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Abstract. Let M € Z**® be a dilation matrix and let D C Z° be a complete set of represen-
tatives of distinct cosets of Z5/MZ5. The self-similar tiling associated with M and D is the subset
of R® given by T'(M,D) = {Z;‘;l M’jaj : aj € D}. The purpose of this paper is to characterize
self-similar lattice tilings, i.e., tilings T'(M, D) which have Lebesgue measure one. In particular, it is
shown that T'(M, D) is a lattice tiling if and only if there is no nonempty finite set A C Z* \ (D — D)
such that M—1((D—D)+A)NZS C A. This set A can be restricted to be contained in a finite set K
depending only on M and D. We also give a new proof for the fact that T'(M, D) is a lattice tiling if
and only if US_; ( ;:Ol M3 (D — D)) = Z°. Two approaches are provided, one based on scrambling
matrices and the other based on primitive matrices. These will follow from the characterization of
subdivision schemes associated with nonnegative masks in terms of finite powers of finite matrices,
without computing eigenvalues or spectral radii. Our characterization shows that the convergence
of the subdivision scheme with a nonnegative mask depends only on the location of its positive
coefficients.
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1. Introduction. Self-similar tilings are defined in terms of dilation matrices
and digit sets. A dilation matrix M in R*(s € N) is an s X s integer matrix with
all the eigenvalues greater than 1 in modulus, i.e., lim,, .o M ™" = 0. A digit set D
associated with the dilation matrix M is a complete set of representatives of distinct
cosets of the quotient group Z°/MZ*. If m = |det M|, then D consists of m elements
{€0,€1,...,em—1} and &, —e; & MZ? for i # j.

The self-similar tiling associated with a dilation matrix M and a digit set D is
defined to be the subset T(M, D) of R® as

(1.1) T(M,D):={ > MJa;: o €D

j=1

Self-similar tilings have been studied in a variety of contexts in the literature; see,
e.g., [6, 5, 10, 11, 20] and the references therein.

The measure of a self-similar tiling is always a positive integer. Here we are inter-
ested in the case when this measure meas(7'(M, D)) is exactly one. If this happens, we
call T(M, D) a self-similar lattice tiling because the integer translates of T'(M, D) tile
the space R® without overlapping. These lattice tilings provide useful examples not
only for fractal geometry but also for wavelet analysis. How to characterize self-similar
lattice tilings in terms of the digit sets is our main concern here.
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In the univariate case, M = m > 1 is a positive integer and D consists of m

integers {eg,€1,...,em—1} satisfying ¢; = j(modm) for j = 0,1,...,m — 1. Then
T(M, D) has measure one if and only if the numbers €1 —¢y, . . ., £,,—1 —&0 are relatively
prime, i.e., ged(e1 —€0,...,Em—1 —€0) = 1. This result was proved independently by

Grochenig and Haas [5] and by Zhou [21].

In the multivariate case, things are more difficult. Grochenig and Madych [6]
used the Cohen condition for orthogonality of refinable functions and obtained many
interesting examples of self-similar lattice tilings. A useful necessary condition for
self-similar lattice tilings was provided by Lagarias and Wang [10]: if T'(M, D) has
measure one, then the smallest M-invariant sublattice Z[M, D] of Z* containing the
difference set D —D :={a— 0 : o, € D} is Z°. A necessary and sufficient condition
was given by Grochenig and Haas [5] in terms of the spectrum of a finite matrix. To
apply this condition, one needs to check whether some eigenvalues of the matrix have
modulus 1 exactly, which is somehow numerically instable. By the tiling theorem in
[11], T(M, D) is a self-similar lattice tiling if and only if U2, Z;L:_g MI(D—-D) = 7.
A new proof for this fact will be given in this paper by means of subdivision schemes.

In this paper we show that T'(M, D) is a lattice tiling if and only if there is no
nonempty finite set A C Z* \ (D — D) such that M~ ((D — D) + A) NZ* C A. This
set A can be restricted to be contained in a finite set K depending only on M and
D. The lattice tiling property is also equivalent to K C Zj;ol MI(D — D) for some
1 <n<1+#(K\(D-D)); see Theorem 5. We also provide some criteria for
checking self-similar lattice tilings in terms of finite powers of finite matrices. Two
approaches will be presented, one based on scrambling matrices (section 3) and the
other based on primitive matrices (section 4). Our criteria will be consequences of
general characterizations of Lo-convergence of subdivision schemes associated with
nonnegative masks. Observe that the characteristic function of the self-similar tiling
(1.1) satisfies the refinement equation

o(x) = qu(Mx—oz), x € R®.
a€D
The symbol of the corresponding mask is a conjugate quadrature filter. Hence the
self-similar lattice tiling can be studied by the convergence of subdivision scheme
associated with this equation.

2. Subdivision schemes and transfer operators. Subdivision schemes are
often used to solve refinement equations of the form

(2.1) o(x) = Z ala)p(Mz — ), x € R?,

a€ZLs
where a := {a(a)}aezs is a finitely supported sequence called the refinement mask.
We restrict a to be real-valued in this paper. When > a(a) = m, the refinement
equation (2.1) has a unique compactly supported distributional solution under the
normalized condition ¢(0) = 1 (e.g., [1, 2]). Here ¢ denotes the Fourier transform of
¢ and ¢ is called the normalized solution of (2.1).

In order to find a solution in L,, we start with the initial function ¢g(x) =
II5_yp(z;), where x = (x1,...,75) and ¢ is the univariate hat function supported
and given on [0,2] by ¢(t) = min{¢,2 — ¢}. Then the subdivision scheme associated
with (2.1) is defined to be a sequence of functions {¢,} as

On(z) = Z a(@)pp_1(Mz — a), r€eR®’, meN.
a€Zs
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We say that the subdivision scheme associated with (2.1) converges in L,(1 < p < c0)
if and only if {¢,, } converges in L,:

1/p
o=l =t { [ [6u(0) - starach o

To characterize the L,-convergence of the subdivision scheme in terms of the
mask, one needs the concept of the p-norm joint spectral radius; see, e.g., [8, 2]. It
is hard to compute the p-norm joint spectral radius. However, when p is an even
integer, Zhou showed in [22] (see also [19]) that the p-norm joint spectral radius of a
finite set of matrices can be computed exactly and explicitly by the spectral radius of
a single finite matrix.

It is well known (see, e.g., [4, 8]) that the La-convergence of subdivision schemes
can be characterized in terms of the spectral radius of a finite matrix derived from
the transfer operator which was introduced to wavelet analysis by Lawton [12]. In
the multivariate case, such a characterization was given independently by Han and
Jia [7], Lawton, Lee, and Shen [13], and Strang [18]. To state this fact, let b be the
sequence defined by

o) =~ 3 a(Pa(a+h), aezs,

Bezs

Obviously, the sequence b is finitely supported on suppa — suppa. The transfer op-
erator is associated with the bi-infinite matrix (b(Ma — §))a,pezs. To get the finite
matrix, we restrict both «a, 3 to be in a finite index set K C Z° such that the space
of all sequences supported in K, {(K) is invariant under the operator (b(Ma — f3)).
Also, we require that K contains 2, the support of the sequence b. Such a set K exists.
For example, by [7] we may take

K=17nN (Z M~"(QuU MQ)) .
n=1
Now we have a finite set K, and the sequence b satisfies
b(Ma—0)#0, BeK = a€ K.
The finite matrix we need for the Lo-convergence is
(2.2) F .= (b(Ma — 5))@7%}{.

A necessary condition for the convergence of the subdivision scheme is the sum
rule of order one: ) .. a(Ma+ 3) =1 for every 3 € Z°. Under this condition,

S b(Ma+ ) = % Y a) Y aMa+B+y)=1 Viez
Q€ZS YEZLS a€Zs

If a sequence v supported on K (v € £(K)) satisfies Y v(a) = 0, then the vanishing
of (Ma — Q) for f € K,a ¢ K yields

D (Fo)a=> Y b(Ma—Bu(@B) = { > b(Ma— ﬁ)} v(B) = 0.

acK a€K BeK BeK \a€Zs
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That means the space

(2.3) Vo= {v €LUK): Y v(e) = o}

acK

is invariant under the action of F.

With the above notation, we can now state the following known result [7, 13, 18]
on the Lo-convergence of subdivision schemes.

THEOREM A. Let M be a dilation matriz and let a := {a(a)}aczs be a finitely
supported sequence with > a(a) = m. Then the subdivision scheme associated with
(2.1) converges in Ls if and only if

(a) Dnez- a(Ma+B3) =1V3 € Z°;

(b) p(Flv) < 1, i.e., the spectral radius of the finite matriz F restricted to the
invariant subspace V' is less than 1.

This is a very nice characterization. However, one still has to compute the eigen-
values of the matrix, which is not so stable numerically. In particular, for our purpose
of self-similar tilings, the mask will be nonnegative. In this case, F' is a column-
stochastic matrix, i.e., F' is nonnegative and for every § € K

Y Fap= > bMa-p)=1

acK a€Zs

Thus, F would have eigenvalues other than 1 on the unit circle, if condition (b) of
Theorem A is not true. This difficulty can be overcome by using the special property
caused by the nonnegative mask.

3. The La-convergence of subdivision schemes with nonnegative masks.
In this section we characterize the Lo-convergence of the subdivision scheme associated
with a nonnegative mask in terms of finite powers of the column-stochastic matrix F'.
This approach depends mainly on a result of scrambling column-stochastic matrices
used by Jia and Zhou in [9].

A matrix A = (Aa.g8)a.ger s called column-stochastic if all its entries are non-
negative and

> Aup=1 VBEK.

acK

We say that the column-stochastic matrix A is scrambling if each pair of columns has
positive entries in some common row. It is well known that AB is column-stochastic
if both A and B are, and AB is scrambling if B is scrambling and A is column-
stochastic. Denote |[v||; as the ¢1-norm of sequences. The result from [9] that we
need here is the following.

LEMMA. Let A = (Aa,g)a,peck be column-stochastic and let V' be defined by (2.3).
Then

Av
JAl = sup 1A%
ozvev V]l

if and only if A is scrambling.

We are now in a position to state the main result of this section.

THEOREM 1. Let M be a dilation matriz and let a := {a(a)}aczs be a finitely
supported nonnegative sequence with Y a(a) = m. Set K and F as in Theorem A.
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Let N := #K. Then the subdivision scheme associated with (2.1) converges in Lo if
and only if

(1) Dnezs a(Ma+B) =1V3 € Z°;

(ii) there exists some integer n with 1 < n < (3N — 2N+ 11)/2 such that the
matriz F™ is scrambling.

Proof. The sufficiency follows from Theorem A, our lemma, and the well-known
fact that

Fly) = lim [|[F¥[y /" = inf ||F*
p(Flv) = lim [[F¥|yv[," = nf [Fv]]

1/k
7

To see the necessity, we suppose that the subdivision scheme converges in L.
Then condition (i) holds by Theorem A. Theorem A also tells us that

. 1/k
p(Flv) = inf |[F¥ly|;/* <1.

Hence, ||F*|y||; < 1 for some k € N. Since F* is column-stochastic, by our lemma, F*

is scrambling. Observe that condition (ii) is equivalent to the fact that F @Y -2¥*41)/2

N+1 . .
—27741)/2 is scrambling.

(3N —2N+111)/2

is scrambling. It is sufficient for us to show that F @~

Suppose to the contrary that the column-stochastic matrix F is
not scrambling. Then there are two distinct elements v; and v, in K such that
for every a € K either (F(3N*2N+1+1)/2)am or (F(?’N*QNH“)/z)04772 is zero. Let
0<j< (BN -2V 1 1)/2,y € {71,7}. We have

N _oN+1 N _gN+1 —J '
P, S e,
peK

Therefore, for every 3 € K, either (FV)g., or (F7)gs ., is zero, since for some a € K
depending on S, (F(3N_2N+1+1)/2_j)a“g # 0. Here F© = I. Define

Ly ={B€K:(F)s, >0}

Then we know that I, # () and for 0 < j < 3V —2N+1 4+ 1)/2 1, . NI;., = 0. The
number of different unordered pairs of disjoint nonempty subsets of K is (3% —2N+1 4
1)/2 (see [16]). Hence, there must exist some 1 < p < < (3¥ — 2N+ 4+ 1)/2 such
that I, ,, = I;, and I, ,, = I; 5,. That means, for every 5 € K,y € {y1,72}, (F?)s,5
and (F')g., are either both positive or both zero.

Let g e Nya € K, € {71,72}. Then

(Ferq(lfzo))a’,Y = Z (F(qfl)(lfp))a,,@(Fl)ﬂ,'v
BEK

vanishes if and only if

(Fan(qfl)(lfp))(M = Z (F(qfl)(lfp))aﬂ(pp)ﬁﬂ
BEK

equals zero. Hence, for v € {y1,72},¢ € N, I, q4—p),y = Ip~- It follows that for any
q €N,

Ip+q(l—p)m N Ip+q(l—p),’y2 =Ipy NIy, = 0.
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Thus the column-stochastic matrix FPT40=P) is not scrambling. Choose ¢ such that
p+q(l—p) > k. Then we conclude that F* is not scrambling, which is a contradiction.
This tells us that condition (ii) holds. |

In [15, 3, 9] the uniform convergence of subdivision schemes associated with non-
negative masks was characterized in terms of finite products of m matrices. This in
connection with the autocorrelation of the mask yields another way to characterize
the Lo-convergence. However, we need a set of m matrices and many more matrix
products need to be checked.

The argument for the bound (3% — 2V+1 4 1)/2 was provided by Paz [16], who
proved that (3% —2V*+1 4 1)/2 is a sharp bound for the power in checking scrambling
products of several matrices. Here we give a complete proof for the reader’s conve-
nience. For a single matrix, this bound can most likely be largely reduced. With
the approach given in the next section (Theorem 2) we will need to check only the
powers up to (N —1)2 + 1 for our purpose of checking the Lo-convergence. However,
Theorem 1 plays an important role in deriving a nice characterization of self-similar
lattice tilings (Theorem 5) which is hard to see from Theorem 2.

As a consequence of Theorem 1, we show that the convergence of the subdivi-
sion scheme with a nonnegative mask depends only on the location of its positive
coefficients.

COROLLARY 1. Let a and ¢ be two nonnegative masks satisfying the sum rule of
order one:

Y a(Ma+p)= Y c(Ma+p)=1 VBeZ.

a€Zs a€Zs

Suppose c(a) > 0 whenever a(a) > 0. If the subdivision scheme associated with mask
a converges, then the subdivision scheme associated with mask ¢ also converges.

Proof. Let K be given for the mask ¢ as in Theorem A. Denote Fj, and F. as
the transfer matrices defined by (2.2) associated with the masks a and ¢, respectively.
Then for o, 8 € K, (Fy)a,p > 0 implies that (F.)a,s > 0.

Since the subdivision scheme associated with mask a converges, by Theorem 1,
for some 1 < n < (3#K —2#K+1 1 1) /2 the matrix F is scrambling. Then the matrix
F? is also scrambling. By using Theorem 1 again, we conclude that the subdivision
scheme associated with mask c¢ also converges. 0

4. Primitive matrices and condition E. In this section we present another
approach to the Ls-convergence of subdivision schemes associated with nonnegative
masks. This approach is based on primitive matrices and the power involved is at
most (N —1)? + 1, much less than (3% — 2V+1 4 1)/2 when N is large.

To state the main result here, we need the Frobenius normal form of the column-
stochastic matrix F':

Fr 0 -+ 0 Figsr - Frag]
0 F, 0o 0 Fogyy - Fog
D0 0 : :
(4.1) F=1| 0 0  Fy Frrn Fr.a
0 0 0 Fip :
0 0 0 0 .
0 o 0 0 0 Fy
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Here k > 1 and each Fj is either a 1 x 1 zero matrix or is irreducible. The blocks
Fy, ..., Fy are called isolated. For each [ with k+ 1 <[ < d (nonisolated block), there
exists some ¢ such that F;; # 0. The Frobenius normal form for the matrix F' can be
realized by choosing a suitable order for the set K.

Condition (b) of Theorem A for F' is equivalent to condition E. A square matrix
A is said to satisfy condition E if 1 is a simple eigenvalue of A and all the other
eigenvalues are less than 1 in modulus. An irreducible nonnegative matrix A is called
primitive if A satisfies condition E. Recall that for an irreducible column-stochastic
matrix, the primitivity is equivalent to that for some n € N, A" is positive (all the
entries are positive). The smallest n with this property is called the index of A and
can be bounded sharply by (N — 1)? + 1. For these facts on nonnegative matrices,
see, e.g., [17].

Using the Frobenius normal form (4.1) we can characterize the Lo-convergence of
subdivision schemes with nonnegative masks in terms of primitive matrices.

THEOREM 2. Let M be a dilation matriz and let a := {a(®)}aezs be a finitely
supported nonnegative sequence with Y a(a) = m. Set K and F as in Theorem A.
Let N := #K. Assume that the matriz F takes the form (4.1). Then the subdivision
scheme associated with (2.1) converges in Lo if and only if

(1) Daezea(Ma+p) =1Vp € Z°;

(ii) in the form (4.1), k =1, and Fy is primitive.

Proof. Let us prove the equivalence between condition (b) of Theorem A and
condition (ii) of Theorem 2.

Suppose p(F|y) < 1. Since F is column-stochastic, it has an eigenvalue 1 with a
left eigenvector [1,...,1]. Then F satisfies condition E. Since F is column-stochastic,
each of the isolated blocks F1, ..., F} is also column-stochastic and provides one mul-
tiplicity of the eigenvalue 1. Hence, £k = 1. All the eigenvalues of Fi, including 1,
are eigenvalues of F', but F satisfies condition E. Therefore, F} satisfies condition E.
This in connection with the irreducibility of F; implies that F} is primitive. Thus
condition (ii) of Theorem 2 holds.

Conversely, assume that kK = 1 and F} is primitive. We need to show that p(F;) <
1for2<j<d.

Suppose to the contrary that for some j with 2 < j < d, p(F;) > 1. Then F; is
not the zero matrix and is irreducible. Since all the eigenvalues of F}; are eigenvalues
of F', p(F;) = 1. However, F; is nonnegative. The Perron-Frobenius theorem tells us
that F; has a left positive eigenvector v with eigenvalue 1: vF; = vand v = [v1,..., v
with v1,...,v; > 0.

Let vpax := max{v; : 1 <7 <1} >0 and let [ :={i : v; = Vpax} # 0. Then for
1e€1,

l
0 = Vmasx = D Up(Fy)pi = Vumae 3 (Fj)pi + D 0p(Fy)pi < timas:
p=1 pel p&l

Since the equality holds, we know that for ¢ € I,p & I,(F}),; = 0. However, F; is
irreducible. Therefore, I¢ = 0, i.e., v1 = vy = -+ = U} = Umax. It follows that Fj is
column-stochastic. Hence, Fj; = 0 for ¢ # j and F} is an isolated block, which is a
contradiction.

Thus, we have shown that p(F;) < 1 for 2 < j < d. But F; satisfies condition
E. Hence F satisfies condition E, ie., p(F|y) < 1. The proof of Theorem 2 is
complete. 1]
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The proof of Theorem 2 yields the following result on general column-stochastic
matrices, which is of independent interest.

THEOREM 3. Let F be column-stochastic and take the Frobenius normal form
(4.1). Then the following statements are equivalent:

(i) F satisfies condition E;

(ii) k =1 and Fy is primitive;

(iil) F™ is scrambling for some n € N;

() p(Flv) < 1.

To apply Theorems 2 and 3, we have to check whether F} is primitive. Since Fj
is irreducible, this is equivalent to the fact that F* is scrambling for some n € N.
From the sharp bound (N —1)2 + 1 for the index of primitive matrices, we know that
n can be bounded by (N — 1)2 + 1. The following example shows that, in general, n
should be at least [(N — 1)2/2] + 1.

Example 1. Let A be the following N x N irreducible column-stochastic matrix:

0 -~ 0 1/2
1/2

Then by computation we see that AN=1%/2] i not scrambling, while A[(N-1?/21+1
is scrambling.

5. Characterizations for self-similar lattice tilings. In this section we char-
acterize self-similar lattice tilings in terms of finite powers of finite matrices and digit
sets.

Observe that the characteristic function xp(ap) of the self-similar tiling (1.1)
satisfies the refinement equation

(5.1) ¢(z) = > ¢(Mz—a)

acD

with the mask being a 0—1 sequence (hence, nonnegative). The normalized solution is
o= m X7(m,p)- The mask satisfies condition (i) of Theorem 1. Recall from
[6] that the symbol of this mask is a conjugate quadrature filter (CQF). Therefore,
a well-known fact on CQFs tells us that the integer translates of ¢ are orthonormal
(i.e., T(M, D) has measure one) if and only if the subdivision scheme associated with
(5.1) converges in Ls. Recall from [7] that for any finitely supported sequence b on
7Z° and any finite set H C Z°, there exists a finite set K C Z° such that H C K and
¢(K) is invariant under (b(Ma — f3)). Also, ¢(K) is invariant under (b(Ma — 3)) if
and only if M ~!(suppb+ K)NZ* C K. Then we have the following characterization
for self-similar lattice tilings.

THEOREM 4. Let M be a dilation matriz and let D be a complete set of repre-
sentatives of distinct cosets of Z° /MZ*. Let a := {a(a)}aczs be supported on D and
a(a) =1 for « € D. Let b be the sequence given by

b(a) = 1 Z a(B)a(a+ B), a€Z’.

BEZs
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Choose a finite set K such that K contains 2 := D — D and £(K) is invariant under
the bi-infinite matriz (b(Ma — 3)). Let

Fi=(b(Ma=B)), sex

Set N := #K. Then the following statements are equivalent:
(1) T(M, D) is a lattice tiling;
(2) there exists some integer n with 1 < n < (3¥ — 2N+ 4+ 1)/2 such that the
matriz F™ is scrambling;
(3) there is no nonempty set A C K \ Q such that M—*(Q2+ A) NZ° C A;
(4) there is no nonempty finite set A C Z° \  such that M~*(Q+ A)NZ* C A.
Proof. The equivalence between statements (1) and (2) follows from Theorem 1.
To see the equivalence between statements (1) and (3), we observe that

b(0) = 1.

Since F' is column-stochastic, it follows that Fy g = 0 for § € K \ {0}. Then F; = [1]
is an isolated block in the Frobenius normal form (4.1). By Theorem 2, T'(M,D) is
a lattice tiling if and only if [1] is the only isolated block in (4.1); that is, there is no
nonempty set A C K \ {0} such that £(A) is invariant under F:

Fop>0, BeA = a €A

Notice that Fy 3 = b(—8) > 0 for any 5 € Q. Therefore, the above statement is
equivalent to the fact that there is no nonempty set A C K \ 2 such that

Fop=bMa-p)>0, BEA =  acA,
ie.,
Ma—-pef, pBeA = aeA.

This tells us the equivalence between statements (1) and (3). By choosing K to be
large enough (A C K), we see easily the equivalence between statements (3) and
(4). d

Theorem 4 yields a new proof for the first part of the following nice characteriza-
tion of self-similar tilings. (The second part is new.)

THEOREM 5. Let M be a dilation matrix and let D be a complete set of repre-
sentatives of distinct cosets of Z° /MZ*. Define T(M,D) by (1.1). Then T(M,D) is
a lattice tiling if and only if

(5.2) Nl <n§ M’ (D - D)) =7

Moreover, choose K as in Theorem 4 and let N = #K; then T(M,D) is a lattice
tiling if and only if K C Z;:(} MI(D — D) for somen with1 <n < N —m+1if
and only if K C Z;:()l M7(D — D) for some n € N.

Proof. By a translation, we may assume that 0 € D. Let a and b be as in Theorem
4. Then the support of b is exactly €2 := D — D. Let us prove the first equivalence.

Necessity. Suppose that T'(M, D) is a lattice tiling. If (5.2) does not hold, we
choose a finite set K such that K contains Q, K N [Z*\ U;’f:l(zy;ol MIiQ)] # 0, and
¢(K) is invariant under (b(Ma — 7)).
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Set

n—1
A=Kn |2\, [ Y MQ
j=0

Obviously, A C K \ Q. We state that
MY Q+A)NZ* CA.
Since ¢(K) is invariant under (b(Ma — 7)), we know that
MY (Q+MNNZc MY (Q+K)NZ C K.

Let « = MY (w+)\) € MY(Q+A)NZ° with w € Q and A € A. Then
a € U;:&MJQ would imply A = —w + Ma € U}_;M/Q, a contradiction. Therefore,
a & UIZf M’Q for any n € N. Hence, (M~ (Q+A)NZ*)N | 310:1(2?:_01 MiQ)| = 0.
Thus, M~1(Q + A)NZ* C A, and our statement has been proved. This contradicts
the condition (4) of Theorem 4. Therefore, (5.2) must be true.

Sufficiency. Suppose (5.2) holds. Choose K as in Theorem 4. Then there exists
some n € N such that

n—1

(5.3) Kc) MQ.
3=0

Let
F:=(b(Ma - 7)>a;yeK'

We state that

(F")po>0 Vaek.

To see this, let @« € K. Then (5.3) tells us that there exist 8o, B1,...,0n-1 € Q
such that

n—1
a= ZMjﬁj =Bo+MpBi+- 4+ M54,
=0

Define
n—1
o = Z M8 = B, i+ MBo_jp1+ -+ M7, 4, 1<j<n-1.
i=n—j
Then

Moy 1 —a=—0Fy €} and ay = Bp_1 € €.

Moreover, for 2 < j <mn —1,

n—1 n—1
MOéj,1 —Q; = Z Mi+j_nﬂi — Z Mi+j_n,8i = _6717]’ e Q.

i=n—7j+1 i=n—7
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It follows that Fy; |, = b(Maj_1 —a;) > 0. Hence,
(Fn)o,a > FO’al (H?;;Fajflvaj)Fan—lﬁa > 0.

Thus our statement holds. Hence, F" is scrambling. By Theorem 4, T'(M, D) is
a lattice tiling. This proves the sufficiency.

Using the above proof, we can see that T'(M, D) is a lattice tiling if K C Z;:Ol MiQ
for some n € N.

To see the necessity of the second equivalence, choose 1 <n < 1+ #(K \ Q) such
that

K\iMﬂ'Q:K\Xn;Mﬂ'Q.

7=0 j=0
Set A:= K\ Y"" MIQ C K\ QC K. Then
M7 (Q+MNNZ*Cc M ' (Q+K)NZ* C K.

Ifa = M~} (w+)) € M~H(Q+A)NZ* withw € Qand X € A, then a € Y72 MIQ
would imply A = —w + Ma € U?:OMJQ, a contradiction. Therefore,

n—1
(MY Q+ M) Nz )N | Y M| =0.

=0

Hence, M ~1(Q+A)NZ* C A. Since T(M,D) is a lattice tiling, by Theorem 4, A = (),
ie, K C Z;L;Ol MIQ. Since #(K \ Q) < N —m, the necessity of the second statement
is proved.

As a corollary we obtain another proof of the necessary condition due to Lagarias
and Wang [10].

COROLLARY 2. Let M be a dilation matriz and let D be a complete set of rep-
resentatives of distinct cosets of Z°/MZ*. Define T(M,D) by (1.1). If T(M,D) is a
lattice tiling, then the smallest M -invariant sublattice Z|M, D] of Z*° containing the
difference set D — D is Z°.

Let us give an example to show the difference between the necessary condition in
[10] and the necessary and sufficient conditions in Theorem 5.

Ezample 2. Let M and D be given as

IS B AN AHH

Then Z[M, D] = Z* by [10]. However,

n—1
1 o ;
o (oo
Jj=0

Hence, T'(M, D) is not a lattice tiling.
Proof. Notice that

o={[o] ) BB L LA E] )
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Then the second component of each vector in M7(Q is in the set {0,27, —27}.
Suppose that for some n € N and «q,...,a,—1 € Q,

n—1
1 ;
|:0:| = E MJO[j.
Jj=0

Comparing the second components, we see that the second components of ag, ..., a1
are all zero. But the only vectors with this property in M7Q are in 27Q, where

o= {[o] B[}

Therefore, the first component of ET-:OI M a; lies in 37Z, which is a contradiction.
Thus, the condition of Theorem 5 does not hold, and T(M,D) is not a lattice
tiling. O

The condition K C E;’;Ol M3(D — D) can be reduced into the knapsack problem,
which can be solved by a polynomial-time algorithm for the fixed n (see, e.g., [14]).
The necessity condition Z[M, D] = Z* can be easily checked by the solvability of linear

diophantine equations.

6. Examples. In this section we provide some examples to show the applicability
of the characterizations stated in Theorems 4 and 5.
Example 3. Let M be the dilation matrix

wfy !

with @ > 1,¢ > 1. Choose {ko = 0,k1,...,kq—1} C Z and {po = 0,p1,...,pc—1} CZ
such that k; = j(moda) and p; = i(modc). Let ly,l1,...,l.—1 be arbitrary integers

and set
D:{[li;kﬂl : izO,l,...,c—l;ij,l,...,a—l}.

Then D is a complete set of representatives of distinct cosets of Z2/MZ?. The self-
similar tiling T(M, D) is a lattice tiling if and only if ged(ky,...,ke—1) = 1 and
ng(pl, . apc—l) =1.
Proof. Let e1 = (I;, +kj, . piy) ' e2 = (Liy+kj,. pin)T € D. Suppose e1 —e2 € MZ2.
Then for some 3 = (31, 32)T € Z2,
g1 — €9 = lil +kj1 _li2 _kj2:|

_ | aBi+ b6
Diy — Dis _Mﬁ_[ }

cBa

Both i; and i9 are in {0,1,...,¢— 1} and p; = i(modc). Hence, B2 = 0 and i; = is.
It follows that kj, — k;, = af1 € aZ. But k; = j(moda). We know that j; = jo, i.e.,
€1 = €9. This proves that D is a complete set of representatives of distinct cosets of
72 /M7Z2.

To see the second statement, first prove the sufficiency. Suppose ged(ks, ..., kq—1)
=1 and ged(py, ..., pe—1) = 1. We show that Z* C U32, Y"~) M’(D — D). Then by
Theorem 5, T'(M, D) is a lattice tiling.
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Let o = (a1, a2)” € Z2. Theorem 5 in connection with the characterization of
univariate self-similar lattice tilings in [5, 21] (see also the introduction) tells us that

there are n € N and 4o, %1,...,%-1,%0,%1,--,in—1 € {0,1,...,¢— 1} such that
n—1
Qg = ch(pij —p;j).
§=0

Then in the same way, there are N € N and {n;, ﬁj};v;ol c {0,1,...,a— 1} such that

N-—1 n—1 n—1 7j—1
@’ (kn, — kn,) = o1 — Z a’(li; —1;,) — Z b(pi, — 1;;) Zaqd_l_q.
J=0 J=0 j=0 q=0

We may assume that N > n, since otherwise we need only to choose n; = n; for
j=N,....,n—1.
Observe that
; j—1 1
i @ b3 10 alc? 1=q .
0 c’

Takeijzgj for j=n,...,N —1. Then

([ [0)
i=o Di; p:LJ
- [zy_—; @ (n; — kiy) + 7020 (i, = I,) + X520 b(pi, — py,) Y0g atci 17

§
Yo (pz] p;,)

J

The first component of this vector is exactly «q, while the second is as. Therefore,
a e Y0 MI(D — D). Hence, Z2 C U2, 20— MY (D — D).

To see the necessity, suppose T(M D) is a lattice tiling. Then by Theorem 5,
72 C U, Y02y MI(D - D).

Let N € N and {i;,i;}2" € {0,1,...,c = 1}, {n;, 7} € {0,1,...,a — 1}

Then
N-1
S (5 [15)
j 0 le pij

(6'1) /= N—1 j—1 i—1—
_ [ZJ -0 aj(l _lij +knj - n])"‘z (pz] pij)zq:o ald 1

1
Z;'L:o d (pz]» pi,)

J

The second component of (6.1) is divisible by ged(p1,...,pec—1). Therefore, there
must hold ged(py,...,pe—1) = 1.

We also know that (1,0)% € ZJ o MI(D — D) for some N. Suppose the vector
(6.1) equals (1,0)7. Then

N—-1
chpll p’] = 0.
Jj=0

Hence, pi, — p;, € ¢Z. But p; = i(modc). Therefore, i = 7p. In the same way,

11 =41, ,iN-1 = IN_1.
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Consider the first component of (6.1). It states that

N—

1= a(kn, — kn,)-

Jj=0

=

This is divisible by ged(kyq, ..., kqe—1). Hence, ged(ky, ..., kq—1) = 1. 0
If we take a =c=2,b=0,p; = 1,k; = 3, and [y = l; = 0, we obtain Example 2.
The case p; = i, k; = j was proved in [5].

Let us turn to the necessary condition Z[M,D] = Z° in our special example.
Assume lg, =11 =---=1._1 =0.
Ezxample 4. Let M,D as in Example 3 and lg =1y = --- = l._1 = 0. Then

Z[M, D] = Z? if and only if ged(p1,...,pe—1) = 1 and ged(b, ki, ..., kq1) = 1.

Proof. Since 0 € D,Z[M,D] = Z[D, MD] as shown in [10]. Let A be a 2 x (ac)
matrix whose columns are vectors in D. Then the solvability of linear diophantine
equations tells us that Z[D, MD] = Z? if and only if the greatest common divisor of
2 x 2 minors of the matrix [A, MA] is one. Note that the columns of MA have the
form

M [kj] _ [akj +pr}
i cp '

Each entry of the first row of the matrix [A, M A] is divisible by ged (b, k1, . .., ka—1)
= 1, while each entry of the second row is divisible by ged(py,...,pe—1) = 1. The
necessity follows easily.

Conversely, if ged(p1, ..., pe—1) = ged(b, k1, ..., kqe—1) = 1, we choose the follow-
ing 2 X 2 minors of the matrix [A; MAJ:

ki 0

bpi 0
0 pi ;

= bpip:.
cpi p; P

’ = kjpi,
The greatest common divisor of these minors is

ng(ng(kh ey ka,1> . ng<p17 e 7pcfl)a b- [ng(pb e 7pcfl)]2)7

which equals one. Therefore, the greatest common divisor of 2 X 2 minors of the
matrix [A, MA] is one, and Z[M, D] = Z2. 0

Example 5. Let 2 < m € N and let M = mliI,. If D is a complete set of
representatives of distinct cosets of Z*/MZ* and

fo1[2]) e,

then T(M, D) is a lattice tiling.
Proof. By our assumption,

{_[%},...,—1,0,1,...,[%”Scp—p.

Then for n € N,

{_ {%} m' -1 {T} m” _ﬂs sVile nfMJ’(D—D).

m — °
Jj=0
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Therefore, for sufficiently large n,

n—1
Kc) M/(D-D).
j=0

By Theorem 5, T(M, D) is a lattice tiling. a
In particular, for M = [} 9], if D contains (0,0)7,(1,0)7,(0,1)7,(1,1)7, then
T(M,D) is a lattice tiling.

REFERENCES

[1] A. S. CAVARETTA, W. DAHMEN, AND C. A. MICCHELLI, Stationary Subdivision, Mem. Amer.
Math. Soc. 93, 1991.
[2] I. DAUBECHIES AND J. C. LAGARIAS, Two-scale difference equations. I1. Local regularity, infinite
products of matrices and fractals, SIAM J. Math. Anal., 23 (1992), pp. 1031-1079.
[3] I. DAUBECHIES AND J. C. LAGARIAS, Sets of all finite products of which converge, Linear Algebra
Appl., 161 (1992), pp. 227-263.
[4] T. N. T. GoopMAN, C. A. MICCHELLI, AND J. D. WARD, Spectral radius formulas for subdi-
vision operators, in Recent Advances in Wavelet Analysis, L. L. Schumaker and G. Webb,
eds., Wavelet Anal. Appl. 3, Academic Press, Boston, 1994, pp. 335-360.
[5] K. GROCHENIG AND A. Haas, Self-similar lattice tilings, J. Fourier Anal. Appl., 1 (1994), pp.
131-170.
[6] K. GROCHENIG AND W. MADYCH, Multiresolution analysts, Haar bases, and self-similar tilings,
IEEE Trans. Inform. Theory, 38 (1992), pp. 556-568.
[7] B. HAN AND R.-Q. JIA, Multivariate refinement equations and convergence of subdivision
schemes, STAM J. Math. Anal., 29 (1998), pp. 1177-1199.
[8] R. Q. Jia, Subdivision schemes in Ly spaces, Adv. Comput. Math., 3 (1995), pp. 309-341.
[9] R.-Q. Jia aND D.-X. ZHou, Convergence of subdivision schemes associated with nonnegative
masks, SIAM J. Matrix Anal. Appl., 21 (1999), pp. 418-430.
[10] J. C. LAGARIAS AND Y. WANG, Integral self-affine tiles in R™. 1. Standard and nonstandard
digit sets, J. London Math. Soc. (2), 54 (1996), pp. 161-179.
[11] J. C. LAGARIAS AND Y. WANG, Self-affine tiles in R™, Adv. Math., 121 (1996), pp. 21-49.
[12] W. LAWTON, Necessary and sufficient conditions for constructing orthonormal wavelet bases,
J. Math. Phys., 32 (1991), pp. 57-61.
[13] W. LAwTON, S. L. LEE, AND Z. W. SHEN, Convergence of multidimensional cascade algorithms,
Numer. Math., 78 (1998), pp. 427-438.
[14] H. W. LENSTRA, JR., Integer programming and cryptography, Math. Intelligencer, 6 (1984),
pp. 14-19.
[15] C. A. MICCHELLI AND H. PRAUTZSCH, Refinement and subdivision for spaces of integer trans-
lates of a compactly supported function, in Numerical Analysis 1987, D. F. Griffiths and
G. A. Watson, eds., Pitman Res. Notes Math. Ser. 170, Longman Sci. Tech., Harlow, 1988,
pp. 192-222.
[16] A. Paz, Definite and quasidefinite sets of stochastic matrices, Proc. Amer. Math. Soc., 16
(1965), pp. 634-641.
E. SENETA, Non-Negative Matrices, Wiley, New York, 1973.
[18] G. STRANG, Eigenvalues of (| 2)H and convergence of cascade algorithm, IEEE Trans. Signal
Process., 44 (1996), pp. 233-238.
G. STRANG AND D. X. ZHOU, Inhomogeneous refinement equations, J. Fourier Anal. Appl., 4
(1998), pp. 733-TAT.
[20] R. S. STRICHARTZ, Self-similar measures and their Fourier transforms, Indiana Univ. Math.
J., 39 (1990), pp. 797-817.
[21] D.-X. Znou, Stability of refinable functions, multiresolution analysis, and Haar bases, STAM
J. Math. Anal., 27 (1996), pp. 891-904.
[22] D. X. Zuou, The p-norm joint spectral radius for even integers, Methods Appl. Anal., 5 (1998),
pp. 39-54.

[19]



SIAM J. MATH. ANAL. (© 2001 Society for Industrial and Applied Mathematics
Vol. 33, No. 1, pp. 16-52

PARAMETRICALLY EXCITED HAMILTONIAN PARTIAL
DIFFERENTIAL EQUATIONS*

E. KIRRT AND M. I. WEINSTEIN#

Abstract. Consider a linear autonomous Hamiltonian system with a time-periodic bound state
solution. In this paper we study the structural instability of this bound state relative to time almost
periodic perturbations which are small, localized, and Hamiltonian. This class of perturbations
includes those whose time dependence is periodic but encompasses a large class of those with finite
(quasi-periodic) or infinitely many noncommensurate frequencies. Problems of the type considered
arise in many areas of applications including ionization physics and the propagation of light in optical
fibers in the presence of defects. The mechanism of instability is radiation damping due to resonant
coupling of the bound state to the continuum modes by the time-dependent perturbation. This
results in a transfer of energy from the discrete modes to the continuum. The rate of decay of
solutions is slow and hence the decaying bound states can be viewed as metastable. These results
generalize those of A. Soffer and M. I. Weinstein, who treated localized time-periodic perturbations
of a particular form. In the present work, new analytical issues need to be addressed in view of (i)
the presence of infinitely many frequencies which may resonate with the continuum as well as (ii)
the possible accumulation of such resonances in the continuous spectrum. The theory is applied to
a general class of Schrodinger operators.

Key words. Hamiltonian partial differential equations, parametric resonance, time-dependent
perturbation theory, Fermi golden rule, energy transfer, metastable states
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1. Introduction.

1.1. Overview. Consider a dynamical system of the form
(1.1) i0p = Hy ¢,

where Hj denotes a self-adjoint operator on a Hilbert space H. We further assume
that Hy has only one eigenstate 1y € H with corresponding simple eigenvalue \g.
Thus,

(1.2) b(t) = e oty

is a time-periodic bound state solution of the dynamical system (1.1). We next intro-
duce the perturbed dynamical system

(1.3) 09 = (Ho + W (1)) o.

In this paper we prove that if the perturbation, eW (t), is small, “generic,” and almost
periodic in time,! then solutions of the perturbed dynamical system (1.3) tend to zero
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26, 2000; published electronically April 12, 2001. This research was supported in part by National
Science Foundation grant DMS-950097.
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ISee the appendix in section 9 as well as [2, 9] for definitions and results on almost periodic
functions.

16



PARAMETRICALLY EXCITED HAMILTONIANS 17

as t — +oo. It follows that the state, b.(t), does not continue or deform to a time-
periodic or even time-almost-periodic state. Thus, b.(t) is structurally unstable with
respect to this class of perturbations. Our methods yield a detailed description of the
transient (¢ large but finite) and long time (¢ — +00) behavior solutions to the initial
value problem. Theorems 2.1-2.3 contain precise statements of our main results. The
following picture emerges concerning time evolution (1.3) for initial data given by the
bound state, 19, of the unperturbed problem. Let

(1.4) P(t) = |( o, (1) )|

be the modulus square of the projection of the solution at time t onto the state 1.2
Then,

(i) P(t) ~ 1—Cyw |t|? for |t| small,3

(ii) P(t) ~ exp(—2e2Tt) for t < O((e?T)~ 1), T = O(W?), and

(iii) P(t) ~ (t)= for [t| >> (T")~! for some o > 0.

The time 7 = (e2I')~! is called the lifetime of the state b.(t), which can be
thought of as being metastable due to its slow decay. The mechanism for large time
decay is resonant coupling of the bound state with continuous spectrum due to the
time-dependent perturbation. Our analysis makes explicit the slow transfer of energy
from the discrete to continuum modes and the accompanying radiation of energy out
of any compact set.

Phenomena of the type considered here are of importance in many areas of theo-
retical physics and applications. Examples include ionization physics [3, 4, 10] and the
propagation of light in optical fibers in the presence of defects [13]; see the discussion
below.

The results of this article generalize those of Soffer and Weinstein [22], where the
case

(L5) W(t) = cos(ut) B, = 3"

was considered. The method used is a time-dependent/dynamical systems approach
introduced in [21], [23] in a perturbation theory of operators with embedded eigenval-
ues in their continuous spectrum. These ideas were also used in a study of resonant
radiation damping of nonlinear systems [24], as well as in a class of parametric res-
onance problems [22]; see also [12]. New analytical questions must be addressed in
view of (i) the presence of infinitely many frequencies which may resonate with the
continuum as well as (ii) the possible accumulation of such resonances in the con-
tinuous spectrum. This leads to a careful use of almost periodic properties of the
perturbation (Theorems 2.1 and 2.2) and hypothesis (H6) (Theorem 2.3), which is
easily seen to hold when the perturbation, W (¢), consists of a sum over a finite number
of frequencies, p;.

A special case for which the hypotheses of our theorems are verified is the case of
the Schrodinger operator Hy = —A + V(z). Here, V(z) is a real-valued function
of z € R?® which decays sufficiently rapidly as |z| — co. In this setting Soffer and
Weinstein [22] studied in detail the structural instability of b, (¢) by considering the
perturbed dynamical system (1.3) with W(x,t) = F(z) cos(ut). Here, we consider

2(f, g) denotes the inner product of f and g. If ¥ is normalized, then P(t) has the quantum
mechanical interpretation of the probability that the system at time ¢ is in the state 1)g.

3We do not discuss the short time behavior in this article; see [12]. This small time behavior is
related to the “watched pot” effect in quantum measurement theory [15].
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a class of perturbations of the form W(x,t) = > . B;(z) cospu;t, where the sum
may be finite or infinite and where the frequencies p; need not be commensurate, e.g.,
W(x,t) = Bi(z) cost + Ba(x) cosv/2t, where §;(x), i = 1,2, is rapidly decaying
as & — o0.

In addition to the problem of ionization by general time-varying fields, we mention
other motivations for considering the class of time-dependent perturbations sketched
above and defined in detail in section 2.

(a) An area of application to which our analysis applies is the propagation of light
through an optical fiber [13]. In the regime where backscattering can be neglected,
the propagation of waves down the length of the fiber is governed by a Schrédinger
equation:

(1.6) 10,0 = (—AL + V(xl))(ﬁ + W(IL,Z)(b.

Here, ¢ denotes the slowly varying envelope of the highly oscillatory electric field, a
function of z, the direction of propagation along the fiber, and z; € R?, the transverse
variables. V(x,) denotes an unperturbed index of refraction profile and W(z,, 2)
the small fluctuations in refractive index along the fiber. These can arise due to
defects introduced either accidentally or by design. The models considered allow
for distributions of defects which are far more general than periodic. Our analysis
addresses the simple situation of energy in a single transverse mode propagating and
being radiated away due to coupling by defects to continuum modes. The bound
state channel sees an effective damping. In particular the results of this paper have
been applied to a study of structural instability of so-called breather modes of planar
“soliton wave guides” [12]. The case of multiple transverse modes is of great interest
[13]. Here, one has the phenomena of coupling among discrete modes as well as the
coupling of discrete to continuum/radiation modes [7]. There is extensive interesting
work on this problem in the case where W(x,,z) is a stochastic process in z and
radiation is neglected [8].

(b) Nonlinear problems can be viewed as linear time-dependent potential problems
where the time-dependent potential is given by the solution. A priori one knows little
about the time dependence of the solution of a nonlinear problem. Nonlinearity
is expected, in general, to excite infinitely many frequencies. Therefore results of
a general nature for potentials with very general time dependence are of interest.
This point of view is adopted by Sigal [19, 20], who considers the case where the
nonlinear term defines a time-periodic perturbation and then proceeds to study the
resonance problem via time-independent Floquet analysis applied to the so-called
Floquet Hamiltonian. The dilation analytic techniques used were first applied in the
context of time-periodic Hamiltonians by Yajima [26, 27, 28]. Floquet-type methods
were also used in the time-periodic context by Vainberg [25]. The general class of
perturbations we consider are not treatable by Floquet analysis and time-dependent
analysis appears necessary.

1.2. Outline of the method. We now give a brief outline of our approach. For
simplicity consider the initial value problem

(1.7) 10i0(t,x) = Hy ¢(t,x) + eW(t,x) ¢(t, ),
(1.8) Pli—o = ¢(0),
where

(1.9) Hy=-A +V(z), W(t,z) = g(t) B(z), g(t) = Z g; e"ihit
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is a real-valued almost periodic function of ¢, and G(x) is a real-valued and rapidly
decaying function of x as |x| — co. The unperturbed problem (¢ = 0) can be trivally
written as two decoupled equations governing the bound state amplitude, a(t), and
dispersive components, ¢4(t), of the solution. Specifically, let

(1.10) o(t) = a(t) o(z) + dalt,x), (Yo,¢a(t)) = 0.
Then,

i0ra(t) = Aoa(t),
(1.11) i0; ¢a(t,x) = Ho dal(t, )

with initial conditions

a(0) = (¢, ¢(0)),
(1.12) ¢a(0) = Pcg(0),

where

PCfE f_(w07f)1/]0

defines the projection onto the continuous spectral part of Hy.

For initial data a(0) = 1, ¢4(0) = 0, we have a(t) = e~*t, ¢4(t) = 0, correspond-
ing to the bound state, b.(t).

We now ask the following:

(a) Under the small perturbation eW (t,x), does the bound state deform or con-
tinue to a nearby periodic or even almost periodic solution?

(b) How do solutions to the perturbed initial value problem behave as |t| — co?

For small perturbations eW (¢, z) it is natural to use the decomposition (1.10).
Substitution of (1.10) into (1.3) yields a weakly coupled system for a(t) and ¢4(%).
This system is derived and analyzed in detail in sections 4—6.

In order to illustrate the main idea, we introduce a simplified system having the
same general character:

ida(t) = Ao a(t) + eg(t) (Bo, ¢a(t))
(1.13) i0¢da(t,x) = —Agq(t,x) + calt)g(t)B(x)vo(x).
Here, we have replaced Hy on its continuous spectral part by —A.

If €8 is small, then A(t) = e*ota(t) is slowly varying (8;A(t) = O(ef)). In
particular, we have

i0,A(t) = ee”™ g(t) (B, ¢a(t))
(1.14) i0hpa(t,x) = —Aga(t,z) + A(t)e " eg(t)B(a)ho().

Viewing A(t) as nearly constant, we see that the inhomogeneous source term in (1.14)
has frequencies Ao+ p;; see (1.9). Therefore, if Ag+p; > 0 for some j, then Ao+ p; lies
in the continuous spectrum of —A (Hy) and therefore ¢, satisfies a resonantly forced
wave equation. A careful expansion and analysis to second order in the perturbation
eW (t) (see the proof of Proposition 4.1) reveals the system for A(t) and ¢4(¢) can be
rewritten in the following form, in which the effect of this resonance is made explicit:

(1.15) QA(t) = (=e’T + p(1)) A(t) + B(t; A(t), da(t)),
(116) i@tqbd(tw) = HO ¢d(t,$) + PC F(t7CL‘;A(t),¢d(t)).
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The terms E(t) and F(t, z) formally tend to zero if A(t) tends to zero and if the “local
energy” of ¢4(t) tends to zero as ¢ — co. The strategy of sections 5 and 6 is to derive
coupled estimates for A(t) and a measure of the local energy of ¢, from which one
can conclude, for eW (¢) small, that solutions to (1.15)—(1.16) decay in an appropriate
sense. The key to the decay of solutions is the constant ', given by

Vs
(1.17) I = 1 Z lg;|* (PeBo, 6(Ho — Ao — 1) Pefibo) ;
{7 : Xo+p; >0}

see also hypothesis (H5) of section 2. The quantity I' is a generalization of the well-
known Fermi golden rule arising in the theory of radiative transitions in quantum
mechanics [3, 4, 10]. For the example at hand, (1.9), the sum in (1.17) is over all j for
which p; 4 A is strictly positive, i.e., lies in the continuous spectrum of Hy. Thinking
of Hy as having a spectral decomposition in terms of eigenfunctions and generalized
eigenfunctions, let e(A) denote a generalized eigenfunction associated with the energy
A. Then each term in the sum (1.17) is of the form

(1.18) |(e(Xo+ 1), Broo ) -

Thus, clearly I' > 0, generically.

Neglecting for the moment the oscillatory function p(t) in (1.15), we see that
coupling of the bound state by the time dependent perturbation to the continuum-
radiation modes, at the frequencies p;+Ag > 0, leads to decay of the bound state. The
leading order of (1.15)—(1.16) is a normal form in which this internal damping effect
is made explicit; energy is transferred from the discrete to the continuous spectral
components of the solution while the total energy remains independent of time:

o) 15 = la®l* + Il a(t) II3
(1.19) = [a(0)* + | ¢a(0) [3.

1.3. Energy flow; contrast with the analysis of [22]. The goal is to show
that energy flows out of the bound state channel into dispersive spectral components.
The normal form above is the system in which this energy flow is made explicit. Once
the normal form (1.15)—(1.16) has been derived, it is natural to seek coupled estimates
for A(t) and ¢4(t) from which their decay can be deduced. This is implemented in
section 6. A natural first step is to introduce the auxiliary function

(1.20) At) = eo 7@ 9 g

for then A(t) satisfies simplified equation of the form

(1.21) D A(t) = —€’T A(t) + E(t; A(t), da(t)).

IfR fg p(8) ds is uniformly bounded, then modulo time-decay estimates on E(t; A, od)
and F(t; A, ¢4), the decay of A(t) and therefore of A(t) follows. For the class of per-
turbations considered in [22], p(¢) is a periodic function, having only a finite number
of commensurate frequencies, none of them zero. Therefore, in this case R f(f p(s) ds
is uniformly bounded. However, in the present case p(t) is almost periodic with mean
M (Rp) = 0 (see section 9); p(t) is displayed in (4.12). Rp(t) has, in general, infinitely
many frequencies, p — ptj, k # j which may accumulate at zero. Most delicate is the
case where, along some subsequence, py — p; — 0. It is well known that the integral
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of an almost periodic function of mean zero is not necessarily bounded [2], so we are
in need of a strategy for estimating the effects of # fot p(s) ds. We address the esti-
mation of R fg p(s) ds in two different ways corresponding to Theorem 2.3 (see also

section 5.1) and Theorems 2.1-2.2 (see also section 5.2). In section 5.1 %fot p(s) ds is
estimated under the hypothesis (H6) which requires that the rate of accumulation of
a subset of frequencies {1, },er is balanced by the decay of the Fourier coefficients g,
as j — oo, j € I. This leads to a bound on %fg p(s) ds (Proposition 5.2). In section
5.2 the estimates are based on a more refined analysis; the almost periodic function
p(t) is decomposed into a part with bounded integral and a part which has mean zero.
The latter is controlled using results on the rate at which an almost periodic function
approaches its mean.

1.4. Fermi golden rule and obstructions to Poincaré continuation. In
the theory of ordinary differential equations it is a standard procedure, given a periodic
solution of an unperturbed problem, to seek a periodic or almost periodic solution
of a slightly perturbed dynamical system. We now investigate this procedure in the
context of (1.7) and its solution b, (t) for € = 0. Seek a solution of the form

(1.22) ¢(t) = bu(t) + ¢1(t) + O(?6%).
Here, ¢; = O(gf).* Substitution of (1.22) into (1.7) yields the equation
(1.23) 1091 = Hopr + 6 g(t) ba(t).

This equation has a solution in the class of almost periodic solutions of ¢t with values
in the Hilbert space H only if 3 g(t) b.(t) is “orthogonal” to the null space of i9; — Hp.

We now derive this condition. Let e({) be a solution of Hpe(¢) = (e(¢). Then,
taking the scalar product of (1.23) with e~ e(¢) and applying the operator limz+oo

71! fOT - dt to the resulting equation gives

T
(1.24) 0 = Jm 771 [ e g(e) dt (e(0), ).
o0 0
Substitution of the expansion for g(t) yields
(1.25) D g5 6(C Mo+ 1) (e(), Brho) = 0,
JEZ

where 6(a,b) = 0 if a # b and 6(a,a) = 1. If ¢, which lies in the spectrum of
Hy, satisfies { = Ao + py for some k € Z (which will be the case in our example if
Ao + pg > 0), then we have that

(1.26) (e(Ao + pr), Bo) = 0

is a necessary condition for the existence of a family of solutions of (1.7) which con-
verges to by (t) as the perturbation W (t) tends to zero. We immediately recognize the
inner product in (1.26) as the projection of B¢y onto the generalized eigenmode at
the resonant frequency A + pp which arises in (1.17); see also (1.18). Therefore the
obstruction to continuation of b,(t) to a nearby almost periodic state of the system
can be identified with the damping mechanism.

4This argument is heuristic so we do not specify the norm with which the size of 8 is measured.
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1.5. Outline. The paper is structured as follows. In section 2 we give a general
formulation of the problem. The hypotheses on Hy, the unperturbed Hamiltonian,
and W (t), the perturbation, are introduced and discussed. There are two types of
theorems: Theorems 2.1 and 2.2 and Theorem 2.3. Although the conclusions of
these are quite similar, as discussed above, they differ in a key hypothesis on the
perturbation W (t), which is relevant in the case where W(t¢) has infinitely many
frequencies which may resonate with the continuous spectrum. In section 3 we apply
the results of section 2 to the case of Schrédinger operators Hy = —A + V(z)
defined on L?(R?). To check the key local energy decay hypotheses we use results of
Jensen and Kato [5] on expansions of the resolvent of Hj near zero energy, the edge
of the continuous spectrum. In section 4 the dynamical system (1.3) is reformulated
as a system governing the interaction of the bound state and dispersive part of the
solution. This section contains an important computation in which the key resonance
is made explicit and a perturbed “normal form” for the bound state evolution is
derived (Proposition 4.1). Sections 5 and 6 contain estimates for the bound state and
dispersive parts of the solution for intermediate and large time scales. In section 7 we
discuss extensions of our Theorems 2.1-2.3 to a more general class of perturbations.
We shall frequently make use of some singular operators which are rigorously defined
in section 8, an appendix, and of elements of the theory of almost periodic functions
[2, 9], which are assembled in section 9, the second appendix.

Notations and terminology. Throughout this paper we will use the following
notations:

N ={1, 2, 3,...};

No ={0, 1, 2, 3,...}

Z =4..,-3, -2, -1,0,1, 2, 3,...}
for z a complex number, Rz and Sz denote, respectively, its real and imaginary parts;
a generic constant Wﬂ} be denoted by C, D, etc;

() = (1+|=*)%

L(A,B) = the space of bounded linear operators from A to B; L(A, A) = L(A).

Functions of self-adjoint operators are defined via the spectral theorem; see, for
example, [17]. The operators containing boundary value of resolvents or singular
distributions applied to self-adjoint operators are defined in section 8.

2. General formulation and main results. Consider the general system

109 (t) = (Ho + W (1)) ¢(t),
(2.1) li=o = ¢(0).

Here, ¢(t) denotes a function of time, ¢, with values in a complex Hilbert space H.
Hypotheses on Hy.
(H1) H, is self-adjoint on H and both Hy and W (t), t € R!, are densely defined
on a subspace D of H.
The norm on H is denoted by || - || and the inner product of f,g € H, by (f,g)-
(H2) The spectrum of Hj is assumed to consist of an absolutely continuous part,
ocont (Ho), with associated spectral projection P, and a single isolated eigenvalue Ag
with corresponding normalized eigenstate, g, i.e.,

(2.2) Hoo = Aotho, [vholl = 1.

The manner in which we shall measure the decay of solutions is typically in a local
decay sense, e.g., for the scalar Schrodinger equation governing a function defined on
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R™ we measure local decay using the norms f +— ||{z)~° f|| 12, where s > 0. So that our
theory applies to a class of general systems (involving, for example, vector equations
with matrix operators), we assume the existence of self-adjoint “weights” w_ and w4
such that

(i) wy is defined on a dense subspace of H and on which wy > ¢, ¢> 0.

(ii) w— € L(H) such that Range(w_) C Domain(wy).

(iii) wy w- P = Poon H and P, = P, w_ w4 on the domain of wy.

In the scalar case, wy and w_ correspond to multiplication by (z)® and (x)~%,
respectively; see section 3.

The following hypothesis ensures that the unperturbed dynamics satisfies suffi-
ciently strong dispersive time-decay estimates. Let {y; }j ¢z denote the set of Fourier
exponents associated with the perturbation W (see hypothesis (H4) below).

(H3) Local decay estimates on e~ ot

Let r; > 1. There exist wy and w_, as above, and a constant C such that for all
f € H satistying wy f € H we have

(2.3) (a) [w_e HP || <C ()" ||wy f|| for t € R;
(2.4) (b) flw_e ot (Hy— Xg — p; —i0) ' Pef|| < C (£)™™ |lwy f]| for t >0

and for all j € Z. For t < 0 estimate (2.4) is assumed to hold with —i0 replaced by
+i0. See section 8 for the definition of the singular operator in (2.4).

Remark 2.1. There is a good deal of literature on local energy decay estimates of
the form (2.3) for e *Ho!P in the case Hy = —A + V(x) on L?(R"). These results
require sufficient regularity and decay of the potential V' (z). We refer the reader to
[5, 6] and [14]; see also [16, 18].

Remark 2.2. Estimates of the type (H3b) are obtained in [22], [23, Appendix
A]. A key point here is that we require that one can choose the constant, C, in (2.4)
to hold for all p1;. It appears difficult to deduce this uniformity of the constant by the
general arguments used in [22] and [23]. However, in section 3, where we apply our
results to a class of Schrodinger operators, we can verify (H3b) using known results
on the spectral measure.

(H4) Hypotheses on the perturbation W (t).

We consider time-dependent symmetric perturbations of the form

(25)  W(0)= 560+ 3 cos(ugt) 55 with 55 = 55 and 3 ;o) < oo.

JjEN j€No

In many applications, 3; are spatially localized scalar or matrix functions. Note
that formula (2.5) can be rewritten in the form

1 )
(2.6) W(t) =3 D exp(=int)s;,
JEZ
where pio = 0 and for j <0, p; = —p—;, B; = B—;. Thus, W(¢) is an almost periodic
function with values in the Banach space £(H) with the Fourier exponents {u;}

and corresponding Fourier coefficients {3; }j cz; see, for example, [9].
To measure the size of the perturbation W, we introduce the norm

JEL

1 1
(2.7) Wil = §ZHU/+ Bille(ry + 52” Bi e 7y

JEZ JEZ
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which is assumed to be finite. Here H, respectively, H_, denote the closure of the
domain of w4, respectively, the range of P, with norm f — ||wy f||, respectively,
= llw_f].

Remark 2.3. A special case which arises in various models is

(2.8) W(t) = g(t)B,
where
(2.9) g(t) = Z gj cos ;t,

lweBlleery + 18]z 4,y < oo and the sequence {g;} is absolutely summable.
Remark 2.4. Our results are valid in the more general case

W(t) = %ﬂo + Zcos(ujt +65) Bjs

JEN

where 3; are self-adjoint such that expression (2.7) is finite. This follows because the
proofs use only the self-adjointness of W and the expansion

W(t) = % > exp(—ipt) B,

JEZ

where Bj = e‘isgn(j)‘sjﬂj and p_; = —p;, po =0.

We will impose a resonance condition which says that {\o + p; }j ez N Tcont (Hp)
is nonempty and that there is nontrivial coupling; see section 1.4. Let us first denote
by I,es the following set:

(2.10) Iies = {J€Z : Mo+ tj € Ocont(Ho)}-

(H5) Resonance condition. Fermi golden rule.
I¢s is nonempty and furthermore, there exists 6y > 0, independent of W such
that

(211) T = 7 > (Povo, 8(Ho—Xo — 1)PeBiria) = bol[| W[ > 0.

J€lres

Remark 2.5. For the exact definition of the Dirac-type operator in (2.11), see
section 8. That I is finite is a consequence of the estimate (8.8) and

C C
(2.12) F< =23 ol < WP

J

see also [1].

We now state our main results.

THEOREM 2.1. Let us fix Hy and W (t) satisfying hypotheses (H1)—(H5). Con-
sider the initial value problem

i0,p(t) = (Ho + eW (1)) o(2),
(2.13) ¢li—o = ¢(0)
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with wy@(0) € H. Then, there exists an 9 > 0 (depending on C, r1, and 6y) such
that whenever |e| < g, the solution, ¢(t), of (2.13) satisfies the local decay estimate

(2.14) [w— ¢@)] < CE)" lwy (0)], teR.

Under the same hypotheses as Theorem 2.1, we obtain more detailed information
on the behavior of ¢(t).

THEOREM 2.2. Assume the hypotheses of Theorem 2.1. For any 0 < v < T there
exist the constants C and D (depending on C, r1, 6y, and 7) such that any solution
of (2.13), for |e| < eg and wyp(0) € H, satisfies

(z,t) = a(t)vo + da(t), (Yo, ¢a(t),) = 0,

)
)
P(t) = P(0) e 2 Tl 1 RY(#),
(2.15) pa(t) = e Ht Pop(0) + o(t),

11)

where T" is given by (2.11) and w(t) is a real-valued phase given by
t
o) = ~dat =< (v, [ Wishds o)
0
1 _
+Z€2tz (8j0, P.V.(Ho — Ao — 1)~ ' Pefjibo)

JEZ
(2.16) 75 8?/ Z =)t (Brapo, (Ho — Xo — pj — 10) " Pef3jebp) -
0 kez,j#k

P(t) is defined in (1.4) and for any fived Ty > 0 we have

To

(2.17) [Ba@®) < C lel WL, Tt < =,

/ TO

(2.18) (B < D el W], [t < -
Moreover,

[Ra(®)] = O((1)™™), [Ro ()] = O({t)™™), [t] — oo.

Finally, = ¢1 + ¢o is given in (4.9) with |w_o(t)| = O)™™) as |t| — oc.
Therefore, by (H3) |lw_¢qa(t)|| = O{t)™™) as |t| — oco.

Remark 2.6. Suppose the initial data is given by the bound state of the unper-
turbed problem, i.e., ¢(z,0) = ¢o(x), a(0) = 1, ¢p4(0) = 0. Then, from the expansion
of the solution we have that for 0 < t < e 2I'"! that P(t) (see (1.4)) is of order
e=2* (0=t with an error of order e. Hence it is natural to view the state hoe Mot as
a metastable state with lifetime 7 = e=2(I' — v)~! ~ ¢72|||W|||=2. Although v > 0 is
arbitrary we have not inferred that the actual lifetime is 7 = ¢ ~2I'~! under hypotheses
(H1)—(H5). The reason is that the constants C' and D in the estimates (2.17) and
(2.18) blow up as v \, 0. In order to remedy this we need an additional hypothesis.

(H6) Control of small denominators.

There exists & > 0, independent of W, such that

(2.19) >

J€Ires, kEL, j#k

1
Ky — Mk

(PeBrtbo, 8(Ho — Mo — 11;)PefBitho)| < € [|[W]]|2
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Remark 2.7. By (8.8) we have that

(2.20) > |(Brtbo, 8(Ho — Ao — p1;)Btb0)| < C o= ||| W2

J€lres, K€L, j#k
is finite (see also Remark 2.5). Thus, (H6) is important only if
(221) lnf{“LJ - ﬂk‘ : ja ke Za ] 7é k and )‘0 + 1271 S Jcont(HO)} = Oa

i.e., the Fourier exponents {1, } are such that Ao+ p; accumulate in o.. In particular,
if the perturbation W (¢) consists of a trigonometric polynomial

N
(2.22) W(t) = Z cos it f3;,

Jj=1

then (H6) is trivially satisfied.

Remark 2.8. Hypothesis (H6) can be imposed by balancing the clustering
of the frequencies Ao + p; in the continuous spectrum of Hy with rapid decay of
(Brbo » 6(Ho — Ao — p5) Bjbo) as j, k — oo. Let B;(z) = g; B(x). Then, W(t,z) =
>_; 9jcos(p;t) Bx). Using Remark 2.5 we find that the left-hand side of (2.19) is
bounded by >~y 7.5k 1959k (15 — wil 72 [[[W]]|?. The constant & in (2.19) is finite
if, for example, p; = 2|Xo| + |4|71, g; = 4|77, 7> 0.

In case (H6) is satisfied we have the following improvement of Theorem 2.2.

THEOREM 2.3. Assume the hypotheses (H1)—(HG6) hold. Then there ezist &g
and the constants C, D (depending on C, r1, 0y and &) such that any solution of
(2.13), for |e| < eg and wi¢p(0) € H, satisfies

¢($7t) = a(t)% +¢d(t)7 ("/JO s ¢d(t)> = 0,

a(t) = a(0) e Tl giw(t) 4 R, (1),
P(t) = P(0) e 2T 4 R/ (1),
(2.23) Ga(t) = e Peg(0) + G(t).

Here, w(t) is given by (2.16) and R,(t), R.(t), w_¢a4(t) satisfy the estimates of
Theorem 2.2.

3. An application: The Schrédinger equation. In this section we verify
hypotheses (H1)—(H4) in the particular case of the Schrodinger equation on the
three-dimensional space with a time almost periodic and spatially localized perturbing
potential:

(3.1) 0 = (—A+V(x)d + eW(z, t)o
with ¢ : R®* x R — C, (z,t) — é(x,t), and
W (1) = 2 o) + 3 cos(rust)(a),
JEN

where p1; € R, j € Np, and 3 : R® - R, j € N, are localized functions. Models of
the sort considered in this example occur in the study of ionization of an atom by a
time-varying electric field; see [10, 4].



PARAMETRICALLY EXCITED HAMILTONIANS 27

We take H = L?*(R3) and Hy = —A + V(z), where V(z) is real-valued with
moderately short range. More precisely, we suppose that there exists ¢ > 4 and a
constant D such that

(3.2) V()] < D+ |2)~°.

Thus, Hy is self-adjoint and densely defined in L?. In what follows we assume that
Hj has exactly one eigenvalue which is strictly negative and that the remainder of
the spectrum is absolutely continuous and equal to the positive half-line. Our results
can be extended to operators with strictly negative, multiple eigenvalues [7].

We first discuss the local decay hypothesis (H3). As weights used to measure
local energy decay we take wy = (x)**, where s > 7/2 and fix r; = 3/2. Our aim is
to obtain the estimates

(33)  (H3a) [w_e 'Pef| < C (t)"2wy f,
(34)  (H3b) [w_e ! (Hy = Ao —p; —i0) " Pefl| < C (1) Jwy f|

for all u; € Z with C independent of j.
We shall assume that the frequencies {A\g + p;} do not accumulate at zero, the
edge of the continuous spectrum of Hy:

(3.5) my, = min{ |No+p;| : jE€Z}> 0.
To prove (3.3) and (3.4) we use the spectral representation for the operators
e~ ot P and e~ 0! (Hy — \g — pj — i0) P, namely,
(3.6) e HIp = / e ME (N)d,
0
(3.7) e "ol (Hy — Ng — pj —i0) " 'Pe = / e” AN — Ng — pj — i0) TLE (N)d,
0

where E'(\) = 7= §(Hog — A —i0) ™! is the spectral density induced by Hy, [5].

The technique of getting (H3a) from (3.6) is presented in [5, section 10] and it
can be summarized in the following way. We decompose the integral in (3.6) in two
parts, corresponding to low energies (A near zero) and high energies (A away from
zero) by writing

E' =xE' +(1-x)FE,
w_ e HOIP = / e My (Nw_ B (\w_dA + / e (1 = x(\)w-E' (Nw-_dA
0 0
(3.8) = 5 + S

Here, x(\) is a smoothed characteristic function of a neighborhood of origin, chosen
so that

=
X
Il

1
1, |)\| S §m*,
3
x(A) = 0, [N\ > T
To estimate the two integrals in (3.8) we make use of the detailed results of [5]
on the family of operators {E’(A)}. First, by Theorem 8.1 and Corollary 8.2 of [5],
w_O0FE'(A\)w_ is bounded on L? and satisfies

(3.9) | w08 E' (Nw_ ||grzy = O~ F/2) as X — oo
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for k € {0,1,2,3}. Integration by parts twice in the second integral in (3.8) and use
of the estimate (3.9) with & = 2 yields the estimate

(3.10) | S2 |g(rzy = o(t™?) as t — oc.
Next, by Theorem 6.3 of [5] we have the low energy asymptotic expansion
(3.11) w_E'MNw_ = -X"12B_; + A\2B; + 0o(AY?) as A — 0,

where B_;, B, are bounded linear operators on L?. Use of this expansion in the first
integral of (3.8) yields the expansion in B(L?):

(312) Sy = (mi) Y2 V2B_y — (4mi) V2732 By 4+ 0(t73/?) as t — .

Thus, (H3a) is satisfied provided that B_; is the null operator or equivalently
Hyv = 0 has no solution with the property w_1 € L?(R3). The last condition holds
for generic potentials V() and when it is violated one says that Hy has zero energy
resonance; see [5] for details.

In the same way one can prove (H3b) from the spectral representation (3.7)
provided that the integral is nonsingular, i.e., Ao+p; < 0. Inthe case Ag+p; > my >0
we first decompose the singular integral in two parts, one away from singularity point,
Ao + pj, and the other in a neighborhood of it by using the smoothed characteristic
function

(3.13) Xi(A) = x(A= Ao — p5),

which is supported in a neighborhood of Ag + j;, which does not include A = 0:
e ot (Hy — Xo — pj — i0) " 'P, = / e N = Xo — 1) THL = x; (V) E'(A\)dA
0

(3.14) + / h e" M = Ao — 1y — i0) Iy (A E/(N)dA.
0

The nonsingular integral may be treated as above while the singular one defines the
singular operator

T; = e "o (Hy — \o — p; — i0) "' x;(Ho)Pe
via the spectral theorem. Here, T); = lim, o 7}, where

T = e "' (Hy — X — p; — in) ' x;j(Ho)Pe.
To estimate its L? operator norm we use the integral representation

1 [ . ) )
(3.15) wajnwf = ;/ el(/\0+/1«j+z7l)(s—t)wie—zHoSXj(H[))Pcw*ds'
t

But this reduces to the evaluation of
(3.16) w_e oSy (Hy)Pew_ :/ e (Nw_E' ANw_d\, s>t
0

where we used again the spectral representation theorem. Integration by parts three
times in (3.16) and use of the estimate (3.9) with & = 3 implies

[w_e~"Ho%x i (Ho)Pew_||(r2y = o(s™?) as t — oc.
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Replacing this in (3.15), integrating and passing to the limit as n \, 0 we obtain an
o(t=2) estimate for T; which is even better than we need to satisfy (H3b).

Moving now towards hypothesis (H4), we may choose the time-dependent per-
turbation to be of the form

(3.17) W(z,t) = %ﬂo + Zcosujt Bj(x)
JjEN

with 8, rapidly decaying in z, e.g., (z)%¢||3;(z)|| < C; for all x € R?, j € Ny, where
> jen, Cj < oo. Thus, (H4) is satisfied as well.

Therefore, our main results Theorems 2.1-2.2 on the structural instability of
the unperturbed bound state and large time behavior for systems of the form (3.1)
apply provided (H5), the Fermi golden rule resonance condition, holds. For results
concerning more general perturbations than the ones in (3.1) see section 7.

4. Decomposition and derivation of the dispersive normal form. The
results of this section rely on hypothesis (H1) through (H4) only, so they may and
will be used in proving Theorems 2.1-2.3.

As in [21, 22] and [23], we begin by deriving a decomposition of the solution, ¢(t),
which will facilitate the study of its large time behavior. Let

(4.1) o(t) = a(t)tho + Pa(t)
with the orthogonality condition
(4.2) (10, a(t)) =0 for all t.

Note therefore that ¢q = Pcog.
We proceed by first inserting (4.1) into (2.13), which yields the equation

iata(t)w() + Zatgi)d(t) = )\Oa(t)’(/)() +H()¢d(t)
(4.3) + ea(t)W(t)o + eW(t)pal(t).

Taking the inner product of (4.3) with 1y we get the following equation for a(t):

(4.4) i0ia = Xoa(t) + & (o, W(t)o)a(t) + & (o, W(t)da),
a(0) = (o, #(0)).

In deriving (4.4) we have used that v is normalized and the relation

(4.5) (o, Ora) = 0,

a consequence of (4.2).
Applying P, to (4.3), we obtain an equation for ¢g4:

(4.6) i0,0a(t) = Hodalt) + ePW (t)da(t) + ca(t)PW (£)do,
¢d(0) = Pc¢(0)'

Since we are after a slow resonant decay phenomenon, it will prove advantageous to
extract the fast oscillatory behavior of a(t). We therefore define

(4.7 A(t) = ela(t).
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Then, (4.4) reads
(48) DA = —icA (o, W(t)ho) — iee™" (v, W(t)ga(t)).
Solving (4.6) by Duhamel’s formula we have

t
ba(t) = e~ Holp,(0) — ie / e~ IHOU=)P T/ (s)a(s)hods
0

¢
—ie/ e HOU=3)P W (s5)gq(s) ds
0

(4.9) =¢o(t) + ¢1(t) + ¢a(t).

By standard methods, the system (4.8)—(4.9) for A(t) and ¢4(t) = ¢(t)—e "ot A(t) g
has a global solution in ¢ with

A€ C'(R), [l¢a(t)] € C°(R), lw—da(t)ll € CO(R).

Our analysis of the |t| — oo behavior is based on a study of this system.
By inserting (4.9) into (4.8) we get

2
(4.10) OLA(t) = —icA(t) (Yo, W(t)ho) — iee™" > (o, W(t)e;) -
j=0

We next give a detailed expansion of the sum in (4.10). It is in the j = 1 term that
the key resonance is found. This makes it possible to find a normal form for (4.10)
in which internal damping in the system is made explicit. This damping reflects
the transfer of energy from the discrete to continuum modes of the system and the
associated radiative decay of solutions.

ProrosiTiON 4.1. Fort > 0,

(4.11) QA(t) = (=T + p(t)) A@t) + E(t),
where T' is defined in (2.11),
p(t) = —if?(?ﬁo, W (t)o)
+ 252 Z (Bj0, P.V.(Ho — Xo — 1)~ ' PeBjtbo)

JEZ
) S o
(4.12) +5e? 0 et (B, (Hy — Ao — p1 — i0) T PeBitbn)
§.kEZ, j4k
and
i ) ) i N
E@) = —ZEZA(O)e“\”t Z ekt (ﬂkwo, e~ tHot (Ho — Ao — pj — 10) chﬁjwo)
) J,kEL
_iszei/\ot Z pihit
J,kEZ

t

(ﬂkiﬁo,/ e H o= (Fy — Ng — i — io)_1Pce_i(AOJ”“j)sasA(s)ﬂﬂ/Jo) ds
0

—ige™t (Yo, W(t)po(t))

—i€€i/\0t (1/}03 W(t)¢2(t))
(4.13)
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Here, ¢g and ¢o are given in (4.9).

Although the proposition is stated for ¢ > 0, an analogous proposition with —&T’
replaced by 2T holds for ¢ < 0. The modification required to treat ¢ < 0 is indicated
in the proof.

Remark 4.1. (1) The point of (4.11) is that the source of damping, I' > 0, which
arises due to the coupling of the discrete bound state to the continuum modes by the
almost periodic perturbation is made explicit. Note that Rp(t) is of order &2|||W]||?
as the first two terms of p(t) are purely imaginary inducing only a phase shift in the
solution, A(t). The last term is of the same order as the damping and may compete
with it. A key point of our analysis is to assess the contribution of this last term in
(4.12).

(2) The leading order part of (4.11) is the analogue of the dispersive normal form
derived in [24] for a class of nonlinear dispersive wave equations.

Proof of Proposition 4.1. Using the expression for W (t) in (2.6), which is a uniform
convergent series with respect to ¢t € R, and the definition A(t) = eota(t), we get
from (4.9)

. t
b (t) — _E/ e—iHo(t—s)e—iAosA(S)PcZe—iujs ﬁjlﬂo ds

2
0 jez

. t
(4.14) — _§Z/ e~ iHo(t=5) =i t1)s A ()P By dis.
0

JEL

We would like to integrate by parts each of the integrals in the above sum. We cannot
proceed directly since the resolvents of Hy in Ao + pj, j € Z, would appear and
hypothesis (H5) implies that some of the Ao + 15, j € Z, are in the spectrum of Hy.
Instead we regularize ¢; by defining

. t
(415) ¢717(t) = _%EZA e_iHO(t_s)e_i(/\°+“j+m)sA(8)Pc,8j1/)0 ds
JEL

for n positive and arbitrary and ¢ > 0. Note that ¢1(t) = lim,~ o ¢7 (¢) uniformly with
respect to t on compact intervals.

Now, integration by parts for each integral in expression (4.15) and letting 1 tend
to zero from above gives the following expansion of (g, W (¢)@1(t)):

(tho, W(t)91(t)) = <W(t)¢0» —g e MY " e A(t) (Ho — Ao — 1y — io)_lpcﬁﬂ/fo)

JEZ

+ (W(two, gA(O) Z e ot (Hy — Xo — pj — i(])lpcﬂj%)

Jez

t
+ (W(t)%, = > / e =) (Hy — Ng — iy — iO)_che_i(’\°+“j)SGSA(s)ﬁjz/Jods>.
2 jez V0
(4.16)
The definition of the singular operators in the above computation is given in section
8. The choice of regularization, +in, in (4.15) ensures that the latter two terms in
the expansion of ¢1, (4.16), decay dispersively as t — +00; see hypothesis (H3) and
section 6. For t < 0, we replace +in with —in in (4.15).
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To further expand the first series in (4.16) we use the identities (8.5). The proof
of Proposition 4.1 is now completed by substitution of (8.5) in the expansion (4.16)
for ¢ and of the result into the second term of the sum in (4.10). a

In the next sections we estimate the remainder terms in (4.9) and (4.11).

5. Estimates on the bound state amplitude. Our strategy is as follows.
Equations (4.9) and (4.11) comprise a dynamical system governing ¢4(t) and a(t) =
A(t)e~™ ot the solution of which is equivalent to the original equation (1.1). In this
and in the following section we derive a coupled system of estimates for A(t) and ¢4(¢).
This section is focused on obtaining estimates for the bound state amplitude A(t) in
terms of ¢4(t), while the following section is focused on obtaining dispersive estimates
for ¢q(t) in terms of A(t). We treat only the case ¢t > 0 since the modifications for the
case t < 0 are obvious. The coupled system of estimates shows that A(t) decays in
time, provided ¢4(t) is dispersively decaying and vice-versa. We exploit the assumed
smallness of the perturbation eW to “close” the resulting inequalities and prove the
decay of both A(t) and ¢4(t).

The main difference from the strategy employed in [22] for the estimation of the
bound state amplitude is related to the presence of infinitely many frequencies in the
perturbation W (t). In particular, one can have an accumulation of resonances in the
continuous spectrum of Hy. We have two strategies for obtaining estimates for A(t)
which correspond to the use of hypotheses (H1)—(H5) (Theorems 2.1 and 2.2) or
hypotheses (H1)—(H6) (Theorem 2.3). These strategies revolve around estimation
of §Rf0t p(s) ds, where p is given by (4.12). Hypothesis (H6), which controls certain
“small divisors” which arise from the clustering of frequencies, ensures that

t
(5.1) %/ p(s) ds < C &|||W]|P%
0

This, in turn, implies that the contribution of p(t) in the size of A(t) is of order
£2[||W||?>. Without hypothesis (H6) we carefully decompose p(t) as

where o(t) is a real almost periodic function with mean, M (¢), zero and f fot n(s) ds
< Ce%||W]||?. As in the previous case, the contribution of the 7(t) in the size of A(t)
is of order £2|||W|||?. On the other hand, o(¢) competes with the damping term &I in
(4.11), but being oscillatory (i.e., of mean zero) and of the same size as the damping
it allows the latter to eventually dominate.

As the above discussion suggests it is simplest to start by assuming (H6) to get
sharper estimates on A(t) (Theorem 2.3) and then to relax this assumption (Theorem
2.2). We begin with a simple lemma which we shall use in a number of places in this
and in the next section.

LemMMA 5.1. Let a > 1.

(52) /Ot <t _ S>_a <S>—ﬁ ds < Caﬁ <t>—min(o¢,6).

Proof. The bound is obtained by viewing the integral as decomposed into a
part over [0,¢/2] and the part over [t/2,t]. We estimate the integral over [0,t/2] by
bounding (t—s)~* by its value at ¢/2 and explicitly computing the remaining integral.
The integral over [t/2,] is computed by bounding (s)~? by its value at ¢/2 and again
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computing explicitly the remaining integral. Putting the two estimates together yields
the lemma.

We now turn to the estimate for A(t) in terms of the dispersive norm of ¢4(¢) and
local decay estimates for e~*#0'P_(H,).

5.1. Estimates for A(t) under the hypotheses of Theorem 2.3.
PROPOSITION 5.1. Suppose (H1)—(H6) hold. Then A(t), the solution of (4.11),
can be expanded as

(5.3) A(t) = el PO (e TA©) + Rah))
_ ! e—EZF(t—T) I . .
(5.4) Ra(t) / E(r) dr,

where E(t) is given in (4.13) and (5.9). For any a > 1, there exists a § > 0 such that
RA(t) satisfies the estimates for T > 2(e?T")~¢

sup (B [Ra(t)] < Cre D sup  |E(7)]
2(e2T) —«<t<T 0<7<(e2)—@
(5.5) + Ccer! sup  ((D)E()]),
(e2T)—o<r<T
(5.6) sup ()™ |Ra(t)] < D (7))t sup |E(7)).
0<t<2(e?l")~ 0<7<2(e?l")~

Proof. To prove (5.5) we begin with (4.11). Let

(5.7) A) = e Jo 7 4y,
Then, A satisfies the equation

(5.8) (A =—TA+ E(t),

(5.9) Blt) = e Jo 7% gy,

Solving (5.8) we get

(5.10) At) = e =TtA(0) + / t e~ T=9) B(s) ds
0
(5.11) = < TA(0) + Ra(b).

Below, in Proposition 5.2 we show that the real part of the integral of p(t) is
uniformly bounded and of order O(g?|||W]||?) for ¢t > 0. Therefore, for some C > 0,
we have by (5.7) and (5.9)

(5.12) CTHA®)| < A1) < CIA(L)],
(5.13) CTYE(®)| < |E(t)] < C|E(t)).

(
Consequently, it is sufficient to estimate A(t), in terms of E(t).
Remark 5.1. Estimates of R, (t), which appear in the statement of Theorem 2.3,
are related to those for R4 (t) via

(5.14) Ra(t) = e o r) s poy = (1- s P =T ity o),
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Hence, by Proposition 5.2,
(5.15) [Ra(t)| < C |Ra(®)| + OE*[[|WI?).

From (5.10) we have for any M > 0

t

M
A < AT + / =T B(s)|ds + / =T B(s)| ds
0 M

IN

(5.16) = [A0)|e =Tt + L(t) + D).

M= ()", a>1.
We now estimate the terms I3 (¢) and I5(t) in (5.16) for 2(e2T)~> < ¢ < T.
Mo ~
O A O
0

M
< <t>rle—%g2r‘t / 6—521"(%1‘,—8) ds - sup |E(T)|
0 0<7<(e2IN)

IN

sup ((t)“e_%gn) -C(e )t sup |E(T)|

2(e2)~o<t<T 0<7<(e?lN)

(5.17) < Qe D7 sup |E(T)]
0<r<(e2r) e

for some 6 > 0. Therefore,

(5.18) sup ()" L) < Cem D qup |E(7).
2(e2IN) — @ <t<T 0<7<(e2lN)—

We estimate I5(t) on the interval 2(e2T')~ < t < T as follows:
t

(5.19) ()™ I(t) < ()™ / I ds s (07 E()

(e2N) (e2T)—o<r<T

The integral is now bounded above using the estimate

t

(5.20) ()™ /(m e = TE=9) () ds < C(T) 7Y, > 2(°T) .
This gives
(5.21) sup ()7 L(t) < CED)7N sup (<T>T1E(T)).
2(e2T)~a<t<T (e2T)~«<7<T

Assembling the estimates (5.18) and (5.21) yields estimate (5.5) of Proposition
5.1 provided that (5.12) and (5.13) hold. Estimate (5.6) is a simple consequence of
the definition of R4 (t).

Thus it remains to prove (5.12) and (5.13). By (5.7) and (5.9) it is necessary and
sufficient to verify the following proposition.
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PROPOSITION 5.2. Assume hypotheses (H1)—(H6). If p is given by (4.12), then
¢
(5.22) &e/ p(s) ds < C2|||W|2, ¢ > 0,
0

for some constant C' depending on C, r1, and &; see (H6).

Proof of Proposition 5.2. Using the estimates (8.7) and (8.9) we can infer that
p(t), given by (4.12) is a series which converges uniformly on any compact subset of
R. For each fixed ¢, it can therefore be integrated term-by-term to give

t e? . b e -
i / pls)ds = —Ri / !9 (Bpo, (Ho = Ao = pj = i0) ™ 'Pefijo) ds
0 jkeZ,j#k "0
g? etlbr—pi)t _q 1
(5.23) = S R—————— (Buo, (Ho — Mo — 11 — i0) " Pef30) -
G kEZ,j#£k Pk = H
Define
~ et(ue—p)t _ 1 N
Pie = —————— (Brtbo, (Ho — Ao — p1j — i0) " "Pefjubp) -

M —

Then (5.23) can be expressed as

t 52 - 82 ~ ~
(5.24) SR/O p(s)ds = v Z Rpj. = ) Z R(pjk + Pr.j)-

3§, k€Z,j#k J k€L, j#k
Now, since

_ e~ ue—ps)t _ 1 -
Py = ———————— (Bjvbo, (Ho — Ao — pe — i0) " PefBrto)
P — Hj
B |:e7;(/1'kﬂfj)t —1(
B [k — Iy

*

- .)] (Brtbo, (Ho — Ao — p + 0) ™' Pe 3100, )

we have

R(Djk + Pr.j)
et(he—p)t _ 1 1 1
= %ﬁ (ﬂkd)ov (Ho — Ao — i — i0)™" — (Ho — Ao — px +i0) Pcﬂjﬂfo) .
J
(5.25)

Moreover, by (8.5) we can infer
R(pjx + pr,j) =N (ei(ukfw)t _ 1) ik + 23 (e*i(uk*#j)t _ 1) 8.k

where, for j # k € Z,

Pjk =

(5.26)
and for ] 7é k', ] € Z, ke Ires’

p— (Bribo, (Ho — Ao — pj — 0) ™" = (Ho — Ao — pu, — 0) ' PeBebo)
J

s

Mk — [

(5.27) Ojk = (Bj%0,6(Ho — Xo — pix) Brtbo) -
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Thus, by (5.24) and (5.25)

2

t 2
§R/ p(s)ds = % Z %(ei(#k—ﬂj)t — 1)Pj,k+% Z s(e—i(ﬂk—l‘j)t _ 1)§j7k-
0
)

4, kEL,j#k k€@ es k#JEL
(5.28

We now derive a uniform bound for # fot p(s) ds.
Estimating the modulus of the above sum, we have for any ¢

2

2
ST OY btz X 18l

J,k€L,j#k k€lres,k#jEL

(5.29) ‘ R /Ot p(s) ds

By (H6),

(5.30) ST gl < mE WA

k€lyes,k#jEL

We now bound the first term in (5.29). This requires an estimate of

pjk (Brtbo, (Ho — Mo — pj —i0) ™ = (Ho — Ao — pur, — i0) " P Bj10)

Mk — Hj
for j # k € Z. We rely on the hypothesis (H3b) (singular local decay estimate
(2.4)), which implies smoothness of the resolvent of Hy near accumulation points in
Jcont(H(]) of the set {)\0 + /jfj}jGZ'
In order to treat both Ao + pt; € Tcont(Ho) and Ao + ft; & 0cont(Ho) case simulta-
neously we regularize p; x:

(Brbo, (Ho — Ao — pj —in) ™" — (Ho — Ao — pus — in) " PefBjb0) -
(5.31)

Clearly pj1 = lim,~\ o p;]}k.
Now by the standard resolvent formula we have

Pl = (Brbo, (Ho — Ao — pe — in) ™ (Ho — Ao — pj — in) " PeBirho) -

Thus, using the singular local decay estimate (H3b), we get

lpixl = |lim / (ﬂk%, e~ Ho=do=me=ims (Hy — Xo — 1 — z‘n)*lpcﬂjwo) ds
7 0
<lim [ e " |(wyBrtbo, w_e O (Ho — Ao — p1; — in) " Pew_w,Bitho) | ds

7\0 Jo

< [lw B [[[w4-Bjl / lw_e™ 0% (Hy — Xo — pj —i0) ' Pew-_||ds
0

< Cllws Bl 55 / (s) "1 ds
(5.32) < Cllws el lws ;]

for some constant C' depending on C and ;. Summing on j, k € Z, j # k, yields

(5.33) ST ekl < C W
J,k€Z, j#k
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for some C > 0; see (2.7). Use of the bounds (5.30) and (5.33) in (5.29) gives

‘m/ot p(s) ds

for some constant C' depending on C, 71, and &.
This completes the proof of Proposition 5.2 and therewith Proposition 5.1. O

< o)

5.2. Estimates for A(t) under the hypotheses of Theorem 2.1. In this
subsection we work under the hypotheses of Theorem 2.1. In particular, we drop
hypothesis (H6). We shall reuse the notation A and E for functions which are
different from but related to those defined in section 5.1.

PROPOSITION 5.3. Suppose (H1)—(H5) hold. Then A(t), the solution of (4.11),
can be expanded as

(5.34) Aft) = el O (LT 4 0) 4 Ry (),
(5.35) Ra(t) = /0 " e [ o(os E(r) dr,

where

(5.36)  o(t) = —%?R Z e/ ra)b (Brao, 6(Ho — Ao — 1) Bjtbo)

J€lres,j#kEL

is a real almost periodic function with mean M (o) = 0, n in (5.46) is a function
whose real part has a bounded time integral of order O(£2|||W|||?) and E(t) is given
in (5.42); see also (4.13). For any a > 1, there exists § > 0 such that Ra(t) satisfies
the estimates

sup  (OTRA()] < CremETDTT sup |E(7))

2(e2T/2) > <t<T 0<7<(e2l'/2)~«
(5.37) +C(e’n) ! sup () E(T)])
(e2I/2)—o<r<T
(5.38) sup ()™ |Ra(t)| < D (e21/2)~a(m+D) sup |E(7)|.
0<t<2(e2l/2) 0<7<2(e2l/2)

Proof. As in the previous subsection we begin with the equation for A(t):
(5.39) QA(t) = (p(t) — T ) A(t) + E(¢),

where p(t) and E(t) are given by (4.12)—(4.13). In the previous section we transformed
away the term p(t)A(t) using the “integration factor” exp(f(;s p(s) ds). Under the

current hypotheses, this can’t be done because without (H6) fot p(s) ds may be
unbounded as ¢t — oo, which could cause the estimates (5.12)—(5.13) to break down.
Instead, we proceed by a more refined analysis of p(t), which we now outline.

We express p(t) as p(t) = e%0(t) + n(t), where n(t) has a time integral whose
real part can be bounded by the estimates of section 5.1 and a part, 20 (t), which is
almost periodic and of mean zero. Using this decomposition of p(t) we write (5.39)
as

OA(R) = [T + %0(t) +n)] Alt) + E(t).
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Next introduce the change of variables

(5.40) A) = e Jo 1@ = 40
and obtain a reduction to

(5.41) WA =[—-T + 2o(t) |A + E(t),

(5.42) B(t) = e o 1% gy,

With this strategy in mind we now proceed to derive the decomposition of p(t).
We are mostly interested in its real part, so we start with it.

. 2 .
Rp(t) = %% Z e/t (Bapg, (Ho — Ao — pj — i0) ™' PefBjtbo)

J,k€L,jFk

S Y et (B, (Ho — Ao — py — i0) ' PefBjnbo)

JkEL,jFk

% Z Sk

J,kEL,j#k

> Sk + )

J,k€L,jF#k

(5.43)

In a manner similar to the derivation of (5.25) from (5.24) we find
(5.44) S,y = Se 1)t (Bao, (Ho — Ao — e +10) " Pefidg) -

Using (8.5) in (5.44) and then replacing it in (5.43) we get

Ro(t) = TR D0 T (B0, 8(Ho — Ao — i) Bito)

k€lres,k#jEL

23 Y e (B, [(Ho — Ao — py — i0) ™
7,kEZL,jF#k

| =

—(Ho = Ao — . — 0) P B;4k0)
= Rnt) +20().

Therefore,
p(t) = Rp(t) + iSp(t)

(5.45) = n(t) + (),

where

- 1, (=)t
n(t) =i 3 p(t) = g Z et

J,kEL,j#k

(5.46) (Breto, [(Ho — Ao — pj —i0) ™" — (Ho — Xo — pu, — i0) "' Pc] Biabo)

Q
—~

~+~
=

|

—IRDT (B, 8(Ho — o — ) Bio)

J€lres,J#kEL
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see also (5.36).

Note that R fg n(s)ds is uniformly bounded in ¢. To see this, recall the definition
of pj 1 in Lemma 5.2 (see (5.26)):

Pik = (Brtbo, [(Ho — Ao — 5 — i0) ™" — (Ho — Ao — pue — i0) '] PefBj¢bo) -

Mk — Mg

By (8.7), R n(t) given by (5.46) converges uniformly on ¢t € R. Therefore, for each
t € R we may integrate the series term-by-term to obtain

t
(5.47) R / n(s)ds = 162 Z R(eHemrIt _1)pi .
0 S i

Moreover, the modulus of the right-hand side in (5.47) is less or equal than
3€2 >k ok [Pikl, which by (5.32) is bounded by Ce?|||W]||? for some constant C
depending only on C and r;. Note that we derived (5.32) by using only hypothesis
(H3b) and not relying on (H6).

Thus we have

t
(5.48) R / n(s)ds < C=2||[W|]2.
0

To summarize, we have split p(¢) into

p(t) =n(t) + o(t)

such that (5.48) is valid. If we now define A as in (5.40), then by (4.11) A satisfies
(5.41). Solving (5.41) we get

t N t t N
Ay = Tl () [ T Lt )
0

(5.49) = T 000 ) £ Ru(0),

From (5.42) and (5.48) it is sufficient to estimate R4(t) in terms of E(t).
Remark 5.2. The estimates of R, (t) which appear in the statement of Theorem
2.2 are related to those for R4 (t) via

Ra(t) = AN (1) 4 (1- &y o(@)ds—na f7 M) =M=t ginlD) (),
(5.50)

Before we estimate R4 (t), we review some properties of the function o(t).

The function o(¢) is almost periodic since the sum of the moduli of its Fourier
coefficients is finite. Namely, by (2.20), the terms in the series (5.36) defining o (t) are
majorized by those of a convergent series (whose sum is Cr—!||[W]||?). Therefore,
the series in (5.36) is uniformly convergent. As the uniform limit of almost periodic
functions, o(t) is then itself almost periodic, bounded by

(5.51) sup|o(t)] < Cl[[W]|]?
teR

for some constant C; see also section 9. Moreover, o(t) has mean value zero since all
the Fourier exponents are nonzero; see (5.36) and section 9. Therefore

t
(5.52) / o(s)ds < g(t —7), for t—7>M
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provided M is taken sufficiently large. It can be shown (see section 9 or [2, p. 42])
that (5.52) holds provided

4 sup,cp{lo(t)[} L(I'/4)
r/2 ’

where L(I'/4) (see Definition 9.1) is such that in each interval of length L(I"'/4) there
is at least one I'/4 almost period for o.
Using (5.51) and then (H5), we can choose

(5.54) M = 8CL(T'/4) /6,

(5.53) M >

independently of e and still satisfy (5.53).

We now return to the estimation of R4. We split the integral in (5.35) into two
integrals, one from 0 to ¢ — M and the other from ¢ — M to t. For the former we use
(5.52) while for the latter we use (5.51). The result is

t—M Lo _
Ra) < [ eI Blar
0
t
(5.55) +/ . e CUWIE D)D) (1) dr.
t—

The first integral in (5.55) can be bounded exactly as the term fot e=€"T(t=7) |E(7)|dr
in the proof of Proposition 5.1. The second integral in (5.55) is bounded in the
following manner:

t
Wl/ < CNWIP D)) (7 dr
t—M

A

" /t 2(0)|[W|P—T) (1)
£ T d T‘l E
STy € Tt_ASAu;TSt«ﬂ [E(T))
(5.56) <D sup ({m)™E(T)]) .

(€2T/2)—o<r<t

Note that ¢ and consequently e2I" ~ 2|||W]||?> are small, so we can consider M <
(e2I'/2)~® and D ~ M < (eT')~t. The result is (5.37). A simple bound, using the
definition of R4(¢), yields (5.38).

This completes the proof of Proposition 5.3.

6. Dispersive estimates and local decay. In this section we prove the local
decay of ¢4 and the decay in time of the remainder terms, E(t), in bound state
amplitude equation (4.11) of section 4. The arguments rely on hypotheses (H1)—(H5)
and results of the previous section, so we will handle Theorem 2.1 first. However, due
to the differences between Theorems 2.2 and 2.3 we separately finish their proofs in
the final two subsections of this section. We will repeatedly use the following lemma.

LEMMA 6.1. For any n € [0,71] and j € Z we have

< O sup ((1)"Jwy f()]])

t
/ w_e =P _f(s)ds
0 0<7r<t

6|

and

¢

/ w_e =P (Hy — N\ — pj —i0) "L f(s) ds
0

(6.2)

< C{)7" sup ((0)" [lwg f(T)]]) -

0<r<t
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Proof. The proof follows from the assumed local decay estimates on e *0; see
(H3a). Namely, using that r1 > 1,
t t
\ [ e IPp(s) ds| < [ e O Poweos) 7 ds
0 0
- sup ((7)"[Jwy f(7)]])
0<r<t
t
< C/ (t—=s)""(s)""ds sup ((7)"[wsf(7)l)
0 0<r<t
<) sup ((1)" [lwy ()],
0<r<t

which proves (6.1). The proof of (6.2) is identical and uses the singular local decay

estimate of (H3b). |
We now define the norms
(6.3) [Ala(T) = sup (7)*|A(7)|
0<r<T
and
(6.4) [¢alLD,a(T) = sup (1)*[|w_ea(7)].
0<7<T

Then we have the following.
PROPOSITION 6.1. For any T > 0 and n € [0, 1],

(6.5) [#a]Lo.(T) < C(lwida(O)| + [el [[[WI| [Al5(T) )

Proof. From (4.9) we get, using the assumed local decay estimate for e
(6.1),

—iHopt and

lo—ga(®ll < Y Ilw-¢;(t)l]

=0

)" lwrdaO) + Clelt)™ [Al(t) sup [lwsW(s)vol

(6.6) + Clel W] (8" [¢d] Lo, (B)-

Since [[w W (s)voll < (W[ llvoll = [[[W]|| and [e] [[[W]]] is assumed to be
small, multiplying both sides of this last equation by (¢)” and taking supremum over
t < T yields (6.5). a

We now estimate E(t).

PROPOSITION 6.2. Let T > 0. For any n € [0,71]

( [E>]n(T) < C (WP AO)] + [el W] TwsgaO)ll + [elP[IIWIIIP [Aly(T)) -
6.7

Proof. E(t) is defined in (4.13). From these equations it is seen that we need to
bound the following terms:

IN

1 .
Ry = 77|40 D (Brtbo, et (Ho — Ao — pj — i0) " Pofjuo)]

3,kEZ
1 ) .
RQ 162 Z <ﬁk¢07/ e_ZHD(t_s)(HO — /\0 — M5 — iO)_1Pce_l(/\o-ﬂtj)SasA(S)ﬂjwodS)‘
J,k€EZ

t
0
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and
le (1o, W (t)eo(t))| = |e (W (t)ho, e~ h4(0))
€ (o, W(t)po)| = |2 (W(twm / eiHo<ts>Pcw<s>¢d<s>ds) \

)

The estimates of the above terms repeatedly use Lemma 6.1. Let n € [0, 71].
Estimation of R;.

1 ; o —
Ry = Z52|A(0)| Z ’(w+6k1/)0, w_e Ot (Hy — Ny — p; —i0) " 'Pew_ w+ﬁjw0)‘
J.kEZ

(6.8) < ClA(0)] €*[[[W[|* ()"

by the local decay estimates (2.4).
FEstimation of Ry. From (4.11) we have that

(6.9) |05 As)| < Clel [[[WI] |A(s)| + [E(s)]

since Sp is linear in || |||WV]]| and Rp, T are quadratic.
Applying Lemma 6.1 to Ry we then get

Ry =33 ven ‘(w+5k¢o, Jo woemHE= (Hy — Ng — p1; — i0)71Pcw—a~;A(S)w+5j¢od8)

< CENWIIE &7 (lel W] [Aly(8) + [Ely(1)).
(6.10)

Estimation of |e (1o, W (t)do(t))]. Since, by definition, ¢4(0) = Pcpy(0) we can
apply local decay estimates for e~*Ho? to get

(6.11) e (W (t)do, do@))| < Clel [IWII] ()" lwyda(0)]-

Estimation of |e (o, W(t)p2)|. Applying Lemma 6.1 as before we get, for 0 <
t<T,

(6.12) [ (Yo, W(t)e2)| < C2[||WI|I* ()" [éa)Lp,y(T).
Using Proposition 6.1 to estimate [¢q4]rp,,(t) in (6.12), we get
(6.13) e (%o, W(t)g2)| < C[[[WIII* ()™ {lwsda(O)l + [e] [[WII] [Al(£)} -

Finally, combining the above estimates, we can bound [E],(T) for any n € [0, 1]
as follows:

[E],(T) < C{*IIWIII* [AO)] + le] W] wsda(0)]
(6.14) + WP [E](T) + [ePIIWIIP [A]y(T)}-

Since |g| |||W]|| is assumed to be small, Proposition 6.2 follows. |

We can now complete the proof of Theorem 2.1. To prove the assertions concern-
ing the infinite time behavior, the key is to establish local decay of ¢4, in particular,
the uniform boundedness of [¢4]rp - (T). This will follow directly from Proposition
6.1 if we prove the uniform boundedness [A],, (T'), or equivalently, [A],, (T).
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PROPOSITION 6.3. Under the hypothesis of Theorem 2.1, there exists an g > 0
such that for each real number ¢, |e| < e¢ there is a constant C, with the property
that for any T > 0

[A], (T) < C..

Proof. We begin with the expansion of A(t) given in Proposition 5.3. Multiplying
(5.34) by (t)™, and taking the supremum over 0 < ¢ < T we have

(@) < C(1AO)ET/2™ 4 sp ()R

(6.15) L s (7 Ra() )

2(e2T/2)~ 2 <7<T
The right-hand side of (6.15) is estimated using Proposition 5.3.

[Al, (T) < C|A(0)] (6°T/2)™™ + D (2T'/2)" "~V [Eo(2(e*T/2) ™)
+ Cy e ETT B (2(2T/2)) + Cy (e2T/2) Y E],, (T).

Next, we apply Proposition 6.2 which yields

[A],,(T) < CJA(0)] (°T/2)™™ + D (£2T/2) 1+ [E]y(2(2T/2) %)
+ Cre” T/ By (2(e20/2) )

+ Co(eL/2) 7 (2[AOIWIIIZ + lel IIWII] lwda(0)]
(6.16) + [elPIIWIIIP (Al (7))

Note that by Proposition 6.2 and the simple bound
[Alo(T) < li¢oll,

[E]o(2(e2T'/2)~%) is bounded in terms of the initial data and |e| |||[W]]|.
Choose ¢g such that

20, |||[W| 3
2l
where Cy is the same as in (6).
Then, for |e] < &g
(6.17) (A, (T) < C..

Here, C, depends on ||¢ol|, ||lws+eoll, 71, and €.

This completes the proof of Proposition 6.3 and therewith the ¢ — co asymptotics
asserted in Theorems 2.1-2.3. a

It remains to finish the proofs of the Theorems 2.3 and 2.2. Due to some differ-
ences we consider them separately in the following two subsections.
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6.1. Proof of Theorem 2.3. In order to obtain (2.23) we note that (4.7), (5.3),
and (5.14) together with the definition of w(t) in (2.16) already gives us

alt) = =)o P08 (A (0)e== T 4 Ry (1))
= a(0)e=" Tt 4 R, (1),
which is in fact the second relation in (2.23). The third is a direct consequence of the
second since P(t) = |a(t)|* while the fourth relation is exactly (4.9).

It remains to prove the intermediate time estimate (2.17). The ingredients are
contained in (6.7) and its proof. First, by (5.15)

[Ra(t)] < C [Ra(®)] + O(®[[|[W]I?).

So, it suffices to prove an O(|e| |||W]||) upper bound for R 4.
Using (5.4) and (5.13) we know that

t
(6.18) |Ra(t)] < C/ e = Y= | B(7)| dr.
0

Let Ty denote an arbitrary fixed positive number. We estimate the equation (6.18)
for t € [0,Tp(e2T")~!]. We bound the exponential in the integrand by one (explicit
integration would give something of order (¢2I')~!) and bound |E(7)| by estimating
the expressions in the proof of Proposition 6.2. First, the estimates of Proposition 6.2
for Ry and |e (10, W (t)po(t))| are useful as is. Integration of the bounds (6.8) and
(6.11) gives

t
/ e TN R dr < C 2|[|W]||2 |lwip(0)],
0

t
2
(6.19) /0 e T e (Yo, WHGo(!))] dr < C Jel [IW]] [lws6(0)]l
To estimate the contributions of Rs, first observe that by (6.9) and Proposition 6.2
with n =0

(6.20) 05 A(s)] < C le] [[W]] lwy(0)]-

Therefore, using local decay estimates we have

t
/0 e TN Ry dr < C To(2T) 7 |eP|[WI1? [|wy-6(0)]
< Dlel [|[[W]]] [[w¢(0)]].

Finally, we come to the contribution of |e (¢bg, W (t)¢p2)|. We rewrite it as follows:

& (tho, W(t)ha)| = €2 / (W (s)e Ho =PI (t)40, da(s)) ds

(6.21)

t
/ e2(wo W (s)wy - w_e o= P w_ - w W (t)ho, w_¢q(s)) ds|.
0

Recall that by (4.9) ¢g = ¢o + &1 + ¢o, where ¢o(t) = e Holp,(0). Using
local decay estimates (H3a), the contribution of the term ¢q(¢) can be bounded
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by C e2|[|W]|||? [Jwypq(0)| (r)~"r. Multiplication of this bound by e~ T(¢=") and
integration with respect to t gives the bound C &2|||W|||?||wy¢4(0)||. To assess the
contributions from ¢, + ¢2, note that local decay estimates (H3a) imply

(6.22) lw—(¢1+@2)| < C le] W] [lwy-p(0)]-

Putting together the contributions from ¢y and from ¢, + ¢, we have

t
e T e (Yo, W(t)go)| dr < C (X[[IWII? fwsda(O)ll + (€°D)7 [PIIWIIF) .

(6.23)
The above estimates and (5.15) imply (2.17). Now, (2.18) is a direct consequence of
(2.17) and the relation P(t) = |a(t)|?.

This concludes the proof of Theorem 2.3.

6.2. Proof of Theorem 2.2. As in the proof of Theorem 2.3 relations (4.7),
(5.34), (5.50), and the definition of w(t) in (2.16) gives

aft) = e~ otk [y s (A(o)e* (P=J oterds) RA(t)>

= a(0)e== Tt L R, (1),

which is the second relation in (2.15). In what follows, the only difference from the
previous argument is in estimating R, (t).
We start with the relation (5.50):

Ru(t) = omidot+ [, n(s)dsRA(t)+(l S o)ds—t) 4R fo'n(s)ds) =Tt giv(t) g ).

(6.24)
Since o(t) is an almost periodic function with zero mean, for any v > 0 there is an
M., > 0 such that whenever [t| > M,

/Ot o(s)ds < ~t.
On the other hand for |t| < M., using (5.51) we have
[ oty < o
So, in both cases,
[ otsyts =t < om i
Substituting now in (6.24) and tacking into account that by (5.48),
7 [ aas < cwe

uniformly in ¢, we get
(6.25) [Ra(t)] < ClRa(t)] + OE[[[WIII?).

It remains to prove an O(|e| |||W]]|) for Ra(t). Looking now at (5.55) we see that
we can bound the exponential by max{1, eEQ(C‘HW‘HQ’F)M}. Now, the same argument
as in the end of the previous subsection will give us the required result.

This completes the proof of Theorem 2.2.
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7. Generalizations. In the previous sections we considered perturbations of the
form €W (t), with W (¢) independent of . In this section, we shall extend our theory
to a more general class of potentials, W, which are small for small ¢ but which may
deform nontrivially as e varies.

Consider a family of perturbations VW and the general system

i0¢(t) = (Ho + W (1)) o(t),
(7.1) li=o0 = ¢(0),

where W € W (compare to (2.1). The results are as follows.

THEOREM 7.1. Suppose that Hy and any W € W satisfy hypotheses (H1)—(HS5).
In addition assume the following:

(H7) Equi-almost periodicity. There exists a positive constant Lg,, independent
of W € W, such that in any interval of real numbers of length Lg,, the function
W72 a(t) (W] #0), where

(7.2) o(t) = —%% Z e =1t (Brabo, §(Ho — Ao — 115)B%0)

J€lres,j#kEL

has a 0y/4 almost period, 0y is given by (H5). More precisely, there exists Lg, > 0
which does not depend on W such that in any interval of length Ly, there is a number
7 =1(00/4) such that for all t € R

(7.3) [ IWIT2o(t+7) = [[W][[7%o(t) | < 6o/4.

If wy¢(0) € H, then there exists an g > 0 (depending on C, 11, 0y, and Ly, )
such that whenever |||W]|| < €o, the solution of (7.1) satisfies the local decay estimate
(identical with the one in Theorem 2.1)

(7.4) [w— @@ < CE)~" lwy doll, teR.

Sketch of the proof. Once we drop e from all expressions (since it is not present
in the actual setting), the arguments in the previous sections hold in this case except
the analysis of o(¢) in Proposition 5.3. Formulas (5.36) and (7.2) are the same, but
now pj, B, j € Z, are not fixed as they define W by (H4) and W sweeps a general
class W. This may prevent us from finding a fixed time interval, M, independent of
W € W, after which o(t) is within I'/2 distance from its mean; see relations (5.52)—
(5.54).

Nevertheless, (H7) is exactly what we need to overcome the difficulty. A straight-
forward calculation shows that any 6y /4 almost period of |||W|||~20(t) is a I'/4 almost
period for o(t). Consequently, L(I'/4) in (5.54) is bounded above by L(6y) given in
(HT7). But the latter is fixed, so we can choose

independent of W € W and still satisfy (5.53) hence (5.52).
Finally, we can close the arguments exactly as we did for Theorem 2.1.
Remark 7.1. Theorems analogous to Theorem 2.2 (respectively, Theorem 2.3)
can be proved under hypotheses (H1)-(H5), (H7) (respectively, (H1)—(H6)).
Ezamples. (HT7) holds trivially for
(HW={eW(t,z): e e R, W fixed} or
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)W ={eW(ct,z): e € R—{0}, |g|] <1, W fixed}.

In Example (1), € cancels in the formula |||W|||~2¢(¢) while in Example (2) we
have a time dilation which shrinks the gaps between the almost periods, so the L(fy)
valid for W (¢, z) is good for the entire family.

(3) There are more general families of perturbations W for which (HT7) holds.
For example, if W is equi-almost periodic, see section 9.

8. Appendix: Singular operators. In this section we present the definition
and the properties we needed previously for the singular operators

e ot (Hy — A —i0) " Pe, 6 (Hy — A)Pe, P.V.(Hy—A)"' P,
and establish the identities
(Hy—ATi0) 'Pe = P.V.(Hy—A) "' P+ ind (Hy — A) Pe

suggested by the well-known distributional identities
1
(r¥i0)"* = P.V. - +im §(x).

Recall that we are in the complex Hilbert space H with self-adjoint “weights”
wy and projection operator P, satisfying (i), (ii), and (iii). We can then construct
the complex Hilbert space H4 as the closure of the domain of w; under the scalar
product (f,g), = (w4 f,wyg) and the complex Hilbert space H_ as the closure of
P.H under the scalar product (f,g)_ = (w_f,w_g) .

By the hypotheses of section 2, Hy is a self-adjoint operator on H and satisfies
the local decay estimate (2.3). Based on this property, in [11, 22, 23] it is proved that
for A in the continuous spectrum of Hy and ¢t € R

oo

T, =i lim e~ {Ho—A=in)s g op
7\.0 t
—t
T = —ilim e iHo—A+in)s gop
\O J

are well defined linear bounded operators from Hy to H_. We then define

8.1 e Mot (g — A —i0) ' Py = e IMT,
(8.1)
(8.2) et ot (Hy — A +i0) "' P = etATY,
and
_ 1

(8.3) P.V.(Hy—A)'P.= 5 (Mo +15),

1 *
(8.4) 6 (Ho = M) Pe = o—(Tp — T5).

Note that the definitions imply the identities
(8.5) (Hy—AFi0) 'Pe=P.V.(Hy— N) ' P +in§ (Hy — A) Pe..

Particularly important properties of these operators are their symmetries when viewed
as quadratic forms on H4 X Hy. For example, on any f, g € H,4 the quadratic form
induced by T; is given by

(fu g) = (w+f>w7Ttg)‘
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Note that
0 . .
(86)  lim (f,T}'g) = lim (f, / e—“Ho-A—WSdsch) = (wyf,w_Tg)

by the following calculation:

lim ( f,i Ooe*“Ho*A*i")SdsPC > = lim< ,Pei / - e~ iHo—A=in)s gop )
Jimmy <f /t g) = lim f ) g

= lim (w ,w_i/ e HHo—A=in)s gop )
1;\0( +f ; cd

= (w+fa watg)7

where we used that P. is a projection operator commuting with the integral op-
erator, the identity wiyw_P. = P, on H, the self-adjointness of wy and P., and
1im,]\0 w_Ttn = ’LU_Tt in [,(H+, H)

Identity (8.6) suggests the notation

(f,9) = (f, Tig)

for the quadratic form induced by T3, where (-, ) can formally be treated as the scalar
product in H. Moreover, (8.6) implies

(f, Tvg) = (T £, 9)-

Therefore, the quadratic form induced by P.V.(Hy — A)~!P, is the symmetric part
of the one induced by Ty while §(Hy — A\)P induces the skew-symmetric part of it
divided by the factor im. As a consequence both the forms corresponding to the last
two operators are symmetric.

In conclusion, for any f,g € Domain(wy.), t € R, and A € oeont(Hp) we have

(f,eTHON(Hy — A Fi0) ' Peg) = (wyf, w_e Ty — A F iO)*chg)

(8.7) < G wy fI] lwsgll,

C
(8.8) (f, (Ho —AM)Peg) = (wif,w_6(Ho — A)Peg) < ?0 lwi fII fwsgll,
(8.9) (f,P.V.(Ho - 1ch )= (fiw-P.V.(Ho— A)""Peg) < Co |lwyf|| [[wegll.

The inequalities are due to the boundedness of T;, where C; denotes the norm of T;
in L(Hy,H_). Moreover, the following symmetry properties hold:

(f, 70 (Hy — A 5 i0)"Peg) = (X0 (Hy — A +0) P /. g),

(f,6(Ho — A)Peg) = (6(Ho — A)Pe f, g),
(fa PV(HO - A) 1ch) = (PV(HO - A)ilpcfa g)

9. Appendix: Almost periodic functions. In this section we present the
definition and the properties of almost periodic functions we used throughout this
paper. We will confine to functions of the form f : R — X, where X is a complex
Banach space with norm denoted by || - ||



PARAMETRICALLY EXCITED HAMILTONIANS 49

DEFINITION 9.1. We say that
fR—=X

is almost periodic if and only if it is continuous and for each € > 0 there exists a
length L(e, f) > 0 such that in any closed interval of length greater or equal than
L(e, f) there is at least one T with the property that for allt € R we have

(9-1) [fE+7) = fOl <e

The number T with the property above is called an € almost period for f.

We say that the family, F of almost periodic functions is equi-almost periodic if
L(e, f) can be choosen independently of f € F.

Example. Any continuous periodic function is almost periodic since for any € > 0
we can choose the length L(g) to be the period of the function.

THEOREM 9.1. Any almost periodic function has a relative compact image.

The proof of the theorem can be found in [9, Property 1, p. 2]. In particular,
any almost periodic function f : R — X is in the Banach space of all bounded and
continuous functions on R with values in X, C'(X), endowed with the uniform norm.
The next result is Bochner’s characterization of almost periodic functions; see, for
example, [9, Bochner’s theorem, p. 4].

THEOREM 9.2 (Bochner). Let f : R — X be a continuous function. For f
to be almost periodic it is mecessary and sufficient that the family of functions
{ft+h)}, —o0 < h < o0, is relatively compact in C(X).

As a consequence of Bochner’s criterion and Property 4 from [9, p. 3] we have
the following.

THEOREM 9.3. Suppose X1, Xo, ..., Xky1 are Banach spaces, f; : R — X;, 1<
i < k are almost periodic functions, and g : Hle — Xi41 1s continuous. Then
g(f1(t), fa(t),..., fr(t)) is an almost periodic function.

The last theorem has very important consequences in the theory of almost periodic
functions. We will list only those which are useful in our presentation.

COROLLARY 9.1. A finite sum of almost periodic functions with values in the
same Banach space is an almost periodic function.

COROLLARY 9.2. A product between a complex valued almost periodic function
and an arbitrary almost periodic function is an almost periodic function.

COROLLARY 9.3. If H is a complex Hilbert space, L(H) is the Banach space of
the bounded linear operators on H, and W : R — L(H) is an almost periodic function,
then for any @, ¥ € H the following functions are almost periodic:

t—W(t)e,
t— (¢, W(t)e),
t— (W), W(t)e),
where (-, -) denotes the scalar product on H.
Another essential result in the theory of almost periodic functions is (see, for
example, [9, Property 3, p. 3|) the following.
THEOREM 9.4. Any uniform convergent sequence of almost periodic functions

converges towards an almost periodic function.
COROLLARY 9.4. If {u;}jer, C R and {Bj}jez C X satisfies 3 ;o7 15[ < oo,

then
D,

JEZL
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is an X -valued almost periodic function of t.

Proof. According to Weierstrass’s criterion the series Zj cz et 3, is uniformly
convergent on R.

By Corollary 9.1 and the example above the partial sums of the above series are
almost periodic. The result follows now from Theorem 9.4. 0

We continue with the harmonic analysis results for almost periodic functions.

THEOREM 9.5 (mean value). If f: R — X is almost periodic, then the following
limit exists and it is approached uniformly with respect to a € R:

lim = [ f(s)ds = M(f) € X.

t—oo t o
Moreover, whenever

_ Asup,en |/ (5)ILE/2.S)
- &

t

we have

<e

HM(f) = " rs)as

for all a € R.

The proof of the mean value theorem in this form can be found in [2, pp. 39—
44]. Note that although Bohr’s book considers only complex valued almost periodic
functions the proof can be carried on to Banach space valued functions by simply
replacing the modulus by the norm and the Lebesque’s integral for complex valued
functions by the Bochner’s integral.

The results of the next theorem are presented in [9, Chapter 2].

THEOREM 9.6 (fundamental theorem). If f, g : R — X are almost periodic, then

(a) for any p € R,

1
lim —
t—oo t

/ f(s)e~ds = a(u, f)
0

exists and is nonzero for at most a denumerable set of u’s; if a(p, f) # 0, then a(u, f)
is called a Fourier coefficient for f while p is called a Fourier exponent;

(b) a(w, f) = a(u, g) for all u € R if and only if f = g;

(c) let A(f) = {p: alp, f) # 0} denote the set of Fourier exponents for f;
then there is an ordering on A(f), A(f) = {u1, p2,...} independent of the Fourier
coefficients, such that for any ¢ > 0 there exist the numbers N(e) € N, 0 < k, . <
1, n € N, with the property that the trigonometric polynomial

N(e)

P.(t) =" knca(pn, e
n=1
satisfies

If(t) — P.(t)]| <e forallteR.

Moreover, ky, . can be choosen such that for any fized n, lim.\ ok = 1.
In this paper we use a less general result than the above fundamental theorem,
namely, the following.
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COROLLARY 9.5. If f(t) = 3" ¢y €' B), where {pj}jen CR and 3- ;1651 <
oo, then A(f) = {p}jez, alp;, f) = B, j € Z, in particular if p; # 0, j € Z, then
M(f) =0. Moreover, we can arbitrarily order A(f) and still have that for any e > 0
there ezists a natural number N(g) such that

J=N(e)

I — > Bl <e

j=—N(e)

or, in other words, in this particular case the conclusion in part (c) of the fundamental
theorem is valid even if we have an arbitrary order on A(f) and we choose kj. = 1.
Proof. By the Weierstrass criterion the series

f(t)e ™t = Z ei(#ru)tﬂj

JEZL

is uniformly convergent on R. So, when we compute a(u, f) we can integrate term by
term and therefore use the identities

1 t . .
lim — e~ ds = { 0 if A#0,
t—oo 0

1 if A=0

to get the first part of the corollary. The last part is a direct consequence of the fact
that f is an absolute and uniform convergent series. 0
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HOMOGENIZATION OF ELLIPTIC DIFFERENCE OPERATORS*
ANDREY PIATNITSKI' AND ELISABETH REMY#

Abstract. We develop some aspects of general homogenization theory for second order elliptic
difference operators and consider several models of homogenization problems for random discrete el-
liptic operators with rapidly oscillating coefficients. More precisely, we study the asymptotic behavior
of effective coefficients for a family of random difference schemes whose coefficients can be obtained
by the discretization of random high-contrast checker-board structures. Then we compare, for var-
ious discretization methods, the effective coefficients obtained with the homogenized coefficients for
corresponding differential operators.

Key words. random media, homogenization, H-convergence, difference operator, percolation,
random walk
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1. Introduction. We develop some aspects of general H-convergence and ho-
mogenization theory for second order elliptic difference operators and consider several
homogenization problems for random discrete elliptic operators with rapidly oscillat-
ing coefficients. More precisely, we study the asymptotic behavior of effective coeffi-
cients for a family of random difference schemes whose coeflicients can be obtained by
the discretization of random high-contrast checker-board structures. Then we com-
pare, for various discretization methods, the effective coefficients obtained with the
homogenized coefficients for corresponding differential operators.

Many results can also be formulated in terms of the central limit theorem for
random walks in random statistically homogeneous media.

Originally, G- and H-convergence of differential operators and I'-convergence of
the corresponding functionals were introduced by Spagnolo [27], De Giorgi [7], [8], and
Murat and Tartar [22]. Then these notions were developed and generalized essentially
in the works of Bensoussan, Lions, and Papanicolaou [4], Tartar [26], Murat [21], Jikov
et al. [28], G. Dal Maso [18], and many others. This resulted in the appearance of
advanced homogenization theory.

In recent years, significant progress has been achieved in the homogenization
theory of random differential operators. We refer to the original works of Kozlov
[13] and Papanicolaou and Varadhan [24], and to the book by Jikov, Kozlov, and
Oleinik [11] wherein an additional bibliography can be found. In particular, in case of
random high-contrast checker-board structures, the asymptotics of effective diffusion
have been constructed in Jikov, Kozlov, and Oleinik [11]. Berlyand and Golden in [5]
have improved this result in a special case.

In contrast with differential operators, the homogenization theory of difference
operators is not so well developed. There are only a few mathematical works on this
subject, among them Kiinnemann [17], Kozlov [14], [15], and Krasniansky [16]. In
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[17] it is proved that the central limit theorem holds for symmetric random walks
in random ergodic statistically homogeneous media. Then, many interesting results
for various kinds of random walks in random media were obtained in Kozlov [14].
The first homogenization results for difference schemes were formulated and proved
in Kozlov [15]. We also mention the work Bricmont and Kupiainen [6] where the
central limit theorem was obtained for a class of nonsymmetric random walks.

Perhaps the difference operators with rapidly oscillating coefficients did not at-
tract the attention of mathematicians because these operators did not appear in the
classical difference schemes approximation approach (see, for example, Quarteroni
and Valli [25]): the fast oscillation of coefficients of difference schemes would contra-
dict the regularity and even the measurability of coefficients of the initial differential
equations.

On the other hand, many modern practical and numerical applications involve
various homogenization problems for discrete operators with rapidly oscillating coeffi-
cients. For instance, when discretizing microinhomogeneous media, due to the natural
restrictions, it is not possible to keep the size of the numerical grid much smaller than
the typical size of inhomogeneity (the microscopic length scale) of the medium. This
leads to the appearance of difference operators with rapidly oscillating coefficients
(see, for instance, McCarthy [19], Neetinger [23]). The most important question here
is, How far could the effective coeflicients of a difference scheme diverge from ones
of corresponding differential operators? The first successful attempt to answer this
question was done by Avellaneda, Hou, and Papanicolaou [2] where it was shown that,
in the multidimensional case, the finite difference approach does not provide the right
homogenized coefficients unless the ratio of the size of a discretization mesh to the
microscopic length scale goes to 0.

In the present work we show that the effective coefficients of the difference schemes
approximating a family of elliptic PDEs with rapidly oscillating coefficients depend
essentially on the discretization method.

The paper is divided into two parts. The first one is devoted to H-convergence
and homogenization of difference operators.

Earlier homogenization problems for difference operators were investigated by
Kozlov in [15] where a number of homogenization results for difference schemes were
obtained. In the present work we extend further the homogenization theory of dis-
crete operators and prove a number of basic statements such as convergence of so-
lutions of the Neumann problem, convergence of energies and of arbitrary solutions,
I'-convergence, and some others. To this end we mainly use the discrete analogue
of the compensated compactness technique originally introduced in Murat [21] and
Tartar [26] for functions of continuous arguments. Namely, we prove a version of
compensated compactness lemma, adapted to difference operators, and then apply
it systematically in our considerations in combination with the method of correctors
and variational techniques.

For the sake of completeness we also formulate some technical results from Kozlov
[15] and give another proof of the homogenization theorem for random difference op-
erators. An additional reason for this is the fact that we use a more general definition
of ellipticity than that in [15].

It should be noted that although some basic ideas here have been borrowed from
homogenization theory of differential equations, still the peculiarities of difference
operators such as the big dimension of difference gradient, the irreducibility and ellip-
ticity conditions in the case of boundary-value problems, and the asymptotic nature
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of difference schemes, create additional difficulties in studying these operators and
make the generalization of homogenization theory to difference operators nontrivial.

In the second part of the paper, we discretize high-contrast two-dimensional
checker-board structures, find the asymptotics of effective diffusion, and show that
different discretization methods lead to different asymptotics.

1.1. Difference elliptic operators. Let Q C R? be a smooth bounded domain
and let Q. = Q NeZ?, where Z? is the standard integer lattice in R and £ > 0. We
consider the discrete Dirichlet problem in Q.:

(1.1)
Acut () = Z 0%, (al, ()05 uf(x)) = f5(x) in Q., u(x) =0 on dQ.

z,2' €A

Here A is a fixed finite subset of Z? symmetric with respect to 0, the matrix A° =
{a%,.} is symmetric, 5‘@? is the boundary of ). defined by

QM 2 (Qe+eM)\ Q. ={z+ez|zeQ., 2 €AY\ Q.|

and 02 is the standard difference derivative: (95v)(x) 21 (v(z4+¢ez) —v(zx)) . For

any v° : Q. — R, we introduce the following norm (the L?(Q.)-norm): ”05”%2(625) 2

g4 > e, |v%(x)|?. We say that a function v® defined on £Z¢ belongs to the space
W3 2(Q.) if v(z) = 0 for & ¢ Q.. We define the norm on the space Wy*(Q.) as
follows: ||v5||?/V01,2(Q€) =Y o S 05,0 (2)[?, where {e;}i—1,.q is the stan-

dard basis in R? and Q. = Q- +eA =Q.U0QY; W~12(Q.) is the dual space to
Wy ?(Q).

In the summation in (1.1), we can consider only the elements from the set A\ {0},
as the contribution of the element {0} is null.

DEFINITION 1.1. We say that the family of problems (1.1) (or, simply, problem
(1.1)) is uniformly elliptic if there are c1, co > 0 and g9 > 0 such that, for any
vt € WOI’Q(QE) and any € < €,

(1.2) |z (2)] < e,
(1.3) CQHUE\@V&,Q(QE) <t Y D> ak(2)007(2)00% ().
xe@z,z’EA

REMARK 1.2. The uniform boundedness of the matriz A° implies the following
upper bound:

e Z Z as, (x)0,v° (x)0,v°(x) < C(A)”UE”?/V(}'Q(QE)‘

xe@ z,z' €A

Indeed, it suffices to represent z as a sum z = z' + 22 + -+ + 2N with |2°| = 1 for all
i=1...N. Then,

N
v (x) = Z@ikvs(x T Zk—l)

k=1
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and the required bound is the consequence of the finiteness of A.

In what follows we always assume the uniform ellipticity conditions (1.2)—(1.3) to
hold.

It should be noted that, in general, the uniform ellipticity condition (1.3) is rather
implicit. For instance, it neither requires the positiveness of the matrix {a<,, (z)} nor
follows from the estimate

(1.4) aléf < Y at(@)(€2)(62) Sl EERT e3> 0,

z,2' EA

where (-,-) is the scalar product in R%. One can easily see this by considering the
one-dimensional problem with

e B
. (x)—{1/2 if z=2 2| =2,

a. . = .
zz 0 otherwise.

Clearly, (1.3) is not satisfied although (1.4) holds.
In order to ensure the uniform ellipticity of problem (1.1) one should combine esti-
mates such as (1.4) with a proper irreducibility condition. Below we show that for two
important particular classes of difference operators commonly used in applications,
the ellipticity conditions can be easily verified.
Suppose we are given a family of functions pS(z), © € Q., z € A, possessing the
following properties:
L. positiveness: pS(z) >0, > ., pi(z) =1 for each x € Q.,
2. ph., () >6>0,i=1,...,d,
3. symmetry: p5(z) = p° (x +€2).

Then, the family of problems

(15) wui(x) = Zpi(x) uf(z+ez) +e? f5(x) inQ., u(z) =0 on Q"
ZEA

can be easily rewritten in the form (1.1) with

ey pie) ifz=2, 2 #£0,
(1.6) Oz (z) = { 0 otherwise.

PROPOSITION 1.3. Let {p5(z)} possess the abovementioned properties (1), (2),
and (3). Then problem (1.5) is uniformly elliptic.
Proof. Summing by parts, one can show after simple calculations that

d
B g0 = 6 32 D108

veqy i=1
< Z Z al, (2)0,v%(x)0,0° (x)
xeaz,z’EA
<C Y S0P < e o g
z€Q,. 2€EA
uniformly in €. This yields the desired result. |

Assumption (2) can be relaxed as follows:
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(2") For some N > 0 and § > 0 and for any a, 3:” € Qe, |2 —2" = ¢,
there is a finite sequence of vectors y y ,...,y € A, k < N, such that
' =a —1—523 1 ¥ and pg; (2 +eXI ) >
Another important class of unlformly elliptic operators is formed by matrices
{aS,/(x)} that satisfy the estimate

d
Z aiz/ (LU) NzMzr 2 € Z |77:|:67; 27 ne RlA‘ )
z,2' €A i=1
uniformly in € and z € Q. ; here we assume that all the vectors te;, i = 1,2,...,d,

are elements of A; if it is not the case, the right-hand side (RHS) of the latter formula
does not make sense.

Clearly, the uniform ellipticity implies the coerciveness of problem (1.1) and we
have the following statement.

PROPOSITION 1.4. Let problem (1.1) be uniformly elliptic and f¢ € L*(Q.). Then
there exists a unique solution u® € Wol’2 (Q:) and the estimate

el zo,y < ellflzon)

holds uniformly in €. Henceforth we usually suppose that f€(-) is a discretization of
a given function f € L?(Q).
We also define the norm on the space W12(Q.) by

0% [[fy12n) =7 D Z|a:|:e @)1 + 17172 e »

IEQ’LI

where we use the notation

B o(z) = { p(r) fr+ezeq.,

0 otherwise.

2. Tools for discrete operators analysis.

2.1. Compensated compactness lemma. One of the main tools in the ho-
mogenization of differential operators is the so-called compensated compactness lemma
(see Murat [21] and Tartar [26]), which gives a sufficient condition for passing to the
limit in the inner product of two weakly converging sequences of vector functions.
In this section, we prove the discrete version of this result that serves the case of
functions defined on a grid.

First of all, we introduce the discrete divergence as follows: for any vector function

e (L2(Q )™,

div ¢(z Z 0% .q.(x

zEN

It should be emphasized that the above divergence operator depends on the choice of
the set A.

LEMMA 2.1. Let ¢° and v° be sequences of vector functions from (LQ(QE))W
such that

q° —y q° weakly in L*(Q.) ,div5 qE Y 2 in W(Q.),
v° - v* weakly in L*(Q.) wi(x) = aiug(x) for some u® € WH2(Q.).

£—
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Then, the sequence (q° v°) converges x-weakly to ¢° v°:  ¢°v° L(; q° 0.
E—

Proof. According to Kozlov [15, Proposition 3|, the weak convergence of ¢°
L?(Q.) implies the following weak convergence in W~12(Q.):

divi¢® —>Zazqz ZZ quv

zEN z€EA

here the standard notation a% f(x) = z - V,f(x) for the derivative along arbitrary
vector z has been used. Thus, > ., 2 - V¢ = O, and we have

lim [|div (¢° — ") lw-12(q.) =0-

From now on, the notation like ¢° or v° is used both for the functions of continuous
argument and for their discretization (see Appendix A). Using the representation
¢ v° = (¢° —q°) v +¢°v° and taking into account the x-weak convergence of ¢° v° to
q° v°, one can assume, without loss of generality, that ¢° = 0. Also, under the proper
choice of additive constant, » .o u®(z) = 0. Then, by the Poincaré inequality, the

sequence ¢ is uniformly bounded in the W12-norm. For any ¢ € C5°(Q) we get

g4 Z ¢ (z) v° (x) ) =& Z Zqz ) Out () ()

TEQ: TEQ: zEA

=t ) > Ad(2) (0 (2) p(w) — g2 () u(2) Dp(x)} + 7(e)

TEQ: zEN

with lim._,g7(¢) = 0 (see Appendix B). Summing by parts in the latter expression
leads to

e Y ¢ (@) v (@) p(a)

TEQ-

=3 N {0 (@) i (@) () — g () wE (2) Dip() } + 7 (e)

TEQ: zEA
=t > (divigi () utp) —et > Y gi(w) ut(x) Op(x) + 7(e) -
TEQ. TEQ: zEA

Since ¢ is uniformly bounded in W12(Q.) and div} ¢° converges to 0 in the W—1:2-
norm, the first term in the RHS goes to 0 as ¢ — 0. The second term goes to
0 because ¢S 05 converges to 0 in L?(Q.) weakly. Finally, for any ¢ € C5°(Q),

lime 03 peq. 2oz E(@) vi(2) p(2) =0. O

2.2. H-convergence and homogenization. In this section, we give the defi-
nitions of the H-convergence and the homogenization of discrete operators and then
study the main properties of this convergence (see Spagnolo [27], Murat and Tartar
[22] for the relevant definitions in case of differential operators).

Consider a family of uniformly elliptic discrete Dirichlet problems,

(2.1) Ao = divy (Z as., a;m) =75, ut e WQ.),

z'eA

and denote by A®(x) the matrices of the coefficients {aS_, (z)}. Let A(z) = {a,»(x)}, x
€ @, be a |A| x |A| matrix.
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DEFINITION 2.2 (H-convergence). We say that the matriz A° H-converges to A
(A® io) A) if, for any sequence f¢ € W=12(Q.) such that f¢ — finWw=5%Q.),

we have

, 1,2
u® — u? weakly in Wy (Q:) ,
0 .
s¢ = g as, Osu’ — sV = g Ay auo weakly in L*(Q.),
=
zEA z€A

where u° is the solution of the limit Dirichlet problem,

Z —% (azz/(x) aazluo> =f, ue W(}’Q(Q).

z,2' €A

The homogenization is a particular case of H-convergence. Given a matrix-valued
function A'(z) = {al.,(7)}, 2, 2/ € A, € Z¢, we define the sequence A° as follows:
As(x) = Al(z/e), x € Q.. Suppose that the corresponding family of problems
(defined in (2.1)) is uniformly elliptic.

DEFINITION 2.3. The constant matriz A is the homogenized matrix for A°(z) =
{as_,(x)} if, for any sequence f& € W12(Q.) such that f¢ — fin W=L2(Q), the

solutions u® of the Dirichlet problems
mﬁ(i%a$f>—f”f“W%@x
z'eN
converge to the solution u® of the limit Dirichlet problem
0 0]
(22) - Z %GZZ’QUO = f7 uO € W()1’2(Q)7
z,2' €A

in the following sense:

u® — u? weakly in W, (Q),
e—
0 .
g as, 05u° - Z Gy guo weakly in L*(Q).
z'eA z€EA

REMARK 2.4. The dimension of the difference gradient of functions defined on
Q- is equal to |A| and does not coincide with the dimension of the standard gradient of
functions defined on Q. This is the reason we write the limit equation in the definitions
above in a nonstandard form. This allows us to define the convergence of streams. Of
course, one can easily transform the limiting equation to the standard form

d

> grele)gn = 3 grin@gr . @) = 3 eer@)Ee).

z
z,2' €A i,j=1 z,2' €A

One of the remarkable properties of H- and G-convergences of differential oper-
ators is the compactness of a family of uniformly elliptic operators; see, for example,
Murat and Tartar [22], Zhikov et al. [28]. We proceed by quoting the compactness
result for a family of uniformly elliptic difference operators.
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PROPOSITION 2.5 (see Kozlov [15, section 2]). Any uniformly elliptic sequence of
problems defined in (2.1) contains an H-convergent subsequence. The limit problem
inwvolves a second order uniformly elliptic operator in divergence form:

d

Au=—- Y % (azzf(:c)aaz,u) =-> % (aij(m) 81”) :

z,2' €A i,j=1

In the subsections below we prove a number of general results on H-convergence
and homogenization of difference operators that are not exhibited in the existing
literature.

2.2.1. Convergence of arbitrary solutions. One of the significant properties
of H-convergence is the fact that the H-limit operator depends only on the original
sequence of operators and does not depend on the type of boundary conditions and
on the domain. In a general form, this can be formulated as follows.

THEOREM 2.6 (convergence of arbitrary solutions). Let a sequence of uniformly
elliptic operators A, H-converge in a domain Q to the limit operator A, and suppose
that a sequence of functions w® € W12(Q.) satisfies the conditions

w® —— w®  weakly in W2(Q.),

e—0

(2.3) divyy (Z azy (92 + 3§/w5)> =/

z'eA

where g € (LQ(Q))W and f € W=12(Q) do not depend on €. Then, w® satisfies the
homogenized equation

0 9 o\|
- Z 82|:azz’ (gz’+az,w ):|—f7

z,2' €N

and the streams do converge in L*(Q.) weakly:

0
Z aiz’ (gz’ + 6?’[05) ?_‘)0_’ Z Qzz <gz’ + 8Z/U/O> .

z'eN z'eA
Proof. Under the conditions of the theorem, the streams are uniformly bounded in
L?(Q.) . Thus, taking a proper subsequence, we have D oen 0oy (g + 05 wT) —
E—

& weakly in L?(Q.) . Passing to the limit in (2.3), one can easily check that — >~ __, a%fz
= f. We have to prove the relation &, = 3", @220 (92 + zw?) . Let u® be an ar-
bitrary function from W, ?(Q). Denote by u® the solution of the Dirichlet problem,

. 0 0
lef\ (Z aiz/ 8§/UE> = Z @ <azz/ % u0> )
z'eN z,2' €N

and consider the following identity:

@4) (g o) Y a ot = Y 0 Y atu (g + ).

zEA z'eN zEA z'eA
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By the definition of H-convergence, we have
€ g , € 9 0 : 2
Z as, 05U - Z Gaal 55U weakly in L*(Q.) ,
z'eN z'eN

while the limiting relation

0
(o +00) —p X (34 goe®) weakly in £2(Q.)
zEA

zEA

is an evident consequence of the weak convergence of w®. Now, passing to the limit
on the left-hand side (LHS) of (2.4), with the help of Lemma 2.1 we obtain

S+ 0000 32 o O 5 3 (o ) B

zEA z'eA z'eA

The fact that g, does not depend on ¢ has also been used here.
Similarly, passing to the limit on the RHS of (2.4) gives

> 0> al (g + O5wT) —— 9 £ .

e—0 82
ZeA Z7EA U ZeA

Finally, considering the fact that u° is arbitrary function from W,"*(Q), we deduce

. 0
gz = Z Qzz (gz’ + 82,1110) . 0

z'eA

COROLLARY 2.7 (local property of H-convergence). If A, vli; A in a domain
E—
Q, then A, i{; A in any subdomain Q1 C Q.
E—

2.2.2. Convergence of energies. In this section, we address a family of Dirich-
let problems with nonhomogeneous boundary conditions:

(2.5) divg (Z as, a;m) = f, ut —u’ e Wy(Q.),

z'eN

where 1 € W12(R9) and f € W—12(Q) are fixed given functions.

We suppose that the family {A.} is uniformly elliptic and H-converges to the
limit operator A. Then, one can assume without loss of generality that the function
u? satisfies the equation Au® = f in the domain Q.

In order to show the uniform boundedness of {u¢} in W2(Q.), we replace u® by
u® — ug in (2.5), multiply the resulting equation by u® — ug, and then sum over Q..
After summation by parts we get

Yo D ab(@) O (ut () — uo(w)) 9% (u () — uo(2))

xe@z,z’GA 2€Q.

I
~—
o)

8
~—
—~

S
™

8
~—

I

IS

o

8
~—
SN—

=D Y ac (@)% (u (@) — uo(x)) Aruo(a).

we@ z,z' €N
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This implies the required boundedness.
By Theorem 2.6 (convergence of arbitrary solution), any weak limiting point of
the sequence {u°} coincides with u® in Q. Hence, the whole family {u®} converges to
Yin WH2(Q.) weakly.
PROPOSITION 2.8 (convergence of energies).  Let A, Lo) A and let u® be the
£—
solution of problem (2.5). Then the following limit relation holds true:

Y Y o o) o [P el @) @) de.

zEQ, 57 €A 2,2 €A
Proof. By (2.5) we have

3T S At (@) 5w — ) (@) 5 (uF — u0)(x)

g;eQ z,2' €N
= ¢4 Z Z aa 5( )8;(u5—u0)(g;)
zeQ z,z' €N
-t D @) %U‘)(w) 0% (uf —u®)(z) + 7(e)
T€Q, %7 EA
=t Y @ —u)@) = 30 Y at(a) %u‘)(x) 0% u ()
TeQ- zeQ. %% €A
+Edz Z Ay a_ ( )aaz (aj‘)+7(€)’
rEQ, 57 EA

here and afterwards 7(¢) stands for a generic function that vanishes as ¢ — 0. On the
other hand,

eSS A (@) O (uf — u0) (@) O (uF — u®)(x)

z€Q. %% €A
=t ST at (@) 0wt (0) 05 (a)

JEQ z,z'€A

—2e4 3" Y atl(w) %uo(x) A5 uf ()

weQy 2% EA
+e ) Y d(@) 2uo(a;) iu%c) +7(e).
— #z 0z 0z
2€Q. z,2' €N
After subtraction we find

A Y @O @ @)~ Y Y ahle) (@) 05 (o)

TEQ, %% e TEQ. %7 e

(2.6) — ¢ Z fx) (u® —u®)(z)+7(c) =0.

z€Q-

Passing to the limit in the last relation, and taking into account the weak convergence
of uf —u® to 0 in Wy*(Q.) and the weak convergence of the streams a<,, 8%,u®

zz!
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L?(Q.), we obtain

d Z Z 9% 8; 6( )86’u 0 / Z azz a_ 0( )8(2 O(l’)dﬂ? O

z€Q. %7 €A zzEA

In fact, the result on convergence of energies can be formulated in more “local”
form, as follows.
PROPOSITION 2.9. Under the assumptions of Theorem 2.6 one has

(2.7)
> @0 @) (@) + g0 (0) — o T s (@) -0 (@) (@) + ()
z,2' €N z,2' €A

Proof. In the expression

Y duut(@)as, (2)(0xwt (z) + g ().

z,2' €N

the streams a<_, (z)(0w®(x) + g.(x)) converge weakly in L?(Q.) ( by Theorem 2.6)

to the limit stream a,., (x)(az, wO(z) + g (x)), and the family 0,w®(z) converges

to %wo (z) weakly by the assumption of Theorem 2.6. Now, the desired statement
follows from Lemma 2.1. d
REMARK 2.10. In the case of elliptic differential equations, H-convergence of
operators implies weak L'-convergence of the corresponding energy functions. This
result relies on the Meyers estimates of the gradient of solutions; see Meyers [20].
For the difference operators the Meyers-type estimates have not been obtained, so
the weak L'-convergence of energies is an open question.

2.2.3. Neumann problem. The notion of the H-limit operator has been ex-
pressed in terms of the operators of the corresponding Dirichlet problems. But, as
was already mentioned in the previous section, we can also consider other boundary
value problems. In this section, the Neumann problem is investigated.

DEFINITION 2.11. Let f € (LQ(Q))W. We say that u® € WH2(Q,) is a solution
of the Neumann problem for the equation

div§ <Z as, a;m) =3 .f
z'eA z€N
if the relation
(2.8) S (@) e (@) Oeut(x) = Y D fi(x) 05 (x)
ze@z,z’EA z€Q, EISAN
holds true for any ¢ € W12(Q); here we use the notation

52@2{ 0o if v+ezeQ.,

0 otherwise.

Clearly, the functions u® are defined up to an additive constant. To fix the choice
of the constant, we assume that er@ us(z) =0.



64 ANDREY PIATNITSKI AND ELISABETH REMY

In order to study the Neumann problem, we should modify the definition of
uniform ellipticity and impose a slightly stronger condition because Definition 1.1
above does not ensure the coerciveness of problem (2.8).

DEFINITION 2.12. We say that the family of operators {A.} is N-elliptic in a
domain Q. if the inequality

(2.9) Z Z as, 1)0%p(x) > ¢ Z Z F%e 0( , ¢>0,

IEQ z,z' €A wEQ =1

holds for any ¢.

It should be noted that N-ellipticity implies the uniform ellipticity in the same
domain @) and that, under the condition of Proposition 1.3, the family of operators is
always N-elliptic.

Ezample. To clarify the difference between the uniform ellipticity and N-ellipticity
we provide below a simple one-dimensional example which shows that due to “bound-
ary effects,” a uniformly elliptic operator is not necessary N-elliptic.

Let @ be an open interval (0, 1), and suppose A = {0, £1,+2, +3}. If we set

1 .
p1(0) = 5, p=(0) = 0if 2 # +1;
1 1 )
p—l(l):§7 Po(l):§7 p.(1)=0if z# —1,0
ps(2) =3, p=(2) =0if 2 # 43,

and extend this function periodically with period 3, then for ¢ = 1/n with integer
n > 3 we have

1 2 n—1 — -2 -1 1 2 n—1 n+1 n+2
Qa_{va"'a }7 Qg_{750775"'a 71a ) }
nn n nn n n n

Consider the following test function:

(z) = 1 ifx:—%,—%,
=90 otherwise.

For this function the LHS of (2.9) is equal to zero while the RHS is strictly positive.
Thus (2.9) cannot hold. On the other hand, one can easily verify that this problem
is uniformly elliptic.

PROPOSITION 2.13.  Suppose that a family of N-elliptic operators {Ac.} H-
converges to the operator A in the domain Q. Then the solutions u® of problem
(2.8) converge, as € — 0, in WH2(Q.) to the solution of the limit Neumann problem.:

for any ¢ € WH2(Q),

L Z e g | = | (Zfz >dx.

z,2' €N zEA

Moreover, the streams also converge.
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Proof. Using the Poincaré inequality, we derive from the N-ellipticity the uniform
coerciveness of problem (2.8). Thus, the family u¢ is uniformly bounded in W2(Q.).
By Theorem 2.6, any limit point w® of the family u® satisfies the H-limit equation
and

0 .
E as, 05u® - E Ay @wo weakly in L?(Q.) .
z'eA z'eN

So, for any ¢ € W12(Q), passing to the limit in (2.8), we get

B o 0
L an@gew gt | ae= | (Zfz(w)azw(w‘)>dm-

z,2' EA zeEN

Moreover, [, w’(z)dz = 0. ]

2.2.4. T'-convergence. The results proved in this section exhibit the relation
between the H-convergence of operators and a special kind of convergence of corre-
sponding quadratic forms, so-called I'-convergence, that was introduced originally in
De Giorgi [8].

PROPOSITION 2.14. Let A. be a N-elliptic family of operators in a domain Q.
Then, A. E—HO> A in Q if and only if the following conditions are satisfied:

1. For any u° € WY2(Q) and for any sequence w® € WhH2(Q.) such that
w® — u® weakly in Wh%(Q.), the following inequality holds:

E—>

lign_}élfsd Z Z as, () Oiw (v) 0%, we (x)

z€Q. z,2' €N
E/Q Z Ay (T) %uo(x) %uo(x) dx .
z,2' €A

2. For any u® € WhH2(Q), there exists a sequence u® € W12(Q.) such that
uf — u® weakly in WH2(Q), u® —u° € W01’2(Q), and

e—

lim 4 Z Z as,/(z) Ocus (z) 05,us ()

e—0 —
2€Q. 2,2’ EN

_ /Q Y (@) %u%) %uo(w)dm.

Proof. Suppose that A, i0> A.
E—

1. Consider the Neumann problem (2.8), with f, = (ZZ,GA Gy %—fj) K where
z€

u® is the solution of the H-limit Neumann problem. The solution u® of
(2.8) provides the minimum in the following variational problem: E =
inf,ewr.2(q.) J*(v), where

Jw)y=et > N {aizl(x) dzv(x) O v(x) — 2a,. () Ov(x) ;,uo(x)] .

z
we@z,z/EA



66 ANDREY PIATNITSKI AND ELISABETH REMY

For any sequence {w®} such that w® — u® weakly in W2(Q.), we have

(2.10) JE(w®) > JE(uf).

Then, by Proposition (2.13), dSu® - aguo weakly in L?(Q.) and, there-
£— VA
fore,

e Y () Bt (@) D (o)

xe@z,z’GA
= 0
= @) 42 Y aew()Gw(z) 55
3ce@z,z’EA
€(,,E €, ,,E 0
>J W) 42 ) Y an(x) 0w (2) @u%)

r€Q, %7 EA

- Z Z azz/(x) 5§u6(x) iuo(x)

z€Q, z,2' €N

0z
+2 Z Z a.. (7) 0w () %uo(z)

7€Q. z,2' €A

u’ ()

Equation (2.8) has also been used here. Now, taking the infimum limit in
both sides of (2.10), we obtain the required inequality.
2. It is the statement of Proposition 2.8.
The remaining part of the proposition is an easy consequence of the uniqueness of the
H-limit. d
REMARK 2.15. The statements of Propositions 2.8 and 2.14 remain valid if we
replace the sums over x € Q. by the sums over x € Q..

2.3. Description of the random environment. In this section we introduce
random difference elliptic operators with statistically homogeneous rapidly oscillating
coeflicients.

Let (2, F, 1) be a standard probability space, where F is a o-algebra of subsets
of Q and p is a probability measure. Let {T, : Q — Q; x € Z?} be a group of
F-measurable transformations which preserve the measure u:

1. T, : Q+— Qis F-measurable for all z € Z%,

2. u(T,B) = u(B), for any B € F and z € Z4,

3. To=1,Ty0T, =Tyty.
In what follows we assume that the group T, is ergodic. That is, any f € L*(£2) such
that f(T,w) = f(w) p-a.s for each = € Z¢ is equal to a constant y-a.s.

Let A be a finite subset of Z?. Given a matrix-valued F-measurable function
{az (W)}, 2,2 € A, with values in the space of symmetric |A| x |A| matrices, we
define a family of difference operators A® with the coefficients
(2.11) as, (2) = azo (Ty)ew), w €L 2,2/ €A,

zz!
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We suppose here that £e; € A, i =1,...,d, and that

d
(2.12) Z Az (W)N:nr 2 CZ ‘nﬂ:ei|2a ne RIM .
z,z'EN i=1
(2.13) la. (W) < e, 2,2 €A

It is easy to see that these inequalities imply the N-ellipticity and the uniform ellip-
ticity of the corresponding family A. in any regular domain Q.
In applications, especially in those related to random walks, we usually deal with
the following particular case of the above construction.
Let {g(w, 2), z € Z?} be a family of random variables such that j-a.s,
1LY qlw,2)=1,
2€7Z4
2. Q(Tzwv Z) = Q(Tx+zwu _Z) )
3. q(w,2) >0, g(w,£e;) >8>0, i=1,...,d (ellipticity condition).
We introduce a family of transition probabilities as follows:

p:(z) = ¢(Tow, 2),

where the argument w, treated as a realization of the medium, is omitted. The
important characteristic of a family of transition probabilities is the structure of its
support:

A= {z € 74 ess supp.(z) # 0}.
Q

In all the models considered below, the set A is finite.
Now, if we denote pS(x) = p.(¢7'z), z € Q., z € A, then due to the assumptions
on ¢(w, ), problem (1.5) is uniformly and N-elliptic.
It is convenient to define the “w-divergence” operator:
for any random variable v € L(Q),  div, v(w) 2 Z v(T_,w) — v(w).
zEN
We will use it in the following analysis.

2.4. Homogenization of random operators. This section is devoted to ho-
mogenization of the random difference operators introduced in the preceding section.
The first proof of the homogenization theorem for such operators was obtained in [15],
where the “corrector technique” was used. Here we give another proof of the theorem,
which relies on the compensated compactness lemma.

2.4.1. Auxiliary problem. Let us define the following subspaces of (LQ(Q)) Al

(see Kozlov [15]):
L2,,(Q, A) is the closure of the set
{ve (L*Q)M; v, (v) = w(T.w) — u(w) for some u € L>®(Q)},
L2 (€2, A) is the closure of the set: {v € (L2(Q); divy, v = 0} .

For A € RIAl we denote by V2,04(Q, A) the closed set {fv+X;velZ, (9 AN} .
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Consider the following auxiliary problem: given A € RIM| find v € Vz%ot, L (2, A)
such that

(2.14) div,, (Z Uy (W) Uy (w)) =0.

In order to prove the existence and uniqueness of the solution of this problem we
introduce the operator

Apot + Lo (2, A) = L2,(Q, A)
(v2)zen = ot (Z Ay (W) Uy (w)) )
z'eA

where II,,; is the orthogonal projection onto the subspace Lfmt(Q, A).
In view of the Weyl decomposition (see Kozlov [15]) (L?(Q2)) Al _ L2,(LA) &
[A]

L?,,(Q,A), we can rewrite the problem (2.14) in the following form: given A € R
find v € L2,,(2) such that

pot
Aporv = I, <Z a0 (W) )\Z/> .

z'eA

The operator Apg; is coercive. Indeed, for any v € Lf,ot(Q, A), we have

(Aporv,v) = Z (Hpot (Z Ay (W) Uy (w)) , vz(w)>
L2(9)

ZEA z'eN

= Z (Z Az (w) ”UZ/(W), Hpot (’Uz(w))>
L2(Q)

ze€AN \z’€A

-y (Z s () ), W)) -
L2()

z€AN \z’€A

According to hypothesis (2.12), this implies (Apotv,v) > ¢ E [Y; [vte,|?], where
E stands for the expectation with respect to the measure p. On the other hand, for
any v of the form v, (w) = u(T,w) — u(w), u € L*(Q2), we have

Ntz yini = B | D lo-@)P| = E | [u(Tow) - U(‘“)P]
LzeA zEA
[ N(z)—1 2
=F Z Z u(Te,,w) —u(Tgw)| |,
zeA| i=0

where (o =0, (n(z) = 2, [Gi41 — G| = 1, and N(z) < ddiam(A). Therefore,

d
Z(’Uiei (w)>21 .

i=1

d
0l eqgyyins < E | didiam(A))21A] (e, <w>>2] <ci(dA)E
i=1

By definition, the said set of v(w) is dense in L2 (€2, A), and by the continuity argu-
ments, the latter estimate holds for any v € L2,,(Q,A).
Thus, (Apotv, v) > ca(d, A) ||v||?L2(Q))W , and the desired existence and uniqueness

follow from the Lax—Milgram lemma.
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2.4.2. Homogenization. In this section, we study the family of random oper-
ators {A.} with statistically homogeneous coefficients given by (2.11). The homog-
enization theorem for such operators was originally proved in [15]. We give another
proof based on the compensated compactness lemma, which seems to be easier and
shorter. The main result here is the following theorem.

THEOREM 2.16. Let the coefficients of A. be given by (2.11), and suppose the
condition (2.12) is fulfilled. Then, a.s., the family {Ac} admits homogenization and
the limit matriz A° does not depend on w.

Proof. For a fixed f € W~1%(Q), consider the following Dirichlet problems:

(2.15) div (Z a;,a;uf> =f, uweW,(Q.).

z'eA

Since u® and )\ a3, 05,u° are uniformly bounded, respectively, in Wh2(Q.) and

(L2(Q2)), we have

u® —— 1’ weakly in W&’Z(Qa) )

e—0

s* —— % weakly in (LZ(QE))‘AI ,

e—0

g

where s stands for ), ., a5, 05,u®.

Let v, (w) solve the auxiliary problem (2.14). If we denote v° (z) 2o (Tyj-w) 5 2

vRA% de, V2 €A, ¢S =, ) V5 al,,, then, the identity

zz/’

(2.16) DN si@)vi@) = >0 D gi(x) dsu(

TEQ: zEA TEQ: zEA

obviously holds. We introduce a constant matrix 4 to satisfy the relation E(¢%) =
A A°. This matrix is well defined because ¢° is a linear functional of A\. By the Birkhoff
ergodic theorem, we have
v© — E(v®) =\ weakly in L*(Q.) a.s.,
£—
q° - E(¢°) =AA weakly in L*(Q.) as.
E—
It follows from (2.14) and the definition of div,, and div§ that for almost all realizations
we have divyg® = 0, while the fact that v — A € L2,,(Q, A) implies a.s. the relation
ve = 056° for some (in general not statistically homogeneous) functions 6. Also,
from (2.15) we have div}s® = f. By Lemma 2.1,

e, € * 0
E sSv, —— E 5, Az
e—0
zEA zEA

and

0
€ 95us * § : A 0 0
U — a,.,. —U
Zqz z £e—0 z Pzz 62,/ )

EISVN z,z' €N
or, equivalently,
0
E ve a,, Out —— A, al u®;
e—0 (9 !

z,z'EN z,z'EN
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[ permeability 5

[ permeabiiity 1

Fic. 3.1. Example of a realization of the random medium.

we have also used here Proposition 3 from [15]. Hence, passing to the limit in (2.16)
and bearing in mind the fact that X\ is an arbitrary vector, we find

0
0 _ 0 0
s, = g Aoz U

z'eN

Since Y., 259 = f, the function u® is the solution of the homogenized problem
and A is the limit matrix. 0

3. Asymptotic behavior of the effective coefficient. In this second part
of the work, we consider the difference operators obtained by discretizing a random
two-dimensional high-contrast checker-board structure, as various discretization pro-
cedures are applied. For each discretization method, we find the asymptotics of the
effective coefficient. The results obtained in this section rely essentially on the fine
results from the percolation theory, such as channel property and related statements.
For the reader’s convenience, we formulate these results and provide necessary defini-
tions in section 3.1.

To define the random media, we split the plane R? into regular squares {[—1, 2]>+
J}, j € Z2, and assign a value of permeability, independently at each square, as follows:

( )é 6 with probability p
PYI=1 1 with probability 1—p

111?
) ye|:_2a2:| +j,]€Z27

where ¢ is a small strictly positive parameter (see Figure 3.1). Then, we consider the
grid Z2, fix a finite set A C Z2, and define the transition probabilities {p.(z); z €
Z2, z € A} to be a function of {s(x + 2)}, 2z € A. Finally, we define the coefficients
of operator A, in terms of {p,(x)} by (1.6).

Henceforth, we suppose that the properties (1), (2), and (3) in section 1.1 are
satisfied. It then follows from the independence of k(j) for different j € Z? that the
family {p.(z)} is ergodic. Now, the following assertion is a direct consequence of
Theorem 2.16 (see also Kozlov [15, section 2]).

ProPOSITION 3.1.

1. The operators A. G-converge as € — 0 to an elliptic operator
with constant nonrandom coefficients A = {a..'}. .ren\(0,0)-

2. The limit matriz is isotropic: A = a®(p)I (I is the identity
matriz).

We call a®(p) the effective coefficient and study its asymptotics as § — 0 for
various p € [0,1].

3.1. Some results from percolation theory. In this section, we quote and
discuss briefly several results from percolation theory. We consider the so-called site
percolation model (see Grimmett [10]) and, following the tradition, say black and
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n|
X
X x| x| x
x| ®|x X|x|®]|x]|x
X x| x| x
X
0 n
n
0 n

FIG. 3.2. The neighbor squares and black channels in the cases v = 1 (left) and v = /2 (right).

white squares instead of “6” and “1” squares, respectively. All the squares are enu-
merated by the coordinates of their centers and the distance dist(i, j) between squares
i and j, (4,7 € Z?), is defined as the Euclidean distance |i — j|.

DEFINITION 3.2.

e Two black squares i and j are ~y-connected if dist(i,j) < 7. As soon as the
value of v is fized, we just refer to connected squares or neighbor squares.

e (Consider the random subgraph containing only the black squares. The con-
nected components of this graph are called black clusters.

o A finite set of black squares forms a black channel if the squares can be enu-
merated in such a way that any two successive squares in this enumeration
are y-connected (see Figure 3.2 for examples).

Similarly, we define y-connected white squares, white clusters and white channels.
When the probability p varies, the geometric properties of the black clusters are
modified. The more p increases, the bigger are the sizes of the clusters, and they
eventually form the unique infinite cluster (see, for example, Grimmett [10]). Below,
some basic constructions of percolation theory are presented.

The probability space is introduced as follows. As sample space, we take K =
M cz2{6, 1}. Each point of K: r = (k(s);s € Z?) is called a configuration. We take
G to be the o-field of subsets of K generated by the finite dimensional cylinders.
And, for each p € [0,1], we define the probability measure P, as the product measure
on (K,G) such that the random variables x(s),s € Z? are independent and satisfy
Py(k(z) = 6) =p.

In what follows we identify the probability space (K, G, P,) with the general prob-
ability space (2, F, P) defined above.

Let |C| be the cardinal of the cluster which contains the origin. The cluster-
size distribution is given by 6,(p) = P,(|C| = n), n € N*. The probability 0(p) =
P,(]C| = +00) that the origin belongs to the infinite cluster is called the percola-
tion probability. There exists a critical probability p.(7y), also called the percolation
threshold, such that

{9(17):0 if p<pelv),
0(p) >0 if p>pe(7).
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TABLE 3.1
Ewvolution of the number of infinite cluster with respect to p.

l pJ O pe(2) pc(V2) pc(1) 1—pe(2) 1
y=1 White No infinite cluster Black
v=2 White Black and White Black
v =2 || White [ Black and White [ Black

Thus, for each fixed v, the critical probability is p.(y) 2 sup{p : 6(p) = 0}.

Figure 3.2 shows the sets of neighbor squares, with respect to the marked square,
in the cases v = 1 and v = /2, and it emphasizes the difference between the structures
of channels.

In Table 3.1, we can see, for three different values of -, the presence of white
and black clusters with respect to the values of p. The following relation holds:
pe(1) + pe(v/2) = 1, while p.(1) ~ 0.59 and p.(v/2) ~ 0.41 (see Kesten [12]).

Moreover, according to Aizenman and Grimmett [1], p.(2) < p.(v/2) .

3.1.1. The channel property. Denote by N(n) the number of mutually non-
intersecting black channels joining the left and the right sides of the box [0, n]2.

PROPOSITION 3.3 (see Kesten [12, section 11]). Let v = 1 or v = /2. If
p > pe(7), then for almost all k € K the inequality

N(n) >c(p)n, c(p) >0,

holds for any n > ng(k)

REMARK 3.4. In fact, this result holds true for any value of v (see Golden and
Kozlov [9]).

REMARK 3.5. For all v > /2, the percolation models admit the coexistence of
the channels of both colors (see Figure 3.2). The geometry of the white and black
subgraphs is rather different in subcritical and supercritical zones. In this connection,
it is interesting to study carefully what happens near p.(7).

PROPOSITION 3.6 (see Kesten [12, section 11]). There exist some strictly positive
constants c1, ¢z, 3, 61, 63 such that, for p > p.(7),

Py (N(n) > c1(p—pe(7))n) > 1—ca (n+1) e pmpeO)™
By the Borel-Cantelli lemma, we have

(3.1) c(p) = c1 (p—pe(7) .

REMARK 3.7. One can easily check that all the channels can be chosen to be no
longer than (p)n .

3.2. Behavior of the effective coefficient. In this section, for the checker-
board model introduced above, we consider several discrete models characterized by
e the set of admissible jumps, i.e., the set A;
e the corresponding transition probabilities {p, }.cx -
In all these models, the distribution of {p.}.ca will be invariant with respect to
rotations at the angle 7/2. This symmetry implies the isotropy of the effective tensor,
and thus there is only one scalar effective coefficient a®(p) to be determined.
For each model, we study the limit behavior of the effective coefficient as § — 0.



HOMOGENIZATION OF ELLIPTIC DIFFERENCE OPERATORS 73

3.2.1. Harmonic mean. We begin by considering the “harmonic mean” model.
Namely, we assume that

A ={%£(1,0), £(0,1), (0,0)}

and define the transition probabilities as the harmonic mean of the values of x(-) at
the corresponding points:

1 2k(z) k(z + 2) g
il_(m(gc)+/<;(gg+z)) fzeA\{(0,0)},
0

p=(r) = ZZGA\{(()’O)}]?Z(@ if z=(0,0),

if 2 AL

Clearly, the family {p.(x)} satisfies the conditions (1), (2), and (3) in section 1.1, and
moreover, its distribution is isotropic.

REMARK 3.8. The choice of the harmonic mean is natural in the framework of
the finite volume approach. Indeed, with this choice for the coefficients, we conserve
the fluxes. This conservation is violated under another choices (see explanations in
McCarthy [19]).

The asymptotic behavior of the effective coefficient a’®(p) as § — 0 is described
by the following statement.

THEOREM 3.9. The effective coefficient a®(p) satisfies, for small §, the following
inequalities:

0<eip) <a(p) <1 if 0<p<p(v2),
§<a’(p) < ca(p)é, c2(p) >0 if pe(vV2) <p<l
This means, in particular, that a®(p) does not vanish as § — 0 if p < p.(v/2).
Proof.
1. Case 0 <p< pc(\/i).
Consider the percolation model with v = 1. By Proposition 3.3, for 0 < p <
1 — pc(1) there are at least N(n) = c¢(p) n mutually nonintersecting white
channels joining the left and the right sides of the square [0,n]2. We denote
by Cj the kth channel, 1 <k < N(n).

Define on the space (L*(€)) M the following seminorm:

(3.2) lo|? = E {szw) <¢Z<w>>2},

zENA

where F is the expectation related to the measure p. In fact, under the
assumptions of the theorem, it is a norm, but we will not use this fact.

Let Pi(z) = z1 be the projection onto the first coordinate of vector z. Ac-
cording to Kozlov ([14, Chapter II, section 2], the effective coefficient a’(p)
can be calculated as follows:

3.3 ®(p)= inf Pi(2) — ¢|?,
(3.3) a’(p) @engﬁlA)H 1(2) — ol

where the subspace L2,(€2, A) has been defined in section 2.4.1 of this paper.

Denote by H the linear set H = {¢,(w) = ¢(Tow) — ¢(w); ¢ € L>(Q)} . This
set H is dense in L2, (€2, A) (see section 2.4.1) and the functional ¢ — ||z; —¢||

pot
is continuous in L2 ,,(€2, A). Therefore, the infimum over L2 (€, A) in (3.3)

pot
can be replaced by the infimum over H.
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Let ¢ belong to H: there exists ¢ € L () such that ¢, (w) = ¢(T, w)—p(w).
Then,

1P1(2) = ol* = E {sz(w)(21 — ($(Tow) - &(W)))Z} :

zEN

Since T}, is ergodic, by the Birkhoff theorem we have for almost all realizations

. 1 - - 2
[1Pi(2) — ¢l = Jm o S pThw) <Z1 = ¢(Tpyzw) + (T, w))
z€Z2N[0,n]? z€EA

(3.4) = lim i? S pala) (z1 = H(Toyzw) + ST w)>2 :

n—-+oo
T€Z2N[0,n]? z€A

Our goal now is to construct a uniformly positive lower bound for a®(p). To
this end, on the RHS of the last formula, we first take into account only the
points x located inside the channels:

|P1(2) — ¢|* > hmlnf— Z Z p.(x ( — )(Tpyw) + O(T, w))2 ,

zeC z€A

where C' stands for the union of white channels. Then, we enumerate the
points = along each channel in such a way that any consecutive numbers
correspond to neighbor points, and we replace the inner sum over z € A(x)
by the sum over z such that z + z belong to the same channel as x and have
greater index than z. Denote this latter set of z by A(z), and notice that for
each z from the union of white channels A(z) is not empty and consists of
only one element. For z € A(x), we clearly have p,(z) = 1/4. Hence,

”Pl <»0||2 > hmlnf* Z Z (Zl z+z ) + (E)(Tx w))Q ’

z€C zeX(z)

If we denote S(x ) =2 e (31 — €(Toy2w) + (T w)) , and enumerate the
channels C = Uk 1)Ck , then, for the kth channel, we have

Z S Z Z 21 — £+Zw) +¢( ))

z€C z€Ck z€N ()

—n+z Z m+zw +¢( ))

z€CK zeX(x)
_n+¢( g(Cvk )_(Z;(Tmf(ck)w)zn_c,

where ¢ =2 ||Q£HLOO(Q) , and z,(Cy) and ¢ (Cy) are, respectively, the starting
and final points of kth channel. Summing up over the channels, we obtain

(3.5) Z S(x) > (n—c)N(n).
zeC
By the Cauchy inequality, taking into account Remark 3.7, we get

S (s zxec S()”

et O(p)n N(n)
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In view of (3.5) this implies

2o (n=0)° N(n)”
(3.6) 2 5@ 2 TN

and

6D RGP 2t ot -z e > 0.

Hence: a®(p) > ¢; > 0. The upper bound a®(p) < 1 is obvious and, finally,
0<c §a‘s(p) <1.

. Case p.(vV2) <p<1.

Consider the percolation model with v = v/2. There are at least ¢(p) n non-
intersecting black channels Cy, k = 1,2,..., N(n), joining the left and the
right sides of the square [0,n]? (see Proposition 3.3).

Let us denote ¢ = 1/n and define functions w® on €Z? N [0, 1]* as follows:

e we(-,0)=0, w(-,1) =1 (boundary conditions),

o we(x) = (k]\?&/ﬁ) for x € eCy; ,

o w(x) = ﬁ for = from the set bounded by C}, and eChy .

Here, we suppose without loss of generality that the channels do not intersect
the bottom and top faces of the square. The above function w® has been
designed to possess the following properties :

e In the area situated between any two consecutive channels C and C41,
this function is equal to a constant, the constants are different in distinct
areas.

e At each channel Cj, the function w® makes a jump. The values of jumps
are uniformly distributed on the channels so that the total increment of
w®, as xy varies from 0 to 1, is equal to one.

By the definition and according to Proposition 3.3, the sequence w® is uni-
formly bounded in W12(Q.) and uniformly Lipschitz continuous; moreover,
the Lipschitz constant is less than or equal to ¢~!(p). Thus, for a proper
subsequence, we have

we — uo weakly in W2(Qy.),
E—

sup [0° — o] —— 0,
T€EQ =0

where uy € WH2(Q), uo(+,0) =0, uo(-,1) = 1, and
uo(2!) —uo(2®)] < H(p)lat —2?|, o', 2 €[0,1]%.
Consider the expression

(3.8)
T =¢e> " > al.(2) 0w (2) Ew(z) =€ Y Y pi(x) (0wl (x))” .

TEQ: 2,2’ EA TEQ: zEA

It follows from the definitions of w® and p<(z) that
(3.9 JE(w®) < c%(p)§.
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FIG. 3.3. Illustration of Theorem 3.10. The behavior of a’(p).

Moreover, by Proposition 2.14, lim inf. ¢ J¢(w®) > a®(p) f[o 12 |Vug(z)|*dz >
a®(p) . Combining the last two estimates, we get the desired inequality a®(p) <
¢ 2(p) 6. The lower bound a®(p) > 6 is evident. |

The next result describes the behavior of the effective coefficient a®(p) for p from
a neighborhood of the critical point p.(v/2).

THEOREM 3.10. In the vicinity of p.(v/2), the following inequalities hold:
e (pe(v2) =p)2 < a’(p) if P <pe(V2),
s 2 .
a’(p) € ———=——08 if p(V2) <p,
(p = pe(v2))2

where c1, ¢, a1, and ag are strictly positive constants.
Figure 3.3 illustrates this result.

Proof. 1t is sufficient to substitute the estimate (3.1) in (3.7) and (3.9). The
required estimates are now straightforward. a

3.2.2. Comparison with the behavior in continuous media. The asymp-
totic behavior of the effective coefficient described in the previous section (section
3.2.1) differs essentially from that obtained for the case of differential equations (see
Jikov, Kozlov, and Oleinik [11, Chapter 9]). One of the reasons for this disagreement

is the fact that we ignore the streams through the neighborhoods of vertices of the
checker-board structure.

Here we modify the model of the previous section by involving the streams along
the “diagonal directions,” so that the asymptotic behavior of the effective coefficient
as 6 — 0 in this new model is similar to that obtained for the corresponding differential
operator.

Let us begin by describing the scheme of discretization. We set

A ={(0,0), +er, e, £(e1 + €2), £(e1 —€2)},  e1 = (1,0), ez = (0, 1),

(so, at each step, a trajectory of the corresponding random walk can choose one of
the eight nearest points of Z? or keep the same position).

In order to assign the values for p, (), |2| = v/2, we consider auxiliary periodic
checker-board structure with a cell of periodicity shown in Figure 3.4. The effective
coefficient of this medium is equal to v/ (see Jikov, Kozlov, and Oleinik [11, section
7.2]). This gives us an idea that, for the combination of squares shown in Figure 3.4,
the coefficient p. (x) with z = (e; + e3), should be of order /6.
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K=1
%%— X+Z
/

/
/
/
X
K=l/l\
| X
Fia. 3.4.

Inspired by these heuristic arguments, we define the transition probabilities by

fmin Qia?ﬁ:&”izi, IR ) it < v
1 2k(z) k(z + 2) .

p=(2) 8 k() + k(x + 2) if |2l ’
1- ZzEA,z;ﬁ(0,0) p=(z) if z=(0,0),
p=(z) =0 if z¢ A.

The following theorem describes the asymptotic behavior of the effective coeffi-
cient a®(p).

THEOREM 3.11. The effective coefficient a®(p) satisfies, for small §, the estimates

0<ci(p) <ab(p) <1 if 0<p<p(v2),
ca(p) V8 < a(p) < es(p) Vo if pe(V2) <p<1—pe(v2),
§ <a®(p) <calp)d if 1-p(V2) <p<1,

where c1(p), ca(p), c3(p), and ca(p) are strictly positive.
Thus, the effective coefficient is uniformly positive when p < p.(v/2), is of order
V6 when p is between p.(v/2) and 1 — p.(v/2), and is of order § when p > 1 — p.(v/2).

Proof. The cases 0 < p < p.(v/2) and 1 — p.(v/2) < p < 1 can be studied exactly
in the same way as in Theorem 3.9. O

Now, we proceed with the case p.(v/2) < p < 1 — p.(v/2).

Consider the percolation model with v = v/2. Again, for sufficiently large n, there
are at least ¢(p) n mutually nonintersecting black v/2-channels and white v/2-channels
joining the left and the right sides of the square [0,n]? (see Figure 3.5).

Lower bound. We consider the infinite white cluster. In order to obtain the lower
bound for a®(p), we follow part (1) of the proof of Theorem 3.9. We point out that,
along each white channel, if both x and z + z belong to the channel and |z| < \/5,
then p.(z) > V/6/8. Indeed, in this case k(z) = k(x + z) = 1 and, by the definition,

p-(z) takes on one of the following values: % , %\ / 1%5 , %\/5
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—

FIG. 3.5. Intersection between a black and a white channel; p €] pc(vV2), 1 — pe(V2)].

From (3.4), (3.6) and the above estimate of p,(x), we get

. 1 - - 2
”Pl (Z) - 90”2 = nEIEoo ﬁ Z Z pz(Tm w) (Zl - ¢(Tm+z w) + ¢(Tm w))
T €Z2N[0,n]? z€A(x)

v ; o))

Y 3 (o )
z€CY zeA(x)

> fim Y2 @)

n—-+0oo 8n2 e(p)

(n—c)?>eVs,

where symbol C'* stands for the union of white channels. By virtue of (3.3), the last
inequality implies the required lower bound.
Upper bound. We consider the infinite black cluster and the N(n) = ¢(p) n black
channels CP, k =1,2,..., N(n) in the square [0, n].
The upper bound a®(p) < c3(p)v/é can be established with the help of the
following auxiliary functions:
o w(-,0) =0, we(,1)=1;
o we(z) = (k']\?(lrff) for z € eC?;

o wi(x) = ﬁ for 2 from the set bounded by eCP and €C£+1 ,

where ¢ = 1/n. Direct calculations show that J(w®) < ¢~2(p)V/¢; indeed, by the
definition of {p.(z)}, we have p.(x) < 6/8 if = belongs to a black channel, and

p.(z) < g if x and x + z are situated at the opposite banks of a black channel. If
we denote by ug an accumulating point of w®, then we have by Proposition 2.14

o) VB 2 i S (0F) 2 0 p) [ [Fuoa)f do > 0’ (o).
e [0,1]2

Comparing these results with Jikov, Kozlov, and Oleinik [11, Chapter 9, Theorem
9.5] shows that the discrete operators considered in this section adopt the asymptotic
properties of the corresponding differential operators.

3.2.3. Geometric mean. We modify here the scheme of discretization of section
3.2.1 by taking the geometric mean in the definition of transition probabilities instead
of the harmonic mean:

% F@) R T 2) it 2 € A\ {(0,0)},
P(T) =9 1= 3 o0y =) if 2= (0,0),
0 2 A,
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FiG. 3.6. v = 2. _The neighbor squares (left), a black channel Cy (center), and one of its
possible modifications Cy, (right).

the set A being the same as in section 3.2.1 (i.e., with displacements toward the four
nearest neighbors). Then, the asymptotic behavior of the effective coefficient a®(p) is
described by the following statement.

THEOREM 3.12. The effective coefficient a®(p) satisfies, for small &, the esti-
mates:

0<eci(p) <al(p) <1 if 0<p<p(V2),

ca(p)Vé < al(p) <es(p) Vo if pe(v2) <p <1-pe(2),

§ < a®(p) < ca(p)d if 1-pe(2) <p<1,
where c1(p), ca(p), c3(p), and cs(p) are strictly positive.

Proof.

1. In the case 0 < p < p.(v/2), we need to justify only the lower bound. It can
be done exactly in the same way as in Theorem 3.9. Another way to obtain
the lower bound is to notice that for |z| # 0 the coefficients p,(x) under
consideration majorate the respective coefficients defined as the harmonic
mean. By virtue of the convergence of energy result and Theorem 3.9 this
implies the desired lower bound.

2. In order to obtain the upper bound for p.(v/2) < p < 1 —p.(2) one can apply
the technique developed in the part (2) of the proof of Theorem 3.9.

To justify the lower bound in the case p.(v2) < p < 1 — p.(2), we consider
the percolation model with v = 2 (see Remark 3.4). Here we encounter an
additional difficulty: for p €]1 — p.(v/2),1 — p.(2)[ the white 2-channels are
not connected in a usual sense.

We proceed as follows. For each channel Cy we introduce its 1-neighborhood:

C;:{erQ |z —j| <1 for some j € Cy}.

It is easily seen that C’,j contains a sequence of squares {x;} denoted by
C, which joins the left and the right sides of the square [0,n]? and has the
following properties:

e |z;11 —x;| =1 for any consecutive z; and z;11;

e p.(z) > +/6/4 for any z and z such that z, z + 2z € Cy and |2| =1
(see Figure 3.6) These sets Cj, are connected in a usual sense and consist
in general of both white and black squares. Clearly, the number N (n) of
mutually nonintersecting sets Cj, still satisfies the estimate N(n) > &(p)n,
¢é(p) > 0, for sufficiently large n. Then, one can use Cy instead of Cj, and
argue like in part (1) of the proof of Theorem 3.9.

3. The upper bound in the case 1 — p.(2) < p < 1 requires slightly different

arguments than above. Consider the percolation model with v = 2, and for
each white cluster C denote by C* the 1-neighborhood of C:

Ct={x€Z®: |r—j| <1 forsome j € C}.
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Let C*(0) be the set C* containing 0, and denote by W (0) the size of CT(0).
If 0 does not belong to the 1-neighborhood of the union of white clusters,
then C*(0) is empty and W(0) = 0.

We introduce the following sequence of random variables ¢V (w) € L*(Q):

N { —jer(rcl}rr(lo)jl if1<W(0) <N

0 otherwise,

and put ¢ (w) = PN (T,w) — N (w), 2 € A. Tt is clear that |pY (w)| < 2N.
According to Kesten [12, Theorem 5.1], the estimate

(3.10) Pp{W(0) > n} < c exp(—c(p)n), c(p) >0,
holds for all p > 1 — p.(2). Therefore, by the definition of ¢, we have
(3.11) Pp{goiv >n} <cexp(—ci(p)n), ca(p) >0, n=12,...,2N.
The random variables ¢ and p, possess the following properties:

e if both 0 and 2 belong to CT(0) and W (0) < N, then P;(2) — ¢ =0;

e if at least one of them does not belong to C*(0), then p, = §/4.
In combination with (3.10) and (3.11), this implies

a*(p) < |Pu(z) =Y = EY ez — o)

zEA
2N
<8k exp(—ci(p)k) + ¢ exp(—c(p)N)
k=1

< 6+ cexp(—c(p)N),

where ¢ does not depend on N. Passing to the limit as N — oo gives a®(p) <
cé. O

3.2.4. Arithmetic mean. This section deals with another modification of the
scheme of section 3.2.1. Namely, the transition probabilities are defined as the corre-
sponding arithmetic means

1

Z—“(x)+§<x+z) if € A\ {(0,0)},
I*ZzeA\{(o,o)}pz(x) if z=1(0,0),

0 it2 g A,

px(z) =

while the set A remains the same as in section 3.2.1.
THEOREM 3.13. The effective coefficient a®(p) satisfies, for small §, the estimates
0<eci(p) <a®(p) <1 if 0<p<1—p(2),
§<a’(p)<eap)d  if 1-p(2)<p<1,
where ¢1(p) and co(p) are strictly positive.

Proof. The first estimate relies on the channel property of the percolation model
corresponding to v = 2. As in the preceding theorem, we enlarge the white 2-channels
to make them connected, and note that along each modified channel the transition
probabilities are uniformly positive: p,(z) > (1+6)/8if z € A and = and x + z belong
to a modified channel. As above, this implies the lower bound a®(p) > ¢;(p) > 0.
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The proof of the second estimate is exactly the same as that of the last estimate
in the preceding theorem. 0

REMARK 3.14. The statements of Theorems 3.9-3.11 remain unchanged if we
assume that the size of mesh h(g) of a grid is less than e while h(e)/e is a constant.

Appendices.

Appendix A. Convergence of discrete functions. Let f° be an arbitrary
function defined in the discrete domain Q. = €Z? N Q, and let f° be the piecewise-
constant interpolation of f¢:

d
. —€ €
ff@)=f(y) ifyeQcandzey+ {2,2]
DEFINITION A.1. We say that a family of functions f¢ € L*(Q.) converges
strongly (resp., weakly) to the function f € L?(Q) as € — 0 if f¢ converges strongly
(resp., weakly) to f in L*(Q). For this convergence we use the notation

fe — f in L*(Q.) (resp., weakly in L*(Q.)).

Similarly, one can define the W12(Q)-convergence of discrete functions with f<
being the piecewise linear interpolation of f¢ (instead of the piecewise constant one).

The convergence in W~12(Q) can be defined in terms of duality. Namely, we say
that f¢ € W=12(Q.) converges to f € W~12(Q) strongly (resp., weakly) if for any
sequence g° € WO’Q(QE) and g € I/Vol’2 (Q) such that ¢¢ — g weakly (resp., strongly)
in W12(Q), we have

<f57 gs>~°_)<fag>

e—0

DEFINITION A.2. Let w® € L*(Q.) and w® € L*(Q). The sequence w® converges
x-weakly to w® if for any ¢ € C5°(Q),

lim ¢ Z w® () p(x) z/ w(x) () dr .

e—0
T€EQ-. Q

Appendix B. The derivative of a product of discrete functions.
PROPOSITION B.1. Let f and g belong to W*?(Q.). Then,

> |05 (fg) — f05g — goifl <2 > |05 f]0zg]

z2€Qe 2€Q¢
Proof. We have

e0Z(f(x) g(x))

flx+ez)glz+ez) - f(x)g(z)
9(x) (f(z+e2) = f(2) + flx+e2) (9(z +€2) — g(x))
elg(x) O f(2) + flx +e2) 0Zg(x)] -

We have f(x +¢ez) = f(x) + 05 f(z). Therefore,

OZ(f(x) 9(x)) = g(x) O, f (x) + f(x) OZg(x) + €0 f(2)0g(x),
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and the desired estimate immediately follows. |

Appendix C. The Friedrichs and Poincaré inequalities.

This appendix is devoted to the Friedrichs and Poincaré inequalities for grid
functions. In fact, in order to prove the propositions below, one can follow the same
ideas as in the case of the continuous argument. For this reason, we omit the proof.

ProposiTION C.1. Let Q be a bounded domain with piecewise smooth boundary
and denote the discretization of Q by Q.. Then, for any v° € Wol’Q(QE) the following
inequality holds:

d
(C.1) 1o liE2 g,y < @) D D (95,0 (@)*.

T€Qe =1

PropoOSITION C.2. Let Q be a smooth bounded domain. Then, for all sufficiently
small e and for any v¢ € WH2(Q..) such that ZzEQs ve(x) = 0, the following inequality
is satisfied:

d
(C.2) Y W @P<C@et Yo Y 105,05 (@)

T€Q. z€Q: i=1

REMARK C.3. The statement of Proposition C.2 remains valid for the domain

@5'
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ABOUT LIFESPAN OF REGULAR SOLUTIONS OF EQUATIONS
RELATED TO VISCOELASTIC FLUIDS*
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Abstract. We prove existence and uniqueness of local and global solutions for a system of
equations concerning an incompressible viscoelastic fluid of the Oldroyd type. We also show a new a
priori estimate for the two-dimensional Navier—Stokes system and a losing estimate for the transport
equations that allow us to give a sufficient condition of non-breakdown.

Key words. local and global well-posedness, Besov spaces, Oldroyd model
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1. Introduction and statement of the results. An incompressible fluid is
subject to the following system of equations:

P
Ly Ve = V.o,

ot
dive = 0,

where v is the velocity (v(x,t) € R%) and o is the stress tensor (o is a (d, d) symmetric
matrix). Moreover, o can be decomposed as ¢ = 7 — p Id, where 7 is the tangential
part of the stress tensor and —p Id is the normal part (p being the pressure which is
the Lagrange multiplier for the divergence-free condition). For a Newtonian fluid, 7
depends linearly on Vv and more precisely

(1.1) T =2vD(v),

where D(v) = (Vv +! Vv) is the deformation tensor and v is the viscosity of the
fluid (v > 0). Hence, we recover the classical incompressible Navier—Stokes system.

It turns out that many fluids do not satisfy the Newtonian law 7 = 2vD(v) and
a general constitutive law satisfied by all fluids does not exist. Some fluids with shear
dependent viscosity are such that (1.1) is replaced by

(1.2) 7= 2u(|D(v)[*) D(v),

where the viscosity u(|D(v)|?) depends on |D(v)|. In the case of the power law, we
have

p(|D()]*) = v+ BID()["~2,
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where v >0, 8> 0, and p > 1. If

1 <p<2, wehave a shear thinning fluid or a viscoplastic fluid,
p=2, we have the classical Newtonian case,

p>2, we have a shear thickening fluid or dilatant fluid.

In this paper, we are going to study another type of non-Newtonian fluid, namely,
fluids with memory. Indeed, for many fluids, it is not possible to determine at some
time t the value of 7 knowing only D(u) at the same time, and one also has to know
the whole history of D(v). In these cases, we say that the fluid has a “memory”
and one has to write a differential equation for 7. One of the classical models is the
Oldroyd model, which writes

T+ v V7 +ar+ F(r,Vv) =0,

where ¢ > 0 and F' is a quadratic form in (7,Vv). It turns out that since the
model should be invariant under change of coordinates, F' cannot be the most general
quadratic form and we get the so-called Oldroyd model with eight constants, which
can be rewritten in the following way:

T+ /\1% + %Mot’r(T)D(U) — %ul{TD(U) + D(v)T} + %1/1(7 :D(v))Id

= 2’170 D(U) + )\2

where we have used “objective derivatives” (the so-called Oldroyd derivatives)

D 0
sz = 87; +v- V7 +7W(v) — W(v)T,
and W (v) = (Vv —! V) is the vorticity tensor.
In this paper, we are going to study a simpler model, namely the Oldroyd B
model (with only four constants). It is given by

Dot _ DyD(v)
(1.3) T4+ A DL 2n (D(U) + Ao o 7
where
%th = % +v-Vr+1W(v) = W(v)T — b(D(v)T + 7D(v)).

In (1.3), A1 is the relaxation time, Ay is the retardation time (0 < Ay < A1), 7 is the
dynamical viscosity of the fluid, and b € [—1, 1]. Fluids of this type have both elastic
properties and viscous properties. Indeed, the case Ay = A\; = 0 corresponds to purely
viscous case (incompressible Navier—Stokes equation), while the case A1 > Ay = 0 is
the purely elastic case (the Maxwell model). Decomposing 7 into

A2

T = TNewtonian T Telastic with TNewtonian = QHTD(U)
1
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we find that 7,;4st5c Satisfies

Dy, i A
Telastic T )\lm = 277 ( 2

Dt

Taking

1 27] Ag
= — =—(1-—+ d =1
a )\1’ H2 M\ < )\1>a an H1

and writing 7 instead of Tejustic, we get the following system of equations:

%—FU'VQ}—VA’U-FVP = wmV-T in Qx(0,7T),
(14) (VE) % +v- VT + a1 + Q(T, V’[}) = /,I,QD(U) in Q x (071—|>7
dive = 0 in Qx(0,7),

where 2 = R9 or Q = T9, u is the velocity vector field (v(x,t) € RY), 7 is the non-
Newtonian part of the stress tensor, (7(z,t) is a (d, d) symmetric matrix), (V- 7); =
> j 0,7 ;, and p is the pressure which is a scalar. The constants v, a, pi, po are
assumed to be nonnegative and the bilinear term @ has the following form:

Q(1,Vv) =7W(v) — W(v)T — b(D(v)T + 7D (v)),

b€ [-1,1], D(v) = (Vv +! Vo) is the deformation tensor, and W (v) = 3 (Vv —! Vo)
is the vorticity tensor. The system must be complemented with the following initial
conditions:

(1.5) {v(0,~) = vy in Q

7(0,:) = 1 in Q.

Throughout this paper, solution means solution in the sense of distributions. As
usual, problems of regularity are motivated by the uniqueness problem.
The formal energy estimate is the following:

1
5%(/&”“@)”%?"#1||T(t)||%2)+VM2||VU(*/)||2L2+@M1||7'(t)\|%2 < [l [ Do (®)[| = || 7(t) 172
The system (1.4) describes the motion of an incompressible fluid satisfying the Ol-
droyd [19] constitutive law. The existence and uniqueness of local strong solutions
in Hilbert spaces H*® have been established by Guillopé and Saut in [14]. These so-
lutions are global if the coupling between the two equations is small as well as the
initial data [15]. The case of L*~L" solutions has been treated by Fernandez Cara,
Guillén, and Ortega in [16]. Results for the stationary problem are due to M. Renardy
(see [20]). Recently, for b = 0, the existence of global weak solutions has been proved
by Lions and Masmoudi [17].

In this paper, we show existence and uniqueness results for local and global so-
lutions in some limit spaces, i.e., spaces invariant by the Navier—Stokes scaling. We
also show that in two dimensions, the L%(L°) norm of 7 controls the equation. For
this we show two results about the two-dimensional (2-D) Navier—Stokes system and
about a losing a priori estimate for the transport equation satisfied by 7.
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Our first result is related to Sobolev spaces and uses the special structure of the
system (VE).

THEOREM 1.1. Let (vg,70) be an initial data in H® with s strictly greater
than d/2. Then a unique strictly positive mazimal time T* exists so that a unique
solution (v, T) exists in the space L{S.([0,T*[; H®). Moreover, this solution is such
that v belongs to

L2 ([0, T*[; HT) N L2.(J0, T*[; HST'7)  for any strictly positive «.

loc

We have the following necessary condition for blow up:
r H1
rcoo—= [ (L0l + Vol ) di =+,
0 HaV

As we shall see in section 2, the proof of this result in very classical. It is in the
spirit of the well-known Beale-Kato-Majda criterion (see [2]). We want to improve
the above necessary condition for blow up. The theorem is the following.

THEOREM 1.2. In two space dimensions, the necessary condition for blow up of
Theorem 1.1 above becomes

T*
T" < oo = /0 (Ir@)llze + 8] I (#)[72)dt = +oo.

The first thing to notice here is that the required regularity is far from the regu-
larity prescribed by the scaling. Let us say a word about this. One of the key concepts
of the fundamental work of Fujita and Kato (see [12]) about local well-posedness for
the incompressible Navier—Stokes system is the scaling invariance. It means that if a
vector field v is a solution of incompressible Navier—Stokes system with initial data vy,

then vy (¢, x) def Av(A%t, Az) is a solution of incompressible Navier—Stokes system with

initial data vo x(x) def Avg(Az). An easy computation will convince the reader that
|Uo,A|Hg71 = |00\Hg71-

We want to solve the system (VE) for initial data whose regularity fits with this

scaling, as, for instance, for the usual incompressible Navier—Stokes system. This

requires the use of Besov spaces. Let us recall the definitions of these spaces. For

this, we need the Littlewood—Paley decomposition.

PROPOSITION 1.3. Let us denote by D(S2) the space of C™ functions whose
support is compact and included in Q. Let us define C to be the ring of center 0 of
small radius 1/2 and great radius 2. There exist two nonnegative radial functions x
and ¢ belonging, respectively, to D(B(0,1)) and to D(C) so that

(1.6) X+ p279%) =1,
q=>0
(1.7) Ip — g > 2= Supp ¢(27%) N Supp (27F:) = 0.

For instance, one can take x € D(B(0,1)) such that x =1 on B(0,1/2) and take

@(§) = x(28) — x(§).
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Then we are able to define the Littlewood—Paley decomposition. Let us denote by F
the Fourier transform on RY. Let h, h, A,, S, (¢ € Z) be defined as follows:

h=F'lp and h=Fly,
Bgu=FHp(2 1F0) =2 [ h2ty)u(e ~ )i
Squ = FH(x(27%) Fu) = 29 /E(qu)u(a: —y)dy.
In this paper, we shall use Bony’s decomposition which consists of writing
w =Ty + Tyu + R(u,v),

where

Tyv d:CfZSq,lquv and R(u,v) def Z Agulgv.

q€Z lg—q'|<1
The Besov spaces we are going to use are homogeneous ones.
DEFINITION 1.4. Let s be a real number and let p and r be two real numbers
greater than 1. Then we define the norm

def s
lullz, < ISoullzn + || @1 Aqullzr) pen

£r(N)
and the seminorm

def

[l

s
BPYT

1€2ler(2)

2718 ul0)

DEFINITION 1.5.
o Let s be a real number and let p and T be two real numbers greater than 1.
We denote by B, . the space of tempered distributions u such that |u] 15

finite.
o Ifs<d/pors=d/pandr =1, we define the homogeneous Besov space B,
as the closure of compactly supported smooth functions for the norm |- || s, -
Remarks. 1t is obvious that all of those spaces are Banach spaces. Moreover,
if p = 2, the Besov spaces can be described in the following way. The norm ||u|
is equivalent to

s
BPW‘

s
B3 ..
1

29 a(e)Pde )
(LKEQHJMOIS)

Let us point out that B3, is a usual Sobolev space H® and that B3, ., is the usual
Hoélder space C*®.
Now we state the following theorems.

(2)

THEOREM 1.6 (existence). Let p be in [1,+00] and let us define s def %

If (vg, 10) belongs to B;ffl x Bpey, then a strictly positive real number T  exists
such that a solution (v,7) of (VE) exists on [0,T] x RY; this solution belongs to
C([0,T]; By 1) 0 L. (10, T); Byoe) VL0, TT; By™) x L([0,T]; Byyy).-

loc
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Moreover, a strictly positive constant ¢ exists such that if
M1
pipe < cav and |lvol[gse-1 + =70l gse, < v,
p,1 a P,

then the above time T may be +oc0.
Moreover, if we define Ty g by

1
Tve d=6f+00 if pape <cva and Tyg 92 log (1 - Qcya ) if pape > cva,
a

12
(1.8)
then the above time T may be bounded from below by min{Ty g, T(vy, )}, where T(y 7o)
is the greatest strictly positive number such that

1-— e_“T _ 02
=0l sz, + > 276V A v Lo (1 — e T) < cv.
q

Now let us state a uniqueness theorem. The uniqueness, as, for instance, in the
work of Danchin and Desjardins about the KdV-type model (see [10]), requires a

restriction on p.

THEOREM 1.7 (uniqueness). Let p be in [1,2d[ and let us define s. d:ef%,
If (vg, 10) belongs to B;fl—l X B;jl,
exists such that a unique solution (v,7) of (VE) exists on [0, T*[xR% in the space

then a unique strictly positive real number T

—1 . s+l . e
C([()? T*[v B;,l ) n Llloc([(): T*[a B;,lJr ) X L?;Jc([oa T*[a B;,l)'
Moreover, a strictly positive constant ¢ exists such that, if
H1
pipe < cav and |lvol[gse-1 + =10l pse, < v,
p.1 a D,

then the above time T may be +o0o. And if T* is finite, then

.
/O (IV0(t, Yl + 7t o)t = +oo.

Now we want to state an equivalent of Theorem 1.2 in the framework of Besov
spaces. Unfortunately, it will be impossible to get it for critical regularity. Thus, we
need the following theorem.

THEOREM 1.8. Let p be in [1,2d] and let us assume that, for some o strictly
greater than s., the initial data (vo, 7o) belongs to B;ffl N B;El x By N By, then
the (unique) solution belongs to

C([0,T*[; By 1) N Lis (10, T*[: By o) N Lige ([0, T*[: By 1) x Lige(10,T*[; By 1)
Moreover, if the initial data (vo,To) belongs to L?, and if b = 0, then the solution
satisfies the energy estimate

t
palo6) B+ [ O2 42 | (vill o€ o a3 ) = ool -
0
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Finally, for this last theorem, we take p = 2, s > d/2 and impose the same
regularity for vy and 7y. In fact, we are going to use the particular form of the
equation and will not have to impose any restriction on the coupling to get the global
existence. For this theorem, we take nonhomogenous Besov spaces. We can also work
in Sobolev spaces if we impose in addition that s > d/2.

THEOREM 1.9. Let s > %. A constant ¢ exists such that for all nonnegative

constants v, a, pi, pe and for any (v, 7o) € ESJ X 5571 satisfying

VP,
Vi,

[vollps, < ¢ min(v,vav) and |7olp;, <c min(v, Vav)

2,1 —

a unique global solution (v, ) of (1.4) exists in
C([0,+00[; B3 ;) N L*([0,+0o[; By ") x L*(0,00; B ) N L*([0, +00[; B ;).

The structure of this text will be the following.

e The second section is devoted to the proof of the local well-posedness. We
use the very classical Friedrichs method.

e The third section consists of the proof of an a priori estimate for solutions of
2-D incompressible Navier—Stokes equations.

e The fourth section is the proof of a losing a priori estimate for solutions of
transport equations. This means that we estimate the norm of the solutions
of a transport equation in norms of Besov spaces whose index decreases in
time; estimates of this type have been proved in [1] and in [8].

e In the fifth section, we study global well-posedness in the case of small data.

2. Local well-posedness and energy methods. We shall use the very clas-
sical Friedrichs method (also called the Galerkin method in the periodic case) which
consists of an approximation of the system (V E) by a cut-off in the frequency space.

Let us define the operator J, by

Tna & F 1 g0 (©)T(E)),

where F denotes the Fourier transform in the space variables. Let us consider the
approximate (V E,,) system

Opvn — vIpAv, = Juua PV -7 + T Q(Jnvn, Jnvn),
(VE,) ntn + Jn(Jnvn - VIutn) + adntn, = paD(vyn) + Jn@Q(JnTn, JnVug),
" dive, = 0,
(UnaTn)\t:O = (Jn'UO» JnTO)'

It is obvious that all the bilinear operators on the right are continuous on L? x L2.
Then, the above system appears as a system of ordinary differential equations on L2.
Thus, the usual Cauchy—Lipschitz theorem implies the existence of a strictly positive
maximal time 7T, such that a unique solution exists which is continuous in time with
value in L?. However, as J2 = J,, we claim that J,(v,,7,) is also a solution, so
uniqueness implies that J, (v, 7n) = (vn,Tn). So (vn,7T,) is also a solution of the
following system, still denoted by (VE,,):

O, — VAV, = PV -7, + J,Q(vn, vn),
OTn + Jn(vn - V1) +am, = peD(vy) + JnQ(1h, Vug,),
(VEn) dive, = 0

(Una Tn)|t:0 = (Jn'UOa JnTO)~
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The system (V E,,) turns out to be an ordinary differential equation in L?. So thanks to
the Cauchy—Lipschitz theorem, a unique maximal solution exists on an interval [0, T.F[
which is continuous in time with value in L2. The main step consists of the proof of
the following property:

For any real s strictly greater than d/2, a strictly positive constant ¢ and a strictly
positive time T" exist so that, for any n, we have T,y > T', and

T

T
swp Eul(vnsma)ot)+evma | [Von(Olfydtemna [ (0]t < 28.((0,7),0),
t€[0,T 0 0

neN

(2.1)
where we defined

def
Eo((v,7),t) = pzlo(®)ll3e + pallm()|[--

Let us prove this estimate. As J,, are Fourier multipliers, they commute with constant
coefficient differentiations; thus, applying the operator A, to the system (VE,), we
obtain, by an energy estimate,
def d
L(t) = a(ﬂQHAqvn(t)H%Z + | AgTaZ2) + 202v]| VAU ()1 22 + 2110l Ag T 22
= 2p2(AgTn(Vn, - VUu)|Agun) 2 — 201 (AgJn(Vn - VT)|AgTh) L2
— 201 (A g InQ(TUn, VUr, )| AgTh) L2

Using that J,, is a real Fourier multiplier and that J,v, = v,, we get

d
T2l Aqua (72 + pall AgmallZ2) + 220V Agua ()17 + 2mal Agmal72

= 2u2(Ag(vn - Vo) | Agun)r2 — 201 (Ag(vn - V)| AgTn) 12 — 201 (AgQ(Th, VUr )| AgTh) L2

Up to the end of the proof of the inequality (2.1), we shall drop the index n.
The classical tame estimates for the product in Sobolev spaces (see, for instance,
Corollary 2.4.1 of [5]) imply that

1Q(7, V)| s < C(IIT@)IILwIIW(t)HHs + 7 (@)l e

Thus, we infer that

Vo)l ).

201 (AGQ (7, V)| AGT) L2

<C(1+ Ibl)m?’qscq(t)(IIT(t)IILwIIW(t)IIHs + 7 (@)l
(2.2)

Vo)l ) 184702,

where, as throughout this section, ¢,(t) denotes a positive series such that
Ve, Y () =1
q

Now we have to estimate terms of the type (A, (v-Va)|Aya)r2. To do so, we use
Bony’s decomposition and write that

d
v-Va = Z{Tmaja + To,av” + R((“)ja,vj)}.

Jj=1
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The classical results about paraproduct and remainder operator (see, for instance,
Theorem 2.4.1. of [5]) imply that

1To,av” || s + |1R(Dj0,v7) | s < Cllal| Lo ||V g

Thus we get

S Cm2™ %y () ||a(®)l Lo Vo) ||| Aga®)] 2

d
241 (qu Ty, v +R(0ja,v7))|A, a)
J=1

(2.3)
To estimate the last term, we start from a formula proved in [7]. Let us recall it:

L2

d
Z(Aquiaja|Aqa)L2 = Z([Aqa Sq’flvj}aqu’MAqa)Lz

Jj=1 J.q'

1 , |
3 2 (Sermat? = Sy10) A Ayald A, Aga)

J»q',q"

As we have, by definition of the operators A, that

S0, Ab(a) =21 [ (Sy-107(@) = 8107 ()h(21(w — 9))bly)dy,
we infer that
[Sy-107. A@)| < CIT=2% [ o= ylIAC2"(x = )] 1oy) .
Thus we get that
S0—107, Ablle < €279Vl e bl 2.

Moreover, thanks to Lemma 3.1, and using the fact that |¢' — ¢"| + |¢' — q| < No, we
obtain that

1(Sgr—107 = Syro1v)) Ay Ageall gz < C279 Vol 1w | Ay all 2.

Thus we get that

d
2,&1 (Aq ZTUjajamqa) S
L2

j=1
(2.4)
Finally, applying estimates (2.2)—(2.4), we get

CL+ b 2™ eq(B)llal®) | [Vo(t) L=l Agalt)]| 2

def d

Jg(t) = 7 (H2llAgu(t Wiz + u1llAgll72) + 2020V Agua (8|72 + 2010l Ag7 |72
< ch(t)2qS(IIVv(t)IILoouzv(t)lle Aqu(t)|lr

(2.5) + (1 + D IVU(E) | zoo pua[|7(E) | 2 [| Ag T (8) || 2

H @O llzoe pa[Vo (@) e AqT(t)IIL2>-
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Then, summing in ¢ gives

d
2 Bs(0, 1) () + 2000 [ V() 71 + 2mmallmallr < COU+ [BD[VU@)l]o By (v, 7))

Cu : 1 1
i (M) 7 (8) e () [0 e ) e

So this implies that

B0 T < © (L0 + 0+ DITo0 i ) Bl 7),0)

The Gronwall lemma implies that, for any time ¢,
t
E.(0,7),8) + pav [ Vo)
0

t
< B0, 0epC [ (L1l + 1+ B)ITo) ] ) .
0
Let us define T}, as

t/
T, < sup {t/ Yt <t, Ey((vn, ), t)) + Mzu/ Vo, ()| dt" < 2E3((v,7),0)} .
0

As s > d/2, the Sobolev embedding implies that, for any ¢ < T,
¢ H1 9
()| + [[Von(t’ oc> dt’
/0 (myll E)Ize + [[Von ()2
1
tE‘? ) k) 2 tEg k) )
<G+ ) << (v, 7) o>) <1 . ( ((v,7) o>)

1514 M2V

[N
N——

Thus, it is easily inferred that if

. 12524
< 5
r= mm{T’“ CL+ ) E (0,7, o>}

then, for any n € N and any t € [0,T], we have

t
E(vn, 7). £) + iz / IV ()3t < 2B, (0, 7),0).
0

So this implies that, for any n € N,

HaV

" 2 CE(0,7),0)

Standard compactness arguments imply the existence of a solution (v, 7) in L (H?®)
so that the vector field v belongs to L?([0,T7]; H1).

Now let us use the smoothing effect of the heat equation; let us consider a solution
of (VE) which belongs to L>°([0,T]; H®). Then it is obvious that

FY Y+ Vp+ Ve LEETY).
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So the smoothing effect of the heat equation, as described for instance in [6], implies
that if
o —vAv = f,
then, for any p € [1, 00], we get

1
C . s 1 C \»*
I8l < 20T flgrn + (50 ) 1AOis

So taking p = 1 in the above estimate implies that, for any ¢, the series (A,v)4en is
convergent in LL.(H**t17¢). Thus, for any strictly positive o, a strictly positive time ¢,
exists so that v(t1,-) belongs to H**17¢. Let us apply the above estimate with p = oo;
we get that v belongs to L>([ty, T]; H**!17¢). Thanks to Sobolev embeddings, the
fact that v is in LL(H*+17) implies that v belongs to L(Lip).

Let us prove the uniqueness. Let us consider two solutions (vq,71) and (ve, 72)
of (VE) in L75.([0,T*[; H®). These solutions are such that v; belongs to

loc
Lio ([0, T [ H5Y) 0 Ly (10, T [ H¥H179).

Denoting by (w, ) the difference between those two solutions, we have the following
system:

ow

E—VAU}—F’UQ Vw = mV-0—w- Vv —Vp,
00
a—&—vl VO+ad = psDw—Q(0,Vvi)— Q(r2, Vw) — w - V1,
divw = 0.

By the L? energy estimate, we get

d
7 (2lw@®)17z + pallO®72) + 220V @72 + 2mall 0|72

< 2401 (Qra, V) 6) 2 + (Q(6, Vo) 6)

+2u1‘(w - V72|0) 2| + QMQ’(w - Vo |w) g2

The following L? estimates are obvious:

|z (w - Vor|w) 2| < pa||Vor|ze ||wl][Z-,
11(Q(0, Vor)[0) 2] < pa (1 + B[V llz<[10]Z, and
11 (Q(72, Vw)[0) 2| < pa (1 + [b])[|72][ 2 [[Vwl| L2 |0]] L2

41 (1 + |b])?
pi2v

Vi
< L2\ Vwl. + I72ll < 1017

To estimate the term p;(w - V72|0) 12, we have to be a little more careful. Using the
law of product in Sobolev spaces, we get, as s is strictly greater than d/2,
[w- V7|2 < [Vwllp2||72lla:,

which yields

lp1(w - V7a|0) 2| < pa [Vl 2|72+ ]|0]] 2

Vﬂz 4p3
— IVwllZ: + = —

1+ [B])?[[ 213 16112
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Plugging these estimates together, we infer

d
= (allw®l72 + pall6@)72) + pav|[Vw(®)l[Zz + pall0(t)]72

<C (IVvl(t)llLoo + %(1 + b|)2||72(t)?qs> (n2llw(®)lI72 + palO)]1Z2) -

So we get uniqueness by the Gronwall lemma.

3. Some a priori estimates for the 2-D Navier—Stokes system. Before
stating Theorem 3.3 and Lemma 3.5, we recall some basic facts about Littlewood—
Paley theory. We refer to [6] and [18] for the proof of the following results and for the
multiplication law in Besov spaces.

LEmMmA 3.1.

1Agul|pp <2999 Agulpe for b>a>1,

e Aqul| s < €272 | Agul| .

Then the following corollary is obvious.
COROLLARY 3.1. Ifb > a > 1, then we have the following continuous embeddings:

s-a(1-1)
B,, C B ,.

Finally, we define the following space which will be used to control the system in
dimension 2. N

DEFINITION 3.2. Let p be in [1,00] and r in R; the space L}.(C™) is the space of
the distributions u such that

def
Il 070ry 2 50027 1l gy < .

Now let us state one of the two theorems about the 2-D Navier—Stokes system that
we shall prove in this section.

THEOREM 3.3. Let v be the solution of the 2-D Navier—Stokes system with initial
data in L? that belongs to L2.(H') and an external force f in LL(C~1) N LA(H™Y);
then, for any strictly positive ¢, a Ty in the interval |0, T[ exists such that

HVUHL[lTO,T](CU) <e.

The proof of this theorem will require two lemmas. The first one follows.

LEMMA 3.4. A constant C' exists such that if v is the solution of the 2-D Navier—
Stokes system with an initial data in L? that belongs to L2.(H') and an external
force f in L2.(H™1), then

C c
> 180l 22y < (14 lwollEe ) (lvollEe + Z 1125 a1y )
q

To prove this lemma, we apply the operator A, to the equation and, by energy
estimate, we deduce that

1d

5%”%@)”%2 + 2| A, ()72 < 2’| Agu(t)|72

+€(T&ﬂAJ@M§+MAAv®@@W§)
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So by integration and summation in g, we get

C
S 1A sz < ool + (1715 1y + 0l 2

q

Applying the classical inequality ||a||]. < C|la||?2al|%, we get the result by the use
of the standard energy estimate.

The second lemma is the following.

LEMMA 3.5. Let v be a solution of the Navier-Stokes system with initial data
in L? and an external force f in LL.(C™Y)YNLA(H™!),

ov

a+U'V’U*VA’U = —Vp+f,
(NSy) dive = 0,
’U|t:0 = 9.

Then we have the following a priori estimate:
C C 2
oz o < CBo0.T) + Ay 00y + 319N gcamy (ol + 201 sy ).
where E,(vo,T) is defined by
—cvT2%9

d 1—e
EV(UO7T) :efsup ||A‘1/UO||L2
q

To prove this lemma, we first apply the operator A, to the (NS,) system; this
gives

t
1AG(E) e < [Aquofl e + / B A F(#)| e dt’
0
t
+ [ e 8,00 ot et
0

with

Qv,v) = 3 AY(D)(v'v),

(2]
where A%J(D) are homogeneous Fourier multipliers of degree 1. Using that
271 AquollL= < [[AquollLz < Cllvollz>

thus yields, after integration in time, that
1 <CF T ¢
(B0 ol o) < B0, T) + = (1000 0)lzy vy + 117 o))

Denoting by &/ (§) = ¢(§)A™ (§) € D(R?\ {0}) we get

1844 (D)(v'0?)|[ Lo < C27|™ (279D) (v'07) | o=



REGULAR SOLUTIONS FOR VISCOELASTIC FLUIDS 97

Then using the Bony’s decomposition, we get

P @TID) W) = Y @M (27ID)(Apr Apr)

p'>q—2
|lp—p/|<2
+ Y GERTID) A A )+ DT 9 (27ID) (A Apr).
p'>q—2 p>q—2
p<p’—2 p/<p-2

For the first term, using the localization Lemma 3.1 and the fact that |p —p'| < 2, we
have

o™ (279 D)(Apv* Apv?) o < 27[| A0 Ayt |2 < C2T7P2E || A" 122 [| A7 | oo
< 27 o] 3 2% (| A .

Hence summing up over p (a finite set for any fixed p’), integrating over [0,7], and
using the Holder inequality, we get

S e s < Y ol 2 1A,
p/>q-2 p'2q-2

Ip—p/|<2 L.(L*)

(3.2) < Clvll s 3y 1vllz4 03,

where we have used that 2% ||A /vj||L3(Loo) < v ”Ls(cz)

The second and the third terms are treated in the same way, we treat, for instance,
the second one. We have

10" (279D)(Apv* Apv?) || oo < (| Ap0° | Loe || Apv? || oo
< czp||A,,vZ||L2 1A 07 || oo
(3.3) <27t ||11H 12%||Ap,vf||Lm.

Hence integrating over [0, 7], using the Holder inequality, and noticing that the sum
over p’ can be restricted to the set ¢ +2 > p’ > g — 2 which is finite, we get

(34) || Y ¢ @7ID)(Av AY) <y 27|, (H%)HUH,E%(C%).
p/>q—2 p<q
p<p’—2 L;(Loo)

Therefore, taking the supremum over ¢, we deduce that

19w, V)71 -1y = Cllvl (Hz)llvll~$(c%)
Then by interpolation, we merely get that
1/2 1/2
12l ety < IOUZE Gy IR o)

On the other hand, we have for all ¢
1/2 1/2
221 8g0ll 4 S 2HIAIL o 1A

4 2
3 L2.(L>
L3(L )

q 1/2 a
< 23|80 1 ey 22180115

1/2 1/2
< HU”Z,}(Cl H ||L2 (HY)"

(L?)
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Thus, we infer that

1
2
Ly(Ch)

1
1900z, sy < ClligarnllolEz ooyl
So plugging this estimate into (3.1), we obtain that

1
2

C 1
HU”Z’;(CI) < CEV(U()vT) + ;‘|f||f%(c—1) + CHU”L%(Hl)”UH[Z,,??(LZ)HUHLlT(Cl)‘

But the energy estimate implies that

[N

2
oz < (ool + 2071 0mr))
Thus, we infer that

c
H’UHZ;(CI) < CEV(U()»T) + ;Hf”flT(C*l)

1
c 9 2 9 1 1
+ Sollgazny (ool + 210 s ) T,

C
< CE,(vo,T) + ;Hf”flT(c—l)

C 2 2 2 2 1
+ 19015 (1o, (nvom U e )+ 310l oy

This concludes the proof of the lemma.
Now let us go the the proof of Theorem 3.3. First let us apply Lemma 3.5 between
some Tp in the interval ]0, 7| and T. This gives

C
< CE,(vp,, T —Tp) + ;HfHLl (c-1)

HUHZ[ITO,T](Cl) (To.T)

C 2
+ S0l o (ool + 211 e )

[To.T

Lemma 3.4 implies in particular that, for any positive ¢, an integer gy exists such that

eV
sup |1A |1 o012y < —-
sup 80l 02 < |
Then it turns out that
€
(3.5) E,(vr,, T —Tp) < el +CHU0||L2V22(10(T—TO).

Now it is easy to choose Ty such that, for any 7" between Ty and T, we get

(%

ev? 2 -1
Hf”L[lT,‘T](C*l) < e, and ||VU||L[2T,‘T](L2) < M(HUOHQL2 + V”fiZT(Hl)) .
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4. A losing a priori estimate. The core of this section is the proof of a losing
estimate for transport equation in the spirit of [1]. After this proof, we shall apply
this estimate in order to prove Theorem 1.2.

THEOREM 4.1. Let o and 8 be two elements of ]0,1[. A constant C exists that
satisfies the following properties.

Let T and A be two positive numbers and v a smooth divergence-free vector field
so that

Consider two smooth functions f and g so that f is the solution of
(T){ Of +0-Vi+Q(Vu.f) = g,
f|t:0 = fo-
Then we have, if A > 2C,

C
(42) ME(F) < 2l oy, + 2 MEH(0) + TMS ),

where

def

(4.3)  M{(c) sup 2972 A c(t)||pp  with

t€[0,T)
q
t t
(4.4) Dy (1.1) 2 ) / 1S, Vo (t") | g dt” + A / LF ()|t By (1) = By (1,0).
t/ t/

To prove this theorem, we transform the transport equation (7') along the flow

of v, in the following equation (Ty) on f, def Ay f, which is a transport equation along

the flow of Syv.

|
>
Q
Q
|
=
2
<
~
~

(Tq) { 8tfq + Sq’U . qu

fq|t:0 = Agfo

Let us admit for a while the following estimate:

CA||Vvl||l~
199034 oy

2092 x D Ry (v(t), £(1))|l L < Ce

(4.5) % [ 1@l MT @) + [ 1SV lz=+ D [8¢Vo®)lz= | MI(f)
la'—ql<N

Let us denote by 1, the flow of the vector field S;v. The equation (T;) may be
rewritten as

(Tt at,2)) = Dgglt, g (1,2)) — Ry(o(t), FD) (w1, ).

As the vector field v, and of course also the vector field S,v is divergence-free, we get,

after time integration in (7y), that

1a®lle < a0 + / 1Agg(t) | ot + / |Ry(o(t'), F(E) | rdt’
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After a multiplication by 297~®a2 () we get

t
20202 £, (8)]| e < 297 Ag foll v +/0 27 (602070 A g (t') | Lo dt’

t
+/ 27 P (L2092 O Ry (u(t'), f(¥)) | Lodt”
0

Then, using the inequality (4.5), we get

CA[ V|~ t /
MZ(f) < lfollBg . + TMZ(g) +e " MF(f) sup /2“1’““’”
' t€(0,7]
q

< | FE e MT ) + M) | 1SeVo(E) o+ Y 1Ay Vot | | dt’
lg’—q|<N

As M| Voll+ is smaller than (o — 3), we have

LL(c0)

CA||Vo|~

rl 0 —
e 709 < (Clo=h)

Moreover, by definition of ®4 x(¢,t'), it is obvious that

t ) 1 ¢ /
/ 2 PO ) et < o and / 27 0|8, Vo (t')||pdt’ <
0

0 = Alog2’
Then we obtain that
o C o+1 o o C o
M(f) < Wollg . + 5 MEH(0) + CIVolzy o M) + TMS (9) + S ML ()
C o (o2 C o
<|follag . + XM,\H(”U) +TMg (g) + XM’\ (f)

This proves the theorem of course if we prove the estimate (4.5). First of all, let us
decompose the operator Iz,. We have

8
= Ri(v,f) with
=1

d

= ZAq(T@]fU]),
j=1
d

Ri(v, f) = [Ag, T 51,
j=1
d

Ri(v ZT(UJ ERETAY

j=1

R4’Uf ZTaAfSU

f)= Z AR, f) — R(Sqv?, A0, f),
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RS(v ZAQQ (Tw, f).
j=1

RI(v ZAqQ T, Vv), and
j=1

d
= AQR(Vv, ).

If f is a solution of (T'), then
Ofa+Dq(v-VI)+A,Q(Vo, f) = Agg
Now, let us use Bony’s decomposition of the products v79; f. We thus get

(4.6) V10, f = T,;0;f + T, v’ + R(v?,8;f) and A,Q(Vov, f) = ZRf v, f).

Then we have the following equalities:

d
Ag(v-Vf) = Ry(v, )+ D ATud; f + AgR(W, 05 )

Jj=1

2 d
= ZRg(U’ f) + Zijaquf + AQR(Uj7ajf)’

j=1
3 d ‘
=Y RLw. )+ Ts,00:0f + AR, ;).
=1 j=1

Then, using the definition of the paraproduct and the fact that the vector field v is
divergence-free, we infer that

(v-Vf)= ZP/ )+ Sv-VA,f.

Now let us prove that each term R!(v, f) can be estimated with the right term of
inequality (4.5).
Let us begin with R}](v, f). By definition of the paraproduct, we have

d
= Z Z Aq(Sq/_laijq/Uj).

Jj=1 ¢
As |¢ — ¢'| > N, the above term is then equal to 0, and we deduce that
IR (0(®), fED e <C Y7 [Sy-1V fllze | Ago(®)]Lo-
lg—q'|I<N
Using the fact that, if |¢ — ¢'| < N, then ||Sy—1V f||ree < C29||f(¢)|| L=, and we infer
that

IR (w(®), fO)llze < C2U D)l Y 1A 0(t)]| Lo

lg—q'|<N
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So we claim that
217~ %>Ry (u(t), f(1))]| Lo
< C”f(t)HLOCMg-H (v) Z 27)\10 HSqu(t')HLoodt'JrAfO HSq/Vv(t/)HLOOdt'.
lg—q'|<N

However, it is obvious that

t t t
/ 1Sy Vo(t)) | e dt’ / 1S, Vu(t') | s dt’ < / 1Sy — Sq)Vot!)|| =’
0 0 0
Using the fact that |¢ — ¢'| < Ny and that
|AGullLr < C27YVAu| e,

we get

t t
@n) [ 1Sy Vel it ~ [ 1S, Vu(E)mdt < Tl oy
0 0 T

Thus it turns out that

C)\HVUHZ,}(CO)MU"’l(/U)
A .

(4.8) 297D RL(0(t), f()l|r < Cf(B)]|2~2
Now let us look at Rg (v, f). By definition of the paraproduct, we have
d

R (v ZZ 700y, A f

d

ZZ 07 A AL f

Jj=1 q

The terms of the above sum are equal to 0 except if |¢ — ¢'| < N. Moreover, by
definition of the operators A,, we have

[Sqr—107, Ag)0; Ay f () = 27 /Rd (2% (x = ))(Sy 10" (2) = Sy 10" (4))0; A f(y)dy

So we infer that
1Sy—107, A0 A F(@)] < 27 VSy—rvllp=2%( (291 - | x [h(27)]) 188y f1) ):
Then we have, using inequality (4.7),

200 Oy av?, A0,y Fli
CAllv|l~

<OM{(f) S 2 IV (St = Sv(t)llre + |Squ(t) ).
lg—q'|<N
We thus get
297=%0x || R2(u(t), f())]|r < CME(F)2" " Treen
(4.9) < 18, 7v®le + 3 IV(Sy—1 = So®)] -

lg—q'|<N
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The estimate about R (v, f) is very easy to prove. By definition of the paraproduct,
we have

Ri(v, f) = (Sg-10" = Sp!) Ay A, f,
7
so we get
RS (0, N)lle < C Y7 2979 | Ay Vo(t)|| o= | D f(2)]| o
q'2q
So by definition of M{(f) it is obvious that
(4.10) 29O R (1), F(1)]ler < OML(f) D 27 | Ago(®) o
q'2q

Now let us estimate Ré(v, f). By definition of the paraproduct, we have

d
Ry(w, ) =D Sy180;f Ay Sqv’.

j=1 ¢

It is obvious by definition of the operators S, and A, that if ¢’ < ¢, then Syy_1A; =0
and if ¢ > ¢+ 1, then Ay S, =0. So

d
Ry(v, ) = 8q-18,0;fAgSqv7.
j=1
It turns out that
(4.11) 297~ 2| RE(o(t), f())]lLr < CMS(F)]1SqVo(t)]| Lo

The estimate of RZ(’U, f) is a little bit more delicate. We have, using the fact that v
is divergence-free,

2
Ry(v,f) =) Ry'(v,f) with
(=1

d
Ry (v, f) = 0;A,R((Id—S,)v, f) and

q
j=1

d
RY2(v, f) =Y AgR(Sqv?,0;f) — R(Sqv”, ;A f).

q
j=1
The estimate of R)! (v, f) is analogous to the one of R (v, f). We get

45—By A (1) || P51 OVl oy p v a—q'oq’
2057 R R (v(t), f(8) e < Ce T COMI(F) Y227 Ay (t)|| e
q'>q

(4.12)
By definition of the remainder operators, it turns out that

R272(’U7 f) = Z [AQv Aq' SQ(Uj)]Aq/'ajf'
lg’—q""|<1
q¢'>q—N
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Always along the same lines, we get

CA|| V|

205722 O RO (u(t), f(2))]| v < Ce DM D2 2 Agu(®)] -
q

'>q
(4.13)
The term Rg (v, f) is estimated exactly as the term Ré (v, f), the term RZ(’U, f) exactly
as the term R3(v, f), and the term R} (v, f) exactly as the term R2(v, f). So putting
together estimates (4.8)—(4.13), we get the estimate (4.5) and thus Theorem 4.1.
Now we return to the proof of Theorem 1.2. We assume that we have a solution
given by Theorem 1.1 on an interval [0, T[. Let us assume that

T
T<oo and /(||T(t,.)||Loo+b\|T(t)H§2)dt<oo.
0

We want to prove that we can prolong the solution.

Theorem 1.1 says that, for any Tp in ]0, T'[, the solution (v, 7) of (V E) belongs to
the space L3 ([Ty, T[; H*T! x H*®). Sobolev-type embeddings of Corollary 3.1 imply
that

otl_o(l_1 g_o(l_1
(v,r)eLfgc([To,T[;BpZi 2(3 P)pr,oi(z P)).

Choosing p = oo in the above assertion implies that (v,7) € L}’;’C(CN'S x C*71). As s
is greater than 1, the tensor 7 belongs to L?([Ty, T]; L?) N L' ([T, T); C°). So we can
apply Theorem 3.3. We thus choose Ty such that, with the notations of Theorem 4.1,
we have

s—1—p
Vo[~ < I
H UHL[lTO,T](CU) — QA

The losing estimate of Theorem 4.1 applied with ¢ = s — 1 and between Ty and T
says exactly that the tensor 7 satisfies

_ c s
(4.14) M; 1(7’) S QHTQHCS—I + ()\ +T—T0>M)\(U).

Now we have to estimate Vv. The 2-D Navier—Stokes equation can be written as
O —vAv = P(v-Vv) + PDr,

wherein P denotes the Leray projector on the divergence-free vector field. Along the
exact same lines as in the proof of Theorem 4.1, we have

295=®an®) || P(y . Vo) — P(S,v - VAL)|| L

(4.15) < CM3) | 118,Vu(t)llz= + Y 2977 [VAv(t)| 1~
a'>q

Moreover, it is obvious that

2007~ 2r O P(Syu - VAG) ||z < Cllo(@)]] 3 ME ().
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So it turns out that
245 Pq.A (1) |1AGP(v- V)| Lee
(4.16) < M3 ) | 18gVu(®) |l + > 2977 |Vo(t)| L~ + 2%||v(t)HH%
q'>q

Using well-known estimates on the heat equation (see, for instance, [6]) and inequal-
ities (4.14) and (4.16), we get that

M3 (v) < [lvolles + 2ol

c
co-1 + (A +T —To + 23Fq(TO,T)> M (v)

with

t
MRnﬁfm>/fM”“MMHMﬂ
te([To,T] J Ty H2

Holder inequality implies immediately that

C__q
Fy(To.T) < 2 #|jo] ,
V4 T,

1 .
0. (H2)

We thus infer that

M3 (v) < |lvolles + 2[7o

C C .
cs—1 + ()\ +7T —To+ yi||U|L%0,T](H%))M/\(U).

Now it is enough to choose Ty such that the quantity

C C
T —Th+ =
) + o+ I/% HUHL?TO

()

is small enough. Then as s is greater than 1, the solution (v,7) of the system (VE)
is such that (Vv, 7) belongs to L°([Ty, T*] x R?); this concludes the proof of Theo-
rem 1.2.

5. Local and global existence for initial data in Besov spaces. The proof
of Theorems 1.6 and 1.7 is based on the following lemma.

LEMMA 5.1. Let s be in the interval | — s¢,s. + 1]. A constant C' exists which
satisfies the following properties.

Let us consider any divergence-free vector field v in LlT(B;flﬂ) and any solu-
tion (w,T) of the following linear system:

ow—vAw = PuV7+ f,
(VEL)S Ot +v-V74+Q(1,Vv)+ar = psDw+g,
(w, T)|t=0 = (wo, 7o)

with (wo,70) € By7' x By, and (f,9) € Ly-(By1") x Li(By 1)-
Let us define

cra
2p1 pi2

1

Tve Y oo if pipz <cva  and Ty Yo (1 -
a

(5.1)

) if pipe > cva.
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Then, if T < Tyg, we get for some \ big enough

C o —1,,92q
Hw/\HLlT(B;fll) <5 (ZQq( V]| Aqwollr (1 — e 2T + ||f/\||L1T(B;j11)
q

17670‘T
(5.2) = (Imollsg, + loalley.s,)) ).

||wA||L:OFQ(B;31) < C<|U/OHB;—11 + Hf)\HL}F(B;—ll)

1—e 9T
(5.3) 1= (Il + lalleg s ) )
M1 42 -
I llzge s ) < € (1 += . (I—e aT)) (||To| B:, T ng\”LlT(B;l))
C,UQ s— —1y92
(5.4) + =2 (Z 296D || A wol| o (1 — €€ 27T + ||f)\||L§,(B;)11)>
q

with

o) Y oty (-3 [ 190001 ).

Remark. The condition (1.8) piue < cva means that the coupling effect between
the two equations is less important than the viscosity effect on the time interval [0, 7.
Let us also note that, in any case, spatially if a = 0, we may take
v

Tvg = —-
vE 2C 1 po

To prove the above lemma, we start with an estimate on 7 (inequality (5.6) below)
and then plug it into a standard estimate on w.
We apply the operator A, on the transport equation on 7; we thus get

O AGT +v- VAT + a7 = poDAjw+ Ayg + Ry(v,7) with
Ry (v,T) def [v-V,A T — AyQ(T, V).
Let us admit for a while the following estimate:

(5:5) IRy (0(8), ()20 < C27 (Vo gseyallm(B)1 5.,

where, as all along this section, c,(t) denote a positive series whose sum over ¢ is 1. As
the vector field v is divergence-free, we get, using integration along the characteristics
that

t
e[| AgT (1)L < [1Ag70] e +C2*q5/0 @) IVoE) | gere 17t 3 , A

t t
+0M22Q/ e“t/||Aqw(t’)||Lpdt’+C/ e | Agg () odt’.
0 0
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Then, using the multiplication by 29° exp (—)\ fot [Vo(t)]

B;’cldt’ ), we get
e AgmA(®)llLr < [|AgTol Lo

A IO e, ,
e R Sl N PR NI P

t
+CN22q/ WUV Agun ()| o dt’ + C’/ 29| A ggr ()| Lot
0 0
Taking the sum over ¢, we get

Eax [ IVl e dt” /
at ' B / at ’ ’
e"Im®llss, < llmollss, +C/O e v [ Vo(t) | pee e Ima(t) 5z, dt

p,1
t

t
40z [ fun(@)l gt +C [ e an(¥)ay
0 P 0 ’

From this estimate, we get that

lle®Ta(t )||L°°(Bs XHT/\HL;"(B;J)

T T
e / Nun®l gyt +C [ etlgat)]a ot
0 P, 0 ’

So, if A is large enough, we obtain
T T
e ()l Lge (ms ) < 2ll70llBs, +Cuz/0 e“twa(t)nB;ﬁldmo/o e!lgr(t)l| s , dt.

(5.6)

In particular, this implies that

aT

1
G7) Il s;,) <€

(

Classical estimates about the heat equation (see, for instance, [6]) give

o pallwally gy + lonley. s ) )-

t
(5.8) [|Agw(®)|ze < CllAqwollre=C "+ C / e=C TR A F(#) | ot
0

with f jdef f+ 1V - 7. Then multiplying by 29° exp( )‘fo IVo(t ||BSC dt’) taking

the sum over ¢ and integrating in time, we get
¢ —Cc w2 s
”w)\”L}T(B;tl) < ; ZHAqu”LP(l—e )"‘Hf)\HL;(B;—ll) .
q

By the definition of f, we obtain, applying the estimate (5.7),

C _o-1,92a ~
HwAHLlT(B;ﬁl) < > (Z | Agwollze (1 —e™C ¥2 T 4 ||fA||L1T(B;31)
q

1— aT

+h1 (||To||B;1 + M2||wA||L1T(B;§1) + g/\HL;,(B;l))>~



108 JEAN-YVES CHEMIN AND NADER MASMOUDI

Then the condition (1.8) gives the estimate (5.2). To prove the inequality (5.3), let
us go back to the estimate (5.8). Multiplying by 24(s=1) and taking the supremum in
time gives

T
(5.9) 297V Agwall g (r) < C297V [ Agwl| +/ 297D Ay fa(t)l| Lot
0

Summing over ¢ and using that

[l g2ty < > 29 DA gwil| Lz (v,
q

we claim that
||w/\||L;°(B;j11) < C(HWOHB;;l + 1AMy B )
Then using the estimates (5.2) and (5.7) gives the inequality (5.3). To obtain the

inequality (5.4), it is enough to plug the estimate (5.2) into (5.6).
Remark. In fact, we proved a better estimate which is

> 2907V Agwy | e (1) < Clllwollgsr + A3l Ly (ss ,))-

q

However, we have to prove the inequality (5.5). The law of product in Besov
spaces implies that

1QUr(8), Vo)lls:, < Cllr®)z: , IVo(®)ls,
because s is in the interval | — s., s. + 1]. Thus, we have
18,Q( (1), Vo)llr < Ce®2 IOl 5, I70(E) 1525,

Then let us observe that, in [9], it is proved that

Io(@) - V, Aglr(#)llzr < Ceg(£)27%[|Vo(t)]

g (O35 -

The estimate (5.5) is proved and so is the lemma.

Now let us prove Theorem 1.6. As D (the space of smooth compactly supported
functions) is dense in B¢ by By, let us consider a sequence (vy 0, 7,,0) of D which
converges to (v, 7o) in the Banach space B, ! x Bse

p,
have an 0| B‘5L < ||U0||Béc and HT’VLOHBSC 1 < ||To| Ba,, 1.

Theorem 1.1 claims that a smooth solution (Un, Tn) exists on a time interval [0, T}, .
Let us define

1 and such that for all n, we

Up, L = e”tAvmo and Wy =V, — Up L.

Now let us apply the above Lemma 5.1 with s = s, and
fn = Q(wnawn) + 2Q(vn,L7wn) + Q(vn,van,L)a V="Un, g= 0.
Let us define

W (T) = VHwn,)\HLlT(B;ﬁH) + HwnJ\HL%C(B;?l—l)a
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where we recall that

wn(t) = wlt)exp (- (/)HVv Mgt )

Then we get, for any T < min(Ty g, Ty,),
K1 —a
Wa(T) < C (Il g pety + 220 = e Dliraollses, )
Let us estimate || fp, >\||L1 (Boe) . As By is an algebra,

|\Q(a7b)||L1T(B;f;1) < Cllallz sze 0ll22.82,)-

Then using classical interpolation results, we get

1/2 1/2
raerylall e e,y
p,1

lallzz (52e,) < llal
We thus infer that

||fn,/\||L1T(B;§;1) <C <W3,>\ + Wn,A||Un,L||L2T(B;f1) + ||’Un,L||%2T(B;§1)) :
Using Lemma 5.1, we get that

War(T) < C (llvnelz (eey) + WEAT) + 20— e DIl 5z, ) -
Let T < min{T(v,, 4,r.0), IvE, Tn}, where T =T\, . - . is such that

Clu’l —a T ¢ q(s—1) c~ty2?ar 1
y(l—e )HTH,OHB;CI +; %:2 ||Aqvn70||LP(]—_€ ) S %

We can see easily that T(,, ,.r, ) 80€s t0 Ty, 7,), When n goes to oco. Next we recall
that (see, for instance, [6])

- 1 _ O w22 1/p
Il e, < Sl (LY
q

p,1 v
So we get

T) < 2 —
Waa(T) < CW2L(T) + 55

and, since W,, x(0) = 0 and that W), x(¢) is continuous in ¢, we deduce that for all T

1
Wor(T) < —-
AT) < oo
This can be rewritten as follows:
1
Vllwall ety + wall e o) < 55 0xp (A||vn)L|\L1T(B;?1+1) + A||wn||L1T(B;?1+1)) .

If C is chosen big enough, we get

Xp(|‘wn||L;(B;?l+1))'

Wl =
@

llwnlloy mgery <
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Then using the following lemma, we conclude easily that ||wp||;: peesr) < 1.
T p,1

LEMMA 5.2. If f(t) is a continuous function satisfying for any t in [0,T)
f(t) < nef®
with n < 1 and f(0) =0, then we have for all t € [0,T],
f(t) <en.

Then we deduce that w,, is bounded in L‘X’(B;ffl) N L%«(B;fl) Using Lemma
5.1 for 7, we get that 7, is bounded in L3¥(B,°;). The explosion condition in Sobolev
spaces and the fact that ||Vv||pe~ < ||v|\Bsc+1 and ||7]|pe < ||7'||BsL show that
T, > min{T{y, ,r,0): TvE} and hence, one can take T' = min{T{y,,+,), TVE}

Now let us prove the uniqueness part. We recall that we assume here that p is in
the interval [1,2d]. This means that s. > 1. Let us consider (v, 7) a solution of (VE)
in LE(By ') N LL(B4™) x LEF(B). Tt is obvious that

Ow e LL(Bi") and that 0r € LL(BSy ).

So we get (v — vy, T — 7p) € C’([O,T];B;ffl X B;ffl). Let us consider two solu-

tions (v;,7;) of (VE) associated to the same initial data. The difference (w,0) = def

(v —ve, 71 — 72) is in C([0, TY; B;fl_l X B;fl_l) and satisfies

Ow —vAw = PuV7t+29(v1 + va, w),
O +v1-VO+a0 = pDw—Q(0,Vur) — Q(1a, Vw) —w - Vg,
(w,0)=0 = (0,0).

Applying Lemma 5.1 with s = s, — 1, we get

v|lwallLy (s, )+||w/\||L°°(B§C’2)+||9>\||L°C Bieh) S C(Hf/\HLl B T lgallLs, (B 1))’
where
r=2Q(v1+vy,w) and gy =2Q(v1 vy, w) =—Q(0, Vuy)—Q(12, Vw) —w-Vrs.

Since we are looking for uniqueness, we can forget the A. In what follows the constant
C will denote C exp(—A\ fOT Vi (t)]
Besov spaces and the fact that s. + (s, — 1) > 0, we get

B dt"). Using classical results for products in
p,

IA

1 lls ooe sy < € (Iloallaz e + loelleg csge) ) 1wl (g

IN

¢ (lnllzaazey +llolzg sy ) el L N,
and
9l ety < € (loall s (pees |10l e ey + 172l Lo 0l sz, ) -

So, uniqueness is proved by application of the Gronwall lemma.
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Finally, we prove Theorem 1.9. Rewriting (2.5) in the framework of Besov spaces,
we get for ¢ > 0

def d
o dt

< ch@)w(nww

Va(t) (2 Aqu®IZ2 + 1| Agl72) + 22V IV AGua (O] + 2pall Agmal|7

B;  h2llv(®)] B, [|1Aqu(t)| 2

+ Vo)l 55, 7Ol s , A7) 22

+ 7Ol 5, I V0O 5 ||Aq7(t)||L2>,

where the series ¢,(t) is now such that ) c,(t) = 1. Then using that

(Vo Agu(®)llLe + Vi [ Ag7l|2)?

| —

(n2llAgu(®)[|72 + pallAgTlF2) >
and that

2622V [|Agu(t)l[72 + 2pal| AgTl T2 > (20rp2l| Aqu(t) L2 + am]| AgT||12)
x min(vv, Va) (Vi [Aqu(t)l22 + Vi 187 L2),

we get
(Bl Ao 022 + iy |Ag7l2) + min(y/7, /a) (21T A o0 | 22 + v/l Agr12)
< a2 (I o0, VAl Oz,

HIT6) eV IOz, + [0, VoD, )

Then multiplying by 29° and summing in g, we get

d .
T (\/ﬁQHUHB;,l + Vi ll7| B;J) +min(Vv, Va)(Vizllvll g + VamllTl s )

< CloOlagss (VAo + Vil ).
Thus, if

(VHsllvollss , + vy Imollss ) < emin(v, Va)y/vpz,

we get the global existence.
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ESTIMATES FOR PERIODIC AND DIRICHLET EIGENVALUES OF
THE SCHRODINGER OPERATOR*

T. KAPPELER! AND B. MITYAGIN?

Abstract. Consider the Schrodinger equation —y” + Vy = Ay for a complex-valued potential
V of period 1 in the weighted Sobolev space HY of 2-periodic functions f : R — C,

HY =HE =< f(@)= > fR)e™|||fllw <oop,

k=—o0
where
1/2
£l = (22w<k>2 If(k)|2>
k
and w = (w(k))kez denotes a symmetric, submultiplicative weight sequence. Denote by A, =

An (V) (n > 0) the periodic eigenvalues of —% + V when considered on the interval [0, 2], listed
in such a way that Aoy, Aon_1 = n272 + 0(1), and denote by pn = pn(V) (n > 1) the Dirichlet

eigenvalues of —% + V considered on [0, 1], listed in such a way that u, = n?72 + 0(1).
THEOREM. There exist (absolute) constants K1, Ko > 0, so that for any 1-periodic potential V
n HY,
> w(@n)?Aan — Aan—af® < Ki(1+ |V [lw) <2
n>N

and

> w(@n)?lun = Azal® < K11+ [V [lw) <2,
n>N

where N := K1 (1 + ||V]|w)?.

Key words. Schrédinger operators, periodic and Dirichlet eigenvalues, estimates on gap lengths
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1. Introduction.

1.1. Summary of the results. Consider the Schrodinger equation on the in-
terval [0, 2],

(1.1) —y" +Vy =Xy,

where V is a complex-valued periodic potential of period 1 in the weighted Sobolev
space of 2-periodic functions,

HY = HY := 4 f(x) =Y fk)&™ ||| fllw < 00
k
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with

1/2
1fllw = <2Zw(k)2 If(k)|2>
k

and w = (w(k))kez with w(k) > 1 Vk € Z is a symmetric weight (w(k) = w(—k) Yk €
Z) which is submultiplicative,

w(k + j) < wk)w(j) Vk,j € Z.

As an example of a submultiplicative weight we mention the Abel-Sobolev weight
wap(k) := (1 + |k|)?e?* with @ > 0 and b > 0. An element f € H"s can be viewed
as a complex-valued function F(z) =3, f(lc)e”kz, z = x 41y, analytic in the strip
ly| < £ and such that F(z +i2) as well as F(z —i2) are in the Sobolev space H®,
defined by the weight w(k) := (1 + |k|)*. More generally, w(k) := (1 + |k|)%e"*FI” is
a submultiplicative weight for 0 < a < 1,4 > 0 and b > 0; a function f € H" is a
function of Gevrey class.

The spectrum specpe,(L) of the operator L := —%22 + V', when considered on
the interval [0, 2] and with periodic boundary conditions, is discrete and is a sequence
An = A(V) (n > 0) with the property that Rel, — 400 for n — co. Here, the
eigenvalues \,, are enumerated with their algebraic multiplicities and ordered so that

Re), < ReA41 or Re), = ReM, 41 and ImA, <Im), 4.

Notice that adding a constant to the potential V results in a shift of the eigenvalues
by the same constant. Hence we restrict ourselves—without loss of generality—to
potentials V' of mean zero and introduce the subspace Hy’ C HY,

2
HY = {feHg| /0 f(x)dmzo}.

For the weight w = 1, the spaces H' and HY are also denoted by LZ and L2,
respectively. For n sufficiently large (cf. Lemma 1.4 in section 1.2 for a reminder),
the eigenvalues come in pairs {Aop,, A2n—1}, i.e., A2y, and Ao, —1 are close to each other
and separated from the rest of specpe,(L) by a distance of size n.

In section 2 of this paper, we prove the following theorem.

THEOREM 1.1. There exist (absolute) constants K1, Ks > 0 so that for any
1-periodic potential V in HY

(1.2) Y w@n)? Pan = Az P < K1+ | V]]W) "2,
n>N

where N := K1 (1 + ||V]|,)?.
(See Proposition 2.16 and section 2.8 for details.)
In the next theorem we state the main two terms in the asymptotics of the se-
quence of gap lengths, v, := Ao, — Ao,y—1 as n — oo. For this purpose introduce
. 1 V(n—7)V(n+37)
(1.3) p(n) ==V (2n) + — > 7(1 J) .
J

-Jj n+j

Notice that the last term in (1.3) is a convolution and well defined as V(O) =0.
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THEOREM 1.2. There exist (absolute) constants Kz, K4 > 0 so that for any
1-periodic potential V in Hy

» > (1 +[n]wEn)? min | (an — Azn—1) £ 2¢/p(0)p(—n) [
1.4 n>N

< Ks(1+ [VI) ™,

where N 1= K3(1 + [|[V]|w)?.

(See Theorem 2.20 and section 2.9 for further details.)

In our previous paper [8], we obtained estimate (1.2) and a weaker form of estimate
(1.4) for the Abel-Sobolev weights

Wayp = (1 + k)%™, (a>0,b>0),

using a Fourier approach. By a refined analysis we obtain in section 2 of the present
paper estimates (1.2) for general submultiplicative weights and a two-terms asymp-
totic (1.3)—(1.4) for the gap lengths. It turns out that submultiplicative weights
provide the right setup for applications to a KAM theorem for the Korteweg—deVries
equation (cf. [2]), as will be shown in a subsequent paper. Further, we present in the
present paper an analysis of the Riesz spaces together with estimates for the Dirichlet
eigenvalues. Let us explain this in more detail.

In section 3, we analyze the Riesz spaces E,, (n sufficiently large), i.e., the images
of the Riesz projectors defined by a circle of appropriate size around n?r? as contour
and the operator L := % + V, considered on [0,1] with periodic (for n even) or
antiperiodic (for n odd) boundary conditions (cf. (1.16)). We study the structure of L
by computing the matrix representation of the restriction of L— s, to E,, with respect
to an orthonormal basis f,, p,, where f,, is a periodic or antiperiodic eigenfunction
in F,. Moreover, we estimate the entries of this matrix which will be important for
estimates of the Dirichlet eigenvalues (cf. Theorem 3.5 and Proposition 3.6).

In section 4 we obtain estimates for the Dirichlet eigenvalues u, (V) (n > 1) of
the operator —dd—; +V, considered on the interval [0, 1]. The eigenvalues p, = pn (V)
are ordered in such a way that

(1.5) Repn, < Repint1 or Rept, = Repins1 and Impy, < Imyptyyq.

THEOREM 1.3. There exist (absolute) constants K5, Kg > 0 so that for any
1-periodic potential V' in HY

(1.6) D w2n)|pn = Azal® < Ks(1+ [V ]w) ™,
n>N

where N := K5(1 + ||V ||)%e.

It turns out that by the methods used to prove Theorem 1.3, one can obtain
similar results for the eigenvalues of Ly., where Ly, is the operator L with boundary
conditions be from a special class B. In section 5, this class is defined and the spectrum
of the operators Ly, is analyzed.

It is well known that the decay of the gap lengths v, := A2, — Aap—1, associated
to specper (L), depends on the smoothness properties of V' (cf., e.g., [7], [13], [20]).
In particular Marcenko [13] obtains polynomial decay of the gap lengths in terms of
the Sobolev class of the potential and Trubowitz [20] proves exponential decay for
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real analytic potentials. Conversely, the question of smoothness of an Lo-potential in
terms of the decay of the gap lengths has been addressed as well, mainly for real-valued
potentials (cf. [13], [15], [20]) but more recently also for complex-valued potentials.
It turns out that for complex-valued potentials, the decay of the gap lengths does
not suffice to determine the smoothness: Sansuc and Tkachenko [19] proved that a
periodic complex-valued potential V' € L2 belongs to the Sobolev space HY iff the
following two conditions are satisfied:

ST+ DY Pan = Azuca? <005 3@+ 0D it — Agal® < o0,

n>1 n>1

where, as above, (i,,)n>1 denote Dirichlet eigenvalues.

The condition of the weight sequence (w(n))nez to be submultiplicative could be
seen as purely technical and convenient in the proofs of the inequalities stated in the
theorems above, but it may be too restrictive for results like Theorem 1.1. Moreover,
the submultiplicativity implies that

1
lim 20800 _ o
n— oo n

Thus, for w > w,,

(1.7) w(n) < Cue?!™ VYneZ

for some constant C,, > 0 and w(n) cannot grow faster than an exponential function.
Notice, however, that the slightest violation of the growth restriction (1.7) gives a
weight sequence which does not have the property stated by Theorem 1.1. This
follows from Harrell’s and Grigis’s analysis of the gap lengths for (real) polynomial
potentials. If V' is a Mathieu potential

(1.8) V(z) =tcos(2-2mx) 0<z <1,

then Harrell [6] (cf. [1]) proved that the gap lengths ~,, satisfy the asymptotic estimates

(cf. [4, formula (1.8)))
b = Wn—m)? <1+0<nlz,)>,

and therefore, for some a, depending on ¢,
(1.9> Yr > e—2n10gn+an.

Hence, if w(n) := e?I™1o817] with b > 2, the analogue of Theorem 1.1 does not hold.
Indeed, we have

|t|?

V]2 =
1V 5

w(4)? < oo,
but (compare with (1.2))

S w@n)f2 > 3 ettnlogn-antosnizan _ oo
n>N n>N

A more refined analysis due to Grigis (see [4, Theorem 0.2]) shows that the above
weight is bad with any b > 0, i.e., does not have the property stated by Theorem 1.1.
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1.2. Preliminaries. General references on Schrédinger operators on the interval
and Hill’s operator can be found, e.g., in [11], [12], [18].

In this section we put together some well-known spectral properties of the operator
L = —j—; + V in a form convenient for our further analysis. The following three
lemmas are particular results in the general theory of nonselfadjoint boundary value
problems developed by Keldysh [9], [10]. Many details can be found in [14], section 6
of chapter 1, in particular in subsection 6.3 (Lemmas 6.6 and 6.7) and 6.4 (p. 34); cf.
also the appendix (pp. 215-219) where the paper [9] is translated into English.

Let us consider Dirichlet boundary conditions, bc = Dir, as well as periodic
Per® and antiperiodic Per~ boundary conditions, bc = Per®, i.e., for functions y in

HE[0,1],

(Dir) y(0)=0; y(1)=0;
(Per™) y(1) =y(0); ¢'(1) =y (0);
(Per™) y(1) = —y(0) ;' (1) =—y'(1).

For V € LZ[0,1] with fol V(x)dr = 0 introduce the operator L := D? 4+ V, where
D = %d%. Given one of the above boundary conditions bc, denote by L;. the closed
operator in L2[0,1] with domain dom(Ly.) := {f € HZ([0,1])|f satisfies bc}. Let
specpe(L) = spec(Lye) be the spectrum of Ly.. For the potential V =0, i.e., L = D2,
specp.(D?) can be given explicitly,

(1.10) specpir(D?) = {k*n?|k > 1},
(1.11) specpe,+ (D?) = {0} U {(2k)*7?, (2k)*m%[k > 1},
(1.12) specper— (D?) = {(2k — 1)%72, (2k — 1)?7%|k > 1}.

For r > 0 and k € Z>o, let D(k) = D,.(k) be the open disc in C with center k** and
radius r

D(k):={2€C| |z-kr*|<r}
and, for ri,72 > 0,R = R,, », the open rectangle in C
R:={x+iy| —r<z<ry |yl <ra}.

Denote by ||V|| the L2-norm of V € LZ[0,2], |V ]| = (232, [V (k)[*)/2.

LEMMA 1.4. There exist absolute constants K7 > 1 and Kg > 1 so that, for any
given M > 1, boundary condition bc € {Dir, Per*}, N > 2Kg(M +1), and 1-periodic
potential V € LZ[0,2] with |[V|| < M, the following holds:

(1.13) spec(Lyc) CRU ) D(k),
k=N+1

where D(k) = D,.(k) with r := Kg(M + 1) and R = Ry, , with 7y = K7(1+ M)*/3
and r9 = (N? + N)72.

We point out that specpe,+(D?) U specpe,—(D?) (cf. (1.11) and (1.12)) is the
spectrum specpe,(D?) of the operator D? on [0, 2] with periodic boundary conditions.
Obviously, for any 1-periodic potential V,

specpeq+ (L) U specpe,— (L) C specper(L).
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For a real-valued potential the converse inclusion
(1.14) specper(L) C specper+ (L) U specpe,— (L)

also holds, as one can see from an elementary application of Floquet theory. More
generally, by a simple counting argument, Lemma 1.4 implies that (1.14) holds for
complex-valued potentials.

The periodic eigenvalues of L on [0, 2] have been denoted by (Ay,)n>o (cf. (1.7)).
According to Lemma 1.4, the eigenvalues Ag,_1 and \o, are close to n?n? for n suffi-
ciently large. At certain occasions (cf., e.g., section 2.8), one of the two eigenvalues,
either Ao, or Ag,_1, will satisfy a certain property, but it will not be possible to de-
cide which of the two. For such a situation, it is convenient to introduce A\, A\ as a
different notation for the eigenvalues Aoy, Aoy 1,

{)‘Iv )‘:L} = {>\2n7 >\2n—1}~

By Lemma, 1.4, it follows that the Riesz projectors P, = Pi;. and Py, = Py are
well defined for || V| < M,

1
(1.15) 1= —— (z — Lye) tdz,
211 IR
1
(1.16) Py = — (z — Lye) tdz, (k>N +1),
21 Jop(k)

where the contours 9R and 9D(k) are counterclockwise oriented. Denote by ||| z(r2)
the operator norm of a bounded linear operator T': L[0, 1] — L2[0, 1].

LEMMA 1.5. There exist absolute constants K9 and K¢ so that under the same
assumptions as in Lemma 1.4,

(1.17) ||P*H£(L2) < Kglog(2+M)7

(1.18) | Prllzczey < Ko, (k> N41).

Further, for any f € L4[0,1],

(1.19) f=Pf+ > Pf,
k=N+1

where the series (1.19) converges in L.

LEMMA 1.6. There exists an absolute constant K11 > 1 so that under the same
assumptions as in Lemma 1.4,

1
(1.20) |\ = Le) ™ (Id = P)lcwsy < Ky YA€ Di(k), ¥k =N +1.
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2. Periodic eigenvalues.

2.1. Fourier block decomposition. Denote by L the Schriédinger operator
L :=D?>+V, D = 1L with a complex-valued potential V € H of period 1,
considered as an unbounded operator on L(% [0, 2], with periodic boundary conditions.
For V = 0, the spectrum is discrete: 0,72, 72, (2m)2%, (27)?, ... ; i.e., the eigenvalues
k27? are double for k > 1 and the eigenvalues (n + 1)272 and n?zx? are (2n + 1)72
apart. Further, for n > 1, e!"™® e~7% ig a basis of the eigenspace corresponding
to the eigenvalue n?m2. Viewing the potential V as a perturbation of D?, it follows
that for n sufficiently large, L has a pair of eigenvalues near n?n?, isolated from
the remaining spectrum of L. Our aim is to obtain an estimate for the distance
between the two eigenvalues and to compare eigenfunctions and eigenvalues with the
corresponding ones for V = 0. Notice, however, that L might have double eigenvalues
of geometric multiplicity 1 as V' is complex-valued.

The Fourier series decomposition leads to an isometric isomorphism F between
L2]0,2] and (2(Z) with F(e'™ ) = e, (er)rez being the standard basis in ¢%(Z).
Decompose L = FLF~1 with respect to the orthogonal sum ¢*(Z) = Ce_,, ® Ce,, @
(2(Z\{£n}). To express L, introduce the involution operator .J : £2(Z) — (*(Z),

(Ja)(k) := a(=k) (k € Z)
and the shift operator S : (2(Z) — (*(Z),
(Sa)(k):=a(k+1) (k € Z).
8" =S8 o0---08 denotes the n*th iterate of S. For any subset K C Z, the restriction

of § on (%(K) with values in 2(S(K)) is denoted by S as well. This leads to the

block decomposition of L — X\, A = n?7? + z,

—z f/(—2n) (Sn‘]v)tz(n)
21)  L-@r+2)=| Ve -z (™I |
(S§"V)zwmy (ST"V)zm) An—z

where Z(n) := Z\{£n}, the superscript ¢ denotes the transpose, and A,, : £2(Z\{£n}) —
(2(Z\{#£n}) is the linear operator with matrix representation

An(]a k) = 7T2(k2 - n2)6jk + V(] - k)? (]a ke Z(ﬂ))

The (possibly) complex number A = n?7? + z is a periodic eigenvalue of L if there
exists a 2-periodic function f € HZ([0,2]) such that (L — \)f = 0. With

xf = f(—?’l), yf = A(n)v F:= (f(k))Z(n)7
the equation (L — \)f = 0, or its equivalent (E — )\)f = 0, leads to the following
homogeneous system of equations:
(2.2) —zaf + V(=2n)yf + [S"IV, Flym =0,

(2.3) V(2n)xf —zyf + [57"(]‘7, Flzmy =0,

(2.4) (S"V)zmyz! + (ST"V)zmyy’ + (An — 2)F =0,
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where [a,b] = ), cx a(k)b(k) (no complex conjugation). Equation (2.4) will be
referred to as the external equation. The system of equations (2.2)—(2.4) is analyzed
as follows. First we solve the external equation (2.4) for F, regarding x/,y/, and z as
parameters. The solution F' of (2.4) is then substituted into the equations (2.2)—(2.3).
This leads to a linear homogeneous system of two equations for the unknowns =7,y
with parameter z. The determinant of this system vanishes iff A = n?72 + z is an
eigenvalue of L. In section 3.3 we will also consider the inhomogneous version of the
system (2.2)—(2.4) in order to obtain, among other results, an orthonormal basis of
the root space of a double eigenvalue of L of geometric multiplicity 1.

2.2. Analysis of the external equation. To analyze the operator (A, — z) :
(*(Z(n)) — £*(Z(n)), we write A,, = D, + B, where D, is the diagonal part of 4,
(recall that V(0) = 0),

(2.5) Dy(k,j) == m*(k* = n®)okj, (k,j € Z(n) = Z\{£n}).
Notice that D,, is invertible and that B,, has matrix elements

B (k,j) = V(k—j), (kj€Z(n)).
Write

(2.6) A,—z=D,—(2—B,)=(Id-T,)D,; T,:=(z-B,)D;*!

n
where T;, is an operator on ¢?(Z(n)) with matrix elements

1

(261 — V(k - j))m-

Further, denote by ||V the norm of V in LZ([0,2]), ||V]| = (232, |V (k)]*)"/2.
LEMMA 2.1. (i) Forn > 1,

11

2.7 DY < ==

(2.7) DM < o
(2.8) 1Tnll < i(IZHHVH)'
’ =3y i

(ii) forn>1 and z € C with |z| +|V] < n,

(2.9) I(An —2)7H <

ﬁw‘[\g
Sl

Proof. (i) (2.7) follows from (2.5). Concerning (2.8) we prove || T, | gs < 5 (|z] +
(IV|]) with ||T},|| s denoting the Hilbert—Schmidt norm of T (which leads to a stronger
version of (2.8) as |10, || < |Tnllms):

s |26 — V(k — j)?
I T
J,k€Z(n)
1222 42|V
< - )
- Z 4 (k —n)2(k +n)?

™
keZ(n)



ESTIMATES FOR PERIODIC AND DIRICHLET EIGENVALUES 121

As

1 1/m\2 31
(2.10) k;ﬂ (k—n)2(k + n)? :6(5> T 8nt

we conclude that |1, | gs < %(M +[[VID.

(ii) If | T < 3. (A, — 2) is invertible (cf. (2.6)) and

21
A, —2)7Y < 2IDJY € S5-.
(A0 =27 < 21070 < o
In view of (2.8), |T,,|| < 1/2 for |z|+ || V] <n. O
As an immediate consequence of Lemma 2.1, one obtains the following proposi-
tion.
PROPOSITION 2.2. Let n > 1 and z € C satisfy |z|+ || V| < n. Then, for any
choice of xf,yf in C, (2.4) has a unique solution F

(2'11) F= (Z - An)_l(snv)Z(n)xf + (Z - An)_l(s_nV)Z(n)yf-

Substituting the solution F', given by (2.11), into (2.2)—(2.3), one gets

—z+a(-n,z)  V(=2n)+ B(-n,z) ) < xf ) B ( 0 >

(212) (V@m+ﬁma>—%+amw> ! 0

where, for n € Z\{0}, satisfying |z| + ||V[| < n, we define, with A, := Aj,|,

(2.13) a(n,z) = [ST"IV, (2 — An) "HST"V)z(m) | 2(n)s

(2.14) B(n,z) = [ST"IV, (2 — An) " HS"V)z(m))z(n)-

In the following sections, the coefficients a(n, z) and (n, z) will be analyzed. Often,
we will write [-, -], for [+, ]z

2.3. Identity for a(n,z). Throughout this and the following section, we as-
sume that n > 1 and z € C are such that |z| + [|[V] < n. To simplify notation
we drop the subindex n in A,, B,,D,, and T,, with the understanding that n is
fixed in this subsection. Denote by (z — A)! the transpose of z — A, (2 — A)!(j,k) :=
(= — A)(k,§) ¥k, j € Z(n).

LEMMA 2.3. (i) J§" =8 "J;

(i) (z—A)=J(z—A)'J.

Proof. Part (i) is verified in a straightforward way. Regarding (ii), it is to prove
that for k,j € Z(n),

(2.15) (z = A)(k,j) = (z = A)(=j, —k).
The identity (2.15) follows from the definition

(z — A)(k,j) = 265 — 72 (kK* — n?)op; — V(k — j)
and the identities
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We obtain the following identity for a(n, z).
LEMMA 2.4. a(n,z) = a(-n, 2).

Proof. With (S7"V )y, = S’”VZ\{OQ,L} and (z — A7t = (J(z — A)tJ)~t =
J((z = A)~1)tJ (Lemma 2.3) it follows that

a(n,z) = [anJ‘A/, (J(z— A)tJ)flenf/Z\{o’gn}]Z(n)

[JS"V, J((z — A) ™)' IS " Vi (0,20} |2(n)
(z—A)~'S"V, JS_HVZ\{OQn}]Z(n)
S"IV, (2 — A) LS Vg

= a(—-n, z). 0

As a consequence of Lemma 2.4, the vanishing of the determinant of the 2 x 2
matrix in (2.12) leads to the following equation for z:

(2.16) (2 — a(n, 2))? — (V(zn) + B(n, z)) (V(an) + B(—n, z)) —0.

Equation (2.16) is solved in two steps: for ¢ given, we first solve the following equation,
referred to as the z-equation, for z:

(2.17) z=ua(n,z)+C.

Substituting the solution z = z({) of (2.17) into (2.16), we obtain the following
equation for (, referred to as the (-equation:

(2.18) ¢ = (V2n) + B(n, 2(0))) (V(=2n) + B(=n, 2(0)) ) = 0.

In the next four sections, (2.17) and (2.18) will be analyzed.

2.4. Estimates of a(n,z) and the z-equation (2.17). In this section we
solve (2.17), using the contractive mapping principle. For this purpose we need the
following lemma.

LEMMA 2.5. Forn >1 and z € C satisfying |z| + |V < n,

(i) lo(n,2)| < |V]]*/3n;

(i) |La(n, )| < V]2/9n2.

Proof. (i) By the definition (2.13) and Lemma 2.1,

_ 21
la(n, 2)| < [VIIlGz = T IVIE< S (IVI
m2n
(i) Notice that

dilza(n, z) = [S_"JV, —(z — A)_QS_"V]Z(H),

and therefore,

d —1112 41 2
\dzam,z) <IVIIGE=-A7 IV < Z—IvVI*. o

Denote by Dy = D (0) the disc {z € C||z| < M} and denote by D)y its closure.
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PROPOSITION 2.6. Let V € L3. Then for any M > 0 and n > 1 satisfying
n > ||V + M, and for any ¢ € Dyrya, the equation

(2.19) z=C(+a(n,z)

has a unique solution z, = z,(C) in Dpr. The solution z,(¢) depends analytically on
(e DM/Q, L
Proof. For z € Dy,

lz[+ VI <M+ V] <n,
and thus, by Lemma 2.5, |a(n, z)| < M/3. Tt follows that for ¢ € Dyy/a, 2 € Das
I<| + |an, z)| < M/2+ M/3 < M.

Thus, for ¢ € Dyy/2, g(2) := (+a(n, 2) defines a map on D)y into Dy Furthermore,
g is a contraction, as for any 21,22 € Dy

1
l9(21) — g(22)] < §|Zl — 22,

where we used that by Lemma 2.5

< 1y e

1
< g2l 9

su ’da(n 2)
e |z

Hence there exists a fixed point z = z(¢) of g with |z| < M, z with
dz do !
—=(1-— M/2. a
= (1-Fea@) i<y

In a next step, we analyze (2.18). To obtain estimates for the coefficient G(n, z)
we need to establish bounds for the norm of the operator T' = (z — B)D~! introduced
in section 2.2, viewed as an operator on a weighted ¢2-space.

2.5. Estimates of norms of T;,. Recall that, with n arbitrary and fixed, T' =
T, = (z — B)D™! : *(Z(n)) — (*(Z(n)) is a bounded operator (cf. (2.6)). If V €
H{, T can also be viewed as an element in £(¢4.,, (Z(n))), where S¥"w is the shifted
weight

(2.20) (SE"w)(4) == w(%n + 7).

Denote by Wy : 0%, (Z(n)) — €*(Z(n)) the diagonal operator given by
W (k, ) = w(k £ )6y,

Notice that W : (%, (Z(n)) — ¢*(Z(n)) is an isometry. Therefore,

(2.21) 1T 22y = 1 Tnll 2oz

tng)’

where Ty := WoT, WLt : (2(Z(n)) — €2(Z(n)).
LEMMA 2.7. Forn >1

2] + [V ]|
”T””[l(@inw) < 3,
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Proof. In view of (2.21) it suffices to estimate the Hilbert—Schmidt norm of T4
in £(¢2). As w is submultiplicative,
(S*"w)(5)

m <w(j—k).

In view of (2.21), (2.6), and V(0) = 0,

strw(i) [* 1
H iHHS Z SinUI(k‘) | (.] )| 7r4\k2—n2|2
j,k#+n
1
+ Y P
ol w4 k2 — n?|
<UVIR+1P) Y = .
= w 4 _ 2 2
2, T kPt
cEPHIVIE 1
- 9 n?’

where in the last inequality, we again use (2.10). This estimate leads to | T4 ||gs <
L2+ V]| |
3n :

As an immediate consequence of Lemma 2.7 one obtains the following corollary.
COROLLARY 2.8. Forn > 1, and z € C with |z|+||V||lw < n, Id—T, is invertible
and

[(Id—=To) Me@e, <2

sEnw/ T

Corollary 2.8 can be used to obtain an estimate of the solution F' of the external
equation established in Proposition 2.2. According to (2.11),

F=2'F +y'F_,
where
(2.22) Fy = (2= A) " H{(S*"V) g
COROLLARY 2.9. Forn>1 and z € C with |z| + ||V|lw < n,

2

1Pl < Vil

Proof. By (2.6), (z — A,)~t = —D;*(Id — T,,)~!, and by Corollary 2.8

[(Id—=To) Me@e, <2

sEnw/ T

As D,, is the diagonal operator on ¢%(Z(n)) with coefficients D,,(k, j) = 7%(k? —n?)d;,
we have

_ 1
||Dn1||c(z§inw) < 5

Combining these estimates yields the claimed estimate. 1]
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2.6. Estimate for 3(n, z). Substitute, for z € C satisfying |z| + ||V]| < n,
(z—A)t=-D'-D'1(Id-T)*
into the expression for 3(n, z) to obtain
(2.23) B(n,z) = fi(n) + B2(n, 2)
= B1(n) + B2(n,0) + z/ol (;ZB) (n,tz)dt,

where
(2.24) Bi(n) == —[ST"JV, D_l(SnV)Z(n)]Z(n)v
(2.25) Bo(n,z) =[S IV, DT(Id — T) " (S"V)0m) 2 -

The term (1(n) is independent of z and

1 (Vv Vv
(2:26) fr(n) = ) <k * k:) (2n),
or
1 Vin—k)V(in+k)
(227) i) = — > :
hin T k. n+k
where we use that —D(k,j) = —m2(k* — n?)8y; = 7%(n — k)(n + k)ék;. In the

subsequent lemmas, (1(n), B2(n,0), and d% (n,z) are estimated separately. Given
the weight w and « > 1/2, introduce a new weight (wq (k))kez,

wo (k) = <1+|§|>aw(k).

Notice that w, is again symmetric and submultiplicative.
LEMMA 2.10. (3,7 w1(2n)2B1(n)%)Y2 < V|2,
Proof. By Lemmas A.1 and A.2 (in particular, Lemma A.2 for « = 1) and (2.26),

1/2
(Z w1(2n)261<n)2> < %

neE”Z

2
<[VIE- O

w1

w1

LEMMA 2.11. For |n| > ny := M + |V]|w,

1
(1+ |n))w(2n) sup |Bz(n,z)| < gl\VHfu-
|zI<M

Proof. By (2.25), for any |z| < M and |n| > ny,,

1V S T(Id—T)"YS"V)zm
Baln,2)] = — (k . ( k) (S"V)z( )) (2n)’
1 V(n— k)| lag (n + k)]
(2.28) =02 2. n — k| n+kl
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where
ay (k) = ST"T(Id — T) " H(S"V)gmy(k), (k€ Z\{~2n,0}).
Using that [Tz, ) < % — g (Lemma 2.7) and [|(Id = T)7Y| g,y < 2
(Corollary 2.8), we conclude that ’
(2:29) lagylho < 222V lw < 2IIVH
. (n)llw > 3|’I’L‘ w S we

As w; is submultiplicative, we then obtain from (2.28)

(1 + [n[)w(2n)[Ba(n, 2)]

1 N
< — D 2wn—R)IV(n—k)2wn + k)lag)(n+ k)]
k#+n
4 1 )
< EHVHwHa(n)Hw < g”VHw 0

LEMMA 2.12.

1/2
( > (1+|n)4w(2n)2|ﬁz(n»0)lz) < (L+n) VI

[n]>nw
Proof. By (2.25),
Ba(n,0) = [ST"JV,D'BD ™ (Id — Toeo) ™ (S™V) z(m))2m)-

Write (Id — Tzzo)il = Id + Tz:()(ld — Tzzo)il to obtain ﬁg(ﬂ, O) = ﬂg(’ﬂ) =+ ﬁ4(n)
with

Ba(n) :=[8™" IV, DT BD T "V )] (m):
Ba(n) =[S JV,D ' BD S a(] ),
and
a=agp =8 "T.—o(ld— TZ:O)_l(S"f/)Z(n).
Let us first treat #3. As w is submultiplicative,
w(2n) <w(n —k)wn+ k) <w(n —kwn+ jlwlk —j),
one obtains, for |n| > n,,,

(2.30) (1 + |n|)*w(2n)B5(n)

1 = RIVE =R o wl )V )]
P 3 (U Il Stk — V= DI
JF#En

1
= ;(R1 + Ry + R3 +R4),

IN
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where R;, Ry, R3, R4 denote the partial sums corresponding to the index sets I, I, I3,
Iy C{(k,j) € Z?|k # £n,j # +n} defined as follows:

L:={lk—=n|>nl; |[j—m|>In] | kj#=En}

Ly:={lk—n|>n; |j—n|<|n| | k,j#=xn}

Is:={lk—n|<|n|; |j—n|>|n] | k,j#*n},

Iy:={lk—n| <Inl; |j—nl<|n| | kj#+£n}
Let us first estimate Ro(n). For k, j with |k —n| > |n|,|j —n| < |n|, one has 1+ |n| <
|k —n| and 14 |n| < |j + n|, and thus,

2 _ .
(o) k=nllitnl
[k =nllj+n| = [k—n[lj+n

Therefore, Ro(n) is bounded by

ean > MRV et AV
(k.j)€l2 J

Let £(j) :== w(5)|V(4)|. Then

(2.32) > €t n+]j)_ 5 £<k+n—£>|2fff)g| -,
i el

Hence, for h € {2(Z),

> I

)| Ra(n Z Ih(n &+ k) E(k+n—0)E(0)

i |k—|—n| |2n — ¢|
_ 5~ il D+ £) €0 DECE)
o 2n — ¢ |k + n
1/2 1/2
()¢ (k +n — £)? £(n — k)*E(0)°
S\ T e 2 T Tl
n,k,4 n,k
1/2 1/2
[h(n)1?€(5)* 0)?
<
- Z |2n €|2 Z |2n 3\2
n,j,£ 7,4n
< -2|[hl €]l - 2llEl* = 4l Il
Thus we have proved that
1/2
Y. Ro(n)? < 4llel® < 4V,

[ >N

Using the convolution estimate ||[U x V|;z2 < ||U||¢2]|V||;» one obtains, for j = 1, 3,
and 4,

1/2

> R <AV

[ >N
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Hence,

1/2

Y (LIl w(2n)? |85 ()

[n]>ny
1 3 3
< -4 VI < VI,

To estimate [34(n) we proceed similarly. By definition,
N 1 - . 1 .
k#+n Jj#En

whence

(1 + In)*w(2n)|Ba(n)]

2w —BVm-k oo wntg)la(n+ )l

= 42&”" “Hnrw I
Jj#EN

2%(Q1+Q2+Q3+Q4)7

where Q1, Q2, @3, Q4 denote the partial sums corresponding to the index sets I, I, I3,
I, defined above. Each of the four terms @Q; = Q;(n)(1 < ¢ < 4) is estimated in the
same way, so we concentrate only on one of them, say, Q2. Similarly as in (2.31) we
obtain

la(n +j)|
In —jl

o e VR = 10 0 - pluta+ )
(k,g)€l2

Let 7(j) = 0 () == w(j)la(j)| and £(j) := w(j)|V (j)|- Then

> &k w D ()€|<6(n)(n+k)
) ;;\é;\ n| |£2n2j\£;\6z\

where

) (£)
[2n — 4|

Smy(k+mn):= > &k+n—10)
L#2n,0

Using the convolution estimate [|[U * V|2 < ||U||¢2||V]|¢r one concludes that (with
2
2: Y s m =2 <4)

1/2
1
ol < lngllezliélles { D=5 | < 2l llelléllee-
770
As|[Tz=ollzez,,) < 3‘ y (Lemma 2.7) and ||(Id—Iz—0)~ 1||£(Z‘2S”w) < 2 (Corollary 2.8),
one has

Nl < s 1|V s (¥]0] > 1)

3Jn]
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Hence,
Ielle < 22 [VI2,  (Vin| > ny)
(n)lle2 = 3|n‘ w)? = T )-
This leads to
O(ny (k 4n) An,, 9
< — k)= L <l =2 V13, - 2,
QQ(”) = lki§‘n|§(n ) |]€ +’Il| = ||£||Z 3|Tl‘ H ||w
)
and hence,
1/2 1/2
8N 1
> aer| <Py x4
n
|| >we [n]|>n
16n
< VR,

Similar estimates hold for @1, @3, and Q4, and thus,

1/2
( > (1+|n|)4w(2n)2|ﬂ4(n)|2)

nl>n
1 16n

<4-— - VB,

<a- g v
Combined with the estimate for G3(n), this leads to the claimed statement. |

LEmMMA 2.13.
1/2
d 2
>+t sup |26z | <21+ n) 2V
zl<M | dz

\n|2nw
Proof. Let n(n, z) :== 4L 3(n, z) and notice that
n(n,z) = =[SV, (z — A) (8" V)z(m)|z(n)-
Recall that (z — A)™' = —D 1 (Id - T) ' = -D~! — D71T(Id — T)~! and thus
(z—A) 2= (-D' =D 'T(Id-T)") (= — A"
=D 24D 2TId—-T) ' =D 'T(Id - T) ')(z — A)~*
=D 24D 2T(Id—-T) '+ D 'T(Id—T)*D~'(Id —T)~*.
This is used to write n(n, z) as a sum,
n(n, z) = m(n) +n2(n, 2) + ns(n, 2),
where
m (n) = [anJV’ Diz(SnV)Z(n)]Z(n)a
na(n, z) = — [ST"JV, D2 T(Id - T) " (8" V) z(m))z(n)
n3(n,2) ==~ [ST"JV, D' T(Id — T) ' D~ (Id — T) " (S" V) zm)]z(n)-

129
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The three terms 71,72, and 73 are estimated separately. The coefficient 77 is inde-

pendent of z and
1 (v Vv
m(n) = Y (/-ﬂ * k2> (2n)

V(n+k)
= Z 2
. (n+ k)2’

Hence, by Lemmas A.1 and A.2 (cf. formula (A.2) for a = 2),

1/2 A
1|V Vv
2 2
(Z wz(2n)*m (n) ) < ) * 5
ne”Z w2
6 |V 6
7112
(2.33) < e < FHV”U}’

To estimate 72(n, z), introduce, for |z| < M, |n| > n,, and k € Z\{—2n, 0},
a(k,z) = agy(k, 2) = =8 "T(Id — T) " (8"V)z(n) (k).
(Lemma 2.7) and |[(Id — T)~ 1H£(42 y < 2 (Corollary 2.8);

Then ||T||L(egz,;3 < 3

hence
Ty
< —2|V
ool < 520V
and, as wy(n) = (1 + |n|)?w(2n) is submultiplicative,

V a(n)
(R

(1 -+ [l ?w(@n)s(n, )] < — (2n)

= ¥ S w0 S a0+ )

= AR 2
ol k| In + k|
422 n
< — V w n)llw S 777“) w
< LV lullogyllo < S 2221V
and
(2.34)
1/2
1 2 2
Y- (L) w(2n)® sup |ma(n, 2)|
[z|<M
[n]>ny
1/2
4 2 1 422 42
< VL e Y. = < =201+ n)2VE < 4(1+nw)1/2”VH12u'
3 > n w3
Hence, we used that N237, oy & < 2N?(5z + [y %) = 2(1 + N). To estimate

n3(n, z), we proceed in the same way as for n2(n, z). Introduce for |z| < M,|n| > ny,
and k € Z\{—2n, 0},

a(k, 2) = apy(k,z) = ST"T(Id - T) "' D7 (Id — T)"H(S"V) g (k).
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Then, by Lemma 2.7 and Corollary 2.8,

Nw 1
—2
3In| " w2[n]

lagmllw < 2[[V']la,

where we use that |D;,!| = m < ﬂ%lnl VEk € Z(n). As wo is submultiplicative,

1+ |n|
2

14 . a(n)
k k

(1 + [n))*w(2n)[ns(n, 2)| <

(2n)

1+ |n| 1+ |n— k| -

< — _

<Ly L - wiv - )
k#+n

4
— L+ DIV llwllag llw
21| +1ny, o,
—= v

7'('43 |TL| |7L| || Hw

1+ |n—k|
|n + k|

w(n + k)|am)(n+ k)|

<

and, with
1/2 1/2
1+n\? T+n,\> [>/1 2 1
S ) sve((B) < (Feme )
e w o

< 4n;1/27

one obtains
1/2
> (L+ ) w(2n)® sup |ns(n, 2)|?
(2.35) > l-l=M
431 4 44nl/?
< 7§7nwllv|\i < — VI3,
T 3 /My 3

Combining (2.34)—(2.35), we get

1/2
5\ Y

iﬁ(n,z)

Z (1+ |n))*w(2n)? sup P

|z|<M

[n|>nw

2 4/3
< 6+4 ;1-4

(nw + D2V < 200 + V2 VL. O

s

The previous lemmas lead us to the following main result of this section.
PROPOSITION 2.14. The following statements hold:

/
) (S, (1 Il (20)? supy cpr 1520, 2)2) " < 20+ )2V,

(i) (Zpoizn,
Proof. (i) By

1/2
L Il PwEnlg M) < IVIE,

e e

1/2
L [l 2w(@n)? supp. <ar |8(n, 2)2) < 2014+ na) 2|V,
2.23), for |z| < M,

—~~

0. 2)| < (o, 00|+ M sup | .2
lz|<M | 0%
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with M + ||V ||lw = 1w
1/2

Y (I wn)? sup |Ba(n, 2)?

n > B

<V +2M (1 + ) 2V

< VIZUV o + 2M) (1 + 1) '3
(ii) Lemma 2.10;
(iii) It follows from conditions (i) and (ii). d

2.7. The (-equation. In this section, we analyze the (-equation, stated in
(2.18),

(2.36) ¢ = (V2n) + B(n, () (V(=2n) + B(=n, 2(0)) ) = 0.
Given M > 0 and V € L2, define
(2.37) Iy = max |V (e2n)| + max |B1(en)| + ‘Eﬁ% |B2(en, 2)|,

and let n, := M + ||V||. By Lemmas 2.10 and 2.11, applied for the weight w =1,
rn <V +2|V]? Vn with |n] > n..
PROPOSITION 2.15. Assume that M > 0 satisfies

(2.38) 31+ V2 < %.
Then, for n > n.,(-equation (2.36) has exactly two (counted with multiplicity) solu-
tions in the disc D, .

Notation. We label these two solutions by ¢;I,(,; in an arbitrary way, but then
we keep them fixed.

Proof. Clearly, ¢(? = 0 has precisely two roots in any disc D,.. For |[¢| = Kr, with
1 < K <2 close to 1 and any n > n,, by (2.37) and (2.23),

(2.39) \zs\lile (V(2n) + ﬁ(n,z)) (V(—2n) + B(—n, z)) | <72 <|¢)?

and |¢| < 2r, < &L, Taking into account (2.38), it follows from Proposition 2.6 that
zn(¢) € Dy depends analytically on ¢ for || < M/2 and n > n,. Therefore, the left
side of (2.36), denoted by g(¢), is an analytic function of ¢ in Dy;/ and, by (2.39),

9O =05 InQl <[P forlel < -

Therefore, by Rouché’s theorem, (2.36) has precisely two roots in Dg,,,. As the two
roots are independent of K, and 1 < K < 2 is arbitrarily close to 1, we conclude that
w€Dy,. O

Let, for n > n.,

(2.40) zE = 2(CE) = ¢ + a(n, 2(6)),
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where (F are the two solutions of (2.36), given by Proposition 2.15, and define

(2.41) ME = n?r? 4 2E

n

Then A is a pair of periodic eigenvalues, A\ € specper(—dd—;2 +V). In the next section
we want to deduce estimates for the gap length sequence (A} — X, )n>1.

2.8. Gap length estimates.
PROPOSITION 2.16. Assume that M > 0 satisfies

M
B(L+IV]W)” < -
Then, with ny := M + ||V ||w,
1/2
ST w@n X =P | <814 nw) Y21+ V]W)?.

n>ny

Remark. With N := 13(1 + ||V||w)? K1 = 500 and Ky = 5. Proposition 2.16
gives Theorem 1.1.
Proof. Notice that, for n > n,,, by (2.19),

|z — 2 |.

@) WAl =lad -l <16 -Gl sw | fa(n.2)
lz|<M | G2

By Lemma 2.5, (as |z| + |V]| < M 4+ |V]|w = nw < n),

)| < W2 VI _

1
2.43 1
(243) T 92 T 92 T 9

=
Substituting the estimate (2.43) into (2.42) yields

1 _ _

As |¢F = ¢ 1 < |G+ 16, | < 2rp, with 7, defined by (2.37), we then conclude that,
for n > ny,,

|2 — 2| < dry,.
In view of Proposition 2.14,

1/2

> w(2n)’r} <4-204+n,)20+||V]w)? O

N> Ty

2.9. Gap length asymptotics. In this section, we obtain the first two terms
in the asymptotics of A} — A for n — oo. Let

(2.44) p(£n) := V(£2n) + 1 (£n),
n(z) = n(n, z) == Pa(—n,2)p(n) + B2(n, 2)p(—n) + B2(—n, 2)B2(n, 2),
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where the decomposition 3(£n, z) = B1(£n) + f2(£n, z) has been defined in (2.24)-
(2.25). Then (2.36) can be written as

(2.45) ¢? = p(n)p(=n) = n(2(¢)) = 0.

LEMMA 2.17. Assume that M > 0 satisfies 3(1 + ||V ||lw)?> < 2. Then the
following estimates hold:
@ lpm)| < 5 Vs llellw < Ve + VI3 /
1/2
(i) (Snzm, (14 In)2w(@0)2 supp e 100, 2)]) <40+ m0)2(1+ [V )2,
Proof. (i) By Lemma 2.10, |1(n)| < ||[V||?, and therefore,

M

p) <201+ |VI)* < =

Moreover, we have ||oll. < [|[V]lw + [|V|%. (ii) By the definition of n(n,z), and
Proposition 2.14(i)

Y (L [n)*wn)? sup |n(n,2)|

n>n, |2| <24

1/2

<2( > (L+[nD)*wn)® sup [Ba(n,2)P | 201+ [V]w)

[n|>naw |2l<M

+ Y (L [n)?w(2n)? Suadlﬁz(n,Z)lz

|z|<

n>nqy,
< 4(1 =+ HV||w)2 : 2(1 + nw)3/2(1 + ||VHw)2 + 4(1 + ”w)B(I + HVHw)4
<121+ n,)* 1+ [[V]lw)*. O

LEMMA 2.18. Assume that M > 0 satisfies 3(1 + ||V|[w)? < 2. Then, for
n > ny, either of the two roots ¢ € {¢E} satisfies

min|¢ £ (p(n)p(~n) 2| <5 sup [n(z)]'/%.
|2l<M

Proof. Choose an arbitrary root R of R? = p(n)p(—n) and let s := sup| <ar [1(2)]-
We distinguish the following two cases. .
Case 1: |R?| < 4s: we have, with 2 = 2 for { = (T,

(€ £ R)?| < 2I¢%| +2|R?|
< 2|R?| + 2|n(2)| + 2| R?|
< 4|R?| +2|n(2)] < 185 < (5s'/2)2.

Case 2: |R?| > 4s: in this case, |[R?| > 0 and (2.45) can be rewritten as

(2.46) - R <1 N n(Z(C))) ’

RZ

where z(¢) is a solution of the z-equation (2.17). Let & := %. Then, (2.46) can be
written as

n(=(0)

(2.47) g2 =14 1CL
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By assumption, |R?| > 4s and, as |z(¢)| < M, [n(z(¢))/R?| < 1. Denoting by
(1 + w)'/2? the branch of the square root determined by 1'/2 = 1
equations

(2.48) §=F5(8),

where Fy(§) := £(1 + 771(;;))1/2, with 2 = 2(RE). Let us first consider the equation
§=F.(§) Let Di(1):={¢€C | [-1]< 1} and notice that, for £ € D.(1),¢ =
RE satisfies |¢| < 22 < 2 where we used the estimate |R| < & of Lemma 2.17(i).
According to Proposition 2.6, z = ( + a(n, z) has a unique solution z(¢) € Dj;. This
shows that Fy(£) = (1 + %)1/2 is well defined for £ € Dy ,4(1).

As |1+ 2)Y/? = 1| < 2|z| for € Dy,4(0) and |R?| > 4s, we conclude that Fy
maps Dy ,4(1) into itself. Furthermore, F; is continuous, and therefore, by Brower’s

fixed point theorem, ¢ = F, (¢) admits at least one fixed point ¢7 € Dy (1),

meﬁ

& = rueh = (1+ 2

where 2! = z(R¢!) and ¢ satisfies the estimate

<1+ ”E;Q)UQ_l

1 S1/2
2[R’

n(z")

l¢f —1] < R2

2 2
< — < Z.
-3 -3

where, for the last inequality, we used that |R?| > 4s. Hence, ¢! := R¢! satisfies

1 1
¢! =Rl < = sup |n(2)]"/? = 5s'/2
2 z1<m 2

The same arguments can be used to show that there exists a solution ¢/ € Dy 4(—1)
of the equation & = F_(¢) so that ¢! := R¢M satisfies

1 1
Ic"T+ R < - sup |n(z)|Y/? = Ss'/2
2 21<m 2

Therefore, with 2|R| > 4s'/2
¢F = ¢ =R~ (R~ ¢) — (¢ +R)

2.49 1 1
(2.49) > 2|R| — 551/2 - 5512 > 3512 > 0;

hence, ¢! # ¢f. Moreover, ¢! and ¢!! are solutions of (2.45) and thus satisfy, in view
of (2.36),

Iy (AT 2
<ry:i= + + .
[, 1 <, mjz:xxw (£2n)] max |81 (£n)| I?I?X |B2(£n, 2)|

Therefore, by Proposition 2.15, {¢f, ¢!} = {¢F, ¢ 1 O
For later use, we state the following application of Lemma 2.18.
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COROLLARY 2.19. Let V € HY be a l-periodic potential. Then for M with
3L+ V) < 4,

1/2
> w2n)?|Grf? <91 +71,) 21+ [V ]lw)*.
h>1,
Proof. By (2.45)
1/2
> wn)?|Grl?
NNy
1/2 1/2
< | D wen)lpmp(=n)l |+ | D w@n)? sup |n(n, z)|
N>MNyy n>ne |z|<M
By Lemma 2.17,
1/2
> w(@n)® sup |n(n, z)| <A1+, P+ (VW)
n>ne |z|<M
and, with p(n) = V(2n) + 81 (n),
1/2
> w(2n)?|p(n)p(—n))
N> Ty
1/2 1/2
<[ D2 w@n)?lp(n)? > w(@n)’p(—n)?
NNy NNy
< (Vo + IVIE)? < @+ 1V ),

where we have used Lemma 2.17. O

Recall that Af = n?72 4 2* denote periodic eigenvalues of the operator —j—; +V
and p(£n) have been defined in (2.44).

THEOREM 2.20. Let V € H{ be 1-periodic. Then, for any M > 0 with 3(1 4+
IVllw)? < 4 and ny = M + |V,

1/2

> (14 [n)?w(2n)? (miin ((A: —A) + 2(p(n)p(—n))1/2>>2

NNy

(2.50) < 50(1 + 14,)2/2(1 + ||V [|)*.

Remark. With N := 13(1 + ||V]|w)?, K3 := 105, and K4 := 14, Theorem 2.20
gives Theorem 1.2.

Proof. For n > ny, \f — A, = 2zt — 2. Furthermore, 2= = (¥ +a(n, z") and, by
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Lemma 2.18 minz |(¢; — ¢, ) £2(p(n)p(—n))*/?| < 10supy, < n(n, 2)[*/2. Therefore,

)i

where for the last inequality we used Lemma 2.5(ii). By Lemma 2.17(ii) (estimate for
sup|, < In(n, 2)|'/?) and by Proposition 2.16 (estimate for |z — 2 AF =00,

min| (A} = A7) £ 2(p(n)p(—n))'/?|

—Za(n,z)

< min (¢ = ¢) £ 2(p(n)p(—n)) | + ( sup
|2l<M

e, VIR -
< 10 sup |U(H,Z)| +'444247|Zn Aizn|a
|21<M "

al=
1/2

> (L [nl)w(2n)? min [0 = A7) £ 2(p(n)p(—n)) /22

N>y
<10 (41 4+ n) 21+ [V ]0)?)

1/2
1+4mn)? _
vz {2 S et - 22
N2> Ty

<4001+ 1) 2 (14 V| + [VIES(L+ 1) 21+ [ V].)?
<501 +ny)*2(1+ |V]lw)*. O

3. Eigenfunctions and Riesz’s spaces.

3.1. Eigenfunctions. In this section we review the estimates of the Fourier
coefficients of an Ly-normalized eigenfunction f corresponding to a periodic eigenvalue
2
A=n?n?4z0of L= —dd? + V. fis a 2-periodic function in Hp (R;C) satisfying

(L=XNf=0 |fl=1

Recall that 2 := f(—n),y = f(n), and F := (f(k))keZ(n)~ By Proposition 2.2,
F =a2/F, +y/F_ and, by (2.22), Fy = (2 — An)_l(Si"V)Z(n). For n > ny, Fy
and F_ satisfy the estimates (cf. Corollary 2.9)

2

(3.) 1Pz, < Vi,
2

(32) 1Bl < == V]

By the normalization of f

(3.3) 1= / F@F@dz =2 [ o2 + g P+ 3 1)

k#+n

In particular, one has

1
(3.4) 2P+ Iy P < 5.
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Hence, by Cauchy’s inequality |F(k)| < (|27|? + [yf |2)Y2(|Fy (k)2 + |F_ (k)|?)'/2, we
obtain in view of (3.1)-(3.2)

1/2
1 2 1
F <(=-2. — <7V’w~
Pl < (520 2= IVI) <= Iv]

Thus, for n with n > n,,,

RIS,

1 Nle2@ny) <

Together with (3.3)—(3.4), this yields
1 1
. <Pyl P< 2.
35) <P <

We summarize our estimates as follows.
LEMMA 3.1. Let V € HY be 1-periodic. Then for any M > 0 and n > n,, with

M
314 [|[V]|w)? < i n >Ny = M 4[|V ]|w,

an eigenfunction f with || f|| = 1, corresponding to an eigenvalue X with |\ —n?n?| <
M, has the following properties:
() f(@) = afe e 1 yleinme 4 ol Py 4yl Py
(i) 3 <Ile/P+[y/[> <5
(iii) [Fslle,, < By 1P, < Lfle,

Snw — 4n w —  4n

3.2. Riesz’s spaces. Given a l-periodic potential V' € HY, let M > 0 satisfy
31+ |V]w)? < 2. For n > ny = M + ||V, there are precisely two (counted
with multiplicity) eigenvalues, A and X, near n?n? of L = —% + V. Recall that
specL = specLpey+ U specLpe,—. Denote by PF the Riesz projectors corresponding
to the boundary conditions Per® (cf. (1.16)) and let

By, := PS(L?[0,1]); Ea,_1:= P, (L?[0,1]), (Vn>1).

IfAF # A, or Af = A is of geometric multiplicity 2, there exist two linearly indepen-
dent eigenfunctions, corresponding to the eigenvalues A} and A, and E, is given by
the linear span of these two eigenfunctions. In the case where A} = A is of geometric
multiplicity 1, E,, denotes the root space of A\;7. Notice that this case might happen if
the potential V is complex-valued. As an example we mention V = ge?™® (¢ # 0 ar-
bitrary). The periodic eigenvalues of f% + £e?™ (considered on the interval [0, 2])
are given by n?n? (n > 0), where for every n > 1,n%7? is a double eigenvalue of
geometric multiplicity 1 (cf. [3], [5] for details).

Let us describe E,, in the case where A} = ). is of geometric multiplicity 1 in
more detail. Denote by f an Lo-normalized eigenfunction corresponding to A\ = A,
Lf = Arf. Choose an Lg-normalized element ¢ in E,, orthogonal to f. Then

E, = span(f, ) and ¢ satisfies

with &, # 0. Denote by ¢(z, A) and s(x, \) the fundamental solution of —y"” +Vy = Ay
with

(3.6) c(0,N) =1, J(0,\)=0; s(0,\)=0, s(0,\)=1.
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LEMMA 3.2. Assume Mgy, = Aop—1 and fol s(z, Aan)?dx # 0. Then Ay, is of
geometric multiplicity 2 iff Aoy, is a Dirichlet eigenvalue of the operator L on [0, 1].

Proof. Assume that A = Ao, is of geometric multiplicity 2. Then the fundamental
solutions c¢(z, A) and s(x, A) are eigenfunctions, both either periodic or antiperiodic,
and s(0, ) = 0. It follows that s(1,\) = 0, and therefore, A is a Dirichlet eigenvalue.
Conversely, assume that A € specp;.(L) is a double periodic eigenvalue. Then A(\) :=
c(1,\) 4 s'(1,A) = 2 and A(N) := A A(X) =0, as well as

(3.7 s(1,A) =0.
By the Wronskian identity,
1=c(L,N)s'(1,\) — (1, A)s(1,A) = ¢(1,\)s' (1, ))
and, combined with A(A) = £2, one obtains
(3.8) c(1,\) =s'(1,\) = £1

Take the derivative of the Wronskian identity with respect to A and use A()\) =0 to
conclude that

0= ¢(1,A)¢/ (1, A) + (1, \)§'(1,\)
= (1,0)s(1,2) = (1, 2)5(1,4)

£ (e(1,A) +3'(L,A) = (L, A)3(1, )
=0 —¢(1,\)5(1,\).

As X\ € specpir (L), and fo x,\)2dx # 0,5(1,\) # 0, and therefore,
(3.9) (1)) =

i.e., A is a Neumann eigenvalue of the operator L on [0,1]. By (3.6)—(3.9), c¢(z, \)
and s(z, A) are both periodic eigenfunctions of L on [0,2]; hence, A has geometric
multiplicity 2. |

3.3. Orthonormal basis of E,. In this section we obtain properties for an
orthonormal basis f, ¢ of the two-dimensional subspace F,, introduced above (n > n,,,

where 1y, := M +||V||,). Here f is an eigenfunction of L = —j—;—!—V, with || fllz2 = 1,
corresponding to the eigenvalue AT = \f

(3.10) Lf=\"f
and ¢ is an element in F, with

(3.11) (@, /) =0 llele =1.

Notice that ¢ is determined up to a scalar k € {z € C | |z| = 1}. Here (p, q) denotes
the Lo-inner product

(p,q) :/0 p(x)q(z)dz.

In the case when A™ = A\ is a double eigenvalue, ¢ satisfies an equation of the form

(3.12) Le=XTp+&f (AT = double eigenvalue),
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where & = &, = 0 if A has geometric multiplicity 2 and £ # 0 if AT has geometric
multiplicity 1. In the case where A= = A # A}, choose a normalized eigenfunction
f~ = f of A7 such that the following holds:

(3.13) 0<a=(ff)<L |fll=1
Write f~ as a linear combination of f and ¢,
(3.14) = =af + by,

where now the scalar x for ¢ (cf. (3.11)) is chosen in such a way that 0 < b. Then
a®+b2=1,and b#0, or

(3.15) a=cosf; b=sinfh; 0<6<m/2.

The function ¢ = %f‘ — 3 f satisfies

1 a
Lo=\"=f"=-)t=
p=NT LT NS

1. a _ 1 .
=t (357 3) + 00 = a0 f

= M (AT = AN~ f7) = (O = Ay f

S| =

Thus, in the case AT # A~, with A = AT,
(3.16) Lo =Xp+&f +h,

where v = v, = AF — A, h = F(f — f7), and £ = &, is defined by

no

(3.17) Eni=—(NF =\ ! (case \f # \)).
Notice that (3.12) has the same form as (3.16) if we set h equal to 0. It turns out
that we will no longer have to treat the following three cases separately.

Casel. AT =X~ and £ =0;

Case2. A\t =X~ and £ #0;

Case 3. AT #£ ™.

The next result shows that the term vh = (AT — A7) 1(f — f7) in (3.16) is well
under control.

LEMMA 3.3. If AT # A~, then b # 0 and ||h]| < V2.

Proof. By (3.15), b = sinf # 0 for AT # A~. By (3.14) and (3.15), h =
%(f —f7)=1=58 ¢, and therefore, as f and ¢ are orthogonal,

sinf

2
1—cosf
Il = =20 1<
sin @
as l—cosf _ _2sin®§ tanQ <lfor0<b<ZxT O
sing 2cosgsin% - 2 = -2

In the remaining part of this section our aim is to obtain estimates for &, (cf. (3.12)
and (3.17)). To this end, we write (3.16) in Fourier space. Introduce

= aPeTITE Ly eeE  ST B ()T @ = (D)) ez,
k#+n
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and, similarly

(3.18) h=ghe ™™ 4yl 4 N H (k)™ H = (H(k))rez(n)-
k#£+n

In view of (2.2)—(2.4), (3.16) leads to the following inhomogeneous system:

(3.19) —za® + V(=2n)y® + [S" TV, ®)z(n) = &nx! + ynal,
(3.20) V(2n)z? — 2y? + [STIV, @z = Eny’ +7ay",
(3.21) (S™"V)zmya? + (S7"V)gmy? + (An — 2)® = & F + 7, H,

where, as usual, z = 2,7 = AF — n?r2.

We use this system to obtain an estimate for &,. The sequence ® is obtained from
(3.21),

(322) ¢ = (Z - An)_l(snv)Z(n)mw + (Z - An)_l(SnV)Z(n)yw
- (Z - An)_lgnF - (Z - An)_l’ynH

and, by (2.11), F is given by
(3.23) F=(z=A) " (S"V)zmz’ + (z = 4n) N (ST"V)zmyy -
Hence,

= (z— An)_l(S"V)Z(n)x“’ +(z— An)_l(S"f/)Z(n)y“”

- (Z - A7L)72(Snv)z(n)§7zxf - (Z - An)iz(sinv)z(n)gnyf
— (2 — A,) My, H.

In this form, substitute ® into (3.19)—(3.20) to obtain, with a(n, z) and 8(n, z) defined
by (2.13) and (2.14),

(Vi csine Sratnn ") ()

_ ol — La(n, 2)z!f — LB(—n, 2)y!
—o ( v = LB(n, 2ol — Laln,2)y! )

N a4+ [S"IV, (2 — A,) " H]
T yh+ [STMIV, (2 — A)THH] )

where we used «(n, z) = a(—n, z), Lemma 2.4, and (cf. Lemma 2.5)

d - e
aa(n, 2) = —[S8T"IV, (2 = An) A STV )z (m))z(n)

and

d o I
B, 2) = —[STMIV, (2 = An)H(S"V )z ]zn)-
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Therefore,
(3.24) £n ( Idy — & ( gEZ 2 QE;Z)Z) > ) ( ij{ >

(Vamsmg ()

B a2+ [S"IV, (2 — A,) " H]
"\ Yyt +[STMIV, (2 — A,) L H]
where (¥ = 2zt — a(n, z;}), Idy denotes the 2 x 2 identity matrix, and to simplify

notation, [,-] = [-,-]z(n). Let V € Hy’ be l-periodic and choose M > 0 with 3(1 +
[V)? < 2. By Lemma 2.5, for any n > n,, := M + ||V, and z = z;}

(3.25) ’jza(n, )

where we use that, by Lemma 2.5 and Propositions 2.6 and 2.15, |27| < M. Further,
by Lemma 2.13, applied to w = 1,

(L +1nl)? | =60, 2)| <21+ nu) 2IVIZ, (0] 2 0w, |2] < M).

2
Use that for |n| > ny, A0 < M/12 o

— o+
1+]n | O 12 Thus, for |n| > n,, and 2z = 2.7,

(3.26) 'jzxf(n,z) <L

Combining (3.25) and (3.26), the left-hand side of (3.24) can be estimated from below,

for n > ny,,
(= (5 ) ()

2 (12 (1 L (oL LY
> el (1o (1= 35) + P (1- 15) ) = (316) -

where we used that < [z/|? 4 |y/|? (cf. Lemma 3.1). Further, we need an estimate
for [SEJV, (z — A,) ' H] with H as in (3.18).

LEMMA 3.4. Forn > ny,,

() " < v2; [y*] < V2

(i) |[S*"IV, (2 — A,)~tH]| < L

Proof. The proof of (i) follows from Lemma 3.3. To prove (ii), notice that for
n>mny, and z = 2},

[S*" IV, (2 = An) " H]|
VIl = An)HIH] < **IIVH\T

21
= -IVIve,
n

(3.27)

IN
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where we used that v/2||H| < ||h]| < V2 (cf. (3.18), Lemma 3.3), and ||(z — 4,,) || <
%% by Lemma 2.1. 0

Lemma 3.4 enables us to obtain an estimate from above of the right-hand side of
(3.24). Lemma 3.4 and estimate (3.27), together with |2¥|? + |y®|? < 1, are used to
deduce from (3.24) that, for n > ny, = M + |V |w,

slenl < (1671 + 10 0] +150, 1)
(3.28) + (16t 172001+ 19, 2)1) + bl (V24 22
<2AGH+ 1V (@0)] + 7 (-20)] + [8(n,2)| + 18-, 2)] + 3}yl

Estimate (3.28), combined with earlier estimates for 3(4n,z) and ~,, leads to the
following inequality:

C
3.29 < —— V>,
(3.29) 1€n] < wn) n>n
where C' > 0 depends only on ||V]|,,. In fact, the following stronger statement holds.
THEOREM 3.5. Let V € H{ be a l-periodic potential and let M > 0 satisfy
314 |Vlw)? < 2. Then the sequence (£n)n>n,, (cf. (3.12), (3.17)) satisfies

1/2
> w(2n)[éal? < 120(1 + 1) (1 + [V ]|)?

[

with Ny == M + ||V w-
Proof. The terms on the right side of (3.28) are estimated separately. Recall that,
by Corollary 2.19,

1/2
(330) Do w@nGP | <50+ n) (1 [V)?,
NNy
by Proposition 2.14,
1/2
(3.31) Z w(2n)? sup |B(n,2)|* <2(1 4 1) (14 [|[V]|w)?,

n| > l21<M

and by Proposition 2.16, with |v,| = [A\} — A, |,
1/2

(3.32) > wn)nf? <81 +n)*(1+[[V]w)*.

N>Ty
Combining (3.30)—(3.32) with (3.28) leads to the following estimate:
1/2

| XD wenlal?] <400+ n )04 VWL

N> Ty
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3.4. Restriction of L on E,,. Here we summarize the results of sections 3.1-3.3
as a statement on the structure of the restriction of L on the Riesz spaces E,,.

PROPOSITION 3.6. Let V € HY be a 1-periodic potential. Then, for n sufficiently
large, the Riesz space E,, has an orthonormal basis f = f,, ¢ = @, such that

LPersf = Aanv LPeTESO = )\QnSO + fnf + r)/nha

where e € {4+, =} is + for n even and — for n odd and h = h,, € E,,. Moreover, the
following inequalities hold:

c c

wan) = o

1P <2 [€nl <

with C > 0 independent of n. (For stronger estimates, cf. (3.30) and (3.32).)
4. Dirichlet spectrum.

4.1. Candidates for Dirichlet eigenfunctions. In section 3.2 we have intro-
duced, for n sufficiently large, the two-dimensional subspaces FE,,,

(4.1) Es, = Range(P;); FE2,_1 = Range(P,).

We have chosen an orthonormal basis (f, @) of E,, with f being a normalized eigen-
function for the eigenvalue A = A},

Lf=Xf,
and we showed that ¢ satisfies an equation of the form
(4.2) Lo =Xp+&f +h,

where v = 7, = A2, — Aap_1, h satisfies ||| < 2 (cf. Lemma 3.3), and estimates for
& have been established in Theorem 3.5. The following lemma gives an element G in
E,,, satisfying Dirichlet boundary conditions.

LEMMA 4.1. Assume that 3(1+ ||V ||lw)? < & and n > ny = M + ||V |w. Then
there exists an element G in E, of the form

(4.3) G=oaf+pfp 0<a<l; |of*+|8=1

so that

Proof. First consider the case where f(0) = 0. Then, as f is either periodic or
antiperiodic,

(4.4) f(1) =££(0) =0.

Thus G := f has the required properties. If f(0) # 0, notice that G(z) := — f(0)¢(z)+
©(0)f(x) is a nonzero element in F,,, satisfying Dirichlet boundary conditions. Then
G = m% = af + By, with k € C,|k| = 1, chosen to guarantee 0 < o < 1, has the
stated properties. |



ESTIMATES FOR PERIODIC AND DIRICHLET EIGENVALUES 145

Using (4.2) and (4.3) one obtains

(4.5) LG =aLf + Ly
= a4+ B(Ap +&f +h)
= \G + £Bf + vph.

For n > ny,, both £ = &, and v = ~,, are small and G almost looks like a Dirichlet
eigenfunction.

In the next sections we prove that \, respectively, G, are good approximations of
the Dirichlet eigenvalue p,, respectively, Dirichlet eigenfunction g.

4.2. Fourier block decomposition. Let Lp;. be the closed operator Lp;. =
— & 1V with domain domLp;, = {f € H2[0,1] | f(0) =0; f(1) =0}. In
this section, let us fix n with n > max(n,,2Ks(M + 1)) (cf. Lemma 1.4 for Kj).
Ppir = P, pir denotes the Riesz projector

1

= — 2 — Lpir) tdz
21 ‘Z*’I’L27T2‘:M( DW)

acting on L?([0,1];C). Let Qpyy := Id — Pp;,. Notice that

(4.6) Qpirf € domLpi, Vf € domLpj,

(4.7) QpirLpirf = LpirQpir f Vf € domLpj,

and

(4.8) Qpir* Ppir =0;  Ppir-Qpir =0;  Pp,. = Ppir;  Qhir = Qpir-

According to Lemma 1.5,
| Ppir|l < Ko,
K being an absolute constant, and, therefore
|Q@pir|l < K10+ 1.

Notice that (cf. (1.13) and (1.16))

RangePp;, = {ag | a € C},
where ¢ is an L?-normalized eigenfunction for the Dirichlet eigenvalue p = py,,

Lpirg = pg; lgll = 1.
As G (cf. Lemma 4.1) is in dom(Lp;,), it admits a decomposition
(4.9) G = PpirG + QpirG = kg + u,
where u € Range(Qpir) C dom(Lp;,). Therefore,

(4.10) LpirG = kug + Lpiru
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and

(4.11) Ppiu=0; Qpiru=u.

Hence, (4.7) implies that Q piLpiru = Lpiru, and thus,

(4.12) Lpiru € Range(Qpir)-

On the other hand, by (4.5), LG = AG + R, where

(4.13) R = €3] ++Bh.

Thus by (4.9),

(4.14) LpirG = Akg+ Au+ Ppir R+ QpirR.

The left sides of (4.10) and (4.14) being the same, we conclude that
(4.15) kug + Lpiru = kAg + A\u + Ppir R+ QpirR.

This equation leads to the following lemma.
LEMMA 4.2. Assume that 3(1 + ||[V|w)? < & and n > max(n,, 2Ks(M + 1)).
Then

(4.16) k(i —AN)g = Ppir R,

(417) (LDir - /\)u = QDirR~
Proof. Apply Ppi, to (4.15). In view of (4.7), (4.8), and (4.11)
PpirLpiru = PpirLpirQpirt = Ppir@pirLpiru = 0.

Further, use that Pp;rg = ¢ and Pp;@pirR = 0 to conclude the identity (4.16).
Similarly, by applying Qp;, to (4.15), the second identity (4.17) is obtained. 0

4.3. External equation. In this section we obtain estimates for the difference
1 — A between the nth Dirichlet eigenvalue p = p,, and the eigenvalue A = \g,. Recall
that G = af + By with |a|> + |B]2 = 1 (cf. (4.3)), U = U, = QpirG = G — kg
(cf. (4.9)), Lo = Ap + &f +vh (cf. (4.2)), and R = B(§f + vh) (cf. (4.13)).

LEMMA 4.3. Assume that 3(1+ ||V |w)? < % and n > max(ny, 2Ks(M + 1)).
Then

1
lunll < K11 (1€l + 2]7al),
where Kg > 0 is the absolute constant from Lemma 1.4 and K1 > 0 is the absolute

constant from Lemma 1.6.
Proof. Apply Lemma 1.6 to (4.17) to get

_ 1
lul < |(X = Lpir) "' QpirR|| < KHEHRW
By the definition (4.13) and |3] < 1,

IR < 1€+ 2],
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where we used that ||f|| = 1 and ||| < V2 (cf. Lemma 3.3). O

From the estimate of ||u|| we obtain an estimate of k = k,, in G = kg + u from
below.

LEMMA 4.4. Assume that 3(1+ ||[V|w)? < 2. Then there exists Ny, with N, >
max(1 + ny,, 2K3(M + 1)) so that

1
|I€n|Z§ Vn > Ny,.

Proof. By (4.9), || = |rgl| = |G —ul| > [|G]| = [lu] = 1 = [uf]. By Lemma 4.3,
ull < K112 (|¢] + 2|v]), and by Theorem 3.5

[€n] < 12001+ 10)* (1 + [V]|w)* 0 > nay
and (cf. Proposition 2.16)
] < 8(1+ 1) (L4 [V ])*.
Thus, for n > N,,, with N,, defined by
(4.18) Ny 1= 300(Ks + K11)(1 + ny)*(1+ [|V[[w)*  Nu > e,
it follows that ||ul| < 1/2, and thus |k| > 1/2. d

4.4. Estimates for the Dirichlet eigenvalues. From the identity (4.16) we
deduce an estimate for p — A, using the bound for k established in Lemma 4.4.

THEOREM 4.5. Assume 3(1+ ||V||w)? < &. Then, for any n > Ny, with N,
given by (4.18),

‘:un - )‘;H <2 K10(|€n| + 2|'Vn|)>

where Ky is an absolute constant given by Lemma 1.5.
Proof. By (4.16)

(4.19) |kllw = Al < [[Ppir[[|R]] < Kol R]|
and, by (4.13)
(4.20) IR < [¢] + 2/l

where we used that ||f|| = 1,||h]| < V2, and || < 1. Combine the estimates
(4.19) and (4.20) with the estimate || > 1 of Lemma 4.4 to obtain the claimed
statement. d

Combined with the estimates for -, (Proposition 2.16) and for &, (Theorem 3.5)
we obtain the following theorem.

THEOREM 4.6. Assume 3(1+ ||V|lw)? < 2L, Then, with N,, given by (4.18),

1/2
> w@n) |, — NP < 300K1013%(1 + ||V ]w)®.
n>N,,
Proof. By Theorem 3.5,

1/2

> w(2n)’|6 < 12001 + 1) (1 + ||V ]w)?.

N2> Ty
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By Proposition 2.16
1/2
> w@n)? A = AP < 80(1 + 1) 2(1 4 ||V )2
n>ny,
Apply this to Theorem 4.5 to obtain the claimed statements. O
5. Spectrum for a special class of boundary conditions.

5.1. Special class of boundary conditions. An elementary observation
(Lemma 4.1) provided us with a nonzero function G,, in the periodic or antiperi-
odic 2-dimensional Riesz subspace E, (cf. (4.1)) which satisfied Dirichlet boundary
conditions. If the boundary condition has such a feature, the results of section 4 can
be extended. This is explained in section 5.2.

We ask the question which boundary conditions be, given by two linearly indepen-
dent, homogeneous equations, have the property that, for any n, the 2-dimensional
subspace E, contains a nonzero function satisfying these bc. Any boundary condi-
tions bc for the operator L = f% + V on [0,1], given by two linearly independent
homogeneous equations, is a 2-dimensional subspace £ in

C* =C* x C* = {(yo. ¥; v1,91)}

where we think of yo = y(0),y) = ¥'(0),y1 = y(1), and y} = ¢/(1) as given by a
solution y(z) = y(z, A) of Ly = \y. We want £ to have a nontrivial intersection with
both 2-dimensional subspaces

EY = {(yo,y0; y1.¥4) € C* | o = w15 yh = yi}
and
E™ ={(Wo,yo; y1,¥1) € C* | yo = —u1; ¥o = —V1},

i.e., with 2-dimensional planes of periodic and antiperiodic boundary conditions. It
implies that

dim(ENET) >1; dim(ENET) > 1.
But
EtneE ={o0},

which is obvious from the definition of £ and £~. Therefore,

(5.1) dim(ENEF) =1

and

(5.2) ENET ={zet|z€C}; e :=(a,b;a,b) #£0,
(5.3) ENE™ ={ze7|z€C}; e :=(e,dj—c,—d) #£0.

We conclude that

E={¢et +ne|&,neC}.
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It is easy to see that the orthogonal complement of £ in C* is given by

EL = {&l +nlalé,n € CY,

where ¢; = (b, —a;b, —a) and {5 = (d, —c; —d, ¢). Hence,

& ={(wo. vo;y1,91) € C* x C*|b(yo + y1) — alyo +y1) = 0;d(yo — y1) — cyp — 1) = 0}

In this way, we come, by necessity, to the following two homogeneous linear equations:

(5.4) b(yo +y1) — alyo +v1) =0,
d(yo —y1) — c(yp — v1) = 0.
They are linearly independent for any pairs (a,b) # 0, (¢,d) # 0 given by (5.2) and

(5.3).
We can assume without loss of generality that

(5.5) la> + b2 =1; || +|d* = 1.

5.2. Spectrum for L. with bc of class B. In this section we consider only
reqular boundary conditions (see [16, section 4.8(b)] of the type (5.4). A simple verifi-
cation along the definition [16, section 4.8(b), (39)] shows that the boundary conditions
(5.4) are regular iff

(5.6) ac#0 or a=c=0.

We denote by B the class of boundary conditions (5.4) which satisfy (5.5) and (5.6).
Ezamples. (i) Dirichlet be : (a,b) = (¢,d) = (0,1).
(ii) Neumann bc : (a,b) = (¢,d) = (1,0).
(iii) More generally, if (a,b) = ¢"(c,d), i.e., det(? Z) =0, and ac # 0, let

B = g. Then the boundary conditions be (5.4) can be rewritten as

y'(0) = By(0); ¥'(1) = By(1),

so be splits and the conditions at the left and right end points of the interval [0, 1] are
the same.

Let us analyze spec(Ly.) for the potential V' = 0 and boundary conditions be from
the class B. The domain of L. is defined as

domLy. := {f € H*[0,1]|(fo, f3; f1. f1) € (5.4)}.
We write, routinely,

—f"=Af A=Wk

sin wx

f=pcoswz +q

and try to find all w’s such that, with this f, the linear system (5.4) has a nonzero
solution (p,q) € C2. This leads to the characteristic equation

sin w

(bd + acw?) =0
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or

sin\f)\_
Yo

If @ = ¢ = 0 (Dirichlet be, cf. example (i) above), then

(bd + acX) 0.

spec(Lye) = {m?k?|k € Z>1}
and all eigenvalues are simple. If ac # 0,

spec(Lye) = {Xo} U{m*k*|k € Z>1},

where \g = —%. In this case all eigenvalues are simple, except if A\g = 72k? for some
ke ZZ]«'
Now we can claim that for any V € L?[0,1] and L = —% + V, the operator

Ly with be from the class B has a discrete spectrum spec(Lp.) which consists, up
to a possible additional eigenvalue v, of a sequence (1,),,>1 which we enumerate as
in (1.5). Further, the operator L., its resolvent and Riesz projectors have all the
properties stated in Lemmas 1.4-1.6 with obvious semantic adjustments.

Property (5.1) gives a substitute for Lemma 4.1. Now we have all the tools to
repeat the constructions and the proofs of section 4 for bc in the class B to get the
following theorem.

THEOREM 5.1. There exist absolute constants Ko, K13 such that for any 1-
periodic potential V in Hy’ and any bc in the class B,

> w(2n)?|vn — Aanl? < Kia(1+[[V][0) 2,
n>N

where N = Ki2(1+ ||[V]) 5.

Appendix. We present two lemmas used in section 1.7 concerning the convolu-
tion operation in sequence spaces. For a weight v = (v(k))kez let

ct= 3 ()

and denote by (2 = (2(Z; C) the space of sequences (a(k))rez with

1/2
(Z v(k)2|a(k)|2> < 0.

k

lall, :

LEMMA A.1. If C, < oo, then £2(Z;C) is a convolution algebra and
la s bllo < Cyllally bl
Remark. Lemma A.1 is a special case of a much more general result due to

Nikolski [17].
Proof of Lemma A.1. Let a,b € {2 be with norm 1 and define ¢ = (c(k))rez by

c(k) = alk = j)b(H)-

J
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We have to show that (v(k)c(k))rez is a sequence in £2. Let a(k) := v(k)|a(k)| and

B(k) = v(k)[b(k)| (k € Z).

For any sequence v(k))xez in £2,

S ublelh (9] < 32 3 b alk - 3)50)

k k

1/2 1/2
( )|2) (Z(a(i)ﬂ(j))z) ;

where for the last inequality we used Cauchy’s inequality in £2(ZxZ). As > i

= 1 by assumption and

> m)|* < CQZ [y(m
4,J

v(i + j)
(i) ‘

with (y(m))mez € €2 arbitrary, it follows that ||c[|, < C,. ad
For any submultiplicative weight (w(k))rez and o > 0, define

wa (k) == (L+@0 w(k).

Notice that w, is again submultiplicative.
LEMMA A.2. If a > 1/2, then C,,, < oco.

Proof of Lemma A.2. As w is submultiplicative,

wa (k) _ (14 3]kD*
wa(fwa(k —7) = (L+ 311+ 5k — )’

and therefore,
Cy, < C(a),

where C'(a) < 00 is a constant satisfying
] =i \) ™ k|
. —_— < —
(A.1) ;(<1+2 L+ == < O(a)? 1+2
By an elementary computation one could show that

20+ 1

(A.2) Cla)? <21+ 22")2a —

a(i)?p(j)?
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DETERMINING CONDUCTIVITY WITH SPECIAL ANISOTROPY
BY BOUNDARY MEASUREMENTS*

GIOVANNI ALESSANDRINIT AND ROMINA GABURROT

Abstract. We prove results of uniqueness and stability at the boundary for the inverse problem
of electrical impedance tomography in the presence of possibly anisotropic conductivities. We assume
that the unknown conductivity has the form A = A(z, a(x)), where a(z) is an unknown scalar
function and A(z, t) is a given matrix-valued function. We also deduce results of uniqueness in the
interior among conductivities A obtained by piecewise analytic perturbations of the scalar term a.

Key words. inverse boundary value problems, anisotropic conductivity, singular solutions
AMS subject classifications. 35R30, 35R25

PII. S0036141000369563

1. Introduction. In this paper we shall consider the inverse conductivity prob-
lem in an anisotropic medium. Given, in a domain  C R™ (representing an elec-
trostatic conductor), a symmetric, positive definite matrix A = A(z), z € Q (the
conductivity tensor), the Dirichlet-to-Neumann map associated to A is the operator
A 4 which, for each solution u (the electrostatic potential) of the elliptic equation

(1.1) div(AVu) = 0 in Q,

associates to its Dirichlet data u| g (the boundary voltage) the corresponding Neu-
mann data (the boundary current density)

(1.2) AA u|3Q = AVU'V|3Q.

The inverse conductivity problem then consists of determining A from the knowledge
of A 4. While for the case when A is a priori known to be isotropic (that is, A(z) =
a(x) I, where a is a scalar function) the uniqueness issue can be considered solved
(see [SUJ, [N]), the situation is more complicated in the anisotropic case.

Since Tartar’s observation [KV1] that any diffeomorphism of € which keeps the
boundary points fixed has the property of leaving the Dirichlet-to-Neumann map
unchanged, whereas A is modified, different lines of research have been pursued.

One direction has been the one of proving that the conductivity A is uniquely
determined up to a change of variables in the space coordinates (see [LeU], [S], [N],
[LaU]).

Another direction has been the one of assuming that the conductivity A is a priori
known to depend on a restricted number of unknown spatially dependent parameters.
Kohn and Vogelius [KV1] suggested the study of matrices A which are completely
known with the exception of one of their eigenvalues. In [A] it is considered the case
when A(z) is a priori known to have the structure A(z) = A(a(x)), where t — A(t) is
a given matrix-valued function and @ = a(z) is an unknown scalar function. In other
words, it is assumed that at each point x the conductivity may take one value among

*Received by the editors March 22, 2000; accepted for publication (in revised form) November
27, 2000; published electronically April 24, 2001. This work was supported in part by MURST.
http://www.siam.org/journals/sima/33-1/36956.html
TDipartimento di Scienze Matematiche, Universita degli Studi di Trieste, Via Valerio 12, 34100
Trieste, Italy (alessang@univ.trieste.it, gaburro@mathsunl.univ.trieste.it).
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a one-parameter family of admissible matrices A(t) which is a priori known. In [A]
results of uniqueness and stability at the boundary are proven under the additional
assumption of monotonicity

D;A(t) > Const. I > 0.

Lionheart [L] has proven results of uniqueness at the boundary when A(x) has the
structure

Az) = a(z) Ao(),

where Ag(z) is given and @ = a(z) is an unknown scalar parameter. This structure
condition may be interpreted as if at every point the anisotropic character of the
conductivity were known with the exception of a scaling factor a(x) which may vary
from point to point.

The aim of this paper is to show that the method of singular solutions introduced
in [A] enables us also to treat the case when A(x) has the more general structure

A(z) = Az, a(x)),

where a(z) is an unknown scalar function and A(z, t) is given and satisfies the mono-
tonicity assumption

DyA(z, t) > Const. I >0.

We shall prove results of uniqueness and stability at the boundary which improve in
various respects the results in [A] and can also be applied to the problem introduced
in [L].

In Theorem 2.1 we shall prove a result of Lipschitz continuity of the boundary
values of A(z, a(z)) in terms of its corresponding Dirichlet-to-Neumann map.

Theorem 2.2 gives Holder estimates on the dependence from the Dirichlet-to-
Neumann map of higher order derivatives of A(x, a(x)). This theorem is expressed
in a local form. Theorem 2.3 contains the uniqueness result in the determination
of A(z, a(x)) and its derivatives on the boundary. Also in this case, the result is
expressed in local terms.

Theorem 2.4 gives a global uniqueness result of A(z, a(x)) among perturbations
A(z, b(z)), where a(x) — b(x) is piecewise analytic. The procedure under which
Theorem 2.3 implies global uniqueness results in the piecewise analytic category is
by now well known (see [KV2], [A], [L]); we wish to stress, however, that the present
result does not require any condition of higher order differentiability on the given
matrix A(z, t); this also gives a substantial improvement to Theorem 3.4 in [L].

We conclude the paper with a discussion of the so-called one-eigenvalue-problem
treated by Kohn and Vogelius [KV1]. In fact, we observe that this problem does not
precisely fit the scheme of our Theorems 2.1-2.4 since, in this case, the monotonicity
assumption is not satisfied. We present, however, some arguments showing how the
monotonicity assumption can be relaxed in such a way that Theorems 2.1-2.4 continue
to hold and, at the same time, it enables us to encompass the one-eigenvalue-problem.

The plan of the paper is as follows. In section 2 we give some basic definitions
and the statements of the main Theorems 2.1-2.4. Section 3 contains the proofs
of the stability results, Theorems 2.1 and 2.2. Section 4 contains the proofs of the
uniqueness results, Theorems 2.3 and 2.4. Finally, section 5 contains the discussion
of a generalization of the above theorems which enables us also to treat the one-
eigenvalue-problem by Kohn and Vogelius.
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2. Main results. In what follows we shall need the following quantitative for-
mulation of the Lipschitz regularity of the boundary of 2.

DEFINITION 2.1. Given positive numbers L, r,and h satisfying h > Lr, we say
that a bounded domain Q € R"™ has a Lipschitz boundary if, for every x° € 99, there
exists a rigid transformation of coordinates which maps x° into the origin such that,
setting x = (z', x,), ' € R"71, z,, € R, we have

an{z = (z', z,) | 2’| < r |za] < b}

:{x:<x/’xn)| |xl|<r> ‘.’L‘n|<h,.’1;‘n2f($/)},

where f = f(x') is a Lipschitz function defined for |x'| < r, which satisfies

for every z', y' € R*=L with ||, |y'| < r.

Let us introduce here the class of functions A(x, ¢t) which will be considered as
admissible conductivities in our results.

DEFINITION 2.2. Given p > n, E > 0, and denoting by Sym,, the class of n x n

real-valued symmetric matrices, we say that A(-, -) € H if the following conditions
hold:

(2.1) AeWhP(Qx A1, A, Symy),

(2.2) DAecWhP(Qx A7 N, Symy,),

Supess e oty (n ACH) Tomey + | DaAC,0) oo

(2:3) + [ DeAGS ) [loe) + | DiD2 A1) (L) ) <E,

)\*1\§|2 <Az, t)e- €< )\|£\2 for almost every x € (Q,
(2.4) foreveryt € N1 A], € € R™,

DiA(z,t) €-€ > E7YER for almost every x € Q,
(2.5) foreveryt € [A\"1A], € € R™

We observe that (2.4) is a condition of uniform ellipticity, whereas (2.5) is a
condition of monotonicity with respect to the last variable t. Denoting by (-, -} the
L2(89)-pairing between H2 (92) and its dual H~2(9%2), the Dirichlet-to-Neumann
map

Az, a) : HZ(0Q) — H™7(Q)

is defined by

(Mo, ay s @) = /QA<m, a(2))Vu(z) - Vo(x) de
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for any ¢ € H*(Q) and for any u € H'(Q2) which is a weak solution to
div(A(z, a(z)) Vu(x)) = 0.

We shall denote by || - ||« the norm on the Banach space of bounded linear
operators between Hz (9€2) and H 2 (9%).

THEOREM 2.1 (Lipschitz stability of boundary values). Given p > n, let Q be a
bounded domain with Lipschitz boundary with constants L, v, h. Let a, b satisfy

(2.6) A <a(x),b(x) < A for every xz € Q,

(2.7) allwir@, [1b]wir@ < E.
Let A € H; then we have
(2.8) | Az, a(z)) — Az, b(x)) L= (o)< C | Aagz, a) — Maca, ) [+ -

Here C > 0 is a constant which depends only on n, p, L, r, h, diam(Q2), A\, and E.

THEOREM 2.2 (Hélder stability of derivatives at the boundary). Let a, b satisfy
(2.6), (2.7) and let A € H. Given y € 9 and a neighborhood U of y in Q, assume
that, for some positive integer k and some a, 0 < a < 1, we have

(29) AGCk’O‘(UX [)\717)‘})7
(2.10) AT eraoxpr, oy < Bk
(2.11) la=bllgraco) < Ex

Then, for every neighborhood W of y in Q such that W C U,

I D*(A(z, a(z)) — A, b(2))) I~ @0 nw)

(2.12) <C | Aa,a) — Mage vy 1259,
where
k «
(2.13) op = —
izo a+)

Here C' > 0 is a constant which depends only on n, p, L, r, h, diam(Q), dist(W N
o, Q\U), \, E, o, k, and Ey.

THEOREM 2.3 (uniqueness at the boundary). Let a, b satisfy (2.6), (2.7) and let
A€ H. Giveny € 0Q and a neighborhood U of y in Q, assume that, for some positive
integer k, we have

(2.14) a—beCHU).
If

Ad (@, a(z)) = DMA (2, b))
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then

(2.15) Di(a—b) =0 on 0QNU for all j < k.

If, in addition, we have

(2.16) Ae c’c(U X [)ﬁl,)\]>,

then

(2.17) D’(A(x, a(z))) = DI(A(z, a(x))) on 0QNU for all j < k.
THEOREM 2.4 (uniqueness in the interior). Let a, b satisfy (2.6), (2.7) with

p = oo. Let A € H and, in addition, A € W1 °°(Q x ATH A, Symn). Suppose that

2 can be partitioned into a finite number of Lipschitz domains, {A;};=1,.. N such
that a — b is analytic on each A;.

If

yeus

A, a) = MA@, b)s
then we have
(2.18) Az, a(z)) = A(z, b(x)) in Q.

3. Proofs of the stability theorems. We need to introduce a unitary vector
field o locally defined near 02 such that (i) 7 is C °° smooth, and (ii) 7 is nontangential
to 0Q. To this purpose we shall make use of the following lemmas.

LEMMA 3.1. For every z° € 99, let (x', x,) be the coordinates suited for the
local representation of 02 given by Definition 2.1. Let x = (x', f(z')) be such that
|z’| < p, where p = %, then, picking | = %, we have that the truncated cone

Ti(x) ={z= (2", z) | f(&") =1 < zn < f(z),
2" —a'| <=L (f(z') = zn)}

has an empty intersection with Q.
Proof. 1t suffices to verify that the base of T}(z) is contained in the cylinder

Cron = {2z = (@', z)||2'| <7, |za| <h}.

Hence, the verification consists of elementary calculations. 0

LEMMA 3.2. There exists a finite number of points z',... ,z* € 9Q and rotations
R : R — R", 1 =1,...,k, such that (i) the open cylinders V; = '+ R,C,, }, cover
09, (ii) the azis of each cylinder V coincides with the nth coordinate azis for the local
representation of OQ near ! given by Definition 2.1, and (iii) for every x € 90NV,
Il =1,...,k, the truncated cone x + R ;T ;(0) does not intersect (2.

Proof. The proof follows easily from the previous lemma and the compactness of
9. d

LEMMA 3.3. For any x° € 09, let V; be the cylinder introduced in the previous
lemma such that x° € V. Setting U as the nth coordinate unit vector along the azis
of Vi which points to the exterior of ), we have that the point

(3.1) 2o = 2 + o
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satisfies
(3.2) Co <d(z5,00) <o for every 0, 0 < o < o°,

where 0° and C depend only on L, r, h.
Proof. The proof is an elementary consequence of Definition 2.1 and the previous
lemmas. ]
Let us recall some results about singular solutions of elliptic equations. We con-
sider elliptic operators
0 0

2 J

where the coefficient matrix (a;;(x)) is symmetric and satisfies

(34) AP <aij()6 & < A€ for every @, £, x € Bg, { €R",
and also

(3.5) Il aij | wrrB)< E, iyj =1,...,n,

where p > n and A\, E are positive constants.
THEOREM 3.4 (singular solutions). Let L satisfy (3.3)—(3.5). For every spherical
harmonic Sy, of degree m = 0, 1, 2,... , there exists u € W2 P(Bg \ {0}) such that

(3.6) Lu =0 in Br \ {0},

and furthermore

J
(3.7) u(x) =log | Jx|So <|Jz> +w(z), whenn = 2andm =0,
2—n—m Ju .
(3.8) u(z) = | Jzx | Sm Tz ] +w(z) otherwise,
x
where J is the positive definite symmetric matric such that J = \/(a;;(0))~! and w
satisfies
(3.9) |w(@)| + |2 | |Dw(@)| < Cla[*7"7"F in Br\{0},

1
(3.10) (/ |D2w|p> < CrTmTmTOTE for every T, 0 <1 < R/2.
r<|z|<2r

Here a is any number such that 0 < o < 1 — %, and C is a constant depending

only on a, n, p, R, A\, and E.

Proof. See Theorem 1.1 in [A]. O

We shall also need the following lemma.

LEMMA 3.5. Let the hypotheses of Theorem 3.4 be satisfied. For every m =
0, 1, 2,..., there exists a spherical harmonic S, of degree m such that the solution
u on (3.6) given by Theorem 3.4 also satisfies

(3.11) |Du(x)| > || 1= (vFm)
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for every x, 0 < |x| < ro, where rg > 0 depends only on A, E, p, m, and R.

Proof. The proof of this lemma can be obtained along the same lines as the proof
of [A, Lemma 3.1]. O

LEMMA 3.6. Let Q be a domain in R™ (n > 2) with Lipschitz boundary 0. Let
A € H and let a be a function satisfying conditions (2.6), (2.7). Then we have

(3.12) A(-, a-)) € WhP(Q, Sym,,),
and furthermore,
(3.13) | A, a(-)) lwr p@)< CE(+ | a lw. p(a))s

where C'is a positive constant depending only on X\, Q, n, and p.
Proof. We observe that the two functions

t— A(I7 t)v
t— D A(z, t)

are absolutely continuous functions for almost every x € Q (see [M, Lemma 3.1.1]).
Then the following identities hold:

A
(3.14) Az, a(z)) = A(z, A) — DAz, t)dt,
a(z)
A
(3.15) D Az, t)|; = a(z) = D, Az, \) — DD Az, t)dt
a(z)
for almost every z € Q.
We obtain
(3.16) [ AC, a() [[Lr@< A E.

Similarly, by (3.15) and by the Sobolev inequality

| DeA(, 1) (|2 @) < C( | DeA(s 1) le) + || DaDiA( 1) [ Lr (o) ),
we deduce
(3.17) | Dz A(+, a(-) ler)< AE+ CE || Dya ||peq) -

By (3.16), (3.17), the proof is completed. |
Proof of Theorem 2.1. We start from the identity (see, for instance, [A])

318 [ (A, @)= Ale, )DU-Do = ((Maga.o) = Aacan) s 0)
where u, v are two arbitrary solutions to

div(A(z, a)gradu) =0, div(A(z, b)gradv) = 0,
respectively. Let z° € 0Q be such that

[(a—=b)(z°)| =1l a—b|Le(o0),



160 GIOVANNI ALESSANDRINI AND ROMINA GABURRO

and set, for convenience, (a —b)(z") > 0. Let V; be one of the neighborhoods, selected
in Lemmas 3.2 and 3.3, such that 2° € V;. We let ¥ be defined according to Lemma
3.3. Let us consider z, = 2°+ 07, where o satisfies 0 < o < min{oy, 3}, where oy is
the number fixed in Lemma 3.3, and r( is the number appearing in Lemma 3.5 when
the integer m is chosen to be equal to zero. We observe that we can continue a(z), b(z)
to Br(zs) in such a way that A(x, a(z)) and A(x, b(x)) continue to satisfy uniform
bounds of ellipticity and on the W' P-norm. We now consider the ball B,(z,), with

p = 1o and fix the two solutions u, v € W2 () found in Theorem 3.4 having a
Green function type of singularity at z,, that is, m = 0 and

(3.19) u(@) = alz — 20)] " + Ol — 20 77+,

(3.20) ’U(J,‘) = ‘Jb(x — ZO’)| 2-n 4 O(|z — Z<7| 2—n—i—oz)7

where J, = \/A(zs, a(25))71, Jo = VA(20, b(25)) 7L

Applying (3.18) to the two solutions u, v above, we obtain

[ Aa@, @)y = Aag, o) <l wll 3 o0l 0l

H? (5Q) H3 (09)

>

/ (A(z, a(x)) — A(z, b(z))) Du- Dv
By(zo) N Q2

(3.21) -

/ (A(z, a(x)) — A(z, b(z))) Du - Dv
Q\ Bp(zo)

Then using (3.9) we end up with

/ (A(z, a) — Az, b)J 2 (x = 20) - )’ (@ — %)
By(2) N9 [Ja(z = 20)[ "o (2 — 2)| "

S C |.’E _ ZU’| 2—2n+a«
B,(zo) N Q2
+f Az, a) — Az, D)| |z — 2] 272"
Q\ By(zo)
(3.22) A o) = Aoy Il wll gy o)l 2 1lg3 50 -

We recall that, by Lemma 3.6 and by our assumptions, A(z, a(z)) € W' ?(Q) with
p > n; hence A(z, a(x)) is Holder continuous with exponent 3 = 1—2 in Q2. Therefore,

Az, a(x)) — Az, b(z)) = A(2°, a(z®)) — A(z°, b(z%)) + O(|lz — 2°|°).
We obtain

/ gy’ (A(2°, a(2?)) — A(2®, b(x°)))J (& — %) - (& — %)
By(2) N9 [Ja(@ = 20)| *[Jo(2 — 25)|

<C |x_zg|272n|x_x0|ﬁ
B,y(zo) N Q2

+C/ |:L‘ o Zg‘ 2—2n+a
By(zo) N2

+/ |A(z, a) — A(z, b)| |z — 25| 2-2n
Q\ By(z0)

(3:23)  + [ Aa@,a) = Aag,n) sl wll gz o)l 0 g3 50, -



DETERMINING CONDUCTIVITY 161

We now consider the quantity JZ(A(z%, a) — A(z°, b))J2(z — 2,) - (x — 2), which
appears on the left-hand side of (3.23). Recalling that J? = A(z,, a(z,))~!, we have

|72 — A(2°, a(z°)7!| < Clzp — 2% P < Co P
and likewise, |JZ2 — A(x°, b(z°))~!| < Co #. Therefore,

TP (A(2®, a) =A@, 1) & (2 = 25) - (2 — 25)

> (A@®, )"~ AR, @) (e - z) - (@ - 2)
~CoPafa®) — ba®)a — =

Using the ellipticity assumption (2.4) and the monotonicity assumption (2.5), we
compute

(A, B = AG®, @) ) (o — 20) - (& — 20)
b(z?)
= (/ Dy (A(2°, t))~! dt) (x—25) (. — 20)
a(x9)
b(z0)
fo
a(x9)
a(z”)
> / E72\2 |z — 2,2 dt.
b(x0)

(2 t) DA, t) A7 (20, t) dt) (x—25) (. — 20)

Hence, we have

JE(A(aP, a) A2°,0)) J2(x — 25) - (x — 25)
> (E72A7% = CoP)(a(a®) = b(z°)) C | — 2,

and, choosing

o< (LEHQ )\72) B,

2C
we obtain
Ji(A(2°, a) — A(2%, 1)) J3(x = 20) - (z — 2)
(3.24) > C (a(2°) — b(z?) |z — 2, %

By applying (3.24) to (3.23),

la—b ||Loo(m>/ & — 2,220
B,(

SC{/ |z — 25| 272" |2 — 29) P
B,(zo) N Q2

+/ |J? o Zo‘ 2—2n+a
By(zo) N2

—|—/ |A(z, a) — Az, b)| |z — 25| 272"
Q\ By(25)

1 8ate) = Baeny ol 10 o
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By estimating the integrals appearing above and the H2(89) norms of u and v, we
obtain

[a=blL=@a) o< C{UQ—"W Lo2nta | o

+ 1 Aag, a) = Mag, vy Il 02”};
see [A, Proof of Theorem 1.2] for details. Therefore,

(3.25) la=blr~@a) < C{w@)+ | Aag,a) — Aage s Il },
where w(o) — 0 as ¢ — 0. From (3.25) we obtain the following estimate:
(3.26) la=bllL=@a) <Ol Aaw, o) — Aa,v) [« -
Recalling that, for almost every x € €2, the function

t — Az, t)

is absolutely continuous on [A7!, \], we may write

a(z)
Az, a(x)) — A, b(x))|:/b DyA(z, 1) dt

(2)

a(x)

< / Sup, .| DiA(x, t) | dt
b(z)

< C|(a(z) = b(x)) |

for every x € Q. Taking the L>-norm on both sides, we obtain
(3.27) | A(z, a) — Az, b) [[L=p0)< C [[a=Db|L~@q) -

By combining (3.26) and (3.27) we obtain (2.8). O

Proof of Theorem 2.2. Possibly reducing the values of h, r in Definition 2.1, it
suffices to consider the case when U = V; N, where V; is one of the cylinders found
in Lemma 3.2 and W = % VN Q, where % V is the cylinder having the same center
as V; and half sizes compared to V;. First, we shall prove

Py ) ,
557 (@~ b) <C | Aagaray = Aan |17 for every j <,

(3.28) H
L>=(0QNnW)

where 6; is given by (2.13) and # is the unit vector introduced in Lemma 3.3. We
proceed by induction on k. Using (3.26) in the proof of Theorem 2.1, we have that
(3.28) is satisfied when &k = 0. Let us assume that (3.28) holds when j = k—1, and
let us prove it for j = k.

Let m be a positive integer. Let 2° € 9QNW be such that (up to exchanging the
roles of a and b)

k

a0 = |-y

ok

(3.29) (—1) —

Lo (8QnNW)
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Let z, = 2 + op, with 0 < min{cro7 g}, where og is the number appearing
in Lemma 3.3 and p = min{ro, &}, where rg is the number chosen in Lemma 3.5
in dependence of m. We consider the ball B,(2,); we have that B,(z,) N Q will be
nonempty and also

(3.30) B,(2)NQ CU.

As we did in Theorem 2.1, we can continue A(z, a(z)), A(z, b(z)) outside of Q.
Consequently, let u, v be the solutions obtained in Theorem 3.4 having a singularity
at z, and corresponding to the spherical harmonic S,, indicated in Lemma 3.5. We
apply (3.18) to two such solutions. We now use the property

Az, t) € CHU x A1, \])

and from the Lagrange theorem, for every z € U there exists ¢(x), 0 < t(z) < 1, such
that

(A(z:, a(z)) — Az, b(x)))Du»Dv — (a(z) — b))
Dy A(z, t)|; — ¢ (o) Du - Do,
where ¢(x) = a(z) + t(z)(b(z) — a(x)), hence
I Adcz, a) = DAz, v) Il v ”H%(a Q)H v HH%(BQ)

> / (A(z, a) — A(z, b))Du - Dv
Q

z/ (a—b) (DtA(x, t)|t:c)Du~Dv
By(zo) N Q2

- / |A(z, @) — Az, b)| |Du| | D .
Q\ By(20)

From the formulas (3.8)—(3.9) we have
|Du — Dv| < C(|x — 24| l=n—m | a(z5) — b (25)]
_~_|$ _ ZO’| 1—n—m+a)

< C(Ja = 2" |a(2) - b(a°)|
+ ‘l‘ _ ZU|1—n—m Oﬂ 4 |$ _ Zg|1—n—m+oz)’

and since |z — z,| > Co, for every z € B,(2,) and a < 3,

|Du— Dv| < C(|z — 2" """ a() — b(a°)]
(331) _|_|$ _ zg‘l—n—m-‘ra)-
Let us compute
DtA(x? t)| t= c(a:)DU -Dv
= DA(x, t>| t :c(m)Du - Du + DtA(JL‘, t)‘ t—c (I)Du . (DU _ Du)
> C'|Dul?
—C \DU|{\$ — 2o 7 a(2®) = b (29)] + |z — 2| 1—"—m+a}.
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Therefore,

DiA(z, t)| 4 = ¢ (o) Du - Dv

> C |’JI o ZU| 2—2(n+m) __ O|$ . Z¢7| 272(n+m)| a(xO) —b ($O)|
(3.32) —C |z — 2z5] 2=2(n+m) (1 —Ja(2®) = b (%) - |z — 20| O‘)

for almost every x € B,(2z,) N .
Recalling that (3.28) holds for j = 0, we obtain

DtA(fE, t)‘ t=c (Z)Du . D’U
> Cla = 2| 2720 (1= C || Aae,a) = Aaey e =l = 201 @)

for almost every « € B,(z,) N 2. Let us observe that, without loss of generality, we
can assume

1
< 5A
- 2C

in fact, if we had the opposite inequality we would trivially obtain

(3.33) I A, a) = Daga, b) [+

| D¥(a =) [L=pa) < Ek
< Ep(20) % || Au(a, a) — Maga, by I10F,
which would prove the induction step. Hence, using (3.33), we have

1
(3.34) DA, )] 1= o (@) > Cla — 25| 2720Hm) (5 o — 2] a)

for almost every x € B,(z,) N .
Possibly choosing a smaller value of p, we may assume that

1
|z — 20| ¢ < 1 for every z € B,(z,),
and therefore,
(3.35) DAz, t)]| ¢ = ¢ (yDu- Dv > C |z — 2| 2—2(n+m)

for almost every x € B,(z,) N .
Note that every x € U can be uniquely represented as

(3.36) T = y—sv,

where y € 00 and 0 < s < g9, where 0 < o9 < h— L.
Hence, by Taylor’s formula we have

k
Hgﬂc(a—b) i sF < kl(a—0b)(x)
v L=(0QnW)
k—1 j
+C 8~.(a—b) s/
oI =
j=0 L>®0QNW)

(3.37) + sk|x—x0|o‘}.
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We obtain
I Aae oy = Ao Il w3 o1

> / (a —b)DiA(x, t)| ¢t = cDu - Dv
B,(zo) N Q2

7/ |A(z, a) — A(x, b)| |z — z,| 272 +m)
Q\BP(ZU)

k
> HC? (a—b) / (d(x, Q) ¥ D, A(, )| 1 — .Du - Do
ov L) JBy(z0)NQ
- | 97 .
=D D) FATTR / (d(z, 99)) I DA, )] 1 — . Du - Do
j=oll% L>@Q)/By(2s) N Q
— / (d(z, O0)) |z — 2% *D;A(z, t)| ¢ = .Du - Dv
B,(z0) N Q2
— / |A(z, a) — A(z, b)| |z — z,| 27200+m),
Q\Bﬂ(zd)
Therefore,
ak
”w(a —b) / |z — 25| 272 ™) (d(z, OQ)) *
ov L=(Q)J)By(zs) NGO

: C{ / | a(z) = b(x)| & — 25| 272
Q\ By(20)
+ / |JC . Z¢7| 272(n+m)‘x o Za| 272(n+m)|z - SCO| Oé(d(ﬂ:’ aQ)) k
B,(zo) N Q2

k—1 .
AGE
_ 2—2(n+m) P
+ E /B |z — 25] (d(x, 0))7 8Dj(a b)

p(zv) neQ

j=0 L (9 Q)

1 8ata0 = Aty I 10 Dty 193 0

Choosing m sufficiently large, depending only on k, estimating the integrals in the
above formula (see [A, Proof of Theorem 1.2]), and recalling the induction hypothesis,
we obtain

s

awk

< C{ H AA(z,a) - AA(z,b) H*éki1 o " + Ua}
L>=0QnW)

for every 0 < o < 0gy.
By optimizing the choice of o, we obtain (3.28) for j = k. Let us now recall the
interpolation inequality

0
| DfllL=@ano) < C{H~f
(@ent) ov L(9Q)

_a _1
(3.35) I ool 15 |
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for every f € C'1(Q) (see, for instance, (3.17) in [A, Lemma 3.2]). From (3.28) and
an iterated use of (3.38), we obtain

(3.39) | D*(a—=b) [l ~@anm< Cll A, a) = Mag,v) 125 -

Finally, we observe that, by an elementary induction argument, for every multi-
index S, |8] < k the following identity holds:

DPA(z, a(x)) = Z P, s(a(x),...,D!?la(z))
y+6<pB

(3.40) DD/} Az, a(z)),

where P, s is a polynomial. Hence, recalling hypothesis (2.9), which has not been
used yet, we obtain

(341) || D*(A(z, a(2)) = Az, b(@))) lL~@anw) < Clla=bll&panw)

which in combination with (3.39) readily implies (2.12). a

4. Proofs of the uniqueness theorems.

Proof of Theorem 2.3. Let us observe that it suffices to prove (2.15) and (2.17)
on 90 N W, where W is an arbitrary open subset of Q such that W C U. Therefore,
similarly to what we did in the proof of Theorem 2.2, we can reduce ourselves to the
case when U = V;NQ, W = %V; N, where V; is one of the cylinders found in Lemma
3.2. Let v be the unit vector introduced in Lemma 3.3, suited for the neighborhood
U. As a first step, let us prove

o7
ovJ

(4.1) (a—b) =0 on NNW for every j <k,

by induction on k. When k = 0, (4.1) is a consequence of Theorem 2.1 (see also (3.26)).
Let us assume that (4.1) holds for every j < k—1, and suppose by contradiction that
there exists a point £° € 9Q N W such that, without loss of generality,

k
(-1) kaaﬂk (a —b)(z) > 0.

Let m be a positive integer to be chosen later on, and let rg be accordingly defined
as in Lemma 3.5. Let z, = 2° 407, ¢ > 0, and p > 0 be chosen as we did in Theorem
2.2. Possibly choosing a smaller value of p, by (3.30) and the representation (3.36),
Taylor’s formula gives us

(~5)" 0"
k! ook

(a —b)(x) > (a —b)(2) for every x € U.

DN | =

We intend to consider again the formula (3.18) with u, v being the singular solutions
chosen in the proof of Theorem 2.2. For almost every x € 2 we have

a(x)

(4.2) A, a@)) — Az, b(2)) = /b L, DG
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and by the monotonicity assumption (2.5)

a(x) a(z)
(/ D, A(z, t) dt>§-§ = / D, A(z, t)€ - € dt
b () b(x)

a(x)
> / E7'ePat
b(z)

=(a=b)(x)E~[ €.

In other words,

a(z)
/ DAz, t)dt = (a—b)(x)M(x) for every x € U,
b(x)

where the matrix M satisfies

M(z)€-¢> EY¢ \2 for almost every x € U, for every £ € R™.

By rephrasing the arguments leading to (3.35) and by using the induction hypoth-
esis, which enables us to assume that the continuations of a(x), b(x) to Br(zs) \
coincide, we obtain

(4.3) M(z) Du-Dv > C |z — z,| 27 2(ntm) for almost every x € U.
From (3.18) we obtain
0= /(A(:I:7 a) — A(z, b)) Du - Dv
Q
_ / (A(z, a) — A(z, b)) Du - Do
QN B,(z5)
+/ (A(z, a) — A(z, b)) Du - Dv
2\ Bp(z5)
2/ (a—b)(z) M(z) Du- Dv
QN B,(z0)
-C la—b| |z — 25| 27200+m),

Q\ Bp(20)

Using (4.3), and provided we choose m > %,

0> 1(—1) k gk (a _ b)(l‘o)/ (d(l‘, 89)) k |J) - ZO" 2—2(n+m)
=3kl ok @B (o)
-C |a—b||x—zg|2_2("+m),
Q\Bp(z«r)

and therefore,
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Picking m such that n+2m—2—k > 0 and letting ¢ — 0, we are led to a contradiction.
Then we can conclude that (4.1) holds, and consequently,

(4.4) Di(a—0b) =0 on INNW for every j < k.

Finally, (2.17) follows from (2.15) and (3.40). d

Proof of Theorem 2.4. 1t suffices to prove iteratively that a = b on each A;. This
is obtained by the argument developed in [A, Proof of Corollary 1.1], which is based on
the result of uniqueness at the boundary on the analytic continuation of @ — b within
each A; and on the Runge approximation theorem (see [KV2] and also |G, Theorem
2.4]). We remark that this last theorem requires only the Lipschitz continuity of
the conductivity A(z, a(z)). Therefore, without need of higher order differentiability
on A(z, t), the method in [A, Proof of Corollary 1.1] also applies to the present
situation. 0O

5. The one-eigenvalue-problem. Kohn and Vogelius have considered the case
in which the n — 1 eigenvalues and eigenvectors of a conductivity matrix A are known
(see [KV1]). Their result is the following theorem.

THEOREM 5.1. Let A, B be two symmetric, positive definite matrices with entries
m L OO(Q), and let {)\j}j =1,...,n) {)\j}j =1,...,n and {ej}jzl,m oy {éj}jzl)m m be the
corresponding eigenvalues and eigenvectors. For z° € 0Q, let B be a neighborhood of
20 relative to Q, and suppose that

(5.1) A, BeC>(B) anddQdNDB isC>,

(5.2) ej =€, N =X inB, 1<j<n-—1,

(5.3) en(@) - v(a%) # 0,

(5.4) Aa(p) = Ap(¢) for every ¢ € H%(aQ) with supp(¢) C B N ON.
Then

(5.5) D¥\,(2°) = DFX,(z°)  for any k > 0.

Let us rephrase the problem of Kohn and Vogelius in terms of our setting. Letting
a(x) be the nth eigenvalue, the conductivity matrix A has the structure

A = A(z, a(x)), where

Az, t) = R(z) : ; : R T (z),
0 0 A1 (z)
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where Ay (), ..., Ap—1(x) are given positive functions and, for each z, R(x) is a known
orthogonal matrix. In this case, we have

0 0 0
0 0 0

D A(z, t) = R(x) 00 0 R (z).
00 ... 1

We observe that the property (2.5) of monotonicity is not satisfied in this case;
in fact, the following equality holds:

(5.6) DAz, t)€-€ = |(RT(2) &)l

for every x € , t € [A\71, )], £ € R, where the subscript n denotes the nth compo-
nent.

However, it is possible to modify our previous arguments in order to prove
theorems analogous to Theorems 2.1-2.4 as follows. Notice that condition (5.3) is
not needed here.

CrAamM. Theorems 2.1, 2.2, 2.3, 2.4 continue to hold if the monotonicity assump-
tion (2.5) is replaced by

(5.7) ENRT (@) On|> <D A, t) - E < E|(R () &)nl?

for almost every x € Q, for every t € [\=1, ], for every & € R™, where R = R(x) is
a given orthogonal matrixz depending on the space variable x.

Proof of the Claim. For the sake of brevity, we shall point out only the crucial
modification in the proof of Theorem 2.1, since the corresponding changes in the
subsequent theorems follow by straightforward adaptations.

Let us recall that we have obtained

/ J (A, a(z®) — A(a®, b(z°))) I (x — 20) - (z — 2o)
B,(zo) N Q2

[Ja(z = 20)| ™ [Jp(x = 25)| "

SC/ |t — 25| 272" & — 20| P
B (20)NQ

+C/ |$—ZU‘2_2TL+(X

B,(zo) N Q2

+/ Az, a) — Az, b)) | — 20>
Q\ By(zo)

+ || AA(CD, (l) - AA(I, b) ||*|| u HH%(@Q)H v ||L%(89) .

Notice that the monotonicity assumption was used for obtaining a lower bound
on the left-hand side. Assuming (5.7), we proceed as follows:

Jbz(A(:EO, a) — A(xo, b)) Jf(x —25) (& — z5)
> (A, 0) 7" = (A", @) ) (@ — 20) - (@ — 2)
—CoPa(z®) = b(a®)) |z — 2|2

_ (/(I:;(:)Dt(A(xO, 1) dt) (@ — 2) - (z — 2,) dt

(5.8) —Co?(a(z®) = b(z0)) |z — 2|2
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And now (assuming without loss of generality R(z") = I)

b(z°)
/ DA e €dt

a(x9)

a(z)
:/ A (DA A € e dt
b(z0)

a(z®)
=/ (D A) A'e- A € dt
b

(z°)

>C/ fen dt
(9)
(a(a®) = b(a)) (& - en)?.

where e,, denotes the nth coordinate unit vector. Then we obtain

Ty (A, a) — A(2°, b)) I (z = 20) - (2 — zo)
0

> C (a(2”) — b(2")) |
—Co” (a(z®) — b(z°

T — zgn|

(
) o =z,

and hence

2

T— Z5)y

la=blL=@a / 7( )
B

o(20) N Q |z — 25| 2"

SC’{/ |z — 25| 272" |2 — 20| P
B,(zo) N Q2
_|_/ |x_za|2—2n+a
By(25) N Q

+/ 0P|z — 2,27
B,(zo) N Q2

+ / Az, a) — Az, b) | |z — 25| 22"
Q\ By(zs)

(5.9) 1 8ata0 = Aty 10 Dt 19 3 0

(x—20)n
[5—2,] 2"

Let B,.(P) be a ball with center P on the axis passing through z, and z" and

radius r < m1n{7 - 30, 0} In this case, we have that B, (P) CC (B,(zs) N§2), and

we consider a cube @ inscribed in B, (P) with an axis parallel to e,. Then we can
compute

from below.

We need to estimate the quantity fB (20) N O
p\Ro

_ 2
(5.10) I = 20)nl * Z");" > Co27m,
0 |z — 25| 2"

and next the proof can proceed as before. ]
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DYNAMICS OF AN INTERIOR SPIKE IN THE
GIERER-MEINHARDT SYSTEM*

XINFU CHENT AND MICHAL KOWALCZYK?

Abstract. We study the dynamics of an interior spike of the Gierer—Meinhardt system. Under
certain assumptions on the domain size, the diffusion coefficients, and the decay rates, we prove that
the velocity of the center of the spike is proportional to the negative gradient of R(, ), where R(z, £)
is the regular part of the Green’s function of the Laplacian with the Neumann boundary condition.
Hence, an interior spike moves towards local minima of R(¢,&) and therefore stays as an interior
spike forever. This dynamics is fundamentally different from that of the shadow Gierer—-Meinhardt
system where an interior spike moves towards the closest point on the boundary.

Key words. Gierer—Meinhardt system, activator-inhibitor reaction, spikes, spike dynamics
AMS subject classifications. 35B25, 35C20, 35J60, 35K99, 92C15, 92C40
PII. S0036141099364954

1. Introduction.

1.1. The Gierer—Meinhardt system. We consider the Gierer—Meinhardt sys-
tem, for A = A(z,t) and H = H(z,1),

Ay = DAAA — ks A+14A%/H, redéQ={6z]z€Q},t>0,
H, = DyAH — ky H + Ly A2, 2 €60,t>0,
OnA=0=0,H, z € 9(6Q2),t > 0,

A(x,0) = Ag(z) >0, H(x,0) = Hp(z) >0, x € 6.

(1.1)

Here Q ¢ RN, N = 2,3, is a bounded domain with C® boundary and unit volume,
A is the Laplace operator, d, is the exterior normal derivative, and ¢ is the size of
the physical domain. System (1.1) was proposed in [6] (see also [12]) as a model for
biochemical reactions of activator-inhibitor type in which a short-range substance,
the activator A, promotes its own production as well as that of a rapidly diffusing
antagonist, the inhibitor H.

In this paper, we assume that D4, Dy, ks, and kg, representing the diffusion
coefficients and the decaying rates of species A and H, are positive constants and
satisfy

ka Dy 9 _Dg
(1.2) . < 1, a LK T
These conditions reflect the following scenario: (i) the half-life (In2/k4) of the acti-
vator A is much longer than that of the inhibitor H; (ii) with respect to the size ¢
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of the domain and the half-life of the species, the diffusion rate D4/(kaé?) of A is
small whereas that of H is large; namely, regional population differences of A are not
easily evened out in the life time of the component A, whereas regional population
differences of H are almost instantaneously evened out by the diffusion. In such a
scenario, a local increase in the concentration of the activator will be further amplified
(due to the [4A%/H term), forming regions with high concentration of the activator
surrounded by the “sea” of, essentially uniformly distributed, inhibitors. We speak
of spikes if the activator concentrates near a single point or a set of isolated points.
Since stability results available at this point ([8, 17] in one dimension and [19, 20] in
two dimensions) seem to suggest that in the range of parameters considered in the
present paper, spikes concentrated at more than one point are unstable; therefore,
here we study only the dynamics of single spike solutions.
We introduce dimensionless constants

_ ka 9 Da Dy

1.3 = = - 4  p=_=2
(1.3) Ul e T d?

and we rescale the independent and dependent variables via

N )

t ki kalp N
1.4 t — 1) A A H H.
(L4 - ka’ ron - lge ~ kHlAE

Then the Gierer—Meinhardt system (1.1) takes the nondimensional form

Ay =e?AA— A+ f(AH), re,t>0,
TH; = DAH — H + ¢ Ng(4), zeNt>0,

(15) O, A=0=0,H, z €N t>0,
A(x,0) = Ag(x) >0, H(z,0) = Hp(z) >0, x €,

where

(1.6) f(AH) = A*H ™, g(A) = A%

Formally, as D — oo one obtains the following shadow Gierer—Meinhardt system,
for A= A(z,t) and H = H(t):

Ay = 2AA— A+ f(AH), 2 E0t>0,
an THy=—H+eN [, 9(A), €O, t>0,

OnA=0=0,H, x e INt>0,

A(x,0) = Ag(z) >0, H(0)= [, Ho(x)dz >0, x €.

Note that steady states to (1.7), after the change of variables y = x/e, are solutions
to

(1.8) AyA— A+ f(A’fQE Ady) =0, ye€Q.:=c1Q.

In recent years there has been much interest in studying (1.5), (1.7), and especially
the associated steady state problem (1.8). In a series of papers [14, 15, 16], Ni and
Takagi (also with Lin [11]) established the existence of stationary spikes (solutions
to (1.8) with homogeneous Neumann boundary condition) concentrating at points of
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maximal mean curvature of 9€). We refer the readers to the recent review article by
Ni [13] and the references therein for more details on this subject.

In [3] we studied the evolution of single-spike solutions to (1.7) and showed that
a single, interior spike located at £ = £(t) € 2 moves toward the boundary 99 with
velocity

(1.9) Ei= Te(t) o Vee O/,

where d(€) is the distance from £ to 9Q. From this formula, one sees that single
interior spikes for the shadow Gierer—-Meinhardt system move towards their closest
points on 912, possibly with the exception of those which have more than one closest
point on the boundary. We would like to point out that the dynamics (1.9) for the
shadow Gierer—-Meinhardt system (1.7) was first derived by Iron and Ward in [7],
whereas in [3] we provided a rigorous proof (see also related work [19]).

In the present paper we assume that D is large, but D < g2e™a@xcen d(©) In
such a case one does not expect the spike to move exponentially slowly. In fact we
show that if 372V —F « D « e2emaxec0 d(€)/42 for some k > 0, then an interior spike
moves with a velocity

(1.10) § ox —e*D DeR(&, €),

where Dy is the total derivative with respect to £, and R(x, £) is the regular part of the
Green’s function for A with the Neumann boundary condition. Since R(,£) — oo
as x,& — 0f, one sees from the formula (1.10) that an interior spike moves towards
local minima of R(&,£) and hence stays in  forever.

Clearly, the dynamics (1.10) for the Gierer—Meinhardt system (1.5) is totally
different from the dynamics (1.9) for the shadow Gierer-Meinhardt system (1.7).

The main purpose of this paper is to prove rigorously the asymptotic formula
(1.10), following the so called invariant manifold approach developed by Alikakos
and Fusco in [1, 2] to study motions of circular fronts (bubbles) in solutions to the
Cahn—Hilliard equation.

/46'

1.2. Statement of the main result. In this paper we shall use the following
notation:

(&) = / o(z)dr, (9.0 = ($u) = / o0, Nully = lullriy, Q=02

We assume that 7 < 1 and D > 1. Then we can argue from (1.5) that H(-,?) is
almost a constant equal to e~V (g(A)) = e N (g(A(-,t))). (Recall that the volume of
) is 1.) Hence, it is convenient to decompose H as

H(z,t) = e " (g(A)) + h(z, 1),
h(z,t) = ho(t) + hi(x,t),
ho(t) = (H) — e (g(4)),
hi(e,t) = H(z,t) — " {(g(A)) — ho(t) = H — (H).

Then (1.5) can be written in terms of unknowns A, hg, and hq:

Ay —AA+ A= f(A,e N (g(A)) + ho + ha), xeQt>0,
(1 11) Tho,t + hy = *T57N<9/(A)At>, t>0,
’ This — DARy + hy = e Ng(A) — (g(A))], reO,t>0,

OnA =0=0,h1, x e 0N, t>0.
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If we ignore hg and h; and use the stretched variable y = /e, the first equation
of (1.11) becomes

(1.12) A= DA+ A= f(A, [, g(A)dy), yEQu.t>0,

which is the limit, as 7 — 0, of the shadow Gierer—-Meinhardt system (1.7). Since
€ < 1, a solution to the equation

(1.13) —AyA+ A= f(A, [on9(A)dy)  inRY

will be almost a stationary solution.

With f and g given by (1.6), it is known that (1.13) has a unique, positive, radially
symmetric solution, which we denote by W(r),r = |y|. As W(r) — 0 exponentially
fast as r — oo, for every £ € Q, {4 = W(|jx — &|/e),ho = 0,h; = 0} is almost an
equilibrium of (1.11). In what follows, a solution with A(z,t) =~ W(|z — £(¢)|/¢),
ho = 0 and h; ~ 0 will be called a spike solution located at £(t) at time ¢.

We consider only spikes that initially stay away from the boundary. To this
end we define d(¢) = distance from £ to 02 and let p be a parameter in the range
maxgco d(§) > pu > 4elog(De~2). We set

(1.14) W ={€ecQ|d) > p}

Observe that if D satisfies e3 2N F « D <« eMmaxcead(©)/8e for gome x > 0, then
QH £ ) for all sufficiently small e.

It is convenient to work with approximate solutions to (1.11) which have compact
support. Hence, we modify W(|y|) and W (|z — &|/¢) into compactly supported func-
tions We(y) and w*(z, &) as follows. Let ((s) be a cutoff function such that ¢ =1 if
|s| <1/2, ¢ =0if|s| > 1, and |D"¢| < 2" n =1,2,3. We define

We(y) = W(lyD<(yle/m), y € RY,
w(z,8) = We(lz — €] /e) = W(lw = &l/e)¢(lw — &l /n), 2§ €

We define the approzimate invariant manifold M by

(1.15)

(1.16) M ={w(-,§) | £ € Q}.

It is known (see Lemma 3.1 to follow) that there exists a positive constant co > 0
(depending only on Q) such that if dist(A(-,t), M) < ¢oe™¥/?, then we can uniquely
decompose A(-,t) as

A(Ji,t) = ws(x7£(t))+¢(xvt)’ f(t) € Q’ ||¢(7t)||2 = diSt(A('7t)vM) = 11}2,{/1 ||A_w||2

(1.17)
We define

(1.18) T* :=sup{T > 0 | dist(A(-, ), M) < coe™¥/2, £(t) € Q* VYt € [0,T] }.

THEOREM 1.1 (quasi-invariance of the manifold M). Let x € (0,1/8) be any
fixed constant. Let €, T, D, and u be positive parameters such that there hold the
relations

(119)0<e<1, 0<7<1, N2 <D  Adelog(De™?) <pu< rﬁna&cd(f).
€
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Let (A, ho, h1) be solutions to (1.11) with initial values ho(0), hi(-,0), and A(-,0) =
w£('>£0) + ¢(70)7 where <h1(70)> = 07 EO € QM’ and ||¢(a0)||2 - dlSt(A(aO)aM)
Assume that

(1.20) 170 (0)] + [|h1.(,0) [l oo + &~ V2| $(-, 0) ]2 < D~ 1> N7,

Decompose A as in (1.17) in the interval [0, T*] with T* defined as in (1.18).
There exist small positive constants €9 and 19 and a positive constant Cy, all of
which depend only on Q and k, such that if € € (0,e0] and T € (0,79], then

(1.21)  |ho@)| 4|21 ) |lso+e N2 G(, t)|]2 < CoD Y2 N=F < ¢y Vit e (0,T%).

In addition, either T* = oo or d(&(T*)) = p (i.e., E(T™) € O0H).

To describe the dynamics of the spike (and therefore show that T* = o), we
introduce the Green’s function G(z,£) of A with the Neumann boundary condition;
i.e, for each € € Q, G(+,&) solves

—A;G(x, &) =6(x—¢&)—1 in €,
(1.22) 0nG=0 on 09,
Jo G(z, &) dx = 0.

Let I'(z) = —(27)~tlog|z| for N = 2 and = (47|x|)~! for N = 3 be the fundamental
solution of A and let R(x,&) := G(z,£) — T'(x — &) be the regular part of the Green’s
function.

THEOREM 1.2 (dynamics of an interior spike). In addition to the assumptions of
the previous theorem we assume that

|h1(-,0) — (DA) " [ws (-, &0))% = (wo (-, &0)?) oo < D™ 2e472N =25,

The following formula holds true:

€ = agD7'e? (= DeR(E, ) +0(2)d(§) N +O(F N2 D)) i e (0,T7),
(1.23)
where g, given in (2.13) below, is a positive constant depending only on N.
Consequently, if we further assume that D > €2~ N=3% and 11 is sufficiently small,
then T* = oo and &(t) € Q for allt > 0.
Remark 1.1. Condition (1.19) implicitly imposes an upper bound on D:

D < g2et/(48) 2, maxeeq d(§)/(4e)

If D is too large, say, log(D) > 1/e, then (1.5) should be considered as a small
perturbation of the shadow Gierer—Meinhardt system, and therefore the dynamics
(1.9) should prevail.

Intuitively, for any given £ € ), making the magnitudes of the right-hand sides of
(1.9) and (1.10) equal should give us the critical size of D to determine which dynamics
dominates. We believe that when D is exponentially large, i.e., log(D) = O(1/¢), our
analysis in [3] and the analysis presented in this paper can be combined to obtain
the leading order expansion of the velocity of motion of single interior spikes, which
somehow should be the sum of the right-hand sides of (1.10) and (1.9).

Remark 1.2. Our lower bound £2~¥=2% for the magnitude of D for the quasi-
invariance of the manifold M in Theorem 1.1 is possibly sharp. Indeed, it is proved
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in [20] that when N = 2 and D = 1, the stationary spike attains a maximum of the
order O(|In¢g|) as € — 0, whereas in our case the spikes remain bounded by a constant
independent on €.

Remark 1.3. One of the main points of our paper is to study the dynamics of a
single spike in the case when D = D(¢e) and 7 is a small parameter independent on € or
D. In this context we refer the reader to [3] where the key spectral estimate (Lemma
3.2 to follow) is established. Although we believe that this estimate is true for more
general systems than the one considered here, for instance, with A%/H replaced by
AP /HY and A? replaced by A"/H*®, where qr/[(p — 1)(s + 1)] > 1; however, at the
moment such results are only available in the one-dimensional case [17]. Given higher
dimensional generalization of the spectral estimate in [17], one could easily adopt our
method to study the dynamics of interior spikes for the more general Gierer—Meinhardt
system.

Remark 1.4. One notices that taking smaller k£ in our theorems makes the results
stronger. Nevertheless, we cannot take k = 0. We expect terms involving loge will
come up if we set kK = 0.

In (1.23), the term O(£3~2V=2%D~1) does not match with the combination & :=
e2=N=rD~1 We believe that the actual size of this term should be O(E,). To prove
this, one needs an approximation better than approximating H by a constant function.
This could, for instance, be accomplished by finding an ansatz for H from the equation
DAH — H+ e YW? =0 (c.f. [20]).

Remark 1.5. We observe that since w*® is bounded by a constant independent
on ¢, therefore the assumptions on hq(-,0) in Theorems 1.1 and 1.2 can be satisfied
simultaneously.

Remark 1.6. When N = 2 and 2 is a disk of radius 1//7 (so area of Q is 1), we
have an explicit formula for R(x,&). Indeed, identifying points as complex numbers,
the Green’s function is given by

1 - 1 3 5
= ——(In|z—¢|+In|éz—1 —(|2)*+ €]+ Ko, Ko=-——1 —
G(z.8) = —5-(nle—¢|+In|Ez—1/x)) + J(|=* +16P) + Ko, Ko =~ Inmt o~
It then follows that
1 1 2 — 7l¢)?
=——1In|l¢* -1 ~|¢]* + K, D =0 Q.
R(66) = =g WP —1/n + SIeP + Ko, DeR(69 = 7= 25 € Ve

Hence, a spike will move towards the origin in the radial direction.

For more explicit formulae of the regular part R(z, &) of the Green’s function of
certain other domains, see Fraenkel [5].

Later, in Lemma 3.5, we shall show that for any smooth domain Q, |D¢R(§, )|
d(&)1N as £ — 09, so that D¢ R(€,€) is the leading order term in (1.23).

In the next section we shall formally derive the dynamics of £(¢). Then in the
subsequent sections, we verify the dynamics rigorously.

In what follows, we shall always assume that ¢ and 7 are small positive constants
and that D, u satisfy (1.19).

2. Formal derivation of the dynamics. To better explain our idea of the
proof, here we first provide a formal derivation of the dynamics (1.23).

Let W (r) be the solution to (1.13) and W¢, w* be functions defined in (1.15). We
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define

0° = fon gWe(lyD)dy =N [\, 9(wf (2,€)) da
(2.1) ré = Ta(x’g) — €2Aw5 — wt + f(wE,O'E)
= AWE =W+ f(We,0%)|y=(a—g)/ec -

Since W (y) decays to zero exponentially fast as |y| — oo, we can regard r¢ as zero.
(On the contrary, for the shadow Gierer—Meinhardt system, ¢ is the main term forcing
a spike to move towards the boundary.)

If we decompose A(x,t) as in (1.17), then the first equation of (1.11) can be
written as

N
(2.2) Z’wgéj-‘r(ﬁt:,Cg(b_l,_fH(wa,o'E)(ho—l—hl)—l—rE+N,

Jj=1
where

LEp = 2A¢— ¢+ fa(w®,0%)¢ + fr(ws,o%)e N (g (w)o),
23 N fw® +¢,e7N{g(w® + ¢)) + ho + h1) — f(w*,0°)

—fa(w®,0%)¢ — fr(w®, o) (e (g' (w)d) + ho + ha).

Multiplying (2.2) by wg, and using

N
[ugug, =ogtue Py [ ot = [ oug == [ ouicé,
Q Q Q = Ja

(since ¢ L TM, (¢, we,) =0 for all i), we obtain

N

206- 3wk D) = / Wi L5(6) + / Fr2 (0% o+ ha Y, + / N,

Jj=1

(e,

(2.4)
Since wg, is almost in the kernel of £¢ and therefore it is in the kernel of its adjoint
£8", we can ignore terms involving ¢ and N to obtain

(25)  &dllui?) ~ / frr(wF,0%) (ho + I Yu, = / (ho + h)[Q(w, 0%)]e..

where

(2.6) Q(w,o) = /Ow fu(s,o)ds = _;T?; Yw,o € (0,00).

Since Q(we,0%)¢, = —Q(w®,0%),, and @ = 0 on 99, we have

(2.7 |w§l

/QU)O’ h0+h /Q’LUO’hlL.
Because 7 is small and D is large, the third equation of (1.11) for h; gives

(2.8) hy = e N(=DA) " (g(w?) — (g(w))).
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Writing the Green’s function for A as G(z,2’) = I'(z — 2’) + R(x,2’) and using the
fact that (G(-,2’)) = 0, we then have

by ~ e ND / Gz, 2)[g(w®) — (g(w")](z) da’ = eV D! / Gz, 2')g(w) da’
Q Q
= Np! / T(z —2)g(w®)(2')d’ + e N D! / R(z,2")g(w®)(z") dz'm
Q Q
=:hi1 + hi2 .
Therefore,
(2.9) € (wf,2) ~ / [Q(F, 0% )hit.a, + Q0% )hiza,]
Q

Since w® and hp; are radially symmetric about £ and w® has compact support,

(2.10) / Q(w®,0%)hi1,4;, = Q(w®,0%)hi1 4, =0.
Q RN
Hence
Ei{lwg, [?) ~ e VD! (w®,0%)(2) R, (z,2")g(w® (2, §)) da' da
QxQ

—eNp ( | M0 ..o e (a2 dx) N glu (', €)) da .
a \Ja
Observe that as ¢ — 0,

e Vg (@',€) = abla’ ~ 9), e1 = fun 9(W(y)) dy,
(211) = VQA@,9) = —eable =&, = fun [QIV()ldy,
62_N fﬂ |w§7 2= fQE |W€L|2 — (3, C3 ‘= % fRN ‘VWIQ

We then have

C1C2 52

610282
C3 D

263D

(212) fz ~ RzL (575) = DfR(gag) = _a052D_1D5R(£a5>7

by using the fact that R(§,z) = R(x, &) so VL,R(£,§) = VeR(£,6) = %DgR(g,f).
Finally, using the definition of g, o, and @ we have
c1Co N [on W3 N fen (VW2 +W2)

2.13 Qp = —— = =
(2.13) O 205 6 fon VW2 fon W2 6 fon [VIV2

Here in the last equality, we have used the identity [on W?/ [on W2 = [on (VW24
W?) obtained by integrating 0 = W (=AW + W — W?/ [y W?) over RY.
In what follows we shall make the derivation of (2.12) rigorous.
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3. Preliminaries.

3.1. The ground state W. With f(A, H) = A%2/H, (1.13) for W reads
W2

Jax W2~

It is well known that this equation possesses a unique, nonnegative, radially symmetric

solution W (refered to as the ground state) with its unique maximum attained at the
origin. In addition, there exists a positive constant K such that as r — oo,

AW +W — 0 in RV,

(3.1) IDSW(y)| < Ke |, a=0,1,2.

For more details on the ground state solution W, see [4, 10, 9, 18, 21] and the references
therein.

From (3.1) one sees that there exists a positive constant C, which is independent
of € and p, such that r°(z, &) defined in (2.1) satisfies

|7 (2, &)| + [Ver®(z,€)] < Ce™#/P) <CD % vz, €,

since p > 4elog(De™2).

3.2. Local coordinates near M. For convenience, in what follows we shall
often drop the superscript and write ¢ = o, w® = w, etc.

LEMMA 3.1. There exists a positive constant ¢y depending only on Q) such that if
e € (0,1] and

(3.2) dist(u, M) = wlé% lu — w2 0) < coe¥/?,
then there exists a unique £ € Q such that
(3.3) u=w(&)+v, Y]z = dist(u, M).

Consequently, if £ € Q, then ¢ L Te M, the tangent space of M at w(-,&); that is,
(Y, we, (+,€)) =0 foralli=1,...,N. The standard proof of this result is left to the
reader.

3.3. Eigenvalue estimates. Multiplying (2.2) by ¢ and integrating over 2
yields, after using ¢ L T¢ M,

L) 0112 = (256, 8) + holFrs @) + (hafars &) + (r° + N, ),

(3.4) Sd

where the operator £¢ can be written as
(3.5) L5¢ = ®A¢p — ¢ + 20 twe — 26 No 2 (w, p)w?, w=w(-,§),0 =0°".

LEMMA 3.2. There exists a positive constant v which is independent of € and
such that for all sufficiently small positive ¢,

(3.6) (L5, 0) < —v{’|Vol3 +Igl3}  VoeHY(Q), ¢LTeM, €eQ.

This lemma was first established in [3, Lemma 2.4]; for completeness we include
the proof in the section 8. It is worth mentioning here that this eigenvalue estimate
is the key to our whole analysis.
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3.4. Some L°° estimates for parabolic equations.

LEMMA 3.3. There exists a positive constant C(Q) such that for every constant
D>1,7>0,and T > 0, and functions vy : @ — (0,00) and F(-,-) : @ x (0,T) —
(0,00), the solution v to

Tvy — DAv 4 v = F(z,t) in Qx (0,7),
(3.7 Opv =0 on 9Q x (0,7),
v(+,0) = wvo(:) in 2 x {0}
satisfies
(3.8) min v > L min < min v min/ F(z,t)dx
' axjo,r] — C(Q) o 0,71/ 7 '

LEMMA 3.4. For each p > N/2, there exists a positive constant C(Q,p) such that
for every positive constant T, T and n, and every function F € L>((0,T); LP(Q2)) and
vg € L (Q) with (vg) = (F(-,t)) =0 for all t, the solution v to

Toy — Av +nu = F(x,t) in Qx (0,7,
(3.9) Opv=0 on 9Q x (0,T),
v(x,0) = vo(x) in  x {0}

satisfies, for every tg € [0,T],

(3.10) [o(:; t0)llso < flvolloc +C(2,p) sup [[F(8)llp -

0<s<to
We leave the proofs of the above two lemmas until the last section.

3.5. The regular part of the Green’s function. We assume that ) is a
bounded domain in RY (N = 2,3) with C*® boundary and of unit volume. We denote
by G(z,&) the Green’s function for A in € with homogeneous Neumann boundary
condition, i.e., the solution to (1.22). For each £ € Q sufficiently close to the boundary
09, the distance function d(z) defined as the distance from z to 9 will be smooth
near £ so that there is a unique reflection point £* = £ — 2d(§)Vd(§) of £ about 992.

LEMMA 3.5. For all & sufficiently close to 01,

(3.11) Gz, ) =T(x = &) + R(z,§), R(z,§) =T(x—&)+J(x,),

where £ = £ — 2d(§)Ved(€) € Q° is the unique reflection point of & with respect to
O and the function J(x,&) satisfies

(3.12) V2 J(€,6)] < C() d(€)*~ V.
Consequently,

D¢R(€,€) = 2V, R(€,€) = 22V (wn) 71d(€)' V[ Ved(€)+0(d(€))]  as € — 99,
(3.13)
where wy 1s the area of the unit sphere in RY.

We leave the proof until the last section of the paper.
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4. L°° estimates.

4.1. A lower bound on H.
LEMMA 4.1. Assume that D > 1, 7 > 0, and that the initial value H(-,0) of H
satisfies

O.E

(1) |H(z,0) - ol < &

There exists a constant C = C(2) > 0 such that for all t € (0,T*),

(4.2) H(z,t) > —— .

Proof. First of all, the constant o := o5 (W (y))?dy = e flm7§|<#(w5)2dx is
bounded and positive, uniformly in e € (0, 1].
When ¢ € (0,T*), A = w + ¢ with ||¢||2 < coe™/2. Tt then follows that

(4.3) a(t) = 5_N/Qg(A) = E_N/QA2 = a_N/Q(w +¢)? € (0°/2,30°/2)

(taking smaller ¢y if necessary). The assertion of the lemma then follows directly from
Lemma 3.3 with F(z,t) = e Vg(A). 0

4.2. An upper bound for A.
LEMMA 4.2. There exists a positive constant C(Q) such that

(4.4) [Allco,x 10,7+ < C(82), 9lloo,0x10,77] < C(Q) .
Proof. Set y = x/e. Then (1.5) can be written as
A —AJA+ A= f(AH) in Q. x (0,77).
Fix p € (N/2,2). Then the local and boundary parabolic estimates yield

[Alloo,x0,74] < [A(+ 0)|[oc+C sup  sup (|[A(+, V)| 2By ()neo) FIF (A H)l| 2o (B ()na.)):
0<t<T* yeQ.
(4.5)

where C' depends only on the C?T® norm of 92, and hence is bounded independently
one € (0,1]. As f(A,H) = A%/H,

[A42]lp.0. -
Ilf (A, H)|l v (B, (y)n0.) < ﬁ < C|A|EY7|A

2/(2—p) 1/(2-p)
2,/95 P =§|| Al + C(6) (/Q 5NA2dz:> .

2/p
2,Q

<8 Afle +C(H)]1A

Taking small ¢, we then obtain from (4.5) that
[l < {IAC 0l + € sup [5(6) + ()7 P (0] }1 — 08)!
<C(9Q),

where 7(t) is as in (4.3). The proof of the lemma is complete. O
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5. The flow in the normal space to M.
5.1. Estimates for ¢. With f and g given by (1.6),
H=cY(w+¢)>) +h=0+2N(pw) + V||| + h,

and (2.2) reads
) 2
(5.1) ng-§+¢t:r5+£5¢—%h—/\/[w,gb],

where 7 = e2Aw — w + w? /o and

<z>2 e Vol5w?  (h+ 2 N(wo) + e N|gRwe | w(H —0)*

Nlw, ¢] = o2 ocH o2H

(5.2)
LEMMA 5.1. The following estimates hold for all t € [0,T*]:

(5-3) IN[w gl < C (¢* + e V|ol3w® + h*w?),

(54) 5 1618 < (IVSI3 +1913) (=28l — &) + CONE I + 1),

where v > 0 is the constant in Lemma 3.2.
Proof. The estimate (5.3) follows from Lemma 4.1, the bounds

(55 ol <coe™?  fulp =V / (Wo)Pdy = O() Vp> 1,
RN

and a straightforward calculation.
To prove (5.4), we multiply (5.1) by ¢, integrate over 2, and use ¢ L. M, obtaining

(5.6) H¢||2 (L5, ¢) + [(r, 0)| + [(w?ho =2, §)| + [(Nw, 6], 9)].

2dt

Let v be the constant in Lemma 3.2. Using the bounds in (5.5), we can estimate

g v g
[(r%, @)l < gllgllz + Cllrells

[(w?ho =2, ¢)| < CeN2||a]|h]lo < 5\\¢||§+05Nuh||§o
(6%, 0)| < [10]I3 < Ce™N2||gl2(2(IV 813 + l|9]3),
e N8I3l (w?e)| < Ce=N2| )13,
[(h*w?¢)| < C N/2Hh|| I6ll2 < CN |12 .

Substituting these estimates into (5.6) and (5.3), and using Lemma 3.2, we then obtain
(5.4). O

5.2. Estimates for h. We first estimate hy. It is convenient to further decom-
pose hi1 = hi1 + hio, where

TDith’t — Ahqy1 + Dilhll = 87]\]1)71(102 — <w2)) s
TD_lhlg’t — Ahqo + D_lhlg = E_ND_I[(QQMU + ¢2) — (2¢w + ¢2>]

Both h1; and his satisfy the homogeneous Neumann boundary condition, his(-,0) =
0, and hq1(z,0) = hy(z,0) = H(z,0) — (H(-,0)).
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LEMMA 5.2. Assume that hi2(-,0) = 0 and for some k € (0,1/4), ||h11(+,0) |00 <
D=1e2=N=r_ Then there exists C = C(k, Q) such that

(5.7) Ihat looax o < CD1e2"N=r
(5.8) P12l so,0x 0,7+ < CD1 2 N5 (c=N2||g|,).

Proof. We set p = N/(2 — k) € (N/2,2). Using Lemma 3.4 we obtain

1711 llso,x 0,7+ < 1P11(+,0)[loo + CD ' supg g [l Nw?l,

5_N(2w¢ + ¢2)||p .

|h12]lo,0ox(0,7+] < CD~tsupgogope

Since e~V ||w?||, < Ce™N+N/P = Ce2~=N=* the estimate (5.7) follows from (5.9).
Also, we have

le™Nwellp < eVl llzllwllzp -y < Ce™NFNEPVE gy = Ce™N R (N2 g]l2)

eV @2, < e N[ @l3 P IIglIZ 2P < Ce2NTr (e N2 gl2)

since ||p]leo < C and e=N/2||¢|l2 < cp. The inequality (5.8) then follows from (5.9)
and the preceding estimates. O
In what follows we denote

(5.10) E.=Eu(e,D) =D N=" for k€ (0,1/4).
We shall now estimate hg, which solves
(5.11) hot 4+ 7 the = —25—N/ AA, .

Q

LEMMA 5.3. The following estimate holds true for all t € [0,T%],

1d _ . _ _
5ot e < Ol QSRS A€ N lIll3+e" ol (2 Vl5+IoN3)]-
(5.12)

Proof. Substituting
[ Adi= [+ o)t + L6 - 0w+ N, o)
Q Q

into (5.11) and using a straightforward calculation similar to that in the proofs of
Lemmas 5.1 and 5.2, we obtain (5.12). We omit the details. ad

5.3. Proof of Theorem 1.1. Adding estimates (5.4) and (5.12) we obtain

1d _ _ _

5@(h8+6 NMgl13) < (Clhol + Ce™N|glI3) — v/2e" N (2| V oI5 + l|9]13)
(5.13) +(C =77 HR2 + C|h)>% + Ce N2, .
By Lemma 5.2,

(A2, = |lho + Bt + hao||Z < 2h3 + 2[|ha1 |2 + 2[|Ra2]|%
< 2h + C(E)*(1+ V| oll3) -
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Since [|7¥]|so < Ce#/(9) < CD~2¢*, taking 79, €0, ¢o (in Lemma 3.1) sufficiently
small we obtain from (5.13) that if € € (0,¢0], 7 € (0, 7], then

Ld
2dt

1 _
(5.14) < —a(h?m‘& MiglI*) + Ca (i)

1
(hg + e~ NN18l13) < —5-hG — (v/4 = Clhol)e™ (€% V]I + [[]13) + Ca(Ex)*

for all t € [0,77], where [0,77] is the maximal interval in [0, 7*] in which || < v/(8C).
Here C; and C5 are constants depending only on NV, x, and (2.

Applying Gronwall’s inequality to (5.14), we conclude that there exists a constant
C =C(Q, K, N) such that when € € (0,&¢] and 7 € (0, 70},

hi + e M|gll3 < C(€x)* = C(D™1e*~N7r)?

for all t € (0,7]. Since we assume that D > e2~N=27 we see from the above estimate
that, taking o smaller if necessary, |ho| < v/(16C) and e~ N/2||¢||2 < co/2. Thus, we
must have 7' = T* and, by the definition of T, either T* = oo or &(T*) € Q*. This
completes the proof of Theorem 1.1. 0

6. The flow in the tangent space of M. In what follows, we assume that
e € (0,e0], 7 € (0,70], and that D and p satisfy (1.19). Then the assertion of Theorem
1.1 holds true.

6.1. The velocity.
LEMMA 6.1. For allt € [0,T%),

82

(6.1) £=

302c3

(14+00) (= eV (Tahr, w®) + O(7'ED)),

where 1 is the identity matriz and c3 = N~* [on [VW (y)|?dy.
Proof. Multiplying (5.1) by we, and integrating the resulting equation over €
yields

N
> (e we,) —{wee, 8)) = (1w, )+ (L5, we, ) = (o™ by we, )+ (V' we, ).
i=1

(6.2)
Note that

(6.3) (e ;) = = /RN W?f Wya,- dy = 8N_2036ij(1 + O(e‘“/5)> )
we,e;, o) < CeN=2(eN/2||g||2) < CeN72€, .
Hence, (6.2) can be written as

(64)  eseV 2L+ O(E)E = (1, we) + (L86,we) — (072w h, we) + (N, we).

We shall now estimate each term on the right-hand side.
First of all,

(6.5) (%, we)| < [Ir¥lloo(lwel) < Cem#/ N1 < CeNLE 2
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Denote

(L = * Ay — o + 20wy — 26 N o Hw?P)w
= L5 — 20 2 N ((wp)w — (w)w?).

Then (£8)*we = Lwe = r¢. 1t follows that
(£56, we)| = (@, (£5) we)| = {6, 7§)| < Ce™/ DN, < eMle 2.

Next, from (5.3) we obtain

Vo) < € [ (6 + eV Iglu? + 10
< CeN T e N913 + [Ihll3] < CeNTIER.
As h = ho(t) + hi(z,t) = ho + h11 + hio,
<0_2u/2h7w,5> = (U_2w2h17w§> = (0_2w2h117w5> + <0_2w2h127w§>
and
(6.6) |(0 72w hig, we)| < CeN7H|hialoo < CeNTLEL?

by Lemma 5.2.
Finally, observe that

1 1
(w?hi1,we) = —§<h117 (w?),) = §<Vrh117w3>-

Substituting all these estimates into (6.4) we then obtain (6.1) and complete the
proof of the lemma. 1]
LEMMA 6.2. Under the assumptions of Theorem 1.2, formula (1.23) holds with
ag given by (2.13).
Proof. From (6.1), it suffices to estimate the term (V,hq1,w3).
We write h11 = hi19 + h111, where
_AhllO = D_lf_N[wz — <w2>],

(6.7)
7D hi11y — Ahiin + D thys = =D~ Y(Thiio e + hi1o)

with the homogeneous Neumann boundary condition for both hi19 and hi1;. Note
that

h111(-,0) = h11(+,0) = ha1o(-, 0) = Ay (-, 0) — (DA) " H(w(:,&)* — (w?(-, &)
Using the Green’s function for the A, we have
hi1o(z) = D’ls’N/ L(z —n)w’(n, &) d77+D’1€’N/ R(z, n)w*(n, &) dn
Q Q
oy (|z — €]) + (e, ).

Note that (w?, V,41) = 0 so that (V,hi110, w?) = (Vtha, w?).
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As |V, VeR(z, )] < C(Q)d(€)~N for all w € Q,

/ Rﬂh ({E, ﬁ)wz(ﬂa f) d77 - in (x,f) / w2(77» f) dn‘
Q Q
<[ Raen) - Rae O, dy
[n—&|<u
</ VVeR] n— €] w?dy
[n—&l<p/2
+ Ry, (2.7) — R (2, O (n, £) dy < CM (€)™,
p/2<|n—&|<p
Similarly, since |V,V,R(x, )| < Cd(&)~Y,

[ a0, o~ Ra(6.6) [ (o0 dn‘ < CeNHg(e) Y,
Q Q

It then follows that
(e™Nw? hi1o¢) = D_l/ E_Nw?’(x,f)/ eV Ry, (z,n)w?(n, &) dndx
Q Q
(6.8) =D 'R,, (5,5)/ w2 [ W34+ 0()DdE)N.
RN RN
On the other hand, by Lemma 3.4 we have

Ih111lleo < 1h110(,0)lloe + sup D™ ([lhasoellp + [lha1o]lp)
0<t<T*

<CE2+ D7 sup (r|AT e NwVew - €[l + 1A eV w?)
0<t<T™

<CE2+CD™? sup [(7[¢]+ De N w?|,)
o<t<T*

< CE:?
since from (5.7) and (6.1) |£| = o(1) as long as t < T*. Thus,
(69) E_N\<w2h111,w5i>| < 06_1”]1111”00 < 05_1552.

Hence, from (1.23), the preceding estimates, and the definition of o, we obtain

€ = ape2 D (1 + 0(&)) ( — DeR(£,€) + 0()d(&) ™Y + 0(53‘2N_2“D_1)).
Finally, notice that |£,De R(€,€)| < Cd(§)1 N2 N=rD~1 = 032N =~ D~ e /d(£)]N 1
< Ce372N=2: D=1 Equation (1.23) thus follows. |

6.2. Proof of Theorem 1.2. It remains to show that 7T* = oo when D >
3=2N=3r and p is small.
When £(t) is near the boundary 952, we have, from (1.23) and (3.13),

£

€ = 22 N age (o D) H(E) Y (Ved(§) + O(e/(€) + OV~ 2D1d()V L)),

It then follows that %d(f (t)) > 0 whenever £(t) is close enough to the boundary.
Consequently, d(£(¢)) > p for all ¢ € [0,7%] if we take p small enough. Therefore, by
Theorem 1.1, T* = co. a0



188 XINFU CHEN AND MICHAL KOWALCZYK

7. Proofs of auxiliary lemmas.
Proof of Lemma 3.3. Integrating the differential equation over €2 yields

d
(7.1) T Qv—l-/ﬂvz/QF(m,t d;v>r(1)111{}/Fsct
Gronwall’s inequality then gives
(7.2) /v(z,t) dzx > min{/ vo(x) dz, min/ f(z,t) d:z:} .
Q Q [0.7] /o

To prove (3.10), we consider two cases: (i) tg € [0,7]; (ii) to € [, T].
Case (i): to € [0,7]. Comparing v with a subsolution v = e /7

1
6

ming vg gives

(7.3) vz, to) > v > nvy VaeQ.

{O

Case (ii): to € [7,T]. We define
s=D(t—ty)/T+1, b= et=t0)/Ty — o(s=1)/D,,

Then @, — A% > 0 so that there exists C(Q) such that

a(.,o):é(Q)e—l/D/v(-,to—T/D);

Q

(7.4) mind(-1) > O(Q) /

Q

namely,
(7.5) m(%nv(~,t0) > C’(Q)e*l/D/ v(,to —7/D) Vito € [1,T].
Q

Combining (7.2)—(7.5) then yields the assertion (3.10) of the lemma. O

Proof of Lemma 3.4. Since the equation is linear we can assume that vy = 0.
In addition, by the change of variables ' = t/7 we can also assume that 7 =
Furthermore, we can assume that 7 = 0 because, by defining # = v and F = e"tF
if (3.10) holds for (4, F), then it automatically holds for (v, F') by the assumption that
1 > 0. Thus it suffices to establish (3.10) for the case when 7 =1, n =0, and vy = 0.

Integrating the differential equation over  yields (v) = 0 for all ¢ € [0,T].

Multiplying the differential equation by v and integrating the resulting equation
over () gives

2dt/v+/|Vv\2 /

< | F [l 2+ llv

2+ < CO)IF|Fey + 803,

where 2* = 2N/(2 — N) for N > 3 and any large number when N = 2. First
applying the Poincare inequality ||v]|a2x < C()||Vv||2, then choosing § = 1/(2C(Q)),
and finally applying the Gronwall’s inequality, we then obtain

[o(8)ll2 < C sup [[F(;8)llp
0<s<t

for any p > (2*)) =2N/(2+ N) when N > 3 and p > 1 when N = 2. The assertion
of the lemma then follows from the parabolic estimate

[o(,8)[loc < C(82,p) oiligt(”U("s)”Q +1£Co9)llp)  Vp e (N/2,00),
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since v(-,0) = 0. The proof of the lemma is complete. 0

Proof of Lemma 3.5. Since (3.13) follows directly from (3.12) and the definition
of I' and &*, we need to show only (3.12).

Note that J(z,§) := G(z,&) = T'(xz — &) — T'(z — &*) satisfies A, J(z,£) =11in Q,
OnJ(x,€) = b(z, &) on 9Q, and [, J(x,&)dx = c(£), where

bo.§) = <00~ &) ~ Lo~ ). el§) =~ [ (M=) +Tlw—€))da.
A geometric argument shows that for all z € 92 and £ € Q,

(7.6)  [b(z,8)] = ﬁ (x |; i)g-ﬁv(m) + \; 5—)5 I?V(x)

<C(Q)|€ — x>V,

Using the Green’s formula and noting that (G(-,£)) = 0, we have

J(z, &) = () +/ b(z',&)G(x,2") dS,,

o9
(7.7) VIJ(x@):/ b(z', &)V .G (z,2") dSy.

o0
Using the known fact that |V,G(z,2")| < C()|z —2/|*~", we then obtain from (7.6)
and (7.7) that

VL J(6,6)] < O /8 =P €[S, < O,

This completes the proof. 0

8. Proof of Lemma 3.2. In this section, we prove Lemma 3.2.
We first consider the problem on RY, N = 2,3. In what follows, (f). =

Jan f(z)dz.
Set o9 = (W?),. Then

AW =W +o;'W2=0 inRY.
LEMMA 8.1. Let Lo be an operator defined as

Lop & Ag— ¢ + 205 ' W,
Then the following conditions hold:
(1) The principal eigenvalue Ny of Lg is positive and its associated eigenfunction
¢o 18 positive.
(2) Zero is an eigenvalue of Lo with multiplicity N; its associated eigenspace is
spanned by Wy, ..., Wy, .
(3) There exists vy > 0 such that
def _
Lo(¢,¢) = (=|Vo|* — ¢ + 205 ' We?). < wo(4?).
for all ¢ € HY(RN) satisfying ¢ L ¢po, Way, ..., Way (in L>(RY) sense).
This lemma follows directly from more general results of [16].
LEMMA 8.2. Let Ly be an operator defined by

(8.1) Li¢ < Lod — 05 2(W). W? — o 2(W26).W.

Then Ly has the following properties:
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(1) The operator Ly is self-adjoint.

(2) The function W is an eigenfunction of Ly with eigenvalue 700_2<W3>*,

(3) For eachi=1,...,N, W,, is an eigenfunction of L1 with eigenvalue zero.

(4) Assume that N < 3. Then there exists a positive constant v1 € (0,1] such
that

Li(6, ) E (—|Vo|? — ¢%)4205 H(We?).—205 2W ) (W2e), < —11(d2).

for all p € HY(RYN) satisfying ¢ L Wy, ..., Way .

Proof. The first three assertions follow by direct verification. To prove assertion
(4), we need to consider only those ¢ which are orthogonal to W, Wy, ,---, Wy, . We
will argue by contradiction. Since the essential spectrum of L lies in (—oo, —1], if
assertion (4) is not true, then there exists (A, ¢) such that

(i) A is real and nonnegative,

(ii)) ¢ L W, Wy,,...,Wy,, and

(iii) Lig = A
We will show that conditions (i)—(iii) cannot hold simultaneously.

From the definition of L; and conditions (ii) and (iii), we have

(8.2) (Lo — A\ = o 2(W2p) . W.

First we claim that A # Ag. In fact, if A = Ao, then (Lo — Ag)¢ L ¢ so that
(W20).(Weo). = 0. Consequently, as ¢g > 0 and W > 0, (W?2¢), = 0, so that
(Lo — Ao)¢ = 0. Thus ¢ is a multiple of ¢g. But this contradicts (W?2¢), = 0. Hence,

A # Ao
Restricted to the space orthogonal to W, ..., W, Lo — A is invertible, so that
(8.2) implies that

o=alo- AW, a=0,}(W?)..
Hence, o # 0. Taking the inner product with o w2 /o, we obtain

=0y 2(W?2, (Lo — \)~'W)

=0y (LoW, (Lo — AN)'W)  (as LoW = o5 'W?)

=0y (Lo — MW, (Lo — A) W) + o 'A(W, (Lo — A) ™' W)
=0y H{W?) + o5 AW, (Lo — N)'W)
=1+ 05 'MW, (Lo — \) "W).

Consider the function F(z) = (W, (Lo — z) W) for z € (0, A\g) U (A, o0). We have
F'(z) = (W, (Lo — 2) W) = (Lo — 2) "W, (Lo — 2) 'W) >0

Since Lo(W + 22 - VW) =W, Lo 'W = W + 32 - VIW + £N, ¢;W,,,. It then follows
that F(0) = (W, W +12- VW) = (1—£)(W?) > 0as N < 3. Thus, F(z) > 0 for all
z € (0,X9). As F(00) = 0, we also have F(z) < 0 for all z € (Ag,00). Hence, we have
A ¢ (0,00).

Finally, we show that A # 0. In fact, if A = 0, then as ¢ L W, for all i,
¢ = aLo'W = a(W + iz - VIW). But this implies that (¢, W) = a(1 — 2)(W?2),
> 0, contradicting the assumption ¢ L W. This completes the proof of the
lemma. a
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Remark 8.1. If N = 4, one sees that ¢ = W + 3z - VI is an eigenfunction of Ly
with eigenvalue zero.

Next, we extend Lemma 8.2 to large balls Bp = {x | |z| < R}.

LEMMA 8.3. Assume N < 3. There exist positive constants Ry and vo such that
for each R > Ry and each ¢ € H*(BR) satisfying ¢ L W,,, i =1,...,N in L*(Bg)
there holds

(83) LiR(6,0) % / (VO — & + 205 W) — 2072 / wo [ w2

Br Br Br

< —VQ/B (V6P + ¢2).

Proof. We will argue by contradiction. Suppose the assertion is not true. Then
there exists a sequence { Ry, dx}3%, such that Ry > k,¢, € H'(Bg,), ¢ L Wy, in
L*(Bg,) for all i, [5 (Vi[> +¢7) =1, and

k

(8.4) lim sup Ly ™ (¢, ¢x) > 0.

k—oo

Since H' is weakly compact and the embedding H' — L? is compact, we can
assume, by taking a subsequence if necessary, that there exists ¢ € H'(RY) such
that limy_. oo ¢ = ¢, weakly in H'(Bgr) and strongly in L?(Bg) for every R > 0. In
addition, H¢||H1(RN) < 1.

Since W decays exponentially fast, we have, (¢W, ), = limg_, 00 fBRk oW, =0
foralli=1,...,N. In addition, as k — oo,

ef _
w [ aowe—25® [ won [ wra
By, Br, Br,
def — _
— 7 Z 20, 1 (W ¢?)s — 20452 (W ). (W2p)..
If =0, then v = 0 so that

Ly (g, k) =y — 1 < —1/2

for all large k. But this contradicts (8.4).
If ¢ # 0, then by Lemma 8.2, as ¢ L W, for all j, L1(¢,¢) < —v1(¢?).. As ¢ €
H'(R), there exists a large M such that [|¢] % gny g,,) < 111(¢?).. Consequently,

1
1= [ (9P + 6o < g @)
Bu
It then follows that

tim sup L ™ (¢, 6¢) < lim sup {5 — /
k—oo B

k—o0

(Vou + )} <7 [ (V6P + 6 <0

M Bwm

Again, we obtain a contradiction. The proof is now complete. a
Proof of Lemma 3.2. We will denote

(f)e =/QE foa=1o

3
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We also set
L%(,0) X (V6 - Vi — ¢ + 20~ Lwen). — 2072 (wé)e (W)

We will show that there exists a positive constant v which is independent of € such
that for every sufficiently small positive €,

(8.5) L5(9,9) < —v(IVeI* + ¢%)c Vo, (d,we, (-,€))- =0,

which is equivalent to the spectral estimate in Lemma 3.2. By scaling, we can as-
sume that (¢> +|Ve|?). = 1. Set d.(¢) = P& and R = d.(€). (Note that
R > 2|In(De~2)| > Ry if ¢ is sufficiently small.) Translating Q. if necessary, we
can always achieve £ = 0.

Let Li%(¢,¢) be defined as in (8.4). As |w — W|pe~ + |0 — 09| = O(e) and
|[W| = O(e) outside Bg, we have

(3.6) £5°(6,6) = LR(6, ) / (VO[> + ¢2) + ).

QE\BR

Now let ¢ft = ¢ — Zi\il ¢;W,, be the L?(Bgr) orthogonal projection of ¢ on
{Way, oo, Wy b Then, 0 = (9Wy,)e = [ 6Wa, + O(e), so that ¢; = O(e) for all
i. Hence, ||¢ — ¢%|| 1 (5,) = O() and

(87) LlR(¢7 ¢) = LlR(¢R7 ¢R) + O(E)

From Lemma 8.2 we have
L6 0% < o [ (19074 (6%2) = - [ (V0P + )+ 0)
BR BR
Combining this with (8.6) and (8.7) then gives

(88)  L59(p¢) < — /

Q- \Br
< 11 (9® +|Vo*)e + O(e).

(V6P +62) — / (V6P +¢2) + O(e)

Br

Taking ¢ sufficiently small, we then obtain the assertion of the lemma. 1]
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