1

δ

∫
D

−H∇u0 · ∇u0.(5.24)

The double inequality (5.15) follows from (5.20), (5.24) and (5.13), (2.31).

Proof of Theorem 2.3. By (2.21), the inequality (5.13) holds, with ξ0 = min{2α0, γ0},
ξ1 = (n+ 2)M , so that Lemma 5.2 may be applied.

By standard regularity estimates for elliptic systems (see Agmon, Douglis, and
Nirenberg [ADN64]), by the Korn inequality, by (5.13), and by the weak formulation
of the Neumann problem (2.27)-(2.28), we have

‖∇̂u0‖L∞(D) ≤ C‖u0‖H1(Ω) ≤ C‖∇̂u0‖L2(Ω) ≤ C

(∫
∂Ω

g0 · ϕ
) 1

2

,(5.25)

where the constant C depends only on α0, γ0, M , d0, and |Ω|.
The lower bound for |D| in (2.34), (2.35) follows from the right-hand side of

(5.14), (5.15) and from (5.25).

Let us prove the upper bound for |D| in (2.34), (2.35). Let ε = min{ θ̄d0

2 , h1√
n
},

where θ̄ is as in Proposition 4.1. Let us cover Dh1
with internally nonoverlapping

closed cubes Ql of side ε, for l = 1, . . . , L. By the choice of ε the cubes Ql are
contained in D. Hence

∫
D

|∇̂u0|
2 ≥

∫
⋃L

l=1 Ql

|∇̂u0|
2 ≥ |Dh1 |

εn

∫
Ql̄

|∇̂u0|
2
,(5.26)

where l̄ is such that
∫
Ql̄
|∇̂u0|

2
= minl

∫
Ql
|∇̂u0|

2
. Let x̄ be the center of Ql̄. From

(5.26), estimate (4.1) with x = x̄ and ρ = ε/2 from (5.13), and from the weak
formulation of (2.27)-(2.28) we have

∫
D

|∇̂u0|
2 ≥ K|D|

∫
∂Ω

g0 · ϕ,(5.27)

where K depends only on α0, β0, d0, |Ω|, r0, M0, M , h1, ‖ϕ‖L2(∂Ω)/‖ϕ‖H−1/2(∂Ω).
The upper bound for D in (2.34), (2.35) follows from the left-hand side of (5.14),
(5.15) and from (5.27).

Proof of Theorem 2.4. Let r̄ = d0

2 and ε = min{ θ∗d0

4
√
n
, θ̄d0

4 }, where θ∗ is as in

Proposition 4.4. Let us cover D with internally nonoverlapping closed cubes Qj ,
j = 1, . . . , J , with side ε. By Hölder’s inequality we have

|D| ≤
(∫

⋃J
j=1 Qj

|∇̂u0|
− 2

p−1

) p−1
p (∫

D

|∇̂u0|
2
) 1

p

,(5.28)

where p is chosen as in Proposition 4.4. By applying Proposition 4.4 to the balls Bj

circumscribing each Qj , j = 1, . . . , J , we have
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(5.29)

(∫
⋃J

j=1 Qj

|∇̂u0|
− 2

p−1

) p−1
p

=


εn

J∑
j=1

1

|Qj |
∫
Qj

|∇̂u0|
− 2

p−1




p−1
p

≤


εn

J∑
j=1


 B[C(n)]p

1
|Qj |

∫
Qj
|∇̂u0|

2




1
p−1




p−1
p

≤ (Jεn)
p−1
p B

1
pC(n)

minj

(
1

|Qj |
∫
Qj
|∇̂u0|

2
) 1

p

,

where C(n) = ωn

(√
n

2

)n
and B is as in Proposition 4.4. Now Jεn =

∑J
j=1 |Qj | ≤ |Ω|

and hence, from (5.28), we have

|D| ≤ |Ω| p−1
p B

1
pC(n)


 εn

∫
D
|∇̂u0|

2

minj
∫
Qj
|∇̂u0|

2




1
p

.(5.30)

By Proposition 4.1, (5.30), (5.13), and the weak formulation of (2.27)-(2.28), we have∫
D

|∇̂u0|
2 ≥

(
K

∫
∂Ω

g0 · ϕ
)
|D|p,(5.31)

where K depends only on α0, β0, d0, |Ω|, r0, M0, M , h1, ‖ϕ‖L2(∂Ω)/‖ϕ‖H−1/2(∂Ω).
The right-hand side of (2.36), (2.37) follow from the left-hand side of (5.14), (5.15),
and (5.31).
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Abstract. We prove local and global well-posedness results for the Kadomtsev–Petviashvili–
Burgers equations in Bourgain’s-type spaces. This approach is new for the study of semilinear
evolution equations with a linear part which contains both dispersive and dissipative terms.
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1. Introduction. We study the initial value problem for the Kadomtsev–
Petviashvili–Burgers (KPB) equations in R

2:{
(ut + uxxx + uux − uxx)x + εuyy = 0,
u(0) = ϕ,

(1.1)

where ε = ±1.
These equations are dissipative versions of the Kadomtsev–Petviashvili (KP)

equations

(ut + uxxx + uux)x + εuyy = 0,

which are “universal” models for nearly one directional weakly nonlinear dispersive
waves with weak transverse effects. The KP equations being themselves natural two
dimensional extensions of the famous KdV equation

ut + uxxx + uux = 0.

In some physical contexts (such as magnetosonic waves damped by electron-ion colli-
sions), when dissipative effects cannot be neglected, the KdV–Burgers equation

ut + uxxx + uux − uxx = 0

has been derived (cf. [14]). The KPB equations are thus natural candidates to model
the propagation of two dimensional damped waves in some physical situations. Note
that due to the hypothesis of nearly one directional propagation, the dissipative term
acts only in the main direction of propagation in (1.1).

In the last decade, Bourgain developed a new method to study the Cauchy prob-
lem for nonlinear dispersive equations. This method was successfully applied to the
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Schrödinger equation, the KdV equation, and the KP II equation (ε = +1). Con-
cerning the KdV and KP II equations, it permitted, for instance, to show the global
well-posedness in Hs, s ≥ 0; see, respectively, [4] and [3]. Also local existence re-
sults in Sobolev spaces of negative order have been obtained; see [9] and [16]. One
of the particularities of this method is its use of special Fourier transform restriction
spaces strongly related to the symbol of the linear equation, the existence and unique-
ness of the solution then being obtained by a standard fixed point argument on the
corresponding integral equation.

The main contribution of this paper is to show how the Bourgain spaces can also
be successfully employed to study the Cauchy problem for semilinear equations with a
linear part which contains both dissipative and dispersive terms. As far as the authors
know, Bourgain spaces were never used in such a context.

Let us recall that in the Bourgain’s method for the KP II equation, the loss of
derivative in the nonlinear term ∂x(u

2) is compensated by a smoothing effect resulting
from a simple algebraic inequality (see (5.2)) involving the symbol τ − ξ3 − η2/ξ of
the linear KP II equation.

In the case of the KP I equation (ε = −1), this inequality does not hold, which is
why there is no available result on the local well-posedness of the KP I equation by
using Bourgain spaces. However, by the parabolic regularization method, local well-
posedness in Hs(R2), s > 2, has been obtained (cf. [5]). But this approach seems far
from satisfactory since it does not use at all the dispersive nature of the equation.

In this paper the main idea is to work in the Bourgain spaces associated with the
“usual” KP equations, i.e., related only to the dispersive part of the linear symbol of
(1.1) (see Remark 3 below). After having extended the linear semigroup of the KPB
equations to a linear operator W (·) defined on the whole real axis, we first derive
some linear estimates in the Bourgain spaces for the “free evolution term” W (t)ϕ and
for the “forcing term” L defined by (2.10). In contrast to the purely dispersive case,
we show that L is a smoothing operator not only in time but also in space. Then by
using Strichartz’s type estimates for the KP equations injected into the framework of
Bourgain spaces, we show a bilinear estimate which will yield the local well-posedness
of the KPB equations (ε = +1 or −1) in the anisotropic Sobolev spaces Hs1,s2(R2),
provided s1 > 0 and s2 ≥ 0. Moreover, combining these Strichartz’s estimates and
the algebraic inequality (5.2), we prove the local well-posedness in Hs(R2), s ≥ 0, for
the KPB II equation (ε = +1). The global well-posedness results will then follow by
means of a priori estimates.

Let us note that local well-posedness for the KPB equations in the space {ϕ ∈
H1(R2), F−1

x,y(
η
ξ ϕ̂) ∈ L2(R2)} was obtained in [12]. Also, global existence was ob-

tained under a smallness restriction on the initial data when ε = +1. Finally, a local
smoothing effect in the transverse direction was proved as well as the existence of
global weak solutions in L2(R2) when ε = −1.

1.1. Notations. For f ∈ S ′ we denote by f̂ or F(f) the Fourier transform of f ,
i.e.,

f̂(θ) =

∫
Rn

e−i〈α,θ〉f(α) dα,

and we define the linear operator ∆b
x by

∆b
x(f)(x, y) = F−1

(
(1 + |ξ|2)bf̂(ξ, η)

)
(x, y).
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For a Banach space X, we denote by ‖ · ‖X the norm in X. We will use the Sobolev
spaces Hs(R2) and the homogeneous Sobolev spaces Ḣs(R2) equipped with the norms

‖u‖2Hs =

∫
R2

〈ζ〉2s|û(ζ)|2 dζ, ‖u‖2
Ḣs =

∫
R2

|ζ|2s|û(ζ)|2 dζ,

where ζ = (ξ, η), |ζ| = (|ξ|2 + |η|2)1/2, and 〈ζ〉 = (1 + |ζ|2)1/2.
We also consider the anisotropic Sobolev spaces Hs1,s2(R2) endowed with the

norm

‖u‖2Hs1,s2 =

∫
R2

〈ξ〉2s1〈η〉2s2 |û(ζ)|2 dζ.

Next we consider the corresponding space-time Sobolev spaces Hb,s and Hb,s1,s2 ,
respectively, equipped with the norms

‖u‖2Hb,s =

∫
R3

〈τ〉2b〈ζ〉2s |û(τ, ζ)|2 dζ dτ,

‖u‖2Hb,s1,s2 =

∫
R3

〈τ〉2b〈ξ〉2s1〈η〉2s2 |û(τ, ζ)|2 dζ dτ.

We will also use the space-time Lebesgue spaces Lp,qt,z (z = (x, y)) endowed with the
norm

‖u‖Lq,r
t,z

=
∥∥‖u‖Lr

z

∥∥
Lq

t

,

and we will use the notation L2
t,z for L2,2

t,z .
Let U(·) be the unitary group which defined the free evolution of the KP equation,

i.e.,

U(t) = exp(itP (Dx, Dy)),(1.2)

where P (Dx, Dy) is the Fourier multiplier with symbol

P (ξ, η) = ξ3 − ε η
2

ξ
, ε = ±1.

We denote by Xb,s and Xb,s1,s2 the Bourgain’s-type spaces associated with the spaces
Hb,s and Hb,s1,s2 for the KP equations. They are, respectively, endowed with the
norms

‖u‖Xb,s = ‖U(−t)u‖Hb,s(1.3)

and

‖u‖Xb,s1,s2 = ‖U(−t)u‖Hb,s1,s2 .(1.4)

Note that, since F(U(−t)u)(τ, ζ) = F(u)(τ+P (ζ), ζ), one can, respectively, re-express
the norm of Xb,s and Xb,s1,s2 as

‖u‖Xb,s = ‖〈τ − P (ζ)〉b 〈ζ〉s û(τ, ζ)‖L2(R3)
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and

‖u‖Xb,s1,s2 = ‖〈τ − P (ζ)〉b 〈ξ〉s1〈η〉s2 û(τ, ζ)‖L2(R3).

For T ≥ 0, we consider the localized Bourgain spaces Xb,s
T endowed with the norm

‖u‖Xb,s
T

= inf
w∈Xb,s

{‖w‖Xb,s , w(t) = u(t) on [0, T ] },

the space Xb,s1,s2
T being defined in the same way.

Finally we denote by W (·) the semigroup associated with the free evolution of
the KPB equations, i.e.,

∀t ≥ 0, Fz(W (t)ϕ)(ζ) = exp[−|ξ|2t+ iP (ζ) t]ϕ̂(ζ), ϕ ∈ S ′,

and we extend W (·) to a linear operator defined on the whole real axis by setting

∀t ∈ R, Fz(W (t)ϕ)(ζ) = exp[−|ξ|2|t|+ iP (ζ)t]ϕ̂(ζ), ϕ ∈ S ′.

1.2. Main results. To prove local well-posedness results, we shall apply a fixed
point argument in Xb,s

T or Xb,s1,s2
T to the following cut-off version of the integral

equation associated with (1.1):

u(t) = ψ(t)

[
W (t)ϕ− 1lR+

(t)

2

∫ t

0

W (t− t′)∂x(ψ2
T (t

′)u2(t′)) dt′
]
,(1.5)

where t ∈ R and, in the rest of this paper, ψ is a time cut-off function satisfying

ψ ∈ C∞
0 (R), supp ψ ⊂ [−1, 1], ψ = 1 on

[
−1

2
,
1

2

]
,

and ψT (·) = ψ(·/T ).
Theorem 1.1 (KPB I). Let ε = −1 and (s1, s2) ∈ R

∗
+ × R+. Then for any

ϕ ∈ Hs1,s2 , there exist a positive T = T (‖ϕ‖H0+,0) and a unique solution u to (1.1)
in

YT = C([0, T ], Hs1,s2) ∩X1/2,s1,s2
T .(1.6)

Also, the map ϕ �→ u is continuous from Hs1,s2 to YT .
Moreover, if s1 ≥ 1 and F−1

z (ηξ ϕ̂) ∈ L2(R2), then T can be chosen arbitrarily
large and

∀t ≥ 0, ‖u(t)‖H1,0 ≤ C(‖ϕ‖L2 , ‖∂xϕ‖L2 , ‖∂−1
x ϕy‖L2).

Theorem 1.2 (KPB II). Let ε = 1 and let ϕ ∈ Hs(R2), s ≥ 0. Then for any
T > 0, there exists a unique solution u to (1.1) in

YT = C([0, T ], Hs) ∩X1/2,s
T .(1.7)

Moreover, the map ϕ �→ u is continuous from Hs(R2) to YT and the following in-
equality holds:

∀t ≥ 0, ‖u(t)‖L2 ≤ ‖ϕ‖L2 .
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Remark 1. It is easy to see that a solution of the integral equation (1.5) solves
(1.1) in the distribution sense. Indeed, let u ∈ C([0, T ], Hs) such that, on [0, T ],

u(t) =W (t)ϕ− 1

2

∫ t

0

W (t− t′)∂x(u2(t′)) dt′ .(1.8)

Differentiating (1.8) with respect to x and then to t, we readily obtain

∂t∂xu+
1

2
∂2
x(u

2) + ∂4
xu+ ε∂

2
yu = 0 in C([0, T ], Hs−4).

Since ∂t∂xu = ∂x∂tu in D′((0, T ) × R
2), u solves (1.1) at least in the distribution

sense.
Remark 2. Note that the best known result for the local well-posedness of KP

II goes down to Hs1,0, s1 > −1/3 [16]. In view of this result, one would expect the
Cauchy problem for the KPB II equation also to be well posed in Hs1,0, s1 > −1/3
and perhaps below (we do not consider this question in this paper). For instance, in
the case of the KdV equation, the best known result for the local well-posedness goes
down to Hs, s > −3/4 (see [9]), while in [13] we prove (by the approach developed
in this paper) that the Cauchy problem for the KdV Burgers equation is well posed
below H−3/4.

Remark 3. Another natural way to extend the Bourgain’s method would be to
consider the norm ‖f‖c,s1,s2 = ‖〈ξ〉s1〈η〉s2〈τ − P (ξ, η) + iξ2〉cf̂‖L2

t,z
, which is in fact

equivalent to ‖f‖Xc,s1,s2 + ‖f‖L2
tH

s1+2c,s2 . Although the linear estimate on the free
term for this norm is the same as the one in (2.5), it seems that the estimate on the
forcing term (in this norm) leads to the loss of 2c x-derivatives in comparison with
the one derived in (2.35). This is why we have used the norm defined by (1.4) rather
than this one.

This paper is organized as follows: In section 2, we derive estimates in Bourgain
spaces on the linear operators W and L. This process is quite general and can be
adapted to other dissipative dispersive semigroups; see [13]. In section 3, we recall
some Strichartz’s estimates for the KP equations and we use them in the framework
of Bourgain spaces. In section 4, we prove a nonlinear estimate which enables us to
obtain the local part of Theorem 1.1. Next, we derive a priori estimates to prove the
global existence result. Finally, section 5 is devoted to the proof of Theorem 1.2.

2. Linear estimates. In this section we study the two linear operators related
to the integral equation (1.5). The following lemmas will be of constant use in the
first part of this section.

Lemma 2.1. Let s be in R and λ > 0.
(a) For all f ∈ Hs we have

‖f(λt)‖Hs ≤ C (λ−1/2 + λs−1/2)‖f(t)‖Hs .(2.1)

(b) For all f ∈ Ḣs we have

‖f(λt)‖Ḣs ≤ C λs−1/2‖f(t)‖Ḣs .(2.2)

Lemma 2.2. For all s ≥ 0, Hs(R) ∩ L∞(R) is an algebra and, furthermore,

‖uv‖Hs ≤ ‖u‖Hs‖v‖L∞ + ‖v‖Ḣs‖u‖L∞ .(2.3)

Also, recall that the Fourier transform of f : t→ e−|t||ξ|2 is

Ft(e−|t||ξ|2)(τ) =
2|ξ|2

|τ |2 + |ξ|4 .(2.4)
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2.1. Linear estimate for the free term.
Proposition 2.3. Let s, s1, s2 be in R and b ≥ 1/2.
(a) For all ϕ ∈ Hs1,s2 , we have

‖ψ(t)W (t)ϕ‖Xb,s1,s2 ≤ C‖ϕ‖Hs1+2b−1,s2 .(2.5)

(b) For all ϕ ∈ Hs, we have

‖ψ(t)W (t)ϕ‖Xb,s ≤ C‖∆
2b−1

2
x ϕ‖Hs .(2.6)

Remark. To avoid the loss of x-derivative in the linear estimates (2.5) and (2.6),
we have to choose b = 1/2. It will be therefore natural to solve (1.1) in the spaces
X1/2,s and X1/2,s1,s2 .

Proof. By definition,

‖ψ(t)W (t)ϕ‖Xb,s1,s2 =
∥∥∥〈ξ〉s1〈η〉s2〈τ − P (ζ)〉bFt(ψ(t)e−|t||ξ|2eitP (ζ)ϕ̂(ζ))(τ)

∥∥∥
L2(R3)

=

∥∥∥∥〈ξ〉s1〈η〉s2 ϕ̂(ζ) ∥∥∥〈τ〉bFt(ψ(t)e−|t||ξ|2)
∥∥∥
L2(R)

∥∥∥∥
L2(R2)

.(2.7)

Now we estimate g defined by

g =
∥∥∥〈τ〉bFt(ψ(t)e−|t||ξ|2)

∥∥∥
L2

=
∥∥∥ψ(t)e−|t||ξ|2

∥∥∥
Hb
.

By virtue of Lemma 2.2 we obtain

g ≤ ‖ψ‖Hb‖e−|t||ξ|2‖L∞ + ‖ψ‖L∞‖e−|t||ξ|2‖Ḣb ,

and by Lemma 2.1,

g ≤ C(1 + |ξ|2b−1).(2.8)

Hence, since b ≥ 1/2, gathering (2.7) and (2.8) we obtain

‖ψ(t)W (t)ϕ‖Xb,s1+2b−1,s2 ≤ C‖〈ξ〉s1+2b−1〈η〉s2 ϕ̂(ζ)‖L2 ,

which ends the proof of (2.5). The proof of (2.6) is similar.

2.2. Linear estimates for the forcing term. We study first some smoothing
properties between one dimensional Sobolev spaces for the linear operator

K : f �→ 1lR+
(t)ψ(t)

∫ t

0

e−|t−t′||ξ|2f(t′) dt′.(2.9)

Next, we will use these results to obtain some smoothing properties between Xb,s1,s2

and Xb,s spaces for the linear operator

L : f �→ 1lR+(t)ψ(t)

∫ t

0

W (t− t′)f(t′) dt′.(2.10)
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2.2.1. Linear estimates for K. In this section we study the boundedness
properties of K. Our main result is the following.

Proposition 2.4. Let 0 ≤ b < 1/2. For f in H−b(R) consider g defined on R

by

g(t) = 1lR+(t)ψ(t)

∫ t

0

e−|t−t′||ξ|2f(t′) dt′.(2.11)

Then it holds that

∀ξ ∈ R, ‖g‖H1/2(R) ≤ C〈ξ〉−(1−2b)‖f‖H−b .(2.12)

Proof. By a straightforward calculation we have

g(t) = 1lR+(t)ψ(t)e
−|t||ξ|2

∫ t

0

et
′|ξ|2f(t′) dt′(2.13)

= 1lR+
(t)ψ(t)e−|t||ξ|2

∫ t

0

et
′|ξ|2

∫
R

eit
′τ f̂(τ) dτ dt′

= 1lR+(t)ψ(t)e
−|t||ξ|2

∫
R

f̂(τ)

∫ t

0

et
′|ξ|2eit

′τ dt′ dτ

= 1lR+(t)ψ(t)

∫
R

eitτ − e−|ξ|2|t|

iτ + |ξ|2 f̂(τ) dτ.

Let us now consider the function k defined on R by

k(t) = ψ(t)

∫
R

eitτ − e−|ξ|2|t|

iτ + |ξ|2 f̂(τ) dτ.

Since g(0) = k(0) = 0 and also

∀t ∈ R+ , k(t) = g(t) and ∀t ∈ R− , g(t) = 0,

we have ‖g‖L2 ≤ ‖k‖L2 , ‖g‖H1 ≤ ‖k‖H1 , and ‖g‖H1/2 ≤ ‖k‖H1/2 . Hence it is enough
to prove that

‖k‖H1/2 ≤ C〈ξ〉−(1−2b)‖f‖H−b .

To do this we split k into k = k1 + k2, where

k1(t) = ψ(t)

∫
R

1− e−|ξ|2|t|

iτ + |ξ|2 f̂(τ) dτ(2.14)

and

k2(t) = ψ(t)

∫
R

eitτ − 1

iτ + |ξ|2 f̂(τ) dτ.(2.15)
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(a) Estimate of ‖k1‖H1/2 .
(a1) We first consider the case |ξ| ≥ 1. We then have

‖k1‖H1/2 ≤ ‖ψ(t)(1− e−|ξ|2|t|)‖H1/2

∣∣∣∣∣
∫

R

f̂(τ) dτ

iτ + |ξ|2
∣∣∣∣∣

≤
(
‖ψ‖H1/2 + ‖ψ(t)e−|t||ξ|2‖H1/2

) ∣∣∣∣∣
∫

R

f̂(τ) dτ

iτ + |ξ|2
∣∣∣∣∣

≤ C
(
1 + ‖ψ(t)‖H1/2‖e−|ξ|2|t|‖L∞ + ‖ψ(t)‖L∞‖e−|ξ|2|t|‖Ḣ1/2

) ∣∣∣∣∣
∫

R

f̂(τ) dτ

iτ + |ξ|2
∣∣∣∣∣

by virtue of Lemma 2.2. Now applying the Cauchy–Schwarz inequality and Lemma
2.1 we obtain

‖k1‖H1/2 ≤ C‖f‖H−b

(∫
R

〈τ〉2b dτ
τ2 + |ξ|4

)1/2

≤ C(1 + |ξ|2b)|ξ|−1‖f‖H−b .

Hence

∀ξ, |ξ| ≥ 1, ‖k1‖H1/2 ≤ C〈ξ〉2b−1‖f‖H−b .(2.16)

(a2) We now consider the case |ξ| ≤ 1. As previously, by the Cauchy–Schwarz
inequality

‖k1‖H1/2 ≤ ‖ψ(t)(1− e−|ξ|2|t|)‖H1/2

∣∣∣∣∣
∫

R

f̂(τ) dτ

iτ + |ξ|2
∣∣∣∣∣

≤ ‖ψ(t)(1− e−|ξ|2|t|)‖H1/2(1 + |ξ|2b)|ξ|−1‖f‖H−b ,

and so, since |ξ| ≤ 1,

‖k1‖H1/2 ≤ C‖ψ(t)(1− e−|ξ|2|t|)‖H1/2 |ξ|−1‖f‖H−b .(2.17)

Now, following [10],

‖ψ(t)(1− e−|ξ|2|t|)‖H1/2 ≤
∑
n≥1

∥∥∥∥ tnψ(t)|ξ|2nn!

∥∥∥∥
H1/2

≤ C
∑
n≥1

|ξ|2n
n!
‖tnψ(t)‖H1/2 .

Note that

‖tnψ(t)‖H1/2 ≤ C‖tnψ(t)‖H1 ≤ Cn,

and since |ξ| ≤ 1, we get

∀ξ, |ξ| ≤ 1, ‖ψ(t)(1− e−|ξ|2|t|)‖H1/2 ≤ C|ξ|2;(2.18)

then, gathering (2.17) and (2.18) we obtain

∀ξ, |ξ| ≤ 1, ‖k1‖H1/2 ≤ C〈ξ〉2b−1‖f‖H−b .(2.19)
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Now, (2.16) together with (2.19) prove that

∀ξ ∈ R, ‖k1‖H1/2 ≤ C〈ξ〉2b−1‖f‖H−b .(2.20)

(b) Estimate of ‖k2‖H1/2 . We split k2 into k2 = k2,0 + k2,∞, where

k2,0 = ψ(t)

∫
|τ |≤1

eitτ − 1

iτ + |ξ|2 f̂(τ) dτ(2.21)

and

k2,∞ = ψ(t)

∫
|τ |≥1

eitτ − 1

iτ + |ξ|2 f̂(τ) dτ.(2.22)

(c) Estimate of ‖k2,0‖H1/2 .
(c1) We first consider the case |ξ| ≥ 1. By definition

‖k2,0‖H1/2 =

∥∥∥∥∥∥ψ(t)
∫
|τ |≤1

∑
n≥1

(itτ)n

n!(iτ + |ξ|2) f̂(τ) dτ
∥∥∥∥∥∥
H1/2

≤
∑
n≥1

‖tnψ(t)‖H1/2

n!

∫
|τ |≤1

∣∣∣∣ (iτ)n

iτ + |ξ|2 f̂(τ)
∣∣∣∣ dτ

≤
∑
n≥1

‖tnψ(t)‖H1/2

n!

∫
|τ |≤1

|f̂(τ)|√|τ |2 + |ξ|4 dτ.
In the same way as previously and by the Cauchy–Schwarz inequality we get

‖k2,0‖H1/2 ≤ C

∑
n≥1

1

(n− 1)!


 ‖f‖H−b

(∫
R

〈τ〉2b
τ2 + |ξ|4 dτ

)1/2

,

and so,

∀ξ, |ξ| ≥ 1, ‖k2,0‖H1/2 ≤ C〈ξ〉2b−1‖f‖H−b .(2.23)

(c2) We now consider the case |ξ| ≤ 1. From the previous calculations,

‖k2,0‖H1/2 ≤ C

∑
n≥1

‖tnψ(t)‖H1/2

n!

∫
|τ |≤1

∣∣∣∣∣ τ
nf̂(τ)

iτ + |ξ|2
∣∣∣∣∣ dτ




≤ C‖f‖H−b


∑
n≥1

1

(n− 1)!

(∫
|τ |≤1

|τ |2n〈τ〉2b
|τ |2 + |ξ|4 dτ

)1/2

 .

Furthermore, for all ξ and for all n ≥ 1,

(∫
|τ |≤1

|τ |2n〈τ〉2b
|τ |2 + |ξ|4 dτ

)1/2

≤
(∫

|τ |≤1

|τ |2(n−1)〈τ〉2b dτ
)1/2

≤ C,
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and so it follows that

∀ξ, |ξ| ≤ 1, ‖k2,0‖H1/2 ≤ C‖f‖H−b .(2.24)

Hence, for b < 1/2, gathering (2.23) and (2.24) we obtain

∀ξ ∈ R, ‖k2,0‖H1/2 ≤ C〈ξ〉2b−1‖f‖H−b .(2.25)

(d) Estimate of ‖ k2,∞‖H1/2 .
(d1) First assume that |ξ| ≤ 1. Then we have

‖k2,∞‖H1/2 ≤ I + J,

where

I =

∥∥∥∥∥ψ(t)
∫
|τ |≥1

f̂(τ)

iτ + |ξ|2 dτ
∥∥∥∥∥
H1/2

,(2.26)

and

J =

∥∥∥∥∥ψ(t)
∫
|τ |≥1

eitτ f̂(τ)

iτ + |ξ|2 dτ
∥∥∥∥∥
H1/2

.(2.27)

By the Cauchy–Schwarz inequality we get

I ≤ ‖ψ‖H1/2‖f‖H−b

(∫
|τ |≥1

〈τ〉2b
|τ |2 dτ

)1/2

,

and since b < 1/2,

∀ξ, |ξ| ≤ 1, I ≤ C‖f‖H−b .(2.28)

To estimate J for |ξ| ≤ 1, observe that

J =

∥∥∥∥∥ψ(t)Ft
(
f̂(τ)1l|τ |≥1

iτ + |ξ|2
)
(t)

∥∥∥∥∥
H1/2

,

and since ‖F(u)‖L∞ ≤ ‖u‖L1 , Lemma 2.2 proves that

J ≤ C
∥∥∥∥∥ f̂(τ)1l|τ |≥1

iτ + |ξ|2
∥∥∥∥∥
L1

+ C

∥∥∥∥∥Ft
(
f̂(τ)1l|τ |≥1

iτ + |ξ|2
)∥∥∥∥∥

Ḣ1/2

≤ C‖f‖H−b


(∫

|τ |≥1

〈τ〉2bdτ
|τ |2 + |ξ|4

)1/2

+ sup
|τ |≥1

( |τ |〈τ〉2b
|τ |2 + |ξ|4

)1/2



≤ C‖f‖H−b


(∫

|τ |≥1

〈τ〉2bdτ
|τ |2

)1/2

+ sup
|τ |≥1

( 〈τ〉1+2b

|τ |2
)1/2




≤ C‖f‖H−b .(2.29)



DISSIPATIVE AND DISPERSIVE EQUATION IN BOURGAIN SPACES 1279

Next, gathering (2.28) and (2.29), we obtain

∀ξ, |ξ| ≤ 1, ‖k2,∞‖H1/2 ≤ C‖f‖H−b .(2.30)

(d2) Now assume that |ξ| ≥ 1. Then by the Cauchy–Schwarz inequality,

I ≤ ‖ψ‖H1/2‖f‖H−b

(∫
|τ |≥1

〈τ〉2b
|τ |2 + |ξ|4 dτ

)1/2

≤ C〈ξ〉2b−1‖f‖H−b .(2.31)

On the other hand, in the same way as for |ξ| ≤ 1, we have

J ≤ C‖f‖H−b


(∫

|τ |≥1

〈τ〉2bdτ
|τ |2 + |ξ|4

)1/2

+ sup
|τ |≥1

( |τ |〈τ〉2b
|τ |2 + |ξ|4

)1/2

 ,

and it follows that

∀ξ, |ξ| ≥ 1, J ≤ C〈ξ〉2b−1‖f‖H−b .(2.32)

Hence from (2.31) and (2.32) we deduce that

∀ξ, |ξ| ≥ 1, ‖k2,∞‖H1/2 ≤ C〈ξ〉2b−1‖f‖H−b ,(2.33)

which together with (2.30) proves that

∀ξ ∈ R, ‖k2,∞‖H1/2 ≤ C〈ξ〉2b−1‖f‖H−b .(2.34)

This ends the proof of Proposition 2.4.

2.2.2. Linear estimates for L. Now, using Proposition 2.4, we prove some
smoothing properties in Bourgain spaces for L defined by (2.10).

Proposition 2.5. Let s, s1, s2 be in R and 0 ≤ b < 1/2.
(a) For all f ∈ S ′ we have∥∥∥∥1lR+

(t)ψ(t)

∫ t

0

W (t− t′)f(t′) dt′
∥∥∥∥
X1/2,s1,s2

≤ C‖f‖X−b,s1+2b−1,s2 .(2.35)

(b) For all f ∈ S ′ we have∥∥∥∥1lR+(t)ψ(t)

∫ t

0

W (t− t′)f(t′) dt′
∥∥∥∥
X1/2,s

≤ C‖∆
2b−1

2
x f‖X−b,s .(2.36)

Proof. We first prove (2.35). By definition

∥∥∥∥1lR+(t)ψ(t)

∫ t

0

W (t− t′)f(t′) dt′
∥∥∥∥

2

X1/2,s1,s2

=

∥∥∥∥〈ξ〉s1〈η〉s2〈τ − P (ζ)〉 12Ft,z
(
1lR+

(t)ψ(t)

∫ t

0

W (t− t′)f(t′) dt′
)∥∥∥∥

2

L2(R3)

.

On the other hand,

Ft,z
(
1lR+(t)ψ(t)

∫ t

0

W (t− t′)f(t′) dt′
)
(τ, ζ)
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= Ft
(
1lR+(t)ψ(t)

∫ t

0

e−|t−t′||ξ|2eiP (ζ)(t−t′)Fz(f)(t′, ζ) dt′
)
(τ)

= Ft
(
1lR+

(t)ψ(t)

∫ t

0

e−|t−t′||ξ|2e−iP (ζ)t′Fz(f)(t′, ζ) dt′
)
(τ − P (ζ)).

Hence, performing the change of variable τ ′ = τ − P (ζ), we obtain

∥∥∥1lR+(t)ψ(t)

∫ t

0

W (t− t′)f(t′) dt′
∥∥∥2

X1/2,s1,s2

=

∥∥∥∥1lR+(t)ψ(t)

∫ t

0

e−|t−t′||ξ|2e−iP (ζ)t′〈ξ〉s1〈η〉s2Fxz(f)(t′, ζ) dt′
∥∥∥∥

2

L2
ζ
(H

1/2
t )

=

∥∥∥∥1lR+(t)ψ(t)

∫ t

0

e−|t−t′||ξ|2〈ξ〉s1〈η〉s2Fz (U(−t′)f) (t′, ζ) dt′
∥∥∥∥

2

L2
ζ
(H

1/2
t )

.

To conclude, we apply Proposition 2.4 to hζ defined by

hζ(t
′) = 〈ξ〉s1〈η〉s2Fz (U(−t′)f) (t′, ζ) ,(2.37)

and we obtain ∥∥∥∥1lR+(t)ψ(t)

∫ t

0

W (t− t′)f(t′) dt′
∥∥∥∥

2

X1/2,s1,s2

≤ C
∫

R2

〈ξ〉2(s1+2b−1)〈η〉2s2‖Fz (U(−t)f) (t, ζ)‖2H−b dξ

≤ C
∫

R2

〈ξ〉2(s1+2b−1)〈η〉2s2‖〈τ〉−bf̂(τ + P (ζ), ζ)‖2L2 dξ

≤ C‖f‖2X−b,s1+2b−1,s2 .

The proof of (2.36) is the same, up to some obvious modifications.
As explained previously, it will be convenient to prove local well-posedness of KPB

in the space X1/2,s1,s2 (s1 > 0, s2 ≥ 0) and local well-posedness of KPB II in the
space X1/2,s (s ≥ 0). Nevertheless, since the embedding H1/2(R) ↪→ L∞(R) does not
hold, we will need Proposition 2.6 below to prove that a solution of (1.1) in X1/2,s1,s2

(respectively, in X1/2,s) belongs also to the space C([0, T ], Hs1,s2) (respectively, to
C([0, T ], Hs)).

Proposition 2.6. Let 0 ≤ b < 1/2.
(a) For all f ∈ S ′(R3) with ∆b

xf ∈ X−b,s1,s2 ,

t �→
∫ t

0

W (t− t′)∂xf(t′) dt′ ∈ C(R+, H
s1,s2).(2.38)

Moreover, if (fn) is a sequence with ∆b
xfn −→

n→∞ 0 in X−b,s1,s2 , then

∥∥∥∥
∫ t

0

W (t− t′)∂xfn(t′) dt′
∥∥∥∥
L∞(R+,Hs1,s2 )

−→
n→∞ 0.(2.39)
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(b) For all f ∈ S ′(R3) with ∆b
xf ∈ X−b,s,

t �→
∫ t

0

W (t− t′)∂xf(t′) dt′ ∈ C(R+, H
s).(2.40)

Moreover, if (fn) is a sequence with ∆b
xfn −→

n→∞ 0 in X−b,s, then

∥∥∥∥
∫ t

0

W (t− t′)∂xfn(t′) dt′
∥∥∥∥
L∞(R+,Hs)

−→
n→∞ 0.(2.41)

Proof. Without loss of generality we can set s1 = s2 = 0. As noticed in [8], since
U(·) is a strongly continuous unitary group in L2(R2), it is enough to prove that

F : t �→ U(−t)
∫ t

0

W (t− t′)∂xf(t′) dt′

is continuous from R+ to L2(R2). Setting

g(t) = Fx
(
U(−t)∂xf(t)

)
, t ∈ R,

(2.38) will thus be proven if we show the continuity of

G : t �→
∫ t

0

e−|ξ|2(t−t′) g(t′, ζ) dt′(2.42)

for 〈τ〉−b〈ξ〉(2b−1)Ft(g) ∈ L2
τ,ζ(R

3). Applying the Fubini theorem, one infers that

G(t) = e−|ξ|2t
∫

R

ĝ(τ, ζ)

∫ t

0

e(|ξ|
2+iτ) t′ dt′ dτ

=

∫
R

ĝ(τ, ζ)
eitτ − e−|ξ|2t

|ξ|2 + iτ dτ.

Hence,

G(t1)−G(t2) =
∫

R

ĝ(τ, ζ)

|ξ|2 + iτ [(e
iτt1 − eiτt2)− (e−|ξ|2t1 − e−|ξ|2t2)] dτ.(2.43)

When |ξ| ≥ 1, we notice that

|G(t1)−G(t2)| ≤ C
∫

R

|ĝ(τ)|
|ξ|2 + |τ | dτ

≤ C ‖g‖H−b

(∫
R

〈τ〉2b
|ξ|4 + |τ |2 dτ

) 1
2

≤ C ‖g‖H−b 〈ξ〉(2b−1).(2.44)

Assume now that |ξ| ≤ 1 and that |t1 − t2| ≤ 1. In this case we first estimate∣∣∣∣
∫

R

ĝ(τ)

|ξ|2 + iτ (e
iτt1 − eiτt2) dτ

∣∣∣∣
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≤ |t1 − t2|
∫
|τ |≤1

|ĝ(τ)| |τ |√|ξ|4 + |τ |2 dτ + 2

∫
|τ |≥1

|ĝ(τ)|√|ξ|4 + |τ |2 dτ

≤ C ‖g‖H−b


(∫

|τ |≤1

|τ |2〈τ〉2b dτ
|ξ|4 + |τ |2

) 1
2

+

(∫
|τ |≥1

〈τ〉2b dτ
|ξ|4 + |τ |2

) 1
2




≤ C ‖g‖H−b


(∫

|τ |≤1

〈τ〉2b dτ
) 1

2

+

(∫
|τ |≥1

〈τ〉2b
|τ |2 dτ

) 1
2




≤ C ‖g‖H−b .(2.45)

It then remains to estimate∣∣∣∣
∫

R

ĝ(τ)

|ξ|2 + iτ (e
−|ξ|2t1 − e−|ξ|2t2) dτ

∣∣∣∣ ≤ |t1 − t2| ‖g‖H−b |ξ|2
(∫

R

〈τ〉2b
|ξ|4 + |τ |2 dτ

) 1
2

≤ C|t1 − t2| ‖g‖H−b |ξ|2(|ξ|−1 + |ξ|(2b−1))

≤ C‖g‖H−b .(2.46)

Therefore, gathering (2.43)–(2.46), one infers that

‖G(t1)−G(t2)‖2L2 ≤ C
∫

R3

〈τ〉−2b 〈ξ〉2(2b−1) |Ft(g)|2 dτ dζ.(2.47)

It is clear that the integrand in (2.43) tends to 0 pointwise in (ζ, τ) as soon as |t1−t2| →
0 and is bounded uniformly in |t1− t2| by the integrand of the right member of (2.47).
The result follows then from Lebesgue dominated convergence theorem.

To show (2.39), it suffices to notice that one has

sup
t∈R+

‖Gn(t)‖L2(R2) ≤ C
∫

R3

〈τ〉−2b 〈ξ〉2(2b−1) |Ft(gn)|2 dτ dξ,

where Gn is defined as G with gn(·) = Fx(U(−·)∂xfn(·)) instead of g. Finally the
proof of part (b) is similar.

3. Strichartz estimates for the KP equation. The aim of this section is
to prove Lemma 3.4. It will be useful in the following sections while proving some
estimates in Xb,s1,s2 spaces and Xb,s spaces for the nonlinear term ∂x(u

2).
Lemma 3.1. Let 2 ≤ r and 0 ≤ β ≤ 1/2. Then

∀t �= 0,
∥∥∥ |Dx|−βδ(r)U(t)ϕ∥∥∥

Lr
z

≤ C|t|−(1−β/3)δ(r)‖ϕ‖Lr
z
,(3.1)

where

1

r
= 1− 1

r
, δ(r) = 1− 2

r
.(3.2)

Proof. From (1.2), U(t)ϕ = G(t) ∗ ϕ, where

G(t, x, y) =

∫
R2

eit(ξ
3−εη2/ξ)ei(xξ+yη) dξ dη.
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Noticing as in [15] that

1√
2π

∫
R

eiεtη
2/ξeiyη dη = eiε sgn(ξ/t)π

4

√
|ξ|
2|t|e

−iεξy2/(4t),

we have

‖ |Dx|−βG(t, x, y)‖L∞
z
≤ C|t|− 1

2

∫
R

|ξ| 12−βeitξ3 dξ.

Applying Lemma 2.1 of [10], we obtain that for all β ∈ [0, 1/2],

‖ |Dx|−βG(t, x, y)‖L∞
z
≤ C|t|−(1−β/3).

Therefore by the Young inequality,

‖ |Dx|−βU(t)ϕ‖L∞
z
≤ C|t|−(1−β/3)‖ϕ‖L1

z
,

and as U(·) is a unitary group in L2
z, the result follows by interpolation.

Thanks to Lemma 3.1 we can now derive some Strichartz’s estimates for the KP
equations.

Lemma 3.2. Let 2 ≤ r and 0 ≤ β ≤ 1/2. Then∥∥∥ |Dx|− βδ(r)
2 U(t)ϕ

∥∥∥
Lq,r

t,z

≤ C‖ϕ‖L2
z

(3.3)

for all (q, r, β) fulfilling the condition

0 ≤ 2

q
=

(
1− β

3

)
δ(r) < 1 .(3.4)

Proof. Using (3.1) and the so-called TT ∗ method, it is a rather classical process
(see [7] and the references therein, for instance) to obtain (3.3).

Now, we state a result which describes some relationships between Strichartz’s
inequalities for the KP equations and Xb,s1,s2 spaces.

Lemma 3.3. Let v ∈ L2(R3) with supp v ⊂ {(t, x, y)/ |t| ≤ T} and let ε > 0.
Then for all (r, β, θ) with

2 ≤ r < +∞, 0 ≤ β ≤ 1

2
, 0 ≤ θ ≤ 1, 0 ≤ δ(r) < θ

1− β/3 ,(3.5)

there exists µ = µ(ε) > 0 such that∥∥∥F−1
t,x

(
|ξ|− βδ(r)

2 〈τ − P (ζ)〉− θ
2 (1+ε)|v̂(τ, ζ)|

)∥∥∥
Lq,r

t,z

≤ CTµ‖v‖L2(R3),(3.6)

where q is defined by

2

q
=

(
1− β

3

)
δ(r) + (1− θ).(3.7)

Proof. Let û = |v̂|. Using Lemma 3.2 together with Lemma 3.3 of [6], we see that
for all ε > 0 ∥∥∥ |Dx|− βδ(r)

2 u
∥∥∥
Lq,r

t,z

≤ C‖u‖X1/2+ε/4,0,0(3.8)
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provided that (3.4) holds. Furthermore, by the definition of Xb,s1,s2 , we have

‖u‖L2
t,z

= ‖u‖X0,0,0 .(3.9)

Hence, for 0 ≤ θ ≤ 1, by interpolation,∥∥∥ |Dx|− θβδ(r)
2 u

∥∥∥
L

q1,r1
t,z

≤ C‖u‖
Xθ( 1

2
+ ε

4
),0,0 ,(3.10)

where

1

q1
=
θ

q
+

1− θ
2

,
1

r1
=
θ

r
+

1− θ
2

.

Since δ(r1) = θδ(r), (3.5) follows from (3.4) and, moreover,

2

q1
=

(
1− β

3

)
δ(r1) + (1− θ).

Next, using the assumption on the support of u and the results in [8], we get∥∥∥ |Dx|− θβδ(r)
2 u

∥∥∥
L

q1,r1
t,z

≤ CTµ ‖u‖
Xθ( 1

2
+ ε

2
),0,0 ,

which can be rewritten as∥∥∥F−1
t,z

(
|ξ|− βδ(r1)

2 û
)∥∥∥

L
q1,r1
t,z

≤ CTµ
∥∥∥〈τ − P (ζ)〉θ( 1

2+ ε
2 )û
∥∥∥
L2
.

This clearly completes the proof.
Now, using Lemma 3.3, we state a result which will allow us to obtain some

nonlinear estimates in Xb,s1,s2 and Xb,s spaces in the next sections.
Lemma 3.4. Let f and g be with compact support in {(x, y, t) / |t| ≤ T}. For

b > 0 small enough, there exists µ > 0 such that for all h ∈ L2(R3),∫
R6

|f(τ ′, ζ ′)||g(τ − τ ′, ζ − ζ ′)||h(τ, ζ)|
〈σ1〉1/2|ξ′|b〈σ2〉1/2 dτdτ ′dζdζ ′

≤ CTµ‖f‖L2‖g‖L2‖h‖L2(3.11)

and ∫
R6

|f(τ ′, ζ ′)||g(τ − τ ′, ζ − ζ ′)||h(τ, ζ)|
〈σ1〉1/2−b|ξ′|b〈σ2〉1/2〈σ〉b dτdτ ′dζdζ ′

≤ CTµ‖f‖L2‖g‖L2‖h‖L2 ,(3.12)

where σ, σ1, and σ2 are defined by

σ = τ − P (ζ), σ1 = τ ′ − P (ζ ′), σ2 = τ − τ ′ − P (ζ − ζ ′).
Proof. We first prove (3.11). By the Plancherel theorem, the Cauchy–Schwarz

inequality, and then by the Hölder inequality, we see that the right-hand side of (3.11)
is bounded by∥∥∥∥F−1

t,z

( |f(τ, ζ)|
〈σ〉1/2|ξ|b

)∥∥∥∥
L

4,r1
t,z

∥∥∥∥F−1
t,z

( |g(τ, ζ)|
〈σ〉1/2

)∥∥∥∥
L

4,r2
t,z

‖h‖L2
t,z
,(3.13)
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provided that

1

r1
+

1

r2
=

1

2
.(3.14)

First we apply Lemma 3.3 with (β2, θ2, q2) = (0, (1 + ε2)
−1, 4) for ε2 small enough.

From (3.7), it follows that δ(r2) = 1/2−, r2 = 4−, and that (3.5) holds. Hence, by
virtue of Lemma 3.3 we get∥∥∥∥F−1

t,z

( |g(τ, ζ)|
〈τ − P (ζ)〉1/2

)∥∥∥∥
L

4,r2
t,z

≤ CTµ‖g‖L2
t,z
.(3.15)

Now since r2 = 4−, in order to fulfill (3.14) we choose

r1 =
2r2
r2 − 2

= 4+,

which implies δ(r1) = 1/2+. Let

q1 = 4, θ1 =
1

1 + ε1
= 1−, β1 =

2

δ(r1)
b = 4+ b.

Note that for b < 1/8, 0 ≤ β1 ≤ 1/2, and so (3.5) is fulfilled since we have

δ(r1) ∼ 1

2
< 1− = θ1 ≤ θ1

1− β1/3
.

Moreover, for b small enough, we can always find ε1 = ε1(b) such that (3.7) holds. By
virtue of Lemma 3.3 it follows that∥∥∥∥F−1

t,z

( |f(τ, ζ)|
〈τ − P (ζ)〉1/2|ξ|b

)∥∥∥∥
L

4,r1
t,z

≤ CTµ‖f‖L2
t,z
.(3.16)

The proof of (3.11) follows then from (3.13), (3.15), and (3.16).
Now we prove (3.12). By the Plancherel theorem and the Hölder inequality (first

in space and then in time) we obtain that the right-hand side of (3.12) is bounded by
the product∥∥∥∥F−1

t,z

( |g(τ, ζ)|
〈σ〉1/2

)∥∥∥∥
L

q1,r1
t,z

∥∥∥∥F−1
t,z

(
|ξ|−b |f(τ, ζ)|〈σ〉1/2−b

)∥∥∥∥
L

q2,r2
t,z

∥∥∥∥F−1
t,z

( |h(τ, ζ)|
〈σ〉b

)∥∥∥∥
L

q3,r3
t,z

,

(3.17)
provided

1

q1
+

1

q2
+

1

q3
= 1,

1

r1
+

1

r2
+

1

r3
= 1.(3.18)

To apply Lemma 3.3 to each of the three terms in (3.17), for b small enough we take
first ε1 = ε2 = ε3 = ε, where ε = ε(b) will be a small parameter. Next we take

θ1 =
1

1 + ε
, θ2 =

1− 2b

1 + ε
, θ3 =

2b

1 + ε
,(3.19)

and we choose β1 = β3 = 0. From (3.7), it remains to find β2, qi, and ri with

2

q1
= δ1 + (1− θ1), 2

q2
= δ2 + (1− θ2)− β2δ2

3
,

2

q3
= δ3 + (1− θ3),(3.20)
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β2δ2 = 2b,(3.21)

such that (3.5) is fulfilled for i = 1, 2, 3.
First note that from (3.18) and (3.19),

∑
δi = 1,

∑
2/qi = 2, and also

∑
θi =

2/(1 + ε). Hence, adding the three equations in (3.20), we see that, necessarily,
2 = 4 − 2/(1 + ε) − β2δ2/3; i.e., β2δ2 = 6ε/(1 + ε). This relation is compatible with
(3.21) if and only if

6ε

1 + ε
= 2b.(3.22)

Hence, for b small enough, we choose ε(b) satisfying (3.22), which defined the values
of θi through (3.19). Also, from (3.19)–(3.20)

2

q1
= δ1 +

ε

1 + ε
,

2

q2
= δ2 +

2b− ε
1 + ε

,
2

q3
= δ3 + 1− 2b

1 + ε
.(3.23)

Now we choose (r1, r2, r3) = (4−, 4−, 2+) such that
∑
r−1
i = 1. From (3.23) it follows

that β2 = 2b/δ2 and, moreover, (q1, q2, q3) is closed to (4, 4, 2). Also recall that by
construction we have

∑
q−1
i = 1.

It remains to prove that (3.5) is fulfilled for i = 1, 2, 3. First remark that, for
b = 0+, ε(b) = 0+. It is clear that 0 ≤ θi ≤ 1, that 0 ≤ βi ≤ 1/2 for i = 1, 2, 3, and
also that the last restriction in (3.5) is fulfilled for i = 1, 2 since (δ1, δ2) = (1/2+, 1/2+)
and (θ1, θ2) = (1−, 1−). To see that (3.5) can be also fulfilled for i = 3, we remark
that it is enough to have 0 ≤ δ3 ≤ θ3. But since r3 does not depend on b, this can
always be achieved by choosing r3 close enough to 2.

Therefore from Lemma 3.3 we have∥∥∥∥F−1
t,z

(
|ξ|−b |f(τ, ζ)|〈σ〉1/2−b

)∥∥∥∥
L

q1,r1
t,z

≤ CTµ‖f‖L2
t,z
,(3.24)

∥∥∥∥F−1
t,z

( |g(τ, ζ)|
〈σ〉1/2

)∥∥∥∥
L

q2,r2
t,z

≤ CTµ‖g‖L2
t,z
,(3.25)

∥∥∥∥F−1
t,z

( |h(τ, ζ)|
〈σ〉b

)∥∥∥∥
L

q3,r3
t,z

≤ ‖h‖L2
t,z
.(3.26)

Gathering (3.17), (3.24), (3.25), and (3.26) we obtain (3.12).

4. Nonlinear estimates and applications to the resolution of KPB I.
First we prove existence and uniqueness of a solution u in the space X1/2,s1,s2(R2).
They follow from the linear estimates of Propositions 2.3 and 2.5 together with the
nonlinear estimates of Proposition 4.1 below. Next using Proposition 2.6, we prove
that u belongs also to C([0, T ], Hs1,s2(R2)).

Finally, by means of the conservation laws of the classical KP equation, we show
a priori estimates which yield the global existence of the solution of KPB I, provided
that ϕ belongs to Hs1,s2 , (s1, s2) ∈ [1,+∞[×R+, with F−1

x (ηξ ϕ̂) ∈ L2(R2).

4.1. Nonlinear estimates in Xb,s1,s2 .
Proposition 4.1. Let s1 > 0 and s2 ≥ 0. Let P be defined by

P (ξ, η) = ξ3 +
η2

ξ
or P (ξ, η) = ξ3 − η

2

ξ
.
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For u, v with support in the subset {(t, x, y)/ |t| ≤ T}, there exists µ > 0 such that
the following bilinear estimate holds:

‖uv‖X0,s1,s2 ≤ CTµ
(‖u‖X1/2,0+,0‖v‖X1/2,s1,s2 + ‖u‖

X1/2,0+,s2
‖v‖X1/2,s1,0

+ ‖u‖X1/2,s1,0‖v‖X1/2,0+,s2
+ ‖u‖X1/2,s1,s2 ‖v‖X1/2,0+,0

)
.(4.1)

Proof. By duality it is equivalent to prove that for δ > 0 small enough and for all
ω ∈ X0,−s1,−s2

|〈uv, ω〉| ≤ CTµ
(
‖u‖X1/2,δ,0,‖v‖X1/2,s1,s2 + ‖u‖X1/2,δ,s2 ‖v‖X1/2,s1,0

+ ‖u‖X1/2,s1,0‖v‖X1/2,δ,s2 + ‖u‖X1/2,s1,s2 ‖v‖X1/2,δ,0

)
‖ω‖X0,−s1,−s2 .(4.2)

Now, consider f , g, and h, respectively, defined by

f̂(τ, ζ) = 〈τ − P (ζ)〉1/2〈ξ〉s1〈η〉s2 û(τ, ζ),

ĝ(τ, ζ) = 〈τ − P (ζ)〉1/2〈ξ〉s1〈η〉s2 v̂(τ, ζ) , ĥ(τ, ζ) =
ω̂(τ, ζ)

〈ξ〉s1〈η〉s2 .

Since ‖u‖X1/2,s1,s2 = ‖f‖L2
t,z
, ‖v‖X1/2,s1,s2 = ‖g‖L2

t,z
, and ‖ω‖X0,−s1,−s2 = ‖h‖L2

t,z
, we

easily see that (4.2) is equivalent to the inequality

∫
R6

|f̂(τ − τ ′, ζ − ζ ′)||ĝ(τ ′, ζ ′)||ĥ(τ, ζ)|〈ξ〉s1〈η〉s2 dτdζdτ ′dζ ′
〈σ2〉1/2〈σ1〉1/2〈ξ − ξ′〉s1〈ξ′〉s1〈η − η′〉s2〈η′〉s2

≤ CTµ
(
‖f‖

L2
tH

−s1+δ,−s2
z

‖g‖L2
(t,z)

+ ‖f‖
L2

tH
−s1+δ,0
z

‖g‖
L2

tH
0,−s2
z

+ ‖f‖
L2

tH
0,−s2
z
‖g‖

L2
tH

−s1+δ,0
z

+ ‖f‖L2
(t,z)
‖g‖

L2
tH

−s1+δ,−s2
z

)
‖h‖L2

(t,z)
,(4.3)

where σ1 and σ2 are defined by

σ1 = τ − P (ζ) and σ2 = τ − τ ′ − P (ζ − ζ ′).
Note that for all s ≥ 0 we have

〈θ〉s
〈θ − θ′〉s〈θ′〉s ≤

C

〈θ − θ′〉s +
C

〈θ′〉s , θ , θ
′ ∈ R.

It follows that the left-hand side of (4.3) is bounded by the sum I1 + I2 + I3 + I4,
where

I1 =

∫
R6

|f̂(τ − τ ′, ζ − ζ ′)||ĝ(τ ′, ζ ′)||ĥ(τ, ζ)| dτdζdτ ′dζ ′
〈σ2〉1/2〈σ1〉1/2〈ξ − ξ′〉s1〈η − η′〉s2 ,

I2 =

∫
R6

|f̂(τ − τ ′, ζ − ζ ′)||ĝ(τ ′, ζ ′)||ĥ(τ, ζ)| dτdζdτ ′dζ ′
〈σ2〉1/2〈σ1〉1/2〈ξ − ξ′〉s1〈η′〉s2 ,

I3 =

∫
R6

|f̂(τ − τ ′, ζ − ζ ′)||ĝ(τ ′, ζ ′)||ĥ(τ, ζ)| dτdζdτ ′dζ ′
〈σ2〉1/2〈σ1〉1/2〈ξ′〉s1〈η − η′〉s2 ,
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I4 =

∫
R6

|f̂(τ − τ ′, ζ − ζ ′)||ĝ(τ ′, ζ ′)||ĥ(τ, ζ)| dτdζdτ ′dζ ′
〈σ2〉1/2〈σ1〉1/2〈ξ′〉s1〈η′〉s2 .

By Lemma 3.4, one infers that

I1 =

∫
R6

|f̂(τ ′, ζ ′)|
〈ξ′〉s1−δ〈η′〉s2

|ĝ(τ − τ ′, ζ − ζ ′)||ĥ(τ, ζ)|
〈σ2〉1/2〈σ1〉1/2〈ξ′〉δ dτdζdτ ′dζ ′

≤ C Tµ‖f‖
L2

tH
−s1+δ,−s2
z

‖g‖L2
t,z
‖h‖L2

t,z

for δ > 0 small enough. In the same way,

I2 ≤ CTµ‖f‖L2
tH

−s1+δ,0
z

‖g‖
L2

tH
0,−s2
z
‖h‖L2

t,z
,

I3 ≤ CTµ‖f‖L2
tH

0,−s2
z
‖g‖

L2
tH

−s1+δ,0
z

‖h‖L2
t,z
,

I4 ≤ CTµ‖f‖L2
t,z
‖g‖

L2
tH

−s1+δ,−s2
z

‖h‖L2
t,z
,

which completes the proof of the proposition.

4.2. Local existence result.
Proposition 4.2. Let ϕ ∈ Hs1,s2(R2), (s1, s2) ∈ R

∗
+×R+. For any δ > 0, there

exist T = T (‖ϕ‖Hδ,0) > 0 and a unique local solution u to (1.1) in

YT = X
1/2,s1,s2
T ∩ C([0, T ], Hs1,s2).

Furthermore the map ϕ �→ u is continuous from Hs1,s2 to YT .
Remark. It is important to note that the lower bound for the time of existence

of u in X
1/2,s1,s2
T ∩ C([0, T ], Hs1,s2) depends only on the norm of the corresponding

initial data in Hδ,0 (for all fixed δ > 0).
Proof. Let ϕ be in Hs1,s2 , (s1, s2) ∈ R

∗
+ ×R+. For T ≤ 1, u is a solution of KPB

on [0, T/2] if and only if u is a solution of the integral equation u = L(u) with

L(u) = ψ(t)

[
W (t)u0 − 1lR+(t)

2

∫ t

0

W (t− t′)∂x(ψ2
T (t

′)u2(t′)) dt′
]
.(4.4)

We first prove the statement for T = T (‖ϕ‖Hs1,0).
Following Bourgain, we are going to solve (4.4) in a ball of the space

Z = {u ∈ X1/2,s1,s2
T / ‖u‖Z = ‖u‖

X
1/2,s1,0

T

+ γ ‖u‖
X

1/2,s1,s2
T

< +∞},

where the constant γ is defined for all nontrivial ϕ by

γ =
‖ϕ‖Hs1,0

‖ϕ‖Hs1,s2

.

From Propositions 2.3 and 2.5 with b = 0,

‖L(u)‖
X

1/2,s1,0

T

≤ C‖ϕ‖s1,0 + C‖∆− 1
2

x ∂x(u
2)‖

X
0,s1,0

T

.

Proposition 4.1 then yields

‖L(u)‖
X

1/2,s1,0

T

≤ C ‖ϕ‖Hs1,0 + C Tµ‖u‖2
X

1/2,s1,0

T

.(4.5)
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Next, since ∂x(u
2)− ∂x(v2) = ∂x[(u− v)(u+ v)], we get

‖L(u)− L(v)‖
X

1/2,s1,0

T

≤ C Tµ‖u− v‖
X

1/2,s1,0

T

‖u+ v‖
X

1/2,s1,0

T

.(4.6)

In the same way, we obtain

‖L(u)‖
X

1/2,s1,s2
T

≤ C ‖ϕ‖Hs1,s2 + CTµ‖u‖
X

1/2,s1,0

T

‖u‖
X

1/2,s1,s2
T

(4.7)

and

‖L(u)− L(v)‖
X

1/2,s1,s2
T

≤ C Tµ
(
‖u− v‖

X
1/2,s1,0

T

‖u+ v‖
X

1/2,s1,s2
T

+ ‖u− v‖
X

1/2,s1,s2
T

‖u+ v‖
X

1/2,s1,0

T

)
.(4.8)

Recalling the definition of ‖ · ‖Z , (4.5)–(4.8) lead to

‖L(u)‖Z ≤ C (‖ϕ‖Hs1,0 + γ‖ϕ‖Hs1,s2 ) + C Tµ‖u‖2Z(4.9)

and

‖L(u)− L(v)‖Z ≤ C Tµ
(
‖u− v‖

X
1/2,s1,0

T

‖u+ v‖Z

+ γ‖u− v‖
X

1/2,s1,s2
T

‖u+ v‖
X

1/2,s1,0

T

)
≤ C Tµ‖u− v‖Z‖u+ v‖Z .(4.10)

Now, setting T = (4C2(‖ϕ‖Hs1,0+γ‖ϕ‖Hs1,s2))−1/µ, which yields T = (8C2‖ϕ‖Hs1,0)−1/µ

by definition of γ, we deduce from (4.9) and (4.10) that L is strictly contractive on
the ball of radius 2C(‖ϕ‖Hs1,0 + γ‖ϕ‖Hs1,s2 ) in Z. This proves the existence of a

unique solution to (1.1) in X
1/2,s1,s2
T with T = T (‖ϕ‖Hs1,0) > 0.

Note that ψ(·)W (·)ϕ belongs to C([0, T ], Hs1,s2) since ϕ belongs to Hs1,s2 . More-

over, since u ∈ X1/2,s1,s2
T , one infers from Proposition 4.1 that u2 ∈ X0,s1,s2

T , and it
follows from the first assertion of Proposition 2.6 that

t �→
∫ t

0

W (t− t′)∂x(u2(t′)) dt′

also belongs to C([0, T ], Hs1,s2). Thus u belongs to C([0, T ], Hs1,s2).
Now, standard arguments enable us to extend u on a maximal interval of existence

[0, T∗[ such that

if T∗ < +∞ , then lim sup
t↗T∗

‖u(t)‖Hs1,0 = +∞.(4.11)

Next, proceeding exactly in the same way as above but in the space

Z̃ = {u ∈ X1/2,s1,0
T / ‖u‖Z̃ = ‖u‖

X
1/2,δ,0

T

+ γ̃ ‖u‖
X

1/2,s1,0

T

< +∞},

where

γ̃ =
‖ϕ‖Hδ,0

‖ϕ‖Hs1,0

,



1290 LUC MOLINET AND FRANCIS RIBAUD

we obtain that for T̃ = T̃ (‖ϕ‖Hδ,0), L is also strictly contractive on a ball of Z̃.
Since obviously Hs1,s2 ⊂ Hs1,0, it follows that there exists T̃ = T̃ (‖ϕ‖Hδ,0) and a
unique solution ũ to (1.1) in C([0, T̃ ], Hs1,0) ∩ X1/2,s1,0. By uniqueness, u = ũ on
[0,min(T̃ , T∗)[, and this implies that T∗ ≥ T̃ (‖ϕ‖Hδ,0).

Finally, the continuity of the map ϕ �→ u from Hs1,s2 to X1/2,s1,s2 follows from
classical arguments, while the continuity from Hs1,s2 to C([0, T∗[, Hs1,s2) follows from
Proposition 2.6.

4.3. Global existence for KPB I. Let us now show that for ε = −1 and
ϕ ∈ Hs1,s2 , (s1, s2) in [1,+∞[×R+ with F−1

z (ηξ ϕ̂) ∈ L2(R2), the solution to (1.1) is
global in time. To establish a priori estimates on the solution, we will use the following
lemma which is directly inspired by the conservation laws of the KP equations.

Lemma 4.3. Let u ∈ C([0, T ], H3(R2)) be a solution to KPB equations (ε = ±1)
with initial data

ϕ ∈ N =

{
φ ∈ H3(R2), F−1

z

(
φ̂

ξ2

)
∈ H3(R2)

}
.

Then u satisfies

‖u(t)‖2L2 +

∫ t

0

‖ux‖2L2 = ‖ϕ‖2L2 ∀t ∈ [0, T ](4.12)

and

E(u(t)) +

∫ t

0

‖uxx(τ)‖2L2 + ‖uy(τ)‖2L2 dτ

= −1

2

∫ t

0

∫
R2

u2(τ)uxx(τ) dτ + E(ϕ),(4.13)

where

E(φ) =
1

2
‖φx‖2L2 − ε

2
‖∂−1φy‖2L2 − 1

6
‖φ‖3L3 .

Proof. Proceeding exactly as in [15], one can show that ∂−1uyy, ∂
−1
x ut, and

∂−2uyy belong to C([0, T ], L2(R2)). Therefore, we obtain (4.12) (respectively, (4.13))
by applying the operator ∂−1

x on (1.1), multiplying the obtained equation by u (re-
spectively, −uxx− ε∂−2

x uyy −u2/2), and integrating by parts in R
2 and then over the

time interval [0, t].
Now, according to Proposition 4.2, denoting by [0, T∗[ the maximal interval of

existence of the solution u to KPB,

if T∗ < +∞, then lim sup
t↗T∗

‖u(t)‖H1,0 = +∞.(4.14)

Next, thanks to Lemma 3.2 in [11], one can always find a sequence (ϕn)n≥0 ⊂ N∩H3,3

such that

ϕn → ϕ in

{
φ ∈ H1,0(R2), Fz

(
η

ξ
φ̂

)
∈ L2(R2)

}
.
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Fixing T in ]0, T∗[, Proposition 4.2 and Lemma 4.3 ensure that for n large enough
the solution un to KPB with initial data ϕn satisfies (4.12) and (4.13) on [0, T ] (note
that H3,3 ⊂ H3).

Recalling the anisotropic Sobolev inequality (cf. [1])

‖u‖2(q+1)

L2(q+1) ≤ C ‖u‖2−qL2 ‖ux‖2qL2 ‖∂−1
x uy‖qL2 ∀q ∈ [0, 2],(4.15)

we notice that ∣∣∣∫
R2

u2ux

∣∣∣ ≤ 1

2
‖uxx‖2L2 +

1

2
‖u‖L2‖ux‖2L2‖∂−1

x uy‖L2 .

It then follows from (4.12) and (4.13) that, for all t in [0, T ],

E(un(t)) ≤ −1

2

∫ t

0

(
‖un,xx‖2L2 + ‖un,y‖L2

)
dt

+ C ‖ϕn‖3L2‖∂−1
x un,y‖L∞

T
L2

z
+ E(ϕn).(4.16)

Using (4.15) again (with q = 1/2) we see that

∣∣∣∫
R2

u3
n

∣∣∣ ≤ ‖un‖ 3
2

L2 ‖un,x‖L2‖∂−1
x un,y‖

1
2

L2 ,

and (4.16) then leads to

‖un,x‖2L∞
T
L2

z
+ ‖∂−1

x un,y‖2L∞
T
L2

z

≤ C(‖ϕn‖2)
(
1 + ‖un,x‖2L∞

T
L2

z
+ ‖∂−1

x un,y‖2L∞
T
L2

z

) 3
4

+ E(ϕn).(4.17)

Since by (4.15), E(ϕn) ≤ C (‖ϕn‖H1,0 , ‖∂−1
x ϕn,y‖L2), it follows from (4.17) that

‖un,x‖L∞
T
L2

z
≤ C

(
‖ϕn‖H1,0 , ‖∂−1

x ϕn,y‖L2

)
.

By Proposition 4.2, un → u in C([0, T ], H1,0), and so

‖ux‖L∞
T
L2

z
≤ C

(
‖ϕ‖H1,0 , ‖∂−1

x ϕy‖L2

)
.

Thus (4.14) ensures that T∗ = +∞.

5. The Cauchy problem for the KPB II equation in Hs(R2), s ≥ 0. In
this section we use the algebraic inequality (5.2) to derive a bilinear estimate which
will enable us to show the local existence of a unique solution u in the space X1/2,s for
all initial data in the Sobolev space Hs(R2), s ≥ 0. Note that (5.2) holds only when
ε = +1 and is crucial to regain the x-derivative in the local well-posedness result
for the classical KP II equation. Moreover, we show that the time of existence of
the solution in C([0, T ], Hs) depends only on the norm of the initial data in L2(R2).
Finally, using the decay of the L2-norm of regular solutions of the KPB II equation,
we prove the global existence in Hs(R2).
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5.1. Nonlinear estimates.
Proposition 5.1. Let s ≥ 0 and b > 0 small enough. Let P (ξ, η) be defined by

P (ξ, η) = ξ3 +
η2

ξ
.

Let u and v supported in the set {(t, x, y)/ |t| ≤ T}. Then there exists µ(b) > 0 such
that the following bilinear estimate holds:

‖∆
2b−1

2
x ∂x(uv)‖X−b,s ≤ CT 2µ (‖u‖X1/2,s‖v‖X1/2,0 + ‖u‖X1/2,0‖v‖X1/2,s) .(5.1)

Proof. By duality it is enough to prove that for all ω ∈ Xb,−s,

|〈∆
2b−1

2
x ∂x(uv), ω〉| ≤ CT 2µ(‖u‖X1/2,s‖v‖X1/2,0 + ‖u‖X1/2,0‖v‖X1/2,s)‖ω‖Xb,−s .

Now, consider

f̂ = û(τ, ζ)〈ζ〉s〈τ − P (ζ)〉1/2, ĝ = v̂(τ, ζ)〈ζ〉s〈τ − P (ζ)〉1/2

and

ω̂ = ĥ(τ, ζ)〈ζ〉−s〈τ − P (ζ)〉b.
Then

|〈∆
2b−1

2
x ∂x(uv), ω〉| ≤ I,

where I is defined by

I =

∫
R6

|ξ|〈ξ〉2b−1|f̂(τ − τ ′, ζ − ζ ′)||ĝ(τ ′, ζ ′)||ĥ(τ, ζ)| dτdζdτ ′dζ ′
〈σ2〉1/2〈σ1〉1/2〈σ〉b〈ζ − ζ ′〉s〈ζ ′〉s〈ζ〉−s .

Recall (see [4]) that the following algebraic inequality holds:

3max (|σ|, |σ1|, |σ2|) ≥ |ξξ′(ξ′ − ξ)| ≥ |ξ|2 min (|ξ′|, |ξ′ − ξ|) .(5.2)

Note also that

〈ζ〉s
〈ζ − ζ ′〉s〈ζ ′〉s ≤

C

〈ζ ′〉s +
C

〈ζ − ζ ′〉s .(5.3)

Now, to estimate I, by symmetry, we can always assume that |σ1| ≥ |σ2|. Hence we
have only to consider the two cases |σ| ≥ |σ1| and |σ1| ≥ |σ|.

(a) The case |σ| ≥ |σ1|.
(a1) The subcase |ξ′| ≤ |ξ − ξ′|. We denote by I1 the contribution to I on this

subdomain. From (5.2) we obtain

|ξ|〈ξ〉2b−1

〈σ〉b ≤ |ξ|〈ξ〉
−1

|ξ′|b ≤ |ξ′|−b,

and so from (5.3) we get

I1 ≤
∫

R6

|f̂(τ − τ ′, ζ − ζ ′)||ĝ(τ ′, ζ ′)||ĥ(τ, ζ)|
〈σ2〉1/2〈σ1〉1/2|ξ′|b〈ζ − ζ ′〉s dτdζdτ ′dζ ′
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+

∫
R6

|f̂(τ − τ ′, ζ − ζ ′)||ĝ(τ ′, ζ ′)||ĥ(τ, ζ)|
〈σ2〉1/2〈σ1〉1/2|ξ′|b〈ζ ′〉s dτdζdτ ′dζ ′

≤ C‖f̂(τ, ζ)〈ζ〉−s‖L2
t,z
‖ĝ‖L2

t,z
‖ĥ‖L2

t,z
+ ‖f̂‖L2

t,z
‖ĝ(τ, ζ)〈ζ〉−s‖L2

t,z
‖ĥ‖L2

t,z

by virtue of (3.11) in Lemma 3.4. Hence we have

I1 ≤ ‖u‖X1/2,0‖v‖X1/2,s‖ω‖Xb,−s + ‖u‖X1/2,s‖v‖X1/2,0‖ω‖Xb,−s .(5.4)

(a2) The subcase |ξ − ξ′| ≤ |ξ′|. We denote by I2 the contribution to I on this
subdomain. From (5.2) again, we obtain

|ξ|〈ξ〉2b−1

〈σ〉b ≤ |ξ|〈ξ〉2b−1

〈ξ〉2b|ξ′ − ξ|2b ≤ |ξ
′ − ξ|−2b.

Hence, from (5.3),

I2 ≤
∫

R6

|f̂(τ − τ ′, ζ − ζ ′)||ĝ(τ ′, ζ ′)||ĥ(τ, ζ)|
〈σ2〉1/2〈σ1〉1/2|ξ′ − ξ|b〈ζ − ζ ′〉s dτdζdτ ′dζ ′

+

∫
R6

|f̂(τ − τ ′, ζ − ζ ′)||ĝ(τ ′, ζ ′)||ĥ(τ, ζ)|
〈σ2〉1/2〈σ1〉1/2|ξ′ − ξ|b〈ζ ′〉s dτdζdτ ′dζ ′

≤ C‖f̂(τ, ζ)〈ζ〉−s‖L2
t,z
‖ĝ‖L2

t,z
‖ĥ‖L2

t,z
+ ‖f̂‖L2

t,z
‖ĝ(τ, ζ)〈ζ〉−s‖L2

t,z
‖ĥ‖L2

t,z

by virtue of (3.11) in Lemma 3.4. Hence we have

I2 ≤ ‖u‖X1/2,0‖v‖X1/2,s‖ω‖Xb,−s + ‖u‖X1/2,s‖v‖X1/2,0‖ω‖Xb,−s .(5.5)

(b) The case |σ1| ≥ |σ|. In this situation, from (5.2), we have

I =

∫
R6

|ξ|〈ξ〉2b−1|f̂(τ − τ ′, ζ − ζ ′)||ĝ(τ ′, ζ ′)||ĥ(τ, ζ)| dτdζdτ ′dζ ′
〈σ2〉1/2〈σ1〉1/2−b〈σ1〉b〈σ〉b〈ζ − ζ ′〉s〈ζ ′〉s〈ζ〉−s

≤
∫

R6

|f̂(τ − τ ′, ζ − ζ ′)||ĝ(τ ′, ζ ′)||ĥ(τ, ζ)|〈ζ〉s dτdζdτ ′dζ ′
〈σ2〉1/2〈σ1〉1/2−bmin (|ξ′|, |ξ − ξ′|)b〈σ〉b〈ζ − ζ ′〉s〈ζ ′〉s

.

(b1) Subcase |ξ − ξ′| ≤ |ξ′|. We denote by I3 the contribution to I on this
subdomain. According to the last inequality and (5.3) and since 〈σ〉 ≤ 〈σ1〉, we infer
that

I3 ≤
∫

R6

|f̂(τ − τ ′, ζ − ζ ′)||〈ζ ′〉−sĝ(τ ′, ζ ′)||ĥ(τ, ζ)|
〈σ2〉1/2|ξ′ − ξ|b〈σ〉1/2 dτdζdτ ′dζ ′

+

∫
R6

|〈ζ − ζ ′〉−sf̂(τ − τ ′, ζ − ζ ′)||ĝ(τ ′, ζ ′)||ĥ(τ, ζ)|
〈σ2〉1/2|ξ′ − ξ|b〈σ〉1/2 dτdζdτ ′dζ ′

≤ C‖f̂(τ, ζ)〈ζ〉−s‖L2
t,z
‖ĝ‖L2

t,z
‖ĥ‖L2

t,z
+ ‖f̂‖L2

t,z
‖ĝ(τ, ζ)〈ζ〉−s‖L2

t,z
‖ĥ‖L2

t,z

by virtue of (3.11) in Lemma 3.4. Hence we have

I3 ≤ ‖u‖X1/2,0‖v‖X1/2,s‖ω‖Xb,−s + ‖u‖X1/2,s‖v‖X1/2,0‖ω‖Xb,−s .(5.6)
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(b2) Subcase |ξ′| ≤ |ξ′ − ξ|. We denote by I4 the contribution to I on this
subdomain. Then according to (5.3) we have

I4 ≤
∫

R6

|f̂(τ − τ ′, ζ − ζ ′)||〈ζ ′〉−sĝ(τ ′, ζ ′)||ω̂(τ, ζ)|
〈σ2〉1/2|ξ′|b〈σ1〉1/2−b〈σ〉b dτdζdτ ′dζ ′

+

∫
R6

|〈ζ − ζ ′〉−sf̂(τ − τ ′, ζ − ζ ′)||ĝ(τ ′, ζ ′)||ĥ(τ, ζ)|
〈σ2〉1/2|ξ′|b〈σ1〉1/2−b〈σ〉b dτdζdτ ′dζ ′

≤ C‖f̂(τ, ζ)〈ζ〉−s‖L2
t,z
‖ĝ‖L2

t,z
‖ĥ‖L2

t,z
+ ‖f̂‖L2

t,z
‖ĝ(τ, ζ)〈ζ〉−s‖L2

t,z
‖ĥ‖L2

t,z

by virtue of the estimate (3.12) in Lemma 3.4. Hence we have

I4 ≤ ‖u‖X1/2,0‖v‖X1/2,s‖ω‖Xb,−s + ‖u‖X1/2,s‖v‖X1/2,0‖ω‖Xb,−s .(5.7)

The proof follows now from (5.4), (5.5), (5.6), and (5.7).

5.2. Local existence.
Proposition 5.2. For any ϕ ∈ Hs(R2) with s ≥ 0, there exists T = T (‖u0‖L2)

and a unique local solution u of KPB II in

YT = X
1/2,s
T ∩ C([0, T ], Hs).

Furthermore the map ϕ �→ u is continuous from Hs(R2) to YT .
Remark. It is important to note that the lower bound for the time of existence

of u in X
1/2,s
T ∩ C([0, T ], Hs) depends only on the norm of the corresponding initial

data in L2.
Proof. The procedure is the same as for the proof of Proposition 4.2. We now

work in the space

Z = {u ∈ X1/2,s
T / ‖u‖Z = ‖u‖

X
1/2,0

T

+ γ ‖u‖
X

1/2,s

T

< +∞},

where the constant γ is defined for all nontrivial ϕ by

γ =
‖ϕ‖L2

‖ϕ‖Hs

.

From Propositions 2.3 and 2.5, for all 0 ≤ b < 1/2,

‖L(u)‖
X

1/2,0

T

≤ C‖ϕ‖L2 + C‖∆
2b−1

2
x ∂x(u

2)‖X−b,0
T

,

‖L(u)‖
X

1/2,s

T

≤ C‖ϕ‖Hs + C‖∆
2b−1

2
x ∂x(u

2)‖X−b,s
T

.

Choosing b > 0 small enough, Proposition 5.1 then yields

‖L(u)‖
X

1/2,0

T

≤ C ‖ϕ‖L2 + C Tµ‖u‖2
X

1/2,0

T

,

‖L(u)‖
X

1/2,s

T

≤ C ‖ϕ‖Hs + C Tµ‖u‖2
X

1/2,s

T

.
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Since ∂x(u
2)− ∂x(v2) = ∂x[(u− v)(u+ v)], in the same way we get

‖L(u)− L(v)‖
X

1/2,0

T

≤ C Tµ‖u− v‖
X

1/2,0

T

‖u+ v‖
X

1/2,0

T

,

‖L(u)− L(v)‖
X

1/2,s

T

≤ C Tµ
(
‖u− v‖

X
1/2,s

T

‖u+ v‖
X

1/2,0

T

+ ‖u− v‖
X

1/2,0

T

‖u+ v‖
X

1/2,s

T

)
.

Proceeding as in the proof of Proposition 4.2, it clearly follows from the above in-

equalities that for T = (8C2‖ϕ‖L2)−
1
µ , the integral operator L is strictly contractive

on the ball of radius 2C(‖ϕ‖L2 + γ‖ϕ‖Hs) in Z. This mainly shows the result (we
refer to the proof of Proposition 4.2 for further details).

5.3. Global existence for KP II. We now prove the global existence result.
In view of Proposition 5.2, for ϕ ∈ Hs(R2), s ≥ 0, the local solution u of KPB II can
be extended on a maximal existence interval [0, T∗[ such that

if T∗ <∞ , then lim sup
t↗T∗

|u(t)|2 = +∞.(5.8)

We are going to see that the L2-norm of the solution is nonincreasing on [0, T∗[, which
obviously ensures that T∗ = +∞.

Proof. Note that, thanks to Lemma 3.2 in [11], one can always find a sequence
(ϕn)n≥0 ⊂ N such that ϕn → ϕ in L2(R2). Fixing T ∈ ]0, T∗[, we deduce from
Proposition 5.2 and Lemma 4.3 that for n large enough the solution un of KPB II
with initial data ϕn satisfies (4.12) on [0, T ]. We thus infer that

‖un(t2)‖2 ≤ ‖un(t1)‖2 , 0 ≤ t1 ≤ t2 ≤ T.

Passing to the limit in n, using that un → u in C([0, T ], L2(R2)), we deduce that
t �→ ‖u(t)‖2 is nonincreasing on [0, T ]. Letting T tend to T∗, the result on [0, T∗[ is
proved.
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Abstract. It is shown that every solution of a linear differential system with constant coefficients
and time delays tends to zero if a certain matrix derived from the coefficient matrix is a nonsingular
M -matrix and the diagonal delays satisfy the so-called 3/2 condition.
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1. Introduction. Consider a system of delayed linear differential equations with
constant coefficients of the form

ẋi(t) = −
n∑
j=1

aijxj(t− τij), i = 1, 2, . . . , n,(1.1)

with

τij ≥ 0 for all 1 ≤ i, j ≤ n.(1.2)

System (1.1) arises as linearization about an equilibrium point of many nonlinear
systems with time delays. The interested reader can refer to Stépán [14] and the
references therein for multiple-delay examples, such as machine tool vibration and
human-machine systems.

When τij = 0 for all i, j = 1, 2, . . . , n, it is well known that (1.1) is asymptotically
stable if and only if the matrix A = (aij) is a positively stable matrix, meaning
that all eigenvalues of A have positive real parts. When some of the delays τij are
nonzero, (1.1) is asymptotically stable if and only if all the roots of its characteristic
equation have negative real parts (cf. Hale and Verduyn Lunel [6]). In general, it
is extremely difficult to analyze the characteristic equation of (1.1) when there are
multiple (nonzero) delays. In Hofbauer and So [8], the authors considered the case
when τii = 0 for i = 1, 2, . . . , n, and they established the following result.

Theorem 1.1. Assume that τii = 0 for all i = 1, 2, . . . , n. Then (1.1) is asymp-
totically stable for all choices of delays of the form (1.2) if and only if aii > 0 for
i = 1, 2, . . . , n, detA �= 0, and A is weakly diagonally dominant (i.e., all the principal
minors of Â = (âij) are nonnegative, where âii = aii and âij = −|aij | for j �= i).

In such a case (i.e., when there is no diagonal delay), Györi [5] also obtained a
similar result for a quasi-monotone matrix A (i.e., aij ≤ 0 for i �= j). Motivated by the
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study of neural networks of Hopfield type, there is a recent extension of Theorem 1.1
by Sue Ann Campbell [2] of the University of Waterloo to include both types of
diagonal terms, both with and without delays. A result similar to Theorem 1.1 was
obtained (with the conditions on a suitably derived matrix) using the same proof as
in [8].

When τii �= 0, i = 1, . . . , n, instantaneous feedback is absent, and (1.1) becomes
a system of “pure-delay type.” For such a “pure-delay-type” system, the stability
problem becomes much harder, as pointed out by Gopalsamy and He [4], He [7], and
Kuang [10]. However, it is reasonable to expect that a similar stability criterion holds
as long as the diagonal delays are sufficiently small. This paper will provide an answer
to this question. More precisely, by employing a new technique (without analyzing
the characteristic equation or constructing a Liapunov functional), we will extend
the sufficiency part of Theorem 1.1 to the case when τii (i = 1, 2, . . . , n) are not
necessarily all zero. For convenience, we recall the concept of a nonsingularM -matrix
(cf. Fiedler [3]).

Definition 1.2. The n × n matrix B = (bij) is a nonsingular M-matrix if (i)
bij ≤ 0 for j �= i and (ii) all principal minors of B are positive.

There are many equivalent formulations of this concept (cf. Fiedler [3, Theorem
5.1, p. 114]. In particular, if B is a nonsingular M -matrix, then B−1 is a positive
matrix.

We associate with the n× n matrix A = (aij) a new matrix Ã = (ãij) defined by

ãii = aii for i = 1, 2, . . . , n(1.3)

and

ãij = −
1 + 1

9aiiτii(3 + 2aiiτii)

1− 1
9aiiτii(3 + 2aiiτii)

|aij | for i �= j, j = 1, 2, . . . , n.(1.4)

Now we can state our main result.
Theorem 1.3. Assume that

aiiτii <
3

2
for all i = 1, 2, . . . , n.(1.5)

If Ã is a nonsingular M-matrix, then every solution (x1(t), x2(t), . . . , xn(t)) of (1.1)
tends to 0 as t→∞.

Remark 1.1. Condition (1.5) will be referred to as the 3/2 condition. When
τii = 0 for all i = 1, . . . , n, the 3/2 condition is automatically satisfied and Ã = Â.
According to Bapat and Raghavan [1, Theorem 7.8.6], if Â is a nonsingularM -matrix,
then A itself is nonsingular. Hence, in the case of no diagonal delays, a matrix A
satisfying the hypotheses of Theorem 1.3 will also satisfy the criterion in Theorem
1.1. The stability criterion in Theorem 1.3 is concrete and easily verifiable for any
given (numerical) system.

Remark 1.2. There are many 3/2 stability results for scalar (linear or nonlinear,
autonomous or nonautonomous, one or several delays) equations in the literature.
See, for example, [11, 16, 15, 9, 12, 13]. It would be interesting to see if these results
can be extended to systems.

Remark 1.3. In [8], besides the linear equation (1.1), the authors also consid-
ered global stability of Lotka–Volterra equations (with τii = 0). We are currently
investigating the possibility of a 3/2 result for Lotka–Volterra systems when τii > 0.
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2. Proof of Theorem 1.3. The proof of Theorem 1.3 consists of the following
two lemmas. The first lemma establishes the boundedness of solutions of (1.1).

Lemma 2.1. Under the conditions of Theorem 1.3, every (forward) solution of
(1.1) is bounded.

Proof. Let (x1(t), x2(t), . . . , xn(t)) be a solution of (1.1) on [t0,∞). Without loss
of generality, t0 can be taken to be 0. For the sake of contradiction, assume that
max{|xi(t)| : i = 1, 2, . . . , n} is unbounded on [t0,∞). By rearranging the indices i,
we may assume that

lim sup
t→∞

|xi(t)| =∞ for i = 1, 2, . . . , k(≤ n)(2.1)

and

|xi(t)| ≤M for t ≥ t0 −max
h,k
{τhk}, i = k + 1, . . . , n.(2.2)

Let N be the smallest integer such that N > t0 + τii for all i. There is an integer
N1 > N such that for each i = 1, . . . , k, the maximum of the function |xi(t)| on the
interval [t0, N1] is attained at a point in [N,N1]. Fix i = 1, . . . , k. For each integer
m ≥ 1, let tim ∈ [N,N1 +m] be such that |xi(tim)| = max{|xi(t)| : t ∈ [t0, N1 +m]}.
We may assume that {tim}∞m=1 is a nondecreasing sequence. By going to subsequences
if necessary, we have k sequences {tim}∞m=1, i = 1, 2, . . . , k, such that{

tim ↑ ∞, |xi(tim)| ↑ ∞ as m→∞,
|xi(t)| ≤ |xi(tim)| for t0 ≤ t ≤ tm,

for i = 1, 2, . . . , k,(2.3)

where tm = max{tim : i = 1, 2, . . . , k}. Again by going to subsequences if necessary,
we may assume that for each i = 1, . . . , k, all the terms in the sequence {xi(tim)}∞m=1

are of the same sign. Without loss of generality (i.e., by using −xi(t) instead of xi(t)
and−aij instead of aij for j �= i, if necessary), we may assume that |xi(tim)| = xi(tim).
Then

|xi(t)| ≤ xi(tim) for t0 ≤ t < tm and ẋi(tim) ≥ 0, i = 1, 2, . . . , k.

It follows from (1.1) that

0 ≤ −
n∑
j=1

aijxj(tim − τij) ≤ −aiixi(tim − τii) +
k∑
j �=i
|aij |xj(tjm) +M

n∑
j=k+1

|aij |

or

xi(tim − τii) ≤ 1

aii


 k∑
j �=i
|aij |xj(tjm) +M

n∑
j=k+1

|aij |

 , i = 1, 2, . . . , k.(2.4)

Set

αi =
1

aii


 k∑
j �=i
|aij |xj(tjm) +M

n∑
j=k+1

|aij |

 , i = 1, 2, . . . , k.(2.5)

We will now show

aiixi(tim) +

k∑
j �=i

ãijxj(tjm) ≤M
n∑

j=k+1

|ãij | for i = 1, 2, . . . , k.(2.6)
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If xi(tim) ≤ αi, then (2.6) follows from a simple calculation. If xi(tim) > αi, by (2.4)
there exists ξim ∈ [tim − τii, tim] such that xi(ξim) = αi. From (1.1) we have

ẋi(t) ≤ aii[−xi(t− τii) + αi] ≤ aii (|xi(tim)|+ αi) for N ≤ t ≤ tm.(2.7)

For t ∈ [ξim, tim), integrating (2.7) from t− τii to ξim, we have
αi − xi(t− τii) ≤ aii (|xi(tim)|+ αi) (ξim + τii − t) for ξim ≤ t ≤ tim.

Substituting this into the first inequality in (2.7), we obtain

ẋi(t) ≤ a2
ii (|xi(tim)|+ αi) (ξim + τii − t) for ξim ≤ t ≤ tim.

Combining this and (2.7), we have

ẋi(t) ≤ aii (|xi(tim)|+ αi)min{1, aii(ξim + τii − t)} for ξim ≤ t ≤ tim.(2.8)

We consider the following two cases.
Case 1. tim − ξim ≤ 2τii/3. In this case, by (2.8) we have

xi(tim)− xi(ξim) ≤ a2
ii (|xi(tim)|+ αi)

∫ tim

ξim

(ξim + τii − t)dt

= a2
ii (|xi(tim)|+ αi)

[
τii(tim − ξim)− 1

2
(tim − ξim)2

]

≤ (|xi(tim)|+ αi)

[
2

3
(aiiτii)

2 − 2

9
(aiiτii)

2

]

=
4

9
(aiiτii)

2 (|xi(tim)|+ αi)

≤ 1

9
aiiτii(3 + 2aiiτii) (|xi(tim)|+ αi) ,

since the function y → τiiy − 1
2y

2 is increasing on the interval [0, 2τii
3 ].

Case 2. tim − ξim > 2τii/3. In this case, let tim − ηim = 2τii/3 so that ηim ∈
(ξim, tim]. Then by (2.8) we have

xi(tim)− xi(ξim)

≤ (|xi(tim)|+ αi)

[
aii(ηim − ξim) + a2

ii

∫ tim

ηim

(ξim + τii − t)dt
]

= (|xi(tim)|+ αi)

[
aii(ηim − ξim)(1− aii(tim − ηim)) + a2

ii

∫ tim

ηim

(ηim + τii − t)dt
]

= (|xi(tim)|+ αi)

[
aii(ηim − ξim)

(
1− 2

3
aiiτii

)

+ a2
iiτii(tim − ηim)−

1

2
a2
ii(tim − ηim)2

]

≤ (|xi(tim)|+ αi)

[
1

3
aiiτii +

2

9
(aiiτii)

2

]

=
1

9
aiiτii(3 + 2aiiτii) (|xi(tim)|+ αi) ,

since ηim − ξim ≤ τii
3 in this case.



STABILITY OF LINEAR DELAY SYSTEM 1301

Combining Cases 1 and 2, we have

aiixi(tim)

≤ 1 + 1
9aiiτii(3 + 2aiiτii)

1− 1
9aiiτii(3 + 2aiiτii)


 k∑
j �=i
|aij |xj(tjm) +M

n∑
j=k+1

|aij |

 , i = 1, 2, . . . , k,

which implies (2.6) is true.
Let Ãk = (ãij)k×k denote the kth leading principal submatrix of Ã. Then Ãk is

a nonsingular M -matrix of order k, and so Ã−1
k > 0. Hence, it follows from (2.6) that

(x1(t1m), x2(t2m), . . . , xk(tkm))
T ≤MÃ−1

k


 n∑
j=k+1

|ã1j |,
n∑

j=k+1

|ã2j |, . . . ,
n∑

j=k+1

|ãkj |


T

,

m = 1, 2, . . . .

We conclude that

lim sup
m→∞

|xi(tim)| <∞, i = 1, 2, . . . , k.

This contradicts the fact that |xi(tim)| → ∞ as m → ∞ for i = 1, 2, . . . , k, and the
proof is complete.

Next, using the boundedness of solutions, we can prove the convergence of all
solutions of (1.1).

Lemma 2.2. Under the conditions of Theorem 1.3, every solution of (1.1) tends
0 as t→∞.

Proof. Let (x1(t), x2(t), . . . , xn(t)) be a solution of (1.1) on [t0,∞). We will prove
that

lim
t→∞xi(t) = 0, i = 1, 2, . . . , n.(2.9)

We distinguish the two cases.
Case A. All of the functions

∑n
j=1 aijxj(t − τij), i = 1, 2, . . . , n, are nonoscilla-

tory. Then the functions ẋi(t) (i = 1, 2, . . . , n) are eventually sign-definite, and so by
Lemma 2.1, the limit ci = limt→∞ xi(t) exists. By (1.1), ẋi(t) converges as t → ∞.
Since ẋi(t) is bounded, xi(t) is uniformly continuous and convergent. Therefore,
limt→∞ ẋi(t) = 0 for i = 1, 2, . . . , n, and we have

n∑
j=1

aijcj = 0 for i = 1, 2, . . . , n.

It follows that

aii|ci| −
∑
j �=i
|aij ||cj | ≤ 0 for i = 1, 2, . . . , n.(2.10)

Set Â = (âij), where âii = aii and âij = −|aij | for j �= i. Then Â ≥ Ã and Â

has nonpositive off-diagonal entries. In view of [3, Theorem 2.5.4], the matrix Â is
also a nonsingular M -matrix. Since (2.10) can be expressed as the matrix inequality
Â(|c1|, . . . , |cn|)T ≤ (0, . . . , 0)T , by applying the positive matrix Â−1 to both sides,
we conclude that c1 = c2 = · · · = cn = 0.
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Case B. At least one of the functions
∑n
j=1 aijxj(t − τij) (i = 1, 2, . . . , n) is

oscillatory. Set

Ui = lim sup
t→∞

|xi(t)|, i = 1, 2, . . . , n.

By Lemma 2.1, we have Ui < ∞, i = 1, 2, . . . , n. It suffices to prove that U1 =
· · · = Un = 0. By rearranging the indices, we may assume that

∑n
j=1 aijxj(t − τij),

i = 1, . . . , k, are oscillatory and
∑n
j=1 aijxj(t−τij), i = k+1, . . . , n, are nonoscillatory.

It follows from (1.1) that ẋi(t) (i = 1, 2, . . . , k) are oscillatory and

lim
t→∞ ẋi(t) = 0 for i = k + 1, . . . , n.(2.11)

Hence, for any ε > 0, there exist k sequences {tim} i = 1, 2, . . . , k, such that{
tim ↑ ∞, |xi(tim)| → Ui as m→∞,
|ẋi(tim)| = 0, Ui − ε < |xi(t)| < Ui + ε for t ≥ t1,

i = 1, 2, . . . , k,(2.12)

where t1 = min{ti1 : i = 1, 2, . . . , k}. By going to subsequences if necessary, we may
assume |xi(tim)| = xi(tim) (use −xi(t) instead of xi(t) and −aij instead of aij for
j �= i, if necessary). By (1.1), as long as m is sufficiently large, we have

0 = −
n∑
j=1

aijxj(tim − τij) ≤ −aiixi(tim − τii) +
n∑
j �=i
|aij |(Uj + ε)

or

xi(tim − τii) ≤ 1

aii

n∑
j �=i
|aij |(Uj + ε), i = 1, 2, . . . , k.(2.13)

Set

βi =
1

aii

n∑
j �=i
|aij |(Uj + ε), i = 1, 2, . . . , k.(2.14)

We will now show

aiixi(tim) +
∑
j �=i

ãij(Uj + ε) ≤ 2εaiiτii(3 + 2aiiτii)

9− aiiτii(3 + 2aiiτii)
, i = 1, 2, . . . , k.(2.15)

If xi(tim) ≤ βi, then (2.15) obviously holds. If xi(tim) > βi, by (2.13) there exists
ξim ∈ [tim − τii, tim] such that xi(ξim) = βi. Using (1.1), for m sufficiently large we
have

ẋi(t) ≤ aii[−xi(t− τii) + βi] ≤ aii [(Ui + ε) + βi] for ξim − τii ≤ t ≤ tim.(2.16)

For t ∈ [ξim, tim), integrating (2.16) from t− τii to ξim, we have
βi − xi(t− τii) ≤ aii [(Ui + ε) + βi] (ξim + τii − t) for ξim ≤ t ≤ tim.

Substituting this into the first inequality in (2.16), we obtain

ẋi(t) ≤ a2
ii [(Ui + ε) + βi] (ξim + τii − t) for ξim ≤ t ≤ tim.
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Combining this and (2.16), we have

ẋi(t) ≤ aii [(Ui + ε) + βi]min{1, aii(ξim + τii − t)}, ξim ≤ t ≤ tim.(2.17)

We consider the following two cases.
Case 1. tim − ξim ≤ 2τii/3. In this case, by (2.17) we have

xi(tim)− xi(ξim) ≤ a2
ii [(Ui + ε) + βi]

∫ tim

ξim

(ξim + τii − t)dt

= a2
ii [(Ui + ε) + βi]

[
τii(tim − ξim)− 1

2
(tim − ξim)2

]

≤ [(Ui + ε) + βi]

[
2

3
(aiiτii)

2 − 2

9
(aiiτii)

2

]

=
4

9
(aiiτii)

2 [(Ui + ε) + βi]

≤ 1

9
aiiτii(3 + 2aiiτii) [(Ui + ε) + βi]

=
1

9
aiiτii(3 + 2aiiτii) [(Ui − ε) + βi + 2ε]

by the 3/2 condition (1.5).
Case 2. tim − ξim > 2τii/3. In this case, let tim − ηim = 2τii/3. Then ηim ∈

(ξim, tim]. By (2.17), we have

xi(tim)− xi(ξim)

≤ [(Ui + ε) + βi]

[
aii(ηim − ξim) + a2

ii

∫ tim

ηim

(ξim + τii − t)dt
]

= [(Ui + ε) + βi]

[
aii(ηim − ξim)(1− aii(tim − ηim)) + a2

ii

∫ tim

ηim

(ηim + τii − t)dt
]

= [(Ui + ε) + βi]

[
aii(ηim − ξim)

(
1− 2

3
aiiτii

)
+ a2

iiτii(tim − ηim)−
1

2
a2
ii(tim − ηim)2

]

≤ [(Ui + ε) + βi]

[
1

3
aiiτii +

2

9
(aiiτii)

2

]

=
1

9
aiiτii(3 + 2aiiτii) [(Ui + ε) + βi]

=
1

9
aiiτii(3 + 2aiiτii) [(Ui − ε) + βi + 2ε] ,

since ηim − ξim ≤ τii
3 .

Combining Cases 1 and 2 with (2.12), we have

aiixi(tim)

≤ 1 + 1
9aiiτii(3 + 2aiiτii)

1− 1
9aiiτii(3 + 2aiiτii)

∑
j �=i
|aij |(Ui + ε) +

2εaiiτii(3 + 2aiiτii)

9− aiiτii(3 + 2aiiτii)
, i = 1, 2, . . . , k.

This shows (2.15) is true. Letting m→∞ and ε→ 0 in (2.15), we obtain

aiiUi +
∑
j �=i

ãijUj ≤ 0 for i = 1, 2, . . . , k.(2.18)
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On the other hand, for each i = k + 1, . . . , n, let {sim}∞m=1 ↑ ∞ be such that
limm→∞ xi(sim) = Ui. By (2.11), we have limm→∞ ẋi(sim+ τii) = 0. Using (1.1), we
have

0 = ẋi(sim + τii) + aiixi(sim) +
∑
j �=i

aijxj(sim + τii − τij)

≥ ẋi(sim + τii) + aiixi(sim) +
∑
j �=i

ãij |xj(sim + τii − τij)|,

since ãij ≤ −|aij | ≤ 0. Letting m→∞, we obtain

aiiUi +
∑
j �=i

ãijUj ≤ 0 for i = k + 1, . . . , n.(2.19)

By (2.17) and (2.18) and using the fact that Ã is a nonsingular M -matrix (so that
Ã−1 is a positive matrix), we have U1 = U2 = · · · = Un = 0. The proof is now
complete.

Acknowledgments. The authors would like to thank the two anonymous refer-
ees for their useful suggestions regarding additional references.
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[5] I. Györi, Stability in a class of integrodifferential systems, in Recent Trends in Differential

Equations, World Sci. Ser. Appl. Anal. 1, R. P. Agarwal, ed., World Scientific, Singapore,
1992, pp. 269–284.

[6] J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations,
Springer-Verlag, New York, 1993.

[7] X. He, Global stability in nonautonomous Lotka-Volterra systems of “pure-delay type,” Differ-
ential Integral Equations, 11 (1998), pp. 293–310.

[8] J. Hofbauer and J. W.–H. So, Diagonal dominance and harmless off-diagonal delays, Proc.
Amer. Math. Soc., 128 (2000), pp. 2675–2682.

[9] T. Krisztin, On stability properties for one-dimensional functional differential equations,
Funkcial. Ekvac., 34 (1991), pp. 241–256.

[10] Y. Kuang, Global stability in delay differential systems without dominating instantaneous
negative feedbacks, J. Differential Equations, 119 (1995), pp. 503–532.

[11] A. D. Myshkis, Linear Differential Equations with Retarded Arguments, Nauka, Moscow, 1972
(in Russian).

[12] J. W.-H. So and J. S. Yu, Global attractivity for a population model with time delay, Proc.
Amer. Math. Soc., 123 (1995), pp. 2687–2694.

[13] J. W.-H. So and J. S. Yu, Global stability of a general population model with time delays,
Fields Inst. Commun., 21 (1999), pp. 447–457.

[14] G. Stépán, Retarded Dynamical Systems: Stability and Characteristic Functions, Pitman Res.
Notes Math. Ser. 210, Longman Scientific & Technical, Harlow, UK, 1989.

[15] T. Yoneyama, On the 3
2

stability theorem for one-dimensional delay-differential equations, J.
Math. Anal. Appl., 125 (1987), pp. 161–173.

[16] J. A. Yorke, Asymptotic stability for one dimensional differential-delay equations, J. Differ-
ential Equations, 7 (1970), pp. 189–202.



PATH-TRACKING THROUGH SINGULARITIES∗

G. W. REDDIEN†

SIAM J. MATH. ANAL. c© 2002 Society for Industrial and Applied Mathematics
Vol. 33, No. 6, pp. 1305–1319

Abstract. Given a mapping F from Rn to Rm with n ≥ m, a basic computational problem
that has applications in robotics is to solve for paths x(t) in the domain of F given a target path
z(t) in the range of F so that F (x(t)) = z(t). Results are given for the existence and characterization
of solution paths through singularities of F, with emphasis on folds and cusps. Reparametrizations
using Puiseux series are derived in cases where x(t) is not differentiable.

Key words. singularities, Puiseux series, robotics
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1. Introduction. Amotivating example for the problems treated here is a three-
bar mechanism, or arm, constrained to move in the plane. Given joint lengths l1, l2, l3
and joint angles θ1, θ2, and θ3 as indicated in Figure 1, the coordinates of the point
P are determined. Indeed, it follows that coordinates are given by the formulas

z1 = l1 cos θ1 + l2 cos(θ1 + θ2) + l3 cos(θ1 + θ2 + θ3),

z2 = l1 sin θ1 + l2 sin(θ1 + θ2) + l3 sin(θ1 + θ2 + θ3)
(1.1)

defining a mapping F from R3 to R2. If the motion of the links is constrained by
ai ≤ θi ≤ bi, i = 1, 2, 3, then the change of variables

θi =
ai + bi
2

+
1

2
(bi − ai) sinxi, i = 1, 2, 3,(1.2)

produces F = F (x), where x lies in any open set D containing [−π/2, π/2]3. Although
simple in form, this device contains many of the kinematic singularities important in
robotics. An example of a spatial manipulator is given in section 4.

Let F : Rn → Rm with n ≥ m be a smooth mapping defined on an open,
connected set D ⊂ Rn, and let z0 = F (x0). We call z0 a boundary point (local) for
F (D) if there exists an open neighborhood U of x0 so that z0 is not in the interior of
F (U). Equivalently, we could say that z0 is a boundary point of F at F (x0) = z0 if
F is not open at x0. The system of equations

F̂ (x, z) = F (x)− z = 0(1.3)

represents m-equations in (n +m)-unknowns. If F̂x(x0, z0) = Fx(x0) has full rank,
then the implicit function theorem guarantees that (1.3) can be solved for all z near
z0; that is, if Fx(x0) has full rank, then z0 = F (x0) is not a boundary point of
F (D). Thus the problem of determining the boundary of F (D) is closely related to
the problem of finding points where Fx drops in rank. We assume throughout this
paper that

(H1) rank(Fx) ≥ m− 1 on D,
∗Received by the editors June 14, 2000; accepted for publication (in revised form) September 11,

2001; published electronically April 26, 2002.
http://www.siam.org/journals/sima/33-6/37387.html
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Fig. 1. A planar manipulator.

and define the singular set

S1 = {x ∈ D : rank(Fx) = m− 1}.

Then the boundary of F (D) is contained in F (S1).
A basic computational problem in the study of mechanical devices such as the

one represented by (1.1) is path-tracking, that is, to solve the equation

F (x(t)) = z(t)(1.4)

for x(t), where z(t) is a given, parametrized path in the reachable set F (D). At
points where Fx(x(t)) has full rank, there is in principle no problem in solving (1.4)
for a smooth path x(t). But computational problems arise if x(t) goes through a
singularity. For the three-bar mechanism in Figure 1, let the motion be unconstrained.
Then singularities exist for θ3 = 0 or π, for example, configurations likely to be
encountered. The difficulties include possible lack of existence of solutions to (1.4) or
existence without smoothness in the parameter t.

The purpose of this paper is to consider path-tracking through singularities. We
use a unified framework for computing singularities (see [6]) which leads to efficient
characterizations of the singular boundary and, as we show, to the criteria needed to
establish the existence and smoothness of paths through singularities. Our primary
focus is on the fold and the cusp cases. The method given for numerically computing
and analyzing points where F has a rank drop is based on an implicit Liapunov–
Schmidt reduction and has been shown to be useful in many applications. See, for
example, [6], [7], [8], [9], and [16]. In section 2, we show how this reduction can be
used to compute efficiently the various quantities that are needed in our analysis.
In section 3, we use the formulas of section 2 to study the path-tracking problem in
the smooth case. We relate path-tracking to classical results in singularity theory in
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section 4 and show how the results of section 3 can be modified to treat two basic
nonsmooth cases.

2. Reduction. In this section we present a scalar function developed in [7], [8]
that can be used to locate and characterize singularities. Functions that serve this
purpose are often called test functions [17], and a natural choice is det(Fx). Indeed,
this choice is used in the engineering literature [4], although the smallest singular value
of Fx is also common [16]. Important advantages of the test function given below are
its simple definition and evaluation, the existence of explicit derivative formulas with
natural and inexpensive numerical approximations, and the fact that the approach
provides a unified framework for turning points, bifurcation points, cusp points, and
other higher order singularities and is applicable to maps F from Rn into Rm with
n > m. These different cases generally entail ad hoc approaches in the engineering
literature. These advantages are discussed further below.

Choose r ∈ Rm and T ∈ Rp×n with p = n−m+ 1 so that the bordered matrix

A =

(
Fx r
T 0

)

is nonsingular on a neighborhood of a point x0 in D. Consider the system of (n+1)-
equations in the variables x, f ∈ R, and s ∈ Rp given by

F − fr = F (x0),

Tx = s+ Tx0.
(2.1)

Note that x = x0, f = 0, and s0 = 0 is a solution to (2.1). The linearization of (2.1)
in x and f at this point gives the matrix A (solving for −f), and so by the implicit
function theorem, (2.1) defines f = f(s) and x = x(s) for s in a neighborhood of s = 0.
We also note the following two systems for finding fs, which is a row vector and equals
the transpose of the gradient of f in s, and H(f), the corresponding Hessian of f ,
which results from differentiating (2.1):

Fxxs − rfs = 0,

Txs = Ip,

Fxxsis − rfsis = −Fxxxsixs,
Txsis = 0,

(2.2)

i = 1, . . . , p, where Ip is the p× p identity matrix. As in [6] and [7], define u ∈ Rm to
be the solution to (an exponent t denotes transpose, not time)

utFx − fsT = 0,

utr = 1.
(2.3)

An easy calculation [7] shows that fs may be used in both (2.2) and (2.3) and moreover
that

fs = utFxxs.(2.4)

Writing xs = (v1, v2, . . . , vp), then the Hessian of f, H(f), is given by H(f) = (hij)
where hij = utFxxvivj . The Hessian matrix H is p × p and, of course, symmetric.
The scalar function f is known in the literature as an implicit Liapunov–Schmidt
reduction of F near x0. This reduction has several advantages, both conceptually
and computationally, over a standard Liapunov–Schmidt reduction [5]. The clearest
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and most important distinction is that the reduction does not depend on the a priori
location of a point x0 for which Fx has a rank drop. The systems (2.2) are solvable
even if Fx(x0) has rank m − 1. If F 0

x = Fx(x0) has a rank drop, then from (2.4),
ut0F

0
x = 0 and so fs(0) = 0. Points where the mapping F has a rank drop correspond

to singular points for the reduced scalar function f .
Note that f defined in (2.1) depends on the vector r. The first equation in (2.1)

can be written as F (x) = F (x0) + fr, and so solutions to (2.1) are points x so that
F hits points in the range moving along r from F (x0). In the case of (1.1), we could
choose r to be the one-parameter family of radius vectors from the origin defined
by the angle r makes with the abscissa in R2. From (2.3) we can find points in the
singular set, S1, by solving the equation

fs = 0.(2.5)

The system (2.5) is square in general: p-equations in p-unknowns. In the case of (1.1)
it represents two equations in two unknowns; the choice of r makes (2.5) have an extra
variable, and so r can be varied and S1 traced out.

This reduction can be used to determine whether a point z0 = F (x0) is a boundary
point. The following proposition can be found in [20]. Minimal smoothness assump-
tions on F are given there. In order to simplify the presentation given here, we will
simply assume throughout that F is smooth. Recall the earlier assumption (H1) that
rank(Fx) ≥ m− 1 on D.

Theorem 2.1 (Griewank). Let (H1) hold. Then the mapping F is open at x0 if
and only if the reduced function f defined in (2.1) is open at the origin.

If F is not open at x0, then f will not be open at the origin. Since f is a scalar
function, then f must have an extremum at the origin, and f will not be open if it has
either a maximum or a minimum. This can be checked in most cases by determining
if the Hessian of f is negative or positive definite. In the case that H is semidefinite,
higher order criteria must be used to determine if f has a maximum or a minimum
(or neither). Then for x0 ∈ S1, F (x0) is a candidate to be a boundary point. At
x0, fs(0) = 0. One can then compute H from (2.2). If H is indefinite, then F (x0)
is not a boundary point. If H is either positive or negative definite, F (x0) is a local
boundary point. The mechanism is then constrained locally, that is, F (x0) is a barrier
point. Other points near F (x0) may be reachable, but they are then the image of
points x not near x0. Finally, if H is semidefinite, a higher order expansion and
further analysis are necessary. We summarize these conclusions in the next theorem.

Theorem 2.2. Let (H1) hold and let x0 ∈ S1. Then f defined by (2.1) satisfies
fs(0) = 0. If H0 is negative definite, f has a maximum at s = 0 and x0 is the
preimage of a local boundary point. If H0 is positive definite, then f has a minimum
at s = 0 and x0 is the preimage of a local boundary point. If H0 is indefinite, then
F (x0) is not a boundary point.

Restricting our attention to the case where if H is indefinite, then λ = 0 is a
simple eigenvalue for H, the higher order cases can then be analyzed as follows. Let f
be given from (2.1) with x0 ∈ S1 so that f

0
s = 0. We assume Hcp = 0 with c

t
pcp = 1.

Let {c1, c2, . . . , cp} be a basis for Rp so that s ∈ Rp may be written as s = Ct where

C = (ci). Define f̂(t) = f(s). Now it follows that f̂t(0) = 0 since fs(0) = 0 and that

f̂titj (0) = ctiHcj . We have assumed that Hcp = 0 and Hci 
= 0, i = 1, . . . , p−1. Then
it follows that f̂titp(0) = ctiHcp = 0 and that by assumption the (p − 1) × (p − 1)
submatrix D = (f̂titj )

p−1,p−1
i=1,j=1 of H(f̂) is nonsingular. Using the decomposition lemma

of singularity theory [14], f̂ is isomorphic to a germ of the form Q(t1, . . . , tp) + φ(tp)
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with φ ∈ M3 (M3 = M ·M ·M where M is the ideal of germs equal to zero at the
origin) and Q is a Morse germ. Based on this form, one can classify the cases that

occur when f̂ has low codimension. In fact, every germ of corank 1 and of codimension
ν ≥ 2 is isomorphic to one and only one of the following germs:∑p−1

i=1 εit
2
i + tν+1

p , εi = ±1, if ν is even,∑p−1
i=1 εit

2
i ± tν+1

p , εi = ±1, if ν is odd.
(2.6)

In the case where H is semidefinite, it is then possible using (2.6) to develop
a corresponding classification for boundary points. First note from (2.6) that if ν
is even, then x0 cannot be a boundary point because of the odd-order monomial in
(2.6). If ν is odd, then depending on the sign of the tν+1

p -term, F (x0) may or may
not be a boundary point. In order to determine whether or not F (x0) is a boundary
point in the semidefinite case, one must translate the criteria from φ back to f , which
is a computable function. We do not do this here but refer the reader to [20].

Since there is no explicit s-dependence in (2.2), we define g(x) = fs and xs = V ∈
Rnxp. It also follows from (2.2) that gx = utFxxV. This notation is consistent with
[6]. The set S1 is defined by the solutions to g(x) = 0. Generically, one expects S1 to
be a manifold because g should have full rank. But in problems such as (1.1), this is
not the case at many points. Indeed, in mechanical design problems, including (1.1),
F (S1) can be complicated, with multiple bifurcation points. See the analysis of the
planar manipulator in [10], for example, or the Stewart platform [13]. The analysis
of bifurcations can be included in the framework here.

3. Smooth paths. We next use the mathematical framework of section 2 to
analyze the path-tracking problem: Given a path z(t) in the work space, find a smooth
path x(t) in the domain of the manipulator that satisfies the relation

F (x(t)) = z(t)(3.1)

for t in some interval. The analysis to follow puts some of the results of [11], [12], [15],
[17], and [18] into our framework and leads to a new form for solvability conditions and
computational algorithms. With F :Rn → Rm and n > m, there should be several
solution paths x(t). Theorem 2.2 can be used to establish the existence of a path in
the cases where F has a simple rank drop. Assuming for the moment the existence
and differentiability of x(t) solving (3.1), we differentiate and obtain the system of
differential equations

Fx(x(t))
dx

dt
=

dz

dt
(3.2)

with the initial condition F (x0) = z0. In this section we develop conditions within
our framework to guarantee that a solution path x(t) with continuous and bounded
derivatives exists through points in S1.

Let x(t0) = x0 = 0 with x0 ∈ S1. We assume, as before, that (H1) holds for F in
a neighborhood of x0. From (2.4) we immediately find the consistency condition

ut0ż0 = 0,(3.3)

where we assume ż0 =
dz
dt (t0) 
= 0. Extend u0 to form a basis u0, u1, . . . , um−1 for

Rm. Then the system of equations (3.2) can be put into the form

(a) U tm−1Fx(x(t))ẋ(t) = U tm−1ż(t),

(b) ut0Fx(x(t))ẋ(t) = ut0ż(t),
(3.4)
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where Um−1 = (u1, . . . , um−1). Assuming the needed smoothness, we differentiate
(3.2) to obtain the equation

Fxẍ+ Fxxẋẋ = z̈,(3.5)

from which it follows that

ut0Fxẍ+ ut0Fxxẋẋ = ut0z̈.(3.6)

We find it convenient to make the following change of variables: Let x(t) = t y(t)
so that ẋ = y + tẏ where, without loss in generality, we let t0 = 0 and x0 = 0 so that
ẋ0 = y0. Then (3.4) and (3.6) may be written at t0 = 0 in the form

(a) U tm−1F
0
xy0 = U tm−1ż0,

(b) ut0ż0 = 0,

(c) ut0F
0
xxy0y0 = ut0z̈0.

(3.7)

The original equation (3.1) may be similarly decomposed as

(a) U tm−1F (x(t)) = U tm−1z(t),

(b) ut0F (x(t)) = ut0z(t).
(3.8)

Now in order to show solvability and then differentiability of solutions to (3.1),
we must first show that y0 solving (3.7) exists. This system is not necessarily solvable
for any path z(t). Since ut0ż0 = 0, we have that ż0 is in the range of F

0
x , and so we

may solve F 0
xy = ż0 for y0 = y1 + V0α, where the columns of V0 span the null space

of F 0
x , α ∈ Rp is arbitrary, and F 0

xy1 = ż0 for a chosen particular solution y1. For
definiteness, let Ty1 = 0. Then clearly (3.7a)–(3.7b) are satisfied. Substituting into
(3.7c) we obtain

ut0F
0
xx(y1 + V0α)(y1 + V0α) = ut0z̈0(3.9)

or

αt(ut0F
0
xxV0V0)α+ 2u

t
0F

0
xx(V0α)y1 + ut0F

0
xxy1y1 = ut0z̈0 .(3.10)

Equation (3.10) is a quadratic in α; if ut0F
0
xxV0V0 = H is positive or negative

definite, then (3.10) has a minimum or a maximum, respectively, at α̂ satisfying
ut0F

0
xxV0V0α̂ = −ut0F 0

xxV0y1. Then depending on the sign and magnitude of u
t
0z̈0,

(3.10) can be solved. We note the following result.
Theorem 3.1. Let x0 ∈ S1 and let H0 = ut0F

0
xxV0V0 = g0

xV0 be indefinite. Then
(3.7) is solvable.

Theorem 3.1 is consistent with the results of section 2. If H is definite, motion
from x0 is possible in only one direction along r from z0 = F (x0). Motion is possible
in any direction when H is indefinite. The case in which H is nonsingular is called
the fold.

Still assuming the existence and smoothness of a path x(t), Taylor’s formula with
remainder allows us to write F and z in the following two forms:

(a) F (x(t)) = F 0 +R1(x)x(t),

(b) F (x(t)) = F 0 + F 0
xx(t) +R2(x)x(t)x(t),

(c) z(t) = z0 + R̂1(ż)t,

(d) z(t) = z0 + ż0t+ R̂2(z̈)t
2.

(3.11)
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These equations simplify under our normalization conditions that x0 = 0 and F (x0) =
z0 = 0. Using (3.11a), (3.11c) in (3.8a) and (3.11b), (3.11d) in (3.8b) with x(t) = ty(t),
we obtain

(a) U tm−1R1(ty(t))y(t) = U tm−1R̂1(ż(t)),

(b) ut0R2(ty(t))y(t)y(t) = ut0R̂2(z̈(t))
(3.12)

as equations equivalent to (3.1) and (3.8). Note that for t = t0 = 0, the system (3.12)
becomes (3.7). The system (3.12) has the solution y = y0 at t = 0. We consider
(3.12) as m-equations in the n-unknowns y and with t as a parameter. We next show
by an application of the implicit function theorem that (3.12) is solvable under the
assumptions of Theorem 3.1.

Theorem 3.2. Let H0 be indefinite and z(t) have three continuous derivatives
in a neighborhood of t0. Then (3.12) is solvable for y = y(t) with y continuously
differentiable in a neighborhood of t0. Moreover, x = ty is continuously differentiable
and solves (3.1). Since (3.12) is m×n plus the parameter t, n−m of the coordinates
in y are arbitrary.

Proof. Since H0 is indefinite, (3.10) has at least two distinct solutions, α1 and
α2. Define y

i
0 = y1 + V0αi and suppose g

0
xy
i
0 = 0 for i = 1, 2. Subtracting, we obtain

that g0
xV0(α1 − α2) = ut0F

0
xxV0V0(α1 − α2) = 0, contradicting the indefiniteness of

H0. Thus there exists some y0 solving (3.7) so that g
0
xy0 
= 0. Since (3.7) is solvable,

(3.12) is solvable at the origin in t with solution y0. Linearizing (3.12) in y at (y0, 0),
we obtain the homogeneous problem

U tm−1(DyR1)|(y0,0)y0y + U tm−1F
0
xy = 0,

ut0(DyR2)|(y0,0)y0y0y +
1
2u

t
0F

0
xxy0y = 0

(3.13)

to be solved for y. Since R1 and R2 contain the term ty, both derivatives in y are
multiplied by t and so vanish at t0 = 0. Thus (3.13) simplifies to

(a) U tm−1F
0
xy = 0,

(b) ut0F
0
xxy0y = 0.

(3.14)

The (m×n)-dimensional system (3.14) has full rank in y at t0 = 0 if the number
of independent null vectors y is n−m. Equation (3.14a) has p = n−m+1 solutions,
namely V0. Writing y = V0α and substituting into (3.14b) give the equation

αt(ut0F
0
xxV0y0) = 0,(3.15)

or αt(g0
xy0) = 0. Since g

0
xy0 
= 0, (3.15) can have at most (p−1) independent solutions

α. Then y lies in a (p − 1 = n −m)-dimensional space, giving the implicit function
theorem and the existence of y(t). The smoothness assertion also follows from the
implicit function theorem.

Remarks. If a solution to (3.10) exists satisfying the condition g0
xy0 
= 0 and if also

the necessary condition (3.3) holds, then a smooth path of solutions to (3.1) exists.
Theorem 3.2 gives a simple condition for this to happen. If the condition g0

xy0 
= 0
fails to hold, then ẋ0 is tangent to S1. Define F(y, t) to be the equations given in
(3.12) written in the form F(y, t) = 0. Left null vectors for F0

y of the form (ξt ν)t

must solve

ξtU tm−1F
0
x + νut0F

0
xxy0 = 0.(3.16)
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By the Fredholm alternative, (3.16) is solvable with nonzero ν if and only if
ut0F

0
xxV0y0 = g0

xy0 = 0. If g0
xy0 
= 0, then ν = 0 and ξ = 0 since u0 is assumed to

be the only left null vector. Thus we see that g0
xy0 
= 0 implies F0

y has full rank,
giving a slightly different proof of Theorem 3.2. The condition that ẋ0 is tangent to
S1 corresponds to a rank drop for (3.13). This means that F likely has a turning
point or bifurcation point, and the existence of solutions is still possible. We do not
pursue these cases here.

We next consider briefly the special case of self-motions [15]: These are paths x(t)
for which F (x(t)) is fixed. In the unconstrained three-bar mechanism of Figure 1, let
l2 = l3. Then a self-motion obtains by holding θ1 fixed and θ3 = π and letting θ2 vary.
For redundant manipulators (n > m), it is possible to use a self-motion to escape a
singularity, which can be important in applications. We assume z(t) = z0 with x0 a
singularity for F. Equation (3.3) is automatically satisfied and from (3.4) it follows
that ẋ0 is in the null space of F

0
x ; that is, y0 = ẋ0 = V0α. Then (3.7c) becomes

ut0F
0
xxy0y0 = αt(ut0F

0
xxV0V0)α = αtHα = ut0z̈0. Solutions to this equation with α 
= 0

require H to be indefinite. We then have the next theorem.
Theorem 3.3. Using the definitions for self-motion through a singularity given

above, let H be indefinite at x0. Then there exists a nontrivial y0 = V0α satisfying
ut0F

0
xxy0y0 = 0. In addition, there exists a solution x(t) to (3.1) with two continuous

derivatives and ẋ0 = y0.
Proof. Write x(t) = ty(t) as in the proof of Theorem 3.2. Since H is indefinite,

then, in particular, H is nonsingular and Hα 
= 0 where the existence of y0 = V0α
satisfying αtHα = 0 was established above. This means that g0

xV0α 
= 0 and so y0 is
not tangent to the singular manifold S1. But then arguing exactly as in the proof of
Theorem 3.2, the result follows.

Returning to the example above, the matrix H0 has eigenvalues −1±2
√
2, and so

the conditions of Theorem 3.3 are met. However, the self-motion is not the rotation
described above but rather is one that has x0

t proportional to ( 2 1 2)
t. This leads to

a self-motion that takes the robot to a nonsingular configuration. The rotation is a
motion within the singular manifold.

Finally, we consider the case that the matrix H has a one-dimensional null space
corresponding to ν = 2 in (2.6). We add a nondegeneracy condition and establish
the existence of a smooth path of solutions in the next theorem in the same manner
as Theorem 3.2. Existence of a path also follows from Theorem 2.2 and (2.6). The
conditions mean that F has a cusp singularity; details are given in section 4.

Theorem 3.4. Let H0 have a simple rank drop with null vector α0 so that
ut0F

0
xxv0v0 = 0 where v0 = V0α0. Define y1 as the solution to F 0

xy1 = ż0 with
Ty1 = 0, where z satisfies (3.3) and ż0 
= 0. In addition, let ut0F 0

xxv0y1 
= 0 . Then
(3.12) is solvable for y = y(t) with y continuously differentiable in a neighborhood of
t0. Moreover, x = ty is continuously differentiable and solves (3.1). Since (3.12) is
m× n plus the parameter t, n−m of the coordinates in y are arbitrary.

Proof. As before, we write x(t) in the form x = ty. We first note that by
choosing α in (3.10) to be a scalar times α0 where v0 = V0α0, then (3.10) is uniquely
solvable. The quadratic term drops out with this choice. Arguing as in the proof of
Theorem 3.2, the result follows if (3.14) has at most (p − 1) independent solutions.
From (3.14a) it follows that y = V0β. Substituting into (3.14b) gives the equation
βt(ut0F

0
xxV0y0) = 0, as before. Writing y0 = y1 + V0α0, we obtain the equivalent

equation βt(ut0F
0
xxV0y1) = 0. But this equation is not satisfied if β = α0, and so

(3.14) has p− 1 = n−m independent solutions, completing the proof.



PATH-TRACKING THROUGH SINGULARITIES 1313

4. Nonsmooth solution paths. In this section we study further the singu-
larities in section 3 and relate the path-tracking problem for them to some classical
results in singularity theory. Existence of solution paths in Theorem 3.2, the fold
singularity, is problematical, but not in the case of Theorem 3.4, the cusp singularity.
Conditions for the existence of smooth solutions were given in section 3. Singularity
theory provides normal forms for these mappings that can be used to analyze their
qualitative behavior. In particular, we show what can be done if smoothness is lost,
which happens when condition (3.3) does not hold but paths still exist.

4.1. Singularity theory. Two mappings F1 and F2 from manifolds X into Y
are said to be equivalent if there exist diffeomorphisms h : X �→ X and k : Y �→ Y
such that F2 = k ◦ F1 ◦ h−1. A smooth map F is said to be stable if every map
sufficiently near to it (including a sufficiently large number of derivatives) is equivalent
to it. These definitions can be considered local [1]. Equivalence sets up a one-to-one
correspondence between inverse images and singularities for the two maps. So if F2

has a simpler form, qualitative results about F1 can be derived. It is difficult to find
the diffeomorphisms h and k. Nonetheless, an algorithm has been proposed for path-
tracking through fold singularities based on computing the diffeomorphisms directly
[18].

The fold and cusp singularities can be developed more formally as follows. Recall
that S1 denotes the set of points in X where F has a simple rank drop and that we
have assumed F to have no other singularities. We need the regularity assumption
that S1 is a smooth manifold. Then S1,1 is defined to be the points where F restricted
to S1 has a simple rank drop. Assuming S1,1 is a smooth manifold, this definition
may be continued.

We first consider the fold case. That is, we assume (H2) S1 contains x0, S1 is
a locally smooth manifold in a neighborhood of x0, and Tx0S1(F ) +Null(Fx(x0)) =
Tx0X. These conditions guarantee that H is nonsingular. We next give the normal
form in the equidimensional case.

Theorem 4.1. Let F be a smooth mapping satisfying the conditions (H2) at x0.
Then there exist coordinates x centered at x0 and coordinates y centered at F (x0) so
that F has the form

F : (x1, . . . , xn) �→ (x1, . . . , xn−1, x
2
n).

This theorem can be found in more generality in [5]. In effect, it means that
diffeomorphisms h and k exist so that k ◦ F ◦ h−1 has the above form. Moreover, it
is also shown in [5] that this singularity is stable. See also [19].

Based on Theorem 4.1, more insight can be gained into the case considered in
section 3. Consider, for example, the mapping F : (x y) �→ (x y2) from R2 into
R2, which has a fold singularity at the origin and is in normal form. Note that
u0 = e2 spans null(F

0
x ) and e1 spans range(F

0
x ). Let z(t) = t(1 1)t, for example.

Then ut0ż(0) 
= 0, which violates the basic condition (3.3). After eliminating t, define
Uδ = {z : z1 − z2 = 0, z = (z1 z2)

t}, which is the set of points on z; it can be shown
[3] that these conditions guarantee that locally F−1(Uδ) = (x y)t : x− y2 = 0 is a
smooth manifold. But in terms of the parameter t, t ≥ 0, we have x = t , y = ±t1/2,
and smoothness does not obtain in t. This behavior is generic for the fold singularity
if ut0ż(0) 
= 0. With ut0ż0 = 0 in the above example, then z(t) = c1te1 +

1
2 t

2z̈0+O(t3).
Under F−1, solution paths are x(t) = c1t +O(t2) and y(t) = ±c2t +O(t2) provided
that c2 = ut0z̈0 > 0. Note that this condition means that ẋ0 is not tangent to S1,
which is the x-axis. One can compute (3.10) in this case and derive the equation
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2α2 = ut0z̈0. Two branches in the domain then map onto z(t). If c2 < 0, there are no
solutions. These results are consistent with Theorem 3.2. Since m = n in this case,
one expects uniqueness from Theorem 3.2. Uniqueness does obtain, but locally about
the two different solutions found for y0 = ẋ0 based on the different values for α in
(3.10).

We next consider the cusp case. We assume (H3) S1,1 contains x0, S1 and S1,1

are smooth manifolds in a neighborhood of x0, and F restricted to S1,1 has full rank.
The condition that S1,1 be a smooth manifold through x0 is satisfied if the system

g = 0, det(H) = 0(4.1)

has full rank. The condition that F , restricted to S1,1, has full rank is satisfied if the
classical cusp condition holds; see (4.11) and [2] or [8]. In this case (H3) implies that
ν = 2 in (2.6). We then have the following theorem.

Theorem 4.2. Let F be a smooth mapping satisfying the conditions (H3) at x0.
Then there exist coordinates x centered at x0 and coordinates y centered at F (x0

) so
that F has the form

F : (x1, . . . , xn) �→ (x1, . . . , xn−1, xn−1xn − x3
n).

The mapping in Theorem 4.2 is also called a generalized Whitney cusp and is
stable. These singularities and normal forms include cases n > m and higher order
singularities in the pattern of Theorems 4.1 and 4.2. See [1] for general statements of
these results. Special cases are included in [5] and [15]. Based on Theorem 4.2 and
the general solvability of cubic equations, it follows that solution paths exist through
the Whitney cusp. This analysis is an alternative to the approach outlined in section
2. Uniqueness and smoothness are the central issues. For example, let the mapping
F from R2 into R2 be given by

F : (x y) �→ (x xy − y3),(4.2)

which is the normal form for the cusp. The manifold S1 for F can be parametrized as
(3t2, t)t with image under F given by F (S1) = (3t

2, 2t3)t. The curve F (S1) defines
a cusp at the origin centered about the positive x-axis. Within the region defined by
this cusp curve, every point has three preimages under F . Outside of the cusp region,
preimages are unique. Thus paths x(t) exist for any z(t). Consider the example
z(t) = (0, t)t. One can solve explicitly the equation F (x(t)) = z(t) obtaining the
curve x(t) = (0 , −t1/3)t, showing that smoothness is lost. In this case, ut0ż(0) 
= 0.
This is the generic behavior when (3.3) does not hold.

The lack of smoothness in the computed paths in the above examples is due to
the parametrizations. We next show how these cases can be treated. The approach
is to find an appropriate parametrization for which a smooth expansion is possible
using the classical method of Puiseux series.

4.2. Puiseux series. Let x = x(s) and t = t(s), where s is a new parameter.
We let s be arclength by requiring xs(s)

txs(s) = 1, where the subscript denotes
differentiation in the indicated variable. Differentiating (3.1) in swe obtain

Fxxs = ztts.(4.3)

If the solution path in s exists and is smooth, then at the singularity (with t0 =
s0 = 0), (4.3) holds. In the next two subsections we develop the first few terms in
series expansions for both x and t in s following the proofs of Theorems 3.2 and 3.4.
We highlight the differences in the proofs for these two cases when (3.3) does not hold
and the reparametrization above is used.
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Fold singularities. We assume that ut0z
0
t 
= 0 since otherwise the results of

section 3 apply. Then it must be the case that t0s = 0. But then x0
s = V0α with

αtV t
0 V0α = 1. As in section 3 we write x(s) = sy(s), and we write t(s) = s2τ(s).

Since this is the fold case, we have ut0F
0
xxy0y0 
= 0 where x0

s = y0. Then with these
notations, (3.7) becomes

ut0F
0
xxy0y0 = αtHα = 2(ut0z

0
t )τ0.(4.4)

Using τ0 as an unknown, (4.4) can be solved given any α. We assume y0 and τ0 have
been chosen satisfying (4.4) and yt0y0 = 1. With an added approximate arclength
normalization, the system (3.12) becomes in this case

U tm−1R1(sy)y =

(
U tm−1

∫ 1

0

zt(ts
2τ)dt

)
sτ,

ut0R2(sy)yy =

(
ut0

∫ 1

0

zt(ts
2τ)dt

)
τ,

yt0y = 1.

(4.5)

By the above considerations, (4.5) is solvable at s = 0 and, when linearized at s = 0,
gives the following linear system in the unknowns ŷ, τ̂ :

U tm−1F
0
x ŷ = 0,

1
2 u

t
0F

0
xxy0ŷ − (ut0z0

t )τ̂ = 0,

yt0ŷ = 0.

(4.6)

From (4.6) we obtain that ŷ = V0α. But y
t
0ŷ = 0 forces α to lie in a (p− 1 = n−m)-

dimensional subspace of Rp. Since ut0z
0
t 
= 0, τ̂ depends linearly on α. Thus (4.6) has

(n −m) independent solutions and (4.5) has full rank. Arguing as in Theorem 3.2,
we obtain smooth solutions y = y(s) and τ = τ(s) of (4.5) if z is smooth, and hence
of the original equations. Note, however, that if H is definite, then αtHα is of one
sign independent of α. Assume, for example, that H is positive definite. If ut0z

0
t is

negative, then τ0 must be negative in (4.4). However, with t = s2τ, this would mean
that a solution has been found but with t negative. That is, a solution exists only
backward in time, and, in effect, there is no solution. If H is indefinite, then α can
be chosen so that τ0 is positive.

Since t(s) = s2τ(s) with τ0 
= 0, then y depends on t1/2, and the solution path
sought based on the original parametrization of the target is not smooth. For a
two-arm robot of the form (1.1) with l1 = l2 = 1, the equations in (1.1) become

z1 = cos(x) + cos(x+ y),

z2 = sin(x) + sin(x+ y).
(4.7)

The origin is a singular configuration and it is easy to compute that for the mapping
F defined by (4.7),

F 0
x =

(
0 0
2 1

)
, F 0

xx =

( −2 −1 −1 −1
0 0 0 0

)
.(4.8)

S1 is the x-axis, and F (S1) is the circle of radius 2 with center at the origin.
We consider the path studied in [11], namely z1(t) = 2 − t, z2(t) = 0, for which
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z0
t = −e1. Note that z

0
t is not tangent to F (S1) at the origin in S1. A right null

vector for F 0
x is v0 = (1 − 2)t and a left null vector is u0 = e1. Since u

t
0z

0
t 
= 0,

we are in the above setting and the results of section 3 do not apply. Solving (4.5)
using an arclength parametrization, we have (x0

ss)
tx0
s = 0. Using (4.3), (4.4) we obtain

x0
s = (1/

√
5 , −2/√5)t and x0

ss = 0. So x(s) = x0
ss+O(s3) with t = 1

5s
2 + · · · . Thus

s =
√
5 · t 1

2 + · · · and x(t) = (−t 1
2 , 2t

1
2 )t+ · · · , consistent with the results of [12]. We

note that ut0F
0
xxy0y0 = −2.

Cusp singularities. We next derive a quasi-arclength parametrizaton of a so-
lution path through a cusp singularity. As before, we write t = t(s) and solve
F (x(s)) = z(t(s)). Assuming for the moment existence and smoothness of both
x and t, we derive the conditions to be imposed as a modification to the proof of
Theorem 3.4. Differentiating, we obtain as before (4.3). We consider only the case
where ut0z

0
t 
= 0, so that, as above, t0s = 0 and x0

s = V0α. Now in the cusp case,
H = ut0F

0
xxV0V0 is a singular matrix. We choose x

0
s = φ0 so that u

t
0F

0
xxφ0φ0 = 0,

or equivalently, Hα = 0 with φt0φ0 = 1 as a normalization. Differentiating again we
obtain the equation

Fxxss = −Fxxxsxs + zttt
2
s + zttss.(4.9)

Since t0s = 0 and u
t
0F

0
xxφ0φ0 = 0, it follows that t

0
ss = 0 and that (4.9) is solvable. We

add the normalization condition (x0
s)
tx0
ss = 0 for x

0
ss. Differentiating (4.9) we obtain

Fxxsss = −3Fxxxssxs − Fxxxxsxsxs + ztttt
3
s + zttsss + 3ztttssts,(4.10)

from which it follows at s0 that

3ut0F
0
xxx

0
ssx

0
s + ut0F

0
xxxx

0
sx

0
sx

0
s = (u

t
0z

0
t )t

0
sss.(4.11)

The left-hand side of (4.11) not being equal to zero is the standard cusp condition [7],
under which it follows that t0sss 
= 0.

Based on these preliminaries we set x(s) = sφ0+s
2y and t(s) = s3τ with φt0y = 0.

Then the system F (x) = z is equivalent to

(a) U tm−1F (sφ0 + s2y) = U tm−1z(s
3τ),

(b) ut0F (sφ0 + s2y) = ut0z(s
3τ),

(c) φt0y = 0

(4.12)

with the preceding definitions. The system (4.12) consists of (m+1)-equations in the
(n+ 1)-variables y, τ plus the parameter s; (4.12) has full rank at a point if the null
space of its linearization there has dimension n−m. Using Taylor expansions, (4.12a)
and (4.12b) may be written, respectively, as

(4.12)
(a′) U tm−1F

0
x (sφ0 + s2y) + U tm−1R2(sφ0 + s2y)2 = U tm−1R̂1s

3τ,

(b′) ut0F
0
xx(sφ0 + s2y)2 + ut0R3(sφ0 + s2y)3 = ut0R̂1s

3τ.

Using (4.12a′) and dividing out an s2 and (4.12b′) and dividing out an s3, the
system (4.12) at s = 0 is equivalent to

U tm−1F
0
xy +

1
2U

t
m−1F

0
xxφ0φ0 = 0,

ut0F
0
xxφ0y +

1
6u

t
0F

0
xxxφ0φ0φ0 = (u

t
0z

0
t )τ,

φt0y = 0,
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A1 = 1

A3 = 1.5

A2 = 2
D2 

= 1

Fig. 2. A spatial manipulator.

which is solvable with y0 =
1
2x

0
ss and τ0 = t0sss/6 as defined earlier. Linearizing (4.12)

at y0, τ0, and s0 produces the following linear system in ŷ, τ̂ :

(a) U tm−1F
0
x ŷ = 0,

(b) ut0F
0
xxφ0ŷ − (ut0z0

t )τ̂ = 0,

(c) φt0ŷ = 0.

(4.13)

From (4.13a) we have ŷ = V0α; from (4.13c) we have that α lies in a (p−1)-dimensional
subspace of Rp. Now ut0F

0
xxφ0ŷ = αtHα0 = 0 for any α since φ0 with α0 a null vector

for H. Then from (4.13b) it follows that τ̂ = 0, and (4.13) admits m − n = p − 1
independent solutions. It follows using the implicit function theorem as in Theorem
3.4 that (4.12) is solvable for y and τ as smooth functions of s if z is smooth. Since
t = s3τ, it follows that s = t1/3 + · · · and that x = x0

st
1/3 + 1

2x
0
sst

2/3 + · · · , which was
expected from the discussion following (4.2).

As an example, we consider the three degree-of-freedom robot in Figure 2; see [4]
and [13]. The motion of each joint is in the Lie group SE(3), and the equations for
the mapping from the three joint angles to the spatial coordinates of the end-effector
may be simply computed as follows: Define the matrices

A =



cos θ1 − sin θ1 0 0
sin θ1 cos θ1 0 0
0 0 1 0
0 0 0 1


 , B =




cos θ2 0 sin θ2 1
0 1 0 1

− sin θ2 0 cos θ2 0
0 0 0 1


 ,

C =



cos θ3 − sin θ3 0 2
sin θ3 cos θ3 0 0
0 0 1 0
0 0 0 1


 , D =



1.5
0
0
1


 .

The coordinate systems were taken with the positive x-axes along the links denoted
by ai, the positive z-axes vertical and upward, and with the separate systems right-
handed. The first three coordinates of the product ABCD give the mapping F .
Based on this formula, one can easily compute Fθ and Fθθ. Using the formulas given
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in section 2, it is straightforward to compute that F has a cusp point at θ1 = 0,
θ2 = −2.265134, and θ3 = 1.158639. That is, for this point, Fθ has a one-dimensional
null space, and the null vector v is tangent to the singular manifold S1. This can
be verified by computing H = utFθθvv = gθv = 0. The null vector, normalized by
T = (1 1 1) in (2.2), is vt = (0.356216 0.2499307 0.3938177); the left null vector
u, normalizedwith rt = (1 − 1 1) as in (2.3), is ut = (0.2964187 − 1.0595738 −
0.3559925). Finally, using the differentiation formula gθ = utFθθv, one computes
gθ = (0 0.4533926 −0.2877052). We point out that these calculations are a by-product
of solving the system g = 0, H = 0, to find the cusp point. Now all information is at
hand to verify if a path z(t) for the end-effector is the image of a smooth path in the
space of angles. As discussed above and in Theorem 3.4, one needs utż = 0 and then
gθy1 
= 0 for a smooth path where Fθy1 = ż at t0. Otherwise, a reparametrization is
required as discussed above.

Planar intersections of the image under F of the singular set can be computed by
solving the system

g = 0,

qtF = 0,
(4.14)

where q is a fixed vector. We next give a proposition with conditions under which
(4.14) is nonsingular at the singular point x0 for F .

Proposition 4.3. Let qtF 0
x 
= 0. (a) Let ut0F 0

xxφ0φ0 
= 0. Then the linearization
of (4.14) has a one-dimensional null space at x0. (b) Let u

t
0F

0
xxφ0φ0 = 0. Define w

so that qtw = 0, ut0w = 0, and wtw = 1. Let F 0
xv1 = w with wtφ0 = 0. Then if

ut0F
0
xxφ0v1 
= 0, the conclusion in (a) holds.
Proof. For part (a), any null vector for the linearization of the second equation

in (4.14) has the form αφ0 + βv1 where v1 is defined above; then using the condition
ut0F

0
xxφ0φ0 
= 0 shows that α and β are linearly related. A similar substitution under

the conditions of (b) shows that β = 0.
Under the conditions of (b) in Proposition 4.3 for this example, the equations

(4.14) define a smooth curve in the singular surface. Since the tangent to this curve
is by construction a null vector for F 0

x , the image of this curve will have a cusp.
Remarks. If the target path z(t) satisfies ut0ż0 = 0, then it was shown in section

3 that a smooth path of inverse images exists in the case of the cusp, and may exist
in the case of the fold providing that the matrix H associated with the mapping F is
indefinite. These results were generalized in section 4 to the case that ut0ż0 
= 0. Then
the solutions are not smooth in the parameter t, but are smooth in a computable
reparametrization. Conditions required for these results are the generic ones for the
two singularities. Moreover, our results can be seen as an example of an effective
method to analyze other singularities and path-tracking through them. One performs
the analysis based on the normal form for the singularity and then relates the derived
solvability conditions and expansions to the original problem through the coordinate
changes relating the original problem to its normal form. These conditions can be
evaluated using the reduction given in section 2. This approach is especially effec-
tive for questions related to the qualitative behavior of spatial manipulators near a
singularity, such as determining the existence of a path and the number of inverse
images.
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Abstract. We consider solutions of hyperbolic conservation laws regularized with vanishing dif-
fusion and dispersion terms. Following a pioneering work by Schonbek, we establish the convergence
of the regularized solutions toward discontinuous solutions of the hyperbolic conservation law. The
proof relies on the method of compensated compactness in the L2 setting. Our result improves upon
Schonbek’s earlier results and provides an optimal condition on the balance between the relative sizes
of the diffusion and the dispersion parameters. A convergence result is also established for multidi-
mensional conservation laws by relying on DiPerna’s uniqueness theorem for entropy measure-valued
solutions.
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1. Introduction. We study here the convergence of solutions of the partial dif-
ferential equation (ε→ 0+, δ = δ(ε)→ 0)

ut + f(u)x = ε uxx + δ uxxx, u = uε(x, t), x ∈ R, t ≥ 0,(1.1)

toward weak solutions of the corresponding hyperbolic conservation laws:

ut + f(u)x = 0, u = u(x, t), x ∈ R, t ≥ 0,(1.2)

where the flux f : R→ R is a smooth function with (at most) linear growth at infinity;
that is, for some M > 0

|f ′(u)| ≤M, u ∈ R.

Equations of the form (1.1)–(1.2) arise in fluid dynamics when both viscosity
(diffusion) and capillarity (dispersion) play a role. The diffusion ε smoothes out the
discontinuous solutions of (1.2), while the dispersion δ causes high-frequency oscilla-
tions.

In this paper, we establish that the solutions uε of (1.1) converge toward a weak
solution of (1.2) provided that

δ = O(ε2).(1.3)

When the stronger condition

δ = o(ε2)(1.4)
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holds, we prove that the limit coincides with the entropy solution determined by
Kruzkov’s theory [10]. We point out that these conditions are sharp since, in the
limiting case

δ = K ε2 for some K ∈ R,(1.5)

limiting solutions may violate Kruzkov’s entropy conditions [8, 5, 15, 2]. Furthermore,
when (1.3) is violated, the solutions are highly oscillatory and fail to converge in any
strong topology as noted by Lax and Levermore [12, 13, 14]. (See also Lax [11].)

The singular limit problem above was first tackled by Schonbek [21], who estab-
lished the optimal rate (1.3) for the Burgers equation, that is,

f(u) =
u2

2
,

and for the class of flux-functions

f(u) =
u2p+1

2p+ 1
, p ≥ 1.

She also gave a convergence result for general fluxes with quadratic growth at infinity,
however, under the stronger condition on δ = O(ε3). As another important contri-
bution in [21], Schonbek introduces a generalization of the method of compensated
compactness (Tartar [23] and Murat [20]) allowing the handling of sequences that
are bounded in Lp for finite p > 1 only. Next, following [21], LeFloch and Natal-
ini [17] studied equations like (1.1) but with nonlinear (even singular) diffusion, and
established strong convergence results toward entropy solutions of (1.2). See also a
convergence result for systems in Hayes and LeFloch [6].

In the second part of this paper, we also deal with the convergence of solutions
of multidimensional equations similar to (1.1)–(1.2). For multidimensional equations,
the compensated compactness method no longer applies and the proofs are based
instead on DiPerna’s uniqueness theory for entropy measure-valued solutions (DiPerna
[4], Szepessy [22], and Kondo and LeFloch [9]). Our approach is similar to Correia and
LeFloch [3] where nonlinear diffusion terms are treated under a strong assumption on
the ratio of the dispersion to the diffusion.

To summarize, the main contribution in the present paper is the derivation of
a priori estimates (Theorems 2.1 and 3.1) which cover general flux-functions (with
at most linear growth at infinity) and lead to an optimal condition on the balance
between the diffusion and the dispersion (Theorems 2.2 and 3.2).

Further material on classical and nonclassical entropy solutions generated by
diffusive-dispersive limits can be found in [1, 2, 5, 6, 7, 8, 15, 16, 17, 18, 19, 21]

2. One-dimensional conservation laws. Consider a family uε of smooth so-
lutions to

ut + f(u)x = ε uxx + δ uxxx, u = uε(x, t),(2.1)

u(x, 0) = uε0(x), x ∈ R,(2.2)

where ε → 0+ and δ = δ(ε) → 0. Under suitable conditions on the initial data
uε0 : R → R, the solutions (and their derivatives) decay rapidly at infinity so that all
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the a priori estimates given below are rigorously justified. We want to show that the
solution of (2.1)–(2.2) converges toward a weak solution of the problem

ut + f(u)x = 0, u = uε(x, t),(2.3)

u(x, 0) = u0(x), x ∈ R,(2.4)

where u0 : R → R are given initial data. A minimum requirement is the weak
convergence (for instance in L2(R))

uε0 ⇀ u0,

which is always assumed throughout this paper. The following convergence theorem
covers both cases where the diffusion is in balance or dominates the dispersion.

Theorem 2.1. Suppose that the flux-function f is Lipschitz continuous on R and
that the initial data u0 belong to L2(R). Then the solution uε of (2.1)–(2.2) satisfies
the following a priori estimates:

‖uε(t)‖L2(R) ≤ ‖uε0‖L2(R), t ≥ 0,(2.5a)

√
2 ε ‖uεx‖L1(R+,L2(R)) ≤ ‖uε0‖L2(R),(2.5b)

√
δ ‖uεx(t)‖L2(R) ≤

√
2 ‖f ′‖∞ ‖uε0‖L2(R) +

√
δ ‖uε0x‖L2(R), t ≥ 0,(2.5c)

and

√
ε δ ‖uxx‖L1(R+,L2(R)) ≤

√
2 ‖f ′‖∞ ‖uε0‖L2(R) +

√
δ ‖uε0x‖L2(R).(2.5d)

Proof. Throughout the calculation and for simplicity, we omit the upper-index
ε. To any smooth function U : R → R we can associate a “flux” F : R → R by
F ′(u) = U ′(u)f ′(u), u ∈ R. Multiplying (2.1) by U ′(u) we find

U(u)t + F (u)x = ε (U ′(u)ux)x − ε U ′′(u)u2
x + δ

(
U ′(u)uxx

)
x
− δU ′′(u)ux uxx.

Integrating over the whole space, it follows that

d

dt

∫
R

U(u) dx+ ε

∫
R

U ′′(u)u2
x dx = δ

∫
R

U ′′(u)
(
u2
x

2

)
x

dx

= −δ
2

∫
R

U ′′′(u)u3
x dx.(2.6)

Integrating in time over some interval (0, t), we arrive at the general identity

∫
R

U(u(t)) dx+ ε

∫ t

0

∫
R

U ′′(u)u2
x dxdt =

∫
R

U(u0) dx− δ

2

∫ t

0

∫
R

U ′′′(u)u3
x dxdt.

(2.7)

Choosing first U(u) = u2 in (2.7), we see that∫
R

u(t)2dx+ 2 ε

∫ t

0

∫
R

u2
xdx =

∫
R

u2
0(x),(2.8)

which gives immediately (2.5a) and (2.5b).
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Next, we differentiate (2.1) with respect to x and we multiply by ux:

1

2

(
u2
x

)
t
+ ux

(
f ′(u)ux

)
x
= ε

(
ux uxx

)
x
− ε u2

xx + δ

(
ux uxxx − 1

2
u2
xx

)
x

.

Integrating in space, we get

1

2

d

dt

∫
R

u2
x dx+ ε

∫
R

u2
xx dx =

∫
R

uxx f
′(u)ux dx = −1

2

∫
R

f ′′(u)u3
x dx.

Hence, integrating over some interval (0, t), we find∫
R

ux(t)
2 dx+ 2 ε

∫ t

0

∫
R

u2
xx dxdt =

∫
R

u2
0x dx−

∫ t

0

∫
R

f ′′(u)u3
x dxdt.(2.9)

We multiply (2.9) by δ and add it up with (2.7):

δ

∫
R

ux(t)
2 dx+ 2 ε δ

∫ t

0

∫
R

u2
xx dxdt

=

∫
R

U(u0) dx−
∫

R

U(u(t)) dx+ δ

∫
R

u2
0x dx

− ε
∫ t

0

∫
R

U ′′(u)u2
x dxdt− δ

∫ t

0

∫
R

f ′′(u)u3
x dxdt−

δ

2

∫ t

0

∫
R

U ′′′(u)u3
x dxdt.

Choosing U given by

U(u) = −2
∫ u

0

(
f(v)− f(0)) dv(2.10)

the last two terms in the above identity cancel out. Since

−c ≤ U ′′(u)
2
≤ c := ‖f ′‖∞ for all u ∈ R,

thus

−c u2 ≤ U(u) ≤ c u2 for all u ∈ R,

and we finally obtain

δ

∫
R

ux(t)
2 dx+ 2 ε δ

∫ t

0

∫
R

u2
xx dxdt

≤
∫

R

c u2
0 dx+

∫
R

c u(t)2 dx+ δ

∫
R

u2
0x dx+ 2 ε

∫ t

0

∫
R

c u2
x dxdt.

Hence using (2.8)

δ

∫
R

ux(t)
2 dx+ 2 ε δ

∫ t

0

∫
R

u2
xx dxdt ≤ 2 c

∫
R

u2
0 dx+ δ

∫
R

u2
0x dx,

which leads to (2.5c) and (2.5d). The proof of Theorem 2.1 is completed.
Recall that by Kruzkov’ theory, given u0 ∈ L2(R), the Cauchy problem (2.3)–

(2.4) admits a unique entropy solution u ∈ L∞(
R+, L

2(R)
)
in the sense of Kruzkov’s

theory. See [10, 4, 22, 9].
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Theorem 2.2. Assume that, for some constant C0 > 0 independent of ε,

‖uε0‖L2(R) +
√
δ ‖uε0x‖L2(R) ≤ C0.(2.11)

(1) As ε → 0 with δ = O(ε2) (a subsequence of) the solution uε of (2.1)–(2.2)
converges in Lploc

(
R+, L

q
loc(R)

)
(for all 1 < p < ∞ and 1 < q < 2) toward a

weak solution of the problem (2.3)–(2.4).
(2) If the stronger condition δ = o(ε2) holds, then the limit is the unique entropy

solution in the sense of Kruzkov.

In case (1) a subsequence of uε (at least) converges strongly, while in case (2) the
whole sequence converges strongly. We can conjecture that, in fact, the whole sequence
should converge in case (1) as well, but proving it would be very challenging since it
requires a uniqueness result of nonclassical entropy solutions. (See also LeFloch [16].)

Proof. We will apply the general convergence framework established by Schon-
bek [21]. Based on (2.11) and the uniform estimate (2.5a) derived earlier, we can
select a subsequence of uε converging “in the sense” of the Young measures. To ap-
ply [21], we only need to control the entropy dissipation measures associated with
(2.1). Let U be a smooth function with (at most) linear growth at infinity and,
more precisely, such that U ′ and U ′′ are uniformly bounded on R. Consider the
distribution

Γε = U(uε)t + F (uε)x,

where as usual F ′ = U ′ f ′. With obvious notation consider the decomposition

Γε = ε
(
U ′(uε)uεx

)
x
− ε U ′′(uε) (uεx)

2 + δ
(
U ′(uε)uεxx

)
x
− δ U ′′(uε)uεx u

ε
xx

= Γε1 + Γε2 + Γε3 + Γε4.

The estimates below hold for all smooth function θ : R × R+ → R with compact
support in (x, t).

Consider first the term Γε1. By the Cauchy–Schwarz inequality, we get

∣∣∣∣
∫ ∞

0

∫
R

Γε1 θ dxdt

∣∣∣∣ =
∣∣∣∣
∫ ∞

0

∫
R

ε U ′(uε)uεx θx dxdt
∣∣∣∣

≤ εC ‖uεx‖L1(R+,L2(R)) ‖θx‖L∞(R+,L2(R))(2.12i)

≤ C ′√ε→ 0,

where we used (2.5b). This proves that Γε1 converges to zero in the sense of distri-
butions.

Next we simply point out that, by (2.5b) again, the second term Γε2 remains
uniformly bounded in L1:

∫ ∞

0

∫
R

|Γε2| dxdt ≤
1

2
‖uε0‖2L2(R).(2.12ii)
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To estimate Γ3 we use (2.5d):

∣∣∣∣
∫ ∞

0

∫
R

Γε3 θ dxdt

∣∣∣∣ =
∣∣∣∣δ
∫ ∞

0

∫
R

U ′(uε)uεxx θx dxdt
∣∣∣∣

≤ δ C‖uεxx‖L1(R+,L2(R)) ‖θx‖L∞(R+,L2(R))(2.12iii)

≤ C ′
√
δ

ε
→ 0,

provided that the mild condition δ = o(ε) holds. Therefore Γε3 tends to zero in the
sense of distributions.

Finally, we deal with the last term as follows:∣∣∣∣
∫ ∞

0

∫
R

Γε4 θ dxdt

∣∣∣∣ =
∣∣∣∣
∫ ∞

0

∫
R

δ U ′′(uε)uεx u
ε
xx θ dxdt

∣∣∣∣
≤ δ C‖uεxx‖L∞(R+,L2(R)) ‖uεx‖L∞(R+,L2(R)) ‖θ‖L∞(R×R+)

≤ C ′
√
δ

ε
,(2.12iv)

where we use (2.5b) and (2.5d). The upper bound above tends to zero iff δ = o(ε2), in
which case we can conclude that Γε4 tends to zero in the sense of distributions. Under
the weaker assumption δ = O(ε2), we see that Γε4 is solely bounded in L1(R×R+) as
is Γε2.

The conclusion (1) of the theorem follows immediately from the uniform bounds
(2.12i)–(2.12iv) by applying Schonbek’s convergence theory. Her arguments show only
that a subsequence of uε converges and that the limit is a weak solution of (2.3)–(2.4).
On the other hand, assuming now the stronger condition δ = o(ε2) and restricting
attention to convex functions U , in view of (2.12i)–(2.12iv) again and the expression
of Γε2, we see that the entropy dissipation decomposes in the form

Γε = Γ̃ε + Γε2,

where Γ̃ε → 0 in the sense of distributions and Γε is a nonpositive bounded measure.
This shows that all of the entropy inequalities hold in the limit ε→ 0. Thus the limit
coincides with the unique entropy solution of the problem.

3. Multidimensional conservation laws. The estimates and the technique of
proof in section 2 do not apply to multidimensional equations, and markedly different
arguments are discussed now. Consider the following Cauchy problem:

ut +

d∑
j=1

fj(u)xj = ε

d∑
j=1

uxjxj
+ δ

d∑
j=1

uxjxjxj
, u = uε(x, t), x ∈ R

d, t > 0,(3.1)

u(x, 0) = uε0(x), x ∈ R
d.(3.2)
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Provided the initial data uε0 converge weakly to some limit u0 (in L2, say), we will
now prove that the solutions of (3.1)–(3.2) converge toward the entropy solution of
the associated hyperbolic problem

ut +

d∑
j=1

fj(u)xj
= 0, u = (x, t), x ∈ R

d, t > 0,(3.3)

u(x, 0) = u0(x), x ∈ R
d.(3.4)

Precisely our results are as follows.
Theorem 3.1. Suppose that the flux-function f is Lipschitz continuous on R and

that the initial data u0 belong to L2(Rd). Then the solution uε of (3.1)–(3.2) satisfies
the following a priori estimates:

‖uε(t)‖L2(Rd) ≤ ‖uε0‖L2(Rd), t ≥ 0,(3.5a)

√
2 ε ‖uεx‖L1(R+,L2(Rd)) ≤ ‖uε0‖L2(Rd),(3.5b)

ε ‖uεxj
(t)‖L2(Rd) ≤

√
d ‖f ′j‖∞ ‖uε0‖L2(Rd) + ε ‖uε0xj

‖L2(Rd), j = 1, . . . , d, t ≥ 0,

(3.5c)

and

ε3/2 ‖uεxjxk
‖L1(R+,L2(Rd)) ≤

√
d ‖f ′j‖∞ ‖uε0‖L2(Rd) + ε ‖uε0xj

‖L2(Rd), j, k = 1, . . . , d.

(3.5d)

For each u0 ∈ L2(Rd), the Cauchy problem (3.3)–(3.4) admits a unique entropy
solution u ∈ L∞(R+, L

2(Rd) in the sense of Kruzkov. See again [10, 4, 22, 9].
Theorem 3.2. Assume that, for some constant C0 > 0 independent of ε,

‖uε0‖L2(Rd) + ε

d∑
j=1

‖uε0xj
‖L2(R) ≤ C0.(3.6)

Then, when ε → 0+ with δ = o(ε2), the solution uε of (3.1)–(3.2) converges in
Lploc

(
R+, L

q
loc(R

d)
)

(for all 1 < p < ∞ and 1 < q < 2) toward the unique entropy
solution in the sense of Kruzkov of the Cauchy problem (3.3)–(3.4).

Recall again that the condition δ = o(ε2) is sharp since, in the opposite case,
nonclassical solutions violating the Kruzkov entropy inequalities could arise in the
limit.

Proof of Theorem 3.1. We omit the upper-index ε in the following calculation. To
derive the L2 bound (3.5a), we multiply (3.1) by u and get

( |u|2
2

)
t

+

d∑
j=1

Fj(u)xj =

d∑
j=1

(
ε u uxj

)
xj
−ε

d∑
j=1

|uxj |2−
δ

2

d∑
j=1

(|uxj |2
)
xj
+

d∑
j=1

(
δ u uxjxj

)
xj
,

where F ′
j = u f ′j is normalized by the condition Fj(0) = 0, j = 1, . . . , d. Integrating

over space, we get

d

dt

∫
Rd

|u|2 dx = −2 ε
∫

Rd

d∑
j=1

|uxj |2 dx,
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and so for all t ≥ 0∫
Rd

|u(t)|2 dx+ 2 ε

∫ t

0

∫
Rd

d∑
j=1

|uxj
|2 dxdt =

∫
Rd

|u0|2 dx.(3.7)

To estimate the gradient of u, for k = 1, . . . , d we differentiate (3.1) with respect
to the variable xk and then multiply by uxk

. The right-hand side of (3.1) is linear in
u thus the calculation for this side is identical to the one we just made, but with u
replaced with uxk

. On the other hand, the flux term in the left-hand side is nonlinear
and requires a specific argument,

d

dt

∫
Rd

|uxk
|2 dx−

d∑
j=1

∫
Rd

2uxkxj
f ′j(u)uxk

dx = −2ε
d∑
j=1

∫
Rd

|uxjxk
|2 dx,

so after integration in time

∫
Rd

|uxk
(t)|2 dx+ 2 ε

d∑
j=1

∫ t

0

∫
Rd

|uxjxk
|2 dxdt

≤
∫
|u0xk

|2 dx+ 2 ‖f ′k‖∞
d∑
j=1

∫ t

0

∫
Rd

|uxjxk
| |uxk

| dxdt

≤
∫

Rd

|u0xk
|2 dx+ ‖f

′
k‖2∞
ε

d
d∑
j=1

∫ t

0

∫
Rd

|uxk
|2 dxdt+ ε

d∑
j=1

∫ t

0

∫
Rd

|uxjxk
|2 dxdt.

Observe that the last term of the right-hand side coincides with the last term of
the left-hand side. Therefore, multiplying the above inequality by ε2 and using the
entropy dissipation bound in (3.7), we deduce that

∫
Rd

ε2 |uxk
(t)|2 dx+

d∑
j=1

∫ t

0

∫
Rd

ε3 |uxjxk
|2 dxdt

≤
∫

Rd

ε2 |u0xk
|2 dx+ ‖f ′k‖2∞

∫ t

0

∫
Rd

d ε |uxk
|2 dxdt(3.8)

≤
∫

Rd

ε2 |u0xk
|2 dx+ d ‖f ′k‖2∞

∫
Rd

|u0|2 dx.

Proof of Theorem 3.2. We will rely on the convergence framework proposed by
DiPerna [4] for L∞ solutions and generalized to Lp solutions by Szepessy [22] and
Kondo and LeFloch in [9].

Consider a Young measure ν associated with the sequence uε and based on the
uniform L2 bound (3.5a). (Such Young measures are described in Schonbek [21]). To
show that ν is an entropy measure-valued solution, we must check entropy inequalities
associated with (3.3), that is,

〈
ν, U

〉
t
+

d∑
j=1

〈
ν, Fj

〉
xj
≤ 0,(3.9)
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where U : R → R is a convex function with (at most) linear growth at infinity and
the entropy flux F ′

j = U ′ f ′j is normalized so that Fj(0) = 0.
By the definition of the Young measure, we only need to establish that, in the

decomposition

∂tU(u
ε) +

d∑
j=1

∂jFj(u
ε)=

d∑
j=1

∂j
(
ε U ′(uε) ∂juε + δ(ε)U ′(uε) ∂2

j u
ε
)

−
d∑
j=1

ε U ′′(uε) |∂juε|2 + δ(ε)U ′′(uε) ∂juε ∂2
j u

ε(3.10)

=: Γε1 + Γε2 + Γε3 + Γε4,

we have

Γε1,Γ
ε
2,Γ

ε
4 → 0

and

Γε3 ≤ 0.

These convergence properties were precisely established in the proof of Theorem 2.2,
at least for one-dimensional equations. The extension to multidimensional equations
is immediate in view of the uniform estimates (3.5a)–(3.5d). A detailed discussion of
the initial condition at t = 0 (which is based on using suitable entropy inequalities)
can be found in Kondo and LeFloch in [9]. This completes the proof that the conver-
gence framework in [9] applies and provides the strong convergence toward the unique
entropy solution of (3.3)–(3.4).
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Abstract. In this paper we consider a nonlinear system of partial differential equations con-
sisting of one parabolic equation and two ordinary differential equations in t. The system arises in
a mathematical model of angiogenesis, a process of sprouting of new blood vessels from an existing
vascular network. We prove that the system has a unique global solution and study its asymptotic
behavior as t→ ∞. In particular, we show that stationary solutions are local attractors.

Key words. angiogenesis, tumor growth, degenerate parabolic equations
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1. Introduction. The inner lining of blood vessel is made up by a monolayer of
flattened and extended cells, called endothelial cells. They are supported by a collage-
nous network—a network of fibrous proteins. Adhesion molecules, called fibronectins,
reside both in the membrane of the blood vessels and in the extracellular matrix that
surrounds the vessels.

Angiogenesis is a process of sprouting new blood vessels from a pre-existing vas-
cular network. This process occurs during placental growth, during wound healing,
and in tumor growth. In the latter it is initiated by release of chemicals by the tu-
mor, the so called “tumor angiogenic factor,” or TAF; see [2]. In a recent paper (cf.
[14]) Levine, Sleeman, and Nilsen-Hamilton developed a mathematical model that de-
scribes the initiation of angiogenesis in a tumor. The process takes into account the
biochemical steps by which chemotactic substances from the tumor combine with the
receptors on the endothelial cell wall to produce substances that cause the eventual
degradation of the vascular lamina and the migration of endothelial cells to sprout
the lining of new capillaries.

The endothelial cell receptors are viewed in this model as the catalyst for trans-
formation of TAF into proteolytic enzyme. The proteolytic enzyme acts as a stimulus
for endothelial cell motion via chemotaxis and at the same time as an agent for the
degradation of fibronectins. Finally, fibronectin acts as a chemotactic agent for the
endothelial cells via a process called haptotaxis. In this process, the endothelial cells
tend to move toward low concentrations of fibronectin. In addition, the endothelial
cells produce fibronectin and, according to [14], they do it by following a logistic law.
The sequence of biochemical processes is described by the law of mass action and the
standard Michaelis–Menten kinetics for catalytic reactions, while the cell motion is
governed by the continuum equations for reinforced random walks introduced in [15].
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Putting all these facts together and taking the time scale in which some of the
biochemical processes are quasi-stationary, one arrives at the following system (see
[14] for further details):

ηt = D1ηxx −D1 [η (ln τ1(c, f))x]x for 0 ≤ x ≤ 1, t > 0,(1.1)

∂v

∂t
= − λ1vη

1 + λ2v
for 0 ≤ x ≤ 1, t > 0,(1.2)

∂c

∂t
=

λ1vη

1 + λ2v
for 0 ≤ x ≤ 1, t > 0,(1.3)

∂f

∂t
= λ3f(fM − f)η − λ4cf

1 + λ5f
for 0 ≤ x ≤ 1, t > 0,(1.4)

where η = endothelial cell density, v = concentration of angiogenic factor, c = con-
centration of proteolytic enzyme, f = concentration of fibronectin, and D, λi, fM are
positive constants. All the functions are also positive. The function τ1(c, f) repre-
sents a transition probability in the theory of reinforced random walks, and its explicit
form for the biological systems under study is unknown. According to experimental
observations, however, it must be increasing in c and decreasing in f . Following [13]
we shall take

τ1(c, f) = cγ1f−γ2 ,(1.5)

with γi positive constants.
The variable x, after rescaling, is taken along the length of a pre-existing capillary.

The boundary condition for η is

ηx − η (ln τ1(c, f))x = 0 at x = 0, 1.(1.6)

This condition means that there is no flux of cells across the endpoints of the capillary
vessel. Finally, initial conditions are prescribed for each of the four unknown functions.

In a subsequent paper (cf. [13]), Levine, Sleeman, and Nilsen-Hamilton incorpo-
rate into the model the effects of pericytes (with density σ(x, t)) and macrophages
(with density m(x, t)) and of a chemotactic agent (with concentration u(x, t)) acting
on macrophages. The equations they derive are

σt = D2σxx −D2 [σ (ln τ2(f))x]x for 0 ≤ x ≤ 1, t > 0,(1.7)

mt = D3mxx −D3 [m (ln τ3(c, f))x]x for 0 ≤ x ≤ 1, t > 0(1.8)

for the cells’ motion; a new equation for the chemical kinetics of chemotactic agent is

∂u

∂t
= − λ2um

1 + λ5u
for 0 ≤ x ≤ 1, t > 0,(1.9)

and, finally, the fact that macrophages transform chemotactic agent into TAF leads
to the equation

∂v

∂t
=

λ2um

1 + λ5u
− λ1vη

1 + λ2v
for 0 ≤ x ≤ 1, t > 0,(1.10)

which replaces (1.2).
We briefly explain the processes underlying the enlarged model; for more de-

tails see [13]. Endothelial cells, as mentioned above, reside in the inner part of the
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membrane of the capillary vessels, and pericyte cells reside on the outer boundary
of the membrane. Macrophage cells are located in the extracellular matrix outside
the membrane. The tumor secretes angiogenic molecules that go directly to attack
the membrane and chemotactic molecules (with concentration u) that interact with
macrophages and are converted into angiogenic molecules. The angiogenic molecules
(with concentration v) produce proteolytic enzyme (with concentration c) that di-
late and break up the membrane, and thereby induces migration of its fibronectin
molecules (with concentration f). Pericyte cells tend to move up a fibronectin gra-
dient, while macrophages tend to move up the concentration gradient of the tumor
emitted chemotactic factor.

Numerical solutions given in [13] and [14] exhibit the profiles of various cell den-
sities and chemical concentrations during a real-time interval of several days. A large
concentration of endothelial cells at one location is associated with the sprouting of a
new capillary at that location. Therefore, it is important to know whether the solu-
tions of the above systems lead to aggregation of endothelial cells in some region or,
on the contrary, these cells tend to distribute uniformly in the capillary. In the first
case, sprouting of new vessels can take place in regions of high aggregation while, in
the second case, the model fails to describe this phenomenon.

In this paper we study primarily the model (1.1)–(1.4).
By adding (1.2) and (1.3) we see that v + c is independent of t so that

v(x, t) = g(x)− c(x, t),

where g(x) is a given function. Following [13], we shall assume that v and f are small
enough so that we can approximate 1 + λ2v and 1 + λ5f by 1 and fM − f by fM .
Rewriting λ3 instead of λ3fM , one arrives at the following system:

ηt = D1ηxx −D1

[
η

(
γ1

cx
c
− γ2

fx
f

)]
x

, 0 ≤ x ≤ 1, t > 0,(1.11)

∂c

∂t
= λ1(g − c)η, 0 ≤ x ≤ 1, t > 0,(1.12)

∂f

∂t
= λ3fη − λ4cf, 0 ≤ x ≤ 1, t > 0,(1.13)

together with the no flux boundary condition

ηx − η
(
γ1

cx
c
− γ1

fx
f

)
= 0 at x = 0, 1(1.14)

and with positive initial conditions

η(x, 0) = η0(x), c(x, 0) = c0(x), f(x, 0) = f0(x).(1.15)

Note that by the definition of g(x) one has c(x, t) ≤ g(x). Hence, c(x, t) is uniformly
bounded and, since ct ≥ 0, θ(x) = limt→∞ c(x, t) exists for any global solution of the
system (1.1)–(1.4). This leads one to consider (as in [13]) the subsystem

ηt = D1ηxx −D1

[
η

(
γ1

θx
θ
− γ2

fx
f

)]
x

, 0 ≤ x ≤ 1, t > 0 ,(1.16)

∂f

∂t
= λ3fη − λ4θf, 0 ≤ x ≤ 1, t > 0,(1.17)
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with

ηx − η
(
γ1

θx
θ
− γ2

fx
f

)
= 0 at x = 0, 1, t > 0,(1.18)

η(x, 0) = η0(x), f(x, 0) = f0(x),(1.19)

where θ is a given positive function. The system (1.16)–(1.19) can also be viewed as
a particular case of (1.11)–(1.15) when c0(x) ≡ g(x).

In this paper we prove that the initial-boundary value problem (1.16)–(1.19) has
a unique global classical solution for all t > 0 and we establish the phenomenon of
aggregation. More specifically, we prove that the nonconstant stationary solution of
(1.16)–(1.18) is a local attractor for the time-dependent solution of (1.16)–(1.19). A
similar result is proved for the more general system (1.11)–(1.15) provided g(x)−c0(x)
is small enough.

The proofs for (1.11)–(1.15) can actually be modified to include the results for the
system (1.16)–(1.19). However, the treatment of this latter system is much simpler
and, furthermore, suggests how to approach the more general case of (1.11)–(1.15).
For this reason we first give the proofs for the system (1.16)–(1.19) in full details and
then consider the general system (1.11)–(1.15), omitting some details.

Our results can also be extended to the system (1.1)–(1.6) with τ1(c, f) being a
more complicated function like, for instance,

τ1(c, f) =

(
α1 + c

α2 + c

)γ1
(
β2 + f

β1 + f

)−γ2

,

where αi, βi are positive constants.
The system (1.16)–(1.19) was also considered in [12] for γ2 both positive and

negative. The authors proved that if γ2 < 0, then there are solutions (η, f) such that
η(x, t) becomes infinite in finite time, and if γ2 > 0, there are solutions that exist for
all time. In this paper we prove that if γ2 > 0, then all solutions of (1.16)–(1.19)
exist for all times. Another proof of this result was given in [16], but our proof is
simpler and is the one we are going to adapt to the analysis of system (1.11)–(1.15);
see Remark 3.6.

The system (1.16), (1.17) with θ = const. is a special case of general chemotaxis
equations

∂p

∂t
= div (∇p− pχ(w)∇w) ,(1.20)

∂w

∂t
= g(p, w).(1.21)

These equations describe the rearrangement or movement of living organisms such
as cells (e.g., bacteria) with density p under the influence of nondiffusing chemical
species with concentration w. The system was introduced by Othmer and Stevens
[15] to describe a random walk for p which is reinforced, or biased, by w, whereas
at the same time it affects w. Such is the situation, for instance, for common soil
bacteria (called myxobacteria) sliding over slime trails. Different choices of g(p, w)
and of the chemotactic sensitivity function χ(w) lead to different conclusions with
regard to the profile of p.

For some choices of χ, g global solutions always exist, but for other choices so-
lutions may blow up in finite time. In particular, as mentioned above, if γ2 < 0
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in (1.16), then there exist solutions of (1.16)–(1.19) that blow up in finite time [12],
whereas in our case, where γ2 > 0, global solutions always exist [16].

The structure of the paper is as follows: In section 2 we prove that the system
(1.16)–(1.19) has a unique classical solution for small time 0 < t < T . In section 3
we derive a priori bounds which enable us to extend the solution to all t > 0. In
section 4 we prove that the stationary solution of (1.16)–(1.19) is a local attractor. In
section 5 we extend the results of sections 2 and 3 to the general system (1.11)–(1.15)
consisting of one diffusion equation and two ODEs together with no flux boundary
conditions and initial conditions. Finally, in section 6 we prove that the stationary
solutions of (1.11)–(1.15) are also local attractors.

In a recent paper Friedman and Tello [3] proved global existence of solutions of
(1.20), (1.21) under general assumptions on g and χ. Their results, however, do not
overlap at all with those of the present paper. In particular, the stationary solutions
in [3] are all constants, whereas in the present paper the stationary solutions are non-
constant. The methods of the two papers are also entirely different: In the present
paper we use integral estimates, whereas in [3] pointwise estimates are derived by
comparison arguments.

A two-dimensional model of angiogenesis with one diffusing density and two non-
diffusing species was considered in [1]; however, the question of global existence (or
blow-up) for that system has not been studied.

We finally mention the Keller–Segal model [9], [10] for chemotaxis: It consists of
(1.20) and

α
∂w

∂t
= ε�w + g(p, w) (α ≥ 0, ε > 0) .(1.22)

In the case α = 0, χ constant, and g(p, w) = p − 1, solutions may blow up [8] and
the precise profile of the blow-up was studied in [5], [6], [7]. On the other hand in the
case α > 0, χ = 1, and g(p, w) = −βw + γ(p − 1), global solutions exist for general
initial data [4].

In a recent paper Stevens [18] derived the chemotaxis system (1.20), (1.22) by
probabilistic analysis. Her paper also reviews (more thoroughly than we do here) the
literature of existence and blow-up of solutions of (1.20), (1.22).

2. Local existence for (1.16)–(1.19). Set

τ = D1t,

P =
λ3γ2

D1
η,

V = log

(
fγ2

θγ1

)
,(2.1)

g(x) =
γ2λ4

D1
θ(x).

Writing for simplicity t instead of τ , the system (1.16)–(1.19) becomes

Pt = (Px + VxP )x at 0 ≤ x ≤ 1, t > 0,(2.2)

Vt = P − g at 0 ≤ x ≤ 1, t > 0,(2.3)

Px + VxP = 0 at x = 0, 1, t > 0,(2.4)

P (x, 0) = P0(x), V (x, 0) = V0(x), 0 < x < 1.(2.5)
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Set QT = {0 < x < 1, 0 < t < T} and I = {0 < x < 1}.
We assume that

g(x) ∈ C2+β(I), g(x) ≥ g0 > 0,

P0(x), V0(x) ∈ C2+β(I), and(2.6)

P0,x + V0,xP0 = 0 at x = 0, 1.

It will be convenient later on to recast the system (2.2)–(2.5) in terms of the
variables

c = e−V , u = PeV (P = cu).

Then

cut = (cux)x + c2u2 − g(x)cu for 0 ≤ x ≤ 1, t > 0,(2.7)

ct = −c2u+ gc for 0 ≤ x ≤ 1, t > 0,(2.8)

ux(0, t) = ux(1, t) = 0 for t > 0,(2.9)

u(x, 0) = u0(x) = P0e
V0 , c(x, 0) = c0(x) = e−V0 , 0 ≤ x ≤ 1.(2.10)

Equation (2.7) can also be written as

ut − uxx − cx
c
ux = cu2 − g(x)u .(2.11)

Theorem 2.1. If (2.6) holds, then there exists a unique solution of (2.2)–(2.5)

for 0 < t < T , with P ∈ C2+β,1+ β
2

x,t (QT ) and W ∈ C2+β,1+ β
2

x,t (QT ), provided T is
sufficiently small.

Proof. It suffices to prove the corresponding theorem for the system (2.7)–(2.10).
We introduce the space XT of functions with finite norm

‖u‖XT
= |u|L∞(QT ) + |Dxu|

C
1+β,

β
2

x,t (QT )

and the ball of radius R,

BR = {u ∈ XT , ‖u‖T ≤ R} ,

where

R = |u0|C1+β(I) + 1.

For any u ∈ BR we solve (2.8)–(2.10) and find that

‖c‖XT
≤ C1(R).

Next we solve

Ut = Uxx +
cx
c
Ux + (cu2 − g(x)u) in QT ,

Ux(0, t) = Ux(1, t) = 0, 0 < t < T,

U(x, 0) = u0, 0 ≤ x ≤ 1.
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Since cx ∈ C1+β, β2
x,t (QT ), we can use the Schauder estimates (cf. [11]) to conclude

that

|U |
C

2+β,1+
β
2

x,t (QT )
≤ C2(R).

But then, by the mean value theorem,

|U − u0|L∞(QT ) + |Dx(U − u0)|
C

1+β,
β
2

x,t (QT )
≤ CT δC2(R)

for some δ > 0. It follows that

‖U‖XT
< R(2.12)

if T is small enough so that CT δC2(R) < 1. Consider the transformation S : u→ U.
By (2.12), S maps BR into itself. From the above analysis we also easily see that

‖Su1 − Su2‖XT
< C3T

δ ‖u1 − u2‖XT
,

with a constant C3 depending on R. Hence S is a contraction in BR provided T is
sufficiently small. It follows that S has a unique fixed point, and together with the
corresponding c they form the unique solution of (2.7)–(2.10).

3. A priori bounds and global existence. Let (u, c) (or (P, V )) be a solution
of (2.7)–(2.10) (or (2.2)–(2.5)) for some time interval 0 < t < T . Note that u, c, P are
all positive in QT . We want to derive bounds

|u|
C

2+α,1+α
2

x,t (QT )
+ |c|

C
2+α,1+α

2
x,t (QT )

≤ C(T )(3.1)

or, equivalently,

|P |
C

2+α,1+α
2

x,t (QT )
+ |V |

C
2+α,1+α

2
x,t (QT )

≤ C(T ),(3.2)

where C(T ) is a bounded function of T . In this proof we shall use the fact that

∫ 1

0

P (x, t)dx = const ≡ µ.(3.3)

This follows by integrating (2.2) over x and using (2.4).
In what follows we shall denote various bounded functions of T by C(T ).
Lemma 3.1. The following estimate holds:

sup
0<t<T

∫
I

P (x, t) logP (x, t)dx+ sup
0<t<T

∫
I

(Vx(x, t))
2
dx+

∫ ∫
QT

P 2
x

P
dxdt ≤ C(T ).

(3.4)

Proof. Let h(s) =
∫
(log s)ds = s log s − s. If we multiply (2.2) by logP and

integrate over Qt, we get∫
I

h(P (x, t))dx+

∫ ∫
Qt

P 2
x

P
dxdt+

∫ ∫
Qt

VxPxdxdt =

∫
I

h(P0(x))dx .(3.5)
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But, by (2.3),

Px = (Vt)x + gx = (Vx)t + gx,

so that ∫ ∫
Qt

VxPxdxdt =

(
1

2

∫ ∫
Qt

(
V 2
x

)
t
dxdt+

∫ ∫
Qt

Vxgxdxdt

)

=
1

2

∫
I

V 2
x dx+

∫ ∫
Qt

Vxgxdxdt− 1

2

∫
I

V 2
0,xdx

≥ 1

2

∫
I

V 2
x dx− C

∫ ∫
Qt

V 2
x dxdt− C(t+ 1) .

Substituting this into (3.5) and using (3.3) we get∫
I

P (x, t) logP (x, t)dx+

∫ ∫
QT

P 2
x

P
dxdt+

∫
I

V 2
x (x, t)dx ≤ C(t+1)+C

∫ ∫
Qt

V 2
x dxdt.

Since this estimate yields, by Gronwall’s inequality,∫ ∫
QT

V 2
x dx ≤ C(T ),

(3.4) follows.
Lemma 3.2. There exists a constant C(T ) such that

sup
0<t<T

∫
I

P 2(x, t)dx+

∫ ∫
QT

P 2
xdxdt ≤ C(T ).(3.6)

Proof. If we write (2.2) in the form

Pt = (Px + a(x, t)P )x ,

then from Lemma 3.1 we have

sup
0≤t≤T

∫
I

|a(x, t)|2 dx ≤ C(T )

so that
∫ t
0

(∫
I

∣∣a2
∣∣q dx) 1

r dt ≤ C(T ) with q = 1, r = 2. The latter condition allows
us to apply Theorem 2.1 in [11, p. 143]. According to that theorem, the solution P
satisfies (3.6). We note that Theorem 2.1 in [11] is actually stated for the case of zero
Dirichlet data, but the proof for zero Neumann data is the same.

Lemma 3.3. There holds

sup
QT

|u| ≤ C(T ).

Proof. From (3.3) we deduce that

|P (x, t)− µ|2 ≤
∫ 1

0

P 2
x (x, t)dx,
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and using (3.6) we then get

∫ T

0

sup
x∈I
|P (x, t)|2 dt ≤ C(T ).(3.7)

Set P (t) = maxx∈I P (x, t). Since cu = P , (2.11) gives

ut − uxx − cx
c
ux ≤ P (t)u.

The function

U(t) = C0e

∫ t

0
P (t′)dt′

(
C0 ≥ max

x∈I
u(x, 0)

)

satisfies

Ut = P (t)U

and is therefore a supersolution. It follows that

u(x, t) ≤ C0e

∫ t

0
P (t′)dt′ ≤ C(T )

by (3.7).
From (2.8) we see also that c is bounded from above and below, i.e.,

c(x, t) ≤ C(T ),
1

c(x, t)
≤ C(T ).(3.8)

Equation (2.7) has the form

aut = (cux)x + f,

with f bounded by C(T ). In the case of a ≡ 1 and zero Dirichlet data for u, the
following Cα estimate (cf. [11, p. 204, Thm. 10.1]) holds:

|u|
C

α, α
2

x,t (QT )
≤ C(T ) for some 0 < α < 1.(3.9)

The proof extends to the present case of zero Neumann data. It also extends to
the case where a is uniformly bounded above and below by positive constants provided
|at| ≤ C, since integration by parts of∫ ∫

(u− k)+ autdxdt (k > 0)

yields the additional harmless term

−
∫ ∫

(u− k)+ atudxdt.

From (2.8) and (3.9) we deduce that

|c|
C

α, α
2

x,t (QT )
≤ C(T ).(3.10)
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Lemma 3.4. The estimates (3.1), (3.2) hold.
Proof. Set

v = cux, w = cx.

We easily compute that

vt − vxx +
w

c
vx = wcu2 + cuv − g′cu,(3.11)

wt = (−2cu+ g)w − cv + g′c.(3.12)

We write (3.11) in the form

bvt −
(

1

c
vx

)
x

− uv = f,

where

b =
1

c
, f = wu2 − g′u.

By (3.8) and the boundedness of |ct| we deduce that |bt| ≤ C(T ). Since u is bounded
and ∫

I

∣∣∣cx
c

∣∣∣2 dx ≤ ∫
I

|Vx|2 dx ≤ C(T ),

also ∫
I

|f(x, t)|2 dx ≤ C
∫
I

|cx|2 dx ≤ C(T ) .

We are now in a position to apply the Cα estimates of Theorem 10.1 of [11, p. 204].
(The condition (7.1) on page 181 holds with q = 2.) Here again we use the fact that
|bt| ≤ C(T ) and make the same remark as we did following (3.9).

Having proved that v ∈ Cα,α2x,t (QT ) we can use (3.12) to prove the same for w. It
follows that

|ux|
C

α, α
2

x,t (QT )
, |cx|

C
α, α

2
x,t (QT )

≤ C(T ).

We can now bootstrap the regularity of u to C
2+α,1+α

2
x,t (QT ) by the Schauder

estimates applied to (2.7), and next also derive the same regularity for c using (2.8).
Finally, we can bootstrap this also to α = β (originally α is just some positive number)
by again using the Schauder estimates.

Having established the a priori bounds (3.1), (3.2), we can now extend Theorem
2.1 step-by-step to 0 < t < T for any T > 0. The size of each time step depends
just on the C2+β bound on the solution, and thus just on T . We conclude with the
following theorem.

Theorem 3.5. If (2.6) holds, then there exists a unique global solution of (2.2)–

(2.5) such that P,W are in C
2+β,1+ β

2
x,t (QT ) for any T > 0.

Remark 3.6. Theorem 3.5 (in case g = 0) was also proved by Rascle [16]. Both
proofs of the a priori estimates begin with Lemma 3.2. However, the rest of the proof
is much simpler by our method, since we are able to derive quite quickly a uniform
bound on u (Lemma 3.4).
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4. Convergence to a stationary solution for system (1.16)–(1.19). If we
look for stationary solutions of (1.16)–(1.19) we are forced into taking

P = Ps(x), Vx = Vs,x = −Ps,x(x)
Ps(x)

.

This implies that

Ps = µ+ g(x)− λ, with λ ≡
∫ 1

0

g(x)dx, µ =

∫ 1

0

Ps(x)dx.(4.1)

Vs,x = − g′(x)
µ+ g(x)− λ.(4.2)

By (2.3), one must have Vs,t = Ps − g = µ − λ and combining this with (4.2), we
conclude

Vs(x, t) = (µ− λ)t− log (µ+ g(x)− λ) .(4.3)

In this section we prove that the stationary solution given by (4.1), (4.2) is a local
attractor, i.e., if the initial data of (P, V ) are “close” to (Ps, Vs) (in the sense of (4.5)
below), then (P, V )→ (Ps, Vs) exponentially fast as t→∞.

The phenomena whereby nonstationary solutions converge to a nonconstant sta-
tionary solution is called aggregation, according to the definition of Othmer–Stevens
[15] and Levine–Sleeman [17]. This phenomenon is of particular interest in the con-
text of angiogenesis, for it suggests that new blood vessels will eventually sprout from
points where the nonstationary solution achieves its largest values (cf. [12], [13]). The
aggregation phenomena is also of interest to general chemotaxis models (cf. [15], [12]).

In what follows we assume that

α ≡ inf
x

(µ+ g(x)− λ) > 0.(4.4)

Theorem 4.1. If (4.4) holds and∫ 1

0

(
|Px(x, 0)− Ps,x(x)|2 + |P (x, 0)− Ps(x)|2 + |Vx(x, 0)− Vs,x(x)|2

)
dx ≤ ε,(4.5)

where ε is positive and sufficiently small, then

sup
x
|P (x, t)− Ps(x)| ≤ Cεe−νt ,(4.6)

sup
x
|Vx(x, t)− Vs,x(x)| ≤ Cεe−νt ,(4.7)

and ∫ 1

0

|Px(x, t)− Ps,x(x)|2 dx ≤ Cεe−νt for all t > 0,(4.8)

where C and ν are positive constants.
It will be convenient to state Theorem 4.1 in a different form. To do that, let us

introduce the functions

ψ(x, t) =

∫ x

0

(P (ξ, t)− µ− g(ξ) + λ) dξ,(4.9)

w(x, t) = Vx(x, t)− ψ(x, t) +
g′(x)

µ+ g(x)− λ .(4.10)
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Then, after a straightforward computation, the system (1.16)–(1.19) can be restated
as

ψt − ψxx − (µ+ g − λ)ψ − (µ+ g − λ)w +
g′ψx

(µ+ g − λ) = ψx (ψ + w) ≡ F,(4.11)

wt + (µ+ g − λ)ψ + (µ+ g − λ)w − g′ψx
(µ+ g − λ) = −ψx (ψ + w) ≡ −F(4.12)

for 0 < x < 1, with boundary conditions

ψ(0, t) = ψ(1, t) = 0(4.13)

and initial conditions

ψ(x, 0) = ψ0(x), w(x, 0) = w0(x),(4.14)

where ψ0 ∈ C1 [0, 1], w0 ∈ C0 [0, 1].

It is easily seen that Theorem 4.1 can be restated in the following form.

Theorem 4.2. If (4.4) holds and

∫ 1

0

(
|Dtψ0|2 + |Dxψ0|2 + w2

0

)
dx ≤ ε,(4.15)

where ε > 0 is sufficiently small, then

sup
x
|ψx(x, t)| ≤ Cεe−νt ,(4.16)

sup
x

(|w(x, t)|+ |wt(x, t)|) ≤ Cεe−νt ,(4.17)

and ∫ 1

0

(
|Dtψ(x, t)|2 + |Dxψ(x, t)|2

)
dx ≤ Cεe−νt for all t > 0,(4.18)

where C and ν are positive constants.

Proof. It will be convenient to rewrite (4.11) in the form

ψt − (µ+ g − λ)
(

ψx
µ+ g − λ

)
x

− (µ+ g − λ) (ψ + w) = F.(4.19)

Also, by adding (4.11) and (4.12) we get

(ψ + w)t = ψxx.(4.20)

Differentiating (4.19) with respect to t and using (4.20), we arrive at the equation

ψtt − (µ+ g − λ)
(

ψxt
µ+ g − λ

)
x

− (µ+ g − λ)ψxx = Ft,(4.21)

where the left-hand side depends only on ψ. We shall use this equation together with
(4.12) to derive our energy estimates on the solution (ψ,w).
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If we multiply (4.21) by ψt, divide by (µ+ g − λ), and integrate with respect to
x, we obtain, after integration by parts,

1

2

d

dt

∫ 1

0

ψ2
t

µ+ g − λdx+

∫ 1

0

ψ2
xt

µ+ g − λdx+
1

2

d

dt

∫ 1

0

ψ2
xdx

=

∫ 1

0

Ftψt
µ+ g − λdx ≡ K1.

(4.22)

Next we multiply (4.21) by ψ, divide by (µ+ g − λ) , and integrate with respect
to x. Using the relation

ψψtt = (ψψt)t − ψ2
t ,

we obtain, after integration by parts,

d

dt

∫ 1

0

ψψt
µ+ g − λdx−

∫ 1

0

ψ2
t

µ+ g − λdx+
1

2

d

dt

∫ 1

0

ψ2
x

µ+ g − λdx+

∫ 1

0

ψ2
xdx

=

∫ 1

0

Ftψ

µ+ g − λ ≡ K2 .

(4.23)

Finally, multiplying (4.12) by w and integrating with respect to x, we find that

1

2

d

dt

∫ 1

0

w2dx+

∫ 1

0

(µ+ g − λ)ψwdx+

∫ 1

0

(µ+ g − λ)w2dx

−
∫ 1

0

g′ψxw
µ+ g − λdx = −

∫ 1

0

Fwdx ≡ K3.

(4.24)

We add (4.22) to (4.23) multiplied by ε1 and (4.24) multiplied by ε2 (ε1 > 0, ε2 > 0)
to get

1

2

dJ

dt
= I +K,(4.25)

where

J =

∫ 1

0

ψ2
t

µ+ g − λdx+

∫ 1

0

ψ2
xdx+ 2ε1

∫ 1

0

ψψt
µ+ g − λdx

+ε1

∫ 1

0

ψ2
x

µ+ g − λdx+ ε2

∫ 1

0

w2dx,

(4.26)

I = −
∫ 1

0

ψ2
xt

µ+ g − λdx+ ε1

∫ 1

0

ψ2
t

µ+ g − λdx− ε1
∫ 1

0

ψ2
xdx

−ε2
∫ 1

0

(µ+ g − λ)ψwdx− ε2
∫ 1

0

(µ+ g − λ)w2dx+ ε2

∫ 1

0

g′ψxw
µ+ g − λdx,

(4.27)

and

K = K1 + ε1K2 + ε2K3.(4.28)

Set

β ≡ sup
x

(µ+ g − λ) , γ ≡ sup
x
|gx| .
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Then

I ≤ −β−1

∫ 1

0

ψ2
xtdx+ ε1α

−1

∫ 1

0

ψ2
tdx− ε1

∫ 1

0

ψ2
xdx

+ ε2β

∫ 1

0

|ψw| dx− ε2α
∫ 1

0

w2dx+ ε2γα
−1

∫ 1

0

|ψxw| dx.

By the Cauchy–Schwarz inequality,

ε2β

∫ 1

0

|ψw| dx ≤ 1

4
ε2α

∫ 1

0

w2dx+ ε2
β2

α

∫ 1

0

ψ2dx,

ε2γα
−1

∫ 1

0

|ψxw| dx ≤
1

4
ε2α

∫ 1

0

w2dx+
ε2γ

2

α3

∫ 1

0

ψ2
xdx,

and together with Poincare’s inequalities∫ 1

0

ψ2
xdx ≥ π2

∫ 1

0

ψ2dx,(4.29)

∫ 1

0

ψ2
xtdx ≥ π2

∫ 1

0

ψ2
tdx,(4.30)

we conclude that

I ≤ −1

2
β−1

∫ 1

0

ψ2
xtdx−

[
β−1π2

2
− ε1α−1

] ∫ 1

0

ψ2
tdx

−
[
ε1 − ε2

(
γ2

α3
+

β2

π2α

)]∫ 1

0

ψ2
xdx−

ε2α

2

∫ 1

0

w2dx.

(4.31)

Setting

Φ2(t) ≡
∫ 1

0

(
ψ2
t + ψ2

x + w2
)
dx,

we next prove the following lemma.
Lemma 4.3. If ε1 is sufficiently small, then

δΦ2 ≤ J ≤ δ−1Φ2,(4.32)

where δ is a positive constant.
Proof. Clearly

J ≥ β−1

∫ 1

0

ψ2
tdx+ (1 + ε1β

−1)

∫ 1

0

ψ2
xdx− 2ε1α

−1

∫ 1

0

|ψψt| dx+ ε2

∫ 1

0

w2dx,

and

2ε1α
−1

∫ 1

0

|ψψt| dx ≤
1

2

∫ 1

0

|ψ|2 dx+ 2
ε21
α2

∫ 1

0

|ψt|2 dx.

Again using Poincare’s inequality we find that

J ≥
(

1

β
− 2

(ε1
α

)2
)∫ 1

0

ψ2
tdx+

(
1− 1

2π2
+ ε1β

−1

)∫ 1

0

ψ2
xdx+ ε2

∫ 1

0

w2dx.



1344 MARCO A. FONTELOS, AVNER FRIEDMAN, AND BEI HU

Hence the first inequality in (4.32) holds if ε1 is sufficiently small.

The proof of the second inequality in (4.32) is immediate.

From (4.31) and Poincare’s inequalities we easily find that if ε1 and ε2
ε1

are suffi-
ciently small, then

I ≤ −δΦ2 − 1

2
β−1

∫ 1

0

ψ2
xtdx ,(4.33)

where δ is a small positive constant. We can, in fact, take the δ′s in (4.32) and (4.33)
to be the same.

We now proceed to estimate the K in (4.28). We begin with K1.

|K1| ≤ 1

α

∫ 1

0

|Ftψt| dx ≤
1

α
sup
x
|ψt|

∫ 1

0

|Ft| dx

≤ 1

α
sup
x
|ψt|

[∫ 1

0

|ψxt (ψ + w)| dx+

∫ 1

0

|ψx (ψ + w)t| dx
]
.

Since

sup
x
|ψt| ≤

(∫ 1

0

ψ2
xtdx

) 1
2

,

we obtain

|K1| ≤ 1

α
‖ψt‖L∞

{
‖ψxt‖L2 ‖ψ‖L2 + ‖ψxt‖L2 ‖w‖L2

+ ‖ψx‖L2 ‖ψt‖L2 + ‖ψx‖L2 ‖wt‖L2

}
≤ 1

α
‖ψxt‖2L2 Φ +

1

α
‖ψxt‖L2 Φ2 +

1

α
‖ψxt‖L2 ‖ψx‖L2 ‖wt‖L2 .

(4.34)

To estimate ‖wt‖L2 we use (4.12):

‖wt‖L2 ≤ β ‖w‖L2 + β ‖ψ‖L2 +
γ

α
‖ψx‖L2 + ‖F‖L2 ≤

(
β +

γ

α

)
Φ + ‖F‖L2 .

Substituting this into (4.34) we get

|K1| ≤ 1

α
‖ψxt‖2L2 Φ +

(
1

α
+
β

α
+
γ

α2

)
‖ψxt‖L2 Φ2 +

1

α
‖ψxt‖L2 Φ ‖F‖L2 .(4.35)

The estimate of |K2| is similar; we just replace (one of) the factor ‖ψxt‖L2 by ‖ψx‖L2

on the right-hand side of (4.35), i.e.,

|K2| ≤ 1

α
‖ψx‖L2

{
‖ψxt‖L2 Φ +

(
1 + β +

γ

α

)
Φ2 + Φ‖F‖L2

}
≤ 1

α

{
‖ψxt‖L2 Φ2 +

(
1 + β +

γ

α

)
Φ3 + Φ2‖F‖L2

}
.

Finally,

K3 ≤ ‖F‖L2 ‖w‖L2 ≤ ‖F‖L2 Φ.
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Combining these estimates we find that

|K| ≤ 1

α
‖ψxt‖2L2 Φ +

(
2

α
+
β

α
+
γ

α2

)(‖ψxt‖L2 Φ2 + ε1Φ
3
)
+
ε1
α
‖ψxt‖L2 Φ2

+

(
1

α
‖ψxt‖L2 Φ +

1

α
ε1Φ

2 + ε2Φ

)
‖F‖L2 .

(4.36)

To estimate the L2 norm of F we observe that

‖F‖L2 ≤ ‖ψψx‖L2 + ‖ψxw‖L2 ≤ sup
x
|ψ|Φ + sup

x
|ψx|Φ ≤ Φ2 + sup

x
|ψx|Φ.(4.37)

By Sobolev’s inequality and by (4.11),

sup
x
|ψx| ≤ ‖ψx‖L2 + ‖ψxx‖L2 ≤ ‖ψx‖L2 + ‖ψt‖L2 + β ‖ψ‖L2 + β ‖w‖L2

+
γ

α
‖ψx‖L2 + sup

x
|ψx| (‖ψ‖L2 + ‖w‖L2) .

Hence

sup
x
|ψx| ≤

‖ψx‖L2 + ‖ψt‖L2 + β ‖ψ‖L2 + β ‖w‖L2 + γ
α ‖ψx‖L2

1− (‖ψ‖L2 + ‖w‖L2)
≤ C1Φ

1−√2Φ
(4.38)

(where C1 = C1(β, α, γ)) provided Φ < 1/
√

2. Substituting this into (4.37) we get

‖F‖L2 ≤ Φ2 + C1
Φ2

1− Φ
≤ C2Φ

2 (C2 constant)

provided Φ < 1
2
√

2
. From this estimate and (4.36) we find that

|K| ≤ 1

α
‖ψxt‖2L2 Φ + C3 ‖ψxt‖L2 Φ2 + C4Φ

3,(4.39)

where C3, C4 are constants.
A substitution of (4.33) and (4.39) into the differential equation (4.25) gives

1

2

dJ

dt
≤ −δΦ2 − 1

2
β−1

∫ 1

0

ψ2
xtdx+

1

α
‖ψxt‖2L2 Φ + C3 ‖ψxt‖L2 Φ2 + C4Φ

3,

and since

C3 ‖ψxt‖L2 Φ2 ≤ 1

4
β−1 ‖ψxt‖2L2 + C2

3βΦ
4,

we conclude that, as long as Φ(t) < α
4β , one has

1

2

dJ

dt
≤ −δΦ2 + CΦ3.(4.40)

By Lemma 4.3 we then obtain the inequality

1

2

dJ

dt
≤ −δ1J +AJ

3
2 (δ1, A > 0),

so that

J(t) ≤ Ce−νt (ν ≡ 2δ1),

provided AJ
1
2 (0) < δ1 and Φ(0) is small enough. Again recalling Lemma 4.3, we

conclude that if (4.5) holds, then Φ(t) will remain small for all t > 0, and (4.18) will
hold. Finally, (4.16) follows from (4.38), and (4.17) then follows from the differential
equation (4.12).
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5. The general system (1.11)–(1.15). Consider the general system (1.11)–
(1.15) with given initial conditions. We shall further assume that the initial condition
c(x, 0) (initial concentration of proteolytic enzyme) satisfies

sup
0≤x≤1

g(x)− c0(x)
c0(x)

<
γ2λ3

γ1λ1
(5.1)

and that

γ2λ3 <
1

2
;(5.2)

in this connection, we recall from [13] the values of λj , γj :

λ1 = 73, λ3 = 0.22, γ1 = γ2 = 1.2 .

For these values, γ2λ3 = 0. 26, so that (5.2) is certainly satisfied.
Since c(x, t) is monotone increasing in t, (5.1) implies that

M(x, t) ≡ γ2λ3 − γ1λ1
g − c
c
≥M0 > 0,(5.3)

where M0 = γ2λ3 − γ1λ1 sup0≤x≤1
g(x)−c0(x)

c0(x)
.

We introduce now the notation

τ = D1t, P =
λ4

D1
η ,

W = log
fγ2

cγ1
.

Then

Wt =

(
γ2λ3 − γ1λ1

g − c
c

)
P − γ2λ4c .

Replacing τ with t, the system for P,W , and c becomes

Pt = (Px + PWx)x for 0 ≤ x ≤ 1, t > 0,(5.4)

ct = λ1(g − c)P for 0 ≤ x ≤ 1, t > 0,(5.5)

Wt =

(
γ2λ3 − γ1λ1

g − c
c

)
P − γ2λ4c for 0 ≤ x ≤ 1, t > 0,(5.6)

(Px + PWx)(x, t) = 0 at x = 0, 1,(5.7)

P (x, 0) = P0(x), W (x, 0) = W0(x), c(x, 0) = c0(x),(5.8)

(P0,x + P0W0,x) (x) = 0 at x = 0, 1.

By (5.3) the coefficient of P in (5.6) is uniformly positive. This assumption is, in fact,
crucial; see Remark 5.8.
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Theorem 5.1. Given P0(x),W0(x), c0(x) ∈ C2+β [0, 1], there exists a unique

global solution of (5.4)–(5.8) such that P (x, t),W (x, t), c(x, t) ∈ C2+β,1+ β
2

x,t (QT ) for
any T <∞.

The rest of the section is devoted to the proof of Theorem 5.1. The proof of local
existence is similar to the proof of Theorem 2.1. Thus it remains to establish a priori
bounds. More precisely, assuming that a solution exists for t < T , T arbitrary, it

suffices to establish a priori C
2+β,1+ β

2
x,t (QT ) bounds by a constant C(T ), where C(T )

is a bounded function of T. To derive such bounds we first multiply (5.4) by logP
and integrate in space and time, and obtain, after integration by parts,∫ 1

0

P (x, t) logP (x, t)dx+

∫ t

0

∫ 1

0

P 2
x (x, t′)
P (x, t′)

dxdt′ = −
∫ t

0

∫ 1

0

Px(x, t
′)Wx(x, t

′)dxdt′ +C.

Next we multiply (5.4) by W and integrate in space and time to obtain, after inte-
gration by parts,∫ 1

0

W (x, t)P (x, t)dx−
∫ t

0

∫ 1

0

Wt(x, t
′)P (x, t′)dxdt′ +

∫ t

0

∫ 1

0

P (x, t′)W 2
x (x, t′)dxdt′

= −
∫ t

0

∫ 1

0

Px(x, t
′)Wx(x, t

′)dxdt′ + C.

Adding the two equations, we get∫ 1

0

P (x, t) logP (x, t)dx+

∫ t

0

∫ 1

0

P 2
x (x, t′)
P (x, t′)

dxdt′ +
∫ t

0

∫ 1

0

P (x, t′)W 2
x (x, t′)dxdt′

= −
∫ t

0

∫ 1

0

Wt(x, t
′)P (x, t′)dxdt′ − 2

∫ t

0

∫ 1

0

Px(x, t
′)Wx(x, t

′)dxdt′

−
∫ 1

0

W (x, t)P (x, t)dxdt+ C ≡ J1 + J2 + J3 + C.

(5.9)

Our goal now is to establish good-enough estimates for J1, J2, and J3. The estimate
for J3 is immediate: By (5.6) and (5.1)

J3 ≡ −
∫ 1

0

W (x, t)P (x, t)dx = −
∫ 1

0

(
W (x, 0) +

∫ t

0

Wt(x, t
′)dt′

)
P (x, t)dx

≤ −
∫ 1

0

(
W (x, 0)− γ2λ4

∫ t

0

c(x, t′)dt′
)
P (x, t)dx

≤
(

sup
x
|W (x, 0)|+Aγ2λ4t

)∫ 1

0

P (x, t)dx ≤ C,

where we have used (3.3) (which is also valid also for the present system) and the
inequality c ≤ g.

The estimate for J1 is given in the following lemma.
Lemma 5.2. There holds that

J1 ≤ γ2λ3

(
2µ2t+ µ

∫ t

0

∫ 1

0

P 2
x (x, t′)
P (x, t′)

dxdt′
)
.(5.10)
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Proof. By (5.6),

J1 ≤ γ2λ3

∫ t

0

∫ 1

0

P 2dxdt′.(5.11)

Also ∫ t

0

∫ 1

0

P 2dxdt′ ≤
∫ t

0

(
sup
x
P

∫ 1

0

Pdx

)
dt′ = µ

∫ t

0

sup
x
P (x, t′)dt′,(5.12)

where we have used (3.3). Since
√
P equals

√
µ at some point x, 0 < x < 1,

√
P − µ 1

2 ≤ 1

2

(∫ 1

0

P 2
x

P
dx

) 1
2

so that

P ≤
[
µ

1
2 +

1

2

(∫ 1

0

P 2
x

P
dx

) 1
2

]2

≤ 2µ+
1

2

∫ 1

0

P 2
x

P
dx.

It follows that

µ

∫ t

0

sup
x
P (x, t′)dt′ ≤ 2µ2t+

1

2
µ

∫ t

0

∫ 1

0

P 2
x

P
dxdt′.

Using this in (5.12) and recalling (5.11), the assertion (5.10) follows.
In order to estimate J2, we express P (from (5.5), (5.6)) in the form

P =
Wt + γ2λ4c

M
.(5.13)

Then

Px =
Wxt + γ2λ4cx

M
− PMx

M
.(5.14)

Inserting (5.14) into J2 leads to

J2 = −2

∫ t

0

∫ 1

0

WxtWx

M
dxdt′ − 2

∫ t

0

∫ 1

0

γ2λ4cxWx

M
dxdt′ + 2

∫ t

0

∫ 1

0

PMxWx

M
dxdt′

= −2

∫ t

0

∫ 1

0

WxtWx

M
dxdt′ − 2

∫ t

0

∫ 1

0

γ2λ4cxWx

M
dxdt′ + 2γ1λ1

∫ t

0

∫ 1

0

PgcxWx

c2M
dxdt′

≡ J21 + J22 + J23.(5.15)

We estimate each of the J2i in the following lemmas.
Lemma 5.3. The term J21 satisfies the estimate

J21 ≤ −2

∫ 1

0

W 2
x (x, t)dx+ C.(5.16)
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Proof. Notice that

J21 = −
∫ t

0

∫ 1

0

(W 2
x )t
M

dxdt′.

Integration by parts in t yields

J21 = −
∫ 1

0

W 2
x (x, t)

M
dx−

∫ t

0

∫ 1

0

MtW
2
x

M2
dxdt′ + C

= −
∫ 1

0

W 2
x (x, t)

M
dx− γ1λ1

∫ t

0

∫ 1

0

gctW
2
x

c2M2
dxdt′ + C

and the last integral is positive since ct > 0. Then, by (5.5) and the fact that c and
M are bounded from above and below (M < γ2λ3), we get

J21 ≤ − 1

γ2λ3

∫ 1

0

W 2
x (x, t)dx+ C.

Recalling (5.2), we conclude the inequality (5.16).
In order to estimate J22 and J23, we need to estimate cx in terms of Wx.
Lemma 5.4. The following estimate holds:

|cx(x, t)| ≤ A(t) +B(t)(g − c)
∫ t

0

|Wx(x, t
′)| dt′,(5.17)

where A(t) and B(t) are functions bounded in [0, T ] for any T > 0.
Proof. Eliminating P from (5.5) and (5.6), we deduce the relation

ct
λ1(g − c) =

Wt + γ2λ4c

γ2λ3 − γ1λ1
g−c
c

from which we get

γ2λ3 + γ1λ1 − γ1λ1
g
c

λ1(g − c) ct = Wt + γ2λ4c .(5.18)

Let

G(c) =

∫ c γ2λ3 + γ1λ1 − γ1λ1
g
c

λ1(g − c) dc = −γ1 ln c− γ2λ3

λ1
ln (g − c)

so that

d

dt
G(c) =

d

dt
W + γ2λ4c.

After integration we get

G(c) = W + γ2λ4

∫ t

0

c(x, t′)dt′ + b(x)

for some function b(x). Hence

−γ1

cx
c
− γ2λ3

λ1

gx − cx
g − c = Wx + γ2λ4

∫ t

0

cx(x, t
′)dt′ + b′(x).
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This implies that cx is the solution of the equation

cx+
γ2λ3gx

γ2λ3 + γ1λ1 − γ1λ1
g
c

=
λ1(g − c)

γ2λ3 + γ1λ1 − γ1λ1
g
c

[
Wx+ b′(x) + γ2λ4

∫ t

0

cx(x, t
′)dt′

]
.

By iteration we then obtain

cx +
γ2λ3gx

γ2λ3 + γ1λ1 − γ1λ1
g
c

=
λ1(g − c)

γ2λ3 + γ1λ1 − γ1λ1
g
c

[
Wx +B(x, t) + γ2λ4

∫ t

0

K(x, t, t′)Wx(x, t
′)dt′

]

for some bounded kernel K(x, t, t′) and some bounded function B(x, t). Hence (5.17)
follows.

Lemma 5.5. The term J22 defined in (5.15) satisfies the estimate

J22 ≤ C(t)

[
1 +

∫ 1

0

∫ t

0

W 2
x (x, t′)dxdt′

]
.(5.19)

Proof. By the Cauchy–Schwarz inequality and boundedness of M we have

J22 ≤ C
(∫ t

0

∫ 1

0

c2xdxdt
′ +
∫ t

0

∫ 1

0

W 2
xdxdt

′
)
.

In order to estimate
∫ t
0

∫ 1

0
c2xdxdt

′ we use (5.17) to deduce

|cx(x, t′)|2 ≤ 2A(t′)2 + 2B(t′)2(g − c)2
(∫ t′

0

|Wx(x, t
′′)| dt′′

)2

≤ 2A(t′)2 + 2B(t′)2t′(g − c)2
(∫ t′

0

|Wx(x, t
′′)|2 dt′′

)
.(5.20)

Hence ∫ t

0

∫ 1

0

c2xdxdt
′ ≤ 2A(t)2t+ 2B(t)2t(g − c)2

∫ t

0

∫ 1

0

|Wx(x, t
′)|2 dxdt′,

and the inequality (5.19) follows.
Finally, we estimate the term J23.
Lemma 5.6. The following estimate holds:

J23 ≤ 1

4

∫ t

0

∫ 1

0

PW 2
xdxdt

′ + C(t)

[
1 +

∫ 1

0

∫ t

0

W 2
x (x, t′)dxdt′

]
.(5.21)

Proof. By the Cauchy–Schwarz inequality and the boundedness of c and M ,

J23 ≤ 1

4

∫ t

0

∫ 1

0

PW 2
xdxdt

′ + C

∫ t

0

∫ 1

0

Pc2xdxdt
′
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for some constant C. In order to estimate
∫ t
0

∫ 1

0
Pc2xdxdt

′ we make use of (5.20) and
(3.3) and deduce∫ 1

0

∫ t

0

Pc2xdxdt
′

≤
∫ 1

0

∫ t

0

{
2A(t′)2 + 2B(t′)2t′(g − c)2

(∫ t′

0

|Wx(x, t
′′)|2 dt′′

)}
P (x, t′)dxdt′

≤
∫ t

0

2A(t′)2dt′ +
∫ 1

0

[∫ t

0

|Wx(x, t
′′)|2 dt′′

∫ t

0

[
2B(t′)2t′(g − c)2]P (x, t′)dt′

]
dx

≤
∫ t

0

2A(t′)2dt′+
(∫ 1

0

∫ t

0

|Wx(x, t
′′)|2 dxdt′′

)(
sup
x

∫ t

0

[
2B(t′)2t′(g − c)2]P (x, t′)dt′

)
.

But

sup
x

∫ t

0

[
2B(t′)2t′(g − c)2]P (x, t′)dt′ ≤ C sup

x

∫ t

0

λ1(g − c)P (x, t′)dt′

= C sup
x

∫ t

0

ctdt
′ = C(c(x, t)− c(x, 0)) ≤ C,

where we have used (5.5). Hence

J23 ≤ 1

4

∫ t

0

∫ 1

0

PW 2
xdxdt

′ + C(t)

[
1 +

∫ 1

0

∫ t

0

W 2
x (x, t′)dxdt′

]

for some function C(t) bounded in any interval [0, T ].
We are now in position to prove the following theorem.
Theorem 5.7. For any solution to (5.4)–(5.6) in 0 < t < T the following

inequalities hold:

sup
t∈[0,T ]

∫ 1

0

W 2
x (x, t)dx ≤ C(T ),(5.22)

∫ T

0

sup
x

(√
P − µ 1

2

)2

dt ≤ C(t).(5.23)

Proof. Let us introduce the function of t

K [P,W ] ≡
∫ 1

0

P (x, t) logP (x, t)dx+
1

2

∫ t

0

∫ 1

0

P 2
x (x, t′)
P (x, t′)

dxdt′

+
1

2

∫ t

0

∫ 1

0

P (x, t′)W 2
x (x, t′)dxdt′ + 2

∫ 1

0

W 2
x (x, t′)dx.

From the previous lemmas it follows that

K [P,W ] ≤ A(t) +B(t)

∫ t

0

∫ 1

0

W 2
xdxdt

′.
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Hence ∫ 1

0

W 2
x (x, t)dx ≤ A(t) +B(t)

∫ t

0

∫ 1

0

W 2
xdxdt

′.

An application of Gronwall’s inequality leads to the estimate∫ t

0

∫ 1

0

W 2
x (x, t)dxdt ≤ C(t),

which implies that K [P,W ] is bounded by C(T ). In particular,

1

2

∫ t

0

∫ 1

0

P 2
x (x, t′)
P (x, t′)

dxdt′ ≤ C(t)

and ∫ t

0

sup
x

(√
P − µ 1

2

)2

dt ≤ 1

4

∫ t

0

∫ 1

0

P 2
x (x, t′)
P (x, t′)

dxdt′ ≤ C(t).

Proof of Theorem 5.1. Using (5.22), (5.23) we can continue as in section 3 to
prove Theorem 5.1. In particular, we derive for k = e−W , u = PeW , and c equations
analogous to (2.2) (for u) and (2.3) (for k and c). Then we show the boundedness

of the function u (as in Lemma 3.3) and of k, c and derive C
α,α2
x,t estimates for these

functions. Finally, we consider the system for v = kux, kx, cx analogous to (3.11),
(3.12) in order to bootstrap the regularity for u, k, c as in section 3.

Remark 5.8. If (5.6) is replaced by

Wt = −aP − b,
where a, b are positive constants, then global solutions may not exist. Indeed, Levine
and Sleeman [12] gave examples of solutions that blow up in finite time. The main
assumption we made in Theorem 5.1 is the inequality (5.1), which ensures that the
coefficient of P in (5.6) is positive.

6. Convergence to a stationary solution in system (1.11)–(1.15). The
system (1.11)–(1.15) possesses the following stationary solution:

Ps(x) = µ+ g(x)− λ, with λ ≡
∫ 1

0

g(x)dx,

Ws,x = − g′(x)
µ+ g(x)− λ,

cs(x) = g(x).

Analogously to (4.3), we can compute

Ws = Ws(x, t) = (µ− λ)t− log (µ+ g(x)− λ) .
In this section we prove a result analogous to Theorem 4.1 for system (1.11)–

(1.15), namely, the local stability of the stationary solution. By rescaling we can
rewrite the system (5.4)–(5.8) (which is equivalent to (1.11)–(1.15)) in the form

Pt = (Px + PWx)x for 0 ≤ x ≤ 1, t > 0,(6.1)

ct = κ1(g − c)P for 0 ≤ x ≤ 1, t > 0,(6.2)

Wt =

(
1− κ2

g − c
c

)
P − c for 0 ≤ x ≤ 1, t > 0,(6.3)
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together with suitable initial and boundary conditions. It will be convenient to recast
(6.3) in the form

Wt = P − g − κ2
g − c
c
P + (g − c) for 0 ≤ x ≤ 1, t > 0,(6.4)

where the last two terms on the right-hand side represent a small perturbation.
Introducing functions ψ and w as in (4.9) and (4.10), respectively (with V sub-

stituted by W ), and χ ≡ g − c, one arrives at the system

ψt − ψxx − (µ+ g − λ)ψ − (µ+ g − λ)w +
g′

(µ+ g − λ)ψx = ψx (ψ + w) ,(6.5)

χt + κ1 (µ+ g − λ)χ = −κ1χψx,(6.6)

wt + (µ+ g − λ)ψ + (µ+ g − λ)w − g′

(µ+ g − λ)ψx

= −ψx (ψ + w) + χx − κ2

[
χ

g − χ (ψx + µ+ g − λ)
]
x

.(6.7)

If κ1 = κ2 = 0, then the system reduces to the system (4.11), (4.12).
From (6.6) and its x-derivative we obtain the relations

1

2

d

dt

∫ 1

0

χ2dx+

∫ 1

0

(µ+ g − λ)χ2dx = −κ1

∫
ψxχ

2,

1

2

d

dt

∫ 1

0

χ2
xdx+

∫ 1

0

(µ+ g − λ)χ2
xdx = −κ1

∫ 1

0

gxχχxdx− κ1

∫
(ψxχ)x χx,

so that

1

2

d

dt

[∫ 1

0

χ2dx+ ε3

∫ 1

0

χ2
xdx

]
≤ −α

[∫ 1

0

χ2dx+ ε3

∫ 1

0

χ2
xdx

]

+ κ1

(
γε

1
2
3 + sup |ψx|+ ‖ψxx‖L2

)[∫ 1

0

χ2dx+ ε3

∫ 1

0

χ2
xdx

]
,(6.8)

where γ and α are as in section 4 and ε3 is a positive number to be chosen small
enough.

Combining (6.8) with the estimates analogous to (4.22)–(4.24) in the present
context, it is a simple matter to obtain (4.40) with

Φ(t) ≡
∫ 1

0

(
ψ2
t + ψ2

x + w2 + χ2 + χ2
x

)
dx

and prove an inequality like (4.32). An estimate for ‖ψxx‖L2 is obtained in the same
way we obtained the estimate for sup |ψx| in section 4. This bound is needed in order
to control the right-hand side of (6.8). We conclude the following theorem.
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Theorem 6.1. If

∫ 1

0

(
2∑
i=1

∣∣∣P (i)(x, 0)− P (i)
s (x)

∣∣∣2 +

2∑
i=1

∣∣∣χ(i)(x, 0)
∣∣∣2 + |Wx(x, 0)−Ws,x(x)|2

)
dx ≤ ε,

(6.9)

where ε is positive and sufficiently small, then

sup
x
|P (x, t)− Ps(x)| ≤ Cεe−νt,(6.10)

sup
x
|Wx(x, t)−Ws,x(x)| ≤ Cεe−νt,(6.11)

sup
x
|χ(x, t)| ≤ Cεe−νt,(6.12)

and ∫ 1

0

|Px(x, t)− Ps,x(x)|2 dx ≤ Cεe−νt for all t > 0,(6.13)

where C and ν are positive constants.
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Abstract. The linear stability problem for solitary wave states of the Kawahara—or fifth-
order KdV-type—equation and its generalizations is considered. A new formulation of the stability
problem in terms of the symplectic Evans matrix is presented. The formulation is based on a
multisymplectification of the Kawahara equation, and leads to a new characterization of the basic
solitary wave, including changes in the state at infinity represented by embedding the solitary wave
in a multiparameter family. The theory is used to give a rigorous geometric sufficient condition for
instability. The theory is abstract and applies to a wide range of solitary wave states. For example,
the theory is applied to the families of solitary waves found by Kichenassamy–Olver and Levandosky.

Key words. solitary waves, Evans function, multisymplectic structures
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1. Introduction. The Kawahara equation—or fifth-order KdV-type equation—
is a model equation for plasma waves, capillary-gravity water waves, and other dis-
persive phenomena when the cubic KdV-type dispersion is weak. Such equations can
be written in the general form

2
∂u

∂t
+ α

∂3u

∂x3
+ β

∂5u

∂x5
=

∂

∂x
f(u, ux, uxx) ,(1.1)

for the scalar-valued function u(x, t), where α and β are real parameters with β �= 0
and f(u, ux, uxx) is some smooth function. In many applications the phenomena
which lead to the model equation (1.1) have a Hamiltonian structure. Therefore
it is natural to require that f be a variational derivative, in which case (1.1) is a
Hamiltonian system

∂u

∂t
= J δH

δu
, with J = −1

2

∂

∂x
,(1.2)

and

H(u) =

∫
R

(
1
2βu

2
xx − 1

2αu
2
x + h(u, ux, uxx)

)
dx,(1.3)

where the variational derivative of the functional associated with h(u, ux, uxx) yields
f . Precise forms for f and h will be given in section 2.

The form of (1.1) which occurs most often in applications is with f(u, ux, uxx) =
a u2, where a is a nonzero constant. The first appearance of this equation known to
the authors is in the Japanese literature: Kawahara [24] points out that Kakutani
and Ono suggested the inclusion of a fifth-order term to KdV to model magneto-
acoustic waves in 1969, and Hasimoto first showed in 1970 that a fifth-order term was

∗Received by the editors September 20, 1999; accepted for publication (in revised form) January
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necessary to model capillary-gravity waves for Bond number near one third. Kawa-
hara [24] appears to have been the first to write down the complete equation (1.1)
with f(u, ux, uxx) = −3u2 (see equation (1) in [24]), begin a systematic study, observe
that the solitary wave states could have oscillatory tails, and compute examples of
such waves numerically. A more general nonlinearity was derived for water waves by
Olver [28], using Hamiltonian perturbation theory, with further generalization given
by Craig and Groves [13]. Kichenassamy and Olver [25] suggested taking the most rea-
sonable general form for f—including nongradient forms—and then deducing under
what conditions explicit solitary wave solutions exist, and Levandosky [26] proposed
an interesting class of homogeneous nonlinearities. All of the above proposed nonlin-
earities can be characterized in the form (1.1), and when f is variational the system
has the Hamiltonian formulation (1.2).

The system (1.1) has many classes of solutions, but a class of great interest is
solitary wave states that are biasymptotic to a constant state at infinity. Depending
on the form of the nonlinearity, the system can also have travelling fronts (a simple
example is given on page 452 of [15]) as well as solitary waves biasymptotic to invariant
manifolds more complex than the lines to be considered here (cf. section 2 and the
comments in section 8 of [7]). However, for definiteness, we will restrict attention
here to classes of solitary waves which decay exponentially to a constant (in general
nonzero) at infinity. Such solitary waves travelling at speed c (i.e., u(x, t) = û(x−ct))
satisfy the fourth-order ordinary differential equation

βûxxxx + αûxx − 2cû− f(û, ûx, ûxx) = A ,(1.4)

where A is a constant of integration. When f is a gradient operator it is easily shown
that (1.4) is the Euler–Lagrange equation associated with a Lagrange functional, and
the Legendre transform of this functional results in a Hamiltonian formulation for
(1.4),

Ux = J ∇H(U) , U ∈ R
4 ,(1.5)

where J is a standard unit symplectic operator on R
4, and an expression for H(U)

is easily deduced but is not needed here. (A more general derivation of such finite-
dimensional Hamiltonian system will be a consequence of multisymplectic formulation
in section 2.)

Note that the Hamiltonian structure of this ODE with x considered as an evo-
lution direction is distinct and dramatically different from the infinite-dimensional
Hamiltonian structure associated with the time direction (1.2). The interplay be-
tween these two distinct structures will play an important role in what follows.

The Hamiltonian structure (1.5) of the reduced system (1.4) has been the basis
of many of the methods for finding solitary wave states. A review article on the
known classes of solitary wave states with an exhaustive list of references is given by
Champneys [11]. Also of interest in this paper are the class of solitary waves found
by Kichenassamy and Olver [25] and the recent results of Levandosky [26]. In [25],
a classification of admissible expressions for f which lead to explicit sech2 solitary
wave states is given. In [26], an energy-momentum argument is used to prove the
existence of a class of solitary waves associated with a homogeneous nonlinearity, and
in Groves [19], the mountain-pass lemma is used to prove the existence of solitary
waves including multibump solitary waves for a class of homogeneous nonlinearities.

Given the existence of such a large range of solitary wave states for (1.4), a natural
question is to determine whether they are stable or unstable. The most successful
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approaches for studying the stability of KdV and generalized KdV (i.e., (1.1) with
β = 0) have been the energy-momentum method for establishing nonlinear stability
and instability (Benjamin [2], Bona [3]) and the connection between the derivative of
the momentum with respect to the wave speed and stability (Bona, Souganidis, and
Strauss [4], Pego and Weinstein [29]). These energy-momentum based methods have
been extended to apply to the stability of solitary waves for the fifth-order KdV by
several authors.

The momentum for (1.1) can be expressed as

I(u) =
∫

R

u2 dx ,

and therefore solitary wave states can be characterized as solutions of δH = cδI, i.e.,
as critical points of the Hamiltonian restricted to level sets of the momentum with c as
a Lagrange multiplier. The nondegeneracy condition for this constrained variational
principle is

d

dc
I(û) �= 0 ,

where û(x, c) is the family of solitary waves parametrized by c. Rigorous Lyapunov
stability can be obtained by proving that û is indeed a minimizer for this varia-
tional principle. This approach has been very successful for KdV-type equations
but is very difficult to generalize to higher-order equations and systems of evolution-
ary PDEs. However, for some range of parameters and forms for f , Lyapunov-type
energy-momentum arguments have been successfully applied to (1.1). The first re-
sults of this type are given by Ill’ichev and Semenov [21] for the waves of depression
when α < 0 which travel at speed −c. Karpman [23] shows that when α = +1,

β < 0, and f = −up+1

p+1 the energy-momentum argument and the sign of dI
dc precisely

determine stability and instability. However, this theory relies on a hypothesis that a
certain linear operator has exactly one negative eigenvalue which is difficult to verify
in general. Karpman’s theory is applied by Dey, Khare, and Kumar [15] to a class of
exact solutions, but it appears that this class of solutions is explicit only for isolated
values of c (see further comments on this at the end of section 3).

Using the energy-momentum method and a compensated compactness argument,
Levandosky [26] proves the existence of solitary waves for a homogeneous nonlinearity
and obtains rigorous stability and instability results using an energy-momentum argu-
ment and the sign of dIdc for a restricted range of parameter space. Recently, Dias and
Kuznetsov [16] have obtained rigorous lower bounds on the Hamiltonian function for
(1.1) when f = −u2 for the solitary waves with oscillatory tails known to exist near
the minimum of the dispersion curve, suggesting that at least one of these families of
waves is stable.

For general PDEs (not necessarily Hamiltonian), the most successful approach for
the analysis of the linear stability problem is based on the Evans function. The Evans
function is a complex analytic function of the spectral parameter, and under suitable
hypotheses the zeros of the Evans function correspond to eigenvalues (cf. Evans [17],
Alexander, Gardner, and Jones [1]). In Bridges and Derks [7], [9], [10] the concept
of the symplectic Evans function and the symplectic Evans matrix were introduced
for Hamiltonian evolution equations. This theory, which will be used as a basis for
analyzing the linear stability problem for (1.1), will be summarized in sections 2–3.
Essentially, the Hamiltonian PDE is reformulated as a Hamiltonian system on a multi-
symplectic structure, where a distinct symplectic structure is assigned for the time
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and space directions (cf. Bridges [5], [6]). This decomposition allows for a geometric
analysis of each step of the existence and linear stability analysis and can be used to
deduce an explicit geometric condition for linear instability.

The purpose of this paper is fourfold: first, in section 2, we show that the natural
geometric structure of (1.1) is not as a Hamiltonian system as in (1.2) but as a
Hamiltonian system on a multisymplectic structure. The problem with (1.2) is that it
does not encode any information about the spatial Hamiltonian structure (1.5) that
arises when looking for solitary waves and in the linearization about a solitary wave.
This geometry should be useful in other analyses of (1.1). Second, in section 3, we
show that—with α, β, and f fixed—all existing solitary wave solutions come in three-
parameter families, and these families are a natural consequence of the geometric
structure. One of the parameters is c, the wave speed, and the other two are related
to a space-time drift along an affine group orbit, and when nonzero, they lead to a
nontrivial constant state at infinity, and they encode information about the linear
stability problem (cf. section 5). We have not found any nontrivial effect on stability
of the additional parameters, but we consider only a few examples here. (Examples
where nontriviality of the state at infinity affects stability can be found in [7], [9].)
These additional parameters are an intrinsic part of the geometry of the PDE. Third,
in sections 4–6, we formulate the symplectic Evans matrix for this system. This
matrix is of interest because zeros of the determinant of the symplectic Evans matrix
in the right-half complex plane correspond to unstable eigenvalues. Fourth, in section
8, we present a rigorous geometric condition for instability for a class of solitary wave
states of (1.1) based on the theory in [9], and then, in sections 9–10, this geometric
instability criterion is applied to two examples of families of solitary wave states in
the literature.

2. Multisymplectic structure of the Kawahara equation. The starting
point for the analysis is the Kawahara equation and its generalizations (1.1), where f
is any function which can be written as the variational derivative of a functional

1

2

∫
R

[h(u, ux, uxx)] dx.

A straightforward calculation shows that this implies that h has to be of the form

h(q, r, s) = F (q, r) + sE(q, r)

and therefore

f(q, r, s) = Fq(q, r)−rFqr(q, r)−sFrr(q, r)+2sEq(q, r)+srErq(q, r)+r
2Eqq(q, r) .

(2.1)
This expression for f includes all the nonlinearities in variational form for (1.1)

encountered in the literature including [12], [23], [24], [25], [26], and [28].
Levandosky [26] considers (1.1) with the restriction that E = 0 and F (q, r) is

three-times continuously differentiable and homogeneous of degree p + 1 for some
p > 1; that is,

F (λq, λr) = λp+1F (q, r)

for all λ ≥ 0 and (q, r) ∈ R
2.

Kichenasammy and Olver [25] consider the existence of solitary waves for a gen-
eralized Kawahara equation, where they assume the existence of a smooth function
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g(u) and constants A, B such that

f(q, r, s) = Ar2 +Bsq + g′(q) .

They show that a necessary and sufficient condition for the existence of sech2-type
solitary wave solutions is that g′(q) be a cubic polynomial. On the other hand, this
function f has a variational structure if and only if 2A = B, and in this case, the
function f can be derived from h(q, r, s) by taking E = 0 and F (q, r) = −Aqr2+g(q).

To reformulate (1.1) with the variational condition (2.1) on f , as a Hamiltonian
system on a multisymplectic structure, we introduce the potential function q1(x, t),
defined by u = ∂q1

∂x . Then with

q2 = u = ∂q1
∂x , p1 = ∂q1

∂t − ∂p2
∂x − ∂

∂q2
F − 1

βE
∂
∂q2

E − p3
β

∂
∂q2

E ,

q3 = ux = ∂q2
∂x , p2 = −αq3 − ∂p3

∂x − ∂
∂q3

F − 1
βE

∂
∂q3

E − p3
β

∂
∂q3

E ,

p3 = β ∂q3∂x − E ,

(2.2)

(1.1) reduces to

∂q2
∂t

+
∂p1

∂x
= 0 .(2.3)

Combining (2.2) and (2.3), the PDE (1.1) can be written in the form

MZt +KZx = ∇S(Z) , Z ∈ R
6 ,(2.4)

where

Z =




q1
q2
q3
p1

p2

p3


 , M =




0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


 , K =




0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


 ,

(2.5)
and

S(Z) = 1
2αq

2
3 +

1

2β
p2
3 + p1q2 + p2q3 +F (q2, q3)+

1

2β
(2p3 +E(q2, q3))E(q2, q3).(2.6)

The skew-symmetric operators M and K define the two-forms

ω = dq2 ∧ dq1,
κ = dp1 ∧ dq1 + dp2 ∧ dq2 + dp3 ∧ dq3,

(2.7)

with

ω(ξ1, ξ2) = 〈Mξ1, ξ2〉 and κ(ξ1, ξ2) = 〈Kξ1, ξ2〉 ,(2.8)

where 〈·, ·〉 is a standard inner product on R
6. The induced norm is denoted by ‖ · ‖.

The symplectic form κ is a canonical symplectic structure on R
6 associated with the

x-direction, and ω is a rank 2 symplectic structure associated with the t-direction.
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There are two symmetries of (2.4) which will be of interest in what follows: the
spatial translation invariance (in x) of the system (i.e., the fact that ω, κ, and S(Z)
do not depend explicitly on x), and the affine symmetry associated with the fact that
q1 is a potential function.

Let G be the one-parameter affine group associated with this potential symmetry
with action

GθZ = Z + θ V for all θ ∈ R, where V =




1
0
...
0


 .(2.9)

Then the system (2.4) is G-equivariant; that is, S(Z) and the two-forms ω and κ are
G-invariant.

A solitary wave state of (2.4) will be composed of two parts. The first part is the
shape of the solitary wave which connects the asymptotic states at plus and minus
infinity, which will be characterized as a heteroclinic orbit in the phase space R

6. The
second part is the state at infinity which will be characterized as an invariant manifold
of relative equilibria associated with the group G.

To define the invariant manifold at infinity we use the theory in section 2 of [9].
First note that, with P (Z) = q2 and Q(Z) = p1, the functions P (Z) and Q(Z) satisfy

MV = ∇P (Z) and KV = ∇Q(Z);(2.10)

that is, P (Z), respectively, Q(Z), are the functions which generate the ω-, respectively,
κ-, symplectic flow of the group G. The state at infinity is taken to be of the form

Z(x, t) = Gθ(x,t)Z0(a, b) with θ(x, t) = at+ bx+ θ0.(2.11)

The point Z0 ∈ R
6 and the parameters a and b are defined by the constrained varia-

tional problem: find critical points of S(Z) restricted to level sets of the functions P
and Q, or

∇S(Z0) = a∇P (Z0) + b∇Q(Z0) , with P (Z0) = P, Q(Z0) = Q.(2.12)

This equation is easily solved to find

Z0 =




q01
b
0

a− Fq(b, 0)
−Fr(b, 0)
−E(b, 0)


 with

P (Z0) = q02 = b = P,
Q(Z0) = p0

1 = a− Fq(b, 0) = Q,
(2.13)

and q01 is arbitrary (due to the group action). This state is nondegenerate as a solution

of the constrained variational problem since ∂(P,Q)
∂(a,b) = −1 �= 0.

Let Z0 ∈ R
6 be any nondegenerate solution of (2.12) with q01 = 0. Then the

invariant manifold at infinity is defined to be the following line in R
6 through Z0:

M∞ = {Z0 + θV : θ ∈ R }.(2.14)

The solitary wave state will be taken to be biasymptotic to this manifold and of the
form

Z(x, t) = Gθ(x,t)[Z−
0 + Tτ(t)Ẑ(x, a, b, c)],(2.15)
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where Gθ(x,t) is as defined in (2.11); Z−
0 is any nondegenerate solution of (2.12) with

q01 = 0 (the “−” superscript indicates that this is the asymptotic point on M∞ as
x→ −∞);

Tτ Ẑ(x, a, b, c) def
= Ẑ(x− τ, a, b, c),

and τ(t) = ct+ τo. The function Ẑ(x, a, b, c), which is the shape of the solitary wave,
is a heteroclinic orbit of the Hamiltonian system on R

6,

JcẐx = ∇W (Ẑ) , Ẑ ∈ R
6(2.16)

with

Jc = K− cM , W (Ẑ) = S(Z−
0 + Ẑ)− aP (Z−

0 + Ẑ)− bQ(Z−
0 + Ẑ).

The symplectic operator Jc is nondegenerate and defines the symplectic structure
(R6,Ω), where Ω = κ− cω.

This Hamiltonian system is the analogue of the Hamiltonian ODE presented in
(1.5). There are, however, two important differences: the symplectic structure Ω
is defined explicitly in terms of a combination of the spatial (κ) and temporal (ω)
structures, and c appears here explicitly as a multiplier of the temporal symplectic
structure ω. In other words, even though (1.5) is Hamiltonian there is no connection
with the spatial or temporal symplectic structure of the full system (1.1), while (2.16)
still contains these connections.

The heteroclinic orbit Ẑ(x, a, b, c) satisfies the asymptotic conditions

lim
x→−∞ ‖Ẑ(x, a, b, c)‖ = 0 and lim

x→∞ ‖Ẑ(x, a, b, c)− Z+
0 + Z−

0 ‖ = 0 ,

where Z+
0 = GγZ−

0 for some γ ∈ G. In other words, as x → +∞ the function

Ẑ(x, a, b, c) is asymptotic to a point on M∞ other than Z−
0 , but this point is related

to Z−
0 by an element γ in the group G. In the present case, the difference in Z+

0 and
Z−

0 corresponds to a jump in the value of the potential q1.

3. A three-parameter family of solitary waves. For the linearized stability
theory, we will assume the existence of open sets A, B, and C in R such that for
each (a, b, c) ∈ A×B×C there exists a bounded travelling wave shape Z̃(x; a, b, c) =

Z−
0 (a, b, c) + Ẑ(x; a, b, c), which satisfies

JcZ̃x = ∇S(Z̃)− a∇P (Z̃)− b∇Q(Z̃).(3.1)

Furthermore, we assume that the derivative of the shape of the solitary wave, Z̃x,
is exponentially decaying with asymptotic estimate

lim
x→±∞ e±δxZ̃x = Ψ± and lim

x→±∞ ∂x[e
±δxZ̃x] = 0(3.2)

for some Ψ± ∈ R
6 and δ > 0. This assumption is in general easy to verify for

solitary waves which are explicitly known. Indeed the above two hypotheses are very
unrestrictive and cover a wide range of known solitary waves.

The bounded travelling wave shapes Z̃ will be asymptotic to the points Z+
0 and

Z−
0 for x→∞, respectively, x→ −∞. The phase shift between the point onM∞ at

plus and minus infinity are related by using the group action of G: explicitly we find

Z+
0 = GγZ−

0 , where γ =

∫ ∞

−∞
(u(x)− b) dx,
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and u(x) = q̃2(x) is the second component of the solitary wave solution. By the
hypotheses, this integral exists and is nonzero in general. It is a generalization of the
“mass” of the solitary wave (cf. Longuet-Higgins [27]).

The momentum of the shape of the solitary wave is defined by

I(Z̃) =
1

2

∫ +∞

−∞
ω(Z̃, Z̃x) dx ,(3.3)

where the dependence on a and b has been suppressed. By taking

H(Z̃) =

∫ +∞

−∞
( 1
2κ(Z̃, Z̃x) +W (Z̃)) dx ,

it is straightforward to verify that the energy-momentum characterization of solitary
waves is encoded in (2.16) and (3.1) (cf. [7], [9]), but this characterization will not be
needed explicitly in what follows.

With the above hypotheses, it is shown in [9] that the derivative of I with respect
to c exists and takes the form

d

dc
I(Z̃) =

∫ +∞

−∞
ω(Z̃c, Z̃x) dx+

1

2
ω(Z+

0 , ∂cZ
+
0 ) .(3.4)

An essential point to note in the interpretation of this expression is that the derivative
with respect to c is taken with all other parameters fixed. While this may appear to
be obvious, it is easy to be misled into thinking that a family of solutions depends on
c when in fact it exists only for a single value of c. Examples of this are the explicit
solutions found in [12], [14], [15], and [20] which for fixed values of the parameters
in the equation exist for a single value of c and therefore dI

dc cannot be explicitly
computed. On the other hand, when a solitary wave state is known at an isolated
value of c, it is not difficult to prove that it persists for a range of c values by a
multisymplectic Melnikov argument. In other words, families in c generically exist,
even when an explicit solution exists for a single value of c only. An example of the
numerical continuation of such an isolated explicit solution can be found in [12].

4. The linearization about a family of solitary waves. To study the sta-
bility of a solitary wave Gθ(x,t)[Z−

0 + Tτ(t)Ẑ(x; a, b, c)] (see (2.15)), write Z(x, t) =

Gθ(x)[Z−
0 + Tτ(t)[Ẑ(x; a, b, c) + Û(x, t)]]. Then the linearization of (2.4) about the

family of solitary waves takes the form

MÛt + JcÛx = B(x; a, b, c)Û ,(4.1)

where

B(x; ·) = D2W (Ẑ(x; ·))
= D2S(Z−

0 + Ẑ(x; ·))− aD2P (Z−
0 + Ẑ(x; ·))− bD2Q(Z−

0 + Ẑ(x; ·))
(cf. section 3 of [9]). With the spectral ansatz Û(x, t) = eλtU(x, λ), the system (4.1)
reduces to

Ux = A(x, λ)U, U ∈ C
6,(4.2)

with

A(x, λ) = J−1
c [B(x; ·)− λM].
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The dependence on the parameters (a, b, c) in the argument ofA is suppressed, as they
are considered fixed in the stability analysis. The matrix A(x, λ) has the following
asymptotic limits:

lim
x→±∞A∞(λ) = J−1

c [B∞ − λM] ,

where

B∞ = lim
x→±∞B(x; ·) = D2S(Z0)− aD2P (Z0)− bD2Q(Z0) ,

with Z0 either Z−
0 or Z+

0 . It is a consequence of the results in [9] that although
Z−

0 �= Z+
0 , the linearization B∞ will be the same at ±∞. Explicitly, B∞ is

B∞ =




0 0 0 0 0 0
0 Fqq(b, 0) +

Eq(b,0)
2

β Fqr(b, 0) +
Eq(b,0)Er(b,0)

β 1 0
Eq(b,0)

β

0 Fqr(b, 0) +
Eq(b,0)Er(b,0)

β α+ Frr(b, 0) +
Er(b,0)2

β 0 1 Er(b,0)
β

0 1 0 0 0 0
0 0 1 0 0 0
0

Eq(b,0)
β

Er(b,0)
β 0 0 1

β



.

The spectrum of A∞(λ) is defined by

σ (A∞(λ)) = {µ ∈ C : ∆(µ, λ) = 0 } ,
where

∆(µ, λ) = det[B∞ − µJc − λM] , λ ∈ Λ .

The set Λ ∈ C is some subset of the right-half complex λ-plane, which will be identified
later. A straightforward calculation shows that

∆(µ, λ) = µ6 +
C1

β
µ4 − C2 + 2c

β
µ2 + 2

λ

β
µ ,(4.3)

where C1 = Frr(b, 0)− 2Eq(b, 0) + α and C2 = Fqq(b, 0).
This expression shows that µ = 0 is an eigenvalue for the linearized system for

any value of λ. The solution of the linearized equation related to this eigenvalue is
independent of x and is given explicitly by

U = (1, 0, 0, λ, 0, 0) .(4.4)

This zero eigenvalue and its eigenvector are reminiscent of a similar phenomenon that
appears with KdV; see section 6 of [7]. It arises due to the introduction of a potential
for u(x, t).

We can also determine the eigenvectors associated with each of the other five
µ-eigenvalues; they are

Uev(µ, λ) = (1 , µ , µ2 , −λ+ µc , −µF1 , −µF2) , µ �= 0 ,(4.5)

where

F1 = Fqr(b, 0) + µ(C1 + Eq(b, 0)) + βµ3 and F2 = Eq(b, 0) + µEr(b, 0)− βµ2 .

If µ ∈ iR\{0}, then λ ∈ iR. Therefore, if Re(λ) > 0, the only solution in
σ(A∞(λ)) ∩ iR is the trivial state (4.4).
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-2c β C
1

/β

C2 β

0

Fig. 4.1. Sketch of the position of the eigenvalues µ at λ = 0 as a function of C1/β and C2β.
The parabolic curve represents the relation C2

1 = −4β(C2 + 2c).

4.1. The linearized equation with λ = 0. First consider the spectrum of
A∞(0) which is associated with the existing solitary wave

∆(µ, 0) = µ2

(
µ4 +

C1

β
µ2 − C2 + 2c

β

)
.

We can immediately see that at λ = 0, the µ-spectrum is given by{
0, 0,

√
−C1

2β
± 1

2β

√
C2

1 + 4β(C2 + 2c),−
√
−C1

2β
± 1

2β

√
C2

1 + 4β(C2 + 2c)

}
.(4.6)

A sketch of the position of the eigenvalues µ as function of C1/β and C2β is given in
Figure 4.1. In order to satisfy the exponential decay condition (3.2) on the solitary
wave, it is necessary for the spectrum ∆(µ, 0) to have at least one pair of strictly
hyperbolic eigenvalues. The region with C1/β < 0 and C2β < −2cβ with four
real hyperbolic eigenvalues is the region studied by Karpman [23] using the energy-
momentum method to prove stability and instability (for the case in (1.1) when f is
a polynomial in u). The region with C1/β > 0 in the neighborhood of the parabola
C2

1 + 4β(C2 + 2c) = 0 is the region studied by Dias and Kuznetsov [16], and in
this region they show that the energy-momentum method leads to the existence of a
minimum (for the case in (1.1) when f is a quadratic function of u).

Here we will consider the case where the spectrum of A∞(0) has exactly one
pair of hyperbolic real eigenvalues and one pair of purely imaginary eigenvalues. In
Figure 4.1, this corresponds to the region

C2β > −2cβ ,(4.7)

and we will concentrate on this part of parameter space. Note that the zero eigen-
value of A∞(0) has algebraic multiplicity two and geometric multiplicity one and the
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C2 β

-2c β C
1

/β

0

Fig. 4.2. Position of the eigenvalues for λ small and β > 0.

eigenvector, (1, 0, 0, 0, 0, 0), is in fact the generator of the group action of G, defined
in section 2.

By differentiating (3.1) with respect to x, we see that Z̃x is a solution of the
linearized equation (4.2) with λ = 0. By assumption the derivative of the solitary

wave shape Z̃x is exponentially decaying, hence both real eigenvalues can be related to
the exponential decay rate of the derivative of the solitary wave shape. The negative
real eigenvalue is equal to −δ and the positive real eigenvalue is equal to δ (see (3.2)),
with Ψ± the eigenvectors of the systems at ±∞.

4.2. The linearized equation with �(λ) > 0 and λ small. Next we consider
the linearized equation (4.2) with �(λ) > 0 and λ small. When λ is small, the
eigenvalues which were on the imaginary axis when λ = 0 have expansions for λ small
given by

µ = 0;

µ =
2

C2 + 2c
λ+O(λ2);

µ = ± i

2

√
2
√
C3 − 1

2β
C3(C3 − C1

β
)λ+O(λ2),

where C3 = C1

β +
√

C2
1

β2 + 4(C2+2c)
β . Since β(C2 + 2c) > 0, the term − 1

2βC3(C3 − C1

β )

has sign opposite to that of 2
C2+2c . Hence, if β > 0, the nonzero eigenvalues on the

imaginary axis are perturbed to the left and one of the zero eigenvalues is perturbed
to the right when λ �= 0. The position of the eigenvalues is sketched in Figure 4.2
with β > 0. If β < 0, the movement of the eigenvalues will be in the opposite
direction. Hence we have a 4-2 split in the eigenvalues. This means that for �(λ) > 0,
if β < 0, there are two eigenvalues with negative real part and four eigenvalues with
nonnegative real part. And if β > 0, there are two eigenvalues with positive real part
and four eigenvalues with nonpositive real part.

A straightforward calculation shows that double eigenvalues, i.e., values of λ where

∆(µ, λ) =
∂

∂µ
∆(µ, λ) = 0,

occur at isolated real values of λ, explicitly, when

λ0 = ± β

50

√
1

10β
(C4β − 3C1)

((
C4 − C1

2β

)2

− 25C2
1

4β2

)
,
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0

Im(λ)

Re(λ)
λ

Λ

Fig. 4.3. The set Λb in the right-half complex plane in which the eigenvalues are analytic and
its extension is Λ.

where C4 =
√

9C2
1

β2 + 20(C2+2c)
β . A consequence of the condition (4.7) is that λ0 is al-

ways real. The double eigenvalues associated with λ = λ0 are µd = ±
√

1
10β (C4β − 3C1).

If we define

Λb = {λ ∈ C | �(λ) > 0, |�(λ)| < �(λ)}\{|λ0|+ iy | y ≤ 0},

then the eigenvalues are simple when λ ∈ Λb. The region Λb is shown in Figure 4.3.
The set Λ will be defined as the extension of the set Λb obtained by removing the

branch point and the branch cut.

5. Intermezzo: Temporal drift along the group G. In section 2, the state
at infinity associated with the basic solitary wave is x and t dependent and of the
form

Z(x, t) = Gθ(x,t)Z0(a, b) = Z0(a, b) + θ(x, t)V .(5.1)

Since only the first component of V is nonzero, the only component of Z(x, t) in this
expression which will depend on x and t is the first component. In the multisymplectic
coordinates, the first coordinate is q1(x, t), where

u(x, t) = q2(x, t) =
∂

∂x
q1(x, t) ,(5.2)

and so

q1(x, t) = qo1(a, b) + θ(x, t) = at+ bx+ θ0 .

Since q1(x, t) is a potential, the t-dependence of q1(x, t) will have no dynamic signif-
icance for u(x, t) which is the primary function associated with (1.1). It is tempting
to conclude that the temporal part of the flow on G—represented by the parame-
ter a—is irrelevant. Surprisingly, it is not. By embedding the solitary wave in the
three-parameter family (a, b, c), rather than the two-parameter family (b, c) (or even
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the one-parameter (c) family), geometric information about the linear stability is ob-
tained, even if we set a = 0 at the end of the analysis. Here we will indicate two
examples of how a encodes geometric information.

The basepoint, Z0(a, b), of the two-parameter family of states at infinity satisfies
a constrained variational principle (cf. (2.12) and (2.13)) with the nondegeneracy
condition

det

( ∂P
∂a

∂P
∂b

∂Q
∂a

∂Q
∂b

)
�= 0,(5.3)

and for the Kawahara family at infinity it was found that

( ∂P
∂a

∂P
∂b

∂Q
∂a

∂Q
∂b

)
=

(
0 1
1 −Fqq(b, 0)

)
,(5.4)

and hence the nondegeneracy condition is satisfied for any a and b. This information
was not used explicitly in the later analysis, but it does appear implicitly in the
following way.

In section 4, the spectral problem associated with the linearization about the
solitary wave in the limit as x→ ±∞ was associated with the function

∆(µ, λ) = det[B∞ − µJc − λM] , λ ∈ Λ .(5.5)

In [9] the following remarkable result is proved for any relative equilibrium at infinity
of the abstract form (5.1) (see Lemma 7 in [9]):

∆(µ, λ) = C

[
∂Q

∂b
µ2 +

(
∂Q

∂a
+
∂P

∂b

)
µ(λ− cµ) +

∂P

∂a
(λ− cµ)2

]
+ o((|λ|+ |µ|)2),

(5.6)
where C represent a nonzero constant. In other words, the perturbation of the µ-roots
for |λ| small is dictated by the parameter structure encoded in the state at infinity.
Substituting the Kawahara expressions into this expansion results in

∆(µ, λ) = C
[−C2µ

2 + 2µ(λ− cµ)
]
+ o((|λ|+ |µ|)2),(5.7)

using C2 = Fqq(b, 0). It is evident from this expression that for |λ| small the two roots
are µ = 0 and

µ =
2

2c+ C2
λ .

For 2c + C2 > 0 this result recovers precisely the perturbation result in Figure 4.2.
Moreover, it gives a precise geometric description of how the zero µ-roots are perturbed
when λ is perturbed away from zero for the other regions in Figure 4.1, and this
information is an essential part of the construction of the Evans matrix.

A second example where the parameter a has implications is when deducing a
geometric instability criterion. Using the symplectic Evans matrix, we will prove a
geometric instability condition for solitary waves, based on the theory in [9], where
the proof uses in an essential way the parameter structure of the state at infinity, even
when only the case a = b = 0 is of interest.
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6. The symplectic Evans matrix. The system (4.2) with the spectrum of
A∞(λ) as shown in Figure 4.2 is in the appropriate form for construction of the Evans
function. The Evans function is constructed as follows (cf. Alexander, Gardner, and
Jones [1]).

For fixed (a, b, c) ∈ A × B × C let U−(x, λ) ∈ ∧2
(C6), and let U+(x, λ) ∈∧4

(C6). Let α−(λ) be the sum of the eigenvalues of A∞(λ) with positive real part,
and let α+(λ) = τ∞(λ) − α−(λ), where τ(x, λ) = Trace(A(x, λ)) and τ∞(λ) =
lim|x|→∞ τ(x, λ). Then U−(x, λ),U+(x, λ) are chosen to satisfy induced equations

on
∧2

(C6) and
∧4

(C6), respectively, and

lim
x→±∞ e−α±(λ)xU±(x, λ) = ζ±(λ) ,

where ζ−(λ) and ζ+(λ) are eigenvectors of
∧2

(A∞(λ)) and
∧4

(A∞(λ)), respectively,
corresponding to the eigenvalues α−(λ) and α+(λ). The Evans function then takes
the form

D(λ) = e
−
∫ x

0
τ(s,λ) ds

U+(x, λ) ∧U−(x, λ) for all λ ∈ Λ .(6.1)

It is independent of x and analytic for all λ ∈ Λ [1]. Indeed it is analytic on a larger
subset of C, but this extension will not be needed here.

One of the shortcomings of the form (6.1) is that it does not encode in any obvious
way the multisymplectic structure of the system (4.2). However, by using individual
solutions of (4.2), the symplectic structure can be made explicit.

For fixed (a, b, c) ∈ A×B × C let U−
i (x, λ) for i = 1, 2 be independent solutions

of (4.2) which decay exponentially as x→ −∞, and let W+
i (x, λ) for i = 1, 2 be such

that JcW
+
i are independent solutions of the adjoint of (4.2) which decay exponentially

as x→ +∞. For λ ∈ Λb, where Λb is the subset of Λ where individual vector-valued
solutions are analytic, the symplectic Evans matrix is defined in [9] by

Eb(λ) =

(
Ω(W+

1 (x, λ), U−
1 (x, λ)) Ω(W+

1 (x, λ), U−
2 (x, λ))

Ω(W+
2 (x, λ), U−

1 (x, λ)) Ω(W+
2 (x, λ), U−

2 (x, λ))

)
,(6.2)

where Ω(·, ·) is the symplectic form associated with the Hamiltonian system (2.16).
The symplectic Evans function is then the determinant of this matrix. If there exists a
λ ∈ Λb with Db(λ) = det(Eb(λ)) = 0, then the basic solitary wave is linearly unstable.
On the set Λb, Db(λ) and D(λ) have the same zeros [9].

There is yet another form of the Evans function which uses individual vectors as
in (6.2) but is analytic on the larger set Λ. This extension of the symplectic Evans
matrix is introduced in Bridges and Derks [10]. It has the same form as (6.2) and the
individual vectors in it span the same space as the vectors in (6.2) but they extend
to analytic functions on the larger set Λ. Denote this Evans matrix by E(λ). In [10]
it is proved that this matrix is analytic on Λ and det(E(λ)) is equal to D(λ) on Λ.
Moreover, the sign of the first nonzero derivative of det(Eb(λ)) is equal to the sign of
the first nonzero derivative of det(E(λ)) at the origin.

In summary, the three forms of the Evans function can be used together to analyze
the stability problem. The strategy here will be to show that D(λ) = det(E(λ))→ 1
for λ → +∞ along the real axis. The geometry encoded in (4.2) will then be used
to obtain explicit expressions for the derivatives of Db(λ) = det(Eb(λ)) at the origin
following [9]. Then the equivalence between Db(λ) and D(λ) in Λb established in [10]
is then used to prove a geometric instability condition.
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In section 8, we will show that, for the region in parameter space associated with
C2β > −2cβ, an explicit geometric condition for the existence of at least one unstable
eigenvalue can be deduced.

7. Large λ behavior of the Evans function. In this section, we will prove
that D(λ) → 1 as λ → +∞ along the real axis, for the Evans function associated
with the Kawahara equation, linearized about a solitary wave. This will be proved
by applying the Pego–Weinstein lemma in the appendix to the primary form of the
Evans function (6.1) on wedge spaces.

The linear system has n = 6 and k = 2, hence the wedge space
∧2

(C6) has
dimension d =

(
6
2

)
= 15. Use the standard basis for C

6 (e1 = (1, 0, 0, 0, 0, 0)T , etc.)
and the standard lexically ordered induced basis, ω1 = e1 ∧ e2, . . . , ω15 = e5 ∧ e6.

Let κ = λ−1/5. For λ large, the eigenvalues of the matrix A∞(λ) are

0, Bκ−1 +O(κ),
1

4

(
−1±

√
5 + i

√
2

√
5±

√
5

)
Bκ−1 +O(κ) ,

where B = 5

√
2

−β , and

1

4

(
−1±

√
5− i

√
2

√
5±

√
5

)
Bκ−1 +O(κ) .

Note that none of the eigenvalues is of order λ. This property corresponds to the
fact that asymptotically J−1

c M is the main matrix in A∞(λ). And J−1
c M has only

one eigenvalue—0—and it has algebraic multiplicity 6 and geometric multiplicity 4.

The eigenvalues of the induced matrix A
(2)
∞ (λ) in

∧(2)
(C6) are pairwise sums of

eigenvalues of A∞(λ). Explicit expressions will not be given, but Figure 7.1 shows
qualitatively the position of these eigenvalues relative to the eigenvalues of A∞(λ) in
the complex µ plane.

–1.5

–1

–0.5

0.5

1

1.5

–2 –1 1 2

Fig. 7.1. For B = 1 and λ fixed (and large), the eigenvalues of the induced matrix A
(2)
∞ (λ) are

denoted with a diamond and the eigenvalues of the matrix A∞(λ) with a cross (the zero eigenvalue
of A∞(λ) is obscured by the axes).
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It is straightforward to verify that A
(2)
∞ (λ) is diagonalizable for λ ∈ Λ, using the

explicit expressions for the eigenvectors. The eigenvector of A∞(λ) for the eigen-
value 0 is (κ5, 0, 0, 1, 0, 0)T and the eigenvectors for a nonzero eigenvalue µ are(

1, µ, µ2, µc− λ,−µF1,−βµF2

)T
,

where F1 and F2 are defined in (4.5). The eigenvectors of the induced matrix are
wedge products of pairs of those eigenvectors, so, using the above expressions, the
matrix V(λ) in the Pego–Weinstein lemma of all eigenvectors can be formed.

The columns of V(λ), the eigenvectors of the induced matrix, have the following
form: 



(ν0 − µ0)κ
8

(ν2
0 − µ2

0)κ
7

c(ν0 − µ0)κ
8

−β(ν4
0 − µ4

0)κ
5

−β(µ3
0 − ν3

0)κ
6

µ0ν0(ν0 − µ0)κ
6

(ν0 − µ0)κ
3

−βµ0ν0(ν
3
0 − µ3

0)κ
4

−βµ0ν0(µ
2
0 − ν2

0)κ
5

(ν2
0 − µ2

0)κ
2

−βµ2
0ν

2
0(ν

2
0 − µ2

0)κ
3

−βµ2
0ν

2
0(µ0 − ν0)κ

4

−β(µ4
0 − ν4

0)
−β(ν3

0 − µ3
0)κ

−β2µ3
0ν

3
0(ν0 − µ0)κ

2




+ h.o.t. or




−µ0κ
8

−µ2
0κ

7

+2µ0κ
4

µ4
0βκ

5

−µ3
0βκ

6

0
µ0κ

3

0
0

µ2
0κ

2

0
0
µ4

0β
−µ3

0βκ
0




+ h.o.t.,

where µ0 and ν0 are two different nonvanishing solutions of the first-order approxi-
mation of the eigenvalue µ. Also, h.o.t. denotes the next order in each entry, except
for the zero entries, which are identically zero.

Using this expression, we can now verify the three integral conditions in the
Pego–Weinstein lemma. A straightforward but lengthy calculation gives

‖V(λ)−1[A(2)(x, λ)−A(2)
∞ (λ)]V(λ)‖ = O(e−δ|x|), uniform in λ

for λ and |x| large, where δ represents the exponential decay rate of the basic solitary
wave. Hence, the first two integral conditions are satisfied.

For the third condition, we have in general that

‖V(λ)−1[A(2)(x, λ)−A(2)
∞ (λ)]ζ+(λ)‖ = ‖V(λ)−1[A(2)(x, λ)−A(2)

∞ (λ)]V(λ)e1‖
= O(e−δ|x|).

However, the integral of this function does not vanish for large λ, so the third integral
condition of the Pego–Weinstein lemma will not be satisfied in general (for this we
would require some decay rate in κ/λ in the right-hand side).

However, under the main hypothesis needed in the applications presented here—
namely Er(b, 0) = 0—then A(x, λ) has a simpler structure and we get

‖V(λ)−1[A(2)(x, λ)−A(2)
∞ (λ)]ζ+(λ)‖ = O(e−δ|x|κ),

which vanishes for large λ, and so the third integral condition is satisfied. In summary,
we have proved the following. (This asymptotic result is actually true in a wedge about
the real axis, but this property will not be needed here.)
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Proposition 7.1. Suppose Er(b, 0) = 0 and C2β + 2cβ > 0, and let D(λ) be
the Evans function (6.1) linearized about a solitary wave of the form given in sections
2–3. This function satisfies D(λ)→ 1 as λ→ +∞ along the real axis.

8. A geometric instability criterion. Using the geometry of the symplectic
Evans matrix, the slope of det(Eb(λ)) for λ small, real, and positive can be deter-
mined. Combining this result with the intermediate-value theorem and the large λ
asymptotics of D(λ), the following geometric condition for linear instability is proved
in [9, 10].

Define

χ−
00 =

[
Ω(Ψ−, DGγ(Z

−
0 )TΨ+)

]−1
,

and let d∞ be the value of the Evans function for some value of λ ∈ Λ ∩R, usually λ
large. Then

d∞ χ−
00

(
∂

∂c
I(Z̃)− 1

2
ω(Z+

0 , ∂cZ
+
0 )

)
< 0(8.1)

is a sufficient condition for linear instability of the solitary wave Gat+bx+θ0(Z̃(x− ct))
(see [9], [10] for full details). It follows from section 7 that d∞ = +1.

The expression (8.1) can be simplified by using the properties of the existing
solitary wave, the special form of M, and the fact that DGγ is the identity. By
definition of the matrix M, we have that

I(Z̃) = −
∫ ∞

−∞
q̃2(q̃1)x dx+ 1

2 q̃2q̃1
∣∣∞
−∞ .

Using that (q̃1)x = q̃2 − b and q̃2(−∞) = b = q̃2(∞), this implies that

I(Z̃) = −
∫ ∞

−∞
(q̃2 − b)(q̃2 − b

2 ) dx.

Also,

1

2
ω(Z+

0 , ∂cZ
+
0 ) = − b

2

∂

∂c

∫ ∞

−∞
(q̃2 − b) dx,

hence

∂

∂c
I(Z̃)− 1

2
ω(Z+

0 , ∂cZ
+
0 ) = − ∂

∂c

∫ ∞

−∞
(q̃2 − b)2 dx.

Finally, since Ψ− is an eigenvector at λ = 0 with eigenvalue δ and Ψ+ is an
eigenvector at λ = 0 with eigenvalue −δ, there are constants C±

5 such that Ψ± =
C±

5 Uev(∓δ, 0) with Uev(µ, λ) given by (4.5). Hence

Ψ− =
C−

5

C+
5

(
Ψ+ + 2δC+

5 (0 , 1 , 0 , c , −Fqr(b, 0) , −Eq(b, 0) + βδ2)
)

and(
χ−

00

)−1
= −2δ3C−

5 C
+
5

[
α+ Frr(b, 0)− 2Eq(b, 0) + 2βδ2

]
= −2δ3C−

5 C
+
5 [C1 + 2βδ2] .
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Since δ is the positive real eigenvalue, (4.6) gives that

C1 + 2βδ2 = C1 +
√
C2

1 + 4β(C2 + 2c)− C1 =
√
C2

1 + 4β(C2 + 2c) > 0.

Also 2δ3 > 0, so we can conclude the following.
Theorem 8.1. Define C±

5 = limx→±∞e±δx(q̃2(x) − b). If E = 0, Fqq(b, 0)β >
−2cβ, and

C−
5 C

+
5

∂

∂c

∫ ∞

−∞
(q̃2(x)− b)2 dx < 0,

then the solitary wave solution Z̃(x; a, b, c) of the generalized Kawahara equation (1.1)
is unstable.

If b = 0 and q̃2 is even, then C−
5 C

+
5 > 0. In this case the condition for instability

is reminiscent of the abstract condition deduced from the energy-momentum method
in Grillakis, Shatah, and Strauss [18] and Bona, Souganidis, and Strauss [4], although
here there is no requirement on the second variation of the constrained critical point
problem. If b �= 0 and (q̃2−b) is not even—and it is known from numerical results that
such solutions exist [11]—then C−

5 C
+
5 may be negative, in which case the condition

for instability is precisely opposite that of the energy-momentum characterization (see
section 5 of [7] for an example where this switch can occur).

In the next two sections we will apply this theorem to two known classes of solitary
wave states of the generalized Kawahara equation.

9. Example: Kichenasammy–Olver nonlinearity. In this section we con-
sider a class of generalized Kawahara equations, as considered in Kichenassamy and
Olver [25], i.e., E = 0 and F (q, r) = −Aqr2 + 1

2c1q
2 + 1

3c2q
3 + 1

4c3q
4. This implies

that

f(u, ux, uxx) = A(ux)
2 + 2Auuxx + c1u+ c2u

2 + c3u
3 .(9.1)

In [25], it is shown that if

c2 =
3αA

5β
and c3 = −2A2

5β
,

then the Kawahara equation with f given by (9.1) has a two-parameter family of
exact solitary wave solutions of the form

q̃2(x) = u(x) = −10βφ2

A
sech2(φ(x− ct)) + b,

where φ is a positive solution of

80(βφ2)2 − 20βφ2(2bA− α) + 6bA(bA− α)− 5β(c1 + 2c) = 0,(9.2)

which is equivalent to the condition ∆(±2φ, 0) = 0. This condition implies that if
β(2bA − α) ≥ 0, then the family exists for 40cβ > 4b2A2 − 4bAα − 5α2 − 20c1β. If
β(2bA− α) < 0, then the family exists for 40cβ > 24b2A2 − 24bAα− 20c1β.

In terms of the notation of section 3, we have δ = 2φ and

Ψ± =
40βφ2

A
(−1,±2φ,−4φ2,±2cφ,−4φ2(−4βφ2 − α+ 2bA),±8βφ3),
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i.e., C±
5 = − 40βφ2

A . A tedious but straightforward calculation demonstrates that

limx→±∞ ∂x[e
±δxZ̃x] = 0. So all the conditions of section 3 are satisfied.

Next we look at section 4. For this example we have

C1 = α− 2Ab and C2 = c1 +
6Ab

5β
(α−Ab).

So an eigenvector can be written as

Uev(µ, λ) = (1 , µ , µ2 , −λ+ µc , −µ2(α− 2Ab+ βµ2) , βµ3).

In order to have C2β > −2cβ, the analysis will be restricted to the case

40cβ > −20βc1 − 24Ab(α−Ab),

which is exactly the sufficient condition for the existence of the family of solitary
waves. This condition is also necessary if β(2bA− α) < 0.

Now we are ready to apply the instability criterion. A straightforward calculation
shows that

−
∫ ∞

−∞
(u(x)−b)2 dx = −400φ3β2

3A2
, hence − ∂

∂c

∫ ∞

−∞
(u(x)−b)2 dx = −400φ2β2

A2

∂

∂c
φ.

To determine ∂
∂cφ, we differentiate (9.2). This gives

∂

∂c
φ =

1

4φ(8βφ2 − 2bA+ α)
.

Also,

(
χ−

00

)−1
= (JcΨ

−,Ψ+) = −25600β2φ7

A2
(8βφ2 + α− 2bA).

So

χ−
00

(
∂

∂c
I(Z̃)− 1

2
ω(Z+

0 , ∂cZ
+
0 )

)
=

A2

25600β2φ7

1

4φ

400φ2β2

A2
=

1

256φ6
> 0.

Since the sufficient geometric condition for linear instability is not met, this suggests
that the solitary wave is “stable.” However, there could still be unstable λ-eigenvalues
on the positive real λ-axis, but there would be two or more. The solitary wave could
also be unstable due to unstable eigenvalues with nonzero imaginary part.

10. Example: Levandosky’s homogeneous nonlinearity. In this section we
consider a class of nonlinearities for (1.1) which includes the equations considered by
Levandosky [26]. We take E = 0 and F homogeneous of degree p+ 1 for some p > 1,
i.e.,

F (νq, νr) = νp+1F (q, r) for all ν ≥ 0 and (q, r) ∈ R
2.

In [26], it is proved that the following condition is sufficient for the existence of a
one-parameter family of solitary waves,∫ ∞

−∞
F (u, ux) dx > 0 for some u ∈ H2(R), b = 0, β = 1, and 4c > (max{α, 0})2 .
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Recall I(u) = 1
2

∫∞
−∞|u(x)|2 dx and assume that a family of solitary waves û(x; c)

exists, where û travels with speed c. In [26] it is also shown that under the above
conditions, the solitary waves are stable if d

dcI(ũ) > 0 and unstable if d
dcI(ũ) < 0 and

p ≥ 2. When b = 0 in the formulation in sections 2–6, this instability condition agrees
with Theorem 8.1 if C+

5 C
−
5 > 0.

First, we embed the solitary wave state in a two-parameter family, allowing for b
to be nonzero. Then we show how our theory recovers the result in [26], without any
specific use of the variational principle associated with the energy-momentum char-
acterization. For definiteness, consider the case α = 0 and take F to be homogeneous
in r itself, i.e., there is some 0 ≤ n ≤ p+ 1 such that

F (q, νr) = νnF (q, r) for all ν ≥ 0 and (q, r) ∈ R
2.

This homogeneity condition in r implies that Fqq(b, 0) = 0, hence the condition on c
of Theorem 8.1 becomes c > 0.

When there exists a family of solitary wave solutions {Z̃(x; a, b, 1) | a ∈ R, b ∈ R}
with speed c = 1, then we can construct a family of solitary wave solutions with speed
c > 0:

Z̃(x; a, b, c) = c
4−n

4(p−1) diag(c−
1
4 , 1, c

1
4 , c, c

3
4 , c

1
2 ) Z̃(c

1
4x; ac

n−4p
4(p−1) , bc−

4−n
4(p−1) , 1).

Indeed, Z̃(x; a, b, c) as defined above satisfies

JcDxZ̃(x; a, b, c) = c
1
4 c

4−n
4(p−1) Jc diag(c

− 1
4 , 1, c

1
4 , c, c

3
4 , c

1
2 )J−1

1 J1

Z̃x(c
1
4x; ac

n−4p
4(p−1) , bc−

4−n
4(p−1) , 1)

= c
1
4 Jc diag(c

− 1
4 , 1, c

1
4 , c, c

3
4 , c

1
2 )J−1

1

(∇S(Z̃)− ac
n−4p
4(p−1)∇P (Z̃)− bc−

4−n
4(p−1)∇Q(Z̃))

= ∇S(Z̃(x; a, b, c))− a∇P (Z̃(x; a, b, c))− b∇Q(Z̃(x; a, b, c)).

This implies that for b = 0 or n = 4∫ ∞

−∞
(q̃2(x; a, b, c)− b)2 dx = c

4−n
2(p−1)

∫ ∞

−∞
(q̃2(c

1
4x; ac

n−4p
4(p−1) , bc−

4−n
4(p−1) , 1)

− bc−
4−n

4(p−1) )2 dx

= c
4−n

2(p−1) c−
1
4

∫ ∞

−∞
(q̃2(s; ac

n−4p
4(p−1) , bc−

4−n
4(p−1) , 1)

− bc−
4−n

4(p−1) )2 ds

= c
4−n

2(p−1)
− 1

4

∫ ∞

−∞
(q̃2(s; ac

n−4p
4(p−1) , b, 1)− b)2 ds.

In the last step we used that b = 0 or n = 4, hence bc−
4−n

4(p−1) = b. Since the defining
equation for q̃2 does not depend on a, this integral will not depend on a either and
we can put a = 0; hence,∫ ∞

−∞
(q̃2(x; a, b, c)− b)2 dx = c

9−2n−p
4(p−1)

∫ ∞

−∞
(q̃2(s; 0, b, 1)− b)2 ds.
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So

∂

∂c

∫ ∞

−∞
(q̃2(x; a, b, c)− b)2 dx =

9− 2n− p

4(p− 1)
c

13−2n−5p
4(p−1)

∫ ∞

−∞
(q̃2(s; 0, b, 1)− b)2 ds.

Furthermore,

C+
5 (a, b, c)C−

5 (a, b, c) = c
4−n

2(p−1)C+
5 (ac

n−4p
4(p−1) , b, 1)C−

5 (ac
n−4p
4(p−1) , b, 1).

It is difficult to verify the hypothesis (3.2) for this example and therefore we assume
(3.2) is satisfied. Then with

C+
5 (ac

n−4p
4(p−1) , b, 1)C−

5 (ac
n−4p
4(p−1) , b, 1)

∫ ∞

−∞
q̃22(s; 0, b, 1) ds > 0.

Theorem 8.1 shows that the solitary waves are unstable if 9−2n−p < 0, i.e., p > 9−2n.
These instability results agree with those in [26] when an error in Lemma 3.3 in [26]
is corrected. (The (p + 1)(4 − β) in the numerator of the expression for γ should be
replaced by 4(p+ 1)− 2β.)

If n = 4, then b �= 0 is allowed and we obtain that the wave is always unstable
since

∂

∂c

∫ ∞

−∞
(q̃2(x; a, b, c)− b)2 dx = −1

4
c−

5
4

∫ ∞

−∞
q̃22(s; 0, b, 1) ds < 0.

Appendix. Large λ behavior and the Pego–Weinstein lemma. The
following result is a generalization of Proposition 1.17 in Pego and Weinstein [29],
which gives a sufficient condition for D(λ) → 1 as λ → +∞ along the real λ-axis.
Consider the system

ux = A(x, λ)u , u ∈ C
n , λ ∈ Λ ,(A.1)

where Λ is an open simply connected subset of C, and Λ includes a wedge about the
real axis in which we can take |λ| → ∞. The spectrum of A∞(λ), where

A∞(λ) = lim
|x|→∞

A(x, λ),(A.2)

is assumed to have k-eigenvalues with negative real part and n− k with nonnegative
real part. A critical hypothesis in Proposition 1.17 in [29] is that k = 1. However,

this hypothesis is not essential if we take into account that on
∧k

(Cn) the induced
matrix

A(k)
∞ (λ)

def
=
∧k

(A∞(λ))

has a unique simple eigenvalue of largest negative real part. Then working on
∧k

(Cn)
with the Evans function also on the exterior algebra, the proof of Proposition 1.17
carries over [10]. The precise statement of the result needed in this paper is given
below. Although stated in a substantially more general form, the proof given in [29]
carries over almost verbatim.

Pego–Weinstein lemma. Consider the system (A.1)–(A.2) and suppose that for

all λ ∈ Λ the eigenvalue of A
(k)
∞ (λ) with largest negative real part is unique and simple.

Denote this eigenvalue by α(λ) and its (analytic choice of) right eigenvector by ζ(λ)
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and its (analytic choice of) left eigenvector by η(λ) with normalization [[η, ζ]]k = 1,

where [[·, ·]]k is the induced inner product on
∧k

(Cn).

Let U(x, λ) ∈ ∧k
(Cn) be the solution of the system

Ux = A(k)(x, λ)U satisfying lim
x→+∞ e−α(λ)xU(x, λ) = ζ(λ) ∈ ∧k

(Cn) .

Similarly, let W(x, λ) ∈ ∧k
(Cn) be the solution of the system

Wx = −A(k)(x, λ)TW satisfying lim
x→−∞ eα(λ)xW(x, λ) = η(λ) ∈ ∧k

(Cn) .

In terms of these functions, the Evans function (6.1) can be expressed in the form

D(λ) = W(0, λ) ·U(0, λ)
def
= 〈W(0, λ),U(0, λ)〉,

where 〈·, ·〉 is a standard Hermitian inner product on C
d and d = dim

∧k
(Cn).

Now, suppose A
(k)
∞ (λ) is diagonalizable for large λ and let V(λ) ∈ C

d×d be the
matrix of right eigenvectors such that the first column is ζ(λ). If∫ +∞

−∞
‖V(λ)−1[A(k)(x, λ)−A(k)

∞ (λ)]V(λ)‖dx ≤ C , independent of λ,∫
|x|≥x0

‖V(λ)−1[A(k)(x, λ)−A(k)
∞ (λ)]V(λ)‖dx→ 0 , as x0 →∞, uniformly in λ,

∫ +∞

−∞
‖V(λ)−1[A(k)(x, λ)−A(k)

∞ (λ)]ζ(λ)‖dx→ 0 , as |λ| → ∞ ,

then

V(λ)−1U(0, λ) = V(λ)−1ζ(λ) + o(1) for |λ| → ∞(A.3)

and W(0, λ)V(λ) is bounded with

W(0, λ)V(λ)e1 = W(0, λ)ζ(λ) = 1 + o(1) for |λ| → ∞ .(A.4)

The two results (A.3) and (A.4) imply that D(λ)→ 1 as |λ| → ∞.
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Abstract. Recent works have demonstrated the existence of nontrivial stable critical points of
the Ginzburg–Landau energy

(Ψ, A) →
Z

Ω

1

2
|(∇− iA)Ψ|2 +

κ2

4
(1 − |Ψ|2)2 dx+

1

2

Z

Rn
|curl|A2 dx

for multiply connected domains Ω ⊂ R
n with n = 2 or 3 and for simply connected domains Ω that

are close in L1 to multiply connected domains. In this article we demonstrate that while there is no
topological obstruction to the presence of such stable critical points, there is a geometric obstruction.
Specifically, we show the nonexistence of stable critical points of this energy in two-dimensional
convex domains.

Key words. Ginzburg–Landau system, stability, convex domains
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1. Introduction. The phenomenon of permanent currents in superconducting
materials has been well known in the physics community for many years. In a typical
experiment, a ring-shaped sample is subjected to an applied field that induces a
current. The temperature of the sample is then lowered into the superconducting
regime, the applied field is shut off, and the current persists with only negligible
resistance—sometimes for a period of years. Mathematically, one can describe these
states using the Ginzburg–Landau theory of superconductivity [3, 5]. Within this
theory, a permanent current in two dimensions corresponds to a nontrivial stable
critical point of the energy

G(Ψ, A) =

∫
Ω

1

2
|(∇− iA)Ψ|2 + κ2

4
(1− |Ψ|2)2 dx+ 1

2

∫
R2

|curlA|2 dx.

Here Ω ⊂ R
2 is a bounded cross-section of a cylindrical sample such as a wire or

thin film. The magnitude of the order parameter Ψ : Ω → C measures the density
of superconducting electron pairs, A : R2 → R

2 is the magnetic potential whose curl
represents the induced magnetic field, and κ is the Ginzburg–Landau parameter. The
energyG is most naturally defined for pairs (Ψ, A) having square-integrable derivatives
so we consider it as defined on the space H1(Ω;C)× Z where

Z ≡ {A ∈ H1
loc(R

2;R2) : curlA ∈ L2(R2;R2)}.(1.1)

We recall that the Ginzburg–Landau energy enjoys the gauge invariance property that

G(Ψ, A) = G(Ψeiφ, A+∇φ)(1.2)
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for any φ ∈ H2
loc(R

2). In section 2 we will discuss the gauge choices made in this
paper.
Any pair (Ψ, A) in H1(Ω;C) × Z for which the first variation of G vanishes will

be referred to as a critical point. By a stable critical point, we will mean a critical
point for which the second variation is nonnegative. (See the beginning of section 2
for the precise definitions.) By a nontrivial critical point we will mean one that is not
gauge-equivalent to a state (c, 0) for c ∈ C.
Recently, using a degree theoretic approach, we have succeeded in proving the

existence of these stable critical points when κ2 is sufficiently large in both two and
three dimensions, provided the sample is multiply connected [6, 7, 10]. Indeed, one
finds, roughly speaking, that there exists a stable critical point living in each homotopy
class of mappings from Ω into S1. One may assume that these solutions correspond
to the experimentally observed permanent currents produced in ring-shaped samples
in the laboratory.
Perhaps more surprising, however, is the more recent discovery in [8] that stable

critical points exist in certain simply connected domains, thus showing that there is no
topological obstruction to the presence of permanent currents. These critical points
are constructed through a perturbation of domain argument, starting from a multiply
connected domain. In particular, then, they are shown to exist in highly nonconvex
samples. They differ from the ones found in multiply connected domains in that
they contain vortices—that is, zeros of the order parameter—unlike the vortex-free
solutions of [6, 7, 10].
In light of these existence results, we pursue here the question of whether there are

any geometric obstructions to producing permanent currents via Ginzburg–Landau
theory. That is, we ask whether among simply connected domains Ω, there are any
conditions on ∂Ω that would preclude the existence of nontrivial stable critical points.
We should perhaps point out that if we drop the requirement of stability in our ques-
tion, then there certainly do exist nontrivial critical points even under very stringent
assumptions on the geometry of the sample. For example, taking Ω ⊂ R

2 to be a disc,
one can construct critical points (Ψ, A) under the radial ansatz

Ψ = Ψ(r, θ) = wm(r)e
imθ, A = A(r, θ) =

Ym(r)

r
(− sin θ, cos θ)

for each positive integerm, where then wm and Ym are obtained through minimization
of G over this class of radial competitors.
It turns out, however, that all of these radial solutions in a disc are unstable.

This follows as a special case of our main result, stated below, which rules out the
existence of nontrivial stable critical points of G in two dimensions, whenever Ω is
convex.

Theorem 1.1. Let Ω ⊂ R
2 be an open, bounded convex set with C5,α boundary,

for any α ∈ (0, 1). Then the only stable critical point of G is the pair (1, 0) or one of
its gauge-equivalent representations.
Our approach should be viewed as a descendant of the technique employed in

[2, 9] to prove the analogous result for the well-studied scalar functional

u→
∫

Ω

F (u) + |∇u|2 dx

for F : R
1 → R

1, u : Ω → R
1, and Ω ⊂ R

n convex. It is based upon an explicit
expression for the second variation of G computed about a critical point. In Propo-
sition 3.1, we show that we can describe this second variation completely in terms
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of boundary integrals that include a dependence on the curvature of ∂Ω. Under the
convexity assumption, we then show through Proposition 3.2 and Theorem 3.3 that
the second variation is negative unless (Ψ, A) = (1, 0) (or any of its gauge-equivalent
representations).
The paper is organized as follows. In section 2 we review basic properties of the

Ginzburg–Landau system and develop the regularity theory needed for our approach.
We should note that we have not attempted to prove an optimal theorem with regard
to smoothness of the boundary. The theorem above contains an assumption that ∂Ω ∈
C5,α, meaning that, locally, the boundary can be described as the graph of a function
having five continuous derivatives with fifth derivatives satisfying a Hölder condition
with exponent α; cf. [4]. This assumption can surely be relaxed. In section 2 we
address the reason for the assumed regularity. We also present a simple lemma relating
curl-free vector fields satisfying a Neumann boundary condition to the curvature of
the boundary. Then in section 3 we work with the second variation of the Ginzburg–
Landau energy in order to obtain our main result.

2. Preliminaries. Throughout this paper we shall take Ω ⊂ R
2 to be a bounded,

open, convex set with sufficiently smooth boundary, say ∂Ω ∈ C5,α. We will denote
the outer unit normal to ∂Ω by ν and the mean curvature of ∂Ω byH so thatH(x) ≥ 0
for all x ∈ ∂Ω. We denote a ball centered at x of radius R by B(x,R) and we use Ψ∗

to denote the complex conjugate of a complex-valued function Ψ. We will frequently
invoke the summation convention on expressions with repeated indices.
Before discussing the nature of critical points, we discuss the two gauge choices

we will utilize in our approach. The first is to work only with vector potentials A ∈ Z
(cf. (1.1)) satisfying the condition

divA = 0 in R
2.(2.1)

This choice is clearly possible in light of the solvability in H2
loc(R

2) of Poisson’s equa-
tion

−∆φ = divA ∈ L2
loc(R

2).

A second choice we will use is the following:

divA = 0 in Ω, A · ν = 0 on ∂Ω.(2.2)

Such a gauge is obtainable via the transformation Ψ → Ψeiφ, A → A + ∇φ where
φ ∈ H2

loc(R
2) is taken to be an extension to R

2 of the solution to the boundary value
problem

∆φ = −divA in Ω, ∇φ · ν = −A · ν on ∂Ω.

Of course, when working in this gauge we have not uniquely determined A since the
extension of φ to the complement of Ω is arbitrary, but we make here the convention
that we shall always take as smooth an extension as possible, depending on the known
regularity of A.
By a critical point of G we shall mean a pair (Ψ, A) ∈ H1(Ω;C)× Z such that

d

dε
G(Ψ + εΨ̃, A+ εÃ)|ε=0

= 0 for all (Ψ̃, Ã) ∈ H1(Ω;C)× Z.(2.3)
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One readily verifies that such a critical point will satisfy the Ginzburg–Landau
system

(∇ − iA)2Ψ+ κ2(1− |Ψ|2)Ψ = 0 in Ω,(2.4)

curl curlA+

{
i

2
(Ψ∗∇Ψ−Ψ∇Ψ∗) + |Ψ|2 A

}
χΩ = 0 in R

2,(2.5)

along with the “natural” boundary conditions

(∇ − iA)Ψ · ν = 0 on ∂Ω,(2.6)

ν × [curlA] = 0 on ∂Ω.(2.7)

Here [ · ] denotes the jump across ∂Ω and χΩ denotes the characteristic function of
the set Ω. We note that the boundary condition (2.6) reduces to simply

∇Ψ · ν = 0 on ∂Ω(2.8)

whenever the gauge choice (2.2) is used.
Of course, without further work, a critical point is only a weak solution of the

system (2.4)–(2.7). However, standard elliptic regularity theory leads to the conclu-
sion that any weak solution (Ψ, A) is in fact infinitely differentiable in the open sets
Ω and R

2 \ Ω and is a classical solution of (2.4)–(2.5) in these sets. The issue of
boundary regularity is also not difficult but is perhaps a bit more subtle in light of
the discontinuity inherent in (2.5) due to the presence of the characteristic function.
As we shall use crucially the smoothness of both Ψ and A up to ∂Ω, we present below
the boundary regularity statement and proof.

Proposition 2.1. Assume Ω ⊂ R
2 is an open, bounded set with ∂Ω ∈ C5,α for

some α > 0. Then any critical point (Ψ, A) of G in the sense of (2.3) expressed in
the gauge (2.1) or (2.2) lies in the space C3,α(Ω;C) × C1,α

loc (R
2;R2). Furthermore,

A ∈ C3,α(Ω;R2).
Remark 2.1. We note that in general, A will not be smoother than C1,α across

∂Ω, so by claiming A ∈ C3,α(Ω;R2) we mean this in the sense of one-sided derivatives
taken from within Ω.

Proof. Throughout this argument, when working with (2.4) for Ψ we will make
the gauge choice (2.2), and when working with (2.5) for A we will choose (2.1). We
note that switching gauges in no way affects the regularity of the solutions since the
gauge transformations are smooth. In view of (2.1), one may rewrite (2.5) as

−∆A = f(x) ≡
{−κ2Im (Ψ∇Ψ∗)− |Ψ|2 A for x ∈ Ω,

0 for x ∈ R
2 \ Ω.(2.9)

Standard elliptic regularity immediately yields that Ψ ∈ H2(Ω;C) while A ∈ H2
loc(R

2;

R
2). Hence, in particular, A ∈ C0,α

loc (R
2;R2), meaning that Ψ satisfies a linear elliptic

equation with Hölder continuous coefficients in Ω, along with homogeneous Neumann
boundary conditions. Consequently, Ψ ∈ C2,α(Ω;C). This in turn implies that the
function f defined by (2.9) lies in L∞(R2;R2) so that A ∈ C1,α

loc (R
2;R2) (cf. [4, Chap-

ters 6 and 8]).
Of course, both Ψ and A can be shown to be infinitely smooth in the open sets

Ω and R
2 \ Ω, but our desire in this proposition is to establish smoothness up to

∂Ω. Clearly the discontinuity in f across ∂Ω precludes higher regularity across the
boundary so we restrict our attention to one-sided regularity from within Ω. To this
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end, fix any point x0 ∈ ∂Ω and assume first that for some R > 0, the set ∂Ω∩B(x0, R)
consists of the line segment

T = {(x1, x2) : |x1| < L, x2 = 0}

for some L > 0. Then locally, f takes the form

f(x1, x2) =

{−κ2Im (Ψ∇Ψ∗)− |Ψ|2 A in B(x0, R) ∩ {x2 > 0},
0 in B(x0, R) ∩ {x2 < 0}.

Choosing any test function B ∈ H1(R2;R2) supported in B(x0, R) we multiply
(2.9) by ∂B

∂x1
and integrate by parts to find

∫
B(x0,R)

∇
(

∂A

∂x1

)
· ∇B dx =

∫
B(x0,R)

∂f

∂x1
·B dx.

Here the crucial point is that f , while obviously not smooth, has an L2—in fact, L∞—
derivative with respect to x1. Consequently,

∂A
∂x1
is a weak solution to the equation

−∆
(

∂A

∂x1

)
=

∂f

∂x1
∈ L∞(B(x0, R)).

We conclude that ∂A
∂x1
∈ C1,α(B(x0, R);R

2).
Now we shift our focus to the problem satisfied by A within Ω. Bringing to bear

the above argument, we find that in Ω ∩ B(x0, R), A solves the problem (2.9) with
f ∈ C1,α, along with a Dirichlet condition of class C2,α(∂Ω ∩ B(x0, R);R

2). As a
result, we find A ∈ C2,α(B(x0, R) ∩ Ω;R2).
Similarly, differentiating (2.4) along with the boundary condition (2.8) with

respect to x1, we conclude that Ψ|∂Ω∩B(x0,R)
is of class C3,α so that Ψ ∈

C3,α(Ω ∩B(x0, R);C).
Differentiating (2.9) a second time with respect to x1 and applying the same

type of reasoning, we conclude that A ∈ C3,α(∂Ω ∩ B(x0, R);R
2); hence, A ∈

C3,α(Ω ∩B(x0, R);R
2).

As the argument is local, the case where ∂Ω is not locally flat is handled by a
standard “flattening of the boundary” procedure. Keeping track of how many deriva-
tives of the curvature κ are needed to carry this out, one finds that C3,α regularity of
the solution requires ∂Ω ∈ C5,α in order to apply the required Schauder theory.
We conclude this section with some well-known facts about the Ginzburg–Landau

system and a standard result relating the curvature of the boundary to functions
satisfying a Neumann boundary condition.

Lemma 2.2. Let (Ψ, A) ∈ H1(Ω;C)× Z be a critical point of G. Then we have

(i) |Ψ| ≤ 1 in Ω,(2.10)

(ii) curlA = 0 in R
2 \ Ω.(2.11)

The proof of (i) follows from the maximum principle after using (2.4) to obtain a

differential inequality for |Ψ|2 (cf. [3]). Property (ii) follows from the observation that
in two dimensions, the condition curl curlA = 0 in R

2 \ Ω implies that the quantity
curlA = (0, 0, ∂A

(2)

∂x1
− ∂A(1)

∂x2
) is constant. As curlA ∈ L2(R2), the constant must be

zero.
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Lemma 2.3. Let B ∈ C1(Ω;R2) satisfy the condition B · ν = 0 on ∂Ω and have

zero curl on ∂Ω, i.e., ∂B(1)

∂x2
= ∂B(2)

∂x1
on ∂Ω. Then we have the identity following on

∂Ω:

∂
( |B|2 )
∂ν

= −2∂ν
(k)

∂xj
B(k)B(j) = −2H |B|2 .(2.12)

In particular, if u ∈ C2(Ω) satisfies the condition ∇u · ν = 0 on ∂Ω, then

∂
( |∇u|2 )
∂ν

= −2∂ν
(k)

∂xj

∂u

∂xk

∂u

∂xj
= −2H |∇u|2 .(2.13)

Proof. We compute

∂
( |B|2 )
∂ν

= 2B(k) ∂B
(k)

∂xj
ν(j) = 2B(j) ∂B

(k)

∂xj
ν(k).(2.14)

Now B · ν = 0 implies

0 =
∂
(
B · ν)
∂xj

B(j) = B(j) ∂B
(k)

∂xj
ν(k) +B(k) ∂ν

(k)

∂xj
B(j),

and substituting this into (2.14) yields the result.

3. Main results. In this section we will use the second variation of the Ginzburg–
Landau energy to rule out the possibility of nontrivial stable critical points in convex
planar domains. For any mappings Ψ, Ψ̃ ∈ H1(Ω;C) and A, Ã ∈ Z (cf. 1.1) we de-
note by J the second variation of G taken about the pair (Ψ, A). We record here the
straightforward calculation of J :

J(Ψ, A; Ψ̃, Ã) =
d2

dε2
G(Ψ + εΨ̃, A+ εÃ)|ε=0

1

2

∫
Ω

{ ∣∣∣∇Ψ̃∣∣∣2 + i〈∇Ψ, Ψ̃∗Ã〉+ i〈∇Ψ̃, AΨ̃∗ + ÃΨ∗〉 − i〈∇Ψ∗, ÃΨ̃〉

− i〈∇Ψ̃∗, AΨ̃ + ÃΨ〉+ |A|2
∣∣∣Ψ̃∣∣∣2 + 2〈A, Ã〉(ΨΨ̃∗ +Ψ∗Ψ̃) +

∣∣∣Ã∣∣∣2 |Ψ|2} dx

+
κ2

4

∫
Ω

(
(ΨΨ̃∗ + Ψ̃Ψ∗)2 − 2(1− |Ψ|2)

∣∣∣Ψ̃∣∣∣2)dx
+
1

2

∫
R2

∣∣∣ curl Ã∣∣∣2 dx.(3.1)

Throughout this section, we make the gauge choice (2.2).

Our approach hinges on a greatly simplified version of this formula when the
second variation is taken about a critical point of the Ginzburg–Landau energy. This
simplification will be accomplished in a few steps, the first of which is to reduce the
expression to a sum of boundary integrals. As we will always be considering the second
variation taken about a critical point (Ψ, A) of G, we will suppress this dependence
and write J henceforth as a functional depending only on two arguments, i.e., we will
simply write J(Ψ̃, Ã) rather than J(Ψ, A, Ψ̃, Ã).
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Proposition 3.1. Let (Ψ, A) be any critical point of G. Then we have

J

(
∂Ψ

∂xj
,
∂A

∂xj

)
=
1

4

∫
∂Ω

∂

∂ν

∣∣∣∣ ∂Ψ∂xj
∣∣∣∣
2

ds+
1

2

∫
∂Ω

〈
ν × ∂A

∂xj
, curl

(
∂A

∂xj

)〉
ds

+
i

4

∫
∂Ω

〈
∂A

∂xj
, ν

〉(
Ψ∗ ∂Ψ

∂xj
−Ψ∂Ψ∗

∂xj

)
ds (j = 1, 2).(3.2)

Remark 3.1. In the second integral above, it is understood that curl ( ∂A∂xj
) denotes

the trace from within Ω, which is well defined in light of the regularity theory devel-
oped in the previous section. A formula similar to (3.2) holds in three dimensions
as well, provided that curl ( ∂A∂xj

) ∈ L2(R2), except that the quantity curl ( ∂A∂xj
) in the

second boundary integral is replaced by the jump in this quantity across ∂Ω.
Proof . Set (Ψ̃, Ã) = (∂Ψ/∂xj , ∂A/∂xj) in the second variation formula (3.1).

Then we calculate

J(∂Ψ/∂xj , ∂A/∂xj) =
1

2

∫
Ω

{∣∣∣∣∇
(
∂Ψ

∂xj

)∣∣∣∣
2

+ i

〈
∇Ψ, ∂Ψ

∗

∂xj

∂A

∂xj

〉

+ i

〈
∇ ∂Ψ

∂xj
,
∂Ψ∗

∂xj
A+Ψ∗ ∂A

∂xj

〉
− i

〈
∇Ψ∗,

∂Ψ

∂xj

∂A

∂xj

〉

− i

〈
∇∂Ψ∗

∂xj
,
∂Ψ

∂xj
A+Ψ

∂A

∂xj

〉
+ |A|2

∣∣∣∣ ∂Ψ∂xj
∣∣∣∣
2

+ 2

〈
A,

∂A

∂xj

〉(
Ψ
∂Ψ∗

∂xj
+Ψ∗ ∂Ψ

∂xj

)
+ |Ψ|2

∣∣∣∣ ∂A∂xj
∣∣∣∣
2
}
dx

+
κ2

4

∫
Ω

((
Ψ
∂Ψ∗

∂xj
+Ψ∗ ∂Ψ

∂xj

)2

− 2(1− |Ψ|2)
∣∣∣∣ ∂Ψ∂xj

∣∣∣∣
2
)
dx

+
1

2

∫
Ω

∣∣∣∣curl
(
∂A

∂xj

)∣∣∣∣
2

dx.

Here we have used property (2.11) of Lemma 2.2 to conclude that curlA = 0 in R
2\Ω.

We now denote the integrand above by Ij(x). That is,

J

(
∂Ψ

∂xj
,
∂A

∂xj

)
=

∫
Ω

Ij(x) dx.(3.3)

Throughout this calculation, we shall invoke the regularity result, Proposition 2.1,
which provides that both Ψ and A are C3 up to the boundary. A straightforward
calculation on Ij(x) gives

Ij(x) =
1

4

(
2

∣∣∣∣∇ ∂Ψ

∂xj

∣∣∣∣
2

+ i

〈
∇ ∂Ψ

∂xj
, A

〉
∂Ψ∗

∂xj
− i

〈
∇∂Ψ∗

∂xj
, A

〉
∂Ψ

∂xj

+ i

〈
∇Ψ, ∂A

∂xj

〉
∂Ψ∗

∂xj
− i

〈
∇Ψ∗,

∂A

∂xj

〉
∂Ψ

∂xj

+ idiv

(
Ψ

∂A

∂xj
+

∂Ψ

∂xj
A

)
∂Ψ∗

∂xj
− idiv

(
Ψ∗ ∂A

∂xj
+

∂Ψ∗

∂xj
A

)
∂Ψ

∂xj

+ 2

∣∣∣∣ ∂Ψ∂xj
∣∣∣∣
2

|A|2 + 2
〈
A,

∂A

∂xj

〉(
Ψ
∂Ψ∗

∂xj
+Ψ∗ ∂Ψ

∂xj

)
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+ κ2

((
Ψ
∂Ψ∗

∂xj
+Ψ∗ ∂Ψ

∂xj

)2

− 2 (1− |Ψ|2) ∣∣∣∣ ∂Ψ∂xj
∣∣∣∣
2
))

+
1

2

(∣∣∣∣curl
(
∂A

∂xj

)∣∣∣∣
2

+ |Ψ|2
∣∣∣∣ ∂A∂xj

∣∣∣∣
2

+

〈
A,

∂A

∂xj

〉(
Ψ
∂Ψ∗

∂xj
+Ψ∗ ∂Ψ

∂xj

)

+
i

4

(〈
∇Ψ, ∂A

∂xj

〉
∂Ψ∗

∂xj
+

〈
∇ ∂Ψ

∂xj
,
∂A

∂xj

〉
Ψ∗

−
〈
∇Ψ∗,

∂A

∂xj

〉
∂Ψ

∂xj
−
〈
∇∂Ψ∗

∂xj
,
∂A

∂xj

〉
Ψ

))

+ Ĩj(x),(3.4)

where

Ĩj(x) =
i

4

(〈
∇ ∂Ψ

∂xj
,
∂A

∂xj

〉
Ψ∗ −

〈
∇∂Ψ∗

∂xj
,
∂A

∂xj

〉
Ψ−

〈
∇Ψ, ∂A

∂xj

〉
∂Ψ∗

∂xj

+

〈
∇Ψ∗,

∂A

∂xj

〉
∂Ψ

∂xj

)
− i

4
div

(
∂A

∂xj

)(
Ψ
∂Ψ∗

∂xj
−Ψ∗ ∂Ψ

∂xj

)
.

The expression Ĩj(x) is easily simplified to

Ĩj(x) = − i

4
div

((
Ψ
∂Ψ∗

∂xj
−Ψ∗ ∂Ψ

∂xj

)
∂A

∂xj

)
.(3.5)

On the other hand, by differentiating the Ginzburg–Landau system with respect to
xj , we have the following identities:

∆

(
∂Ψ

∂xj

)
− i

〈
∇
(
∂Ψ

∂xj

)
, A

〉
− i

〈
∇Ψ, ∂A

∂xj

〉
− idiv

(
∂A

∂xj
Ψ+A

∂Ψ

∂xj

)

− 2
〈
A,

∂A

∂xj

〉
Ψ− |A|2 ∂Ψ

∂xj
+ κ2

(
− ∂Ψ

∂xj
Ψ∗ − ∂Ψ∗

∂xj
Ψ

)
Ψ

+ κ2(1− |Ψ|2) ∂Ψ
∂xj

= 0 in Ω,

curl curl

(
∂A

∂xj

)
+ |Ψ|2 ∂A

∂xj
+

(
∂Ψ

∂xj
Ψ∗ +Ψ

∂Ψ∗

∂xj

)
A

+
i

2

(
∂Ψ∗

∂xj
∇Ψ+Ψ∗∇ ∂Ψ

∂xj
− ∂Ψ

∂xj
∇Ψ∗ −Ψ∇∂Ψ∗

∂xj

)
= 0 in Ω.

These lead readily to the relations

−∆
(
∂Ψ

∂xj

)
∂Ψ∗

∂xj
−∆

(
∂Ψ∗

∂xj

)
∂Ψ

∂xj
+ i

〈
∇ ∂Ψ

∂xj
, A

〉
∂Ψ∗

∂xj
+ i

〈
∇Ψ, ∂A

∂xj

〉
∂Ψ∗

∂xj

− i

〈
∇∂Ψ∗

∂xj
, A

〉
∂Ψ

∂xj
− i

〈
∇Ψ∗,

∂A

∂xj

〉
∂Ψ

∂xj

+ idiv

(
Ψ

∂A

∂xj
+

∂Ψ

∂xj
A

)
∂Ψ∗

∂xj
− idiv

(
Ψ∗ ∂A

∂xj
+

∂Ψ∗

∂xj
A

)
∂Ψ

∂xj
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+ 2

∣∣∣∣ ∂Ψ∂xj
∣∣∣∣
2

|A|2 + 2
〈
A,

∂A

∂xj

〉(
Ψ
∂Ψ∗

∂xj
+Ψ∗ ∂Ψ

∂xj

)

+ κ2

((
Ψ
∂Ψ∗

∂xj
+Ψ∗ ∂Ψ

∂xj

)2

− 2 (1− |Ψ|2) ∣∣∣∣ ∂Ψ∂xj
∣∣∣∣
2
)

= 0 in Ω,(3.6)

curl curl

(
∂A

∂xj

)
∂A

∂xj
+ |Ψ|2

∣∣∣∣ ∂A∂xj
∣∣∣∣
2

+

〈
A,

∂A

∂xj

〉(
Ψ
∂Ψ∗

∂xj
+Ψ∗ ∂Ψ

∂xj

)

+
i

2

(〈
∇Ψ, ∂A

∂xj

〉
∂Ψ∗

∂xj
+

〈
∇ ∂Ψ

∂xj
,
∂A

∂xj

〉
Ψ∗

−
〈
∇Ψ∗,

∂A

∂xj

〉
∂Ψ

∂xj
−
〈
∇∂Ψ∗

∂xj
,
∂A

∂xj

〉
Ψ

)
= 0 in Ω.(3.7)

We shall also need the following identities, which are an immediate consequence of
integration by parts:

∫
Ω

2

∣∣∣∣ ∂Ψ∂xj
∣∣∣∣
2

dx =

∫
∂Ω

(
∂Ψ

∂xj

∂

∂ν

(
∂Ψ∗

∂xj

)
+

∂Ψ∗

∂xj

∂

∂ν

(
∂Ψ∗

∂xj

))
ds

−
∫

Ω

(
∂Ψ

∂xj
∆

(
∂Ψ∗

∂xj

)
+

∂Ψ∗

∂xj
∆

(
∂Ψ

∂xj

))
dx

=

∫
∂Ω

∂

∂ν

∣∣∣∣ ∂Ψ∂xj
∣∣∣∣
2

ds−
∫

Ω

(
∂Ψ

∂xj
∆

(
∂Ψ∗

∂xj

)
+

∂Ψ∗

∂xj
∆

(
∂Ψ

∂xj

))
dx,(3.8)

∫
Ω

∣∣∣∣curl ∂A∂xj
∣∣∣∣
2

dx =

∫
∂Ω

〈
ν × ∂A

∂xj
, curl

(
∂A

∂xj

)〉
ds

+

∫
Ω

〈
∂A

∂xj
, curl curl

(
∂A

∂xj

)〉
dx.(3.9)

If we use the identities (3.6), (3.7), (3.8), and (3.9) in (3.3) and (3.4), we arrive at a
simple expression:

J

(
∂Ψ

∂xj
,
∂A

∂xj

)
=
1

4

∫
∂Ω

∂

∂ν

∣∣∣∣ ∂Ψ∂xj
∣∣∣∣
2

ds+
1

2

∫
∂Ω

〈
ν × ∂A

∂xj
, curl

(
∂A

∂xj

)〉
ds+

∫
Ω

Ĩj(x) dx.

Then applying the divergence theorem to (3.5), we see that the last term of this
expression is equal to

− i

4

∫
∂Ω

〈
∂A

∂xj
, ν

〉(
Ψ
∂Ψ∗

∂xj
−Ψ∗ ∂Ψ

∂xj

)
ds.

This completes the proof of the proposition.

In the next step, we will invoke the assumption of convexity of ∂Ω to establish
nonpositivity of the second variation.

Proposition 3.2. Let (Ψ, A) be any critical point of G. Denote Γ1 = {x ∈
∂Ω : Ψ(x) �= 0} and Γ2 = {x ∈ ∂Ω : Ψ(x) = 0}. Also, on Γ1 write Ψ locally as
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Ψ(x) = weiφ. Then we have

2∑
j=1

J(∂Ψ/∂xj , ∂A/∂xj) = −1
2

∫
Γ1

H
{
|∇w|2 + w2 |∇φ−A|2

}
ds− 1

2

∫
Γ2

H |∇Ψ|2 ds,

(3.10)

where H = H(x) denotes the curvature of ∂Ω. In particular, for a convex domain Ω
whereby H ≥ 0, we have

2∑
j=1

J(∂Ψ/∂xj , ∂A/∂xj) ≤ 0.(3.11)

Remark 3.2. A similar formula holds in three dimensions as well, but it contains
an extra term related to the fact that curlA does not necessarily vanish outside
Ω ⊂ R

3.
Proof. We make the gauge choice (2.2). Then taking formula (3.2) of Propo-

sition 3.1 as a starting point, we let K ≡ ∑2
j=1〈ν × ∂A

∂xj
, curl ( ∂A∂xj

)〉 and use the
conditions divA = 0 and ∇divA = 0 in Ω to calculate

K =

(
ν1

∂A(2)

∂x1
− ν2

∂A(1)

∂x1

)(
∂2A(2)

∂x2
1

− ∂2A(1)

∂x1∂x2

)

+

(
ν1

∂A(2)

∂x2
− ν2

∂A(1)

∂x2

)(
∂2A(2)

∂x1∂x2
− ∂2A(1)

∂x2
2

)

=

(
ν1

∂A(2)

∂x1
+ ν2

∂A(2)

∂x2

)(
∂2A(2)

∂x2
1

+
∂2A(2)

∂x2
2

)

+

(
−ν1

∂A(1)

∂x1
− ν2

∂A(1)

∂x2

)(
−∂2A(1)

∂x2
1

− ∂2A(1)

∂x2
2

)
.

Hence, we get

K =

2∑
�=1

∂A(�)

∂ν
∆A(�).

On the other hand, our gauge choice also simplifies the Ginzburg–Landau equation
(2.5) to read

∆A = |Ψ|2A+ i

2
(Ψ∗∇Ψ−Ψ∇Ψ∗) in Ω,

and substituting this into K, we get

K =

2∑
�=1

∂A(�)

∂ν

(
|Ψ|2A(�) +

i

2

(
Ψ∗ ∂Ψ

∂x�
−Ψ∂Ψ∗

∂x�

))
on ∂Ω.

Then from Proposition 3.1 we get

2∑
j=1

J

(
∂Ψ

∂xj
,
∂A

∂xj

)
=
1

4

∫
∂Ω

∂

∂ν
|∇Ψ|2 ds+ 1

4

∫
∂Ω

|Ψ|2 ∂

∂ν
|A|2 ds

+
i

4

∫
∂Ω

2∑
j=1

(
∂A(j)

∂ν
+

〈
∂A

∂xj
, ν

〉)(
Ψ∗ ∂Ψ

∂xj
−Ψ∂Ψ∗

∂xj

)
ds.(3.12)
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Now define

F (x) =
∂

∂ν
|∇Ψ|2 + |Ψ|2 ∂

∂ν
|A|2 + i

2∑
j=1

(
∂A(j)

∂ν
+

〈
∂A

∂xj
, ν

〉)(
Ψ∗ ∂Ψ

∂xj
−Ψ∂Ψ∗

∂xj

)

on ∂Ω. By using the condition curlA = 0 on ∂Ω, we have

∂A(j)

∂ν
=

∂A(j)

∂x�
ν(�) =

∂A(�)

∂xj
ν(�) =

〈
∂A

∂xj
, ν

〉
.

Hence F can also be written as

F (x) =
∂

∂ν
|∇Ψ|2 + |Ψ|2 ∂

∂ν
|A|2 + 2i

2∑
j=1

〈
∂A

∂xj
, ν

〉(
Ψ∗ ∂Ψ

∂xj
−Ψ∂Ψ∗

∂xj

)
.(3.13)

We calculate F (x) separately on Γ1 and Γ2, where

(i) Γ1 = {x ∈ ∂Ω | Ψ(x) �= 0},
(ii) Γ2 = {x ∈ ∂Ω | Ψ(x) = 0}.

First consider any point x0 ∈ Γ1 and consider a small contractible neighborhood
V of x0 so that Ψ does not vanish in V ∩ Ω. In this situation we can write Ψ(x) in
the form Ψ(x) = w(x)ei φ(x) and we see that

|∇Ψ|2 = |∇w(x)|2 + w(x)2|∇φ|2, Ψ∗ ∂Ψ
∂xj
−Ψ∂Ψ∗

∂xj
= 2iw(x)2

∂φ

∂xj
in V ∩ Ω.

(3.14)

We also note that φ and w satisfy the Neumann boundary condition on Γ1 ∩ V and
we recall that A · ν = 0 on ∂Ω as well. Hence, we find

0 = ∇(A · ν) · ∇φ = ∂A(k)

∂xj
ν(k) ∂φ

∂xj
+A(k) ∂ν

(k)

∂xj

∂φ

∂xj
.(3.15)

In order to evaluate the expression F (x0) we assume, without loss of generality, that
ν(x0) = (0, 1). In particular, this implies that

∂w

∂x2
(x0) =

∂φ

∂x2
(x0) = A(2)(x0) = 0 and that

∂ν(1)

∂x1
(x0) = H.(3.16)

Then, by Lemma 2.3, (3.14), (3.15), and (3.16), we get

F (x0) =
∂

∂ν
(|∇w|2 + w2|∇φ|2) + w2 ∂

∂ν
|A|2 − 4w2

2∑
j=1

∂φ

∂xj

〈
∂A

∂xj
, ν

〉

= −2∂ν
(k)

∂xj

∂w

∂xk

∂w

∂xj
− 2w2 ∂ν

(k)

xj

(
∂φ

∂xk

∂φ

∂xj
+A(k)A(j) − 2A(k) ∂φ

∂xj

)

= −2∂ν
(1)

∂x1

((
∂w

∂x1

)2

+ w2

(
∂φ

∂x1
−A(1)

)2
)

= −2H(|∇w|2 + w2 |∇φ−A|2) in V ∩ Γ1.(3.17)
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Now consider x0 ∈ Γ2 where then Ψ(x0) = 0. From Lemma 2.3 and (3.13) we get

F (x0) =
∂

∂ν
|∇Ψ|2 = ∂

∂ν
|∇(ReΨ)|2 + ∂

∂ν
|∇(ImΨ)|2

= −2H |∇(ReΨ)|2 − 2H |∇(ImΨ)|2 = −2H |∇Ψ|2 on Γ2.(3.18)

The formula (3.10) follows from the substitution of (3.17) and (3.18) into (3.12).
We now restate and prove our main result.
Theorem 3.3. Let Ω ⊂ R

2 be a bounded, open, convex set with ∂Ω ∈ C5,α for
some α ∈ (0, 1). Then the only critical point (Ψ, A) of the Ginzburg–Landau energy
G for which the second variation J is nonnegative is the trivial one (1, 0) and its
gauge-equivalent representations.

Proof. We fix the gauge choice (2.2) and let (Ψ, A) be any critical point for which
the second variation is nonnegative. Then in light of Proposition 3.2, we can conclude
that

J(∂Ψ/∂xj , ∂A/∂xj) = 0 for j = 1, 2,(3.19)

so that in fact (∂Ψ/∂xj , ∂A/∂xj) is a minimizer of the second variation (3.1) for both
j = 1 and j = 2. In particular, this implies that (∂Ψ/∂xj , ∂A/∂xj) satisfies the
natural boundary conditions associated with critical points of (3.1), namely,(

∇
(
∂Ψ

∂xj

)
− iΨ

∂A

∂xj

)
· ν = 0 on ∂Ω for j = 1, 2.(3.20)

Let us denote by Γ3 the nonempty, relatively open subset of ∂Ω given by

Γ3 = {x ∈ ∂Ω : H(x) > 0}.
It follows from (3.10) and (3.19) that

∇Ψ(x)− iAΨ(x) = 0 for x ∈ Γ3.(3.21)

Now let us decompose Γ3 into a union Γ4 ∪ Γ5 where

Γ4 = Γ3 ∩ {x ∈ ∂Ω : Ψ �= 0} and Γ5 = Γ3 ∩ {x ∈ ∂Ω : Ψ = 0}.
We first pursue the possibility that Γ4 �= ∅ and consider a point x0 ∈ Γ4. For

some ε > 0 we may express Ψ in Ω∩B(x0, ε) as Ψ = weiφ and from (2.10) and (3.21)
it follows that w ≡ c on ∂Ω ∩B(x0, ε) for some c ∈ (0, 1].
From (3.20) one concludes that

∂2w

∂xj∂xk
ν(k) = 0 on ∂Ω ∩B(x0, ε) for j = 1, 2,(3.22)

while from tangential differentiation of (3.21) one finds that

∂2w

∂xj∂xk
τ (k) = 0 on ∂Ω ∩B(x0, ε) for j = 1, 2,(3.23)

where we have let τ denote the unit tangent vector to ∂Ω so that (τ (1), τ (2)) =
(−ν(2), ν(1)). Together, (3.22) and (3.23) imply that all second partials of w vanish
on ∂Ω ∩B(x0, ε).
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Now on the set Ω ∩B(x0, ε) one finds from (2.4) and (2.6) that

∆w − |∇φ−A|2 w + κ2w(1− w2) = 0 in Ω ∩B(x0, ε),(3.24)

∂w/∂ν = 0 on ∂Ω ∩B(x0, ε).(3.25)

It then follows immediately from (3.21), (3.24), and the fact that Ψ is C2 up to the
boundary that w ≡ 1 on Γ4 ∩ B(x0, ε). Viewing (3.24) as an elliptic equation of
the form

∆(1− w) + q(x)(1− w) ≤ 0 in B(x0, ε) ∩ Ω
with q(x) = −κ2w(1+w) one can apply the strong maximum principle to the nonneg-
ative function 1−w to conclude that either w ≡ 1 in B(x0, ε)∩Ω or else 1−w > 0 in
B(x0, ε)∩Ω. The latter possibility is then eliminated using the Hopf maximum prin-
ciple, in light of the boundary condition (3.25) (cf. [4, Lemma 3.4 and Theorem 3.5]).
Hence, w ≡ 1 in B(x0, ε) ∩ Ω and by (3.24) it follows that |∇φ−A| ≡ 0 on this set
as well. By continuation we can then extend these relations throughout Ω because
it is simply connected. Thus, (Ψ, A) = (eiφ,∇φ) throughout Ω for some real-valued
function φ, which is our desired conclusion.
Finally, we consider the possibility that Γ4 = ∅. Then Γ5 = Γ3. Writing Ψ =

u+ iv, we find that the real functions u and v satisfy the system

∆u+ 2A · ∇v − |A|2 u+ κ2(1− (u2 + v2))u = 0,
(3.26)

∆v − 2A · ∇u− |A|2 v + κ2(1− (u2 + v2))v = 0.

Furthermore, fixing x0 ∈ Γ5 and a sufficiently small ε > 0 one finds that u and v
satisfy the boundary conditions

u = v = ∇u · ν = ∇v · ν = 0 on ∂Ω ∩B(x0, ε).

Invoking Calderón’s uniqueness theorem (cf. [1]), we conclude that u = v = 0 in
a neighborhood of x0. Again, in light of the simple-connectivity of Ω, we conclude
that u = v = 0 throughout Ω. Turning to (2.5), we conclude that curl curlA = 0
throughout R

2. As in Lemma 2.2, we find that curlA = 0 in R
2 and so A = ∇η for

some function η : R
2 → R

1. Hence (Ψ, A) is gauge-equivalent to (0, 0). But (0, 0) is
clearly unstable in view of (3.1) since

J(0, 0; 1, 0) = −κ2

2
|Ω| .

Thus, the only possibility for a stable critical point in a convex domain is that (Ψ, A)
is gauge-equivalent to (1, 0).

Remark 3.3. We suspect that the same nonexistence result holds in three-
dimensional convex domains and we are presently investigating this possibility. See
Remark (3.2).
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Abstract. Error estimates for scattered data interpolation by “shifts” of a positive definite
function for target functions in the associated reproducing kernel Hilbert space (RKHS) have been
known for a long time. However, apart from special cases where data is gridded, these estimates
do not apply when the target functions generating the data are outside of the associated RKHS,
and in fact no estimates were known for such target functions. In this paper, working with the
n-sphere as the underlying manifold, we obtain Sobolev-type error estimates for interpolating
functions f ∈ C2k(Sn) from “shifts” of a smoother positive definite function φ defined on Sn.
Moreover, the estimates are close to the optimal approximation order. We also introduce a class
of locally supported positive definite functions on Sn, functions based on Wendland’s compactly
supported radial basis functions (RBFs) [H. Wendland, Adv. Comput. Math., 4 (1995), pp. 389–396],
which can be both explicitly and easily computed and also analyzed for convergence properties.
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1. Introduction. The problem of effectively representing an underlying function
based on its sampled values is both old and important. One way to do this is to
interpolate the data from a class of functions. The success of this approach is based
on many criteria including the cost of producing the interpolant, the robustness of
the interpolation process, and how well the interpolant approximates the underlying
function. These are the issues we deal with in this paper when the domain of the
underlying function is Sn.

Radial basis functions (RBFs) have proven to be a powerful tool for analyzing
scattered data on Rn. More recently, spherical basis functions (SBFs), which are
analogs of RBFs on the n-sphere, and periodic basis functions (PBFs), which are
analogs of RBFs on the n-torus, have had comparable success for analyzing scattered
data on these manifolds. In all cases, interpolants by “shifts” of an RBF, SBF, or
PBF are constructed from sampling a function f at scattered sites. If f belongs to a
certain reproducing kernel Hilbert space (RKHS) associated with φ, Nφ, the native
space of φ, then these interpolants will converge to f . However, if φ is smooth, the
RKHS Nφ is small in the sense that it is composed of very smooth functions. Up to
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now, any error analysis involving scattered data has thus been limited to such smooth
functions.

One of the purposes of this paper is to remove in the case of Sn the “native space
barrier” for a very large class of SBFs. When an SBF φ has Legendre coefficients
that are comparable to reciprocals of Sobolev weights of some order τ , we obtain, in
section 3, interpolation errors for functions lying outside the native space: Suppose
that f ∈ C2k(Sn) is sampled on a finite number of distinct points comprising a set
X ⊂ Sn. If any point in Sn is at most a distance h from X and if the distance between
points in X is comparable to h, then the interpolant IXf satisfies

‖f − IXf‖ ≤ const · h2k−n/2‖∆kf‖
for τ ≥ 2k > n

2 , where here and elsewhere in this paper ‖ · ‖ := ‖ · ‖C(Sn). (See
Theorem 3.2 for the precise statement.) The key to this approach is a result on
simultaneous approximation and interpolation by spherical harmonics; this and the
estimates themselves are discussed in section 3. We also make the point that for the
class Nφ, h

τ−n/2 is optimal. In this respect, our results resemble ones that hold for
splines.

While our results do not yet apply to the Rn case, it seems very likely that a
variant of this approach should be applicable there as well. The authors are currently
working in this direction. In this connection, we mention a paper of Yoon [27], which
was pointed out to us by one of the referees. There, Yoon investigates error estimates
in Rn for a special class of radial functions, namely thin-plate splines that depend
on a parameter λ. His focus is different from ours. He works on cases in which the
parameter λ is required to depend on the spacing of the data. In effect, the radial
function is changing with the data.

Another purpose of this paper is to introduce a class of locally supported SBFs
that can be both explicitly computed and analyzed. It is easy to produce a large class
of SBFs on Sn that are explicit (thus easy to evaluate) by restricting a given RBF on
Rn+1 to Sn by means of

φ(x · y) = Φ(‖x− y‖2)|x,y∈Sn .

On the other hand, the basic tools for analyzing rates of convergence of interpolants
and stability of interpolation matrices are all based on the rates of decay of the
Legendre coefficients for φ(x · y) = φ(cos θ). It is easy to construct SBFs that are
defined by their Legendre series and that satisfy various decay rates; unfortunately,
working with functions defined via series greatly reduces their utility. The problem
up to now has been the linkage between the Fourier transform of Φ and the Legendre
series of φ.

In this paper, we provide such a linkage and then use it to obtain from Wendland’s
compactly supported RBFs [24, 25] a large class of explicit, locally supported SBFs
on Sn whose Legendre series decay asymptotically at a prescribed algebraic rate.
Moreover, these SBFs precisely meet the conditions required for the error estimates
described above to hold. We do this in section 4.

In section 2 we discuss the relevant background material on SBFs and the various
approximation results needed in the paper.

2. Background material.

2.1. The interpolation problem. Let X := {x1, . . . , xN} be a discrete set of
distinct points on the n-sphere Sn. These will be the data sites for our interpolation
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problem. The mesh norm for X is

hX = sup
y∈Sn

inf
xj∈X

d(xj , y),

where d(x, y) is the geodesic (great circle) distance between the points x and y on
Sn. The mesh norm measures the maximum distance any point on Sn can be from
X. The separation radius is defined via

qX =
1

2
min
j �=k

d(xj , xk) .

This is half of the smallest geodesic distance between any two distinct points in X.
It is easy to see that hX ≥ qX ; equality can hold only for a uniform distribution of
points on S1, the circle. The mesh ratio

ρX := hX/qX ≥ 1

provides a measure of how uniformly points in X are distributed on Sn. In the case
of the circle (n = 1), ρX = 1 means that the points are uniformly distributed. In all
other cases, ρX > 1.

A continuous function φ : [−1, 1] → R is said to be positive definite on Sn if
the matrix Aj,k := φ(cos(d(xj , xk))), xj and xk in X, is positive semidefinite for
every possible finite set X of distinct points in Sn. It is said to be strictly positive
definite on Sn if these matrices are all positive definite. Since d(x, y) is the smaller
of the angles between x and y on the great circle passing through these points, and
since we may regard Sn as being embedded in Rn+1 in the usual way, we have that
cos(d(x, y)) = x · y, where x · y is the Euclidean inner product in Rn+1 and φ induces
a kernel φ(x · y) that is in C(Sn × Sn). It follows that when φ is strictly positive
definite, one can always solve this interpolation problem: Given the values f(xj),
j = 1, . . . , N , from sampling a continuous function on X, find coefficients c1 , . . . , cN
such that

IXf(x) =
∑
k

cjφ(x · xk)

agrees with f at the xj ’s. This is so because the interpolation matrix Aj,k, being
positive definite, is invertible.

Positive definite functions on spheres were introduced and characterized long ago
by Schoenberg [22]. He showed that a function φ was positive definite if its expansion
in Legendre polynomials in n+ 1 variables,

φ(x · y) =

∞∑
�=0

a�P�(n+ 1, x · y),(2.1)

had all a� ≥ 0. We mention that Schoenberg actually used ultraspherical polynomials,
which are proportional to the Legendre polynomials used here. The exact relation is
[15, p. 33]

C
n−1

2

� (t) =
Γ(�+ n− 1)

Γ(n− 1)Γ(�+ 1)
P�(n+ 1; t) .(2.2)

One can show that if a� > 0 for all �, then φ is strictly positive definite; see Xu and
Cheney [26] and Ron and Sun [21]. When this holds for φ, we will call it an SBF. We
remark that several recent review articles [1, 5, 12, 17] have dealt with such functions,
and we refer the reader to them for further information.
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2.2. Spherical harmonics, Sobolev spaces, and native spaces. The stan-
dard orthonormal basis of L2(Sn) is composed of spherical harmonics. Some basic
facts will be described here, but we refer the reader to Müller’s book [15] for further
details. A spherical harmonic of order � on Sn is the restriction to Sn of a homoge-
neous, harmonic polynomial in Rn+1 of degree �. We denote the space of spherical
harmonics of order � on Sn by V� and the dimension of V� by N(n, �); this is given by
[15, p. 4] as

N(n, 0) = 1 and N(n, �) =
(2�+ n− 1)Γ(�+ n− 1)

Γ(�+ 1)Γ(n)
for � ≥ 1 .(2.3)

The space of spherical harmonics of order L or less will be denoted by PL :=
∑L

�=0 V� ;

it has dimension Ñ(n, �) = N(n+ 1, �).
The space V� also has an intrinsic characterization; it is the eigenspace of the

Laplace–Beltrami operator ∆ on Sn corresponding to the eigenvalue (∆Y�+λ�Y� = 0)

λ� = �(�+ n− 1), � ≥ 0.

Since ∆ is a self-adjoint operator relative to the standard inner product,

〈f, g〉 =
∫
Sn

f(p)g(p)dσ ,

with dσ being the volume element of Sn, the eigenspaces V� and V�′ , � �= �′, are
orthogonal relative to 〈· , ·〉. As usual, one may choose an orthonormal basis for each

V�, {Y�,m}N(n,�)
m=1 . The collection of all the Y�,m’s form an orthonormal basis for L2(Sn).

Hence, for any function f ∈ L2(Sn), its associated (Fourier) series below converges in
L2(Sn):

f =

∞∑
�=0

N(n,�)∑
m=1

f̂�,mY�,m , where f̂�,m = 〈f, Y�,m〉.(2.4)

Such expansions (as in the case of periodic functions) can also be defined in a wider
sense, namely for distributions on the sphere. Since Sn is compact, these distributions
are the series (2.4) with tempered (i.e., polynomially bounded) coefficients. The
Sobolev space Hs(S

n) with real parameter s consists of all distributions f such that

‖f‖2Hs
:=

∞∑
�=0

N(n,�)∑
m=1

(1 + λ�)
s|f̂�,m|2 = ‖(I −∆)s/2f‖2L2 <∞.(2.5)

See [10, section 1.7] and [6, Chapter II]. For later use, we define a related norm on
functions in C2k(Sn); namely,

‖f‖2k := max{‖f‖, ‖∆kf‖}, f ∈ C2k(Sn).(2.6)

When k = 0 this reduces to ‖f‖ = ‖f‖C(Sn). In addition, we have

‖f‖H2k
≤ 2kω1/2

n ‖f‖2k , f ∈ C2k(Sn),(2.7)

where ωn is the volume of Sn. This is easily established from (1+ λ�)
2k ≤ 1+ (22k −

1)λ2k
� and that for all g ∈ C(Sn) we have ‖g‖L2 ≤ ω

1/2
n ‖g‖.
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Let us now return to the expansion for φ given in (2.1). The famous addition
theorem for spherical harmonics [15, Theorem 2] states that

P�(n+ 1;x · y) =
ωn

N(n, �)

N(n,�)∑
m=1

Y�,m(x)Y�,m(y).(2.8)

Using this in (2.1), we obtain the expansion

φ(x · y) =
∞∑
�=0

N(n,�)∑
m=1

φ̂(�)Y�,m(x)Y�,m(y), where φ̂(�) :=
ωn

N(n, �)
a� .(2.9)

Assume that φ is an SBF; i.e., φ̂(�) > 0 for all �. One can now define the native space
of φ to be

Nφ :=

{
f ∈ D′(Sn) : ‖f‖2Φ =

∑
�,k

|f̂�,k|2/φ̂(�) <∞
}
.(2.10)

As we noted in the introduction, if φ is smooth, then φ̂(�) will decay rapidly and

1/φ̂(�) will grow. This means that functions in Nφ must have Fourier coefficients
that decay rapidly for the sum in (2.10) to remain finite. This decay translates into
smoothness for f ∈ Nφ.

For such kernels, we have the following error estimates, which were established in
[9] with improvements in [14] and [18].

Proposition 2.1. Let X be any point set on Sn with mesh norm hX , and let φ
be an SBF, as in (2.9). If for some τ > n

2 we have φ̂(�) ≤ c(1 + λ�)
−τ as � → ∞,

then for all f ∈ Nφ there is a constant C that is independent of X and f for which

‖f − IXf‖ ≤ Ch
τ−n/2
X ‖f‖φ.

Remark. The condition φ̂(�) ≤ c(1 + λ�)
−τ implies that c/φ̂(�) ≥ (1 + λ�)

τ ,
from which it immediately follows that ‖f‖Hτ ≤ c‖f‖φ, so Nφ ⊆ Hτ . Conversely, if

φ̂(�) ≥ c′(1+λ�)
−τ ′

, with τ ′ ≥ τ , then ‖f‖Hτ′ ≥ c′‖f‖φ and Nφ ⊇ Hτ ′ . In particular,

if φ̂(�) ∼ (1 + λ�)
−τ , then Nφ = Hτ , and ‖ · ‖Hτ and ‖ · ‖φ are equivalent norms.

2.3. Approximation theorems. We will now collect several results concerning
approximation of functions on Sn by spherical harmonics in PL, which are those of
order L or less. These results were obtained by Pawelke [19, 20], who used two ideas
from earlier works to obtain approximation results that we need here.

The first is the spherical mean of a function on Sn. The boundary of a spherical
cap of radius arccos(h) < π and center x is the set {y ∈ Sn : x·y = cos(h), equivalently,
d(x, y) = arccos(h)}, which is an n−1 dimensional sphere of radius sinh. If f ∈ C(Sn),
then we define the spherical mean of f over x · y = cosh to be

Thf(x) :=
1

ωn−1 sinn−1 h

∫
x·y=cosh

f(y) dσx(y),(2.11)

where dσx is the volume element corresponding to x ·y = cos(η). Löfström and Peetre
[11], in a study of approximation properties of orthogonal expansions, introduced
similar operators.



1398 FRANCIS J. NARCOWICH AND JOSEPH D. WARD

The second is a spherical version of the modulus of continuity,

ω(f, ε) := sup
0<h≤ε

‖Thf − f‖, f ∈ C(Sn), ε > 0,(2.12)

which is used below in estimating distance relative to C(Sn) and in the proof in [20]
for the Jackson inequality that follows it.

Theorem 2.2 (see [19, Satz 5.1] and [20, Satz 3.3]). If f ∈ C(Sn), then for
L = 1, 2, . . . there is a constant M independent of both f and L for which

dist(f,PL) ≤Mω(f ; 1/L),(2.13)

and for which

dist(f,PL) ≤MkL−2k‖∆kf‖, k = 1, 2, . . . , f ∈ C2k(Sn).(2.14)

In addition to the theorem above, we also need this Markov–Bernstein inequality.
Theorem 2.3 (see [20, Satz 3.6]). If PL ∈ PL, then

‖∆PL‖ ≤ DnL
2‖PL‖ ,

where the constant Dn depends only on the dimension of the sphere Sn.
The remaining approximation results that we will make use of here have to do

with the norm of iterates of ∆ applied to best, and near-best, approximants from PL.
Proposition 2.4 (see [20, Satz 4.4]). Let f ∈ C2k(Sn) and let P ∗

L be a best
approximant for f in C(Sn); i.e., ‖f − P ∗

L‖ = dist∞(f,PL). Then there exists a
constant C independent of f and L for which

‖∆kP ∗
L‖ ≤ C‖∆kf‖.

Remark. Pawelke states his result in a weaker form. However, after observing
that his sequence of operators {Ln} commute with both ∆ and the operators Th and
inspecting his proof, one obtains the result above.

There is an immediate, useful corollary to this proposition. In essence, it says
that the theorem above applies to “near-best” approximants as well as the P ∗

L.
Corollary 2.5. Let f ∈ C2k(Sn) and let PL ∈ PL, L = 1, 2, . . . , be a sequence

of polynomials satisfying ‖f − PL‖ ≤ Kdist(f,PL), with K independent of f and L.
Then there is a constant R that is independent of f and L for which

‖∆kPL‖ ≤ R‖∆kf‖.
Proof. Observe that ‖∆kPL‖ ≤ ‖∆k(PL − P ∗

L)‖ + ‖∆kP ∗
L‖. By iterating the

Markov–Bernstein inequality in Theorem 2.3, we can bound the first term by the
quantity Dk

nL
2k‖PL − P ∗

L‖. Moreover, since ‖PL − P ∗
L‖ ≤ ‖PL − f‖ + ‖f − P ∗

L‖, we
have

‖∆k(PL − P ∗
L)‖ ≤ Dk

nL
2k(1 +K)dist(f,PL) .

Applying the Jackson inequality (2.14) to the right side above, we arrive at the bound

‖∆k(PL − P ∗
L)‖ ≤ Dk

nL
2k(1 +K)MkL−2k‖∆kf‖ = (1 +K)(MDn)

k‖∆kf‖.
By Proposition 2.4, we also have the inequality ‖∆kP ∗

L‖ ≤ C‖∆kf‖. It follows that

‖∆kPL‖ ≤ R‖∆kf‖,
where R = (1 +K)(MDn)

k + C.
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3. Analysis of error in approximating by interpolants.

3.1. Error estimates. In this section, we derive error estimates for approxi-
mating a given function f ∈ C2k(Sn) by interpolants of the form

IXf(x) :=
∑
xj∈X

ajφ(x · xj) ,(3.1)

where φ is an SBF that satisfies φ̂(�) ∼ (1+ λ�)
−τ . As we noted at the end of section

2.2, this condition implies that Nφ = Hτ , with the norms being equivalent. Such
estimates are already available in case C2k(Sn) ⊂ Nφ or, what is equivalent here,
2k ≥ τ ; see [4, 7, 9]. Thus the primary cases of interest occur when τ > 2k, so that
f /∈ Nφ. Our main estimate addresses these cases. To prove it, we require constructing
for every f in C(Sn) spherical harmonics that both are near-best approximants to f
from PL and simultaneously interpolate f on the point set X. Precisely, we require
this result.

Theorem 3.1. Let X ⊂ Sn be a finite set of distinct points and let β > 1. If

L = � (β+1)M
(β−1)qX

�, where M is as in Theorem 2.2, then for f ∈ C(Sn) there exists a

spherical harmonic PL ∈ PL that interpolates f on X and that satisfies

‖f − PL‖ ≤ (1 + β) dist(f,PL).

We will give the proof of Theorem 3.1 in section 3.2 below. We now state and
prove our main estimate.

Theorem 3.2. Let φ be an SBF satisfying φ̂(�) ∼ (1 + λ�)
−τ (equivalently,

Nφ = Hτ ), and suppose that τ ≥ 2k > n/2. If f ∈ C2k(Sn) and if IXf is given in
(3.1), then

‖f − IXf‖ ≤ Cρτ−2k
X h

2k−n/2
X ‖f‖2k ,

where C is independent of f and X. Here, hX and ρX are the mesh norm and mesh
ratio for the set X, respectively.

Remark. If the point sets used are all quasi-uniformly distributed (i.e., ρX ≤ C

for all X under consideration), then ‖f − IXf‖ ≤ C̃h
2k−n/2
X ‖f‖2k.

Proof. Note that since φ is an SBF, every spherical harmonic P is in the native
space of φ. Thus for any spherical harmonic P ,

‖f − IXf‖ ≤ ‖f − P‖+ ‖P − IXP‖+ ‖IXP − IXf‖.(3.2)

Moreover, if P |X = f |X , then IXf = IXP , and (3.2) becomes

‖f − IXf‖ ≤ ‖f − P‖+ ‖P − IXP‖.(3.3)

The main requirement for proving the estimate is having spherical harmonics that
yield meaningful estimates in (3.3). This is in fact the content of Theorem 3.1. Indeed,
choosing β = 3 there implies that we have a sequence of PL with the following
properties:

(A) PL ∈ PL, where L = �2Mq−1
X �, with M , which is independent of X, as in

Theorem 2.2.
(B) PL|X = f |X .
(C) ‖f − PL‖ ≤ 4 dist(f,PL).
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By (3.3), properties (A) through (C), and the Jackson inequality (2.14), we obtain

‖f − IXf‖ ≤ ‖f − PL‖+ ‖PL − IXPL‖
≤ 4 dist(f,PL) + ‖PL − IXPL‖
≤ 4MkL−2k‖∆kf‖+ ‖PL − IXPL‖.(3.4)

By the assumptions on φ, Proposition 2.1 holds and, since the norms ‖ · ‖φ and ‖ · ‖Hτ

are equivalent, we can estimate the interpolation error for PL on the right above via

‖PL − IXPL‖ ≤ Ch
τ−n/2
X ‖PL‖φ ≤ ch

τ−n/2
X ‖PL‖Hτ .(3.5)

Using the definition of the Sobolev norm given in (2.5) and the fact that PL is a
spherical harmonic of degree L, one can see that

‖PL‖Hτ ≤ (1 + λL)τ/2−k‖PL‖H2k
.

In addition, employing the inequality in (2.7) to replace the norm ‖PL‖H2k
, we have

‖PL‖Hτ ≤ 2kω1/2
n (1 + λL)τ/2−k‖PL‖2k .

Next, from (C) we easily see that ‖PL‖ ≤ 5‖f‖, and from Corollary 2.5, we also have
‖∆kPL‖ ≤ R‖∆kf‖, so that ‖PL‖2k ≤ max{5, R}‖f‖2k and, consequently,

‖PL − IXPL‖ ≤ ch
τ−n/2
X 2kω1/2

n (1 + λL)τ/2−k max{5, R}‖f‖2k.(3.6)

From (3.6), (3.4), and λL = L(L + n − 1) ∼ L2, we arrive at this bound on the
interpolation error for f :

‖f − IXf‖ ≤
(
4MkL−2k + C1L

τ−2kh
τ−n/2
X

)
‖f‖2k .

Since L ≥ 1, the last inequality can also be written as

‖f − IXf‖ ≤
(
C0L

n/2−2k + C1h
τ−n/2
X Lτ−2k

)
‖f‖2k

≤
(
C0(hXL)n/2−2k + C1(hXL)τ−2k

)
h

2k−n/2
X ‖f‖2k .

If we use L = �2M/qX� = �2MρX/hX� from (A), then we get

‖f − IXf‖ ≤
(
C2ρ

n/2−2k
X + C3 ρ

τ−2k
X

)
h

2k−n/2
X ‖f‖2k .

Finally, since ρX ≥ 1 and τ > n/2, it follows that

‖f − IXf‖ ≤ Cρτ−2k
X h

2k−n/2
X ‖f‖2k .

A more general, but also more technical, result can be obtained by modifying the
proof above.

Corollary 3.3. Let τ ′ > τ ≥ 2k > n/2+ (τ ′− τ). If Hτ ′ ⊆ Nφ ⊆ Hτ , then, for
f and IXf as in Theorem 3.2,

‖f − IXf‖ ≤ Cρτ
′−2k

X h
2k−n/2−(τ ′−τ)
X ‖f‖2k

holds with C independent of f and X.
Proof (Sketch of proof). The condition thatNφ ⊆ Hτ implies that the left inequal-

ity in (3.5) holds. On the other hand, Nφ ⊇ Hτ ′ implies that the right inequality in
(3.5) holds with ‖PL‖Hτ′ replacing ‖PL‖Hτ . Tracking the necessary changes through
the rest of the proof then provides us with the desired estimate.

We close this section by pointing out that Corollary 3.3 shows that our estimate
is optimized when τ ′ = τ or, equivalently, when Nφ = Hτ . In section 4.2.2 we will
obtain a family of compactly supported SBFs that satisfy this criterion.
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3.2. Interpolants that are near-best approximants. We now will show that
for a given f ∈ C2k(Sn) there exist spherical harmonics PL satisfying properties (A)
through (C) used in the proof above; i.e., we will prove Theorem 3.1. The key to
producing such spherical harmonics is contained in the following proposition, which
is an adaptation of a similar result [13, Theorem 2.1].

Proposition 3.4. Let Z∗ ⊂ C(Sn)∗ be given by Z∗ = span{δxj
: xj ∈ X}, and

let V be a finite dimensional subspace of C(Sn). If for every z∗ ∈ Z∗ and some β > 1,
β independent of z∗,

‖z∗‖C(Sn)∗ ≤ β‖z∗|V‖V∗ ,

then for f ∈ C(Sn) there exists vf ∈ V for which f |X = vf |X and ‖f − v‖ ≤
(1 + β)dist(f,V).

Proof. Let v� be a best approximant to f from V, so that

‖f − v�‖ = dist(f,V),

and set e := f − v�. Let the restriction map S : Z∗ → Z∗|V be given by S(z∗) = z∗|V
for every z∗ ∈ Z∗. Since ‖z∗‖ ≤ β‖z∗|V‖, S is both one-to-one and onto the image
space S(Z∗) ⊂ V∗. Moreover ‖S−1‖ ≤ β, where S−1 : S(Z∗)→ Z∗. Viewing e as an
element of Z∗∗ (i.e., as a functional on Z∗), we have

〈e, z∗〉 = 〈S∗(S∗)−1e, z∗〉 = 〈(S∗)−1e, Sz∗〉 ,

where we used the fact that S = S∗∗. Note that (S∗)−1e ∈ (S(Z∗))∗, where S(Z∗) ⊂
V∗. By the Hahn–Banach theorem, (S∗)−1e extends in a norm-preserving manner to
ve ∈ V∗∗ = V. Thus 〈e, z∗〉 = 〈f − v�, z

∗〉 = 〈z∗, ve〉 for all z∗ ∈ Z∗ and

‖ve‖ = ‖(S∗)−1e‖ ≤ ‖S−1‖‖e‖ ≤ β‖e‖
= β‖f − v∗‖.

Setting vf := v� + ve gives an element in V for which f |X = vf |X and

‖f − vf‖ ≤ ‖f − v∗‖+ ‖ve‖ ≤ (1 + β) dist(f,V),

which completes the proof.
The point of this proposition is that we have reduced the problem of finding in-

terpolants that are near-best approximants to one of finding the ratio of norms of
linear functionals. To estimate these ratios, we will construct a norm-attaining func-
tion for z∗ :=

∑
xj∈X cjδxj ∈ Z∗ and then approximate that function with spherical

harmonics. We will show that the function ζ, which is given as

ζ(x) :=
∑
xj∈X

sgn(cj)

(
1− d(x, xj)

qX

)
+

,(3.7)

has the required properties.
Lemma 3.5. Let the function ζ(x) be defined by (3.7). Then, ζ is continuous on

Sn and satisfies these properties:
(i) ‖ζ‖ = 1.
(ii) z∗(ζ) = ‖z∗‖.
(iii) ω(ζ, ε) ≤ ε

qX
, 0 < ε ≤ π

2 ,
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where ω(ζ, ε) is given in (2.12).
Proof. Continuity is obvious. Also, ζ(x) = 0 unless d(x, xj) < qX for some

xj ∈ X. Moreover, on d(x, xj) ≤ qX , we have

ζ(x) = sgn(cj)

(
1− d(x, xj)

qX

)
,

so |ζ(x)| = 1− d(x,xj)
qX

≤ |ζ(xj)| = 1. Since xj is arbitrary, we see that |ζ(x)| ≤ 1 for

all x ∈ Sn. Since ζ(xj) = 1 for all xj ∈ X, ‖ζ‖ = 1.
To establish (iii), we first need to calculate certain directional derivatives. We

will work on d(xj , x) < qX , with xj regarded as the north pole of Sn. In that case,
we have d(x, xj) = θ, the colatitude of X, so

ζ(x) = sgn(cj)

(
1− θ

q

)
, d(x, xj) = θ < qX .

For any geodesic x(s), with x(0) = x and s the arclength, we have

d

ds
ζ(x(s)) = −sgn(cj) · 1

q

dθ

ds
.

In standard spherical coordinates,

1 =

(
dθ

ds

)2

+ positive terms,

so
∣∣dθ
ds

∣∣ ≤ 1. It follows that

∣∣∣∣dζds (x(0))
∣∣∣∣ ≤ 1

qX
.

If d(x, xj) > qX for all xj ∈ X, then ζ(x) = 0 in a neighborhood of x, and dζ
ds (x(0)) =

0. The only difficulty occurs where d(x, xj) = q. Although ζ is not continuously

differentiable at such points, the directional derivatives exist and again we have |dζds | ≤
1
qX

. (If we pass through such a point, dζ
ds will have a jump discontinuity.) Our main

consequence is that if any points x and y on Sn are joined by a geodesic x(s), with
x(0) = x and x(ε) = y, then

|ζ(x)− ζ(y)| =
∣∣∣∣
∫ ε

0

dζ

ds
(x(s))ds

∣∣∣∣ ≤
∫ ε

0

ds

qX
=

ε

qX
.

From (2.12), the spherical modulus of continuity ω(ζ, ε) is

ω(ζ, ε) = sup
0<η≤ε

‖Tηζ − ζ‖,

where Tηζ is the spherical mean defined in (2.11). It is easy to show that Tηc = c for
any constant c, so that

Tηζ(x)− ζ(x) =
1

ωn−1 sinn−1(η)

∫
x·y=cos(η)

(
ζ(y)− ζ(x)

)
dσ(y).
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Consequently

|Tηζ(x)− ζ(x)| ≤ 1

ωn−1 sinn−1(η)

∫
x·y=cos η

∣∣ζ(x)− ζ(y)
∣∣dσ(y)

≤ η

qX
·

∫
dσ(y)

ωn−1 sinn−1(η)
=

η

qX
.

From this, one sees that ω(ζ, ε) ≤ ε
qX

, as we claimed.
With minor modifications, a similar result can be proven for a Riemannian man-

ifold. One need work only in the usual normal coordinates obtained from the expo-
nential map. These can be used to define all the quantities involved.

Knowing the properties of ζ, we are now ready to prove Theorem 3.1.
Proof of Theorem 3.1. Apply Theorem 2.2 and Lemma 3.5 to ζ to obtain the

existence of a polynomial Pζ ∈ PL such that ‖Pζ − ζ‖ ≤ M/(qXL). If, in addition,

we assume that L = � (β+1)M
(β−1)qX

�, we see that

‖Pζ − ζ‖ ≤ β − 1

β + 1
.

Furthermore, since ‖ζ‖ = 1, we also have that

‖Pζ‖ ≤ 2β

β + 1
.

Suppose that z∗ ∈ span{δx1
, . . . , δxN

} and that ‖z∗‖ = 1. From Lemma 3.5 and the
identity z∗(ζ − Pζ) + z∗(Pζ) = 1, we see that

z∗(Pζ) ≥ 1− |z∗(ζ − Pζ)| ≥ 1− β − 1

β + 1
=

2

β + 1
.

Consequently,

‖z∗‖ = 1 ≤ β + 1

2
z∗(Pζ) ≤ β + 1

2
‖z∗|PL

‖ · ‖Pζ‖ ≤ β + 1

2
· 2β

β + 1
‖z∗|PL

‖ = β‖z∗|PL
‖.

The theorem is then an immediate consequence of Proposition 3.4, with V = PL.
Remark. In the case of the circle T , one can work with Sobolev spaces of degree

k instead of 2k and use derivatives in place of ∆. Also the verification that ‖PL‖2k ≤
C‖f‖2k follows easily by applying the appropriate theorems from [2, Chap. 7, sect. 2].

4. Restrictions of RBFs in Rn+1 to Sn. In our main estimate, Theorem 3.2,
we assumed that φ̂(�) ∼ (1 + λ�)

−τ . Earlier, in a remark at the end of section 2.2,
we pointed out that this assumption amounted to Nφ = Hτ , with the norms on
the spaces being equivalent. In this section, we will exhibit SBFs that satisfy this
property. Indeed, we will show that the compactly supported RBFs constructed by
Wendland [24, 25] restrict (as kernels) to locally supported SBFs with native spaces
that coincide with Sobolev spaces.

4.1. Legendre coefficients. We suppose that Φ is a positive definite radial
function defined on Rn+1 and having the Fourier representation

Φ(x) =
1

(2π)n+1

∫
Rn+1

Φ̂(|ξ|)eiξ·xdξ, Φ̂ ≥ 0, Φ̂(| · |) ∈ L1(Rn+1).(4.1)
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Of course, if Φ has such a representation, then Φ is rotationally invariant and is thus
a function of |x| only. The corresponding convolution kernel Φ(x−y) is, when |x| = 1
and |y| = 1, a function of |x − y| =

√
2(1− x · y). Consequently, the restriction

Φ(x− y)|x,y∈Sn is a function of x · y. We may therefore define the function

φ(x · y) := Φ(x− y)|x,y∈Sn .(4.2)

Note that φ(x · y) inherits being positive definite from Φ, and so it has the ex-

pansion given in (2.9). Our immediate goal is to use (2.9) to express φ̂(�) in terms of
Φ̂. In addition to being an interesting formula in its own right, it will be the key to
relating native spaces for Φ and φ. We have the following result.

Theorem 4.1. Let φ defined in (4.2) have the expansion (2.9). Then φ̂(�) from
(2.9) is given by

φ̂(�) =

∫ ∞

0

tΦ̂(t)J2
�+n−1

2

(t)dt,(4.3)

where Jν(t) is the usual Bessel function of the first kind and of order ν.
Proof. From (2.9), we have that

φ̂(�) =

∫
Sn

∫
Sn

φ(x · y)Y�,m(x)Y�,m(y)dσ(x)dσ(y) .

Substituting (4.1) for Φ in (4.2), inserting the resultant expression for φ into the
previous equation, and interchanging integrals, we obtain

φ̂(�) =
1

(2π)n+1

∫
Rn+1

Φ̂(|ξ|)
(∫

Sn

e−iξ·yY�,m(y)dσ(y)

∫
Sn

eiξ·x Y�,m(x)dσ(x)

)
dξ .

(4.4)

From Watson’s book [23, sect. 11.5, eq. (2)], we have that

eit cos θ = 2νΓ(ν)

∞∑
�=0

(ν + �)i�
Jν+�(t)

tν
Cν
� (cos θ),

where Cν
� is a Gegenbauer polynomial. We choose ν = n−1

2 and replace the Gegen-
bauer polynomials by the corresponding Legendre polynomials using (2.2), where we
also use the expression for N(n, �) in (2.3):

2
n−1

2 Γ(n−1
2 )(�+ n−1

2 )C
n−1

2

� (cos θ) = 2
n+1

2 −1Γ(n+1
2 )N(n, �)P�(n+ 1; cos θ)

= (2π)
n+1

2
N(n,�)
ωn

P�(n+ 1; cos θ) .

Employing this in the expansion for eit cos θ, we arrive at

eit cos θ =
(2π)

n+1
2

t
n−1

2

∑
�=0

i�J�+n−1
2

(t)
N(n, �)

ωn
P�(n+ 1; cos θ) .

Now choose t = |ξ|, η = ξ/t, cos θ = η · x, and use the addition theorem (2.8); the
result is

eitη·x =
(2π)

n+1
2

t
n−1

2

∑
�=0

i�J�+n−1
2

(t)

N(n,�)∑
m=1

Y�,m(x)Y�,m(η) .(4.5)
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From this, we can compute the inner integrals in (4.4); in particular, for the integral
in x, we have

∫
Sn

eitη·xY�,m(x)dσ(x) =
(2π)

n+1
2 i�

t
n−1

2

J�+n−1
2

(t)Y�,m(η) .(4.6)

The integral in y is simply the complex conjugate of that in x. Hence, it follows that

φ̂(�) =
1

(2π)n+1

∫ ∞

0

Φ̂(t)

∫
Sn

∣∣∣∣∣ (2π)
n+1

2 i�

t
n−1

2

J�+n−1
2

(t)Y�,m(η)

∣∣∣∣∣
2

dσ(η)tndt .

Doing the integral over Sn and simplifying the integrand results in (4.3), which com-
pletes the proof.

Having an explicit relationship between the Fourier transform of an RBF and the
Legendre coefficients provides an important relationship between native spaces.

Corollary 4.2. Let Φ and Ψ be positive definite radial functions on Rn+1, and
suppose that Ψ̂ and Φ̂ are strictly positive and satisfy Φ̂ ≤ cΨ̂; then, for all � ≥ 0, we
have 0 < φ̂(�) ≤ cψ̂(�) and Nφ ⊆ Nψ.

Proof. Apply the previous theorem.
Earlier, we defined an SBF to be a positive definite function on Sn with the

additional property that φ̂(�) > 0 for all � ≥ 0. This condition implies that the
standard interpolation matrices are positive definite and hence invertible. Ron and
Sun [21] showed that this condition was sufficient but not necessary for the positive
definiteness of the interpolation matrices. The condition is, however, necessary and
sufficient for doing generalized Hermite interpolation [4, 16]. Up to now, it was only
known that if Φ was an RBF on Rn+1, then, given very mild conditions (see [3]),
Φ(x− y)|Sn−1 was an SBF; that is, one had to drop down two dimensions. One knew
only that Φ(x− y)|Sn was positive definite, but not that it was an SBF.

Corollary 4.3. Let Φ be a nontrivial positive definite radial function having
the form given in (4.1). Then, the restriction φ(x · y) := Φ(x− y)|x,y∈Sn is an SBF.

Proof. We first note that Φ̂ is positive on a set of nonzero measure, for Φ would
vanish identically otherwise. Let M be this set. Suppose that φ is not an SBF, so
that for some � we have φ̂(�) = 0. (Of course, φ is positive definite, so that φ̂(�) ≥ 0.)
From (4.3), we see that onM∫

M
tΦ̂(t)J2

�+n−1
2

(t)dt = 0.

Since the measure of M is positive, and since Φ̂(t) > 0 on M, it follows that the
continuous function J�+n−1

2
(t) ≡ 0 on M, and, consequently, the entire function

t−�+n−1
2 J�+n−1

2
(t) vanishes identically on M. Since M is uncountable, the entire

function vanishes identically, as does the Bessel function J�+n−1
2

, which is false. Hence,

φ̂(�) > 0 for all �, and φ is an SBF.

4.2. SBFs with Sobolev spaces for native spaces. A positive definite radial
function Φ on Rn+1 has its native space NΦ equivalent to a Sobolev space Hs(R

n+1)
if its Rn+1-Fourier transform Φ̂(|ξ|) satisfies the bounds

c(1 + t2)−s ≤ Φ̂(t) ≤ C(1 + t2)−s, 0 ≤ t ∈ R .(4.7)
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We will assume that Φ̂ satisfies these bounds, and, in order to keep Φ̂ in L1(Rn+1),
we will also require that s be strictly larger than (n+ 1)/2.

We want to determine whether φ(x ·y) = Φ(x−y)|x,y∈Sn belongs to some Sobolev

space on Sn, given that Φ̂ satisfies the bounds in (4.7). Define Ψs via

Ψs(x) :=
1

(2π)n+1

∫
Rn+1

eix·ξ

(1 + |ξ|2)s dξ , x ∈ Rn+1,

and let ψs(x · y) = Ψs(x − y)|x,y∈Sn . By Corollary 4.2 and the bounds in (4.7),
the native spaces for φ and ψs are the same, with the norms being equivalent. The
question of what, if any, Sobolev space ψs belongs to can be answered by using (4.3)

to obtain the large � behavior of ψ̂s(�), which is explicitly given by

ψ̂s(�) =

∫ ∞

0

tJ2
ν (t)

(1 + t2)s
dt, where ν := �+

n− 1

2
and s >

n+ 1

2
.(4.8)

Specifically, we have this proposition.
Proposition 4.4. If for some τ(s, n) > 0 we have ψ̂s(�) ∼ �−2τ as � → ∞,

then Nψs = Hτ (S
n). Moreover, if Φ is such that (4.7) holds, then we also have

Nφ = Hτ (S
n).

Proof. The asymptotic behavior of ψ̂s(�) implies that for all � ≥ 0,

(1 + λ�)
τ ψ̂s(�) ∼ 1, �→∞,

since λ� = �(� + n − 1) = �2(1 + O(�−1)). Now, by Corollary 4.3, ψs is an SBF and

so ψ̂s(�) > 0 for all � ≥ 0. Consequently, the asymptotic statement in the equation
above holds for all � ≥ 0, and thus the native space of ψs coincides with Hτ (S

n). The
statements concerning Nφ then follow from the bound (4.7) and Corollary 4.2.

4.2.1. Large � asymptotics of ψ̂s(�). We now turn to finding the large �

asymptotic behavior of ψ̂s(�), at least for some s. We begin by evaluating the integral
(4.8) in terms of hypergeometric functions [23, section 4.4],

pFq(a1, a2, . . . , ap ; b1, b2, . . . , bq ; z) :=

∞∑
r=0

(a1)r(a2)r · · · (ap)rzr
(b1)r(b2)r · · · (bq)rr! ,(4.9)

where Pochhammer’s symbol (λ)r := λ(λ+1) · · · (λ+r−1) when r ≥ 1 and (λ)0 := 1.
Lemma 4.5. If s and ν are as in (4.8) and ν − s is not an integer, then

ψ̂s(�) =
2Γ(ν + 1− s)Γ(s− 1

2 )

π
1
2 Γ(s)Γ(ν + s)

×
(

1F2(s− 1
2 ; s+ ν, s− ν; 1)

+
π

3
2 (ν + 1− s)Γ(ν + s) csc

(
π(ν − s)

)
22νΓ2(ν + 2− s)Γ(ν + 1)Γ(s− 1

2 )
1F2(ν + 1

2 ; ν + 2− s, 2ν + 1; 1)

)
.

(4.10)

Proof. We follow Watson [23, section 13.61], who sketched two methods for doing
integrals involving products of Bessel functions, specifically including integrals of the
type in (4.8). The most direct for us is to first use [23, eq. (1), sect. 5.43] to express
J2
ν (t) as

J2
ν (t) =

2

π

∫ π/2

0

J2ν(2t cos θ)dθ,
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then insert it in (4.8), and finally use Fubini’s theorem to interchange integrals. This
results in

ψ̂s(�) =
2

π

∫ π/2

0

∫ ∞

0

tJ2ν(2t cos θ)

(1 + t2)s
dtdθ .

The integral over t was done in [23, sect. 13.6, eq. (1)]; with our parameters, it has
the form∫ ∞

0

tJ2ν(2tcosθ)

(1 + t2)s
dt =

Γ(ν+1)Γ(s− 1− ν)

2Γ(s)Γ(2ν + 1)
cos2ν(θ) 1F2(ν+1; ν+2−s, 2ν+1; cos2(θ))

+
Γ(ν + 1− s)

2Γ(s+ ν)
cos2s−2(θ) 1F2(s; s+ ν, s− ν; cos2(θ)) .

We are now left with evaluating two integrals of the form

∫ π/2

0

cosµ(θ) 1F2(a1; b1, b2; cos
2(θ))dθ .

If we let u = cos2(θ), then such integrals transform to

2

∫ 1

0

u
µ−1

2 (1− u)−
1
2 1F2(a1; b1, b2;u)du .

This integral may be found in Gradshteyn and Ryzhik [8, sect. 7.512, eq. 12]:

∫ 1

0

u
µ−1

2 (1− u)−
1
2 1F2(a1; b1, b2;u)du =

π1/2Γ(µ+1
2 )

Γ(1 + µ
2 )

2F3(
µ+1

2 , a1; 1 + µ
2 , b1, b2; 1) .

Using this result, we have that

ψ̂s(�) =A 2F3(ν + 1
2 , ν + 1; ν + 1, ν + 2− s, 2ν + 1; 1)

+B 2F3(s− 1
2 , s; s, s+ ν, s− ν; 1),

where A and B are the accumulated factors and are given by

A =
2Γ(s− 1− ν)Γ(ν + 1

2 )

π
1
2 Γ(s)Γ(2ν + 1)

and B =
2Γ(ν + 1− s)Γ(s− 1

2 )

π
1
2 Γ(s)Γ(ν + s)

.

Using the “cancellation property” for the hypergeometric functions, namely,

p+1Fq+1(c, a1, . . . , ap ; c, b1, . . . , bp; z) = pFq(a1, . . . , ap ; b1, . . . , bp; z),

we arrive at

ψ̂s(�) = A 1F2(ν + 1
2 ; ν + 2− s, 2ν + 1; 1) +B 1F2(s− 1

2 ; s+ ν, s− ν; 1) .

Using Γ(1 − z)Γ(z) = π csc(πz) and the duplication formula, 22z−1Γ(z)Γ(z + 1
2 ) =√

πΓ(2z), we can rewrite A as

A =
21−2νπ csc

(
π(ν − s)

)
Γ(s)Γ(ν + 2− s)Γ(ν + 1)

.
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Inserting this into the previous equation for ψ̂s(�) and factoring out B, we obtain the
expression in (4.10).

The restriction that ν−s cannot be an integer is really unnecessary; the expression
in (4.10) has a removable singularity for such values, and ψ̂s(�) can be found for them
by taking limits.

We now turn to the large � asymptotics of ψ̂s(�). Doing this for fixed, arbitrary
s > n+1

2 appears to be quite difficult, owing to the removable singularities that occur
in (4.10) when ν−s is an integer. These disappear in one very important case, namely
when ν − s is an odd multiple of 1

2 . This case is important because the compactly
supported positive definite radial functions introduced by Wendland [24, 25] satisfy it
(see section 4.2.2). For such functions we have s = n+1

2 + j + 1
2 , where j is a positive

integer, and so

ν − s = �− j − 3
2 and ν + s = �+ n+ j + 1

2 .(4.11)

With this choice of s, we have the following asymptotic formula.
Proposition 4.6. As �→∞,

ψ̂n+1
2 +j+ 1

2
(�) =

2Γ(n+1
2 + j)√

πΓ(n+1
2 + j + 1

2 )
�−2j−n−1

(
1 +O(�−1)

)
.

Proof. With s = n+1
2 + j + 1

2 and the values of ν ± s from (4.11), equation (4.10)

for ψ̂s(�) becomes

ψ̂n+1
2 +j+

1
2
(�) =

2Γ(n+1
2 + j)Γ(�− j − 1

2 )√
πΓ(n+1

2 + j + 1
2 )Γ(�+ n+ j + 1

2 )

×
(

1F2(
n+1

2 + j; �+ n+ j + 1
2 , j + 3

2 − �; 1)

± π
3
2 (�− j − 1

2 )Γ(�+ n+ j + 1
2 )

22�+n−1Γ2(�− j + 1
2 )Γ(�+ n+1

2 )Γ(n+1
2 + j)

1F2(�+ n
2 ; �− j + 1

2 , 2�+ n; 1)

)
,

where the “±” comes from csc(π(ν − s)). We will take care of terms in reverse order.
By the definition of the hypergeometric function in (4.9), it is easy to see that

1F2(�+ n
2 ; �− j + 1

2 , 2�+ n; 1) ≤
∞∑
r=0

1

r!
≤ e.

The term multiplying this hypergeometric is roughly O((�!)−2). Thus overall the term
decays faster than any power of �. Again from (4.9),

∣∣
1F2(

n+1
2 +j; �+n+j+ 1

2 , j+
3
2−�; 1)− 1

∣∣ ≤ ∑∞
r=1

(
n+1

2 +j)r

(�+n+j+
1
2 )r|(j+3

2−�)r|r!

≤ 4
∑∞

r=1

(
n+1

2 +j)r

(�+n+j+
1
2 )rr!

≤ 4
n+1

2 +j

�+n+j+
1
2

∑∞
r=1

(
n+1

2 +j+1)r−1

(�+n+j+
1
2 )r−1r!

≤ 4(e− 1)
n+1

2 +j

�+n+j+
1
2

.

Consequently, the first term in parentheses is 1 + O(�−1). Since the second term
decays faster than any power of �, we have that the two terms taken together behave
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like 1 +O(�−1). Using standard properties of the Gamma function, one has that the
term multiplying the parentheses is

2Γ(n+1
2 + j)√

πΓ(n+1
2 + j + 1

2 )
× �−2j−n−1(1 +O(�−1)) .

The proposition follows on observing that (1+O(�−1))×(1+O(�−1)) = 1+O(�−1).

We conjecture that for any s > n+1
2 we will have ψ̂s(�) ∼ �−2s+1 as �→∞.

4.2.2. Locally supported SBFs with Nφ = Hs. As we mentioned earlier,
in [24] Wendland introduced a class of compactly supported RBFs, and in [25] he
explored their properties, showing in particular that their Fourier transforms satisfy
the bounds in (4.7). On Rd, these functions have the form

Φd,j(x) :=

{
pd,j(‖x‖2) if ‖x‖2 ≤ 1,

0 if ‖x‖2 > 1,

where x ∈ Rd and pd,j is a polynomial of degree �d2�+ 3j + 1; in addition, Φd,j is in

C2j(Rd) [25, Cor. 2.3] and satisfies (4.7) with s = d
2 + j + 1

2 [25, Thm. 2.1], where
j ≥ 1 and d = 1, 2, . . . . Simply choosing d = n+1 puts s in the form s = n+1

2 + j+ 1
2 .

By Proposition 4.6 and Proposition 4.4, it follows that, with τ = n+1
2 + j, the native

space for φn,j and the Sobolev space Hτ are equivalent. The specific result is this.
Theorem 4.7. Let φn,j(x · y) := Φn+1

2 ,j(x − y)|x,y∈Sn . Then φn,j is a C2j

spherical basis function for which Nφn,j
= Hn+1

2 +j.

We point out that the support of φn,d can be adjusted by scaling Φn+1
2 ,j . This

will not change any of φn,d’s essential properties, and so the theorem above holds for
it as well.

One interesting feature is that, in restricting to Sn, the native space of Φn+1
2 ,j

changes from Hs(R
n+1) to Hs− 1

2
(Sn), with s = n+1

2 + j + 1
2 . This loss of “ 1

2 a
derivative” is familiar from the theory of Sobolev spaces and traces of functions. The
trace operator restricts a function in a Sobolev space to a codimension 1 surface, such
as an embedded sphere in Euclidean space. The trace of f belongs to a Sobolev space
of order 1

2 smaller than the one f is in [10, Chapter 1, section 8]. We conjecture that
the result we have obtained is a special case of a more general one that applies to
manifolds; namely, we conjecture that if the native space of Φ coincides with Hs(Ω),
for an n+1 dimensional manifold Ω, then the restriction φ to an n dimensional surface
Σ will have Hs− 1

2
(Σ) for a native space.
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LARGE TORSIONAL OSCILLATIONS IN A SUSPENSION BRIDGE:
MULTIPLE PERIODIC SOLUTIONS TO A NONLINEAR

WAVE EQUATION∗
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Abstract. We consider a forced nonlinear wave equation on a bounded domain which, under
certain physical assumptions, models the torsional oscillation of the main span of a suspension
bridge. We use Leray–Schauder degree theory to prove that, under small periodic external forcing,
the undamped equation has multiple periodic solutions. To establish this multiplicity theorem, we
prove an abstract degree theoretic result that can be used to prove multiplicity of solutions for more
general operators and nonlinearities.

Using physical constants from the engineers’ reports of the collapse of the Tacoma Narrows
Bridge, we solve the damped equation numerically and observe that multiple periodic solutions
exist and that whether the span oscillates with small or large amplitude depends only on its initial
displacement and velocity. Moreover, we observe that the qualitative properties of our computed
solutions are consistent with the behavior observed at Tacoma Narrows on the day of its collapse.

Key words. nonlinear wave equation, torsional oscillations, suspension bridge

AMS subject classification. 35B10

PII. S0036141001388099

1. Introduction. For over sixty years, scientists in many disciplines have strug-
gled to explain the dramatic and finally destructive torsional oscillations of the Tacoma
Narrows Bridge that preceded its collapse in 1940. The recent article in [16], which
describes the forty year effort to control the behavior of the Deer Isle Bridge in Maine,
and the closing in June, 2000, of the Millennium Bridge in London [18] testify to the
fact that the problem of controlling suspension bridge oscillations remains unsolved.

We argue that the nonlinearity inherent in the equations of motion drives the un-
predictable behavior observed on the Tacoma Narrows and other suspension bridges.
Theoretical and numerical evidence to support this claim for the vertical, torsional,
and traveling wave motion of suspension bridges can be found in [3], [4], [5], [6], [7]
and [9], [10], [11], [12], [13], [14], [15].

In [9] and [10], the authors proposed an ODE model for the torsional motion
of a horizontal cross section of the main span of a suspension bridge and proved
the existence of multiple periodic solutions. Using physical constants from the engi-
neers’ reports of the Tacoma Narrows collapse, the authors investigated this model
numerically and demonstrated that under small external forcing, the cross section
may ultimately settle down to small or large amplitude periodic torsional oscillation,
depending only on the initial torsional displacement and velocity of the cross section.

In this paper, we extend this analysis to the entire length of the main span of
the bridge. More specifically, in section 2 we propose a PDE model (the forced sine-
Gordon equation on a bounded domain) for the torsional motion along the length of
the center span. In section 3, we prove that, under certain physical assumptions, the
equation has multiple periodic weak solutions. Similar results exist for the vertical
motion of the center span [6], [13].

∗Received by the editors April 19, 2001; accepted for publication (in revised form) December 28,
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We then investigate these solutions numerically. In section 4, we examine the
bifurcation properties of periodic solutions to the equation via numerical continuation
algorithms. We find that, under small external forcing, the damped equation has three
periodic solutions, one of small amplitude and two of large amplitude. Moreover, we
see that bifurcation from single to multiple solutions occurs for small forcing.

In section 5, we use finite difference methods to approximate periodic solutions.
As in [9], we demonstrate that under small external forcing, the center span may
oscillate periodically with small or large amplitude, depending only on its initial
displacement and velocity. Moreover, we observe that the qualitative properties such
as amplitude, frequency, and nodal structure of our computed solutions are consistent
with the behavior observed at Tacoma Narrows on the day of its collapse.

2. The model. We treat the center span of the bridge as a beam of length L and
width 2l suspended by cables (see Figure 2.1). Consider the horizontal cross section
of mass m located at position x along the length of the span. We treat this cross
section as a rod of length 2l and mass m suspended by cables. Let y(x, t) denote the
downward distance of the center of gravity of the rod from the unloaded state and let
θ(x, t) denote the angle of the rod from horizontal at time t (see Figure 2.1).

We assume that the cables do not resist compression, but resist elongation ac-
cording to Hooke’s Law with spring constant K; i.e., the force exerted by the cable
is proportional to the elongation in the cable with proportionality constant K. In

Fig. 2.1. A simple model of the center span and its horizontal cross section.
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Figure 2.1 we see that the extension in the right-hand cable is (y− l sin θ), and hence
the force exerted by the right-hand cable is{ −K(y − l sin θ), y − l sin θ ≥ 0

0, y − l sin θ < 0
= −K(y − l sin θ)+,

where u+ = max{u, 0}. Similarly, the extension in the left-hand cable is (y + l sin θ),
and the force exerted by the left-hand cable is −K(y + l sin θ)+. Then the torsional
and vertical motion of the span satisfy


θtt − ε1θxx = 3K

ml cos θ[(y − l sin θ)+ − (y + l sin θ)+]− δθt + h1(x, t)
ytt + ε2yxxxx = −K

m [(y − l sin θ)+ + (y + l sin θ)+]− δyt + g + h2(x, t)
θ(0, t) = θ(L, t) = y(0, t) = y(L, t) = yxx(0, t) = yxx(L, t) = 0


 ,(2.1)

where ε1, ε2 are physical constants related to the flexibility of the beam, δ is the
damping constant, h1 and h2 are external forcing terms, and g is the acceleration due
to gravity. The spatial derivatives describe the restoring force that the beam exerts,
and the time derivatives θt and yt represent the force due to friction. The boundary
conditions reflect the fact that the ends of the span are hinged.

We study coupled systems of this form in [11], [12], and [15]. However, throughout
this paper we assume that the cables never lose tension; i.e., we assume that (y ±
l sin θ) ≥ 0 and hence (y ± l sin θ)+ = (y ± l sin θ). In this case, we see that the
equations (2.1) become uncoupled, and the torsional and vertical motions satisfy

{
θtt − ε1θxx = − 6K

m cos θ sin θ − δθt + h1(x, t)
θ(0, t) = θ(L, t) = 0

}
(2.2)

and {
ytt + ε2yxxxx = − 2K

m y − δyt + g + h2(x, t)
y(0, t) = y(L, t) = yxx(0, t) = yxx(L, t) = 0

}
,(2.3)

respectively.

We observe that (2.2) is the damped, forced, sine-Gordon equation, which arises
in many applications. We study equations of this form throughout the paper.

3. A multiplicity theorem. In this section, we consider the questions of exis-
tence and multiplicity of continuous, periodic, weak solutions u in a subspace of L2

to equations of the form (2.2).

Let Ω = (0, π)× (0, π) and define

H = {u ∈ L2(Ω)|u(x, t) = u(π − x, t), u(x, t) = u(x, π − t),

u is π periodic in t}.

For u ∈ H, let ‖u‖ = ‖u‖L2 = (
∫
Ω
|u|2dA) 1

2 . Define LTu = utt − uxx. Using

cosu sinu = 1
2 sin 2u, changing variables, removing the damping term, and imposing

boundary and periodicity conditions, we rewrite (2.2) as


LTu+ b sinu = εh(x, t)
u(0, t) = u(π, t) = 0

u(x, 0) = u(x, π), ut(x, 0) = ut(x, π)


 .(3.1)
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Observe that the eigenvalues and corresponding eigenfunctions of LT with the appro-
priate boundary conditions are{

λmn = (2n+ 1)2 − 4m2

φmn = cos(2mt) sin((2n+ 1)x)

}
,(3.2)

where m,n = 0, 1, 2, . . . . Because we are restricted to the subspace H of L2, L−1
T

exists, is compact, and ‖L−1
T ‖ = 1.

Definition 3.1. We say that u ∈ H is a solution to (3.1) if

u = L−1
T (εh− b sinu).(3.3)

Theorem 3.2. Let h ∈ H with ‖h‖ ≤ 1, and let b ∈ (3, 7). Then there exists
ε0 > 0 such that if |ε| < ε0, (3.1) has at least two solutions in H.

We use Leray–Schauder degree theory to prove Theorem 3.2 in section 3.2; how-
ever, to establish this result, we first establish a general degree theoretic result in
section 3.1. Finally, in section 3.3, we prove that the solutions to (3.1) are continu-
ous.

3.1. Preservation of Leray–Schauder degree under Gâteaux differen-
tiation. To establish the existence of multiple periodic solutions to (3.1), we use
Leray–Schauder degree theory to prove the existence of multiple zeros of a related op-
erator T1. To compute the degree of T1, we continuously deform it to a linear operator
T0, the Gâteaux derivative of T1, and compute its degree via a direct calculation.

It is not difficult to show that, under the appropriate hypotheses, the homotopy
property of Leray–Schauder degree ensures that the degree of an operator T1 is pre-
served as T1 is continuously deformed to its Fréchet derivative. However, the nonlinear
term in (3.1), f(u) = sinu, is not Fréchet differentiable in L2 at u = 0.

Motivated by the result and arguments in [13], in Theorem 3.3 we show that,
under certain conditions on the nonlinear term f and the differential operator L,
Leray–Schauder degree is indeed preserved under homotopy from the operator T1 to
its Gâteaux derivative T0. This result can be used to establish multiplicity of solutions
to equations of the form (3.1) for more general nonlinearities f(u) and differential
operators L.

Theorem 3.3. Let I1, I2 be open, bounded intervals in R, and define Q := I1×I2.
Let B be a subspace of Lp(Q), p ≥ 1, and define ‖u‖ := ‖u‖Lp . Consider the problem

Lu+ f(u) = εh(x, t),(3.4)

where L, f, and h satisfy the following:
(H1) L−1 is compact;
(H2) ‖L−1‖ ≤ 1;
(H3) f(0) = 0;
(H4) f is Lipschitz with Lipschitz constant M ;
(H5) h ∈ B and ‖h‖ ≤ 1;
(H6) the Gâteaux derivative df(0, u) exists and satisfies df(0, u) = ρu, where ρ > 0

and −ρ is not an eigenvalue of L.
Define T0 : B → B by T0(u) = u + ρL−1(u) and T1 : B → B by T1(u) =

u − L−1(εh − f(u)). Then for ε sufficiently small, there exists γ > 0 such that
deg(T1, Bγ(0), 0) = deg(T0, Bγ(0), 0).

Proof. For λ ∈ [0, 1], define Tλ : B → B by

Tλ(u) = u+ (1− λ)ρL−1(u) + λL−1(f(u)− εh(x, t)).(3.5)
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The homotopy property of degree ensures that deg(Tλ, Br(0), 0) is constant provided
that 0 /∈ Tλ(∂Br(0)) for λ ∈ [0, 1]. We will show then that for all λ ∈ [0, 1] there
exists γ > 0 such that the solution u to Tλ(u) = 0 satisfies ‖u‖ �= γ.

Observe that u = 0 is the only zero of T0 since, by (H6), −ρ is not an eigenvalue
of L. Fix λ ∈ (0, 1] and suppose that u �= 0 solves Tλ(u) = 0. Set ‖u‖ = γ̃λ > 0. We
will show that γ̃λ is bounded below by some γλ > 0.

Note that u solves

Lu+ ρu = λ(ρu− f(u) + εh(x, t))(3.6)

and hence

Lu = (λ− 1)ρu+ λ(εh(x, t)− f(u)),(3.7)

and invoking (H4) and (H5) we have

‖Lu‖ ≤ ρ‖u‖+ ε+ ‖f(u)‖
≤ ρ‖u‖+ ε+M‖u‖
= (ρ+M)γ̃λ + ε.

Therefore, u ∈ L−1B(ρ+M)γ̃λ+ε(0), which is compact by (H1). Set ψ = u
γ̃λ

. Then

‖ψ‖ = 1 and there exists a compact set K with ψ ∈ K.
Since u solves (3.6), we have

‖u+ ρL−1u‖ = λ‖L−1(ρu− f(u) + εh)‖.(3.8)

Denote the left- and right-hand sides of (3.8) by LHS and RHS, respectively. Since
−ρ is not an eigenvalue of L, we have Lψ + ρψ �= 0 and hence

inf
ψ∈K
‖ψ + L−1ρψ‖ = α > 0,(3.9)

and therefore for our u we have

LHS = ‖u+ L−1ρu‖ ≥ αγ̃λ.(3.10)

Now considering RHS, by (H2) and (H5), we have

RHS ≤ λ‖ρu− f(u) + εh‖
≤ λ[ε+ ‖ρu− f(u)‖].

We claim that if ε and γ̃λ are sufficiently small, RHS < αγ̃λ, which contradicts (3.10).
To establish this, we must first prove the following lemma.

Lemma 3.4. Let f,B, ρ be as in the statement of Theorem 3.3, and let K ⊂ B be
compact. Then there exists a function δ : (0,∞)→ (0,∞) such that

(L1) ‖ρηψ − f(ηψ)‖ ≤ ηδ(η),
(L2) δ(η)→ 0 as η → 0

hold for all ψ ∈ K and η > 0.
Proof. Define δ : (0,∞)→ (0,∞) by

δ(η) = max
ψ∈K

∥∥∥∥ρψ − 1

η
f(ηψ)

∥∥∥∥ ,(3.11)
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and note that (L1) above is satisfied.
To show that (L2) holds, we must show that ‖ρψ − 1

ηf(ηψ)‖ → 0 uniformly on
K as η → 0. Define fη : K → R by

fη(ψ) =

∥∥∥∥ρψ − 1

η
f(ηψ)

∥∥∥∥ .(3.12)

To show that fη → 0 uniformly on K, we will show that fη(ψ) → 0 for each ψ ∈ K
and that the family F := {fη} is equicontinuous on K. Choose ψ ∈ K. If ψ = 0, then
fη(ψ) = 0, so assume ψ �= 0. By (H6), we have d

dtf(tψ) |t=0= ρψ and hence, given
ε̃ > 0, for η sufficiently small, using (H3) and (H6), we have∥∥∥∥1η f(ηψ)− ρψ

∥∥∥∥ < ε̃.(3.13)

To see that the family F = {fη} is equicontinuous on K, choose ε̃ > 0 and

ψ, ψ̃ ∈ K. Using (H4), we have

|fη(ψ)− fη(ψ̃)| =
∣∣∣∣
∥∥∥∥ρψ − 1

η
f(ηψ)

∥∥∥∥−
∥∥∥∥ρψ̃ − 1

η
f(ηψ̃)

∥∥∥∥
∣∣∣∣

≤
∥∥∥∥ρ(ψ − ψ̃)− 1

η
(f(ηψ)− f(ηψ̃))

∥∥∥∥
≤ ρ‖ψ − ψ̃‖+ 1

η
M‖ηψ − ηψ̃‖

= (ρ+M)‖ψ − ψ̃‖ < ε̃,

provided ‖ψ − ψ̃‖ < δ := ε̃
ρ+M .

Since {fη} are equicontinuous on K and converge pointwise on K, we have that
fη converge uniformly on K, and hence (L2) holds.

Returning now to the proof of the theorem and invoking the above lemma, we
have that

RHS ≤ λ[ε+ ‖ρu− f(u)‖]
≤ λ[ε+ ‖ργ̃λψ − f(γ̃λψ)‖]
≤ λ[ε+ γ̃λδ(γ̃λ)].

Assume now that ε < 1
2αγ̃λ. Take λ = 1. Since δ → 0, there exists γ such that

x < γ implies that δ(x) < 1
2α. Moreover, for any λ ∈ (0, 1), if x < γ, λδ(x) < 1

2α. If
γ̃λ = ‖u‖ < γ, we have RHS < αγ̃λ. But this contradicts (3.10). Thus we conclude
that 0 /∈ Tλ(∂Bγ(0)) and therefore deg(T1, Bγ(0), 0) = deg(T0, Bγ(0), 0).

3.2. The proof of Theorem 3.2. Note that by (3.2) and by our choice of
b ∈ (3, 7), −b is not an eigenvalue of LT ; moreover, there are no negative eigenvalues
of LT between λ10 = −3 and λ21 = −7.

Define T1 : H → H by

T1(u) = u− L−1
T (εh− b sin(u))

and note that zeros of T1 correspond to solutions of (3.1). To prove the theorem, we
will show

(D1) there exists R0 > 0 such that for R > R0, deg(T1, BR(0), 0) = 1 and
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(D2) there exists γ ∈ (0, R0) such that deg(T1, Bγ(0), 0) = −1.
Then, since deg(T1, Bγ(0), 0) �= 0, there exists a zero of T1 (i.e., a solution of (3.1))

in Bγ(0). Moreover, by the additivity property of degree, deg(T1, BR(0)\Bγ(0), 0) �= 0

and hence (3.1) has a second solution in the annulus BR(0)\Bγ(0).
To establish (D1), define

Tβu = u− βL−1
T (εh− b sin(u))

for β ∈ [0, 1], and note that this definition of T1 is consistent with our previous
definition. Note also that T0 is simply the identity map; hence, for any R > 0
we have deg(T0, BR(0), 0) = 1. The homotopy property of degree ensures that
deg(Tβ , BR(0), 0) is constant provided that 0 /∈ Tβ(∂BR(0)) for all β ∈ [0, 1].

Fix β ∈ [0, 1] and suppose u ∈ H solves Tβu = 0. We will show that u is bounded
above by some R0 > 0 and that this bound is independent of β.

Since Tβu = 0, we have

‖u‖ = β‖L−1
T (εh− b sinu)‖ ≤ β[ε0 + b‖ sinu‖]

≤ [ε0 + bm(Ω)
1
2 ] = [ε0 + b

√
2π] < R0

if we choose R0 > ε0 + b
√
2π.

Thus, for R > R0 we have

deg(T1, BR(0), 0) = deg(T0, BR(0), 0) = 1,(3.14)

and (D1) above holds.
To establish (D2), let ε < ε0; we will determine the value of ε0 later. For µ ∈ [0, 1]

define

Tµu = u+ (1− µ)L−1
T (bu)− µL−1

T (εh− b sinu),

and note again that this definition of T1 is consistent with our previous definitions. We
will again apply the homotopy property of degree (via Theorem 3.3) and a standard
degree calculation to show that for some γ > 0

deg(T1, Bγ(0), 0) = deg(T0, Bγ(0), 0) = −1.

Observe that for L = LT and f(u) := b sinu, hypotheses (H1)–(H5) of Theo-
rem 3.3 are satisfied. To verify hypothesis (H6), we need to show that

df(0, u) = bu.(3.15)

By definition of the Gâteaux derivative,

df(0, u) =
d

dt
f(0 + tu) |t=0

= lim
h→0

f((t+ h)u)− f(tu)

h

∣∣∣
t=0

= lim
h→0

b sin(hu)

h
.

We will show that the limit above (in H) is bu.
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Note first that in R we have

lim
h→0

sin(hu)

h
= lim

h→0

sin(hu)

h

u

u
= u

and hence ∣∣∣∣ sin(hu)h
− u

∣∣∣∣
2

→ 0

as h→ 0. Invoking the convexity of w2, we have∣∣∣∣ sin(hu)h
− u

∣∣∣∣
2

≤ 4

[
1

2

∣∣∣∣ sin(hu)h

∣∣∣∣
2

+
1

2
|u|2
]
≤ 4u2.

Since u ∈ L2, | sin(hu)
h −u|2 is dominated in L1; thus by the dominated convergence

theorem, ∥∥∥∥b sin(hu)h
− bu

∥∥∥∥→ 0

as h→ 0; therefore (3.15) holds. Moreover, by (3.2) and our choice of b, −b is not an
eigenvalue of LT ; therefore hypothesis (H6) of Theorem 3.3 holds. Thus, by Theorem
3.3, for sufficiently small γ, ε > 0, we have

deg(T1, Bγ(0), 0) = deg(T0, Bγ(0), 0).(3.16)

Finally, we will show that

deg(T0, Bγ(0), 0) = deg(I + bL−1
T , Bγ(0), 0) = −1.

Consider the finite dimensional subspace MN :=span{φmn}N1 of H and recall that,
by compactness, bL−1

T can be approximated in operator norm by the operators BN :
MN →MN given by

BN (u) = b

N∑
m,n=1

cmn

λmn
φmn.

By definition of Leray–Schauder degree, for N sufficiently large,

deg(T0, Bγ(0), 0) = deg(I +BN , Bγ(0) ∩MN , 0)
=

∑
u∈(I+BN )−1(0) signJI+BN

(u),
(3.17)

where Jφ(u) is the Jacobian determinant of φ at u.
Since I + BN can be identified with an N2 × N2 diagonal matrix whose entries

are 1 + b
λmn

, we have

deg(I +BN , Bγ(0) ∩MN , 0) = sign

N∏
m,n=1

(
1 +

b

λmn

)
.(3.18)

Since b ∈ (3, 7) and there are no negative eigenvalues of LT between λ10 = −3 and
λ21 = −7, the only negative value of 1 + b

λmn
occurs at λ01 = −3, which is simple

because of our restriction to the subspace H. Therefore,
deg(I +BN , Bγ(0) ∩MN , 0) = −1

and (D2) holds. The proof of the theorem is complete.
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Remark 3.5. We note that the theorem holds for other ranges of b. The proof
follows exactly; we need only check that, in verifying (D2), we have

deg(T0, Bγ(0), 0) = deg(I + bL−1
T , Bγ(0), 0) = −1.

From (3.17) and (3.18), we see that this amounts to ensuring that 1+ b
λmn

< 0 an odd

number of times. For example, if b ∈ (11, 15), 1 + b
λmn

< 0 for λ10 = −3, λ21 = −7,
and λ32 = −11, and the theorem holds. Similarly, if b ∈ (15, 19), 1 + b

λmn
< 0 for

λ10, λ21, λ32, and λ43 = λ20 = −15. (One can verify that there are no other m,n such
that λmn = −15.)

Remark 3.6. We note that the theorem holds if we change the operator from
LTu = utt − uxx to Lu = utt − auxx, the domain Ω from (0, π)× (0, π) to (0,

√
aπ)×

(0, π), and adjust the spatial symmetry requirement in the definition of the subspace
H appropriately.

3.3. Continuity of solutions. In this section we prove that, under an addi-
tional assumption on the forcing term h(x, t), solutions u ∈ H to (3.1) are continuous.

We denote by Hm(Ω) or Hm the Sobolev space Wm,2(Ω) = {u|Dαu ∈ L2(Ω),
|α| ≤ m}, where Dα is a weak derivative. We equip this space with the standard
inner product

(f, g) =
∑

|α|≤m

∫
Ω

DαfDαgdA

and the norm induced by this inner product.
Lemma 3.7. Let the region Ω and the operator L−1

T be as defined above.
1. If w ∈ L2(Ω), then L−1

T w ∈ H1(Ω).
2. If w ∈ H1(Ω), then L−1

T w ∈ H2(Ω).
3. If w ∈ H2(Ω), then w ∈ C(Ω).
3. If w ∈ H1(Ω), then sinw ∈ H1(Ω).

Proof. Let w =
∑∞

m,n=0 cmnφmn ∈ L2. It is straightforward to verify that the

L2,H1, and H2 norms of w are given by

‖w‖2L2 =
∑

c2mn <∞,

‖w‖2H1 =
∑

[(2n+ 1)2 + (2m)2]c2mn,

‖w‖2H2 =
∑

[(2n+ 1)2 + (2m)2]2c2mn,

respectively.
1. Let w =

∑
cmnφmn ∈ L2. Then L−1

T w =
∑ cmn

λmn
φmn and

‖L−1
T w‖2H1 =

∑
[(2n+ 1)2 + (2m)2]

∣∣∣∣ cmn

λmn

∣∣∣∣
2

=
∑ (2n+ 1)2 + (2m)2

[(2n+ 1)2 − (2m)2]2
c2mn <∞

since

(2n+ 1)2 + (2m)2

[(2n+ 1)2 − (2m)2]2
≤ 1

and
∑

c2mn <∞.
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2. This proof is analogous to the proof of (1).
3. See, for example, [1].
4. Let w ∈ H1. Then w,wt, wx ∈ L2; we must show that sinw, (sinw)t, (sinw)x
∈ L2.

‖ sinw‖2L2 =

∫
Ω

| sinw|2 <∞

since Ω is bounded.

‖(sinw)t‖2L2 =

∫
Ω

|wt cosw|2 ≤
∫

Ω

|wt|2 <∞

since wt ∈ L2. Similarly, (sinw)x ∈ L2, and the result follows.
Theorem 3.8. Let h ∈ H1, and let u ∈ H solve (3.1). Then u ∈ C(Ω).
Proof. The result follows from repeated application of Lemma 3.7. Since εh −

b sinu ∈ L2, we have u = L−1
T (εh− b sinu) ∈ H1. Since u ∈ H1, we have sinu ∈ H1,

and therefore h ∈ H1 implies εh − b sinu ∈ H1. It follows then that u = L−1
T (εh −

b sinu) ∈ H2 and therefore u ∈ C(Ω).
4. The bifurcation curve of periodic solutions. In section 3 we considered

the forced sine-Gordon equation on a bounded domain, which models the torsional
motion of the center span of a suspension bridge, and proved that, under certain as-
sumptions on the physical constants, multiple periodic solutions exist. In this section,
we compute periodic solutions to the damped equation and examine their bifurcation
properties as the amplitude of the forcing term varies. More specifically, we employ
numerical continuation algorithms by which we plot the amplitude of a periodic so-
lution versus the amplitude λ of the external forcing term. We demonstrate that for
small λ, multiple periodic solutions to the equation exist. Moreover, we demonstrate
that bifurcation from single to multiple periodic solutions occurs for small λ.

Recall from section 2 that the equation that governs the torsional motion along
the length of the center span is given by{

θtt − ε1θxx = − 6K
m cos θ sin θ − δθt + h1(x, t)

θ(0, t) = θ(L, t) = 0

}
.(4.1)

For our numerical study of this equation, we must choose the values of the constants
L,m,K, δ, ε1 and the external forcing term h1(x, t).

4.1. The choice of physical constants and external forcing. The length
of the span was L = 1000 meters [2]; let us normalize the equation so that we can
work on the domain x ∈ [0, 1]. The rescaled equation is{

θtt − ε1
L2 θxx = − 6K

m cos θ sin θ − δθt + h1(Lx, t)
θ(0, t) = θ(1, t) = 0

}
.(4.2)

To determine the physical constants m,K, δ, ε1 and the external forcing term
h1(x, t), we rely on [2], [9], and [17]. We choose m = 2500 and δ = .01. To determine
K, we know from [2] that the main span would deflect about half a meter when loaded
with 100 kgs per unit length, so we have 100(9.8)−2K(.5) = 0 and we take K = 1000.
The roadbed of the Tacoma Narrows was extremely flexible, so we choose ε1

L2 =
.01 and observe that this value produces the appropriate flexibility in our numerical
solutions.
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For a cross section similar to the Tacoma Narrows bridge, wind tunnel experiments
indicate that aerodynamic forces should induce approximately sinusoidal oscillations
of amplitude three degrees [17], so in (4.2) we choose h1 to be sinusoidal in time. We
take h1(x, t) = λ sin(µt)ρ(x), where λ ∈ [0, 0.06] is chosen to produce the appropriate
behavior near equilibrium and the frequency µ is chosen to match the frequency of the
oscillations observed at Tacoma Narrows on the day of the collapse. The frequency
of the torsional motion was approximately one cycle every 4 or 5 seconds, so we take
µ ∈ [1.2, 1.6]. Thus, (4.2) becomes{

θtt − .01θxx = −2.4 cos θ sin θ − .01θt + λ sin(µt)ρ(x)
θ(0, t) = θ(1, t) = 0

}
.(4.3)

Remark 4.1. Using cos θ sin θ = 1
2 sin 2θ and rescaling (4.3), we see that the

magnitude of the nonlinear term is b = 2.4. Note, however, that Theorem 3.2 does
not apply to this problem because of the damping term in (4.3) and the fact that
the theorem requires a relationship between the wave speed and the spatial domain
that is not satisfied by the physical problem (4.3) (see Remark 3.6). However, as the
following experiments demonstrate, the physical problem (4.3) exhibits the multiple
solution behavior guaranteed by Theorem 3.2 for the theoretical problem (3.1).

The torsional motion observed on the day of the collapse was, for the most part,
one-noded (i.e., no torsional displacement in the middle of the span). Occasionally,
the motion changed to no-noded twisting and back again to one-noded. Thus, we
take ρ(x) = 1, ρ(x) = sin(2πx), or ρ(x) = sin(πx).

4.2. The numerical results for the forced, damped sine-Gordon equa-
tion. In this section, we apply a numerical continuation algorithm to the boundary
value problem (4.3) for several different forcing terms:

h1(x, t) = λ sin(µt)ρ(x).

Numerical continuation algorithms are described in [3], [8], and [15]; we refer the
reader to these sources for details.

In each case, we find that if µ ∈ [1.2, 1.5], the path of periodic solutions is S-
shaped and that bifurcation from single to multiple periodic solutions occurs at a
small value of λ = λ. Moreover, we observe that λ decreases as the forcing frequency
µ increases.

If µ is greater than the resonant frequency µ̂ of the linearized PDE

θtt − εθxx + δθt + 2.4θ = λ sin(µt)ρ(x),

the amplitude of the periodic solution increases with λ, but bifurcation from single to
multiple solutions does not occur. This is consistent with our earlier results for the
simpler ODE model [10], [15]. We note that for the space independent, one-noded,
and no-noded forcing terms given in section 4.1 above, the resonant frequencies of the
linearized PDE are µ̂ ≈ 1.55, µ̂ ≈ 1.67, and µ̂ ≈ 1.58, respectively.

Forcing independent of x. h1(x, t) = λ sin(µt).
1. Experiment 4.1. µ = 1.3, µ = 1.4, µ = 1.5; see Figure 4.1(a). The bifurcation

curves are S-shaped, and bifurcation from single to multiple solutions occurs
for small λ = λ. For example, in Figure 4.1 we see that for µ = 1.3 (the solid
curve), a unique small amplitude periodic solution exists for λ < λ ≈ .022
and λ > λ ≈ .247 but that three periodic solutions, one of small amplitude
and two of large amplitude, exist for λ ∈ (λ, λ). Whether the small or large
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Fig. 4.1. Experiments 4.1 and 4.2. At the lower frequencies, there are three periodic solu-
tions under small fixed forcing, one of small amplitude and two of large amplitude. At the higher
frequencies, bifurcation from single to multiple periodic solutions does not occur.

amplitude solution results depends on the initial displacement and velocity of
the span. For example, for µ = 1.3, λ ≈ 0.047, under a small initial displace-
ment (approximately 0.003 radians in amplitude), a small amplitude periodic
solution results (approximately 0.065 radians). However, under a large initial
displacement (approximately 0.720 radians), a large periodic solution results
(approximately 1.221 radians). Moreover, we observe that λ, the frequency at
which bifurcation from single to multiple periodic solutions occurs, decreases
as µ increases.

2. Experiment 4.2. µ = 1.8, µ = 2.2; see Figure 4.1(b). The amplitude of the
periodic solution increases with λ, but bifurcation from single to multiple
solutions does not occur. Moreover, we observe that the growth in the am-
plitude of the periodic solution is slower at the higher frequency. This is
consistent with our earlier results for the simpler ODE model [10], [15].

One-noded forcing. h1(x, t) = λ sin(µt) sin(2πx).
1. Experiment 4.3. µ = 1.3, µ = 1.4, µ = 1.5; see Figure 4.2(a). Again, the bifur-

cation curves at these frequencies are S-shaped and our results are consistent
with those in Experiment 4.1.

2. Experiment 4.4. µ = 1.6, µ = 1.8, µ = 2.2; see Figure 4.2(b). As in Experi-
ment 4.2, we see that the amplitude of the periodic solution grows with λ and
that the growth is slower for the higher frequencies. Moreover, for µ = 1.6,
we see that multiple periodic solutions exist for a small range of λ. (Recall
though that 1.6 < µ̂ ≈ 1.67, the resonant frequency for the linearized PDE.)
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Fig. 4.2. Experiments 4.3 and 4.4. As in Experiments 4.1 and 4.2, at the lower frequencies,
bifurcation from single to multiple periodic solutions occurs for small periodic forcing.

No-noded forcing. h1(x, t) = λ sin(µt) sin(πx).

1. Experiment 4.5. µ = 1.3, µ = 1.4, µ = 1.5. Again, the bifurcation curves
at these frequencies are S-shaped. As this is consistent with our results in
Experiments 4.1 and 4.3, we do not show the bifurcation curves here.

2. Experiment 4.6. µ = 1.6, µ = 1.8, µ = 2.2. As in Experiments 4.2 and
4.4, the amplitude of the periodic solution increases with λ, but bifurcation
from single to multiple solutions does not occur. Again, the growth in the
amplitude of the periodic solution is slower at the higher frequencies. As these
results are similar to the earlier experiments, we do not show the figures here.

5. Dynamic response to initial conditions. In section 4, we demonstrated
that if µ ∈ [1.2, 1.5], under fixed periodic forcing h1(x, t) = λ sin(µt)ρ(x), (4.3) has
three periodic solutions: one of small amplitude and two of large amplitude. In this
section, we will examine the structural properties of these solutions numerically. More
specifically, we will compute solutions to the boundary value problem (4.3) under the
initial conditions

θ(x, 0) = ξ(x),
θt(x, 0) = η(x)

(5.1)

via finite difference methods. The periodic solution results as the long term solution
to the initial value problem; i.e., the span “settles down” to periodic oscillation. As
in section 4, we choose ρ(x) = 1, ρ(x) = sin(2πx), or ρ(x) = sin(πx).



1424 K. S. MOORE

Our finite difference scheme is implicit in the linear terms and explicit in the
nonlinear terms. We solve the initial value problem (4.3), (5.1) over 400 periods of
the forcing term; i.e., for (x, t) ∈ [0, 1]×[0, 400τ ], where τ = 2π

µ . In each experiment we

use 520 time steps per period of the forcing term (∆t = 1
520τ) and we take ∆x = .025.

We define

a = amplitude of the initial displacement ξ(x),

ap = amplitude of the resulting periodic solution.

In the experiments that follow we observe that, if µ ∈ [1.2, 1.5], under fixed
periodic forcing h1(x, t) = λ sin(µt)ρ(x), small or large amplitude behavior may result
depending only on the initial displacement and velocity of the span. Thus, the effect
of a large initial displacement may not damp away as in the linear case. Moreover,
we find that the amplitude ap of the periodic response is extremely sensitive to slight
changes in the amplitude a of the initial displacement and that ap does not depend
on a in an intuitive way; for example, it does not increase with a. Finally, we observe
that the qualitative properties such as amplitude, frequency, and nodal structure of
our large amplitude solutions are consistent with the behavior observed at Tacoma
Narrows on the day of its collapse.

5.1. The experiments. One-noded forcing and initial conditions. The
most prevalent motion observed at Tacoma Narrows was one-noded (no displacement
at the center of the span) [2], so let us consider external forcing of the form

h1(x, t) = λ sin(µt) sin(2πx)

and initial conditions of the form

θ(x, 0) = θ(x,∆t) = a sin(2πx).

Experiment 5.1. λ = .06, µ = 1.4.
• 5.1a. θ(x, 0) = θ(x,∆t) = .9 sin(2πx); see Figure 5.1. Despite the large
initial displacement, we see in Figure 5.1 that by periods 390 through 400 of
the forcing term, the span has settled down to one-noded, periodic oscillation
of small amplitude (approximately .072 radians).
• 5.1b. θ(x, 0) = θ(x,∆t) = 1.0 sin(2πx); see Figure 5.2. We have increased
the amplitude a of the initial displacement only slightly from 5.1a, but we
see in Figure 5.2 that this small change has a dramatic impact on the motion
of the span. As in 5.1a, by periods 390 through 400 of the forcing term,
the span has settled down to periodic oscillation. But instead of settling
to near equilibrium behavior, as in 5.1a, the amplitude of the oscillation
is approximately 1.117 radians. Again, we note that this is close to the
amplitude observed at Tacoma Narrows on the day of the collapse [2].
• 5.1c. See Figure 5.3. Based on our results in Experiments 5.1a and 5.1b,
it is tempting to conjecture that the amplitude ap of the periodic solution
increases with the amplitude a of the initial displacement, but this is not the
case. Figure 5.3 shows the amplitude ap of the periodic solution versus the
amplitude a of the initial displacement of the span for a ∈ [0, 1.7]. We see
in Figure 5.3 that the amplitude of the long term periodic response depends
on the amplitude of the initial displacement in an unpredictable way. This
is consistent with results for a simple nonlinear ODE model for the vertical
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Fig. 5.3. Experiment 5.1c.

motion of a suspension bridge [7]. We note that in Figure 5.3, the small so-
lutions correspond to the “bottom branch” of the bifurcation curve in Figure
4.2(a) and the large solutions correspond to the “top branch.”

Forcing that depends only on time. We also considered the response of the
main span to small, time dependent forcing which is constant along the length of the
span, specifically,

h1(x, t) = λ sin(µt)

and initial conditions of the form

θ(x, 0) = θ(x,∆t) = a sin(2πx).

Experiment 5.2. λ = .04, µ = 1.4. As these results are consistent with those in
Experiment 5.1, we do not show the figures; we simply describe the results.

• 5.2a. θ(x, 0) = θ(x,∆t) = .5 sin(2πx). Despite the large initial displacement,
by periods 390 through 400 of the forcing term, the span has settled down
to no-noded, periodic oscillation of small amplitude (approximately .086 ra-
dians).
• 5.2b. θ(x, 0) = θ(x,∆t) = .6 sin(2πx). We have increased the amplitude
a of the initial displacement only slightly from 5.2a, but this small change
has a dramatic impact on the motion of the span. As in 5.2a, by periods
390 through 400 of the forcing term, the span has settled down to periodic
oscillation. But instead of settling to near equilibrium behavior, as in 5.2a,
the amplitude of the oscillation is approximately .969 radians. Again, this
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is close to the amplitude observed at Tacoma Narrows on the day of the
collapse [2].

No-noded forcing and initial conditions. Although the most prevalent mode
of torsional oscillation observed at Tacoma Narrows was the one-noded motion de-
scribed above, occasionally the motion would change to no-noded oscillation [2], so
we also studied external forcing of the form

h1(x, t) = λ sin(µt) sin(πx)

and initial conditions of the form

θ(x, 0) = θ(x,∆t) = a sin(πx).

As in the previous experiments, small changes in the amplitude of the initial displace-
ment led to dramatic differences in the resulting periodic solution. Indeed, when we
decreased the amplitude of the initial displacement from 1.2 to 1.1, the amplitude of
the resulting periodic solution increased from .0248 to 1.171 radians [15].

Solutions that change nodal structure. According to eyewitnesses, the tor-
sional oscillations that preceded the collapse of the Tacoma Narrows were, for the
most part, one-noded. Occasionally, the motion would change to no-noded and then
back to one-noded [2]. In this experiment, we replicate this phenomenon by a slight
perturbation in the forcing term.

Experiment 5.4. λ = .06, µ = 1.4; see Figure 5.4. We begin with a large initial
displacement

θ(x, t) = θ(x,∆t) = 1.4 sin(2πx)
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Fig. 5.4. Experiment 5.4, fixed t.
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and apply forcing of the form

h1(x, t) = λ sin(µt)[sin(2πx) + .01 sin(πx)].

In this case, a complicated motion results. Figure 5.4 shows the angular displacement
along the length of the span at two different points in time; the solid curve describes
one-noded oscillation while the dashed curve has no nodes.

6. Conclusion and open questions. We have demonstrated theoretically and
numerically that the equation that governs the torsional motion of a suspension bridge
has multiple periodic solutions; whether small or large amplitude motion results de-
pends on the initial displacement and velocity of the span. Thus, once a large torsional
motion starts, it may persist over a long time.

It is natural to ask what might induce such a large initial torsional displacement
in a suspension bridge. In studying coupled systems of the form (2.1) numerically, we
find that a large vertical motion, in the presence of tiny torsional forcing and initial
conditions, may induce a rapid transition from vertical to torsional motion [9], [11],
[12], [15]. Such a phenomenon was observed at Tacoma Narrows on the day of its
collapse [2].

Beyond the results presented here, several interesting questions remain. For exam-
ple, we proved the existence of multiple periodic solutions to the undamped equation;
under appropriate hypotheses on the forcing term, does a similar result hold for the
damped equation? Moreover, we proved the existence of at least two periodic so-
lutions, but our numerical results in section 4 suggest that three periodic solutions
exist. Can the existence of the third solution be proven?
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acknowledges her thesis advisor P. J. McKenna for his guidance. The author also
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Abstract. In this paper we study a free boundary problem in a multicomponent domain.
Our study was motivated by the mathematical modeling of dermal and transdermal drug delivery,
where the multilayered skin model was considered. At the interface connecting two components the
conservation of the flux and Nernst’s distribution law hold and it is supposed that in any component
there is a positive minimum concentration at which the diffusion front can proceed. The existence
of a solution and uniqueness in special cases are shown.
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1. Introduction. Let Ωi, i = 1, . . . , k, k ≥ 2, be disjoined bounded Lipschitz
domains in R

N , N ≥ 1, with Ω̄i ∩ Ω̄j = ∅ if |j − i| > 1 and

Γ̄i ≡ ∂Ωi ∩ ∂Ωi+1 for i = 1, . . . , k − 1.

Here Γ̄i denotes the closure of a nonempty and relatively open set Γi in ∂Ωi.
In this paper we study the singular parabolic problem

∂tb
i(ui) = ∆ui in Ωi × (0, T )(1.1)

with contact conditions on the interfaces

∂νiu
i + ∂νi−1u

i−1 = 0 and ui = ψi−1(ui−1) on Γi × (0, T )(1.2)

and boundary and initial conditions

ui = 0 on Γk × (0, T ),(1.3)

∂νiu
i = 0 on T i × (0, T ),(1.4)

bi(ui) = bi0 on Ωi × {t = 0},(1.5)

i = 1, . . . , k, where Γk is a part of ∂Ωk \ Γk−1 that is not excluded to be empty,
T i ≡ ∂Ωi \Γi∪Γi−1 where we set Γ0 = ∅. Moreover, νi denotes the outer unit normal
to ∂Ωi and ∂νu ≡ ∇u · ν, ∂t = ∂ /∂t.

The nonlinearity bi(·) in (1.1) represents a maximal monotone graph in R × R

given by

bi(u) = βi(u) + Λiϑ(u) , ϑ(u) ≡



1, u > 0,
[0, 1], u = 0,
0, u < 0.

(1.6)
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Here Λi ≥ 0 are given constants and βi are continuous monotone increasing functions
a.e. differentiable and such that

0 < ι ≤ (βi)′(u) <∞ if u > 0(1.7)

for a given positive constant ι, βi(0) = 0, i = 1, . . . , k. ψi : R → R are again
monotone increasing functions a.e. differentiable and

0 < κ ≤ (ψi)′ ≤ K(1.8)

for two positive constants κ,K and ψi(0) = 0.
As it is seen in (1.6), if Λi > 0, we allow bi to have jumps. The special cases,

however, the standard parabolic equations, that is, bi(u) = kiu for ki > 0, and the
porous medium type equations (see [2]), e.g.,

bi(u) = |u|1/misignu , mi > 1 ,

are also included. In both cases, Λi = 0.
As our main goal is to deal with a free boundary problem, the simplest model

case a reader can have in mind is the two component system in one space dimension,
i.e., k = 2, N = 1, and we set Ω1 = (0, l1), Ω2 = (l1, l2). Let us look at a situation in
which ui have a particularly simple structure. Nevertheless, let us in fact formulate a
problem for functions ci(x, t) and s(t) first. Assume a curve

{(x, t) : x = s(t), t ∈ [0, T ]}
for monotone increasing function s : [0, T ]→ (0, l2] such that 0 < s(0) < l1, s(t∗) = l1
for some t∗ ∈ (0, T ), and s(T ) = l2 is given. Functions ci are supposed to satisfy the
following:

∂tc
1 = D1c1xx, 0 < x < min{s(t), l1}, 0 < t ≤ T ,

c1x(0, t) = 0, 0 < t ≤ T ,
c1(x, 0) = c10(x) > λ1, 0 < x < s(0) ,(1.9)

∂tc
2 = D2c2xx, l1 < x < s(t), t∗ < t ≤ T,

and the moving boundary condition

ci(s(t), t) = λi , λiṡ(t) = −Dicix(s(t), t)(1.10)

with positive constants Di, λi, where 0 < t < t∗ if i = 1 and t∗ < t < T if i = 2,
respectively, in (1.10). In addition to the Stefan problem in one component we require
a nonlinear contact condition on the interface x = l1,

c2(l1, t) = g
(
c1(l1, t)

)
,

D1 c1x(l1, t) = D2 c2x(l1, t),
t∗ < t ≤ T ,(1.11)

(for motivation see section 2) where g is a given increasing function such that g(λ1) =
λ2. Now the following question arises. Having given the data, can we find functions
ci(x, t), s(t) and positive T such that (1.9)–(1.11) are satisfied? In this paper we do
not deal with the classical solvability of this problem; instead, we study weak solutions
of (1.1)–(1.5). However, problem (1.9)–(1.11) can be rewritten into the first one using
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the idea of reformulation of the classical Stefan setting into an enthalpy formulation;
see, e.g., [13]. So we get the corresponding one-dimensional form of problem (1.1)–
(1.5) for Λi = λi, ui = ci − λi and linear βi.

Our original aim was to prove the existence and uniqueness for this problem.
Nevertheless, uniqueness for the original problem turns out to be difficult and we are
able to show uniqueness only for a problem where regular bi(·) are considered. The
paper is organized as follows. It starts in section 2 with derivation of the mathematical
model of dermal and transdermal drug delivery, as introduced in [12]. Section 3
contains the existence and uniqueness result for the regularized problem, where the
graph bi(·) is replaced by a monotone Lipschitz continuous regularization biε(·) and
boundary conditions (1.2) are regularized in the natural way as

∂νi−1u
i−1 + n

(
ψi−1(ui−1)− ui

)
= 0,

∂νiu
i + n

(
ui − ψi−1(ui−1)

)
= 0,

on Γi−1 × (0, T ) ,(1.12)

where 0 < ε� 1 and 1� n.
Assumptions and the statement of the existence theorem of our original problem

(1.1)–(1.5) are given in section 4. Finally in section 5 the uniqueness result for the
related nonlinear diffusion problem is discussed.

In recent years questions like global solvability, uniqueness, and qualitative be-
havior of solutions for nonlinear parabolic problems including the Stefan problem have
attracted considerable interest. There is also a vast amount of literature that covers
our result in case of a single domain; see, e.g., [1], [13], [4], [9], and references therein
for existence results and, e.g., [1], [4], [6], [8] for uniqueness. Should we restrict our-
selves to parabolic problems on multicomponent domains with a nonlinear contact
condition on the interface, that in our case is nonlinear Nernst’s law (1.2), then we
find that these have not been studied to that extent. See [11] or [10], where linear
parabolic equations with contact conditions (1.2) and conditions of the type (1.12),
respectively, for the special case ψi(u) = u are investigated. But, as far as we know,
the nonlinear parabolic problem on a multicomponent domain with jump conditions
on the interface between two components has not been studied in connection with
the free boundary problem. Most methods that we apply are known; nevertheless,
their applications to the difficult problem that comes from the application [12] seem
to be not straightforward. To prove existence of a weak solution to our free boundary
problem we follow the ideas of Alt and Luckhaus [1]. It is more appropriate for our
contact condition than the methods of Meirmanov [13], where the equation is written
in terms of U = b(u) and all derivatives are given to the test function. However, to
derive a priori estimates for the regularized problem it is not possible to test with
ui on all components like in [10], or in case of one component [1], since the integrals
arising from boundary condition (1.12) do not provide nonnegative items. Therefore,
in sections 3 and 5 we use the dual problem to derive L1-estimates, and in section 4
we adopt some ideas from Carrillo [4] to test with nonlinear functions in terms of u.

We finish this section by introducing some notation. In what follows, if necessary,
we shall consider any function u(x) defined almost everywhere on some open set
Ω ⊂ R

N , u ∈ H1(Ω) to be extended outside of Ω (and denoted again by u) such that
‖u‖H1(RN ) ≤ C‖u‖H1(Ω) with C independent of u. Due to the result of Calderon–
Stein (see, e.g., [14]) this is possible if ∂Ω is Lipschitz. By 〈· , ·〉 we denote the duality
between H1(Ω) and H−1(Ω). The function spaces we use are rather familiar and we
omit the definition (see, e.g., [14]). To keep the notation short we set Vi ≡ H1(Ωi)
and V = V1 × · · · × Vk. Ṽ ⊂ V denotes the subspace Ṽ = {v = (v1, . . . , vk) ∈ V :



A FREE BOUNDARY PROBLEM 1433

?

-

x

y

0�b�a b a



1



2



3



4

vehicle

stratum corneum

epidermis

dermis

l1

l2

l3

l4

�
1

�
2

�
3>

>

>

Fig. 1. The multilayer skin model. l2, . . . , l4 are chosen in accordance with the thickness of the
skin layers; l1 represents the application thickness and 2b its length. a either marks the position of
the real isolating boundaries in ex vivo experiments or is chosen to be large enough such that the
fluxes across y = ±a are negligible.

vi+1 = vi a.e. on Γi for i = 1, . . . , k− 1, vk = 0 a.e. on Γk}. Finally, if S is any set in
R

N , we write ST ≡ S × (0, T ) and S0 ≡ S × {t = 0}.
2. Motivation. Our study was motivated by the mathematical modeling of der-

mal and transdermal drug delivery, where the multilayered skin model in R
2 was

considered; see [12]. In this model the whole diffusion area is divided into four open
subdomains Ωi representing the vehicle and the layers of skin, connected by the in-
terfaces Γi (see Figure 1), i = 1, . . . , 4.

The drug concentration in the subdomains Ωi is denoted by ci = ci(x, y, t). The
penetration is described by the nonlinear diffusion equation

∂tc
i = div

(
Di(ci)∇ci)(2.1)

which relates the change of the concentration ci in time t to the substance flux
−Di∇ci with diffusivity Di due to Fick’s laws. At the interfaces Γi connecting two
subdomains Ωi and Ωi+1, the conservation of flux and Nernst’s distribution law must
hold. These relations are given by

Di ∂xc
i = Di+1∂xc

i+1(2.2)

and

ci+1 = Ki+1 ci(2.3)

with the partition coefficient being Ki+1 > 1.
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Fig. 2. Time-dependent penetration depths. The penetration boundaries Φ1,Φ2,Φ3 at three
time levels 0 < t1 < t2 < t3 are shown; at the corresponding time the concentration is zero outside
these boundaries.

Since penetrants can move into and through human skin only at a finite pene-
tration velocity, it is supposed that a regular curve Φ(t) in Ω ≡ ⋃(Ωi ∪ Γi) appears
separating Ω into two time-dependent subareas D0(t) with zero and D(t) with nonzero
concentration, as illustrated in Figure 2.

Until Φ(t) reaches the boundary of the Ω4, the whole mass of drug is inside D(t).
We require the concentration of the drug to have a fixed positive value λ at the
boundary Φ(t) of D(t). In this context λ describes the minimum concentration at
which any diffusion front can proceed. So we set

ci(x, y, t) = λi for (x, y) ∈ Φ(t) ∩ Ωi .(2.4)

Moreover, on Φ(t) we assume that the penetration velocity of the drug is proportional
to the concentration gradient at Φ(t); i.e.,

λi Vν = −Di∇ci · ν,(2.5)

where Vν means the normal velocity of the moving surface Φ(t) and ν represents its
outer normal. To complete the problem formulation it is necessary to prescribe the
initial position of the free boundary and the initial concentration distribution.

With the usual Kirchhoff transformation

ui =

∫ ci

λi

Di(z) dz
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denoting

ci − λi = βi(ui);

the relations (2.1)–(2.5) above yield

∂tβ
i(ui) = ∆ui

in
(D(t) ∩ Ωi

)× (0, T ),

∂xu
i = ∂xu

i+1 and βi+1(ui+1) = Ki+1
(
βi(ui) + λi

)− λi+1(2.6)

on (D(t) ∩ Γi)× (0, T ),

βi(ui) = 0 and λiVν = −∇ui · ν

on
(
Φ(t) ∩ Ωi

)× (0, T ), and

βi(ui) = βi
0

on D(0) ∩ Ωi, i = 1, . . . , 4.
We shall consider the weak or enthalpy formulation of the above problem, where

all references to the free (unknown) boundary Φ(t) disappear and a problem on a given
fixed domain ΩT will be considered (see, e.g., [13] and references therein). Nernst’s
distribution law (2.6) is, however, well defined only on D∩Γi; therefore we first modify
this law setting

βi+1(ui+1) = Ki+1βi(ui) + Li+1 χ(βi(ui)) , Li+1 ≡ Ki+1λi − λi+1 > 0 ,

χ(σ) =

{
1, σ > 0,
0, σ ≤ 0,

(2.7)

which is fulfilled on D0 ∩ Γi, too. Then, due to the noncontinuity of χ0, we propose
the following regularization:

βi+1(ui+1) = Ki+1βi(ui) + Li+1 χδ(βi(ui)),

where

χδ(σ) =




0, σ ≤ 0,
σ/δ, 0 ≤ σ ≤ δ,
1, 0 < δ ≤ σ.

(2.8)

Here δ is a small parameter, as far as we know, without a physical meaning and we
keep it fixed. In our opinion, however, this regularization may be interpreted as a
transition stage for small drug concentrations until Nernst’s equilibrium is reached.

In this way we have arrived at problem (1.1)–(1.5).

3. Auxiliary problems. Assume for this section that for given 0 < ε� 1

biε(u) = βi
ε(u) + Λiχε(u),(3.1)
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βi
ε(·) are monotone increasing differentiable functions, and

0 < ε ≤ (βi
ε)′ ≤ Kε(3.2)

for a positive constant Kε, βi
ε(0) = 0, i = 1, . . . , k, χε given by (2.8). Moreover, let

βi
ε −→ βi as ε→ 0(3.3)

uniformly on compact subsets of R and assume that 0 < ι ≤ (βi
ε)′ ≤ Kε on [0,∞) (cf.

(1.7)). Throughout this section we suppose

ui
0ε ∈ H1(Ωi) ∩ L∞(Ωi) , ui

0ε ≥ 0 ,(3.4)

i = 1, . . . , k, and

biε(ui
0ε) −→ bi0 in L1(Ωi)(3.5)

as ε→ 0.
Given a positive integer n, now consider the system

∂tb
i
ε(ui

ε) = ∆ui
ε in Ωi

T ,

∂νi
ui

ε + n
(
ui

ε − ψi−1(ui−1
ε )

)
= 0 on Γi−1

T ,

∂νiu
i
ε + n(ψi(ui

ε)− ui+1
ε ) = 0 on Γi

T ,

∂νi
ui

ε = 0 on T i
T ,

ui
ε = ui

0ε on Ωi
0

(3.6)

for i = 1, . . . , k, where ψi satisfies (1.8), Γ0 = ∅, uk+1 ≡ 0, and ψk(u) ≡ u.
Note that our intention in the next section is to send ε → 0 and n → ∞. But

the results of this section might be of interest on their own. Theorem 3.2 extends the
existence result of Kačur and Van Keer [10] to the nonlinear problem. Moreover, we
prove a maximum principle and continuous dependence of the solution on the initial
data for problem (3.6). The same constant n in the contact condition on each interface
Γi is not essential; it may be replaced by positive constants ki. Throughout the rest
of this section, therefore, ε and n are fixed and we shall not indicate the dependence
of the appeared quantities on them.

Definition 3.1. We say that u ≡ (u1, . . . , uk) ∈ L2(0, T ;V ) is a weak solution
of the system (3.6) provided bi(ui) ∈ L2(Ωi

T ), ∂tb
i(ui) ∈ L2(0, T ;H−1(Ωi)); that is,∫ T

0

〈∂tb
i(ui), vi〉dt = −

∫
Ωi

T

(bi(ui)− bi(ui
0)) ∂tv

i dxdt(3.7)

for any v = (v1, . . . , vk) ∈ L2(0, T ;V ) with ∂tv
i ∈ L2(Ωi

T ), vi(T ) = 0, and if the
following identity is fulfilled:

k∑
i=1

(∫ T

0

〈∂tb
i(ui), φi〉dt +

∫ T

0

∫
Ωi

∇ui∇φi dxdt

)
(3.8)

+

k∑
i=1

n

∫ T

0

∫
Γi

(
ui+1 − ψi(ui)

) (
φi+1 − φi

)
dσdt = 0

for any φ = (φ1, . . . , φk) ∈ L2(0, T ;V ).
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A subsolution (supersolution) is defined by (3.8) with equality replaced by ≤ (≥)
and φ ≥ 0, i.e., φi ≥ 0 on Ωi for each i ∈ {1, . . . , k}.

Theorem 3.2. A weak solution of problem (3.6) exists if conditions (3.1), (3.2),
and (3.4) are fulfilled. Moreover,

ui ≥ 0 a.e. on Ωi
T .(3.9)

In addition, if

∥∥u1
0

∥∥
L∞(Ω1)

≤ c1 and
∥∥ui

0

∥∥
L∞(Ωi)

≤ ci , ci ≡ ψi−1(ci−1)

for i = 2, . . . , k, then

∥∥ui
∥∥

L∞(Ωi
T )
≤ ci(3.10)

for each i = 1, . . . , k.

Let us postpone the proof of Theorem 3.2 to the end of this section.

Theorem 3.3. (i) Let u and v be weak solutions of the problem (3.6) with initial
functions u0 and v0, respectively. Then for almost all t ∈ [0, T ],

k∑
i=1

∫
Ωi

∣∣bi(ui)− bi(vi)
∣∣ (x, t) dx ≤ k∑

i=1

∫
Ωi

∣∣bi(ui
0)− bi(vi

0)
∣∣ (x) dx.(3.11)

(ii) Let u be a subsolution and v a supersolution of the problem (3.6) with initial
data u0 and v0, respectively. Then if u0 ≤ v0, i.e., ui

0 ≤ vi
0 a.e. on Ωi for any

i ∈ {1, . . . , k}, it follows that

ui(x, t) ≤ vi(x, t)

a.e. on Ωi
T for any i ∈ {1, . . . , k}.

The idea of the proof is as follows. Supposing that we have two solutions u and
v, we write down the weak formulation for their difference. Some integrals of the
obtained relation may be interpreted as a weak formulation of a suitable boundary
value problem for the test function φ, the so called dual problem, which is tested by
u− v. If we insert a solution of that dual problem as a test function, some integrals
disappear and we are able to derive L1-estimates if we know that the solution φ of
the dual problem is bounded. This method was used, e.g., by [3], [6], [8], and many
others.

In our case we have to find such conditions for the dual problem on the interfaces
Γi that the integrals on the right-hand side of (3.12) may be nullified and φ fulfills a
maximum principle (cf. (3.13)). However, since the coefficients of the dual problem
are not smooth enough we have to regularize it and we have to be very careful to go
to the limit.

This idea is used again to prove the boundedness of solution in Theorem 3.2 and
the uniqueness result in section 5.

Proof of Theorem 3.3. We first prove the comparison principle (ii). In order to
derive the dual problem let 0 < t ≤ T be fixed. Take φi(x, τ) = χ[0,t](τ)ϕi(x, t − τ),
where the choice of appropriate functions ϕi = ϕi(x, s) will be determined later and
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χ approaches the characteristic function of the interval [0, t]. Recalling the definition
of u, v, one can see that∫

Ωi

(
bi(ui)− bi(vi)

)
(x, t) ϕi(x, 0) dx

+

∫ t

0

∫
Ωi

(
Ai(x, τ) ∂sϕ

i(x, t− τ) (ui − vi)(x, τ)

+∇ϕi(x, t− τ) ∇(ui(x, τ)− vi(x, τ))
)
dxdτ

+ n

∫ t

0

∫
Γi−1

(ui − vi)(x, τ) ϕi(x, t− τ) dσdτ

+ n

∫ t

0

∫
Γi

ci(x, τ) (ui − vi)(x, τ) ϕi(x, t− τ) dσdτ(3.12)

≤
∫

Ωi

(
bi(ui

0)− bi(vi
0)
)
ϕi(x, t) dx

+ n

∫ t

0

∫
Γi−1

(
ψi−1(ui−1)− ψi−1(vi−1)

)
(x, τ) ϕi(x, t− τ) dσdτ

+ n

∫ t

0

∫
Γi

(ui+1 − vi+1)(x, τ) ϕi(x, t− τ) dσdτ,

where

Ai(x, τ) ≡ bi(ui)− bi(vi)

ui − vi
(x, τ) and ci(x, τ) ≡ ψi(ui)− ψi(vi)

ui − vi
(x, τ).

From the assumed hypotheses one can see that ε ≤ Ai ≤ Kε and 0 < κ ≤ ci ≤ K.
Formally, if we insert ϕ = ϕ(x, t − τ) into (3.12), 0 ≤ ϕi ≤ 1 such that ϕi(x, s),
s ∈ [0, t], satisfies

Ai(x, t− s) ∂sϕ
i −∆ϕi = 0 in Ωi

t,

∂νiϕ
i + n

(
ϕi − χ((ui − vi)(x, t− s))) = 0 on Γi−1

t ,

∂νiϕ
i + n ci(x, t− s) (ϕi − χ((ui − vi)(x, t− s))) = 0 on Γi

t,

∂νi
ϕi = 0 on T i

t ,

ϕi = χ(ui(x, t)− vi(x, t)) on Ωi × {s = 0},

(3.13)

χ being given by (2.7). We get∫
Ωi

(
bi(ui)− bi(vi)

)
+

(x, t) dx + n

∫ t

0

∫
Γi−1

(ui − vi)+(x, τ) dσdτ

+ n

∫ t

0

∫
Γi

(
ψi(ui)− ψi(vi)

)
+

(x, τ) dσdτ

≤
∫

Ωi

(
bi(ui

0)− bi(vi
0)
)
+

(x) dx(3.14)

+ n

∫ t

0

∫
Γi−1

(
ψi−1(ui−1)− ψi−1(vi−1)

)
+

(x, τ) dσdτ

+ n

∫ t

0

∫
Γi

(
ui+1 − vi+1

)
+

(x, τ) dσdτ,
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where

w+ ≡ max{0, w}.
If we add (3.14) through i = 1, . . . , k, we arrive at

k∑
i=1

∫
Ωi

(
bi(ui)− bi(vi)

)
+

(x, t) dx ≤
k∑

i=1

∫
Ωi

(
bi(ui

0)− bi(vi
0)
)
+

(x) dx,(3.15)

recalling that we have put Γ0 = ∅, uk+1 = vk+1 = 0, and ψk(u) ≡ u.
Nevertheless, coefficients in (3.13) are only bounded functions and we cannot,

therefore, expect the required regularity of solutions to (3.13). Therefore, instead of
(3.13) we shall consider the problem

Ai
ρ(x, t− s) ∂sϕ

i −∆ϕi = 0 in Ωi
t,

∂νiϕ
i + n

(
ϕi − ωi

δ(x, t− s)) = 0 on Γi−1
t ,

∂νi
ϕi + n ciδ(x, t− s) (ϕi − ωi

δ(x, t− s)) = 0 on Γi
t,

∂νiϕ
i = 0 on T i

t ,

ϕi = 3i
η(x) on Ωi × {s = 0},

(3.16)

where

Ai
ρ(x, t− s) ≡ (Rρ ∗Ai)(x, t− s), ωi

δ(x, t− s) ≡ (Rδ ∗ χ(ui − vi)
)

(x, t− s),
ciδ(x, t− s) ≡ (Rδ ∗ ci

)
(x, t− s),

Rρ, Rδ are the standard mollifiers in the t-variable, and

3i
η(x) ≡ (Rη ∗ χ(ui(·, t)− vi(·, t))) (x),

Rη is the standard mollifier in the x-variable.
(3.16) is a uniformly parabolic problem on each domain Ωi

t with sufficiently
smooth data and we can apply the classical results of [11] to get a unique weak
solution ϕi such that

ϕi ≡ ϕi
ρδη ∈ L∞(0, t;H1(Ωi)) ∩H1(0, t;L2(Ωi))

and

0 ≤ ϕi ≤ 1 a.e. on Ωi
t.(3.17)

To prove (3.17), note that the weak formulation of (3.16) easily gives∫ t

0

∫
Ωi

(
Ai

ρ∂s(ϕi − 1) ξ +∇(ϕi − 1)∇ξ) dxds + n

∫ t

0

∫
Γi−1

(ϕi − 1)ξ dσds

+ n

∫ t

0

∫
Γi

ciδ (ϕi − 1) ξ dσds ≤ 0

for any ξ ∈ L2(0, T ;H1(Ωi)), ξ ≥ 0. If we insert ξ = χε(ϕi − 1) and if ε → 0, we
arrive at ∫ t

0

∫
Ωi

∂s

(
Ai

ρ (ϕi − 1)+
)
dxds ≤

∫ t

0

∫
Ωi

∣∣∂sA
i
ρ

∣∣ (ϕi − 1)+ dxds.
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This, due to Gronwall’s lemma, yields∫
Ωi

(ϕi − 1)+(x, t) dx ≤ 0, i.e., (3.17)2.

Analogously one gets ∫
Ωi

(−ϕi)+(x, t) dx ≤ 0, i.e., (3.17)1.

Moreover, it is easy to see (cf., e.g., [11]) that

max
0≤s≤t

∫
Ωi

∣∣∇ϕi
∣∣2 (x, s) dx+

∫ t

0

∫
Ωi

Ai
ρ(x, t− s) ∣∣∂sϕ

i
∣∣2 dxds ≤ C,(3.18)

where the positive constant C = C(η, δ) does not depend on ρ.
Inserting ϕi

ρδη into (3.12) now we get∫
Ωi

(
bi(ui)− bi(vi)

)
(x, t) 3i

η(x) dx

+

∫ t

0

∫
Ωi

(
Ai −Ai

ρ

)
(x, τ) ∂sϕ

i
ρδη(x, t− τ) (ui − vi)(x, τ) dxdτ

+ n

∫ t

0

∫
Γi−1

(ui − vi)(x, τ) ωi
δ(x, τ) dσdτ

+ n

∫ t

0

∫
Γi

(ci − ciδ)(x, τ) ϕi
ρδη(x, t− τ) (ui − vi)(x, τ) dσdτ

+ n

∫ t

0

∫
Γi

ciδ(x, τ) ωi
δ(x, t− τ) (ui − vi)(x, τ) dσdτ

≤
∫

Ωi

(
bi(ui

0)− bi(vi
0)
)
+
dx

+ n

∫ t

0

∫
Γi−1

(
ψi−1(ui−1)− ψi−1(vi−1)

)
+

(x, τ) dσdτ

+ n

∫ t

0

∫
Γi

(
ui+1 − vi+1

)
+

(x, τ) dσdτ.

First we go with ρ → 0 so that the integral with ∂sϕ
i
ρδη disappears. Afterwards we

let δ → 0 and then η → 0. Hence we arrive at (3.15) and the desired comparison
principle follows.

To prove assertion (i), note that u, v are both sub- and supersolutions, and there-
fore analogously one gets

k∑
i=1

∫
Ωi

(
bi(vi)− bi(ui)

)
+

(x, t) dx ≤
k∑

i=1

∫
Ωi

(
bi(vi

0)− bi(ui
0)
)
+

(x) dx.

This proves (i).
Proof of Theorem 3.1. 1. We intend to build a weak solution of system (3.6)

by first constructing solutions of certain simpler approximations to (3.6) and then
passing to limits. More precisely, now fix a positive integer 8. For given

u�−1 = (u1
�−1, . . . , u

k
�−1) , ui

0(x, t) ≡ ui
0(x),



A FREE BOUNDARY PROBLEM 1441

we will look for a function u� ≡ (u1
� , . . . , u

k
� ) so that

∂tb
i(ui

�) = ∆ui
� in Ωi

T ,

∂νi
ui

� + n
(
ui

� − ψi−1(ui−1
� )

)
= 0 on Γi−1

T ,

∂νiu
i
� + n

(
ψi(ui

�)− ui+1
�−1

)
= 0 on Γi

T ,

∂νiu
i
� = 0 on T i

T ,

ui
� = ui

0 on Ωi
0,

(3.19)

i = 1, . . . , k. Recall again that Γ0 ≡ ∅, ψk(u) ≡ u, and uk+1 ≡ 0.
Assume that the nonnegative functions ui

�−1 are sufficiently smooth, say,

ui
�−1 ∈ L2(0, T ;H1(Ωi)) ∩ L∞(Ωi

T )

for any i ∈ {1, . . . , k}, and let a positive constant c1 be taken in such a way that

0 ≤ u1
�−1 ≤ c1

a.e. on Ω1
T , and at the same time

0 ≤ ui
�−1 ≤ ci ≡ ψi−1(ci−1)(3.20)

a.e. on Ωi
T for each i ∈ {2, . . . , k}.

2. According to standard existence theory (Galerkin’s method or implicit time
discretization method) (see, e.g., [7] for existence and [8] for uniqueness) there exists
a unique weak solution u1

� satisfying (3.19) and then repeatedly ui
� for i = 2, . . . , k

such that

ui
� ∈ L2(0, T ;H1(Ωi)) and ∂tb

i(ui
�) ∈ L2(0, T ;H−1(Ωi)).

3. Due to the comparison principle we now show that

(3.20) implies 0 ≤ ui
� ≤ ci

for any i ∈ {1, . . . , k}. First, observe formally that

∂tb
i(ui

�) = ∆ui
� in Ωi

T ,

∂νi
ui

� + nui
� = nψi−1(ui−1

� ) ≥ 0 on Γi−1
T ,

∂νiu
i
� + nψi(ui

�) = nui+1
�−1 ≥ 0 on Γi

T ,

∂νiu
i
� = 0 on T i

T ,

ui
� = ui

0 ≥ 0 on Ωi
0

and

∂t

(
bi(ui

�)− bi(ci)
)

= ∆
(
ui

� − ci
)

in Ωi
T ,

∂νi(u
i
� − ci) + n

(
ui

� − ci
)

= n
(
ψi−1(ui−1

� )− ψi−1(ci−1)
) ≤ 0 on Γi−1

T ,

∂νi(u
i
� − ci) + n

(
ψi(ui

�)− ψi(ci)
)

= n
(
ui+1

�−1 − ci+1
) ≤ 0 on Γi

T ,

∂νi(u
i
� − ci) = 0 on T i

T ,

ui
� − ci ≤ 0 on Ωi

0.
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Consequently,

0 ≤ ui
� ≤ ci(3.21)

a.e. on Ωi
T for each i ∈ {1, . . . , k}. It is not difficult to make it precise like in the proof

of Theorem 3.3(ii) above and we omit further details.
4. We propose now to send 8 to infinity and to show that a subsequence of our

solutions u� of the approximate problems (3.19) converges to a weak solution of (3.6).
For this we will need some uniform estimates. We follow the ideas of Alt and Luckhaus
[1], but we have to deal with the additional integrals on Γi. First we obtain an a priori
estimate by testing (3.19) with ui

�. Denoting

Φi(z) ≡
∫ z

0

bi(ξ)dξ and Bi(z) ≡ bi(z)z − Φi(z),(3.22)

the parabolic term can be treated with the use of [1, Lemma 1.5]. Performing some
calculations we find

k∑
i=1

{∫
Ωi

Bi(ui
�(x, t)) dx−

∫
Ωi

Bi(ui
0(x)) dx+

∫ t

0

∫
Ωi

∣∣∇ui
�

∣∣2 dxdτ
+ n

∫ t

0

∫
Γi

(
ψi(ui

�)u
i
� + |ui+1

� |2) dσdτ}

=
k−1∑
i=1

n

∫ t

0

∫
Γi

(
ψi(ui

�)u
i+1
� + ui+1

�−1u
i
�

)
dσdτ.

Since ui
� ∈ L2(0, T ;H1(Ωi)) the estimate (3.21) holds on Γi

T , too. Hence, the right-
hand side is uniformly bounded with respect to 8 and we arrive at

k∑
i=1

{∫
Ωi

Bi(ui
�(x, t)) dx+

∥∥∇ui
�

∥∥2

L2(Ωi
t)

}
≤ Cn(3.23)

for any 8 and for a.e. t ∈ [0, T ]. In order to go to the limit in the nonlinear terms we
need strong convergence. To arrive at an estimate concerning the time variable we
test our problem with ϕi = χ[t,t+h](τ)wi for wi ∈ H1(Ωi), i = 1, . . . , k, wk+1 ≡ 0,

k∑
i=1

{∫
Ωi

(
bi(ui

�(t+ h))− bi�(ui
�(t))

)
widx+

∫ t+h

t

∫
Ωi

∇ui
�∇wi dxdτ

+ n

∫ t+h

t

∫
Γi

(
(ui+1

� − ψi(ui
�))w

i+1 + (ψi(ui
�)− ui+1

�−1)wi
)
dσdτ

}
= 0

and then put wi ≡ ui
�(t + h) − ui

�(t). Since the items on Γi are bounded almost
everywhere, after integration over [0, T − h] one gets the estimate

k∑
i=1

∫ T−h

0

∫
Ωi

(
bi(ui

�(t+ h))− bi(ui
�(t))

) (
ui

�(t+ h)− ui
�(t)
)
dxdt ≤ ch(3.24)

with constant c independent of 8. Here boundedness (3.23) of the gradient of ui
� was

used. Now, passing to the limit 8→∞, the estimates (3.23) and (3.24) together with
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the weak formulation of problem (3.19) yield the existence of a subsequence of {ui
�}

such that

bi(ui
�)→ bi(ui) in L1(Ωi

T ),

ui
� ⇀ ui in L2(0, T ;H1(Ωi)),

∂tb(u
i
�) ⇀ ∂tb(u

i) in L2(0, T ;H−1(Ωi))

for i = 1, . . . , k (cf. [1]). Note, that due to (3.1) and (3.2), ui
� converges strongly

in L1(Ωi
T ) and thus, by interpolation with respect to space variables, also strongly

in L2(Γi
T ). Now, it is not difficult to see that ui, i = 1, . . . , k, is a weak solution of

(3.6).

4. Free boundary value problems. In this section we intend to prove the
existence of a solution to our original problem (1.1)–(1.5) with discontinuous b(u) by
approximating it by problem (3.6). Since we let ε go to zero and n to infinity in (3.6)
our main task is to derive a priori estimates that do not depend on ε, n. The simple
method of step 4 in the proof of Theorem 3.2 by testing the relation with ui is not
applicable since the bounds depend on n (cf. (3.23)).

To this end we want to test our system (3.6) with

φi(u) = ψk ◦ . . . ◦ ψi(u), i = 1, . . . , k,

chosen in such a way that the integrals on Γi are nonnegative. Since ∂tb
i(ui

ε) only
belongs to the dual L2(0, T ;H−1(Ωi)) we have to formulate an “integration by parts
formula” for that case which is proven by Carrillo [4]. Define

Gi
ε(s) =

∫ s

0

φi((biε)−1(r)) dr;(4.1)

we get the following lemma.
Lemma 4.1. Let φ ∈ C0,1(R) be monotone, let b0 = b(u0) ∈ L1(Ω) such that

G(b0) ∈ L1(Ω), let u ∈ L2(0, T ;H1(Ω)), and b(u) ∈ L1(QT ) with derivative ∂tb(u) ∈
L2(0, T ;H−1(Ω)). Then

G(b(u)) ∈ L∞(0, T ;L1(Ω))

and, for almost every t ∈ [0, T ],∫
Ω

G
(
b(u(x, t))

)
dx−

∫
Ω

G
(
b0(x)

)
dx =

∫ t

0

〈b(u)t, φ(u)〉 dτ.

Proof. The lemma is an adaption of [4, Lemma 4] to our problem.
For the following estimates recall our convention uk+1

ε ≡ 0, ψk(u) ≡ u. In view
of our assumptions due to (1.8) we may estimate Gi

ε below by

Gi
ε(biε(u)) ≥ κk−i

∫ biε(u)

0

(biε)−1(r) dr = κk−i

∫ u

0

z dbiε(z) = κk−iBi
ε(u),(4.2)

where Bi
ε(u) is defined by (3.22) and above by

Gi
ε(bi0ε) ≤ Kk−i

∫ bi0ε

0

(biε)−1(r) dr ≤ Kk−i

ι

∫ bi0ε

0

r dr =
Kk−i

2ι
|bi0ε|2(4.3)

for nonnegative bi0ε since (biε)−1(r) ≤ 1
ι r for r ≥ 0.
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Now we test the problem (3.6) with the abovementioned φi(ui
ε). According to

(1.8), for i = 1, . . . , k − 1,

∫ t

0

∫
Γi

(ui+1
ε − ψi(ui

ε)) (φi+1(ui+1
ε )− φi(ui

ε)) dσdτ

≥ κk−1−i

∫ t

0

∫
Γi

(ui+1
ε − ψi(ui

ε))2 dσdτ .

Consequently,

k∑
i=1

{∫
Ωi

(
Gi

ε(biε(ui
ε(t)))−Gi

ε(biε(ui
0ε))

)
dx+

∫ t

0

∫
Ωi

Dφi(ui
ε)
∣∣∇ui

ε

∣∣2 dxdτ}

+ n

k∑
i=1

κ(k−1−i)+

∫ t

0

∫
Γi

(
ui+1

ε − ψi(ui
ε)
)2
dσdτ ≤ 0.

For bounded initial data ui
0ε the function Gi

ε(biε(ui
0ε)) is bounded in Ωi uniformly with

respect to ε, too. Thus, regarding (4.2), (4.3), and (1.8) again, we have proved the
following a priori estimates.

Lemma 4.2. Suppose assumptions (3.1)–(3.5) hold and let bi0ε = biε(ui
0ε) be uni-

formly bounded in L2(Ωi) for i = 1, . . . , k. Then the solution uε from Theorem 3.2
fulfills the estimates

∫
Ωi

Bi
ε(ui

ε(x, t)) dx ≤ C1,(4.4)

‖∇ui
ε‖L2(Ωi

T ) ≤ C2,(4.5)

n ‖ui+1
ε − ψi(ui

ε)‖2L2(Γi
T ) ≤ C3(4.6)

for all ε > 0 and i = 1, . . . , k.

In order to obtain strong convergence of ui
ε as ε→ 0 we need an a priori estimate

with respect to the time variable (cf. [1, Lemma 1.9]).

Lemma 4.3. Let the assumptions of Lemma 4.2 be fulfilled and 0 < h < T . Then
the estimate

∫ T−h

0

∫
Ωi

(
biε(ui

ε(x, t+ h))− biε(ui
ε(x, t))

) (
ui

ε(x, t+ h)− ui
ε(x, t)

)
dxdt ≤ Ch(4.7)

holds for all ε > 0 and i = 1, . . . , k.

Proof. Inserting χ(t,t+h)w
i, wi ∈ Vi, as a test function into (3.8) we obtain by

means of partial integration in time

k∑
i=1

(∫
Ωi

(
biε(ui

ε(t+ h))− biε(ui
ε(t))

)
wi dx+

∫ t+h

t

∫
Ωi

∇ui
ε∇wi dxdτ

)

= −
k∑

i=1

n

∫ t+h

t

∫
Γi

(
ui+1

ε − ψi(ui
ε)
) (
wi+1 − wi

)
dσdτ.
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Now we choose wi = φi(ui
ε(t + h)) − φi(ui

ε(t)), wk+1 ≡ 0, integrate over t ∈
[0, T − h], and estimate by means of (1.8)

k∑
i=1

κk−i

∫ T−h

0

∫
Ωi

(
biε(ui

ε(t+ h))− biε(ui
ε(t))

) (
ui

ε(t+ h)− ui
ε(t)
)
dxdt

≤ h
k∑

i=1

Kk−i

∫ T−h

0

∫
Ωi

∣∣∇[ui
ε]h
∣∣ (|∇ui

ε(t+ h)|+ |∇ui
ε(t)|) dxdt

+ nh

k∑
i=1

K(k−i−1)+

∫ T−h

0

∫
Γi

∣∣[ui+1
ε − ψi(ui

ε)]h(x, t)
∣∣

×
(
|ui+1

ε (t+ h)− ψi(ui
ε(t+ h))|+ |ui+1

ε (t)− ψi(ui
ε(t))|

)
dσdt,

where [u]h(t) = h−1
∫ t+h

t
u(τ) dτ denotes the Steklov average of u(t). Observe that if

X is a normed space, then the Steklov average has the property

‖ [u]h ‖Lp(0,T ;X) ≤ ‖u‖Lp(0,T ;X).

Hence, we finish our calculation using the a priori estimates of Lemma 4.2,

k∑
i=1

κk−i

∫ T−h

0

∫
Ωi

(
biε(ui

ε(t+ h))− biε(ui
ε(t))

) (
ui

ε(t+ h)− ui
ε(t)
)
dxdt

≤ h
k∑

i=1

Kk−i ‖∇ui
ε‖2L2(Ωi

T ) + nh

k∑
i=1

K(k−i−1)+ ‖ui+1
ε − ψi(ui

ε)‖2L2(Γi
T )

≤ Ch,

which proves (4.7).
Now we are in the position to formulate the existence result for our original

problem (1.1)–(1.5). To this end we give the exact definition of a weak solution of
this problem.

Definition 4.4. A function u ≡ (u1, . . . , uk) ∈ L2(0, T ;V ) is a weak solution of
problem (1.1)–(1.5) provided there is a function w ∈ b(u) with wi ∈ L2(Ωi

T ), ∂tw ∈
L2(0, T ; Ṽ ∗), and initial values bi0 in the sense that

∫ T

0

〈∂tw, v〉 dt = −
k∑

i=1

∫ T

0

∫
Ωi

(wi − bi0) ∂tv
i dxdt(4.8)

holds for any v = (v1, . . . , vk) ∈ L2(0, T ; Ṽ ) with ∂tv
i ∈ L∞(Ωi

T ), vi(T ) = 0, the
following identity

∫ T

0

〈∂tw, φ〉 dt +

k∑
i=1

∫ T

0

∫
Ωi

∇ui∇φi dxdt = 0(4.9)

is fulfilled for any φ ∈ L2(0, T ; Ṽ ), and

ui+1 = ψi(ui) a.e. on Γi
T .(4.10)
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Theorem 4.5. Let bi(v), ψi(v), i = 1, . . . , k, be as defined in section 1 ful-
filling assumptions (1.6)–(1.8). Then for given nonnegative bi0 ∈ L2(Ωi) there is a
nonnegative weak solution u of the system (1.1)–(1.5) in the sense of Definition 4.4.

If, moreover, 0 ≤ bi0 ≤ Ci for i = 1, . . . , k where ci = (bi)−1(Ci) fulfills ci+1 =
ψi(ci), then the solution is bounded a.e. on ΩT by 0 ≤ ui ≤ ci.

Proof. We approximate our problem (1.1)–(1.5) by the regularized problem (3.6).
As an initial condition we choose biε(ui

0ε) = bi0ε := Rε ∗ bi0, where Rε is the standard
mollifier with respect to x. For bi0 ≥ 0 the regularization is nonnegative again, thus,
ui

0ε will also be nonnegative for all i = 1, . . . , k. Since (biε)−1 is Lipschitz continuous
we have ui

0ε ∈ Vi ∩ L∞(Ωi), hence there is a solution uε to the approximate problem
due to Theorem 3.2.

Our aim is to let ε → 0 and n → ∞ simultaneously, e.g., choosing n = ε−1.
Assuming such connection between ε and n we omit indication of the dependence of
ui

ε on n. Since we have provided all necessary estimates we can use the standard ar-
guments from [1]. First from (4.5) immediately follows the existence of a subsequence
(we write ui

ε again for all subsequences) with

ui
ε ⇀ ui in L2(0, T ;Vi) as ε→ 0(4.11)

(i = 1, . . . , k). Because of [1, Lemma 4.4], the estimate (4.4) together with Lemma 4.3
yields for a subsequence

biε(ui
ε) ⇀ wi ∈ bi(ui) in L1(Ωi

T ) as ε→ 0.(4.12)

Now, consider relation (3.8) with test functions φ ∈ L2(0, T ; Ṽ ). Then the integrals
over Γi disappear. Since Ṽ is a subspace of V1×· · ·×Vk we have ∂tbε(uε) := ∂tb

1
ε(u1

ε)×
· · · × ∂tb

k
ε(uk

ε) ∈ L2(0, T ; Ṽ ∗) and obtain from (3.8) regarding (4.5)

‖∂tbε(uε)‖L2(0,T ;Ṽ ∗) ≤ C.
This yields for a subsequence

∂tbε(uε) ⇀ ∂tw in L2(0, T ; Ṽ ∗) as ε→ 0.(4.13)

Moreover, we need strong convergence of a subsequence {ui
ε} in order to go to the

limit in the items defined on the interfaces Γi. Recalling construction (2.1) of biε(u),
thanks to monotonicity of χε the estimate (4.7) for biε(u) also holds for its first item,∫ T−h

0

∫
Ωi

(
βi

ε(ui
ε(x, t+ h))− βi

ε(ui
ε(x, t))

) (
ui

ε(x, t+ h)− ui
ε(x, t)

)
dxdt ≤ Ch,

and then due to (1.7)

ι ‖ui
ε(x, t+ h)− ui

ε(x, t)‖2L2(Ωi
T ) ≤ Ch

for all h > 0, ε > 0, and i = 1, . . . , k. Hence, together with (4.5) Kolmogoroff’s
compactness theorem yields strong convergence of a subsequence

ui
ε → ui in L2(Ωi

T ) as ε→ 0.(4.14)

Strong convergence on the interfaces Γi we obtain by application of the interpolation
inequality

‖u‖L2(Γi
T ) ≤ C ‖u‖1−θ

L2(0,T ;Vi)
‖u‖θL2(Ωi

T )
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(see [7, Proposition 2]) to the difference ui
ε − ui. Regarding (4.5) and (4.14), this

inequality yields

ui
ε → ui in L2(Γi

T ) as ε→ 0,(4.15)

(i = 1, . . . , k). Since we arranged that n→∞ if ε→ 0, the estimate (4.6) shows that
the limit ui fulfills our jump condition (4.10).

To show that the limit function is a solution, let ε→ 0 in relations (3.7) and (3.8)
for test functions as fixed in Definition 4.4 using (4.11)–(4.13), which yields relations
(4.8) and (4.9), respectively.

Finally, consider bounded initial values. Then the regularized initial values are
also bounded by bi0ε = biε(ui

0ε) ≤ Ci. Since (biε)−1(s) → (bi)−1(s) as ε → 0 for every
fixed s ≥ 0, we find bounds ciε such that

0 ≤ ui
0ε ≤ ciε, ci+1

ε = ψi(ciε), and ciε → ci as ε→ 0.

Hence, the boundedness assertion ui
ε ≤ ciε a.e. on Ωi

T from Theorem 3.2 yields the
boundedness assertion for ui.

All arguments in the preceding proof to obtain the convergence properties (4.11)–
(4.15) remain the same if we fix n, choose test functions from L2(0, T ;V ), and let ε
pass to zero. This proves the existence of a solution to the free boundary problem
with conditions on the interfaces Γi as formulated in (3.8).

Corollary 4.6. Suppose assumptions of Theorem 4.5. Then there is a weak
solution to the free boundary problem (3.6) with bi(u) given by (1.6), i.e., there are
functions u ∈ L2(0, T ;V ) and wi ∈ L2(Ωi

T ) with ∂tw
i ∈ L2(0, T ;V ∗

i ) fulfilling rela-
tions (4.8) and

k∑
i=1

(∫ T

0

〈∂tw
i, φi〉 dt +

∫ T

0

∫
Ωi

∇ui∇φi dxdt

)

+ n

k∑
i=1

∫ T

0

∫
Γi

(
ui+1 − ψi(ui)

) (
φi+1 − φi

)
dσdt = 0

for any φ ∈ L2(0, T ;V ), uk+1 ≡ φk+1 ≡ 0.
Remark. For bounded initial values we obtain bounded solutions. DiBenedetto

and Vespri prove in [5] that a bounded solution to (1.1) is locally continuous if it can
be approximated in the topology of our approximation by a sequence of local smooth
solutions to (1.1) for smooth biε(·). Hence, if our approximations ui

ε were smooth on
Ωi

T , then ui is continuous in Ωi
T .

5. Nonlinear diffusion. Finally, let bi(u) and ψi(u) be sufficiently smooth func-
tions defined for u ∈ R, say C2(R), which for some constants κ and K satisfy

0 < κ ≤ (bi)′, (ψi)′ ≤ K(5.1)

for i ∈ {1, . . . , k}, bi(0) = ψi(0) = 0, and |(bi)′′|, |(ψi)′′| ≤ K on R.
The above can be viewed as monotone continuously differentiable regularization

of the graph bi and the function ψi from the beginning. See (1.7) and (1.8) above.
The main aim of this section is to show, at least in this regular case, that the non-

linear diffusion multicomponent system with the jump conditions ui+1 = ψi(ui) be-
tween two components is uniquely solvable. For one component Alt and Luckhaus [1]
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prove uniqueness for continuous b under an additional regularity assumption which
is quite similar to our condition (5.5). In the case without interfaces Γi, however,
this condition may be omitted (cf. also the remark after the proof of Theorem 5.2).
Carrillo [4, Theorem 14 and Corollary 10] proves uniqueness of the solution without
condition (5.5) to even more general equations using Kruzhkov’s method of doubling
variables. In our case with the contact condition this method seems to be very com-
plicated. Therefore, we have derived a comparison result by solving the dual problem
again. But contrary to the proof of Theorem 3.3 we have now the jump condition (5.4)
on the interfaces, hence the corresponding dual problem has a transmission condition
on Γi.

Thus, let us now consider the problem

∂tb
i(ui) = ∆ui in Ωi

T , i = 1, . . . , k,

ui = ψi−1(ui−1) and ∂νi
ui + ∂νi−1

ui−1 = 0 on Γi−1
T , i = 2, . . . , k,

∂νiu
i = 0 on T i

T , i = 1, . . . , k,

uk = 0 on Γk
T ,

ui = ui
0 ≥ 0 on Ωi

0 , i = 1, . . . , k,

(5.2)

where initial data ui
0 are supposed to be bounded and sufficiently smooth.

Definition 5.1. We say now that a k-tuple u = (u1, . . . , uk) ∈ L2(0, T ;V ) is a
weak solution of the system (5.2) provided that

(i)

k∑
i=1

(∫
Ωi

bi(ui(x, t)) φi(x, t) dx−
∫ t

0

∫
Ωi

(
bi(ui)∂τφ

i −∇ui∇φi
)
dxdτ

)

=

k∑
i=1

∫
Ωi

bi(ui
0) φi(x, 0) dx(5.3)

is fulfilled for any φ ∈ L2(0, T ; Ṽ ) with φt ∈ L2(ΩT ) (recall that φi+1 = φi on Γi is
required above) and a.e. t ∈ [0, T ];

(ii)

ui+1 = ψi(ui) a.e. on Γi
T ,(5.4)

i = 1, . . . , k; and finally,
(iii) there exists a positive constant C such that

k∑
i=1

∫ T−h

0

∫
Ωi

∣∣ui(x, t+ h)− ui(x, t)
∣∣ dxdt ≤ Ch(5.5)

for h > 0.
A subsolution (supersolution) is defined by (5.3) with equality replaced by ≤ (≥)

and φi ≥ 0 on Ωi
T for each i ∈ {1, . . . , k}.

Theorem 5.2. Let u be a subsolution and v a supersolution of the problem (5.2)
with initial data u0 and v0, respectively. Then if u0 ≤ v0, i.e., ui

0 ≤ vi
0 a.e. on Ωi for

any i ∈ {1, . . . .k}, it follows that

ui(x, t) ≤ vi(x, t)(5.6)

a.e. on Ωi
T for any i ∈ {1, . . . , k}.
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Moreover, if u and v are weak solutions of the problem (5.2) with initial functions
u0 and v0, respectively, then for almost all t ∈ [0, T ] the inequality (3.11) holds.

Proof. Let 0 < t ≤ T be fixed. Take the difference of the integral inequalities
satisfied by u and v for sufficiently smooth φi ≥ 0. Then

k∑
i=1

{∫
Ωi

(
bi(ui(x, t))− bi(vi(x, t))

)
φi(x, t) dx

−
∫ t

0

∫
Ωi

(
ψi(x, ui(x, τ))− ψi(x, vi(x, τ))

) [
αi(x, τ)∂tφ

i(x, τ)

+ µi(x, τ)∆φi(x, τ)
]
dxdτ

}
(5.7)

+
k∑

i=1

∫ t

0

∫
Γi

(
ψi(x, ui(x, τ))− ψi(x, vi(x, τ))

)
× [µi(x, τ)∂νiφ

i + µi+1(x, τ)∂νi+1φ
i+1
]
dσdτ

≤
k∑

i=1

∫
Ωi

(
bi(ui

0(x))− bi(vi
0(x))

)
φi(x, 0) dx.

Recall that we require φi = φi+1 on Γi. In (5.7),

ψi(x, u) ≡



u if x ∈ Γi−1,

ψi(u) if x ∈ Γi,

and for x ∈ Ωi, say

ψi(x, u) ≡ u ωi(x) + ψi(u) 3i(x),

where nonnegative functions ωi, 3i ∈ C∞(Ω̄i) are such that

ωi(x) +3i(x) ≡ 1

for x ∈ Ω̄i, ωi ≡ 1 on a neighborhood of Γi−1, and ωi ≡ 0 on a neighborhood of Γi,
ψk(x, u) = u for x ∈ Ω̄k and ψ1(x, u) = ψ1(u) on Ω̄1. Note that due to (5.4)

ψi+1(x, ui+1(x, t)) = ψi(x, ui(x, t))(5.8)

for any x ∈ Γi and t ∈ (0, T ) and similarly for vi. Finally,

αi(x, τ) ≡ bi(ui(x, τ))− bi(vi(x, τ))

ψi(x, ui(x, τ))− ψi(x, vi(x, τ))

and

µi(x, τ) ≡ ui(x, τ)− vi(x, τ)

ψi(x, ui(x, τ))− ψi(x, vi(x, τ))
.

It follows from (5.1) that

0 < κ ≤ αi(x, τ), µi(x, τ) ≤ K
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for any (x, τ) ∈ Ωi
T , i = 1, . . . , k. Now, let Rε be the standard mollifier in (x, τ)

variables and set

αi
ε(x, τ) ≡ bi(ui

ε(x, τ))− bi(vi
ε(x, τ))

ψi(x, ui
ε(x, τ))− ψi(x, vi

ε(x, τ))
,

µi
η(x, τ) ≡ ui

η(x, τ)− vi
η(x, τ)

ψi(x, ui
η(x, τ))− ψi(x, vi

η(x, τ))
,

where ui
ε(x, τ) = (Rε ∗ ui)(x, τ), ui

η(x, τ) = (Rη ∗ ui)(x, τ), and analogously for vi,
0 < ε, η � 1.

Finally, let ϕεη = (ϕ1
εη, . . . , ϕ

k
εη), ϕεη = ϕεη(x, s) be the solution of the regularized

dual problem

αi
ε(x, t− s)∂sϕ

i = µi
η(x, t− s)∆ϕi in Ωi

t , i = 1, . . . , k,

µi
η(x, t− s)∂νiϕ

i + µi+1
η (x, t− s)∂νi+1ϕ

i+1 = 0,

and ϕi = ϕi+1 on Γi
t , i = 1, . . . , k − 1,

ϕk = 0 on Γk
t ,

∂νiϕ
i = 0 on T i

t ,

ϕi = ϕi
0, 0 ≤ ϕi

0 ≤ 1 on Ωi × {s = 0},

(5.9)

assuming that ϕi+1
0 = ϕi

0 on Γi. As we were not able to prove the existence of the
solution ϕi

εη from W 2.1
2 (Ωi

t), we have to work in the class of weak solutions and we
rewrite the inequality (5.7) into the form∑k

i=1{
∫
Ωi

(
bi(ui(t))− bi(vi(t))

)
ϕi(x, 0) dx

+
∫ t

0

∫
Ωi

(
ψi(x, ui)− ψi(x, vi)

)
αi(x, τ) ∂sϕ

i(x, t− τ) dxdτ

+
∫ t

0

∫
Ωi ∇ϕi(x, t− τ) ∇ [µi(x, τ)

(
ψi(x, ui)− ψi(x, vi)

)]
dxdτ} ≤ 0

(5.10)

for any ϕi, ϕi+1 = ϕi on Γi
t, where we have put

φi(x, τ) = ϕi(x, t− τ), i = 1, . . . , k .

By the weak formulation of the regularized dual problem (5.9) we understand the
following identity:

k∑
i=1

∫ t

0

∫
Ωi

(
αi

ε ∂sϕ
i ξi + ∇ϕi ∇ (µi

η ξ
i
))
dxdτ = 0(5.11)

for any ξ = (ξ1, . . . , ξk) ∈ L2(0, t; Ṽ ). In (5.11) we expect to have

ϕi ∈ H1(0, t;L2(Ωi)) ∩ L2(0, t;Vi) , 0 ≤ ϕi ≤ 1.

Indeed, the following assertion holds.
Lemma 5.3. Let 0 < ε, η � 1 be given. Then there exists a weak solution ϕεη of

(5.9) such that∫ t

0

∫
Ωi

∣∣∂sϕ
i
εη

∣∣2 dxdτ + max
0≤t≤T

∫
Ωi

∣∣∇ϕi
εη

∣∣2 dx ≤ C1(η),(5.12)
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where the positive constant C1 depends on∥∥∂tµ
i
η

∥∥
L∞(Ωi

T )
and

∥∥∇µi
η

∥∥
L∞(Ωi

T )

and does not depend on ε. In addition,∫ t

0

∫
Ωi

∣∣∇ϕi
εη

∣∣2 dxdτ ≤ C2(ε, η),(5.13)

where the positive constant C2 depends on∥∥∇µi
η

∥∥
L2(Ωi

T )
and

∥∥∂tα
i
ε

∥∥
L1(Ωi

T )
,

and

0 ≤ ϕi
εη ≤ 1 on Ωi

T .

Proof. We shall approximate problem (5.9) by the following way:

αi
ε(x, t− s) ∂sϕ

i = µi
η(x, t− s) ∆ϕi in Ωi

t,

µi
η(x, t− s)∂νiϕ

i + n(ϕi − ϕi−1) = 0 on Γi−1
t ,

µi
η(x, t− s)∂νiϕ

i + n(ϕi − ϕi+1) = 0 on Γi
t,

µi
η(x, t− s)∂νiϕ

i = 0 on T i
t ,

ϕi = ϕi
0 on Ωi × {s = 0}.

(5.14)

1. First of all, the existence of a weak solution ϕn = ϕεηn ∈ L2(0, T ;V ) ∩
H1

2 (0, T ;V ∗) of (5.14) such that 0 ≤ ϕi
n ≤ 1, i = 1, . . . , k, can be proved in the same

way as it was done in the proof of Theorem 3.3 above and we omit further details.
Now, testing (5.14) with ϕi

n and adding up through i = 1, . . . , k we get

∑k
i=1

{
κ
∫
Ωi

∣∣ϕi
n(x, t)

∣∣2 dx + 2κ
∫ t

0

∫
Ωi

∣∣∇ϕi
n

∣∣2 dx ds}
+
∑k

i=1 2n
∫ t

0

∫
Γi

∣∣ϕi+1 − ϕi
∣∣2 dσds ≤ ∑k

i=1K
∫
Ωi

∣∣ϕi
0(x)

∣∣2 dx
+
∑k

i=1

{∫ t

0

∫
Ωi

∣∣∂sα
i
ε

∣∣ dxds + 2
∥∥∇ϕi

n

∥∥
L2(Ωi

t)

∥∥∇µi
η

∥∥
L2(Ωi

t)

}
and (5.13) for ϕi

εηn follows easily due to Gronwall’s lemma.

2. Now, assume for a moment that ϕi
n are so smooth that we can test (5.14) with

∂sϕ
i
n and perform all necessary manipulations to arrive at

∑k
i=1

∫ t

0

∫
Ωi

(
αi

ε

∣∣∂sϕ
i
n

∣∣2 + ∂s

(
µi

η|∇ϕi
n|2
)− |∇ϕi

n|2∂sµ
i
η

)
dx ds

+
∑k

i=1

{
2
∫ t

0

∫
Ωi ∇ϕi

n ∂sϕ
i
n ∇µi

η dx ds+ n
∫ t

0

∫
Γi ∂s(ϕi+1 − ϕi)2 dσds

}
= 0.

Hence, (5.12) for ϕi
εηn follows easily. This can be made precise performing analogous

manipulations with

∂h
s ϕ

i
n ≡

ϕi
n(x, s+ h)− ϕi

n(x, s)

h

instead of ∂sϕ
i
n and let us omit these modifications.
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Finally, as all estimates are independent of n, they hold for limit functions ϕi
εη

also.
Now, due to (5.8) we can insert

ξi = ψi(·, ui)− ψi(·, vi)

as a test function in (5.11) that together with (5.10) yields

k∑
i=1

{∫
Ωi

(
bi(ui(t))− bi(vi(t))

)
ϕi

εη(x, 0) dx

+

∫ t

0

∫
Ωi

[(
ψi(x, ui)− ψi(x, vi)

)
(αi − αi

ε) ∂sϕ
i
εη(5.15)

+∇ϕi
εη ∇

(
(µi − µi

η)(ψi(x, ui)− ψi(x, vi))
)]
dxdτ

}
≤ 0.

Before letting ε→ 0 let us note that

(5.5) yields

∫ T

0

∫
Ωi

∣∣∂tu
i
ε(x, t)

∣∣ dxdt ≤ C,

where ui
ε is defined above; cf. (5.8)–(5.9). The same holds true for ∂tv

i
ε. Therefore,

due to (5.1) and what follows we have

∥∥∂tα
i
ε

∥∥
L1(Ωi

T )
≤ C

∫ T

0

∫
Ωi

(∣∣∂tu
i
ε(x, t)

∣∣+
∣∣∂tv

i
ε(x, t)

∣∣) dx dt ≤ C

and also ∥∥∇µi
η

∥∥
L2(Ωi

T )
≤ C,

C being independent of ε, η. Hence, (5.13) remains uniformly bounded and we are
ready to let ε→ 0 and afterwards η → 0 in (5.15) to get

k∑
i=1

∫
Ωi

(
bi(ui(x, t))− bi(vi(x, t))

)
ϕi

0(x) dx ≤ 0.

As this holds for any smooth function ϕi
0, 0 ≤ ϕi

0 ≤ 1, it also continues to hold for
ϕi

0 = χ(ui(x, t)− vi(x, t)), and (5.6) follows easily. The rest of the proof is the same
as in Theorem 3.3.

Remark. If ψi(u) ≡ u for all i = 1, . . . , k we have µi = µi
η ≡ 1. In that case we do

not need condition (5.5) for uniqueness since the estimates (5.12) and (5.13) do not
depend on η; moreover, (5.13) is not needed. Then, however, we have no jumps on
the interfaces Γi, which is the special case of a solution u ∈ L2(0, T ;H1(Ω)) on one
component.

We show now that the solution of (5.2), which we get as the limit of the sequence
of solutions to (3.6) under the assumption (5.1), indeed satisfies (5.5).

Theorem 5.4. In addition to the conditions of section 4 we assume ui
0 ∈ Vi ∩

W 2
1 (Ωi), (5.1), and the compatibility condition

ui+1
0 = ψi(ui

0) on Γi, i = 1, . . . , k.(5.16)
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Then the solution of problem (5.2) obtained by Theorem 4.5 is a solution in the sense
of Definition 5.1. In particular, this solution satisfies condition (5.5).

Proof. Consider the approximate problem (3.6). Theorem 3.2 yields the existence
of a solution un. We want to show that bi(ui

n) fulfills condition (5.5) with a constant C
independent of n. Since b is continuous we obtain strong convergence bi(ui

n)→ bi(ui)
as n → ∞ in L1(Ωi

T ) where u is a solution of (5.2) (see the proof of Theorem 4.5).
Then (5.1) yields the assertion.

Hence, let us estimate the difference bi(ui(x, t + h)) − bi(ui(x, t)) in L1(Ωi) for
a.e. t ∈ [0, T − h] where u is a solution of (3.6). We follow the idea of the proof of
Theorem 3.3 replacing v(x, t) by u(x, t+h). Then all manipulations remain the same
if we are able to manage the item

bi(ui(x, t0 + h))− bi(ui(x, t0))

at some initial time t0. To this end we fix h > 0 and extend problem (2.6) to the
interval t ∈ [−h, T ]. Define

ũ(x, t) =

{
u(x, t) for t ∈ [0, T ],

u0(x) for t ∈ [−h, 0],

and note that ũ is the solution of

∂tb
i(ũi) = ∆ũi + F i in Ωi × (−h, T ),

∂νi ũ
i + n

(
ũi − ψi−1(ũi−1)

)
= f i on Γi−1 × (−h, T ),

∂νi
ũi + n

(
ψi(ũi)− ũi+1

)
= f i on Γi × (−h, T ),

∂νi ũ
i = f i on T i × (−h, T ),

ũi = ui
0 on Ωi × (−h, 0],

(5.17)

with

F i(x, t) = −χ[−h,0](t) ∆ui
0(x), t ∈ [−h, T ], x ∈ Ωi,

f i(x, t) = χ[−h,0](t) ∂νiu
i
0(x), t ∈ [−h, T ], x ∈ ∂Ωi,

i = 1, . . . , k. Here we have used compatibility condition (5.16). Note that F i and f i

do not depend on the approximation parameter n. Now we proceed as in the proof
of Theorem 3.3 for problem (5.17) instead of (3.6) with u = ũ(x, t), v = ũ(x, t + h).
Since we integrate over τ ∈ [−h, t], by our construction the item∫

Ωi

(
bi(ui

0)− bi(vi
0)
)
ϕi(x, t) dx :=

∫
Ωi

(
bi(ũi(x,−h))− bi(ũi(x, 0))

)
ϕi(x, t) dx

=

∫
Ωi

(
bi(ui

0)− bi(ui
0)
)
ϕi(x, t) dx

on the right-hand side of (3.12) disappears. On the other hand, the following addi-
tional items appear:

ri(ϕi, h) =

∫ t

−h

∫
Ωi

(
F i(x, τ)− F i(x, τ + h)

)
ϕi(x, t− τ) dxdτ

+

∫ t

−h

∫
∂Ωi

(
f i(x, τ)− f i(x, τ + h)

)
ϕi(x, t− τ) dσdτ.
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Again we choose a solution ϕi of the regularized dual problem (3.16) as test func-
tion. Since it is bounded by (3.17) by the definition of F i, f i we can estimate these
additional items by

|ri(ϕi, h)| ≤ h (‖∆ui
0‖L1(Ωi) + ‖∂νiu

i
0‖L1(∂Ωi)) ≡ Ci

0 h .

Therefore, performing the manipulations as in the proof of Theorem 3.3, we finally
arrive at

k∑
i=1

∫
Ωi

|bi(ui(x, t+ h))− bi(ui(x, t))| dx ≤
k∑

i=1

Ci
0 h(5.18)

for a.e t ∈ [0, T − h], which concludes the proof.
Remark. Actually, we have proven a stronger condition than (5.5). Indeed, the

solution un of the approximate problem (3.6) fulfills the Lipschitz condition (5.18)
pointwise with respect to time. Since convergence of bi(ui

n) in L1(Ωi
T ) implies con-

vergence of a subsequence in L1(Ωi) for a.e. t ∈ [0, T − h] we even obtain

k∑
i=1

∫
Ωi

|ui(x, t+ h)− ui(x, t)| dx ≤ C h for a.e. t ∈ [0, T − h].
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tality through the RiP program at Oberwolfach.
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Abstract. We employ global quasi-steady manifolds to rigorously reduce forced, linearly damped
dispersive partial differential equations to finite dimensional flows. The manifolds we consider are
not invariant, but through a renormalization group method we capture the long-time evolution of
the full system as a flow on the manifold. For the parametric nonlinear Schrödinger equation we
consider a manifold describing N well-separated pulses and derive an explicit system of ordinary
differential equations for the flow on the manifold which captures the leading order pulse motion
through the tail-tail interactions. We also outline a rigorous connection between the slow evolution
in the hyperbolic PNLS and the fourth-order parabolic phase sensitive amplification equation for
fiber optic systems.

Key words. parametric nonlinear Schrödinger, renormalization group, orbital stability, invari-
ant manifold
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1. Introduction. Many nonlinear optical processes are modeled by partial dif-
ferential equations which are dominated by dispersive effects. We are interested in a
class of these equations which we write abstractly in terms of a vector field F ,

Ut = F (U).(1.1)

In this setting one can often explicitly construct a family of quasi-steady states Φ(p)
parameterized by p ∈ K ⊂ RN for which the residual vector field F (Φ(p)) satisfies
F (Φ(p)) = O(δ) for some δ � 1. Such families naturally arise as leading order terms
in formal asymptotic expansions of exact steady states or of quasi-steady solutions,
as in the example we consider here of a linear sum of steady pulses interacting weakly
through asymptotically flat tails. If the underlying steady states possess some sta-
bility, it is natural to expect that the manifold M = {Φ(p)∣∣p ∈ K} will retain some
degree of local attractivity, that is, solutions U of the full equation may be decom-
posed as U(t) = Φ(p(t)) +W (t), where the time dependent parameters p(t) shadow
the slow evolution of U along the manifold up to a small remainder term W . Previ-
ously, modulational stability applied to individual pulses [35, 24] has yielded results
that are local in the sense that the full solution must remain close to the initial pulse
configuration for the modulational description to retain its force. The method pre-
sented here is not tied to a particular local coordinate system; rather, in the spirit
of Goldenfeld and Onoo’s renormalization group techniques [13], we build our de-
scription by taking an envelope of a family of approximate or “naive” perturbation
expansions, renormalizing away secularities through a slow modulation of parameters.
In this manner we obtain a rigorous reduction of the infinite dimensional system to
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a finite dimensional one which is more amenable to analysis. In the application to
interacting pulses, the reduced system governs the motion of the pulse positions. The
method presented here is robust; without modification it can accommodate the back-
ground noise ubiquitous in optical systems, capturing these effects as time dependent
perturbations to the reduced family of differential equations.

Invariant manifolds have long played a central role in the reduction of dissipative
flows to lower dimensional systems. The smoothing properties afforded by dissipation
make possible the application of a very developed body of invariant manifold theo-
rems [4, 5, 12] to a wide class of problems, including blow-up, decay, and meta-stable
behaviors [6, 10, 23, 32, 33]. For systems which are dominated by dispersion, the
construction of invariant manifolds is less clear. Smoothing properties for dispersive
systems are typically manifested only in weighted spaces, and results have largely
been restricted to single hump traveling waves [34]. The renormalization group tech-
nique developed herein overcomes the lack of smoothing properties of the underlying
equations by renormalizing away secular terms. In some sense the results we obtain
are a step towards a rigorous justification of the Lagrangian reduction or collective
coordinate literature widely used to model dispersive Hamiltonian systems; see [3, 18]
and particularly [26] and the references therein. These methods assume a multiparam-
eter ansatz and develop a family of ordinary differential equations for the parameters
from an averaged variational principle for the Lagrangian (see Whitham [36]), which
serves to project the vector field onto the tangent plane of the manifold formed by
the parameterized ansatz.

Our technique can also be viewed as a modification of the renormalization group
developed by Bricmont and Kupiainen [8] for asymptotics of decay in dissipative
partial differential equations. The underpinning of the renormalization group is a
family of decompositions {(Gn, πn, tn)}∞n=0 where Gn represents a rescaling of the
dependent and independent variables, πn is a projection, and tn is an initial time. The
decompositions serve to break the initial value problem for (1.1) into an equivalent
sequence of initial value problems on the time intervals [tn, tn+1]. The purpose of
renormalization is to adapt the coordinate system to the flow on the given time
interval. The projection πn decomposes the phase space, associating to each point
U a point Φn in the low dimensional manifold Φn = πnGnU and a remainder Wn =
(I − πn)GnU, so that

GnU = Φn +Wn.(1.2)

The decomposition applied to (1.1) yields an evolution equation,

∂tΦn = πnFn(Φn +Wn),
Φn(0) = πnGnU(tn),
∂tWn = (I − πn)Fn(Φn +Wn),
Wn(0) = (I − πn)GnU(tn),

(1.3)

where Fn represents the rescaled flow, i.e., (GnU)t = Fn(GnU). The nonlinear semi-
group Sn for the nth flow gives the map

Sn(t) :

(
Φn(0)
Wn(0)

)
	→
(
Φn(t)
Wn(t)

)
,

which, together with the rescaling and projection implicit in the mapping

U(tn+1) 	→
(
Φn+1(0)
Wn+1(0)

)
,
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induce the renormalization operators

Rn :

(
Φn(0)
Wn(0)

)
	→
(
Φn+1(0)
Wn+1(0)

)
.

The renormalization operators enjoy the group structure

S(τn+1) = G−1
n+1 ◦Rn ◦Rn−1 ◦ · · · ◦R0 ◦G0,

where S denotes the nonlinear semigroup of the original system (1.1). In applications
of this method to decay of solutions of dissipative partial differential equations, the
rescaling is chosen to follow the self-similar nature of the decay, the remainder is driven
to zero, and the renormalization groups Rn converge to a limit R∞; see [9, 7]. The
long-time asymptotics of the original partial differential equation are then reduced
to a study of the fixed points of R∞. In the applications cited, the projection step
is performed when studying the fixed points of the renormalization maps, where the
projection πn maps onto a stable manifold of Rn. In the applications we consider here
the projection plays a dominant role, and the rescaling is less useful. The renormal-
ization operators Rn do not converge to a limit and we adapt the coordinate system
not in response to changes in length and time scales in the underlying evolution, but
rather to follow the drift along the quasi-steady manifold, updating the corresponding
linearized flow and associated projections which dictate the local evolution.

We assume the quasi-steady manifold is a smoothly parameterized N dimensional
manifold M = {Φ(p)∣∣p ∈ K}, and at each point Φ(p) on the manifold the local
linearized operator, Lp, engenders a decomposition X = Xp ⊕ Yp of the underlying
phase space X into two Lp invariant parts: an N dimensional space Yp associated
with small eigenvalues of Lp and a complimentary space Xp on which Lp generates a
C0 semigroup with a uniform exponential decay rate for all p. This later assumption
amounts to a form of normal hyperbolicity, with the fast time scales associated with
the decay into a thin neighborhood of the manifold and the slow time scales describing
the evolution of the parameters. The flow local to Φ(p) is governed by the linearized
operator, the small residual vector field F (Φ), and the higher order nonlinearities.
In particular the manifold need not be locally invariant under the flow. Rather we
assume the manifold is compatible with the local flow in the sense that the space Yp

is well approximated by the local tangent space of the manifold. This decomposition
underlies our renormalization group methods and we describe the flow local to p
in terms of a family of modulational equations for the manifold parameters p and
a partial differential equation for the remainder variable W governing the distance
to the manifold. We write the evolution equation for W in terms of the linearized
operator Lp0 frozen at a point p0 on the manifold, and build estimates on the growth
and decay of W . As the manifold parameters p evolve away from p0 a natural
secular growth is seen in the estimates for W , and after a finite time, control of
W is lost. We remove this secular growth with a renormalization of the evolution
equations, updating the base point p0 through a nonlinear projection; see Figure 2.2
for a graphical representation.

The series of initial value problems generated by the renormalization group meth-
od permit us to follow the flow on the manifold without the complication of a time
dependent linearized operator. Indeed, we require the operators Lp to generate only a
C0 semigroup on Xp, with eventual exponential decay after initial transient growth. It
is well known that even if for each fixed t0 the operator L(t0) generates an asymptoti-
cally contractive semigroup, the flow governed by the linear family of time dependent
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operators,

Wt = L(t)W,

need not generate an asymptotically contractive semigroup. The transient growth
associated with each fixed operator may never settle down, and the result may be a
diminished decay rate or resonant growth. It is precisely this latter phenomenon which
Kato excludes with his “stability” assumption (see (1.1) of [17]) required to obtain
uniform decay estimates for the semigroup generated by a time dependent family of
linear operators. However the verification of the stability assumption typically requires
smoothing estimates on the individual operators L(t0). We use the renormalization
method to exploit the fact that the evolution of the parameters p in Lp is on a slower
time scale and the fact that the difference Lp1

− Lp2
is a lower order operator than

either of Lp1 or Lp2
. In this manner we attain uniform decay estimates without

smoothing properties for the semigroup. The situation is particularly clear when
considering the evolution of a single pulse, in which case one may be tempted to
decompose the solution U of (1.1) as U(x, t) = Φ(y) + V (y, t), where y = x − s(t) is
a traveling variable that shadows the pulse position s(t). When the remainder V is
advected with the pulse there is the advantage that the evolution for V is governed
by a time independent linear operator

Vt = LV +N (V ) + Φ′(y)s′ + Vys
′,

where ′ denotes differentiation of a function of one variable, and N represents nonlin-
ear terms in V . However the term Vy is unbounded and the necessary estimates on V
cannot be closed without some smoothing estimates for the semigroup generated by
L. It is precisely this “small” infinity Vys

′ which we renormalize away.
In section 2 we present the renormalization method for a general framework of

dispersive equations, emphasizing the nature of the assumptions required in hypothe-
ses (H0)–(H4). The results of section 2 are summarized in Theorem 2.1. In section 3
we consider applications to the parametrically forced nonlinear Schrödinger (PNLS)
equation, which models dispersive phenomenon in damped, forced systems in a variety
of settings including plasma waves, Faraday resonance, spin waves and magnetic soli-
tons in ferro-magnets, and pattern formation in optical parametric oscillators [2, 25].
By considering a model for which the linearized operators have been studied [25], we
considerably simplify the presentation of the results. Specifically we show the stabil-
ity of fronts to time dependent perturbations in the defocusing case, and describe the
evolution of trains of N well-separated pulses in the focusing case, including pulses
with differing up-down orientations. For each configuration of pulses we obtain a fam-
ily of differential equations for the pulse positions which show that like-signed pulses
attract, while opposite-signed pulses repel. This result is evocative of the meta-stable
pattern evolution obtained by Carr and Pego [11] for fronts in a reaction-diffusion
equation. We contrast our results with those of Kapitula and Sandstede [19], who
study the stability of exact N -pulses in PNLS created in an orbit-flip bifurcation
under the addition of a dissipative regularizing term. We study the unregularized
problem, and the modulational equations for the pulse positions (3.53) show there are
no exact N -pulse solutions with wide pulse spacing for PNLS. In the discussion we
sketch an argument which shows that to leading order the meta-stable pulse motion
in the focusing PNLS is the same as that in the phase sensitive amplification (PSA)
equation for fiber optics; see [22, 30]. We mention that an extension of the work on
N -pulses [27] which recovers some of the results presented here is in preparation [28].
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We will employ the following notation throughout the paper. The usual Lp norm
is denoted ‖ · ‖p, and the L2 inner product (·, ·)2. The Sobolev norms in Hs will be
denoted ‖ · ‖Hs , while the induced operator norms on L2 and H2 are denoted ‖ · ‖∗,2
and ‖ · ‖∗,Hs , respectively. A superscript ∗ denotes complex conjugation while �z and
�z denote the real and imaginary parts of z. The adjoint of an operator L with respect
to the L2 inner product is denoted L†. The superscript t denotes transposition, and
⊥ denotes the orthogonal complement in L2. The spectrum of a linear operator L is
denoted σ(L), which we divide into essential σe(L) and point σp(L) spectrum. The
resolvent set is denoted by �(L). The range and kernel of L are denoted R(L) and
ker(L), respectively. A superscript ′ will denote differentiation of a function of a single
variable with respect to that variable. We will denote by M any positive constant
whose value, which may change from line to line, is independent of any of the small
parameters. Occasionally for clarity, we will carry the same constant from one line to
the next; we will denote such constants by M1,M2, . . . .

2. Abstract formulation of the renormalization method. We consider a
class of damped, dispersive wave equations

Ut = F (U),(2.1)

where

F (U) = JUxx + f(U)(2.2)

for J a skew matrix. The dependent variable U takes values in Rd, U : R×R+ 	→ Rd,
and the nonlinear term f ∈ C2(Rd,Rd). Of fundamental interest is the evolution of
the solutions which reside in a neighborhood of a manifoldM smoothly parameterized
by steady or quasi-steady solutions Φ(x,p) of (2.1) for p ∈ K, a compact subset of
RN . More specifically we require that the residual vector field F

∣∣
M satisfies

F (Φ(p)) = 0 or ‖F (Φ(p))‖H1 = O(δ(p)),(2.3)

where δ(p) ≤ δ0 � 1 for p = (p1, . . . , pN )t ∈ K. To increase the scope of applications
of our method, we modify the equations under consideration to include a small forcing
term

Ut = F (U) + δ0ξ̃(U, x, t),(2.4)

where ξ̃ satisfies the bound

‖ξ̃(U(·, t), ·, t)‖H1 ≤ M
(
1 + ‖U‖pH1

)
(2.5)

for some M > 0 and positive integer p.
The dynamics of (2.4) local to the manifold M are dominated by the linearized

flow. Writing the solution U as a sum

U(x, t) = Φ(x,p(t)) +W (x, t)(2.6)

the evolution for the remainder W is given by

Wt = LpW +N (W )−∇pΦ(p)p
′ + δ0ξ,(2.7)
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Fig. 2.1. The spectral decomposition. ×’s denote eigenvalues and solid dots denote branch
points. The dotted line represents the boundary �λ = −k of σs and the dotted circle of radius δ0
encloses the small eigenvalues of σ0.

where

Lp = J∂2
x +∇f(Φ(p)),(2.8)

the nonlinear terms, N , take the form

N (W ) = f(Φ(p) +W )− f(Φ(p))−∇f(Φ(p))W,

and ξ ≡ ξ̃ + F (Φ)/δ0 also satisfies (2.5). The family of linearized operators {Lp}p∈K
plays a central role in the analysis which follows. We make the following assumptions
(H0)–(H4) about the operators and the quasi-stationary manifold M.

Quasi-stationarity.
(H0) The manifold M = {Φ(p)∣∣p ∈ K} is quasi-steady in the sense that

‖F (Φ(p))‖H1 ≤ Mδ0(2.9)

for some M > 0 and all p ∈ K. Moreover the quasi-steady ansatz Φ and its first two
derivatives with respect to x and p are uniformly bounded, and the forcing term f
and its first two derivatives are uniformly bounded in a neighborhood of M by some
positive constant M.

Normal hyperbolicity.
(H1) The spectrum of each operator Lp may be decomposed into a stable part

σs, strictly contained in the left-half complex plane, and a slow part σ0, comprised of
a fixed, finite number of small eigenvalues; see Figure 2.1. Specifically

σ(Lp) = σs ∪ σ0,(2.10)

where σs ⊂ {λ∣∣�λ ≤ −k} for some k > 0 and σ0 ⊂ {λ∣∣ |λ| ≤ δ0}, consists of N
eigenvalues, up to multiplicity. Both N and k may be chosen independent of p ∈ K.

(H2) Each fixed operator Lp generates a C0 semigroup Sp which satisfies

‖Sp(t)u‖H1 ≤ Me−kt‖u‖H1 for all t ≥ 0, u ∈ Xp,(2.11)
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where Xp is the Lp invariant subspace of H1 of codimension N associated with the
spectrum σs. Moreover, M may be chosen independent of p ∈ K.

Compatibility. We denote by Yp the Lp invariant subspace of dimension N
complimentary to Xp, and refer to Yp as the slow space.

(H3) We assume that the slow space Yp is well approximated by the tan-
gent plane of the manifold M; i.e., there is a constant δC > 0 small enough and a
given ordering {Ψ1, . . . ,ΨN} of the eigenfunctions of Yp to which there corresponds
a parameterization of the manifold M verifying∥∥∥∥Ψi(p)− ∂Φ(·,p)

∂pi

∥∥∥∥
H1

≤ δC for i = 1, . . . , N(2.12)

for each point p ∈ K. Here δC > 0 is independent of p ∈ K.
We denote by πp the Lp spectral projection whose range is Yp, which we construct

explicitly as

πpu =

N∑
i=1

(u,Ψ†
i )2Ψi,(2.13)

where the adjoint eigenvectors Ψ†
i have been chosen to satisfy the orthonormality

conditions

(Ψi,Ψ
†
j)2 =

{
1, i = j,
0, i �= j.

(2.14)

We note that the projection π takes this form even if the eigenvalues in σ0 are not
simple.

Stability.

(H4) We assume that the adjoint eigenvectors normalized by (2.14) are uni-
formly bounded and depend smoothly upon p for p ∈ K; that is,

max
i=1,...,N

p∈K

(
‖Ψ†

i (p)‖H1 + ‖ |∇2
pΨ

†
i (p)| ‖H1

)
≤ M.(2.15)

We remark that with the normalization we have taken, (2.15) is equivalent to the
Jordon chain structure of the eigenvectors of Lp in σ0 being independent of p ∈ K.

Under these assumptions we may prove our main result, stated below.

Theorem 2.1. Let a quasi-steady manifold M =
{
Φ(p)

∣∣p ∈ K} with parameters
from K ⊂ RN be given which satisfies the hypotheses (H0)–(H4) for some positive
constants M and k. Then for ε, δ0, and δC small enough, in terms of M and k, there
exist a finite constant M0 and times T , and T i all positive, such that for all initial
data U(x, t0) = U0(x) of the form (2.20), the solution U of (2.4) can be decomposed
as

U = Φ(x,p(t)) +W (x, t) for t ∈ [t0, t0 + T ],(2.16)

where the remainder W satisfies

‖W (·, t)‖H1 ≤ M0

(
εe−k(t−t0) + δ0

)
.(2.17)
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The parameters p(t) = (p1, . . . , pN )t may be chosen to lie on a smooth curve in K,
and T , the time for the curve to exit K, satisfies

T > M0dist(p∗, ∂K)/δ0,(2.18)

where p∗ is as given in (2.20). After an initial transient, that is, for t ≥ t0 + T i, the
evolution of the parameters is governed to leading order by the closed system

p′i =
(
δ0ξ̃ + F (Φ(p)),Ψ†

i (p)
)

2
+O(δ2

0) for t ≥ t0 + T i,(2.19)

for i = 1, . . . , N.
Remark 1. If the evolution equation (2.19) precludes the parameter p(t) from

reaching the boundary ∂K, then we may take T = ∞ in the theorem above. We may
take K ⊂ RN to be unbounded so long as the hypotheses (H0)–(H4) hold uniformly for
all p ∈ K, particularly if M and k in (H0), (H2), and (H4) can be chosen independent
of p over the unbounded set K.

Remark 2. If the initial data U0 are taken to lie on the manifold, that is, if
U0 = Φ(p∗) for some p∗ ∈ K, then there is no initial transient and we may take
ε = T i = 0, and we recover the collective coordinate equations (2.19) immediately at
t = t0.

Remark 3. The small parameter δC of hypothesis (H3) need only be small enough
that the equations (2.28) for p′ have nonzero denominators and that Proposition 2.2
holds. Further reduction in the size of δC does not strengthen the results. The error
term for the evolution of the manifold parameters (2.19) after the initial transient is
dominated by the influence of the remainder. To obtain a more accurate resolution
of this reduced flow we must reduce the size of the remainder, which is equivalent to
reducing δ0.

We follow the renormalization group approach outlined in the introduction, break-
ing the time domain up into intervals {[tn, tn+1]}∞n=0 and decomposing the space do-
main with projections {πn}∞n=0. There are two distinct regimes: an initial transient
in which the solution converges into a thin O(δ0) neighborhood of the manifold and
an asymptotic state in which the solution remains within this thin neighborhood; see
Figure 2.2. In the asymptotic state the evolution of the full solution can be well
described by a closed system of differential equations for the manifold parameters.

2.1. Evolution equations. We now consider the evolution of a given initial
datum U0 of (2.4), which is near to the manifold M in the sense that

U0(x) = Φ(x,p∗) + εŴ0,(2.20)

where ‖Ŵ0‖H1 ≤ 1 and p∗ is some element of K. It is natural to take ε intermediate
in size between 1 and δ0, 1 � ε � δ0, and we investigate the relaxation of an initial
perturbation into the relatively smaller O(δ0) neighborhood of the manifold M.

Our analysis requires a local coordinate system in which W ∈ Xp0 for some p0.
This amounts to solving a nonlinear equation.

Proposition 2.2. Let the quasi-steady manifold M satisfying hypotheses (H0)–
(H2), (H4) for some constants M and k be given. Then for δC in (H3) small enough,
in terms of M and k but independently of δ0, there exist M0 and ε0 > 0 such that for

all p∗ ∈ Ko ≡ {p ∈ K∣∣d(p∗, ∂K) > ε
1/2
0 }, and for all Ŵ0 satisfying ‖Ŵ0‖H1 ≤ 1 there

is a unique smooth function H = H(ε; Ŵ0) which maps H : [−ε0, ε0] → RN such that
H(0) = 0 and the point p(ε) = p∗ +H(ε) satisfies p ∈ K and
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Fig. 2.2. A sequence of orbits produced by the iterative scheme. The base points pi are indicated
on the horizontal axis. The range of πpi is not the tangent space of the manifold at p = pi since
Φ is not an exact solution of (2.1). The orbit initially converges towards the manifold (initial
transient—solid) and then remains within an O(δ0) neighborhood (asymptotic state—dotted).

W0 ≡ εŴ0 +Φ(p∗)− Φ(p(ε)) ∈ Xp(ε).(2.21)

Moreover, if Ŵ0 ∈ Xp̃, then

|p(ε)− p∗| ≤ M0ε|p∗ − p̃|.(2.22)

Proof. The condition (2.21) is equivalent to

0 = πpW0 = πp(εŴ0 +Φ(p∗)− Φ(p)),(2.23)

which from (2.13) and the linear independence of the eigenvectors Ψi is equivalent to
the equations

Γi(ε,p) ≡ (εŴ0 +Φ(p∗)− Φ(p),Ψ†
i (p))2 = 0(2.24)

for i = 1, . . . , N. For ε = 0, one solution is p = p∗. The stability hypothesis (H4)

dictates that the adjoint eigenfunctions Ψ†
i (p) depend smoothly upon the parameters

p. We apply the implicit function theorem to find a curve of solutions parameterized
by ε. We introduce Γ = (Γ1, . . . ,ΓN )t and find from (2.12) that the ij entry of the
gradient ∇pΓ satisfies(

∇pΓ
∣∣
(0,p∗)

)
ij
= −

(
∂Φ

∂pi
,Ψ†

j

)
2

= −(Ψi,Ψ
†
j)2 +O(δC).(2.25)

From the orthonormality relation (2.14) we may rewrite this as

∇pΓ
∣∣
(0,p∗)

= −I +O(δC).(2.26)

Moreover it is easy to see from (2.24) that

∂Γ

∂ε

∣∣∣∣
(ε,p)

=




(Ŵ0,Ψ
†
1(p))2
...

(Ŵ0,Ψ
†
N (p))2


 ,
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while all higher order derivatives of Γ with respect to ε are zero. From (2.15) we
find that |∂Γ

∂ε |(0,p)
| is bounded uniformly for all Ŵ in the unit ball of H1 and all

p ∈ K from hypothesis (H4). From (2.26) it follows that ∇pΓ
∣∣
(0,p∗)

is invertible

for δC small enough, with the modulus of invertibility 1/|[∇pΓ
∣∣
(0,p∗)

]−1| uniformly

bounded independent of Ŵ in the unit ball of H1 and p ∈ Ko. Moreover, the second
derivatives of Γ with respect to p are uniformly bounded by hypotheses (H0) and
(H4). The implicit function theorem guarantees the existence of a smooth function H
which provides the solution of (2.21). The interval of existence of H, denoted [−ε0, ε0],
can be chosen independent of Ŵ and p due to the uniformity of the bounds on the
invertibility of ∇pΓ

∣∣
(0,p∗)

and the second derivatives of Γ. Moreover, if Ŵ0 ∈ Xp̃,

then we have (Ŵ0,Ψ
†
i (p̃))2 = 0 for i = 1, . . . , N . This yields the estimate

|(Ŵ0,Ψ
†
i (p∗))2| ≤ |(Ŵ0,Ψ

†
i (p̃)−Ψ†

i (p∗))2| = O(|p∗ − p̃|).

In this case we have the bound |∂Γ
∂ε |(0,p∗)| = O(|p∗ − p̃|), from which the implicit

function theorem yields (2.22). Finally, from the bound (2.22) we see that p∗ ∈ Ko

implies the curve p(ε) lies within K for |ε| ≤ ε0 and ε0 small enough.
We employ the proposition above to fix the base point p0 = p∗+H(ε) and define

the initial data W0 from (2.21). We choose an evolution equation for W which leaves
Xp0 positively invariant. With Lp0

as the principle linear operator we rewrite (2.7)
as

Wt = Lp0
W +N (W )−Kp0

p′ +B(p0,p)W − E(p0,p)p
′ + δ0ξ,(2.27)

where B(p0,p) = Lp − Lp0
, Kp0

= (Ψ1(p0), . . . ,ΨN (p0)) is a d × N matrix whose
columns span Yp0

, and E(p0,p) = ∇pΦ(p) − Kp0
controls the difference between

the tangent plane of Φ(p) and Yp0 , which by the compatibility hypothesis (H3) is
O(δC). It is important for our analysis that B(p,p0) = L(p)− L(p0) = ∇f(Φ(p))−
∇f(Φ(p0)) is a bounded operator. We note that πpu = Kpν, where ν ∈ RN has ith

component νi = (u,Ψ†
i (p))2.

We now project (2.27) onto the space Xp0
, demanding that πp0

Wt = 0. This
condition yields N equations which determine the N unknowns p′,

p′i =
(N (W ) +B(p0,p)W + δ0ξ,Ψ

†
i (p0))2

1 + (Ei(p0,p),Ψ
†
i (p0))2

.(2.28)

We supplement these equations with the initial condition

p(t0) = p0.(2.29)

The evolution for W may be recast as

Wt = Lp0W + G,
W (t0) = W0,

(2.30)

where

G = (I − πp0)
(
B(p0,p)W +N (W ) + E(p0,p)p

′ + δξ
)
,(2.31)

and W0 is given by (2.21).
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The equation (2.30) admits the mild solution

W (t) = S0(t− t0)W0 +

∫ t

t0

S0(t− t′)G(t′)dt′,(2.32)

where S0 is the semigroup generated by Lp0 . To control the decay of ‖W‖H1 and the
motion along the manifold M, we introduce the quantities

T0(t) = sup
t0<t′<t

ek(t
′−t0)‖W (t′)‖H1 ,

T1(t) = sup
t0<t′<t

|p(t′)− p0|.(2.33)

We note that T0 affords the estimate

‖W (t′)‖H1 ≤ e−k(t
′−t0)T0(t) for all t0 < t′ < t.(2.34)

The decay estimates of (2.11) applied to the mild solution yield the bound

‖W (t)‖H1 ≤ Me−k(t−t0)‖W0‖H1 +M

∫ t

t0

e−k(t−t
′)‖G(t′)‖H1dt′.(2.35)

From (2.31) it follows that

(2.36)

‖G‖H1 ≤ ‖B(p0,p)‖∗,H1‖W‖H1 + ‖N (W )‖H1 + ‖E(p0,p)‖H1 |p′|+ δ0‖ξ‖H1 .

Since the nonlinearity f is smooth, as is the ansatz function Φ, it follows easily that

‖B(p0,p)‖∗,H1 ≤ M |p0 − p| ≤ MT1.(2.37)

Note that under the evolution (2.28) T1 will grow with time; this is the secularity
present in our system which we renormalize away. For ‖W‖H1 small the nonlinearity
N (W ) and forcing ξ satisfy

‖N (W )‖H1 ≤ M‖W‖2
H1 ,(2.38)

‖ξ‖H1 ≤ M
(
1 + ‖W‖H1 + ‖W‖2

H1

)
.(2.39)

From the compatibility assumption we have

‖E(p0,p)‖H1 ≤ ‖Kp0 −Kp‖H1 + ‖Kp −∇pΦ(p)‖H1

≤ M(|p0 − p|+ δC) ≤ M(T1 + δC).
(2.40)

We examine the denominator of (2.28), observing that

∣∣(Ei(p0,p),Ψ
†
i (p0))

∣∣≤ M(T1 + δC),

which for T1 and δC small enough implies the denominator is uniformly bounded away
from zero. From (2.28) we then find the bound

|p′| ≤ M
(
T1‖W‖H1 + ‖W‖2

H1 + δ0(1 + ‖W‖H1)
)
.(2.41)
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We combine the estimates above to obtain the bound below on the forcing term G
of (2.30):

(2.42)

‖G‖H1 ≤ M
(|p0 − p| · ‖W‖H1 + ‖W‖2

H1 + δ0(1 + ‖W‖H1)
)
(1 + T1 + δC).

For δC and T1 small enough, we may neglect the last factor on the right-hand side of
(2.42). The estimate (2.34) then yields

‖G‖H1 ≤ M(T1e
−k(t−t0)T0 + e−2k(t−t0)T 2

0 + δ0(1 + T0)).(2.43)

With this estimate in hand we replace the quantity ‖G‖H1 in (2.35) to obtain

‖W (t)‖H1

(2.44)

≤ M

(
e−k(t−t0)ε+

∫ t

t0

e−k(t−t
′)
(
e−K(t′−t0)T1T0 + e−2k(t′−t0)T 2

0 + δ0(1 + T0)
)
dt′
)
.

Multiply the inequality above by ek(t−t0), evaluate the integrals, and take the supre-
mum over t ∈ [t0, τ ]. Then results the inequality

T0(τ) ≤ M1(ε+ (τ − t0)T0(τ)T1(τ) + T 2
0 (τ)(1− e−k(τ−t0)) + δ0(1 + T0(τ))e

k(τ−t0)),
(2.45)

valid for some M1 > 0. The inequality above controls T0 so long as τ is close to t0 and
T0 is small. We impose two conditions on τ which control, respectively, the second
and fourth terms on the right-hand side of (2.45):

T1 ≤ 1

2M1(τ − t0)
(2.46)

and

τ − t0 ≤ ln(ε/δ0)

k
.(2.47)

For τ − t0 so small that both (2.46) and (2.47) hold we may write (2.45) as

T0(τ) ≤ 2M1

1− 2εM1
(2ε+ T 2

0 (1− e−k(τ−t0))).(2.48)

For ε small enough, in terms of M1, this inequality implies that either T0 < r1(τ) or
T0 > r2(τ), where r1 < r2 are the two roots of the equation

2ε−
(

1

2M1
− ε

)
r + r2(1− e−k(τ−t0)) = 0.

Since T0 is continuous, T0(t0) = ε, and limτ→t+0
r2(τ) = ∞, it follows that initially

T0(t0) ≤ r1(t0) and hence by continuity of T0, r1, and r2 with respect to τ we have
the inequality T0(τ) ≤ r1(τ), valid so long as both the conditions (2.46) and (2.47)
hold. Moreover, the inequality r1(τ) ≤ limτ→∞ r1(τ) = M∗ε holds for some M∗ > 0.
This permits us to rewrite the bound on T0 in the form

T0(τ) ≤ M∗ε,(2.49)
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where M∗, which quantifies the possible secular growth after one renormalization, is
independent of τ > t0.

We now investigate the range of τ for which we may impose the condition (2.46).
From the definition (2.33) of T1 and the estimates (2.41) and (2.39) we find that

T1(t) ≤
∫ t

t0

|p′(t′)|dt′

≤ M

∫ t

t0

(
T1‖W‖H1 + ‖W‖2

H1 + δ0(1 + ‖W‖H1)
)
dt′(2.50)

≤ M2

(
T1T0 + T 2

0 + δ0(1 + T0)(t− t0)
)
.

Isolating T1 on the left-hand side of the last estimate above yields

T1(t) ≤ M2(T
2
0 + δ0(1 + T0)(t− t0))

1−M2T0
,(2.51)

which, in light of (2.49), becomes

T1(t) ≤ M
(
ε2 + δ0(t− t0)

)
.(2.52)

The condition (2.47) yields the inequality δ0(t− t0) ≤ δ0 ln(ε/δ0)
k , which permits us to

rewrite (2.52) as

T1(t) ≤ M(ε2 + δ0 ln(ε/δ0)),(2.53)

valid so long as conditions (2.46) and (2.47) hold and ε and δ0 are small enough.
In particular the condition (2.46) can be replaced with the slightly stronger explicit
constraint on τ ,

τ − t0 ≤ M

ε2 + δ0 ln(ε/δ0)
.(2.54)

2.2. The renormalization group decompositions. We may now construct
the decompositions {(πn, τn)}∞n=0 of the phase space alluded to in the introduction,
and employ the corresponding renormalized equations to bound the remainder and
track the flow on the manifold. An important tool is the estimate (2.49), valid for τ
satisfying the constraints (2.47) and (2.54). For a given δ0 < ε, there exists ε̂(δ0) > 0
such that for all ε ≥ ε̂(δ0) the condition (2.54) is more strict. We call this case the
initial transient, and the complimentary case the asymptotic state; see Figure 2.2.
We note here that the condition ε ≥ ε̂(δ0) implies that δ0 is exponentially small in
terms of ε, i.e., δ0 � e−1/ε. However, this separation of scales arises naturally in the
pulse-pulse interactions we consider in which δ0 = O(e−l) for some pulse separation
l.

2.2.1. Initial transient. If the initial remainder, W0, is large enough, i.e.,
‖W0‖H1 = ε > ε̂(δ0), then the terms in (2.45) arising from the relaxation into a
neighborhood of the manifold dominate those due to the forcing terms. The relevant
condition on τ for (2.49) to hold is (2.54), which we write as

τ − t0 ≤ M3

ε2 + δ0 ln(ε/δ0)
,(2.55)
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for some M3 > 0. We may rewrite (2.49) as

T0(τ) ≤ εM∗ for τ − t0 ≤ M

ε2 + δ0 ln(ε/δ0)
,(2.56)

which is equivalent to

‖W (t)‖H1 ≤ εM∗e−k(t−t0).(2.57)

In particular we obtain the upper bound

‖W (t1)‖H1 ≤ εM∗e−kM3/(ε
2+δ0 ln(ε/δ0)) for t1 = t0 +

M3

ε2 + δ0 ln(ε/δ0)
.(2.58)

We are in a position to close the estimates we have developed. For ε > ε̂(δ0) we
have ε2 � δ0 ln(ε/δ0) and the coefficient

M∗e−kM3/(ε
2+δ0 ln(ε/δ0)) � 1(2.59)

for ε small enough. This expresses the fact that the renormalization period [t0, t1] was
long enough that the exponential decay of the semigroup can overcome the short-term
secular growth implicit in the factor M∗. At the end of the time period [t0, t1] we have
a remainder of size ‖W (t1)‖H1 , which is much smaller than the original remainder
‖W (t0)‖H1 .

We iterate the renormalization procedure outlined above, setting ε0 = ε and
defining

εn = εn−1M∗e−kM3/(ε
2
n−1+δ0 ln(εn−1/δ0))(2.60)

for n = 1, . . . , n̂, where n̂ = n̂(δ) is specified below. We emphasize that εn+1 � εn
when εn > ε̂(δ0). We renormalize the remainder W at time tn according to

Ŵn = (1/εn)W (tn),(2.61)

which in light of (2.58) affords the bound ‖Ŵn‖H1 ≤ 1. From Proposition 2.2, so long

as d(pn−1, ∂K) > ε
1/2
n , we may find pn ∈ K such that

Wn ≡ εnŴn +Φ(p(tn))− Φ(pn)(2.62)

lies in Xpn . Moreover, (2.22) implies

|p(tn)− pn| ≤ Mεn|pn − pn−1| ≤ MεnT1(t
−
n ) ≤ Mε3n,(2.63)

where we employed (2.53) and ε2n � δ0 ln(εn/δ0) in the last inequality. We also have
‖Wn‖H1 ≤ Mεn for some constant M independent of n. The evolution equations
(2.28) and (2.30) with initial data pn and Wn at time t = tn may be solved on
[tn, tn+1], where

tn+1 = tn +
M3

ε2n + δ0 ln(εn/δ0)
,(2.64)

with the resulting bounds

‖W (t)‖H1 ≤ εnM∗e−k(t−tn) for t ∈ [tn, tn+1],(2.65)

valid uniformly in n.
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The sequence of renormalization gauges εn converges rapidly to zero, and after
some small number n̂ = n̂(δ0) of iterations we arrive at the situation εn̂ < ε̂(δ), and the
initial transient is completed. From the recursive definition of εn it is straightforward
to rewrite the bound (2.65) as

‖W (t)‖H1 ≤ εMn+1e−k(t−t0) for t ∈ [tn, tn+1], n = 0, . . . , n̂,(2.66)

where M > M∗ may be chosen independently of n; see [25] for details. The term
Mn+1 may be interpreted as a logarithmic correction to the exponential decay rate
k associated with the individual linearized operators. This correction arises from the
time dependent modulation of the linearized operators induced by the slow flow on
the manifold.

2.2.2. Asymptotic state. At the n̂th iteration we have εn̂ ≤ ε̂(δ0), the con-
straint (2.47) is more exigent than (2.54), and the forcing terms dominate the evolu-
tion of the parameters p. We have the evolution equations (2.28) for p and (2.30) for
the remainder W with initial data pn̂(0) = pn̂ and Wn̂(0) given by (2.62) evaluated
at n = n̂. We iterate the procedure outlined in (2.35)–(2.49), which in light of the
constraint (2.47) yields the estimate

T0(τ) ≤ εn̂M∗ for τ − tn̂ ≤ k−1 ln(εn̂/ ln δ0),(2.67)

which is equivalent to

‖W (t)‖H1 ≤ εn̂M∗e−k(t−tn̂) for τ − tn̂ ≤ k−1 ln(εn̂/δ0)(2.68)

and, in particular,

‖W (tn̂+1)‖H1 ≤ δ0M∗ for tn̂+1 = tn̂ + k−1 ln(εn̂/δ).(2.69)

We define ε∗ = δ0M∗, setting εn = ε∗ and tn+1 = tn+k−1 ln(ε∗/δ0) = tn+k−1 ln(M∗)
for all n > n̂. We note that the time interval tn+1 − tn is precisely that required for
the exponential decay to balance the secular growth. This exact balance arises from
the precise form of condition (2.47). With an iteration similar to that outlined for the
initial transient, we find that

‖W (tn)‖H1 ≤ ε∗ for all n > n̂,(2.70)

and, moreover,

‖W (t)‖H1 ≤ ε∗M∗e−k(t−tn) for t ∈ [tn, tn+1], n > n̂,(2.71)

where we recall that M∗ is independent of δ, ε, or n.
We note that the estimate (2.71), taken over the interval [tn, tn+1], is stronger at

the endpoint t = tn+1 than at the initial point t = tn. However the variation in the
right-hand side is only O(1) and we may rewrite (2.71) as

‖W (t)‖H1 ≤ Mδ0 for t > tn̂+1,(2.72)

for M = max{M∗,M2
∗}.

We may now complete the proof of Theorem 2.1. The estimate (2.17) follows
from (2.66) and (2.72). The curve p(t) given by (2.28) is smooth except for the jumps
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∆n ≡ pn−p(tn) at the renormalization times t = tn which, from Proposition 2.2 and
(2.53), satisfy

|∆n| ≤
{

Mε3n−1 for n ≤ n̂,
Mδ2

0 for n > n̂,
(2.73)

where M may be chosen independent of n. We replace p(t) with p̃(t), which is a
smooth curve verifying |p− p̃| ≤ M(εe−k(t−t0) + δ0) for some M . The remainder W
is then replaced with W̃ = U −Φ(p̃), which from the smoothness of Φ will also verify
the estimate (2.17). The existence of such a smooth curve requires verifying that each
jump |p(tn)−pn| is smaller than the bound M(εe−k(tn−t0) + δ0), which follows easily
from the estimates at hand for δ0 and ε small enough.

We determine a lower bound on the time T to exit K by bounding the distance
from p0 to p(t),

|p0 − p(t)| ≤
n∑
i=1

(
T1(t

−
i ) + |∆i|

)
,(2.74)

where T1(t
−
i ) ≡ limt→t−

i
T1(ti). Here n = n(t) is determined to be the least integer

such that t < tn. From Proposition 2.2 and (2.53) we find that T1(t
−
n ), the accumulated

drift in p(t) over the time interval [tn−1, tn], satisfies

T1(t
−
n ) ≤

{
Mε2n−1 for n ≤ n̂,
Mδ0 for n > n̂,

(2.75)

and hence it dominates the jump |∆i| at the end of the interval. With these estimates
in hand, and using the relation εn+1 � εn for n < n̂, the sum (2.74) reduces to

|p0 − p(t)| ≤ M
(
ε20 + (n− n̂)δ0

)
.(2.76)

Finally we observe that ε0 = ε, |p∗ − p0| ≤ Mε, and the intervals tn+1 − tn =
k−1 ln(M∗), which allow us to rewrite (2.76) as

|p∗ − p(t)| ≤ M (ε+ (t− t0)δ0) .(2.77)

Assuming that d(p∗, ∂K) = O(1), the bound (2.77) readily implies that p(t) ∈ K if
t − t0 ≤ Md(p∗, ∂K)/δ0 for some M > 0. The estimate (2.18) on T then follows for
p and for p̃.

The evolution for the pulse parameter p is given by (2.28), which from the esti-
mates established in section 2 may be written in the form

p′i = −δ0(ξ,Ψ
†
i (p))2 + δ0(ξ,Ψ

†
i (p)−Ψ†

i (pn))2 +O(T 2
0 , T0T1, δ

2)(2.78)

for t ∈ [tn, tn+1). But |Ψ†
i (p) − Ψ†

i (pn)| = O(T1) and after the initial transient, that
is, for t ≥ tn̂ where n̂ = n̂(δ0), we have ε∗ = O(δ0) and the inequalities (2.53) and
(2.68) imply that T0, T1 = O(δ). In this asymptotic regime, recalling the definition
ξ = ξ̃ + F (Φ(p))/δ0, (2.78) reduces to (2.19). Moreover the jumps ∆n at the times
t = tn are O(δ2

0) for n > n̂ and are separated by an O(1) time interval. Thus we
may choose the smoothed curve p̃ in such a manner that |p̃′ − p′| = O(δ2

0) for t �= ti
for i = 1, 2, . . . . Dropping the tilde notation, we may then write the evolution for the
smoothed curve p as in (2.19).
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3. Applications to PNLS. We apply the renormalization techniques to the
forced PNLS equation

iφt +
1

2
φxx ± |φ|2φ+ (i∓ a)φ− γφ∗ = δ0ξ̃(x, t),(3.1)

where δ0 � 1. As a model of pattern formation in the optical parametric oscillator,
the parameters a, γ > 0 represent cavity detuning and pump strength, respectively.
The perturbation ξ̃ ∈ L∞(R+, H

1) represents the stimulated emission present in the
background radiation. Depending upon the nature of the detuning there are two
cases: the focusing, which takes the top sign in (3.1), and the defocusing, which takes
the bottom sign.

3.1. Stability of fronts in the defocusing PNLS. For γ ≥ 1, the unforced
defocusing PNLS has front solutions

φ = ηeiθ tanh η(x− p),(3.2)

where

η2 = a+
√
γ2 − 1,

γe−2iθ = −
√
γ2 − 1 + i.

(3.3)

This solution is linearly stable for γ > 0 and a > 0 [25].
After the change of dependent and independent variables

φ(x) = ηu(x̃)eiθ,
t̃ = η2t/2,
x̃ = ηx,

(3.4)

and, dropping the tilde notation, U = (�u,�u)t satisfies

Ut =

(
0 −(∂2

x − 2|U |2 + 2µ)
∂2
x − 2|U |2 + 2 − 4

η2

)
U + δ0Ξ,(3.5)

where µ =
a−
√
γ2−1

a+
√
γ2−1

≤ 1 and Ξ is derived from the real and imaginary parts of the

rescaled ξ̃. This equation readily fits into the form (2.1). The stationary solution φ
becomes

U = Φ(x− p) =

(
tanh(x− p)

0

)
,(3.6)

and the linearization of (3.5) about (3.6) is given by

Lp =

(
0 D
−C − 4

η2

)
,(3.7)

where

C = −(∂2
x + 6sech2(x− p)− 4),

D = −(∂2
x + 2sech2(x− p) + 2(µ− 1)).

(3.8)
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From Theorem 3.6 of [25] the spectrum of the operator Lp satisfies

σ(Lp) = σs ∪ σ0,(3.9)

where σs ⊂ {λ∣∣�λ < −k} for some k > 0 and σ0 = {0} represents a simple eigenvalue
of Lp at the origin. This verifies hypothesis (H1). The kernel of Lp is spanned by
Ψ1 = (−sech2(x − p), 0)t with adjoint eigenvector, under the normalization (2.14),
given by

Ψ†
1 =




−1

(D−1sech2(x), sech2(x))2

(
D−1sech2(x− p),

η2

4
sech2(x− p)

)t
, µ �= 1

2 ,

− 2

π
(sech(x− p), 0)

t
, µ = 1

2 .

While the operator D is not invertible for µ = 1
2 , the adjoint eigenvector is bounded

for all µ by Lemma 3.4 of [25], verifying hypothesis (H4). We may define the spectral
projection πp by

πpU = (U,Ψ†
1)2Ψ1,(3.10)

with kernel Xp = πpH
1(R). As indicated by Proposition 3.2 in the next subsection,

the C0 semigroup Sp generated by Lp verifies hypothesis (H2), where the decay con-
stant k can be taken independent of the position p. Moreover, since Φ is an exact
solution of the unforced equation, the kernel of Lp is the translational invariant

Ψ1 =
∂Φ

∂p
,(3.11)

and the compatibility hypothesis (H3) holds with δC = 0. We may apply Theorem
2.1 to the front solution (3.2) of the defocusing PNLS.

Theorem 3.1. Let δ0 and ε > 0 be small enough. Any solution U of the defo-
cusing PNLS equation (3.5) corresponding to initial data

U0 = Φ(x− p) +W0

with ‖W0‖H1 ≤ ε verifies the conclusions of Theorem 2.1 with K = R and T = ∞.
Moreover, after the initial transient the pulse position p is governed by

p′ = −δ0(Ξ(t),Ψ
†
1(x− p))2 +O(δ2

0).(3.12)

Proof. It only remains to verify that we may take K = R. Since the parameter p
serves only to translate the front, it is straightforward to verify that the hypotheses
(H0)–(H4) hold uniformly for p ∈ R. In particular M and k in (H2) are independent
of p, and we may take δC = 0 in (H3) for all p ∈ R.

3.2. Evolution of pulse trains in the focusing PNLS. In this section we
address the evolution of well-separated trains of pulses for the focusing PNLS equation;
for simplicity of presentation we neglect the external time dependent forcing term ξ̃.
We introduce the new equation parameters

η2 = 2(a+
√
γ2 − 1),

γe−2iθ =
√
γ2 − 1 + i,

(3.13)
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and rescale as in (3.4) to obtain the equation below for U = (�u,�u)t:

Ut =

(
0 −(∂2

x + |U |2 − µ)
∂2
x − |U |2 − 1 − 4

η2

)
U,(3.14)

where µ =
a−
√
γ2−1

a+
√
γ2−1

≤ 1. This equation fits the form (2.1) for µ > 0, and supports

pulse solutions

Φ(x, s) =

(
φ(x− s)

0

)
,(3.15)

where φ(x) =
√
2sechx, and s ∈ R denotes the pulse position.

We examine the evolution of initial data in the neighborhood of the manifold
M =

{
ΦN (s)

∣∣s ∈ Kl

}
, where ΦN describes N well-separated pulses

ΦN (x, s) =

N∑
i=0

αiΦ(x− si).(3.16)

Here s = (s1, . . . , sN )t ∈ RN is the vector of pulse positions and αi = ±1 for i =
1, . . . , N connote a fixed choice of up-down pulse profiles. The set Kl of admissible
pulse trains is given by

Kl = {s ∈ RN
∣∣si < si+1 for i = 1, . . . , N − 1, and ∆s ≥ l},(3.17)

where ∆s ≡ mini �=j |si − sj | and l > 0 is a minimum pulse separation. Observe that
ΦN is not an exact stationary solution of (3.14); indeed,(

0 −(∂2
x + |ΦN |2 − µ)

∂2
x − |ΦN |2 − 1 − 4

η2

)
ΦN = F,(3.18)

where F is given by

F (s) = −

 0(

N∑
k=1

αkφk

)3


+

n∑
k=1

(
0

αkφ
3
k

)
.(3.19)

The linearization Ls of (3.1) about ΦN (x, s) has the form

Ls =

(
0 D
−C −4/η2

)
,(3.20)

where

C = −
(
∂2
x − 1 + 3

N∑
i=1

φ2
i + 6V

)
,(3.21)

D = −
(
∂2
x − µ+

N∑
i=1

φ2
i + 2V

)
,(3.22)

with φi ≡ φ(x− si), and

V =

N∑
i,j=1
i �=j

αiαjφiφj(3.23)
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represents small cross terms. We decompose the solution U of (3.1) as

U = ΦN (x, s) +W (x, t),(3.24)

where the evolution for W is given by

Wt = LsW + F +N (W ) +∇sΦNs
′,(3.25)

with the forcing term F given by (3.19).

3.2.1. Verification of hypothesis. We verify the hypotheses (H0)–(H4) re-
quired to apply Theorem 2.1 and derive the modulational equations which govern
the slow evolution along the ansatz manifold. It is quite straightforward to verify
hypothesis (H0) on the uniform smoothness of the manifold and the forcing term f .

The stability of a single pulse for (3.1) was established in Theorem 3.3 of [25]. In-
deed, if L denotes the linearization about a single pulse, then there exists ac > 0 such
that for detuning and pump values a and γ satisfying (a, γ) ∈ [0, ac) × (1,

√
1 + a2),

the spectrum of L consists of a simple eigenvalue at the origin and a remainder which
is uniformly bounded in the left-half complex plane. If Ls is the linearization about N
well-separated pulses, then the essential spectrum σe(Ls) is determined by the limiting
states limx→±∞ ΦN [16], and thus σe(Ls) = σe(L). Moreover, from results of Alexan-
der and Jones [1] (see also [27]) to each localized eigenvalue λ of L, there are associated
N eigenvalues λ1, . . . , λN of Ls, up to multiplicity, such that maxi=1,...,N |λi − λ| de-
cays exponentially with growing pulse separation l > 0. In particular we can verify
hypothesis (H1), where σ0 contains the N eigenvalues which approach the origin for
large l. These N eigenvalues are the remnants of the translational eigenvalues of the
individual pulses.

We verify that Ls satisfies hypothesis (H2) by applying Proposition 4.1 of [25],
which for completeness we summarize below.

Proposition 3.2. Let L be an operator of the form (3.20) with the suboperators
given by C = −∂2

x + V1(x) and D = −∂2
x + V2(x), where V1 and V2 are smooth, uni-

formly bounded potentials. If σ(L) satisfies hypothesis (H1), then there exist constants
M,k > 0 such that the associated semigroup S(t) satisfies

‖S(t)u‖H1 ≤ Me−kt‖u‖H1 for all t ≥ 0, u ∈ X1.(3.26)

Here the space X1 is the eigenspace associated with σs.
The constants M and k which appear in the estimate (3.26) depend continuously

upon s, and thus are uniformly bounded above and below on compact subsets of Kl.
However we may formally relax the compactness restriction on Kl since the individual
pulses are stable and the constants M and k are bounded uniformly for large pulse
separations.

It remains only to verify (H3)–(H4) about the eigenspace Ys. The location of
small eigenvalues of N -pulses has been addressed in detail in [27]. Although we are
not linearizing about an exact N -pulse but rather about a quasi-steady train of N -
pulses, the aforementioned results can be extended to apply in this case [29]. For
completeness we include details of this derivation below. We proceed with a regular
expansion of the eigenvectors of σ0. With tail-tail interactions of pulses φ(x − si),
it is natural to introduce the small quantities δij = e−|si−sj |, δ = δ(s) = e−∆s, and
δ0 = e−l which measure the magnitudes of the tail overlap. However the pulse φ is
degenerate in the sense that it decays at the fast rate e−|x| as x →∞ associated with
the operator C. There is also a slower decay rate e−

√
µ|x|, associated with the operator
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D, which necessitates the introduction of the small quantities ρij = e−
√
µ|si−sj | and

ρ = ρ(s) = e−
√
µ∆s. Since µ < 1 these small parameters satisfy the relations δij ≤

δ ≤ δ0 � 1 and δ � ρ.
We introduce the 2×N matrices

Ξ =

(
χ1 · · · χN
0 · · · 0

)
,(3.27)

Ξ̃ =

(
D−1χ1 · · · D−1χN
η2

4 χ1 · · · η2

4 χN

)
,(3.28)

where χi =
√
2sech tanh(x − si) is the normalized kernel of Ci = −(∂2

x + 3φ2
i − 1).

The uniform invertibility of D is addressed by Proposition A.2 in the appendix. We
remark that χi corresponds to the translational invariant of the linearization about a

single pulse φi; as such
∂ΦN
∂si

= αiχi. The columns Ξk and Ξ̃k of Ξ and Ξ̃ satisfy

‖LsΞk‖H1 ≤ M0δ‖Ξk‖H1 ,

‖L†
sΞ̃k‖H1 ≤ M0δ‖Ξ̃k‖H1 .

(3.29)

The eigenvector Ψk and associated eigenvalue λk ∈ σ0 admit an expansion

Ψk = Ψ
(0)
k + δΨ

(1)
k +O(ρδ),

λk = δλ
(1)
k +O(ρδ).

(3.30)

The leading order term Ψ
(0)
k takes the form

Ψ
(0)
k = Ξβk,(3.31)

where βk = β
(0)
k +ρβ

(1)
k +O(ρ2) and β

(0)
k = (βk1, . . . , βkN )t ∈ CN are to be determined

from the eigenvalue equation

L0
sΨk = λkΨk.(3.32)

The O(δ) terms of the eigenvalue equation are

LsΨ
(1)
k +

1

δ
LsΨ

(0)
k = λ

(1)
k Ψ

(0)
k .(3.33)

We take the L2 inner product of the equation above with Ξ̃i and use (3.29) to find at
leading order in δ(

Ψ
(0)
k ,

1

δ
L†

sΞ̃i − λ
(1)
k Ξ̃i

)
2

= 0, for i = 1, . . . , N.(3.34)

Using (3.31) and (3.20), equation (3.34) may be put into the matrix form(
4λ

(1)
k

η2 D̂ +
1

δ
Ĉ

)
βk = 0,(3.35)

where the N ×N matrices D̂ and Ĉ have entries

D̂ij = (D−1χi, χj)2,(3.36)

Ĉij = (Cχi, χj)2.(3.37)
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Thus λ
(1)
k is the leading order term in the expansion of the eigenvalue λk of L0

s if and

only if λ
(1)
k is an eigenvalue of the matrix

P = −η2

4δ
D̂−1Ĉ.(3.38)

The matrix Ĉ is self-adjoint, and to leading order has the expression Ĉ = 16Ĉ0+O(δ2),
where Ĉ0 has the tridiagonal form

Ĉ0 =



d11 δ12 · · · 0

δ12 d22
. . .

...
...

. . .
. . . δN−1,N

0 · · · δN−1,N dNN


 ,(3.39)

where

dii = 2αi(αi−1δi,i−1 + αi+1δi,i+1)

for i = 1, . . . , N and α0 = αN+1 = 0. To simplify the matrix D̂ we begin with
Proposition A.2 of the appendix, which yields D−1χi = D−1

i χi + O(ρ). We may
calculate directly that

(D−1
i χi, χj)2 =

{
θ, i = j,
O(ρij), i �= j,

(3.40)

where θ is not zero for any η; see Lemma 3.2 of [25]. These bounds yield the approx-
imation D̂ = θI +O(ρ), and hence

D̂−1 =
1

θ
I +O(ρ).(3.41)

The matrix P takes the form P = P0 + O(ρ) where P0 = − 4η2

θδ Ĉ0 is self-adjoint

and has a complete set of orthonormal eigenvectors β
(0)
k and real eigenvalues λ

(1)
k ,

which give the leading order terms of Ψk and λk from (3.31). We note that inclusion
of higher order terms in the expansion may lead to complex eigenvalues λk whose
imaginary parts satisfy �λk = O(ρδ).

For the adjoint eigenvalue problem

L†
sΨ

†
k = λ∗

kΨ
†
k,(3.42)

we take the expansion

Ψ̃†
k = Ψ̃

†(0)
k + δΨ̃

†(1)
k +O(ρδ)(3.43)

for the unnormalized adjoint eigenvectors whose leading order term is given by

Ψ̃
†(0)
k = Ξ̃β̃k.(3.44)

We take the inner product of (3.42) with Ξi, and in a manner similar to the eigenvalue
problem, we arrive at the equation

P β̃k = λ
(1)
k β̃k,(3.45)

with P given by (3.38), and hence β̃k = βk.
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We choose the parameters p for the ansatz ΦN according to

si = αi

N∑
j=1

βjipj(3.46)

so that the chain rule, (3.31), and (3.30) yield

∂ΦN
∂pj

=

N∑
i=1

∂ΦN
∂si

∂si
∂pj

=

N∑
i=1

(αiχi)(αiβji) = Ξβj = Ψ
(0)
j = Ψj +O(δ),(3.47)

which verifies the compatibility hypothesis (H3).
To construct the projection πp we determine the multiplicity of the eigenvalues

in σ0. Each eigenvalue in σ0 has algebraic multiplicity 1 if

θi ≡ (Ψi, Ψ̃
†
i )2 �= 0.(3.48)

From the expansions (3.31) and (3.44) we find

θi = (Ξβi, Ξ̃βi)2 +O(δ) =

N∑
j=1

(Ξj , Ξ̃j)2|βij |2 +O(δ).(3.49)

But from Proposition A.2 and (3.40) we have (Ξj , Ξ̃j)2 = (χj , D
−1
j χj) = θ + O(ρ),

which is nonzero for ρ small enough. Thus we have

θi = θ|βi|2 +O(ρ) = θ +O(ρ),(3.50)

and each eigenvalue of σ0 is simple. Normalizing the adjoint eigenvectors

Ψ†
i =

Ψ̃†
i

θi
,

we satisfy the orthogonality condition (2.14). To complete the verification of the
stability hypothesis (H4), we observe that so long as the eigenvalues λ ∈ σ0 remain
simple then the eigenfunctions depend analytically upon the parameters p ∈ K. The
spectral projection is then given by (2.13).

We simplify the dynamics afforded by (2.28) in the context of the pulse train
ansatz for the PNLS equation. Initial data U0 which lie within ε in the H1 norm of
the manifoldMl =

{
ΦN (x, s)

∣∣∆s > l
}
may be decomposed into a manifold parameter

p0 and a remainder W0 via Proposition 2.2. After the initial transient, the evolution
for the pulse parameter p is given by (2.19) with the forcing term ξ = F

δ0
, where F is

given by (3.19). The evolution for the native variables s is given by

s′i = −αi


F,

N∑
j=1

βjiΨ
†
j




2

+O(δ2) = −αi


F,

N∑
j,k=1

βjiβjk
θk

Ξ̃k




2

+O(δ2),(3.51)

where Ξ̃k is the kth column of Ξ̃. Summing first over j in the expression above, and
exploiting the approximate orthonormality of the rows of the matrix β, we find

s′i = −αi
θi

(F, Ξ̃k)2 +O(δρ).(3.52)
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The nonnearest neighbor interactions in the integral above are at most second-order
in δ and may be neglected. The leading order terms may be evaluated from the
asymptotic relation ∫

R

χkφ
2
kφk±1dx = ±16

3
δk,k±1 +O(δ2),

where we have used si < si+1 for i = 1, . . . , N − 1. The evolution equation for the
pulse positions si of the ith pulse reduces to

s′i =
4η2

3θ
αi (αi+1δi,i+1 − αi−1δi,i−1) +O(δρ),(3.53)

where for notational convenience we have introduced α0 = αN+1 = 0.
For initial data comprised of two pulses U0 = Φ2 = α1φ(x − s1) + α2φ(x − s2),

there is no initial transient and we obtain directly the leading order slow system for
the evolution of the pulse positions

s′1 =
4η2

3θ
α1α2δ12,(3.54)

s′2 = −4η2

3θ
α1α2δ12.(3.55)

We find that two pulses of like sign attract and two of opposite sign repel. In particular
two pulses of like sign will move together until they are no longer separated by the
minimum distance l.

Theorem 3.3. Let (a, γ) ∈ [0, ac) × (1,
√
1 + a2) be given and fix l > 0 large

enough. Then for s ∈ Kl given by (3.17) and ε small enough, the solution U of the
focusing PNLS equation (3.14) corresponding to the initial data

U0 = ΦN (s) +W,

with ‖W‖H1 ≤ ε, satisfies the conclusions of Theorem 2.1 where δ0 = e−l. Moreover,
after the initial transient the pulse positions are governed by the system (3.53) for
t ∈ [t0, t0 + T ]. In the case of a pulse train with alternating signs, αiαi+1 = −1, the
pulse separation increases with time and we may take T = ∞.

4. Discussion. We have shown that manifolds comprised of quasi-stationary
solutions of dispersive equations can describe the long-time evolution of nearby orbits;
moreover, this description is stable under time dependent perturbations. The ansatz
manifolds we have employed are global but not invariant under the flow; however,
they attract the flow into a thin neighborhood and the flow restricted to the manifold
recovers the salient dynamics. While this result is consistent with the presence of a
nearby invariant manifold, the existence of such a manifold is not obvious, particularly
if an arbitrary time dependent perturbation δξ(x, t) is added to the equation. There
are other techniques which have some similarities to the approach we have taken here;
among these we mention that of Kirrmann, Schneider, and Mielke [20] (see also [31])
and Grenier [14, 15], which involve the splitting of a solution into a leading order term
and a residual, and then bounding the residual for long time periods.

For the pulse trains of the focusing PNLS equation, we capture the effect of the
tail-tail interactions whose magnitude is governed by the separation and the spatial
decay rate of the pulses. In the scaling we have chosen the sech pulses decay like e−|x|
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as x →∞, and the pulse evolution and size of the residual are on the order of δ = e−l,
with l being the pulse separation. However, there is a slower spatial decay rate,√
µ < 1, associated with stationary solutions of PNLS, and indeed the application of

Theorem 3.3 requires the smallness of ρ = e−l
√
µ. As γ → √

1 + a2, the slower rate
µ tends to zero and the minimum pulse separation required to apply Theorem 3.3
grows. This effect is seen in numerical simulations for small µ; well-separated like-
signed pulses attract but at a µ dependent critical separation the attraction is arrested
and a stable two-pulse is formed.

As was observed in [19], there is a connection between the focusing PNLS equation
and the evolution of pulses in the phase sensitive amplification (PSA) equation for
pulse amplitudes in fiber optical systems [21]. We sketch here an argument which can
make this connection rigorous. We write the focusing PNLS equation (3.14) as

Ut =

(
0 D(U)

−C(U) −4/η2

)
U,(4.1)

where C(U) = −(∂2
x + |U |2 − 1) and D(U) = −(∂2

x + |U |2 − µ), and U = (U1, U2)
t.

We eliminate U2 to leading order to find

U1t +
η2

4
D(U1)C(U1)U1 = O(|Ut|2, |Utt|, |Uxx||U2|2).(4.2)

The left-hand side of (4.2) is exactly the PSA equation in the limit of closely spaced
amplifiers (σ = 0 in (1.2) of [30]). Further analysis based upon the results of section
3.2 shows that, in the asymptotic regime of the pulse train evolution, ‖Ut‖H1 =
O(δ), ‖Utt‖H1 = O(δ2), ‖U‖H2 = O(1), and ‖U2‖H1 = O(δ); we may conclude that
the right-hand side of (4.2) is O(δ2) in L2. We apply the renormalization machinery
of section 2 and exploit the smoothing properties of the semigroup associated with the
fourth-order dissipative operator DC, which demonstrates the equivalence, to leading
order, of the pulse train evolution in PNLS and PSA. These results will be presented
in full detail elsewhere.

While in some sense the hypotheses (H1)–(H4) may be taken as a definition of a
“good ansatz,” there are several natural directions to extend the results of section 2.
Certainly an investigation of an algebraic dichotomy for the semigroup rather than
exponential one implicit in hypotheses (H1)–(H2) is warranted. An interesting case
would be an exact ansatz whose essential spectrum lies in the left-half plane and
touches the origin, with σ0 comprised of a single eigenvalue at the origin with finite
algebraic multiplicity. It is not clear that an algebraic dichotomy could be exploited
in the case of a quasi-stationary ansatz, for which the splitting of the eigenvalues in
σ0 would seem to require the use of an exponentially weighted space to push back the
essential spectrum and restore the exponential dichotomy. The stability hypothesis
(H4) might be relaxed to permit the structure or the dimension of the projection
to change. This could arise, for example, in a pulse-splitting ansatz. The splitting
of a pulse would be signaled by the angle θi, given by (3.48), becoming zero. The
dimension of the manifold would increase, and as one can readily see from (3.53), the
pulse dynamics could change substantially.

Appendix A. Invertibility of D. We consider the invertibility of the operator
D given by (3.22). We recall the definition ρ(s) = e−l

√
µ.

Lemma A.1. For l large enough, the operator D0 given by

D0 = −(∂2
x − µ+ P1 + · · ·+ PN ),

where Pi = φ2(x− si), is uniformly boundedly invertible for all s ∈ Kl.
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Proof. For each i = 1, . . . , N , the operator Di = −(∂2
x − µ + Pi) is boundedly

invertible (see section 3.2 of [25]). Let χ1, . . . , χN be a partition of unity satisfying

suppχi ⊂
(
si + si−1

2
− 1,

si + si+1

2
+ 1

)
,

where we take s0 = −∞ and sN+1 = ∞. We solve the equation

Df = g(A.1)

for g ∈ L2 for f by iteration. Set g(1) = g and for n = 1, 2, . . . define

f
(n)
i = D−1

i χig
(n),(A.2)

f (n) =

N∑
i=1

f
(n)
i ,(A.3)

g(n+1) = D0f
(n) − g(n).(A.4)

From this construction it follows that

D0(f
(1) + · · ·+ f (n)) = g − g(n+1).(A.5)

Note that ‖f (n)
i ‖H2 ≤ M0‖χig(n)‖2 for some M0 > 0 independent of i and n, and in

particular

‖f (n)‖H2 ≤ M0‖g(n)‖2.(A.6)

From (A.2) and (A.4) we find

g(n+1) =
∑
i

∑
j �=i

Pjf
(n)
i .(A.7)

Moreover, since suppχig
(n)
i ⊂ suppχi and f

(n)
i is uniformly bounded, it follows from

(A.2) that f
(n)
i decays exponentially outside of suppχi; indeed,

|f (n)
i (x)| ≤ M1e

−√
µ|x−si|‖f‖∞.

From this estimate and (A.7) a straightforward calculation shows that

‖g(n+1)‖2 ≤ M2ρ‖f (n)‖∞ ≤ M2ρ‖f (n)‖H2 .(A.8)

Thus we find that

‖g(n+1)‖2 ≤ (M2M0ρ)
n‖g‖2,

and

‖f (n)‖H2 ≤ M0(M2M0ρ)
n−1‖g‖2.

From the equality (A.5) it follows that f =
∑∞

n=1 f
(n) satisfies (A.1), and

‖f‖H2 ≤ M0

1−M0M2ρ
‖g‖2,

which is finite if l is large enough.
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Proposition A.2. Let D be given by D = D0 + V, where ‖V‖∗,H1 = O(δ) is
given by (3.23). Then for l large enough, D is boundedly invertible, and, moreover,

‖D−1 −D−1
0 ‖∗,H1 = O(δ).(A.9)

In particular, if g = hsech(x− si) for h ∈ L∞, then

D−1g = D−1
i g +O(ρ),(A.10)

where Di = −(∂2
x − µ+ Pi).

Proof. Since D is a small perturbation of D0 we have the identity

D−1 = (I +D−1
0 V)−1D−1

0 .(A.11)

Moreover (I + D−1
0 V)−1 = I + O(δ) and (A.9) holds. The estimate (A.10) follows

from observing from (A.2) that

f (1) = D−1
i χig

(1) +O(δ) = D−1
i g +O(δ),

and ‖f (n)‖H1 ≤ Mρn−1 for some M > 0 and all n ≥ 2.
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Abstract. Chemin et al. [M2AN Math. Model. Numer. Anal., 34 (2000), pp. 315–335.] consid-
ered the three-dimensional Navier–Stokes equations with vanishing vertical viscosity. Assuming that
the initial velocity is square-integrable in the horizontal direction and Hs in the vertical direction,
they prove existence of solutions for s > 1/2 and uniqueness of solutions for s > 3/2. Here, we close
the gap between existence and uniqueness, proving uniqueness of solutions for s > 1/2. Standard
techniques are used.

Key words. Navier–Stokes equations, Sobolev spaces
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Introduction. Chemin, Desjardins, Gallagher, and Grenier [2] considered the
following anisotropic Navier–Stokes equations:

(NSh)



∂tv − ν(∂2

1 + ∂
2
2)v − νV ∂2

3v + v · ∇v = −∇p for (t, x) ∈ (0,∞)× R
3,

divv = 0 for (t, x) ∈ [0,∞)× R
3,

v
∣∣
t=0

= v0,

where v(t, ·) : R
3 → R

3 is an incompressible velocity field, p is the pressure, and the
constants ν > 0 and ν

V
≥ 0 represent the horizontal and vertical viscosities.

Concerning the physical significance of these equations, we refer to [2] and to the
references therein. We will simply say that systems of this type can be found in the
theory of rotating fluids and also in the study of the Ekman layers for rotating fluids.

As specified above, the vertical viscosity ν
V
may vanish (or converge to 0). For

this reason, the classical theory of the Navier–Stokes equations does not apply. Some
L2 energy estimates still hold for (NSh), but these are not enough to pass to the limit
and obtain a weak solution. The strong solution theory doesn’t apply either, unless
we work in the framework of hyperbolic symmetric systems by ignoring completely
the viscosity terms and requiring a lot of regularity for the initial data. Actually, the
only result concerning the situation described to be found in the literature is given
by [2, Theorems 2, 3].

Theorem 0.1 (see Chemin et al.). Let s > 1/2 be a real number, and let v0 ∈ H0,s

be a divergence-free vector field. Then a positive time T and a solution v of (NSh)
defined on [0, T ]× R

3 exist such that

v ∈ L∞(0, T ; H0,s
) ∩ L2

(
0, T ; H1,s

)
.

Furthermore, there exists a constant c such that if ‖v0‖0,s is less than cν, then we can
choose T = +∞. Finally, this solution is unique, provided that s > 3/2.

∗Received by the editors December 7, 2000; accepted for publication (in revised form) January
10, 2002; published electronically July 9, 2002.
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†IRMAR, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France (iftimie@
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The space Hs,s
′
is a space with Sobolev regularity Hs in (x1, x2) and Hs

′
in x3,

whose precise definition will be given in section 1.

Let us first make some observations regarding the isotropic Navier–Stokes equa-
tions. Critical spaces for the three-dimensional (3D) Navier–Stokes equations are the
spaces whose homogeneous norm is invariant under the scaling f(·)↔ λf(λ·). There
is no result on existence and uniqueness of solutions for general initial data in a sub-
critical space (i.e., a space whose homogeneous norm is invariant under the scaling
f(·) ↔ λαf(λ·) for some α > 1). For critical spaces, there are many existence and

uniqueness results, starting with the classical result for H
1
2 of Fujita and Kato [3] and

continuing with Besov spaces, Triebel–Lizorkin spaces, etc. We refer to Cannone [1]
for details. Let us just note that a borderline case, that of initial data in BMO−1

(divergences of BMO vector fields), was recently proved by Koch and Tataru [6].
Initial data in anisotropic critical spaces were considered by the author in [5]. That
work contains an existence and uniqueness result [5, Theorem 3.1] for initial data
in a critical anisotropic Besov-type space that contains H0,s for all s > 1/2 (but is

contained in H0, 12 ). The problem of well-posedness for initial data in H0, 12 seems to

be very difficult for the following two reasons. First, the homogeneous version of H0, 12

is not well defined since it would require defining H
1
2 homogeneous regularity in x3

and it is well known that the homogeneous space H
1
2 is not well defined in dimension

1 (or rather it is not a Banach space). Second, the space H0, 12 is not included in
C−1 (see [5, Proposition 4.1]) and it seems to be very difficult to prove existence and
uniqueness for initial data which is not C−1. (All the spaces of initial data for which
existence and uniqueness of solutions are known are embedded in C−1.)

In accordance with what is observed above, the existence part of Theorem 0.1
is very similar to results known for the isotropic Navier–Stokes equations. The key
observation is that, although there is not enough regularity in the vertical direction,
the partial derivative ∂3 is always multiplied by u3 in the nonlinear term, and the
divergence-free condition implies that u3 has enough vertical regularity. Nevertheless,
some technical difficulties persist.

In the result of Chemin et al. there is a gap between the existence result and the
uniqueness result. This gap is unexpected, especially since, for the full Navier–Stokes
equations, s > 1/2 is sufficient to get uniqueness within the framework of anisotropic
spaces (see [5, Theorem 3.1]). The aim of this work is to close this gap, proving that
uniqueness holds when existence does, i.e., s > 1/2.

The gap in the proof of uniqueness given by [2] is due to the term w3∂3v (w is
the difference of two solutions and v is one of the two solutions). Roughly speaking,

to estimate this term in H0, 12 one needs at least H
1
2 regularity for ∂3v in the vertical

direction, that is, H
3
2 regularity for v in the vertical direction. This demands, of

course, that s > 3/2. To overcome this difficulty, we propose to estimate the H0,− 1
2

norm of w instead of the H0, 12 norm. This will require only H
1
2 regularity for v in the

vertical direction, so the hypothesis s > 1/2 will suffice.

This point of view implies some difficulties. First, we will require a product theo-
rem for the anisotropic Sobolev spaces where the regularities in the vertical direction
are supercritical for one of the terms and subcritical for the other; see Theorem 1.4.
Some product theorems are available but only when both regularities are subcritical
(see [5, Theorem 1.1] and [4, Theorem 1.1]) or supercritical (see [2, Lemma 1]).

A second difficulty is to estimate a symmetric term of the type
∫
v3∂3w ·Λ−1

3 w dx
(Λ3 is roughly ∂3; see the next section for the precise definition). Such a term does

not appear when making L2 estimates instead of H0,− 1
2 . The estimates for symmetric
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terms are usually complicated when the indices of regularity are not integers. In
the previously cited works, the estimates of this type are long and require dyadic
decompositions. We will be able to obtain such an estimate through elementary
techniques.

The following theorem completes Theorem 0.1 in the sense that the hypothesis
s > 3/2 is no longer required to get uniqueness of solutions.

Theorem 0.2. Let v and ṽ be two solutions of (NSh) on (0, T ) belonging to
L∞(0, T ; H0,s

)∩L2
(
0, T ; H1,s

)
, where s > 1/2. If v and ṽ have the same initial data,

then v ≡ ṽ.
Although the regularity invoked in the hypothesis of this theorem is not sufficient

by itself to define a trace of the velocity v at time t = 0, it is a classical observation that
v satisfying (NSh) implies some continuity in time of v, namely v ∈ C0([0, T ]; H0,r)
for all r < s (for a proof, see the remarks before (4)). It therefore makes sense to say
that v and ṽ have the same initial data.

The author is able to prove neither uniqueness nor existence (in the regularity
class of Theorem 0.1) in the case s = 1/2. To this respect, we have nothing to add to
the comments made for the isotropic Navier–Stokes equations.

In the following section we introduce notation and prove a new product theorem
for anisotropic Sobolev spaces. The last section contains the proof of Theorem 0.2.

1. Notation and preliminary results. In the following, C will denote a con-
stant which may change from one relation to another and which may depend on the
different parameters s, s′, . . . introduced. The constant K is a universal constant
which can also change from one relation to another. Two quantities A and B are said
to verify the relation A  B if and only if the ratio A/B stays between two positive

constants. We denote by 〈x〉 the quantity 〈x〉 = (1 + |x|2) 1
2 .

Definition 1.1. For s, s′ ∈ R we define the anisotropic Sobolev space Hs,s
′
to be

the space of those tempered distributions f which satisfy

‖f‖s,s′ def
=
∥∥〈ξ′〉s〈ξ3〉s′ f̂(ξ)∥∥L2 <∞,

where ξ′ = (ξ1, ξ2).
The space Hs,s

′
endowed with the norm ‖ · ‖s,s′ is a Hilbert space.

The partial derivative ∂/∂xj is denoted by ∂j . We denote by Λ3 the operator

Λ3 =
(
1−∂2

3

) 1
2 , that is, the operator of multiplication by 〈ξ3〉 in the frequency space.

Clearly, Λ3 is an isometry from Hs,s
′
to Hs,s

′−1 for all real numbers s and s′.
When we apply an operator to a vector field, we mean that we apply it to each

component of the vector field. The Hs,s
′
norm of a vector field is the Euclidean norm

of the Hs,s
′
norms of the components. If u, v, and w are three vector fields, then u ·∇v

denotes the vector field
∑
i ui∂iv, and u · ∇v · w denotes the scalar

∑
i,j ui ∂ivj wj .

We will need in the proof of Theorem 0.2 certain interpolation properties of the
spaces Hs,s

′
. The following proposition is very easy to prove (see [4, Proposition 1.1]).

Proposition 1.2 (interpolation). Let s, t, s′, t′ ∈ R and α ∈ [0, 1]. If f ∈
Hs,s

′ ∩Ht,t′ , then we have that f ∈ Hαs+(1−α)t,αs′+(1−α)t′ and

‖f‖αs+(1−α)t,αs′+(1−α)t′ ≤ ‖f‖αs,s′‖f‖1−αt,t′ .

The multiplicative properties of the anisotropic Sobolev spaces have been studied
in several papers [2, 4, 5, 8, 9]. The following result is proved in [4, Theorem 1.1],
valid in the periodic case.
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Theorem 1.3. Let s, t < 1, s + t > 0, and s′, t′ < 1/2, s′ + t′ > 0. If f ∈ Hs,s
′

and g ∈ Ht,t′ , then fg ∈ Hs+t−1,s′+t′−1/2 and there exists a constant C such that

‖fg‖s+t−1,s′+t′− 1
2
≤ C‖f‖s,s′‖g‖t,t′ .

The proof in [4], which uses dyadic decompositions, carries over to the case of the
full space. Nevertheless, a more elementary proof can be given, as in Theorem 1.4.
For further details, see Remark 3.

Theorem 1.3 is not enough for our purposes. Indeed, the regularity we need is
“supercritical” in the vertical direction, i.e., greater than 1/2, a situation which is not
covered by Theorem 1.3. The purpose of the following theorem is to deal with this
difficulty.

Theorem 1.4. Let s, t < 1, s+ t > 0, and s′ > 1/2. If f ∈ Hs,s′ and g ∈ Ht,− 1
2 ,

then fg ∈ Hs+t−1,− 1
2 and there exists a constant C such that

‖fg‖s+t−1,− 1
2
≤ C‖f‖s,s′‖g‖t,− 1

2
.

The proof will use the following easy lemma.
Lemma 1.5. Let s ∈ R and n ∈ N

∗. A constant C exists such that∫
|x|≤R

〈x〉s dx ≤
{
Cmax(1, 〈R〉s+n) if s+ n �= 0,

σn−1

√
2(1 + log〈R〉) if s+ n = 0,

where the variable of integration x belongs to R
n and σn−1 denotes the area of the

unit sphere in R
n. Moreover, if s is not large (for instance, if |s| ≤ 100), then the

constant C can be chosen of the form C = K(n)
|s+n| .

Proof of the lemma. Clearly∫
|x|≤R

〈x〉s dx = σn−1

∫ R

0

〈r〉srn−1 dr ≤ σn−1

∫ R

0

〈r〉s+n−1 dr.

Since 1+r√
2
≤ 〈r〉 ≤ 1 + r, we deduce that 〈r〉s+n−1 ≤ (1 + r)s+n−1 if s + n ≥ 1, and

〈r〉s+n−1 ≤ (1+r)s+n−1

(
√

2)s+n−1
if s+ n ≤ 1. It follows that

∫
|x|≤R

〈x〉s dx ≤ σn−1 max(1, 2
1−n−s

2 )

∫ R

0

(1 + r)s+n−1 dr

=

{
σn−1 max(1, 2

1−n−s
2 ) (1+R)s+n−1

s+n if s+ n �= 0,

σn−1

√
2 log(1 +R) if s+ n = 0.

The conclusion follows by using that (1 + R)s+n  〈R〉s+n and log(1 + R) ≤ 1 +
log〈R〉.

Remark 1. In the following we don’t need to know the behavior of the constant
C of Lemma 1.5 as |s| → ∞. Nevertheless, for the sake of completeness we indicate

that the constant C can be chosen of the form K(n)
|s+n| as |s| → ∞, too. The proof of

this fact is very easy in the case n ≥ 2, and so we include it here. As in the proof of
the lemma, we have for s+ n �= 0 that∫

|x|≤R
〈x〉s dx = σn−1

∫ R

0

〈r〉srn−1 dr ≤ σn−1

∫ R

0

〈r〉s+n−2r dr

=
σn−1

s+ n

∫ R

0

d

dr

(〈r〉s+n) dr = σn−1

s+ n

(〈R〉s+n − 1
) ≤ σn−1

|s+ n| max
(
1, 〈R〉s+n).
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Proof of Theorem 1.4. Let f ∈ Hs,s
′
and g ∈ Ht,−

1
2 . We have to estimate the

norm

‖fg‖s+t−1,− 1
2
= (2π)−3‖〈ξ′〉s+t−1〈ξ3〉− 1

2 f̂ ∗ ĝ(ξ)‖L2 .

By duality,

(2π)3‖fg‖s+t−1,− 1
2
= sup

‖h‖L2≤1

∫
〈ξ′〉s+t−1〈ξ3〉− 1

2 f̂ ∗ ĝ(ξ)h(ξ) dξ

= sup
‖h‖L2≤1

∫∫
〈ξ′ + η′〉s+t−1〈ξ3 + η3〉− 1

2 f̂(ξ)ĝ(η)h(ξ + η) dξ dη.

We can further write

(1)

(2π)3‖fg‖s+t−1,− 1
2
≤ sup

‖h‖L2≤1

∫∫
2|ξ′|≥|η′|

〈ξ′ + η′〉s+t−1〈ξ3 + η3〉− 1
2 f̂(ξ)ĝ(η)h(ξ + η) dξ dη

︸ ︷︷ ︸
I1

+ sup
‖h‖L2≤1

∫∫
2|ξ′|≤|η′|

〈ξ′ + η′〉s+t−1〈ξ3 + η3〉− 1
2 f̂(ξ)ĝ(η)h(ξ + η) dξ dη.

︸ ︷︷ ︸
I2

In what follows, whenever we study the dependence of constants on s′, we will
assume that s′ stays bounded (for instance, s′ ≤ 100 or any other universal constant).

We now write I1 under the form

I1 =

∫∫
2|ξ′|≥|η′|

〈ξ3 + η3〉− 1
2
〈ξ′ + η′〉s+t−1

〈η′〉t f̂(ξ)〈η′〉tĝ(η)h(ξ + η) dξ dη,

and we apply Hölder’s inequality in the variables ξ′ and η′ to obtain that

I1 ≤
∫∫
〈ξ3 + η3〉− 1

2

(∫∫
2|ξ′|≥|η′|

〈ξ′ + η′〉2(s+t−1)

〈η′〉2t |f̂(ξ)|2 dξ′ dη′
︸ ︷︷ ︸

I3

×
∫∫
〈η′〉2t|ĝ(η)|2|h(ξ + η)|2 dξ′ dη′

) 1
2

dξ3 dη3.

To estimate I3, we first integrate with respect to η′ and then decompose∫
2|ξ′|≥|η′|

〈ξ′ + η′〉2(s+t−1)

〈η′〉2t dη′ =
∫
|η′|≤|ξ′|/2

〈ξ′ + η′〉2(s+t−1)

〈η′〉2t dη′

+

∫
|ξ′|/2≤|η′|≤2|ξ′|

〈ξ′ + η′〉2(s+t−1)

〈η′〉2t dη′.

If |η′| ≤ |ξ′|/2, then 〈ξ′ + η′〉  〈ξ′〉. If |ξ′|/2 ≤ |η′| ≤ 2|ξ′|, then 〈η′〉  〈ξ′〉. We
deduce that∫

|η′|≤|ξ′|/2

〈ξ′ + η′〉2(s+t−1)

〈η′〉2t dη′  〈ξ′〉2(s+t−1)

∫
|η′|≤|ξ′|/2

1

〈η′〉2t dη
′ ≤ K

1− t 〈ξ
′〉2s
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and that∫
|ξ′|/2≤|η′|≤2|ξ′|

〈ξ′ + η′〉2(s+t−1)

〈η′〉2t dη′  1

〈ξ′〉2t
∫
|ξ′|/2≤|η′|≤2|ξ′|

〈ξ′ + η′〉2(s+t−1) dη′

≤ K

〈ξ′〉2t
∫
|ζ|≤3|ξ′|

〈ζ〉2(s+t−1) dζ ≤ K

s+ t
〈ξ′〉2s,

where we have used Lemma 1.5 and the change of variables ζ = ξ′ + η′.
According to the definition of I3, we obtain from the previous relations that

I3 ≤ C
∫
〈ξ′〉2s|f̂(ξ)|2 dξ′,

which yields the following estimate for I1:

I1 ≤ C
∫∫ (∫

〈ξ′〉2s〈ξ3〉2s′ |f̂(ξ)|2 dξ′
∫
|h(ζ, ξ3 + η3)|2 dζ

) 1
2

×
(
〈ξ3 + η3〉−1〈ξ3〉−2s′

∫
〈η′〉2t|ĝ(η)|2 dη′

) 1
2

dξ3 dη3.

Hölder’s inequality applied in the variable (ξ3, η3) now gives that

I1 ≤ C‖f‖s,s′‖h‖L2

(∫
〈η′〉2tϕ(η3)|ĝ(η)|2 dη

) 1
2

,(2)

where

ϕ(η3) =

∫
1

〈ξ3 + η3〉〈ξ3〉2s′ dξ3.

To estimate ϕ, we proceed as for I3 by investigating several pieces and using Lemma
1.5: ∫

|ξ3|≥2|η3|

1

〈ξ3 + η3〉〈ξ3〉2s′ dξ3 
∫ ∞

2|η3|

1

〈ξ3〉2s′+1
dξ3


∫ ∞

2|η3|

1

(1 + ξ3)2s
′+1

dξ3 ≤ K

〈η3〉2s′ ≤
K

〈η3〉 ,∫
|ξ3|≤|η3|/2

1

〈ξ3 + η3〉〈ξ3〉2s′ dξ3 
1

〈η3〉
∫
|ξ3|≤|η3|/2

1

〈ξ3〉2s′ dξ3 ≤
K

(s′ − 1
2 )〈η3〉

,∫
|η3|/2≤|ξ3|≤2|η3|

1

〈ξ3 + η3〉〈ξ3〉2s′ dξ3 
1

〈η3〉2s′
∫
|η3|/2≤|ξ3|≤2|η3|

1

〈ξ3 + η3〉 dξ3

≤ K

〈η3〉2s′
∫
|ζ|≤3|η3|

1

〈ζ〉 dζ

≤ K

〈η3〉2s′ (1 + log〈η3〉) ≤ K

(s′ − 1
2 )〈η3〉

,

where we have used in the last relation that logα ≤ αε

eε for all α ≥ 1 and ε > 0. We
deduce from the previous relations that

ϕ(η3) ≤ C〈η3〉−1,
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which, plugged into (2), yields the estimate

I1 ≤ C‖f‖s,s′‖g‖t,− 1
2
‖h‖L2 .(3)

To complete the proof, it remains to estimate I2 (defined in relation (1)). By
Hölder’s inequality,

I2 ≤ (J1J2)
1
2 ,

where

J1 =

∫∫
〈ξ′〉2s〈ξ3〉2s′ |f̂(ξ)|2|h(ξ + η)|2 dξ dη

and

J2 =

∫∫
2|ξ′|≤|η′|

〈ξ′ + η′〉2(s+t−1)

〈ξ′〉2s
〈ξ3 + η3〉−1

〈ξ3〉2s′ |ĝ(η)|2 dξ dη.

Clearly, J1 = ‖h‖2L2‖f‖2s,s′ . To estimate J2, we first integrate in ξ
′ and ξ3. As in

the estimate for I3,∫
2|ξ′|≤|η′|

〈ξ′ + η′〉2(s+t−1)

〈ξ′〉2s dξ′  〈η′〉2(s+t−1)

∫
2|ξ′|≤|η′|

1

〈ξ′〉2s dξ
′ ≤ K

1− s 〈η
′〉2t.

Therefore, again using the bound for ϕ, one deduces that

J2 ≤ C‖g‖2t,− 1
2
.

We conclude that

I2 ≤ C‖f‖s,s′‖g‖t,− 1
2
‖h‖L2 ,

which, combined with relations (1) and (3), completes the proof of Theorem 1.4.
Remark 2. It might be useful to know how the constant C in the statement of

Theorem 1.4 depends on s, s′, and t. Actually, tracking the constants in the proof,
the constant C is of the form

C = K

(
1√
1− s +

1√
1− t +

1√
s+ t

)
1√

s′ − 1/2
,

where we have assumed that s′ stays bounded (say, s′ ≤ 100).
Remark 3. Theorem 1.4 is a special case of a more general theorem. More

precisely, instead of considering g ∈ Ht,−
1
2 , one may consider g ∈ Ht,t

′
, where t′

verifies t′ ≤ s′ and s′ + t′ > 0. The conclusion is then that fg ∈ Hs+t−1,t′ . We chose
to prove the special case t′ = −1/2, sufficient for our purposes, because the proof is
considerably simpler. The proof in the general case does not involve any new ideas.
In fact, the complication in the proof comes from the fact that the decomposition in
ξ′ given in relation (1) has to be done in the variable ξ3 also; therefore one has to
examine four pieces instead of just two, but the techniques are identical. Finally, let
us note that if we add the hypothesis t′ < s′−1/2, then the additional decomposition
in ξ3 is not necessary and the proof given here carries over with no modification other
than the replacement of −1/2 by t′.
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2. Proof of the main theorem. We can assume without loss of generality that
s < 1. We will prove that the H0,− 1

2 norm of w = v− ṽ vanishes. In order to estimate
‖w‖0,− 1

2
, let us prove that the regularity available is enough to allow us to multiply

the equation for v − ṽ by Λ−1
3 w. First, note that we can write

v · ∇v =
∑
i

∂i(viv).

By interpolation and by hypothesis, one has that v ∈ L4(0, T ; H
1
2 ,s) (see relation

(16)). The product theorem 1.3 easily implies that viv ∈ L2(0, T ; H0,1−s) so v · ∇v ∈
L2(0, T ; H−1,−s) ⊂ L2(0, T ; H−1,− 3

2 ). Clearly, ν(∂2
1 +∂

2
2)v+νV ∂

2
3v ∈ L2(0, T ; H−1,s)+

L2(0, T ; H1,s−2) ⊂ L2(0, T ; H−1,− 3
2 ). From the equation (NSh) it follows that ∂tv ∈

L2(0, T ; H−1,− 3
2 ). We deduce that every term in the equations for v and ṽ be-

longs to L2(0, T ; H−1,− 3
2 ) and can therefore be multiplied by Λ−1

3 w, which belongs

to L2(0, T ; H1,1+s) ⊂ L2(0, T ; H1, 32 ).

Note that the fact that ∂tv ∈ L2(0, T ; H−1,− 3
2 ) and v ∈ L2(0, T ; H1,s) implies, by

the interpolation theory developed by Lions and Magenes [7, Chapter 1], that v ∈
C0([0, T ]; H0, 2s−3

4 ). The interpolation property stated in Proposition 1.2 along with
the fact that v ∈ L∞(0, T ; H0,s) imply in a classical manner that v ∈ C0([0, T ]; H0,r)
for all r < s.

Multiplying the equation for v − ṽ by Λ−1
3 w, integrating on (ε, t) × R

3, letting
ε→ 0, and using the continuity in time of ‖w‖0,− 1

2
yields

(4)

‖w(t)‖20,− 1
2
+ 2ν

∫ t

0

(‖∂1w(τ)‖20,− 1
2
+ ‖∂2w(τ)‖20,− 1

2

)
dτ + 2ν

V

∫ t

0

‖∂3w(τ)‖20,− 1
2
dτ

= −2
∫ t

0

∫
v(τ, x) · ∇w(τ, x) · Λ−1

3 w(τ, x) dτ dx

− 2

∫ t

0

∫
w(τ, x) · ∇ṽ(τ, x) · Λ−1

3 w(τ, x) dτ dx.

To simplify the notation, we will write v instead of v(τ, x) and so on. We consider τ
fixed, and we evaluate∫

v · ∇w · Λ−1
3 w dx =

∫
(v1∂1w + v2∂2w) · Λ−1

3 w dx︸ ︷︷ ︸
L1

+

∫
v3∂3w · Λ−1

3 w dx︸ ︷︷ ︸
L2

(5)

and ∫
w · ∇ṽ · Λ−1

3 w dx =

∫
(w1∂1ṽ + w2∂2ṽ) · Λ−1

3 w dx︸ ︷︷ ︸
L3

+

∫
w3∂3ṽ · Λ−1

3 w dx︸ ︷︷ ︸
L4

.(6)

We will now estimate each of these integrals.

Estimate of L1. According to the product theorem 1.4, one can bound L1 as
follows:

|L1| ≤ ‖v1∂1w + v2∂2w‖− 1
2 ,− 1

2
‖Λ−1

3 w‖ 1
2 ,

1
2
≤ C‖v‖ 1

2 ,s
‖w‖1,− 1

2
‖w‖ 1

2 ,− 1
2
.



UNIQUENESS FOR ANISOTROPIC NAVIER–STOKES EQUATIONS 1491

By the interpolation property given in Proposition 1.2, one has that

‖w‖ 1
2 ,− 1

2
≤ ‖w‖ 1

2

0,− 1
2

‖w‖ 1
2

1,− 1
2

,(7)

which leads to

|L1| ≤ C‖v‖ 1
2 ,s
‖w‖ 1

2

0,− 1
2

‖w‖ 3
2

1,− 1
2

.(8)

Estimate of L3. Again by the product theorem 1.4, we have that

|L3| ≤ ‖w1∂1ṽ + w2∂2ṽ‖− 3
4 ,− 1

2
‖Λ−1

3 w‖ 3
4 ,

1
2
≤ C‖ṽ‖ 1

2 ,s
‖w‖23

4 ,− 1
2
.

By interpolation,

‖w‖ 3
4 ,− 1

2
≤ ‖w‖ 1

4

0,− 1
2

‖w‖ 3
4

1,− 1
2

,

so that

|L3| ≤ C‖ṽ‖ 1
2 ,s
‖w‖ 1

2

0,− 1
2

‖w‖ 3
2

1,− 1
2

.(9)

Estimate of L4. We proceed by using Theorem 1.3:

|L4| ≤ ‖w3∂3ṽ‖− 1
2 ,

2s−3
4
‖Λ−1

3 w‖ 1
2 ,

3−2s
4
≤ C‖w3‖0, 3−2s

4
‖∂3ṽ‖ 1

2 ,s−1‖w‖ 1
2 ,

−2s−1
4

≤ C‖ṽ‖ 1
2 ,s
‖w3‖0, 12 ‖w‖ 1

2 ,− 1
2
.

But it is trivial to see that

‖f‖s,s′ =
(‖f‖2s,s′−1 + ‖∂3f‖2s,s′−1

) 1
2 ≤ ‖f‖s,s′−1 + ‖∂3f‖s,s′−1.

Therefore, because w is divergence free,

‖w3‖0, 12 ≤ ‖w‖0,− 1
2
+‖∂3w3‖0,− 1

2
= ‖w‖0,− 1

2
+‖∂1w1+∂2w2‖0,− 1

2
≤ ‖w‖0,− 1

2
+2‖w‖1,− 1

2
.

Also using relation (7), we infer that

|L4| ≤ C‖ṽ‖ 1
2 ,s

(‖w‖ 3
2

0,− 1
2

‖w‖ 1
2

1,− 1
2

+ ‖w‖ 1
2

0,− 1
2

‖w‖ 3
2

1,− 1
2

)
.(10)

Estimate of L2. The proof for L2 is more delicate. It is a commutator-type
estimate and requires an integration by parts. Applying Parseval’s formula gives

L2 =

∫
v3∂3w · Λ−1

3 w dx

= (2π)−3

∫
v̂3∂3w(ξ) ·̂Λ−1

3 w(−ξ) dξ

= (2π)−6

∫
1

〈ξ3〉 v̂3 ∗ ∂̂3w(ξ) · ŵ(−ξ) dξ

= i(2π)−6

∫∫
η3
〈ξ3〉 v̂3(ξ − η)ŵ(η) · ŵ(−ξ) dξ dη.

(11)

Using the change of variables (ξ, η)↔ (−η,−ξ), one can write

L2 =
i

2
(2π)−6

∫∫ (
η3
〈ξ3〉 −

ξ3
〈η3〉

)
v̂3(ξ − η)ŵ(η) · ŵ(−ξ) dξ dη.(12)
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Now, for x, y ∈ R, one can check the following identity:

x

〈y〉 −
y

〈x〉 =
x− y
〈y〉 +

(x− y)y(x+ y)
〈x〉〈y〉(〈x〉+ 〈y〉) .

As |y| < 〈y〉 and |x+ y| < 〈x〉+ 〈y〉, we infer that∣∣∣∣ x〈y〉 − y

〈x〉
∣∣∣∣ ≤ |x− y|

(
1

〈x〉 +
1

〈y〉
)
.

Therefore, we obtain from (12) that

|L2| ≤ 1

2
(2π)−6

∑
j

∫∫
|ξ3 − η3|

(
1

〈ξ3〉 +
1

〈η3〉
)
|v̂3(ξ − η)| |ŵj(η)| |ŵj(−ξ)|dξ dη.

Using again the change of variables (ξ, η)↔ (−η,−ξ), we deduce

|L2| ≤ (2π)−6
∑
j

∫∫ |ξ3 − η3|
〈ξ3〉 |v̂3(ξ − η)| |ŵj(η)| |ŵj(−ξ)|dξ dη.

As v is divergence free, one has that ξ3v̂3(ξ) = −ξ1v̂1(ξ)−ξ2v̂2(ξ), so |ξ3| |v̂3(ξ)| ≤
|ξ1| |v̂1(ξ)|+ |ξ2| |v̂2(ξ)|. It follows that

|L2| ≤ (2π)−6
∑
j

∫∫ |ξ1 − η1| |v̂1(ξ − η)|+ |ξ2 − η2| |v̂2(ξ − η)|
〈ξ3〉 |ŵj(η)| |ŵj(−ξ)|dξ dη.

(13)

Let V be the vector field whose components verify

V̂j = |v̂j |.
Obviously, ‖Vj‖r,r′ = ‖vj‖r,r′ for all r, r′, and j. We define in the same manner the
vector field W . Using the reversed argument of (11), we observe that relation (13) is
equivalent to

|L2| ≤
∫
(|D1|V1 + |D2|V2)W · Λ−1

3 W dx,

where |Dj | denotes the operator of multiplication in the frequency space by |ξj |. As
|Dj |Vj and ∂jVj have the same Hr,r′ norm for all r, r′, and j, the same argument as
in the estimate of L3 shows that

|L2| ≤
∫
(|D1|V1 + |D2|V2)W · Λ−1

3 W dx ≤ C‖V ‖ 1
2 ,s
‖W‖ 1

2

0,− 1
2

‖W‖ 3
2

1,− 1
2

(14)

= C‖v‖ 1
2 ,s
‖w‖ 1

2

0,− 1
2

‖w‖ 3
2

1,− 1
2

.

Collecting relations (4), (5), (6), (8), (9), (10), and (14), we get

‖w(t)‖20,− 1
2
+ 2ν

∫ t

0

(‖∂1w‖20,− 1
2
+ ‖∂2w‖20,− 1

2

)
dτ

≤ C
∫ t

0

‖w‖ 3
2

1,− 1
2

‖w‖ 1
2

0,− 1
2

(‖v‖ 1
2 ,s

+ ‖ṽ‖ 1
2 ,s

) dτ

+ C

∫ t

0

‖w‖ 1
2

1,− 1
2

‖w‖ 3
2

0,− 1
2

‖ṽ‖ 1
2 ,s

dτ.
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Using that ab ≤ a4

4 + 3b
4
3

4 for suitable choices of a and b, we infer that

‖w(t)‖20,− 1
2
+ 2ν

∫ t

0

(‖∂1w‖20,− 1
2
+ ‖∂2w‖20,− 1

2

)
dτ ≤ ν

∫ t

0

‖w‖21,− 1
2
dτ

+ C

∫ t

0

‖w‖20,− 1
2

(‖v‖41
2 ,s

+ ‖ṽ‖41
2 ,s

+ ‖ṽ‖ 4
3
1
2 ,s

)
dτ.

As

‖w‖21,− 1
2
= ‖∂1w‖20,− 1

2
+ ‖∂2w‖20,− 1

2
+ ‖w‖20,− 1

2
,

we further deduce that

‖w(t)‖20,− 1
2
≤
∫ t

0

‖w(τ)‖20,− 1
2
h(τ) dτ,(15)

where

h(t) = ν + C(‖v‖41
2 ,s

+ ‖ṽ‖41
2 ,s

+ ‖ṽ‖ 4
3
1
2 ,s

).

By interpolation,

‖v‖ 1
2 ,s
≤ ‖v‖ 1

2
0,s‖v‖

1
2
1,s.(16)

The hypothesis made on v implies that ‖v‖ 1
2 ,s
∈ L4(0, T ). The same holds for ṽ, so

h ∈ L1(0, T ). Gronwall’s lemma applied in (15) now implies that w ≡ 0. The proof is
completed.
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